paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/detect-all-abuse-toward-universal-abusive
|
Detect All Abuse! Toward Universal Abusive Language Detection Models
|
2010.03776
|
https://arxiv.org/abs/2010.03776v2
|
https://arxiv.org/pdf/2010.03776v2.pdf
|
https://github.com/usydnlp/MACAS
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/an-efficient-assignment-of-drainage-direction
|
An Efficient Assignment of Drainage Direction Over Flat Surfaces in Raster Digital Elevation Models
|
1511.04433
|
https://arxiv.org/abs/1511.04433v1
|
https://arxiv.org/pdf/1511.04433v1.pdf
|
https://github.com/r-barnes/Barnes2013-FlatSurfaces
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/imexlbm-1-0-a-proxy-application-based-on-the
|
IMEXLBM 1.0: A Proxy Application based on the Lattice Boltzmann Method for solving Computational Fluid Dynamic problems on GPUs
|
2201.11330
|
https://arxiv.org/abs/2201.11330v1
|
https://arxiv.org/pdf/2201.11330v1.pdf
|
https://github.com/lucaso19891019/IMEXLB-1.0
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/deep-keyphrase-generation
|
Deep Keyphrase Generation
|
1704.06879
|
https://arxiv.org/abs/1704.06879v3
|
https://arxiv.org/pdf/1704.06879v3.pdf
|
https://github.com/mon95/deep-keyphrase
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/190910094
|
Deep Structured Neural Network for Event Temporal Relation Extraction
|
1909.10094
|
https://arxiv.org/abs/1909.10094v2
|
https://arxiv.org/pdf/1909.10094v2.pdf
|
https://github.com/PlusLabNLP/Deep-Structured-EveEveTemp
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-fast-route-to-non-linear-clustering
|
A Fast Route to Non-Linear Clustering Statistics in Modified Gravity Theories
|
1403.6492
|
https://arxiv.org/abs/1403.6492v2
|
https://arxiv.org/pdf/1403.6492v2.pdf
|
https://github.com/HAWinther/MG-PICOLA-PUBLIC
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/cola-with-scale-dependent-growth-applications
|
COLA with scale-dependent growth: applications to screened modified gravity models
|
1703.00879
|
https://arxiv.org/abs/1703.00879v2
|
https://arxiv.org/pdf/1703.00879v2.pdf
|
https://github.com/HAWinther/MG-PICOLA-PUBLIC
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/image-to-image-translation-with-conditional
|
Image-to-Image Translation with Conditional Adversarial Networks
|
1611.07004
|
http://arxiv.org/abs/1611.07004v3
|
http://arxiv.org/pdf/1611.07004v3.pdf
|
https://github.com/leemathew1998/GradientWeight
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/asynchronous-methods-for-deep-reinforcement
|
Asynchronous Methods for Deep Reinforcement Learning
|
1602.01783
|
http://arxiv.org/abs/1602.01783v2
|
http://arxiv.org/pdf/1602.01783v2.pdf
|
https://github.com/Kaixhin/ACER
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/on-long-tailed-phenomena-in-neural-machine
|
On Long-Tailed Phenomena in Neural Machine Translation
|
2010.04924
|
https://arxiv.org/abs/2010.04924v1
|
https://arxiv.org/pdf/2010.04924v1.pdf
|
https://github.com/vyraun/long-tailed
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/a-recursive-markov-blanket-based-approach-to
|
A Recursive Markov Boundary-Based Approach to Causal Structure Learning
|
2010.04992
|
https://arxiv.org/abs/2010.04992v3
|
https://arxiv.org/pdf/2010.04992v3.pdf
|
https://github.com/Ehsan-Mokhtarian/MARVEL
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/photo-realistic-single-image-super-resolution
|
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
|
1609.04802
|
http://arxiv.org/abs/1609.04802v5
|
http://arxiv.org/pdf/1609.04802v5.pdf
|
https://github.com/wkhademi/ImageEnhancement
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/unpaired-image-to-image-translation-using
|
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
|
1703.10593
|
https://arxiv.org/abs/1703.10593v7
|
https://arxiv.org/pdf/1703.10593v7.pdf
