code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
631
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class _UpperCAmelCase ( unittest.TestCase ): def _snake_case ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ :Optional[int] = ["a", "b", "c"] # Defaults to last layer if both are None SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Dict = get_aligned_output_features_output_indices(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase) self.assertEqual(UpperCAmelCase , ["c"]) self.assertEqual(UpperCAmelCase , [2]) # Out indices set to match out features SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Tuple = get_aligned_output_features_output_indices(["a", "c"] , UpperCAmelCase , UpperCAmelCase) self.assertEqual(UpperCAmelCase , ["a", "c"]) self.assertEqual(UpperCAmelCase , [0, 2]) # Out features set to match out indices SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :int = get_aligned_output_features_output_indices(UpperCAmelCase , [0, 2] , UpperCAmelCase) self.assertEqual(UpperCAmelCase , ["a", "c"]) self.assertEqual(UpperCAmelCase , [0, 2]) # Out features selected from negative indices SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Any = get_aligned_output_features_output_indices(UpperCAmelCase , [-3, -1] , UpperCAmelCase) self.assertEqual(UpperCAmelCase , ["a", "c"]) self.assertEqual(UpperCAmelCase , [-3, -1]) def _snake_case ( self : str): # Stage names must be set with self.assertRaises(UpperCAmelCase): verify_out_features_out_indices(["a", "b"] , (0, 1) , UpperCAmelCase) # Out features must be a list with self.assertRaises(UpperCAmelCase): verify_out_features_out_indices(("a", "b") , (0, 1) , ["a", "b"]) # Out features must be a subset of stage names with self.assertRaises(UpperCAmelCase): verify_out_features_out_indices(["a", "b"] , (0, 1) , ["a"]) # Out indices must be a list or tuple with self.assertRaises(UpperCAmelCase): verify_out_features_out_indices(UpperCAmelCase , 0 , ["a", "b"]) # Out indices must be a subset of stage names with self.assertRaises(UpperCAmelCase): verify_out_features_out_indices(UpperCAmelCase , (0, 1) , ["a"]) # Out features and out indices must be the same length with self.assertRaises(UpperCAmelCase): verify_out_features_out_indices(["a", "b"] , (0,) , ["a", "b", "c"]) # Out features should match out indices with self.assertRaises(UpperCAmelCase): verify_out_features_out_indices(["a", "b"] , (0, 2) , ["a", "b", "c"]) # Out features and out indices should be in order with self.assertRaises(UpperCAmelCase): verify_out_features_out_indices(["b", "a"] , (0, 1) , ["a", "b"]) # Check passes with valid inputs verify_out_features_out_indices(["a", "b", "d"] , (0, 1, -1) , ["a", "b", "c", "d"]) def _snake_case ( self : Tuple): SCREAMING_SNAKE_CASE_ :int = BackboneMixin() SCREAMING_SNAKE_CASE_ :List[str] = ["a", "b", "c"] SCREAMING_SNAKE_CASE_ :str = ["a", "c"] SCREAMING_SNAKE_CASE_ :Union[str, Any] = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["a", "c"]) self.assertEqual(backbone.out_indices , [0, 2]) # Check out features and indices are updated correctly SCREAMING_SNAKE_CASE_ :Tuple = ["a", "b"] self.assertEqual(backbone.out_features , ["a", "b"]) self.assertEqual(backbone.out_indices , [0, 1]) SCREAMING_SNAKE_CASE_ :List[str] = [-3, -1] self.assertEqual(backbone.out_features , ["a", "c"]) self.assertEqual(backbone.out_indices , [-3, -1])
631
1
'''simple docstring''' from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
718
def _a ( __lowercase , __lowercase = 0 ) -> list: """simple docstring""" __UpperCamelCase = length or len(__lowercase ) __UpperCamelCase = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: __UpperCamelCase , __UpperCamelCase = list_data[i + 1], list_data[i] __UpperCamelCase = True return list_data if not swapped else bubble_sort(__lowercase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
567
0
"""simple docstring""" import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = 'hf-internal-testing/tiny-random-t5' _lowerCAmelCase : Dict = AutoTokenizer.from_pretrained(_A ) _lowerCAmelCase : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(_A ) _lowerCAmelCase : Union[str, Any] = tokenizer('This is me' ,return_tensors='pt' ) _lowerCAmelCase : str = model.to_bettertransformer() self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) _lowerCAmelCase : Dict = model.generate(**_A ) _lowerCAmelCase : List[str] = model.reverse_bettertransformer() self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A ) _lowerCAmelCase : Dict = AutoModelForSeqaSeqLM.from_pretrained(_A ) self.assertFalse( any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) _lowerCAmelCase : Dict = model_reloaded.generate(**_A ) self.assertTrue(torch.allclose(_A ,_A ) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = 'hf-internal-testing/tiny-random-t5' _lowerCAmelCase : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_A ) _lowerCAmelCase : Any = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_A ): model.save_pretrained(_A ) _lowerCAmelCase : List[str] = model.reverse_bettertransformer() model.save_pretrained(_A )
259
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class __UpperCamelCase ( a__ , a__ ): _UpperCAmelCase = "swin" _UpperCAmelCase = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self ,_A=224 ,_A=4 ,_A=3 ,_A=96 ,_A=[2, 2, 6, 2] ,_A=[3, 6, 12, 24] ,_A=7 ,_A=4.0 ,_A=True ,_A=0.0 ,_A=0.0 ,_A=0.1 ,_A="gelu" ,_A=False ,_A=0.0_2 ,_A=1E-5 ,_A=32 ,_A=None ,_A=None ,**_A ,): '''simple docstring''' super().__init__(**_A ) _lowerCAmelCase : List[str] = image_size _lowerCAmelCase : List[str] = patch_size _lowerCAmelCase : Union[str, Any] = num_channels _lowerCAmelCase : Union[str, Any] = embed_dim _lowerCAmelCase : Dict = depths _lowerCAmelCase : Any = len(_A ) _lowerCAmelCase : Optional[Any] = num_heads _lowerCAmelCase : List[Any] = window_size _lowerCAmelCase : str = mlp_ratio _lowerCAmelCase : Dict = qkv_bias _lowerCAmelCase : Union[str, Any] = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : List[Any] = drop_path_rate _lowerCAmelCase : List[Any] = hidden_act _lowerCAmelCase : Tuple = use_absolute_embeddings _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Dict = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase : List[Any] = int(embed_dim * 2 ** (len(_A ) - 1) ) _lowerCAmelCase : List[str] = ['stem'] + [F"""stage{idx}""" for idx in range(1 ,len(_A ) + 1 )] _lowerCAmelCase, _lowerCAmelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=_A ,out_indices=_A ,stage_names=self.stage_names ) class __UpperCamelCase ( a__ ): _UpperCAmelCase = version.parse("1.11" ) @property def __lowerCamelCase ( self ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __lowerCamelCase ( self ): '''simple docstring''' return 1E-4
259
1
"""simple docstring""" import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : Any = tmp_path / '''cache''' A_ : Optional[Any] = {'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A_ : List[str] = TextDatasetReader(_UpperCAmelCase , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase ).read() _check_text_dataset(_UpperCAmelCase , _UpperCAmelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] , ) def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : str = tmp_path / '''cache''' A_ : str = {'''text''': '''string'''} A_ : List[str] = features.copy() if features else default_expected_features A_ : Union[str, Any] = ( Features({feature: Value(_UpperCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) A_ : List[str] = TextDatasetReader(_UpperCAmelCase , features=_UpperCAmelCase , cache_dir=_UpperCAmelCase ).read() _check_text_dataset(_UpperCAmelCase , _UpperCAmelCase ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : Tuple = tmp_path / '''cache''' A_ : Any = {'''text''': '''string'''} A_ : List[Any] = TextDatasetReader(_UpperCAmelCase , cache_dir=_UpperCAmelCase , split=_UpperCAmelCase ).read() _check_text_dataset(_UpperCAmelCase , _UpperCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" if issubclass(_UpperCAmelCase , _UpperCAmelCase ): A_ : Tuple = text_path elif issubclass(_UpperCAmelCase , _UpperCAmelCase ): A_ : Dict = [text_path] A_ : List[str] = tmp_path / '''cache''' A_ : int = {'''text''': '''string'''} A_ : List[str] = TextDatasetReader(_UpperCAmelCase , cache_dir=_UpperCAmelCase ).read() _check_text_dataset(_UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=("train",) ): """simple docstring""" assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) for split in splits: A_ : List[Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : Union[str, Any] = tmp_path / '''cache''' A_ : Tuple = {'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A_ : Tuple = TextDatasetReader({'''train''': text_path} , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase ).read() _check_text_datasetdict(_UpperCAmelCase , _UpperCAmelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] , ) def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : Optional[Any] = tmp_path / '''cache''' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" A_ : Union[str, Any] = {'''text''': '''string'''} A_ : Optional[int] = features.copy() if features else default_expected_features A_ : List[Any] = ( Features({feature: Value(_UpperCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) A_ : int = TextDatasetReader({'''train''': text_path} , features=_UpperCAmelCase , cache_dir=_UpperCAmelCase ).read() _check_text_datasetdict(_UpperCAmelCase , _UpperCAmelCase ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" if split: A_ : Tuple = {split: text_path} else: A_ : Optional[Any] = '''train''' A_ : Optional[int] = {'''train''': text_path, '''test''': text_path} A_ : Tuple = tmp_path / '''cache''' A_ : List[str] = {'''text''': '''string'''} A_ : int = TextDatasetReader(_UpperCAmelCase , cache_dir=_UpperCAmelCase ).read() _check_text_datasetdict(_UpperCAmelCase , _UpperCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
361
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class lowercase : def __init__( self : Dict ): """simple docstring""" A_ : Tuple = {} def a_ ( self : Union[str, Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : Dict , _lowerCamelCase : List[Any]=1 ): """simple docstring""" if self.graph.get(_lowerCamelCase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: A_ : int = [[w, v]] if not self.graph.get(_lowerCamelCase ): A_ : List[Any] = [] def a_ ( self : Optional[int] ): """simple docstring""" return list(self.graph ) def a_ ( self : Dict , _lowerCamelCase : str , _lowerCamelCase : Tuple ): """simple docstring""" if self.graph.get(_lowerCamelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(_lowerCamelCase ) def a_ ( self : Union[str, Any] , _lowerCamelCase : Optional[int]=-2 , _lowerCamelCase : Tuple=-1 ): """simple docstring""" if s == d: return [] A_ : Union[str, Any] = [] A_ : Optional[int] = [] if s == -2: A_ : int = list(self.graph )[0] stack.append(_lowerCamelCase ) visited.append(_lowerCamelCase ) A_ : Tuple = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A_ : Optional[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(_lowerCamelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A_ : Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(_lowerCamelCase ) != 0: A_ : Optional[int] = stack[len(_lowerCamelCase ) - 1] else: A_ : List[Any] = ss # check if se have reached the starting point if len(_lowerCamelCase ) == 0: return visited def a_ ( self : Dict , _lowerCamelCase : List[Any]=-1 ): """simple docstring""" if c == -1: A_ : List[Any] = floor(random() * 1_00_00 ) + 10 for i in range(_lowerCamelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): A_ : Tuple = floor(random() * c ) + 1 if n != i: self.add_pair(_lowerCamelCase , _lowerCamelCase , 1 ) def a_ ( self : Optional[int] , _lowerCamelCase : Union[str, Any]=-2 ): """simple docstring""" A_ : List[str] = deque() A_ : int = [] if s == -2: A_ : Any = list(self.graph )[0] d.append(_lowerCamelCase ) visited.append(_lowerCamelCase ) while d: A_ : List[Any] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def a_ ( self : Union[str, Any] , _lowerCamelCase : Tuple ): """simple docstring""" A_ : List[Any] = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def a_ ( self : Any , _lowerCamelCase : Optional[Any] ): """simple docstring""" return len(self.graph[u] ) def a_ ( self : Union[str, Any] , _lowerCamelCase : Tuple=-2 ): """simple docstring""" A_ : int = [] A_ : Optional[Any] = [] if s == -2: A_ : List[str] = list(self.graph )[0] stack.append(_lowerCamelCase ) visited.append(_lowerCamelCase ) A_ : str = s A_ : List[Any] = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A_ : str = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A_ : List[Any] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(_lowerCamelCase ) != 0: A_ : List[str] = stack[len(_lowerCamelCase ) - 1] else: A_ : int = ss # check if se have reached the starting point if len(_lowerCamelCase ) == 0: return sorted_nodes def a_ ( self : Dict ): """simple docstring""" A_ : str = [] A_ : Dict = [] A_ : Dict = list(self.graph )[0] stack.append(_lowerCamelCase ) visited.append(_lowerCamelCase ) A_ : Any = -2 A_ : List[str] = [] A_ : Dict = s A_ : Tuple = False A_ : List[str] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A_ : Dict = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A_ : Tuple = len(_lowerCamelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A_ : int = node[1] break # check if all the children are visited if s == ss: stack.pop() A_ : Optional[int] = True if len(_lowerCamelCase ) != 0: A_ : Union[str, Any] = stack[len(_lowerCamelCase ) - 1] else: A_ : int = False indirect_parents.append(_lowerCamelCase ) A_ : Dict = s A_ : Optional[int] = ss # check if se have reached the starting point if len(_lowerCamelCase ) == 0: return list(_lowerCamelCase ) def a_ ( self : List[str] ): """simple docstring""" A_ : Dict = [] A_ : Dict = [] A_ : Optional[Any] = list(self.graph )[0] stack.append(_lowerCamelCase ) visited.append(_lowerCamelCase ) A_ : Optional[Any] = -2 A_ : List[str] = [] A_ : List[Any] = s A_ : int = False A_ : Any = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A_ : Union[str, Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A_ : Dict = len(_lowerCamelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A_ : Any = node[1] break # check if all the children are visited if s == ss: stack.pop() A_ : str = True if len(_lowerCamelCase ) != 0: A_ : Optional[int] = stack[len(_lowerCamelCase ) - 1] else: A_ : Tuple = False indirect_parents.append(_lowerCamelCase ) A_ : int = s A_ : List[Any] = ss # check if se have reached the starting point if len(_lowerCamelCase ) == 0: return False def a_ ( self : Tuple , _lowerCamelCase : Union[str, Any]=-2 , _lowerCamelCase : int=-1 ): """simple docstring""" A_ : int = time() self.dfs(_lowerCamelCase , _lowerCamelCase ) A_ : int = time() return end - begin def a_ ( self : Optional[Any] , _lowerCamelCase : str=-2 ): """simple docstring""" A_ : int = time() self.bfs(_lowerCamelCase ) A_ : Union[str, Any] = time() return end - begin class lowercase : def __init__( self : Any ): """simple docstring""" A_ : Tuple = {} def a_ ( self : List[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int]=1 ): """simple docstring""" if self.graph.get(_lowerCamelCase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist A_ : Union[str, Any] = [[w, v]] # add the other way if self.graph.get(_lowerCamelCase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist A_ : Tuple = [[w, u]] def a_ ( self : Dict , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict ): """simple docstring""" if self.graph.get(_lowerCamelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(_lowerCamelCase ) # the other way round if self.graph.get(_lowerCamelCase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(_lowerCamelCase ) def a_ ( self : Any , _lowerCamelCase : str=-2 , _lowerCamelCase : int=-1 ): """simple docstring""" if s == d: return [] A_ : Optional[Any] = [] A_ : List[Any] = [] if s == -2: A_ : Optional[int] = list(self.graph )[0] stack.append(_lowerCamelCase ) visited.append(_lowerCamelCase ) A_ : Union[str, Any] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A_ : Any = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(_lowerCamelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A_ : int = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(_lowerCamelCase ) != 0: A_ : List[Any] = stack[len(_lowerCamelCase ) - 1] else: A_ : str = ss # check if se have reached the starting point if len(_lowerCamelCase ) == 0: return visited def a_ ( self : Optional[Any] , _lowerCamelCase : Union[str, Any]=-1 ): """simple docstring""" if c == -1: A_ : List[Any] = floor(random() * 1_00_00 ) + 10 for i in range(_lowerCamelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): A_ : List[str] = floor(random() * c ) + 1 if n != i: self.add_pair(_lowerCamelCase , _lowerCamelCase , 1 ) def a_ ( self : Dict , _lowerCamelCase : List[Any]=-2 ): """simple docstring""" A_ : Dict = deque() A_ : Tuple = [] if s == -2: A_ : List[str] = list(self.graph )[0] d.append(_lowerCamelCase ) visited.append(_lowerCamelCase ) while d: A_ : str = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def a_ ( self : Any , _lowerCamelCase : int ): """simple docstring""" return len(self.graph[u] ) def a_ ( self : Any ): """simple docstring""" A_ : Dict = [] A_ : Optional[int] = [] A_ : Union[str, Any] = list(self.graph )[0] stack.append(_lowerCamelCase ) visited.append(_lowerCamelCase ) A_ : str = -2 A_ : int = [] A_ : Optional[Any] = s A_ : str = False A_ : int = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A_ : Tuple = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A_ : Tuple = len(_lowerCamelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A_ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() A_ : Union[str, Any] = True if len(_lowerCamelCase ) != 0: A_ : Tuple = stack[len(_lowerCamelCase ) - 1] else: A_ : str = False indirect_parents.append(_lowerCamelCase ) A_ : Union[str, Any] = s A_ : List[str] = ss # check if se have reached the starting point if len(_lowerCamelCase ) == 0: return list(_lowerCamelCase ) def a_ ( self : Union[str, Any] ): """simple docstring""" A_ : List[str] = [] A_ : int = [] A_ : List[Any] = list(self.graph )[0] stack.append(_lowerCamelCase ) visited.append(_lowerCamelCase ) A_ : int = -2 A_ : Tuple = [] A_ : Any = s A_ : Tuple = False A_ : Union[str, Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A_ : Any = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A_ : Optional[int] = len(_lowerCamelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A_ : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() A_ : Optional[int] = True if len(_lowerCamelCase ) != 0: A_ : str = stack[len(_lowerCamelCase ) - 1] else: A_ : List[Any] = False indirect_parents.append(_lowerCamelCase ) A_ : List[Any] = s A_ : List[Any] = ss # check if se have reached the starting point if len(_lowerCamelCase ) == 0: return False def a_ ( self : Union[str, Any] ): """simple docstring""" return list(self.graph ) def a_ ( self : Tuple , _lowerCamelCase : Union[str, Any]=-2 , _lowerCamelCase : str=-1 ): """simple docstring""" A_ : Optional[int] = time() self.dfs(_lowerCamelCase , _lowerCamelCase ) A_ : Union[str, Any] = time() return end - begin def a_ ( self : Tuple , _lowerCamelCase : str=-2 ): """simple docstring""" A_ : Optional[int] = time() self.bfs(_lowerCamelCase ) A_ : List[str] = time() return end - begin
361
1
from manim import * class _SCREAMING_SNAKE_CASE ( snake_case_ ): def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: lowerCamelCase_ = Rectangle(height=0.5 , width=0.5 ) lowerCamelCase_ = Rectangle(height=0.2_5 , width=0.2_5 ) lowerCamelCase_ = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*lowercase ).arrange(lowercase , buff=0 ) lowerCamelCase_ = VGroup(*lowercase ).arrange(lowercase , buff=0 ) lowerCamelCase_ = VGroup(lowercase , lowercase ).arrange(lowercase , buff=0 ) lowerCamelCase_ = Text("CPU" , font_size=24 ) lowerCamelCase_ = Group(lowercase , lowercase ).arrange(lowercase , buff=0.5 , aligned_edge=lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase ) lowerCamelCase_ = [mem.copy() for i in range(4 )] lowerCamelCase_ = VGroup(*lowercase ).arrange(lowercase , buff=0 ) lowerCamelCase_ = Text("GPU" , font_size=24 ) lowerCamelCase_ = Group(lowercase , lowercase ).arrange(lowercase , buff=0.5 , aligned_edge=lowercase ) gpu.move_to([-1, -1, 0] ) self.add(lowercase ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*lowercase ).arrange(lowercase , buff=0 ) lowerCamelCase_ = Text("Model" , font_size=24 ) lowerCamelCase_ = Group(lowercase , lowercase ).arrange(lowercase , buff=0.5 , aligned_edge=lowercase ) model.move_to([3, -1.0, 0] ) self.add(lowercase ) lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = [] for i, rect in enumerate(lowercase ): rect.set_stroke(lowercase ) lowerCamelCase_ = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(lowercase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=lowercase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=lowercase , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=lowercase , buff=0.0 ) self.add(lowercase ) model_cpu_arr.append(lowercase ) self.add(*lowercase , *lowercase , *lowercase ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*lowercase ).arrange(lowercase , buff=0 ) lowerCamelCase_ = Text("Loaded Checkpoint" , font_size=24 ) lowerCamelCase_ = Group(lowercase , lowercase ).arrange(lowercase , buff=0.5 , aligned_edge=lowercase ) checkpoint.move_to([3, 0.5, 0] ) self.add(lowercase ) lowerCamelCase_ = [] lowerCamelCase_ = [] for i, rect in enumerate(lowercase ): lowerCamelCase_ = fill.copy().set_fill(lowercase , opacity=0.7 ) target.move_to(lowercase ) ckpt_arr.append(lowercase ) lowerCamelCase_ = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(lowercase ) self.add(*lowercase , *lowercase ) lowerCamelCase_ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase_ = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowercase , lowercase ) lowerCamelCase_ = MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(lowercase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(lowercase ) lowerCamelCase_ = MarkupText( f'Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*lowercase ).arrange(lowercase , buff=0 ) lowerCamelCase_ = VGroup(*lowercase ).arrange(lowercase , buff=0 ) lowerCamelCase_ = VGroup(lowercase , lowercase ).arrange(lowercase , buff=0 ) lowerCamelCase_ = Text("Disk" , font_size=24 ) lowerCamelCase_ = Group(lowercase , lowercase ).arrange(lowercase , buff=0.5 , aligned_edge=lowercase ) disk.move_to([-4.0, -1.2_5, 0] ) self.play(Write(lowercase , run_time=3 ) , Write(lowercase , run_time=1 ) , Create(lowercase , run_time=1 ) ) lowerCamelCase_ = [] for i, rect in enumerate(lowercase ): lowerCamelCase_ = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(lowercase , run_time=1.5 ) ) self.play(*lowercase ) self.play(FadeOut(lowercase ) ) lowerCamelCase_ = MarkupText(f'Then, the checkpoint is removed from memory\nthrough garbage collection.' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase , run_time=3 ) ) self.play( FadeOut(lowercase , lowercase , *lowercase , *lowercase ) , ) self.wait()
463