|
https://github.com/wkhademi/ImageEnhancement
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/comstreamclust-a-communicative-text
|
ComStreamClust: a communicative multi-agent approach to text clustering in streaming data
|
2010.05349
|
https://arxiv.org/abs/2010.05349v2
|
https://arxiv.org/pdf/2010.05349v2.pdf
|
https://github.com/AliNajafi1998/ComStream
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/the-effective-halo-model-creating-a-physical
|
The Effective Halo Model: Creating a Physical and Accurate Model of the Matter Power Spectrum and Cluster Counts
|
2004.09515
|
https://arxiv.org/abs/2004.09515v3
|
https://arxiv.org/pdf/2004.09515v3.pdf
|
https://github.com/oliverphilcox/EffectiveHalos
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/cxgbert-bert-meets-construction-grammar
|
CxGBERT: BERT meets Construction Grammar
|
2011.04134
|
https://arxiv.org/abs/2011.04134v1
|
https://arxiv.org/pdf/2011.04134v1.pdf
|
https://github.com/H-TayyarMadabushi/CxGBERT-BERT-meets-Construction-Grammar
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/progressive-image-deraining-networks-a-better
|
Progressive Image Deraining Networks: A Better and Simpler Baseline
|
1901.09221
|
https://arxiv.org/abs/1901.09221v3
|
https://arxiv.org/pdf/1901.09221v3.pdf
|
https://github.com/Leozhibin/PReNet-master
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/detecting-perceived-emotions-in-hurricane
|
Detecting Perceived Emotions in Hurricane Disasters
|
2004.14299
|
https://arxiv.org/abs/2004.14299v1
|
https://arxiv.org/pdf/2004.14299v1.pdf
|
https://github.com/shreydesai/hurricane
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/addressing-function-approximation-error-in
|
Addressing Function Approximation Error in Actor-Critic Methods
|
1802.09477
|
http://arxiv.org/abs/1802.09477v3
|
http://arxiv.org/pdf/1802.09477v3.pdf
|
https://github.com/arrival-ltd/catalyst-rl-tutorial
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/rethinking-bottleneck-structure-for-efficient
|
Rethinking Bottleneck Structure for Efficient Mobile Network Design
|
2007.02269
|
https://arxiv.org/abs/2007.02269v4
|
https://arxiv.org/pdf/2007.02269v4.pdf
|
https://github.com/Andrew-Qibin/ssdlite-pytorch
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/sim2real-for-peg-hole-insertion-with-eye-in
|
Sim2Real for Peg-Hole Insertion with Eye-in-Hand Camera
|
2005.14401
|
https://arxiv.org/abs/2005.14401v1
|
https://arxiv.org/pdf/2005.14401v1.pdf
|
https://github.com/arrival-ltd/catalyst-rl-tutorial
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/sample-efficient-ensemble-learning-with
|
Sample Efficient Ensemble Learning with Catalyst.RL
|
2003.14210
|
https://arxiv.org/abs/2003.14210v2
|
https://arxiv.org/pdf/2003.14210v2.pdf
|
https://github.com/arrival-ltd/catalyst-rl-tutorial
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/automated-and-network-structure-preserving
|
Automated Segmentation of Optical Coherence Tomography Angiography Images: Benchmark Data and Clinically Relevant Metrics
|
1912.09978
|
https://arxiv.org/abs/1912.09978v2
|
https://arxiv.org/pdf/1912.09978v2.pdf
|
https://github.com/giaylenia/OCTA_segm_study
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/word2vec-explained-deriving-mikolov-et-als
|
word2vec Explained: deriving Mikolov et al.'s negative-sampling word-embedding method
|
1402.3722
|
http://arxiv.org/abs/1402.3722v1
|
http://arxiv.org/pdf/1402.3722v1.pdf
|
https://github.com/LAEarnsChamp/skipgram-negativesampling
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/alexandrov-geometry-preliminary-version-no-1
|
Alexandrov geometry: foundations
|
1903.08539
|
https://arxiv.org/abs/1903.08539v6
|
https://arxiv.org/pdf/1903.08539v6.pdf
|
https://github.com/anton-petrunin/book
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/eegnet-a-compact-convolutional-network-for