from math import isqrt def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = False return [i for i in range(2 , lowerCamelCase__ ) if is_prime[i]] def lowerCamelCase_ ( lowerCamelCase__ = 1_0**8 ): lowerCamelCase_ = calculate_prime_numbers(max_number // 2 ) lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = len(lowerCamelCase__ ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F"""{solution() = }""")
463
1
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home lowerCamelCase = HUGGINGFACE_HUB_CACHE lowerCamelCase = "config.json" lowerCamelCase = "diffusion_pytorch_model.bin" lowerCamelCase = "diffusion_flax_model.msgpack" lowerCamelCase = "model.onnx" lowerCamelCase = "diffusion_pytorch_model.safetensors" lowerCamelCase = "weights.pb" lowerCamelCase = "https://huggingface.co" lowerCamelCase = default_cache_path lowerCamelCase = "diffusers_modules" lowerCamelCase = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules""")) lowerCamelCase = ["fp16", "non-ema"] lowerCamelCase = ".self_attn"
704
def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> float: a__ : Optional[Any] = 0 while len(__UpperCamelCase ) > 1: a__ : str = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): a__ : List[str] = files.index(min(__UpperCamelCase ) ) temp += files[min_index] files.pop(__UpperCamelCase ) files.append(__UpperCamelCase ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
207
0
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __lowerCamelCase (unittest.TestCase ): @parameterized.expand([(None,), ('foo.json',)] ) def snake_case_ ( self: int,A_: int ): '''simple docstring''' __UpperCamelCase = GenerationConfig( do_sample=A_,temperature=0.7,length_penalty=1.0,bad_words_ids=[[1, 2, 3], [4, 5]],) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A_,config_name=A_ ) __UpperCamelCase = GenerationConfig.from_pretrained(A_,config_name=A_ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample,A_ ) self.assertEqual(loaded_config.temperature,0.7 ) self.assertEqual(loaded_config.length_penalty,1.0 ) self.assertEqual(loaded_config.bad_words_ids,[[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k,50 ) self.assertEqual(loaded_config.max_length,20 ) self.assertEqual(loaded_config.max_time,A_ ) def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = AutoConfig.from_pretrained('gpt2' ) __UpperCamelCase = GenerationConfig.from_model_config(A_ ) __UpperCamelCase = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(A_,A_ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id,default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id,model_config.eos_token_id ) def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = GenerationConfig() __UpperCamelCase = { 'max_new_tokens': 1024, 'foo': 'bar', } __UpperCamelCase = copy.deepcopy(A_ ) __UpperCamelCase = generation_config.update(**A_ ) # update_kwargs was not modified (no side effects) self.assertEqual(A_,A_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens,1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(A_,{'foo': 'bar'} ) def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = GenerationConfig() __UpperCamelCase = 'bar' with tempfile.TemporaryDirectory('test-generation-config' ) as tmp_dir: generation_config.save_pretrained(A_ ) __UpperCamelCase = GenerationConfig.from_pretrained(A_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo,'bar' ) __UpperCamelCase = GenerationConfig.from_model_config(A_ ) assert not hasattr(A_,'foo' ) # no new kwargs should be initialized if from config def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = GenerationConfig() self.assertEqual(default_config.temperature,1.0 ) self.assertEqual(default_config.do_sample,A_ ) self.assertEqual(default_config.num_beams,1 ) __UpperCamelCase = GenerationConfig( do_sample=A_,temperature=0.7,length_penalty=1.0,bad_words_ids=[[1, 2, 3], [4, 5]],) self.assertEqual(config.temperature,0.7 ) self.assertEqual(config.do_sample,A_ ) self.assertEqual(config.num_beams,1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A_ ) __UpperCamelCase = GenerationConfig.from_pretrained(A_,temperature=1.0 ) self.assertEqual(loaded_config.temperature,1.0 ) self.assertEqual(loaded_config.do_sample,A_ ) self.assertEqual(loaded_config.num_beams,1 ) # default value @is_staging_test class __lowerCamelCase (unittest.TestCase ): @classmethod def snake_case_ ( cls: int ): '''simple docstring''' __UpperCamelCase = TOKEN HfFolder.save_token(A_ ) @classmethod def snake_case_ ( cls: int ): '''simple docstring''' try: delete_repo(token=cls._token,repo_id='test-generation-config' ) except HTTPError: pass try: delete_repo(token=cls._token,repo_id='valid_org/test-generation-config-org' ) except HTTPError: pass def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = GenerationConfig( do_sample=A_,temperature=0.7,length_penalty=1.0,) config.push_to_hub('test-generation-config',use_auth_token=self._token ) __UpperCamelCase = GenerationConfig.from_pretrained(F'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A_,getattr(A_,A_ ) ) # Reset repo delete_repo(token=self._token,repo_id='test-generation-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( A_,repo_id='test-generation-config',push_to_hub=A_,use_auth_token=self._token ) __UpperCamelCase = GenerationConfig.from_pretrained(F'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A_,getattr(A_,A_ ) ) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = GenerationConfig( do_sample=A_,temperature=0.7,length_penalty=1.0,) config.push_to_hub('valid_org/test-generation-config-org',use_auth_token=self._token ) __UpperCamelCase = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A_,getattr(A_,A_ ) ) # Reset repo delete_repo(token=self._token,repo_id='valid_org/test-generation-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( A_,repo_id='valid_org/test-generation-config-org',push_to_hub=A_,use_auth_token=self._token ) __UpperCamelCase = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A_,getattr(A_,A_ ) )
1
'''simple docstring''' def __a ( A__ = 1000 ) -> int: lowerCAmelCase = 3 lowerCAmelCase = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f"{solution() = }")
649
0
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) SCREAMING_SNAKE_CASE =sd_pipe.to(snake_case ) sd_pipe.set_progress_bar_config(disable=snake_case ) sd_pipe.set_scheduler('sample_euler' ) SCREAMING_SNAKE_CASE ='A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE =torch.manual_seed(0 ) SCREAMING_SNAKE_CASE =sd_pipe([prompt] ,generator=snake_case ,guidance_scale=9.0 ,num_inference_steps=20 ,output_type='np' ) SCREAMING_SNAKE_CASE =output.images SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE =np.array([0.0_447, 0.0_492, 0.0_468, 0.0_408, 0.0_383, 0.0_408, 0.0_354, 0.0_380, 0.0_339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) SCREAMING_SNAKE_CASE =sd_pipe.to(snake_case ) sd_pipe.set_progress_bar_config(disable=snake_case ) sd_pipe.set_scheduler('sample_euler' ) SCREAMING_SNAKE_CASE ='A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE =torch.manual_seed(0 ) SCREAMING_SNAKE_CASE =sd_pipe([prompt] ,generator=snake_case ,guidance_scale=9.0 ,num_inference_steps=20 ,output_type='np' ) SCREAMING_SNAKE_CASE =output.images SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE =np.array([0.1_237, 0.1_320, 0.1_438, 0.1_359, 0.1_390, 0.1_132, 0.1_277, 0.1_175, 0.1_112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) SCREAMING_SNAKE_CASE =sd_pipe.to(snake_case ) sd_pipe.set_progress_bar_config(disable=snake_case ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) SCREAMING_SNAKE_CASE ='A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE =torch.manual_seed(0 ) SCREAMING_SNAKE_CASE =sd_pipe( [prompt] ,generator=snake_case ,guidance_scale=7.5 ,num_inference_steps=15 ,output_type='np' ,use_karras_sigmas=snake_case ,) SCREAMING_SNAKE_CASE =output.images SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE =np.array( [0.11_381_689, 0.12_112_921, 0.1_389_457, 0.12_549_606, 0.1_244_964, 0.10_831_517, 0.11_562_866, 0.10_867_816, 0.10_499_048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
703
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class a_ ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] ,snake_case : Tuple ,snake_case : Tuple=13 ,snake_case : Any=7 ,snake_case : Dict=True ,snake_case : str=True ,snake_case : Optional[Any]=True ,snake_case : Optional[int]=True ,snake_case : List[Any]=99 ,snake_case : Optional[int]=32 ,snake_case : str=5 ,snake_case : Union[str, Any]=4 ,snake_case : str=37 ,snake_case : List[str]="gelu" ,snake_case : Union[str, Any]=0.1 ,snake_case : Optional[int]=0.1 ,snake_case : Optional[Any]=512 ,snake_case : Optional[Any]=16 ,snake_case : str=2 ,snake_case : int=0.02 ,snake_case : int=4 ,): SCREAMING_SNAKE_CASE =parent SCREAMING_SNAKE_CASE =batch_size SCREAMING_SNAKE_CASE =seq_length SCREAMING_SNAKE_CASE =is_training SCREAMING_SNAKE_CASE =use_attention_mask SCREAMING_SNAKE_CASE =use_token_type_ids SCREAMING_SNAKE_CASE =use_labels SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =type_vocab_size SCREAMING_SNAKE_CASE =type_sequence_label_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =num_choices def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE =None if self.use_attention_mask: SCREAMING_SNAKE_CASE =random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE =DistilBertConfig( vocab_size=self.vocab_size ,dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,hidden_dim=self.intermediate_size ,hidden_act=self.hidden_act ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,tie_weights_=snake_case ,) return config, input_ids, attention_mask def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =config_and_inputs SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class a_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =FlaxDistilBertModelTester(self ) @slow def _lowerCAmelCase ( self : Optional[int] ): for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class_name.from_pretrained('distilbert-base-uncased' ) SCREAMING_SNAKE_CASE =model(np.ones((1, 1) ) ) self.assertIsNotNone(snake_case ) @require_flax class a_ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =FlaxDistilBertModel.from_pretrained('distilbert-base-uncased' ) SCREAMING_SNAKE_CASE =np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) SCREAMING_SNAKE_CASE =np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case )[0] SCREAMING_SNAKE_CASE =(1, 11, 768) self.assertEqual(output.shape ,snake_case ) SCREAMING_SNAKE_CASE =np.array([[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] ,snake_case ,atol=1e-4 ) )
252