|
EEGNet: A Compact Convolutional Network for EEG-based Brain-Computer Interfaces
|
1611.08024
|
http://arxiv.org/abs/1611.08024v4
|
http://arxiv.org/pdf/1611.08024v4.pdf
|
https://github.com/YundongWang/BCI_Challenge
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/syllabic-quantity-patterns-as-rhythmic
|
Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution
|
2110.14203
|
https://arxiv.org/abs/2110.14203v1
|
https://arxiv.org/pdf/2110.14203v1.pdf
|
https://github.com/silvia-cor/syllabicquantity_latin
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/implementing-behavior-trees-using-three
|
Implementing Behavior Trees using Three-Valued Logic
|
2011.03835
|
https://arxiv.org/abs/2011.03835v1
|
https://arxiv.org/pdf/2011.03835v1.pdf
|
https://github.com/active-logic/activelogic-cs
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/pp-ocr-a-practical-ultra-lightweight-ocr
|
PP-OCR: A Practical Ultra Lightweight OCR System
|
2009.09941
|
https://arxiv.org/abs/2009.09941v3
|
https://arxiv.org/pdf/2009.09941v3.pdf
|
https://github.com/hieu28022000/PaddleOCR
| false
| false
| true
|
paddle
|
https://paperswithcode.com/paper/learning-observation-based-certifiable-safe
|
Learning Observation-Based Certifiable Safe Policy for Decentralized Multi-Robot Navigation
|
2109.07760
|
https://arxiv.org/abs/2109.07760v1
|
https://arxiv.org/pdf/2109.07760v1.pdf
|
https://github.com/yuxiangcui/marl-ocbf
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/uav-path-planning-for-wireless-data
|
UAV Path Planning for Wireless Data Harvesting: A Deep Reinforcement Learning Approach
|
2007.00544
|
https://arxiv.org/abs/2007.00544v2
|
https://arxiv.org/pdf/2007.00544v2.pdf
|
https://github.com/theilem/uavSim
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/is-this-really-you-an-empirical-study-on-risk
|
Is This Really You? An Empirical Study on Risk-Based Authentication Applied in the Wild
|
2003.07622
|
https://arxiv.org/abs/2003.07622v1
|
https://arxiv.org/pdf/2003.07622v1.pdf
|
https://github.com/DASCologne/HOSIT
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-convnet-for-the-2020s
|
A ConvNet for the 2020s
|
2201.03545
|
https://arxiv.org/abs/2201.03545v2
|
https://arxiv.org/pdf/2201.03545v2.pdf
|
https://github.com/dongkyuk/ConvNext-tensorflow
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/surface-dynamics-equilibrium-points-and
|
Surface Dynamics, Equilibrium Points and Individual Lobes of the Kuiper Belt Object (486958) Arrokoth
|
2006.07823
|
https://arxiv.org/abs/2006.07823v1
|
https://arxiv.org/pdf/2006.07823v1.pdf
|
https://github.com/a-amarante/minor-equilibria
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/accelerating-self-play-learning-in-go
|
Accelerating Self-Play Learning in Go
|
1902.10565
|
https://arxiv.org/abs/1902.10565v5
|
https://arxiv.org/pdf/1902.10565v5.pdf
|
https://github.com/lightvector/KataGo
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/deep-neural-networks-for-low-cost-eye
|
Deep Neural Networks for Low-Cost Eye Tracking
| null |
https://www.sciencedirect.com/science/article/pii/S1877050920319360?via%3Dihub
|
https://www.sciencedirect.com/science/article/pii/S1877050920319360?via%3Dihub
|
https://github.com/Ildaron/Pest_YoloV3_python_custom-data
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/evidential-sparsification-of-multimodal
|
Evidential Sparsification of Multimodal Latent Spaces in Conditional Variational Autoencoders
|
2010.09164
|
https://arxiv.org/abs/2010.09164v3
|
https://arxiv.org/pdf/2010.09164v3.pdf
|
https://github.com/sisl/EvidentialSparsification
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/spliteasy-a-practical-approach-for-training
|
SplitEasy: A Practical Approach for Training ML models on Mobile Devices
|
2011.04232
|
https://arxiv.org/abs/2011.04232v2
|
https://arxiv.org/pdf/2011.04232v2.pdf
|
https://github.com/kamalesh0406/SplitEasy
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/aircraft-engines-remaining-useful-life-1
|
Aircraft Engines Remaining Useful Life Prediction with an Improved Online Sequential Extreme Learning Machine
| null |
https://www.mdpi.com/2076-3417/10/3/1062
|
https://www.mdpi.com/2076-3417/10/3/1062
|
https://github.com/TBdevellopper/Deep-belief-Neural-Networks-ELM-
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/atomic-crosschain-transactions-white-paper
|
Atomic Crosschain Transactions White Paper
|
2003.00903
|
https://arxiv.org/abs/2003.00903v2
|
https://arxiv.org/pdf/2003.00903v2.pdf
|
https://github.com/ConsenSys/sidechains-samples
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/improving-mae-against-cce-under-label-noise
|
IMAE for Noise-Robust Learning: Mean Absolute Error Does Not Treat Examples Equally and Gradient Magnitude's Variance Matters
|
1903.12141
|
https://arxiv.org/abs/1903.12141v9
|
https://arxiv.org/pdf/1903.12141v9.pdf
|
https://github.com/XinshaoAmosWang/Emphasis-Regularisation-by-Gradient-Rescaling
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/free-and-customizable-code-documentation-with
|
Free and Customizable Code Documentation with LLMs: A Fine-Tuning Approach
|
2412.00726
|
https://arxiv.org/abs/2412.00726v1
|
https://arxiv.org/pdf/2412.00726v1.pdf
|
https://github.com/souradipp76/ReadMeReady
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/meta-reinforcement-learning-of-structured
|
Meta-Reinforcement Learning of Structured Exploration Strategies
|
1802.07245
|
http://arxiv.org/abs/1802.07245v1
|
http://arxiv.org/pdf/1802.07245v1.pdf
|
https://github.com/russellmendonca/maesn_suite
| true
| false
| true
|
tf
|
https://paperswithcode.com/paper/meta-learning-stationary-stochastic-process
|
Meta-Learning Stationary Stochastic Process Prediction with Convolutional Neural Processes
|
2007.01332
|
https://arxiv.org/abs/2007.01332v2
|
https://arxiv.org/pdf/2007.01332v2.pdf
|
https://github.com/wesselb/NeuralProcesses.jl
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/pcl-proposal-cluster-learning-for-weakly
|
PCL: Proposal Cluster Learning for Weakly Supervised Object Detection
|
1807.03342
|
http://arxiv.org/abs/1807.03342v2
|
http://arxiv.org/pdf/1807.03342v2.pdf
|
https://github.com/ppengtang/pcl.pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/multiple-instance-detection-network-with
|
Multiple Instance Detection Network with Online Instance Classifier Refinement
|
1704.00138
|
http://arxiv.org/abs/1704.00138v1
|
http://arxiv.org/pdf/1704.00138v1.pdf
|
https://github.com/ppengtang/pcl.pytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/privacy-preserving-pose-estimation-for-human
|
Privacy-Preserving Pose Estimation for Human-Robot Interaction
|
2011.07387
|
https://arxiv.org/abs/2011.07387v1
|
https://arxiv.org/pdf/2011.07387v1.pdf
|
https://github.com/xiaxx244/shadow_pose_estimation
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/unsupervised-anomaly-detection-with
|
Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
|
1703.05921
|
http://arxiv.org/abs/1703.05921v1
|
http://arxiv.org/pdf/1703.05921v1.pdf
|
https://github.com/YeongHyeon/f-AnoGAN-TF
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/an-automatic-cost-learning-framework-for
|
An Automatic Cost Learning Framework for Image Steganography Using Deep Reinforcement Learning
| null |
https://ieeexplore.ieee.org/abstract/document/9205850
|
https://ieeexplore.ieee.org/abstract/document/9205850
|
https://github.com/a-pig-akab/SPAR-RL_porject
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/can-creative-adversarial-networks-generating
|
CAN: Creative Adversarial Networks, Generating "Art" by Learning About Styles and Deviating from Style Norms
|
1706.07068
|