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a = logging.get_logger(__name__) def __magic_name__ ( __UpperCAmelCase ) -> List[List[ImageInput]]: '''simple docstring''' if isinstance(__UpperCAmelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__UpperCAmelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__UpperCAmelCase ): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""" ) class __a ( _snake_case ): __UpperCamelCase : Any = ['pixel_values'] def __init__( self : Dict ,lowerCamelCase : bool = True ,lowerCamelCase : Dict[str, int] = None ,lowerCamelCase : PILImageResampling = PILImageResampling.BILINEAR ,lowerCamelCase : bool = True ,lowerCamelCase : Dict[str, int] = None ,lowerCamelCase : bool = True ,lowerCamelCase : Union[int, float] = 1 / 255 ,lowerCamelCase : bool = True ,lowerCamelCase : Optional[Union[float, List[float]]] = None ,lowerCamelCase : Optional[Union[float, List[float]]] = None ,**lowerCamelCase : Union[str, Any] ,): '''simple docstring''' super().__init__(**lowerCamelCase ) __SCREAMING_SNAKE_CASE = size if size is not None else {"""shortest_edge""": 224} __SCREAMING_SNAKE_CASE = get_size_dict(lowerCamelCase ,default_to_square=lowerCamelCase ) __SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __SCREAMING_SNAKE_CASE = get_size_dict(lowerCamelCase ,param_name="""crop_size""" ) __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = do_center_crop __SCREAMING_SNAKE_CASE = crop_size __SCREAMING_SNAKE_CASE = resample __SCREAMING_SNAKE_CASE = do_rescale __SCREAMING_SNAKE_CASE = rescale_factor __SCREAMING_SNAKE_CASE = do_normalize __SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __SCREAMING_SNAKE_CASE = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : np.ndarray ,lowerCamelCase : Dict[str, int] ,lowerCamelCase : PILImageResampling = PILImageResampling.BILINEAR ,lowerCamelCase : Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase : List[str] ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = get_size_dict(lowerCamelCase ,default_to_square=lowerCamelCase ) if "shortest_edge" in size: __SCREAMING_SNAKE_CASE = get_resize_output_image_size(lowerCamelCase ,size["""shortest_edge"""] ,default_to_square=lowerCamelCase ) elif "height" in size and "width" in size: __SCREAMING_SNAKE_CASE = (size["""height"""], size["""width"""]) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(lowerCamelCase ,size=lowerCamelCase ,resample=lowerCamelCase ,data_format=lowerCamelCase ,**lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : np.ndarray ,lowerCamelCase : Dict[str, int] ,lowerCamelCase : Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase : List[str] ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = get_size_dict(lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(lowerCamelCase ,size=(size["""height"""], size["""width"""]) ,data_format=lowerCamelCase ,**lowerCamelCase ) def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : np.ndarray ,lowerCamelCase : Union[int, float] ,lowerCamelCase : Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase : str ,): '''simple docstring''' return rescale(lowerCamelCase ,scale=lowerCamelCase ,data_format=lowerCamelCase ,**lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : np.ndarray ,lowerCamelCase : Union[float, List[float]] ,lowerCamelCase : Union[float, List[float]] ,lowerCamelCase : Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase : Union[str, Any] ,): '''simple docstring''' return normalize(lowerCamelCase ,mean=lowerCamelCase ,std=lowerCamelCase ,data_format=lowerCamelCase ,**lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[int] ,lowerCamelCase : ImageInput ,lowerCamelCase : bool = None ,lowerCamelCase : Dict[str, int] = None ,lowerCamelCase : PILImageResampling = None ,lowerCamelCase : bool = None ,lowerCamelCase : Dict[str, int] = None ,lowerCamelCase : bool = None ,lowerCamelCase : float = None ,lowerCamelCase : bool = None ,lowerCamelCase : Optional[Union[float, List[float]]] = None ,lowerCamelCase : Optional[Union[float, List[float]]] = None ,lowerCamelCase : Optional[ChannelDimension] = ChannelDimension.FIRST ,): '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __SCREAMING_SNAKE_CASE = to_numpy_array(lowerCamelCase ) if do_resize: __SCREAMING_SNAKE_CASE = self.resize(image=lowerCamelCase ,size=lowerCamelCase ,resample=lowerCamelCase ) if do_center_crop: __SCREAMING_SNAKE_CASE = self.center_crop(lowerCamelCase ,size=lowerCamelCase ) if do_rescale: __SCREAMING_SNAKE_CASE = self.rescale(image=lowerCamelCase ,scale=lowerCamelCase ) if do_normalize: __SCREAMING_SNAKE_CASE = self.normalize(image=lowerCamelCase ,mean=lowerCamelCase ,std=lowerCamelCase ) __SCREAMING_SNAKE_CASE = to_channel_dimension_format(lowerCamelCase ,lowerCamelCase ) return image def UpperCAmelCase__ ( self : Optional[int] ,lowerCamelCase : ImageInput ,lowerCamelCase : bool = None ,lowerCamelCase : Dict[str, int] = None ,lowerCamelCase : PILImageResampling = None ,lowerCamelCase : bool = None ,lowerCamelCase : Dict[str, int] = None ,lowerCamelCase : bool = None ,lowerCamelCase : float = None ,lowerCamelCase : bool = None ,lowerCamelCase : Optional[Union[float, List[float]]] = None ,lowerCamelCase : Optional[Union[float, List[float]]] = None ,lowerCamelCase : Optional[Union[str, TensorType]] = None ,lowerCamelCase : ChannelDimension = ChannelDimension.FIRST ,**lowerCamelCase : Optional[int] ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize __SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample __SCREAMING_SNAKE_CASE = do_center_crop if do_center_crop is not None else self.do_center_crop __SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale __SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor __SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize __SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean __SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std __SCREAMING_SNAKE_CASE = size if size is not None else self.size __SCREAMING_SNAKE_CASE = get_size_dict(lowerCamelCase ,default_to_square=lowerCamelCase ) __SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else self.crop_size __SCREAMING_SNAKE_CASE = get_size_dict(lowerCamelCase ,param_name="""crop_size""" ) if not valid_images(lowerCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) __SCREAMING_SNAKE_CASE = make_batched(lowerCamelCase ) __SCREAMING_SNAKE_CASE = [ [ self._preprocess_image( image=lowerCamelCase ,do_resize=lowerCamelCase ,size=lowerCamelCase ,resample=lowerCamelCase ,do_center_crop=lowerCamelCase ,crop_size=lowerCamelCase ,do_rescale=lowerCamelCase ,rescale_factor=lowerCamelCase ,do_normalize=lowerCamelCase ,image_mean=lowerCamelCase ,image_std=lowerCamelCase ,data_format=lowerCamelCase ,) for img in video ] for video in videos ] __SCREAMING_SNAKE_CASE = {"""pixel_values""": videos} return BatchFeature(data=lowerCamelCase ,tensor_type=lowerCamelCase )
109
"""simple docstring""" def lowercase_ ( _lowercase : int ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ): raise TypeError("only integers accepted as input" ) else: UpperCAmelCase : Optional[int] = str(abs(_lowercase ) ) UpperCAmelCase : Union[str, Any] = [list(_lowercase ) for char in range(len(_lowercase ) )] for index in range(len(_lowercase ) ): num_transpositions[index].pop(_lowercase ) return max( int("".join(list(_lowercase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
595
0
"""simple docstring""" from abc import ABC, abstractmethod from typing import List, Optional class __a ( lowerCAmelCase__ ): def __init__( self ): # test for the above condition self.test() def snake_case_ ( self ): _lowerCamelCase = 0 _lowerCamelCase = False while not completed: if counter == 1: self.reset() _lowerCamelCase = self.advance() if not self.does_advance(UpperCamelCase_ ): raise Exception( 'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.' ) _lowerCamelCase = self.update(UpperCamelCase_ ) counter += 1 if counter > 1_00_00: raise Exception('update() does not fulfill the constraint.' ) if self.remaining() != 0: raise Exception('Custom Constraint is not defined correctly.' ) @abstractmethod def snake_case_ ( self ): raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def snake_case_ ( self , a__ ): raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def snake_case_ ( self , a__ ): raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def snake_case_ ( self ): raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def snake_case_ ( self ): raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def snake_case_ ( self , a__=False ): raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class __a ( lowerCAmelCase__ ): def __init__( self , a__ ): super(UpperCamelCase_ , self ).__init__() if not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or len(UpperCamelCase_ ) == 0: raise ValueError(F'`token_ids` has to be a non-empty list, but is {token_ids}.' ) if any((not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or token_id < 0) for token_id in token_ids ): raise ValueError(F'Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.' ) _lowerCamelCase = token_ids _lowerCamelCase = len(self.token_ids ) _lowerCamelCase = -1 # the index of the currently fulfilled step _lowerCamelCase = False def snake_case_ ( self ): if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def snake_case_ ( self , a__ ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError(F'`token_id` has to be an `int`, but is {token_id} of type {type(UpperCamelCase_ )}' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def snake_case_ ( self , a__ ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError(F'`token_id` has to be an `int`, but is {token_id} of type {type(UpperCamelCase_ )}' ) _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False if self.does_advance(UpperCamelCase_ ): self.fulfilled_idx += 1 _lowerCamelCase = True if self.fulfilled_idx == (self.seqlen - 1): _lowerCamelCase = True _lowerCamelCase = completed else: # failed to make progress. _lowerCamelCase = True self.reset() return stepped, completed, reset def snake_case_ ( self ): _lowerCamelCase = False _lowerCamelCase = 0 def snake_case_ ( self ): return self.seqlen - (self.fulfilled_idx + 1) def snake_case_ ( self , a__=False ): _lowerCamelCase = PhrasalConstraint(self.token_ids ) if stateful: _lowerCamelCase = self.seqlen _lowerCamelCase = self.fulfilled_idx _lowerCamelCase = self.completed return new_constraint class __a : def __init__( self , a__ , a__=True ): _lowerCamelCase = max([len(UpperCamelCase_ ) for one in nested_token_ids] ) _lowerCamelCase = {} for token_ids in nested_token_ids: _lowerCamelCase = root for tidx, token_id in enumerate(UpperCamelCase_ ): if token_id not in level: _lowerCamelCase = {} _lowerCamelCase = level[token_id] if no_subsets and self.has_subsets(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError( 'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is' F' {nested_token_ids}.' ) _lowerCamelCase = root def snake_case_ ( self , a__ ): _lowerCamelCase = self.trie for current_token in current_seq: _lowerCamelCase = start[current_token] _lowerCamelCase = list(start.keys() ) return next_tokens def snake_case_ ( self , a__ ): _lowerCamelCase = self.next_tokens(UpperCamelCase_ ) return len(UpperCamelCase_ ) == 0 def snake_case_ ( self , a__ ): _lowerCamelCase = list(root.values() ) if len(UpperCamelCase_ ) == 0: return 1 else: return sum([self.count_leaves(UpperCamelCase_ ) for nn in next_nodes] ) def snake_case_ ( self , a__ , a__ ): _lowerCamelCase = self.count_leaves(UpperCamelCase_ ) return len(UpperCamelCase_ ) != leaf_count class __a ( lowerCAmelCase__ ): def __init__( self , a__ ): super(UpperCamelCase_ , self ).