http://arxiv.org/abs/1706.07068v1
|
http://arxiv.org/pdf/1706.07068v1.pdf
|
https://github.com/sfc-computational-creativity-lab/x-rhythm-can
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/algorithms-and-complexity-on-indexing-founder
|
Algorithms and Complexity on Indexing Founder Graphs
|
2102.12822
|
https://arxiv.org/abs/2102.12822v6
|
https://arxiv.org/pdf/2102.12822v6.pdf
|
https://github.com/algbio/founderblockgraphs
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/guarantees-for-the-kronecker-fast-johnson
|
Guarantees for the Kronecker Fast Johnson-Lindenstrauss Transform Using a Coherence and Sampling Argument
|
1911.08424
|
https://arxiv.org/abs/1911.08424v1
|
https://arxiv.org/pdf/1911.08424v1.pdf
|
https://github.com/OsmanMalik/kronecker-sketching
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-convolutional-attention-network-for-extreme
|
A Convolutional Attention Network for Extreme Summarization of Source Code
|
1602.03001
|
http://arxiv.org/abs/1602.03001v2
|
http://arxiv.org/pdf/1602.03001v2.pdf
|
https://github.com/mdrafiqulrabin/tnpa-generalizability
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/3d-deformable-convolutions-for-mri
|
3D Deformable Convolutions for MRI classification
|
1911.01898
|
https://arxiv.org/abs/1911.01898v1
|
https://arxiv.org/pdf/1911.01898v1.pdf
|
https://github.com/kondratevakate/3DDeformableConvolutions
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/problems-of-dataset-creation-for-light-source
|
Problems of dataset creation for light source estimation
|
2006.02692
|
https://arxiv.org/abs/2006.02692v2
|
https://arxiv.org/pdf/2006.02692v2.pdf
|
https://github.com/Visillect/CubePlusPlus
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/benchmarking-deep-reinforcement-learning-for
|
Benchmarking Deep Reinforcement Learning for Continuous Control
|
1604.06778
|
http://arxiv.org/abs/1604.06778v3
|
http://arxiv.org/pdf/1604.06778v3.pdf
|
https://github.com/russellmendonca/maesn_suite
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/why-model-why-assessing-the-strengths-and
|
Why model why? Assessing the strengths and limitations of LIME
|
2012.00093
|
https://arxiv.org/abs/2012.00093v1
|
https://arxiv.org/pdf/2012.00093v1.pdf
|
https://github.com/jdieber/WhyModelWhy
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/towards-impartial-multi-task-learning
|
Towards Impartial Multi-task Learning
| null |
https://openreview.net/forum?id=IMPnRXEWpvr
|
https://openreview.net/pdf?id=IMPnRXEWpvr
|
https://github.com/avivnavon/nash-mtl
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/boosting-cross-architectural-emulation
|
Boosting Cross-Architectural Emulation Performance by Foregoing the Intermediate Representation Model
|
2501.03427
|
https://arxiv.org/abs/2501.03427v1
|
https://arxiv.org/pdf/2501.03427v1.pdf
|
https://github.com/amyipdev/riscv-um
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/flower-a-comprehensive-dataflow-compiler-for-1
|
FLOWER: A comprehensive dataflow compiler for high-level synthesis
|
2112.07789
|
https://arxiv.org/abs/2112.07789v1
|
https://arxiv.org/pdf/2112.07789v1.pdf
|
https://github.com/AnyDSL/anydsl
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/deeperforensics-challenge-2020-on-real-world
|
DeeperForensics Challenge 2020 on Real-World Face Forgery Detection: Methods and Results
|
2102.09471
|
https://arxiv.org/abs/2102.09471v1
|
https://arxiv.org/pdf/2102.09471v1.pdf
|
https://github.com/EndlessSora/DeeperForensics-1.0
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/cspnet-a-new-backbone-that-can-enhance
|
CSPNet: A New Backbone that can Enhance Learning Capability of CNN
|
1911.11929
|
https://arxiv.org/abs/1911.11929v1
|
https://arxiv.org/pdf/1911.11929v1.pdf
|
https://github.com/6-dl/darknet_wpb
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/scaled-yolov4-scaling-cross-stage-partial