__init__() if not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or len(UpperCamelCase_ ) == 0: raise ValueError(F'`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.' ) if any(not isinstance(UpperCamelCase_ , UpperCamelCase_ ) for token_ids in nested_token_ids ): raise ValueError(F'`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.' ) if any( any((not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F'Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.' ) _lowerCamelCase = DisjunctiveTrie(UpperCamelCase_ ) _lowerCamelCase = nested_token_ids _lowerCamelCase = self.trie.max_height _lowerCamelCase = [] _lowerCamelCase = False def snake_case_ ( self ): _lowerCamelCase = self.trie.next_tokens(self.current_seq ) if len(UpperCamelCase_ ) == 0: return None else: return token_list def snake_case_ ( self , a__ ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError(F'`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCamelCase_ )}' ) _lowerCamelCase = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def snake_case_ ( self , a__ ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError(F'`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCamelCase_ )}' ) _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False if self.does_advance(UpperCamelCase_ ): self.current_seq.append(UpperCamelCase_ ) _lowerCamelCase = True else: _lowerCamelCase = True self.reset() _lowerCamelCase = self.trie.reached_leaf(self.current_seq ) _lowerCamelCase = completed return stepped, completed, reset def snake_case_ ( self ): _lowerCamelCase = False _lowerCamelCase = [] def snake_case_ ( self ): if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def snake_case_ ( self , a__=False ): _lowerCamelCase = DisjunctiveConstraint(self.token_ids ) if stateful: _lowerCamelCase = self.seqlen _lowerCamelCase = self.current_seq _lowerCamelCase = self.completed return new_constraint class __a : def __init__( self , a__ ): _lowerCamelCase = constraints # max # of steps required to fulfill a given constraint _lowerCamelCase = max([c.seqlen for c in constraints] ) _lowerCamelCase = len(UpperCamelCase_ ) _lowerCamelCase = False self.init_state() def snake_case_ ( self ): _lowerCamelCase = [] _lowerCamelCase = None _lowerCamelCase = [constraint.copy(stateful=UpperCamelCase_ ) for constraint in self.constraints] def snake_case_ ( self ): _lowerCamelCase = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def snake_case_ ( self ): _lowerCamelCase = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" _lowerCamelCase = constraint.advance() if isinstance(UpperCamelCase_ , UpperCamelCase_ ): token_list.append(UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): token_list.extend(UpperCamelCase_ ) else: _lowerCamelCase = self.inprogress_constraint.advance() if isinstance(UpperCamelCase_ , UpperCamelCase_ ): token_list.append(UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): token_list.extend(UpperCamelCase_ ) if len(UpperCamelCase_ ) == 0: return None else: return token_list def snake_case_ ( self , a__ ): self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint _lowerCamelCase = self.add(UpperCamelCase_ ) # the entire list of constraints are fulfilled if self.completed: break def snake_case_ ( self , a__ ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError(F'`token_id` should be an `int`, but is `{token_id}`.' ) _lowerCamelCase = False, False if self.completed: _lowerCamelCase = True _lowerCamelCase = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state _lowerCamelCase = self.inprogress_constraint.update(UpperCamelCase_ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=UpperCamelCase_ ) ) _lowerCamelCase = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) _lowerCamelCase = None if len(self.pending_constraints ) == 0: # we're done! _lowerCamelCase = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(UpperCamelCase_ ): _lowerCamelCase = pending_constraint.update(UpperCamelCase_ ) if not stepped: raise Exception( '`constraint.update(token_id)` is not yielding incremental progress, ' 'even though `constraint.does_advance(token_id)` is true.' ) if complete: self.complete_constraints.append(UpperCamelCase_ ) _lowerCamelCase = None if not complete and stepped: _lowerCamelCase = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". _lowerCamelCase = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. _lowerCamelCase = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def snake_case_ ( self , a__=True ): _lowerCamelCase = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: _lowerCamelCase = [ constraint.copy(stateful=UpperCamelCase_ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: _lowerCamelCase = self.inprogress_constraint.copy(stateful=UpperCamelCase_ ) _lowerCamelCase = [constraint.copy() for constraint in self.pending_constraints] return new_state
710
"""simple docstring""" import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging A_ : Any =logging.get_logger(__name__) A_ : Dict ={"""vocab_file""": """vocab.txt"""} A_ : Optional[int] ={ """vocab_file""": { """facebook/esm2_t6_8M_UR50D""": """https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt""", """facebook/esm2_t12_35M_UR50D""": """https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt""", }, } A_ : Any ={ """facebook/esm2_t6_8M_UR50D""": 1_0_2_4, """facebook/esm2_t12_35M_UR50D""": 1_0_2_4, } def SCREAMING_SNAKE_CASE_ ( snake_case : Optional[int] )-> Tuple: with open(snake_case , 'r' ) as f: _lowerCamelCase = f.read().splitlines() return [l.strip() for l in lines] class __a ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : str = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Optional[int] = ["input_ids", "attention_mask"] def __init__( self , a__ , a__="<unk>" , a__="<cls>" , a__="<pad>" , a__="<mask>" , a__="<eos>" , **a__ , ): super().__init__(**a__ ) _lowerCamelCase = load_vocab_file(a__ ) _lowerCamelCase = dict(enumerate(self.all_tokens ) ) _lowerCamelCase = {tok: ind for ind, tok in enumerate(self.all_tokens )} _lowerCamelCase = unk_token _lowerCamelCase = cls_token _lowerCamelCase = pad_token _lowerCamelCase = mask_token _lowerCamelCase = eos_token _lowerCamelCase = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def snake_case_ ( self , a__ ): return self._id_to_token.get(a__ , self.unk_token ) def snake_case_ ( self , a__ ): return self._token_to_id.get(a__ , self._token_to_id.get(self.unk_token ) ) def snake_case_ ( self , a__ , **a__ ): return text.split() def snake_case_ ( self , a__=False ): return len(self._id_to_token ) def snake_case_ ( self ): return {token: i for i, token in enumerate(self.all_tokens )} def snake_case_ ( self , a__ ): return self._token_to_id.get(a__ , self._token_to_id.get(self.unk_token ) ) def snake_case_ ( self , a__ ): return self._id_to_token.get(a__ , self.unk_token ) def snake_case_ ( self , a__ , a__ = None ): _lowerCamelCase = [self.cls_token_id] _lowerCamelCase = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def snake_case_ ( self , a__ , a__ = None , a__ = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] _lowerCamelCase = [1] + ([0] * len(a__ )) + [1] if token_ids_a is not None: mask += [0] * len(a__ ) + [1] return mask def snake_case_ ( self , a__ , a__ ): _lowerCamelCase = os.path.join(a__ , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt' ) with open(a__ , 'w' ) as f: f.write('\n'.join(self.all_tokens ) ) return (vocab_file,) @property def snake_case_ ( self ): return self.get_vocab_size(with_added_tokens=a__ ) def snake_case_ ( self , a__ , a__ = False ): return super()._add_tokens(a__ , special_tokens=a__ )
222
0
"""simple docstring""" import logging import os from .state import PartialState class lowerCAmelCase ( logging.LoggerAdapter ): '''simple docstring''' @staticmethod def __A ( lowerCAmelCase__ ) -> Any: SCREAMING_SNAKE_CASE = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Union[str, Any]: if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) SCREAMING_SNAKE_CASE = kwargs.pop('main_process_only' , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = kwargs.pop('in_order' , lowerCAmelCase__ ) if self.isEnabledFor(lowerCAmelCase__ ): if self._should_log(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.process(lowerCAmelCase__ , lowerCAmelCase__ ) self.logger.log(lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) elif in_order: SCREAMING_SNAKE_CASE = PartialState() for i in range(state.num_processes ): if i == state.process_index: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.process(lowerCAmelCase__ , lowerCAmelCase__ ) self.logger.log(lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) state.wait_for_everyone() def lowercase (SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str = None ) -> Optional[Any]: if log_level is None: SCREAMING_SNAKE_CASE = os.environ.get('ACCELERATE_LOG_LEVEL' , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = logging.getLogger(SCREAMING_SNAKE_CASE_ ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(SCREAMING_SNAKE_CASE_ , {} )
247
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __UpperCamelCase = '''platform''' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class lowerCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = PegasusConfig SCREAMING_SNAKE_CASE_ : Optional[Any] = {} SCREAMING_SNAKE_CASE_ : Dict = """gelu""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=99 , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=20 , lowerCAmelCase__=2 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , ) -> Tuple: SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = eos_token_id SCREAMING_SNAKE_CASE = pad_token_id SCREAMING_SNAKE_CASE = bos_token_id def __A ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) SCREAMING_SNAKE_CASE = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) SCREAMING_SNAKE_CASE = np.concatenate([input_ids, eos_tensor] , axis=1 ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) SCREAMING_SNAKE_CASE = prepare_pegasus_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return config, inputs_dict def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: SCREAMING_SNAKE_CASE = 20 SCREAMING_SNAKE_CASE = model_class_name(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = model.encode(inputs_dict['input_ids'] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) SCREAMING_SNAKE_CASE = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) SCREAMING_SNAKE_CASE = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE = model.decode(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: SCREAMING_SNAKE_CASE = 20 SCREAMING_SNAKE_CASE = model_class_name(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = model.encode(inputs_dict['input_ids'] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) SCREAMING_SNAKE_CASE = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) SCREAMING_SNAKE_CASE = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE = model.decode(lowerCAmelCase__ , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) def lowercase (SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any]=None , SCREAMING_SNAKE_CASE_ : Tuple=None , ) -> Union[str, Any]: if attention_mask is None: SCREAMING_SNAKE_CASE = np.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class lowerCAmelCase ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) SCREAMING_SNAKE_CASE_ : Any = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () SCREAMING_SNAKE_CASE_ : Tuple = True SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : Dict = False SCREAMING_SNAKE_CASE_ : List[Any] = False def __A ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = FlaxPegasusModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=lowerCAmelCase__ ) def __A ( self ) -> Any: self.config_tester.run_common_tests() def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __A ( self ) -> str: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = model_class(lowerCAmelCase__ ) @jax.jit def encode_jitted(lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__ ): return model.encode(input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) with self.subTest('JIT Enabled' ): SCREAMING_SNAKE_CASE = encode_jitted(**lowerCAmelCase__ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE = encode_jitted(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def __A ( self ) -> Tuple: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE = model_class(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) SCREAMING_SNAKE_CASE = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): return model.decode( decoder_input_ids=lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , encoder_outputs=lowerCAmelCase__ , ) with self.subTest('JIT Enabled' ): SCREAMING_SNAKE_CASE = decode_jitted(**lowerCAmelCase__ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE = decode_jitted(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __A ( self ) -> Union[str, Any]: for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class_name.from_pretrained('google/pegasus-large' , from_pt=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = np.ones((1, 1) ) SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @slow def __A ( self ) -> Any: SCREAMING_SNAKE_CASE = FlaxPegasusForConditionalGeneration.from_pretrained('google/pegasus-xsum' ) SCREAMING_SNAKE_CASE = PegasusTokenizer.from_pretrained('google/pegasus-xsum' ) SCREAMING_SNAKE_CASE = [ ' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.', ' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ', ] SCREAMING_SNAKE_CASE = [ 'California\'s largest electricity provider has turned off power to hundreds of thousands of customers.', 'Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.', ] SCREAMING_SNAKE_CASE = tokenizer(lowerCAmelCase__ , return_tensors='np' , truncation=lowerCAmelCase__ , max_length=512 , padding=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = model.generate(**lowerCAmelCase__ , num_beams=2 ).sequences SCREAMING_SNAKE_CASE = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) assert tgt_text == decoded
247
1
import math def lowerCamelCase_ ( UpperCamelCase_ ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): _a : Dict = f"""Input value of [number={number}] must be an integer""" raise TypeError(UpperCamelCase_ ) if number < 1: _a : Optional[Any] = f"""Input value of [number={number}] must be > 0""" raise ValueError(UpperCamelCase_ ) elif number == 1: return 3 elif number == 2: return 5 else: _a : Optional[int] = int(math.log(number // 3 , 2 ) ) + 2 _a : int = [3, 5] _a : List[str] = 2 _a : Dict = 3 for block in range(1 , UpperCamelCase_ ): for _ in range(UpperCamelCase_ ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): __UpperCAmelCase : List[str] = 0 try: __UpperCAmelCase : str = proth(number) except ValueError: print(f'''ValueError: there is no {number}th Proth number''') continue print(f'''The {number}th Proth number: {value}''')
716
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 __UpperCAmelCase : Any = 0B1_0_1_1_0_0_1_1_1_1_1_0_1_1_0_0_1_0_0_1_0_0_0_0_0_1_1_1_1_0_1_1_1_0_1_1_0_0_0_1_1_0_0_1_1_1_1_0 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 __UpperCAmelCase : Optional[Any] = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class lowerCamelCase : def __init__( self : Tuple ) -> List[Any]: _a : List[Any] = WATERMARK_BITS _a : List[str] = WatermarkEncoder() self.encoder.set_watermark('''bits''' , self.watermark ) def snake_case_ ( self : Dict , __snake_case : torch.FloatTensor ) -> Optional[Any]: # can't encode images that are smaller than 256 if images.shape[-1] < 256: return images _a : Union[str, Any] = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _a : Any = [self.encoder.encode(__snake_case , '''dwtDct''' ) for image in images] _a : Optional[int] = torch.from_numpy(np.array(__snake_case ) ).permute(0 , 3 , 1 , 2 ) _a : Any = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
249
0
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class UpperCAmelCase ( unittest.TestCase ): def lowercase__ ( self : int , __snake_case : List[str] ) -> Union[str, Any]: _lowerCAmelCase = 3 _lowerCAmelCase = 2_50 _lowerCAmelCase = ids_tensor((batch_size, length) , __snake_case ) _lowerCAmelCase = torch.ones((batch_size, length) , device=__snake_case , dtype=torch.float ) / length return input_ids, scores def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: _lowerCAmelCase , _lowerCAmelCase = self._get_tensors(5 ) _lowerCAmelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(__snake_case , __snake_case ) ) _lowerCAmelCase , _lowerCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(__snake_case , __snake_case ) ) _lowerCAmelCase , _lowerCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(__snake_case , __snake_case ) ) def lowercase__ ( self : Any ) -> Union[str, Any]: _lowerCAmelCase = MaxLengthCriteria(max_length=10 ) _lowerCAmelCase , _lowerCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(__snake_case , __snake_case ) ) _lowerCAmelCase , _lowerCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(__snake_case , __snake_case ) ) _lowerCAmelCase , _lowerCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(__snake_case , __snake_case ) ) def lowercase__ ( self : Optional[int] ) -> int: _lowerCAmelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) _lowerCAmelCase , _lowerCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(__snake_case , __snake_case ) ) _lowerCAmelCase , _lowerCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(__snake_case , __snake_case ) ) _lowerCAmelCase , _lowerCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(__snake_case , __snake_case ) ) _lowerCAmelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def lowercase__ ( self : int ) -> str: _lowerCAmelCase , _lowerCAmelCase = self._get_tensors(5 ) _lowerCAmelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(__snake_case , __snake_case ) ) _lowerCAmelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(__snake_case , __snake_case ) ) def lowercase__ ( self : Union[str, Any] ) -> Tuple: validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(__snake_case ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) _lowerCAmelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(__snake_case ) , 1 )
207
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() A__ : Any =logging.get_logger(__name__) def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = DPTConfig() if "large" in checkpoint_url: _lowerCAmelCase = 10_24 _lowerCAmelCase = 40_96 _lowerCAmelCase = 24 _lowerCAmelCase = 16 _lowerCAmelCase = [5, 11, 17, 23] _lowerCAmelCase = [2_56, 5_12, 10_24, 10_24] _lowerCAmelCase = (1, 3_84, 3_84) if "ade" in checkpoint_url: _lowerCAmelCase = True _lowerCAmelCase = 1_50 _lowerCAmelCase = """huggingface/label-files""" _lowerCAmelCase = """ade20k-id2label.json""" _lowerCAmelCase = json.load(open(cached_download(hf_hub_url(lowerCAmelCase , lowerCAmelCase , repo_type="""dataset""" ) ) , """r""" ) ) _lowerCAmelCase = {int(lowerCAmelCase ): v for k, v in idalabel.items()} _lowerCAmelCase = idalabel _lowerCAmelCase = {v: k for k, v in idalabel.items()} _lowerCAmelCase = [1, 1_50, 4_80, 4_80] return config, expected_shape def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(lowerCAmelCase , lowerCAmelCase ) def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _lowerCAmelCase = name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: _lowerCAmelCase = name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: _lowerCAmelCase = name.replace("""patch_embed""" , """patch_embeddings""" ) if "pos_embed" in name: _lowerCAmelCase = name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: _lowerCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: _lowerCAmelCase = name.replace("""proj""" , """projection""" ) if "blocks" in name: _lowerCAmelCase = name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: _lowerCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: _lowerCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name: _lowerCAmelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: _lowerCAmelCase = name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: _lowerCAmelCase = name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: _lowerCAmelCase = name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: _lowerCAmelCase = name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: _lowerCAmelCase = name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: _lowerCAmelCase = name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: _lowerCAmelCase = name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: _lowerCAmelCase = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _lowerCAmelCase = name.replace(f"refinenet{layer_idx}" , f"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: _lowerCAmelCase = name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: _lowerCAmelCase = name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: _lowerCAmelCase = name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: _lowerCAmelCase = name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: _lowerCAmelCase = name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _lowerCAmelCase = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: _lowerCAmelCase = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: _lowerCAmelCase = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: _lowerCAmelCase = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: _lowerCAmelCase = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: _lowerCAmelCase = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: _lowerCAmelCase = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: _lowerCAmelCase = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: _lowerCAmelCase = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: _lowerCAmelCase = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: _lowerCAmelCase = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: _lowerCAmelCase = name.replace("""pretrained""" , """dpt""" ) if "bn" in name: _lowerCAmelCase = name.replace("""bn""" , """batch_norm""" ) if "head" in name: _lowerCAmelCase = name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: _lowerCAmelCase = name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: _lowerCAmelCase = name.replace("""auxlayer""" , """auxiliary_head.head""" ) return name def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.weight" ) _lowerCAmelCase = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase = in_proj_weight[: config.hidden_size, :] _lowerCAmelCase = in_proj_bias[: config.hidden_size] _lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase = in_proj_bias[-config.hidden_size :] def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" _lowerCAmelCase = Image.open(requests.get(lowerCAmelCase , stream=lowerCAmelCase ).raw ) return im @torch.no_grad() def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = get_dpt_config(lowerCAmelCase ) # load original state_dict from URL _lowerCAmelCase = torch.hub.load_state_dict_from_url(lowerCAmelCase , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(lowerCAmelCase ) # rename keys for key in state_dict.copy().keys(): _lowerCAmelCase = state_dict.pop(lowerCAmelCase ) _lowerCAmelCase = val # read in qkv matrices read_in_q_k_v(lowerCAmelCase , lowerCAmelCase ) # load HuggingFace model _lowerCAmelCase = DPTForSemanticSegmentation(lowerCAmelCase ) if """ade""" in checkpoint_url else DPTForDepthEstimation(lowerCAmelCase ) model.load_state_dict(lowerCAmelCase ) model.eval() # Check outputs on an image _lowerCAmelCase = 4_80 if """ade""" in checkpoint_url else 3_84 _lowerCAmelCase = DPTImageProcessor(size=lowerCAmelCase ) _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(lowerCAmelCase , return_tensors="""pt""" ) # forward pass _lowerCAmelCase = model(**lowerCAmelCase ).logits if """ade""" in checkpoint_url else model(**lowerCAmelCase ).predicted_depth # Assert logits _lowerCAmelCase = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]] ) if "ade" in checkpoint_url: _lowerCAmelCase = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]] ) assert outputs.shape == torch.Size(lowerCAmelCase ) assert ( torch.allclose(outputs[0, 0, :3, :3] , lowerCAmelCase , atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , lowerCAmelCase ) ) Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCAmelCase ) if push_to_hub: print("""Pushing model to hub...""" ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase , lowerCAmelCase ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase , lowerCAmelCase ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase , ) if __name__ == "__main__": A__ : Optional[int] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) A__ : Optional[int] =parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