|
Scaled-YOLOv4: Scaling Cross Stage Partial Network
|
2011.08036
|
https://arxiv.org/abs/2011.08036v2
|
https://arxiv.org/pdf/2011.08036v2.pdf
|
https://github.com/6-dl/darknet_wpb
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/yolov4-optimal-speed-and-accuracy-of-object
|
YOLOv4: Optimal Speed and Accuracy of Object Detection
|
2004.10934
|
https://arxiv.org/abs/2004.10934v1
|
https://arxiv.org/pdf/2004.10934v1.pdf
|
https://github.com/6-dl/darknet_wpb
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/focal-loss-for-dense-object-detection
|
Focal Loss for Dense Object Detection
|
1708.02002
|
http://arxiv.org/abs/1708.02002v2
|
http://arxiv.org/pdf/1708.02002v2.pdf
|
https://github.com/simonlevine/11785-project
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-global-correction-to-ppmxl-proper-motions
|
A Global Correction to PPMXL Proper Motions
|
1602.08868
|
http://arxiv.org/abs/1602.08868v1
|
http://arxiv.org/pdf/1602.08868v1.pdf
|
https://github.com/johnjvickers/ppmxl_correction
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/measuring-amplitudes-of-harmonics-and
|
Measuring amplitudes of harmonics and combination frequencies in variable stars
|
1512.00004
|
http://arxiv.org/abs/1512.00004v1
|
http://arxiv.org/pdf/1512.00004v1.pdf
|
https://github.com/earlbellinger/multiperiod
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/weakly-supervised-person-re-identification
|
Weakly Supervised Person Re-ID: Differentiable Graphical Learning and A New Benchmark
|
1904.03845
|
https://arxiv.org/abs/1904.03845v3
|
https://arxiv.org/pdf/1904.03845v3.pdf
|
https://github.com/wanggrun/SYSU-30k
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/the-l-functions-and-modular-forms-database
|
The L-functions and modular forms database project
|
1511.04289
|
http://arxiv.org/abs/1511.04289v2
|
http://arxiv.org/pdf/1511.04289v2.pdf
|
https://github.com/LMFDB/lmfdb
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/robust-high-contrast-companion-detection-from
|
Robust high-contrast companion detection from interferometric observations. The CANDID algorithm and an application to six binary Cepheids
|
1505.02715
|
http://arxiv.org/abs/1505.02715v2
|
http://arxiv.org/pdf/1505.02715v2.pdf
|
https://github.com/amerand/CANDID
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/large-scale-gan-training-for-high-fidelity
|
Large Scale GAN Training for High Fidelity Natural Image Synthesis
|
1809.11096
|
http://arxiv.org/abs/1809.11096v2
|
http://arxiv.org/pdf/1809.11096v2.pdf
|
https://github.com/sarus-tech/tf2-published-models
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/non-signaling-boxes-and-quantum-logics
|
Non-signaling boxes and quantum logics
|
1305.3449
|
http://arxiv.org/abs/1305.3449v3
|
http://arxiv.org/pdf/1305.3449v3.pdf
|
https://github.com/ttylec/non-signalling-boxes
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/penelopie-enabling-open-information
|
PENELOPIE: Enabling Open Information Extraction for the Greek Language through Machine Translation
|
2103.15075
|
https://arxiv.org/abs/2103.15075v1
|
https://arxiv.org/pdf/2103.15075v1.pdf
|
https://github.com/lighteternal/PENELOPIE
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/neural-mesh-flow-3d-manifold-mesh
|
Neural Mesh Flow: 3D Manifold Mesh Generation via Diffeomorphic Flows
|
2007.10973
|
https://arxiv.org/abs/2007.10973v2
|
https://arxiv.org/pdf/2007.10973v2.pdf
|
https://github.com/KunalMGupta/NeuralMeshFlow
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/models-of-random-knots
|
Models of Random Knots
|
1711.10470
|
http://arxiv.org/abs/1711.10470v1
|
http://arxiv.org/pdf/1711.10470v1.pdf
|
https://github.com/chaim-e/abcdefg
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/statistical-modelling-of-computer-network
|
Statistical Modelling of Computer Network Traffic Event Times
|
1711.10416
|
http://arxiv.org/abs/1711.10416v1
|
http://arxiv.org/pdf/1711.10416v1.pdf
|
https://github.com/Matt0312/SToCND
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/the-tamed-unadjusted-langevin-algorithm
|
The Tamed Unadjusted Langevin Algorithm
|
1710.05559
|
http://arxiv.org/abs/1710.05559v3
|
http://arxiv.org/pdf/1710.05559v3.pdf
|
https://github.com/nbrosse/TULA
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/a-game-theoretic-framework-for-multi-period
|
A Game-Theoretic Framework for Multi-Period-Multi-Company Demand Response Management in the Smart Grid
|
1710.00145
|
http://arxiv.org/abs/1710.00145v5
|
http://arxiv.org/pdf/1710.00145v5.pdf
|
https://github.com/kalsheh2/DemandResponse
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/pointless-continuous-spatial-surface
|
Pointless Continuous Spatial Surface Reconstruction
|
1709.09659
|
http://arxiv.org/abs/1709.09659v1
|
http://arxiv.org/pdf/1709.09659v1.pdf
|
https://github.com/wilsonka/pointless-spatial-modeling
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/cola-with-massive-neutrinos
|
COLA with massive neutrinos
|
1705.08165
|
http://arxiv.org/abs/1705.08165v2
|
http://arxiv.org/pdf/1705.08165v2.pdf
|
https://github.com/HAWinther/MG-PICOLA-PUBLIC
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/machine-learning-assisted-correction-of
|
Machine-learning-assisted correction of correlated qubit errors in a topological code
|
1705.07855
|
http://arxiv.org/abs/1705.07855v3
|
http://arxiv.org/pdf/1705.07855v3.pdf
|
https://github.com/obriente/qgarden
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/service-provider-devops
|
Service Provider DevOps
|
1702.06387
|
http://arxiv.org/abs/1702.06387v1
|
http://arxiv.org/pdf/1702.06387v1.pdf
|
https://github.com/nigsics/ramon
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/minizinc-with-strings
|
MiniZinc with Strings
|
1608.03650
|
http://arxiv.org/abs/1608.03650v1
|
http://arxiv.org/pdf/1608.03650v1.pdf
|
https://bitbucket.org/jossco/gecode-string
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/the-latent-logarithm
|
The latent logarithm
|
1605.06064
|
http://arxiv.org/abs/1605.06064v1
|
http://arxiv.org/pdf/1605.06064v1.pdf
|
https://github.com/surgebiswas/latent_log
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/explicit-moments-of-decision-times-for-single
|
Explicit moments of decision times for single- and double-threshold drift-diffusion processes
|
1601.06420
|
http://arxiv.org/abs/1601.06420v1
|
http://arxiv.org/pdf/1601.06420v1.pdf
|
https://github.com/PrincetonUniversity/higher_moments_ddm
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/the-spectral-sn-grb-connection-systematic
|
The Spectral SN-GRB Connection: Systematic Spectral Comparisons between Type Ic Supernovae, and broad-lined Type Ic Supernovae with and without Gamma-Ray Bursts
|
1509.07124
|
http://arxiv.org/abs/1509.07124v3
|
http://arxiv.org/pdf/1509.07124v3.pdf
|
https://github.com/nyusngroup/SESNspectraLib
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/adaptive-radial-basis-function-generated
|
Adaptive Radial Basis Function-generated Finite Differences method for contact problems
|
1811.10368
|
http://arxiv.org/abs/1811.10368v2
|
http://arxiv.org/pdf/1811.10368v2.pdf
|
https://gitlab.com/e62Lab/2018AdaptivePaper
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/the-galaxy-power-spectrum-and-bispectrum-in
|
The Galaxy Power Spectrum and Bispectrum in Redshift Space
|
1806.04015
|
http://arxiv.org/abs/1806.04015v2
|
http://arxiv.org/pdf/1806.04015v2.pdf
|
https://github.com/djeong98/pkgs_supplement
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/variable-order-fractional-fokker-planck
|
Variable Order Fractional Fokker-Planck Equations derived from Continuous Time Random Walks
|
1712.06767
|
http://arxiv.org/abs/1712.06767v3
|
http://arxiv.org/pdf/1712.06767v3.pdf
|
https://github.com/strakaps/variable-order-MC
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/a-machine-learning-approach-to-forecasting
|
A Machine Learning Approach to Forecasting Remotely Sensed Vegetation Health
|
1602.06335
|
http://arxiv.org/abs/1602.06335v4
|
http://arxiv.org/pdf/1602.06335v4.pdf
|
https://github.com/JohnNay/forecastVeg
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/score-based-generative-modeling-through-1
|
Score-Based Generative Modeling through Stochastic Differential Equations
|
2011.13456
|
https://arxiv.org/abs/2011.13456v2
|
https://arxiv.org/pdf/2011.13456v2.pdf
|
https://github.com/X-LANCE/VoiceFlow-TTS
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/efficient-architecture-aware-acceleration-of
|
Efficient Architecture-Aware Acceleration of BWA-MEM for Multicore Systems
|
1907.12931
|
http://arxiv.org/abs/1907.12931v1
|
http://arxiv.org/pdf/1907.12931v1.pdf
|
https://github.com/bwa-mem2/bwa-mem2
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/quantum-diamond-spectrometer-for-nanoscale
|
Quantum diamond spectrometer for nanoscale NMR and ESR spectroscopy
|
1905.11099
|
http://arxiv.org/abs/1905.11099v1
|
http://arxiv.org/pdf/1905.11099v1.pdf
|
https://gitlab.com/dplaudecraik/qdSpectro
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/energy-storage-in-madeira-portugal-co
|
Energy Storage in Madeira, Portugal: Co-optimizing for Arbitrage, Self-Sufficiency, Peak Shaving and Energy Backup
|
1904.00463
|
http://arxiv.org/abs/1904.00463v2
|
http://arxiv.org/pdf/1904.00463v2.pdf
|
https://github.com/umar-hashmi/MadeiraStorage
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/on-symmetry-and-quantification-a-new-approach
|
On Symmetry and Quantification: A New Approach to Verify Distributed Protocols
|
2103.14831
|
https://arxiv.org/abs/2103.14831v1
|
https://arxiv.org/pdf/2103.14831v1.pdf
|
https://github.com/aman-goel/nfm2021exp
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/sampling-first-passage-times-of-fractional
|
Sampling first-passage times of fractional Brownian Motion using adaptive bisections
|
1908.11634
|
http://arxiv.org/abs/1908.11634v1
|
http://arxiv.org/pdf/1908.11634v1.pdf
|
https://github.com/benjamin-w/fracbm-fpt-mc
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/variational-extrapolation-of-implicit-schemes
|
Variational Extrapolation of Implicit Schemes for General Gradient Flows
|
1908.10246
|
http://arxiv.org/abs/1908.10246v2
|
http://arxiv.org/pdf/1908.10246v2.pdf
|
https://github.com/AZaitzeff/gradientflow
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/augmented-unlocking-techniques-for
|
Augmented Unlocking Techniques for Smartphones Using Pre-Touch Information
|
1908.09165
|
http://arxiv.org/abs/1908.09165v1
|
http://arxiv.org/pdf/1908.09165v1.pdf
|
https://github.com/spamalot/3D-Pattern-Lock
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/incorporating-fault-proneness-estimations
|
Incorporating fault-proneness estimations into coverage-based test case prioritization methods
|
1908.06502
|
http://arxiv.org/abs/1908.06502v2
|
http://arxiv.org/pdf/1908.06502v2.pdf
|
https://github.com/khesoem/Defects4J-Plus-M
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/modeling-kepler-eclipsing-binaries
|
Modeling Kepler Eclipsing Binaries: Homogeneous Inference of Orbital & Stellar Properties
|
1908.00139
|
http://arxiv.org/abs/1908.00139v1
|
http://arxiv.org/pdf/1908.00139v1.pdf
|
https://github.com/savvytruffle/keblat
| true
| true
| false
|
none
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
SQL Console for pwc-archive/links-between-paper-and-code
Retrieves specific details about a single paper by its arXiv ID, providing limited insight into the dataset.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.