207
1
'''simple docstring''' import math import qiskit def __snake_case ( UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : int = 1 ): if ( isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) ): raise TypeError("inputs must be integers." ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("inputs must be positive." ) if ( (math.floor(UpperCAmelCase_ ) != input_a) or (math.floor(UpperCAmelCase_ ) != input_a) or (math.floor(UpperCAmelCase_ ) != carry_in) ): raise ValueError("inputs must be exact integers." ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("inputs must be less or equal to 2." ) # build registers lowerCamelCase_ = qiskit.QuantumRegister(4 , "qr" ) lowerCamelCase_ = qiskit.ClassicalRegister(2 , "cr" ) # list the entries lowerCamelCase_ = [input_a, input_a, carry_in] lowerCamelCase_ = qiskit.QuantumCircuit(UpperCAmelCase_ , UpperCAmelCase_ ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(UpperCAmelCase_ ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(UpperCAmelCase_ ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(UpperCAmelCase_ ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , UpperCAmelCase_ ) # measure the last two qbits lowerCamelCase_ = qiskit.Aer.get_backend("aer_simulator" ) lowerCamelCase_ = qiskit.execute(UpperCAmelCase_ , UpperCAmelCase_ , shots=1000 ) return job.result().get_counts(UpperCAmelCase_ ) if __name__ == "__main__": print(f'''Total sum count for state is: {quantum_full_adder(1, 1, 1)}''')
717
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) a_ : List[Any] = { """configuration_owlvit""": [ """OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OwlViTConfig""", """OwlViTOnnxConfig""", """OwlViTTextConfig""", """OwlViTVisionConfig""", ], """processing_owlvit""": ["""OwlViTProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : int = ["""OwlViTFeatureExtractor"""] a_ : Any = ["""OwlViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = [ """OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OwlViTModel""", """OwlViTPreTrainedModel""", """OwlViTTextModel""", """OwlViTVisionModel""", """OwlViTForObjectDetection""", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys a_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
445
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
78
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging SCREAMING_SNAKE_CASE_: Optional[int] =logging.get_logger(__name__) # pylint: disable=invalid-name class __A ( UpperCamelCase__ ): def __init__(self : Any , __a : CLIPSegForImageSegmentation , __a : CLIPSegProcessor , __a : AutoencoderKL , __a : CLIPTextModel , __a : CLIPTokenizer , __a : UNetaDConditionModel , __a : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __a : StableDiffusionSafetyChecker , __a : CLIPImageProcessor , ): super().__init__() if hasattr(scheduler.config , "steps_offset" ) and scheduler.config.steps_offset != 1: UpperCAmelCase_ = ( f"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" f""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1" , "1.0.0" , __a , standard_warn=__a ) UpperCAmelCase_ = dict(scheduler.config ) UpperCAmelCase_ = 1 UpperCAmelCase_ = FrozenDict(__a ) if hasattr(scheduler.config , "skip_prk_steps" ) and scheduler.config.skip_prk_steps is False: UpperCAmelCase_ = ( f"""The configuration file of this scheduler: {scheduler} has not set the configuration""" " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" " Hub, it would be very nice if you could open a Pull request for the" " `scheduler/scheduler_config.json` file" ) deprecate("skip_prk_steps not set" , "1.0.0" , __a , standard_warn=__a ) UpperCAmelCase_ = dict(scheduler.config ) UpperCAmelCase_ = True UpperCAmelCase_ = FrozenDict(__a ) if safety_checker is None: logger.warning( f"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( segmentation_model=__a , segmentation_processor=__a , vae=__a , text_encoder=__a , tokenizer=__a , unet=__a , scheduler=__a , safety_checker=__a , feature_extractor=__a , ) def _lowercase (self : str , __a : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__a ) def _lowercase (self : int ): self.enable_attention_slicing(__a ) def _lowercase (self : Optional[Any] ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCAmelCase_ = torch.device("cuda" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(__a , __a ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _lowercase (self : Optional[int] ): if self.device != torch.device("meta" ) or not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(__a , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__(self : Dict , __a : Union[str, List[str]] , __a : Union[torch.FloatTensor, PIL.Image.Image] , __a : str , __a : int = 512 , __a : int = 512 , __a : int = 50 , __a : float = 7.5 , __a : Optional[Union[str, List[str]]] = None , __a : Optional[int] = 1 , __a : float = 0.0 , __a : Optional[torch.Generator] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[str] = "pil" , __a : bool = True , __a : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __a : int = 1 , **__a : int , ): UpperCAmelCase_ = self.segmentation_processor( text=[text] , images=[image] , padding="max_length" , return_tensors="pt" ).to(self.device ) UpperCAmelCase_ = self.segmentation_model(**__a ) UpperCAmelCase_ = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() UpperCAmelCase_ = self.numpy_to_pil(__a )[0].resize(image.size ) # Run inpainting pipeline with the generated mask UpperCAmelCase_ = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=__a , image=__a , mask_image=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , )
78
1
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets _lowerCamelCase : List[Any] = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" _lowerCamelCase : str = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" _lowerCamelCase : str = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def lowercase_ ( _UpperCAmelCase ): """simple docstring""" def remove_articles(_UpperCAmelCase ): A_ : Tuple = re.compile(r'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(_UpperCAmelCase , ''' ''' , _UpperCAmelCase ) def white_space_fix(_UpperCAmelCase ): return " ".join(text.split() ) def remove_punc(_UpperCAmelCase ): A_ : Optional[Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_UpperCAmelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_UpperCAmelCase ) ) ) ) def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" return int(normalize_answer(_UpperCAmelCase ) == normalize_answer(_UpperCAmelCase ) ) def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : List[Any] = [any(compute_exact(_UpperCAmelCase , _UpperCAmelCase ) for ref in refs ) for pred, refs in zip(_UpperCAmelCase , _UpperCAmelCase )] return (sum(_UpperCAmelCase ) / len(_UpperCAmelCase )) * 100 def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : int = [rgram for rgrams in rgramslist for rgram in rgrams] A_ : int = Counter(_UpperCAmelCase ) A_ : str = Counter(_UpperCAmelCase ) A_ : Union[str, Any] = Counter() for sgram, scount in sgramcounter.items(): A_ : List[str] = scount * numref A_ : Tuple = Counter(_UpperCAmelCase ) A_ : int = Counter() for cgram, ccount in cgramcounter.items(): A_ : List[str] = ccount * numref # KEEP A_ : Tuple = sgramcounter_rep & cgramcounter_rep A_ : Any = keepgramcounter_rep & rgramcounter A_ : Union[str, Any] = sgramcounter_rep & rgramcounter A_ : Optional[int] = 0 A_ : List[Any] = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. A_ : int = 1 A_ : List[Any] = 1 if len(_UpperCAmelCase ) > 0: A_ : str = keeptmpscorea / len(_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) A_ : List[str] = keeptmpscorea / sum(keepgramcounterall_rep.values() ) A_ : str = 0 if keepscore_precision > 0 or keepscore_recall > 0: A_ : Any = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION A_ : List[Any] = sgramcounter_rep - cgramcounter_rep A_ : Tuple = delgramcounter_rep - rgramcounter A_ : int = sgramcounter_rep - rgramcounter A_ : Any = 0 A_ : List[Any] = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. A_ : Union[str, Any] = 1 if len(_UpperCAmelCase ) > 0: A_ : Dict = deltmpscorea / len(_UpperCAmelCase ) # ADDITION A_ : List[Any] = set(_UpperCAmelCase ) - set(_UpperCAmelCase ) A_ : List[Any] = set(_UpperCAmelCase ) & set(_UpperCAmelCase ) A_ : Tuple = set(_UpperCAmelCase ) - set(_UpperCAmelCase ) A_ : List[str] = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. A_ : Optional[Any] = 1 A_ : int = 1 if len(_UpperCAmelCase ) > 0: A_ : Tuple = addtmpscore / len(_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: A_ : str = addtmpscore / len(_UpperCAmelCase ) A_ : Tuple = 0 if addscore_precision > 0 or addscore_recall > 0: A_ : Tuple = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : Optional[Any] = len(_UpperCAmelCase ) A_ : List[str] = ssent.split(''' ''' ) A_ : List[Any] = csent.split(''' ''' ) A_ : int = [] A_ : Optional[int] = [] A_ : str = [] A_ : Dict = [] A_ : Optional[Any] = [] A_ : List[str] = [] A_ : int = [] A_ : Optional[Any] = [] A_ : Optional[Any] = [] A_ : Optional[Any] = [] for rsent in rsents: A_ : List[Any] = rsent.split(''' ''' ) A_ : List[str] = [] A_ : Optional[int] = [] A_ : Dict = [] ragramslist.append(_UpperCAmelCase ) for i in range(0 , len(_UpperCAmelCase ) - 1 ): if i < len(_UpperCAmelCase ) - 1: A_ : int = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(_UpperCAmelCase ) if i < len(_UpperCAmelCase ) - 2: A_ : str = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(_UpperCAmelCase ) if i < len(_UpperCAmelCase ) - 3: A_ : List[Any] = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(_UpperCAmelCase ) ragramslist.append(_UpperCAmelCase ) ragramslist.append(_UpperCAmelCase ) ragramslist.append(_UpperCAmelCase ) for i in range(0 , len(_UpperCAmelCase ) - 1 ): if i < len(_UpperCAmelCase ) - 1: A_ : List[Any] = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(_UpperCAmelCase ) if i < len(_UpperCAmelCase ) - 2: A_ : Optional[int] = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(_UpperCAmelCase ) if i < len(_UpperCAmelCase ) - 3: A_ : Any = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(_UpperCAmelCase ) for i in range(0 , len(_UpperCAmelCase ) - 1 ): if i < len(_UpperCAmelCase ) - 1: A_ : Dict = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(_UpperCAmelCase ) if i < len(_UpperCAmelCase ) - 2: A_ : str = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(_UpperCAmelCase ) if i < len(_UpperCAmelCase ) - 3: A_ : str = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(_UpperCAmelCase ) (A_) : Union[str, Any] = SARIngram(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) (A_) : Optional[Any] = SARIngram(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) (A_) : Dict = SARIngram(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) (A_) : Tuple = SARIngram(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) A_ : Union[str, Any] = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 A_ : int = sum([delascore, delascore, delascore, delascore] ) / 4 A_ : Optional[int] = sum([addascore, addascore, addascore, addascore] ) / 4 A_ : List[Any] = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase = True , _UpperCAmelCase = "13a" , _UpperCAmelCase = True ): """simple docstring""" if lowercase: A_ : Optional[Any] = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: A_ : List[str] = sacrebleu.metrics.bleu._get_tokenizer(_UpperCAmelCase )()(_UpperCAmelCase ) else: A_ : Optional[Any] = sacrebleu.TOKENIZERS[tokenizer]()(_UpperCAmelCase ) elif tokenizer == "moses": A_ : Tuple = sacremoses.MosesTokenizer().tokenize(_UpperCAmelCase , return_str=_UpperCAmelCase , escape=_UpperCAmelCase ) elif tokenizer == "penn": A_ : Dict = sacremoses.MosesTokenizer().penn_tokenize(_UpperCAmelCase , return_str=_UpperCAmelCase ) else: A_ : List[Any] = sentence if not return_str: A_ : str = normalized_sent.split() return normalized_sent def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" if not (len(_UpperCAmelCase ) == len(_UpperCAmelCase ) == len(_UpperCAmelCase )): raise ValueError('''Sources length must match predictions and references lengths.''' ) A_ : List[Any] = 0 for src, pred, refs in zip(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): sari_score += SARIsent(normalize(_UpperCAmelCase ) , normalize(_UpperCAmelCase ) , [normalize(_UpperCAmelCase ) for sent in refs] ) A_ : List[Any] = sari_score / len(_UpperCAmelCase ) return 100 * sari_score def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="exp" , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , ): """simple docstring""" A_ : List[Any] = len(references[0] ) if any(len(_UpperCAmelCase ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) A_ : str = [[refs[i] for refs in references] for i in range(_UpperCAmelCase )] A_ : Any = sacrebleu.corpus_bleu( _UpperCAmelCase , _UpperCAmelCase , smooth_method=_UpperCAmelCase , smooth_value=_UpperCAmelCase , force=_UpperCAmelCase , lowercase=_UpperCAmelCase , use_effective_order=_UpperCAmelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowercase ( datasets.Metric): def a_ ( self : List[str] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def a_ ( self : str , _lowerCamelCase : int , _lowerCamelCase : str , _lowerCamelCase : Optional[Any] ): """simple docstring""" A_ : List[Any] = {} result.update({'''sari''': compute_sari(sources=lowerCamelCase__ , predictions=lowerCamelCase__ , references=lowerCamelCase__ )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=lowerCamelCase__ , references=lowerCamelCase__ )} ) result.update({'''exact''': compute_em(predictions=lowerCamelCase__ , references=lowerCamelCase__ )} ) return result
718
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _lowerCamelCase : Optional[Any] = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class lowercase ( unittest.TestCase): __lowerCAmelCase : Optional[Any] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __lowerCAmelCase : str = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: __lowerCAmelCase : int = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: __lowerCAmelCase : List[Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def a_ ( self : Optional[Any] , _lowerCamelCase : Any , _lowerCamelCase : List[Any] , _lowerCamelCase : Any ): """simple docstring""" A_ : int = ZeroShotClassificationPipeline( model=_lowerCamelCase , tokenizer=_lowerCamelCase , candidate_labels=['''polics''', '''health'''] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def a_ ( self : List[str] , _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any] ): """simple docstring""" A_ : List[Any] = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics''' ) self.assertEqual(_lowerCamelCase , {'''sequence''': ANY(_lowerCamelCase ), '''labels''': [ANY(_lowerCamelCase )], '''scores''': [ANY(_lowerCamelCase )]} ) # No kwarg A_ : Tuple = classifier('''Who are you voting for in 2020?''' , ['''politics'''] ) self.assertEqual(_lowerCamelCase , {'''sequence''': ANY(_lowerCamelCase ), '''labels''': [ANY(_lowerCamelCase )], '''scores''': [ANY(_lowerCamelCase )]} ) A_ : List[Any] = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics'''] ) self.assertEqual(_lowerCamelCase , {'''sequence''': ANY(_lowerCamelCase ), '''labels''': [ANY(_lowerCamelCase )], '''scores''': [ANY(_lowerCamelCase )]} ) A_ : Union[str, Any] = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics, public health''' ) self.assertEqual( _lowerCamelCase , {'''sequence''': ANY(_lowerCamelCase ), '''labels''': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )], '''scores''': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) A_ : Tuple = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health'''] ) self.assertEqual( _lowerCamelCase , {'''sequence''': ANY(_lowerCamelCase ), '''labels''': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )], '''scores''': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) A_ : List[str] = classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''This text is about {}''' ) self.assertEqual(_lowerCamelCase , {'''sequence''': ANY(_lowerCamelCase ), '''labels''': [ANY(_lowerCamelCase )], '''scores''': [ANY(_lowerCamelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 A_ : str = classifier(['''I am happy'''] , ['''positive''', '''negative'''] ) self.assertEqual( _lowerCamelCase , [ {'''sequence''': ANY(_lowerCamelCase ), '''labels''': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )], '''scores''': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )]} for i in range(1 ) ] , ) A_ : str = classifier(['''I am happy''', '''I am sad'''] , ['''positive''', '''negative'''] ) self.assertEqual( _lowerCamelCase , [ {'''sequence''': ANY(_lowerCamelCase ), '''labels''': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )], '''scores''': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )]} for i in range(2 ) ] , ) with self.assertRaises(_lowerCamelCase ): classifier('''''' , candidate_labels='''politics''' ) with self.assertRaises(_lowerCamelCase ): classifier(_lowerCamelCase , candidate_labels='''politics''' ) with self.assertRaises(_lowerCamelCase ): classifier('''Who are you voting for in 2020?''' , candidate_labels='''''' ) with self.assertRaises(_lowerCamelCase ): classifier('''Who are you voting for in 2020?''' , candidate_labels=_lowerCamelCase ) with self.assertRaises(_lowerCamelCase ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''Not formatting template''' , ) with self.assertRaises(_lowerCamelCase ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template=_lowerCamelCase , ) self.run_entailment_id(_lowerCamelCase ) def a_ ( self : Any , _lowerCamelCase : Pipeline ): """simple docstring""" A_ : int = zero_shot_classifier.model.config A_ : Dict = config.labelaid A_ : Optional[int] = zero_shot_classifier.entailment_id A_ : Optional[Any] = {'''LABEL_0''': 0, '''LABEL_1''': 1, '''LABEL_2''': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) A_ : Union[str, Any] = {'''entailment''': 0, '''neutral''': 1, '''contradiction''': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) A_ : int = {'''ENTAIL''': 0, '''NON-ENTAIL''': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) A_ : Optional[Any] = {'''ENTAIL''': 2, '''NEUTRAL''': 1, '''CONTR''': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) A_ : List[Any] = original_labelaid self.assertEqual(_lowerCamelCase , zero_shot_classifier.entailment_id ) @require_torch def a_ ( self : List[Any] ): """simple docstring""" A_ : List[str] = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( '''Who are you voting for in 2020?''' * 1_00 , candidate_labels=['''politics''', '''public health''', '''science'''] ) @require_torch def a_ ( self : Dict ): """simple docstring""" A_ : Optional[Any] = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) A_ : Optional[Any] = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(_lowerCamelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.333, 0.333, 0.333], } , ) @require_tf def a_ ( self : Dict ): """simple docstring""" A_ : List[str] = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''tf''' , ) A_ : List[str] = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(_lowerCamelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.333, 0.333, 0.333], } , ) @slow @require_torch def a_ ( self : int ): """simple docstring""" A_ : Union[str, Any] = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''pt''' ) A_ : str = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(_lowerCamelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.976, 0.015, 0.009], } , ) A_ : str = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=_lowerCamelCase , ) self.assertEqual( nested_simplify(_lowerCamelCase ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.817, 0.713, 0.018, 0.018], } , ) @slow @require_tf def a_ ( self : Union[str, Any] ): """simple docstring""" A_ : Tuple = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''tf''' ) A_ : str = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(_lowerCamelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.976, 0.015, 0.009], } , ) A_ : Tuple = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=_lowerCamelCase , ) self.assertEqual( nested_simplify(_lowerCamelCase ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.817, 0.713, 0.018, 0.018], } , )
361
0
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict=7 , SCREAMING_SNAKE_CASE__ : int=3 , SCREAMING_SNAKE_CASE__ : Optional[int]=1_8 , SCREAMING_SNAKE_CASE__ : int=3_0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=4_0_0 , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Tuple=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE__ : Any=[0.5, 0.5, 0.5] , ) -> Tuple: a_ : List[str] = parent a_ : Union[str, Any] = batch_size a_ : Optional[int] = num_channels a_ : int = image_size a_ : int = min_resolution a_ : Optional[Any] = max_resolution a_ : Any = do_resize a_ : int = size if size is not None else {'''height''': 1_8, '''width''': 2_0} a_ : int = do_thumbnail a_ : Optional[Any] = do_align_axis a_ : Tuple = do_pad a_ : Dict = do_normalize a_ : int = image_mean a_ : Optional[int] = image_std def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( a_ , unittest.TestCase ): snake_case__ : str = DonutImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: a_ : Any = DonutImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : int ) -> Any: a_ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_snake_case , 'do_resize' ) ) self.assertTrue(hasattr(_snake_case , 'size' ) ) self.assertTrue(hasattr(_snake_case , 'do_thumbnail' ) ) self.assertTrue(hasattr(_snake_case , 'do_align_long_axis' ) ) self.assertTrue(hasattr(_snake_case , 'do_pad' ) ) self.assertTrue(hasattr(_snake_case , 'do_normalize' ) ) self.assertTrue(hasattr(_snake_case , 'image_mean' ) ) self.assertTrue(hasattr(_snake_case , 'image_std' ) ) def SCREAMING_SNAKE_CASE ( self : Any ) -> int: a_ : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 1_8, 'width': 2_0} ) a_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {'height': 4_2, 'width': 4_2} ) # Previous config had dimensions in (width, height) order a_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=(4_2, 8_4) ) self.assertEqual(image_processor.size , {'height': 8_4, 'width': 4_2} ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: pass @is_flaky() def SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: # Initialize image_processing a_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , Image.Image ) # Test not batched input a_ : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched a_ : Tuple = image_processing(_snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: # Initialize image_processing a_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , numpify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , np.ndarray ) # Test not batched input a_ : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched a_ : Union[str, Any] = image_processing(_snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: # Initialize image_processing a_ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a_ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , torchify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , torch.Tensor ) # Test not batched input a_ : Any = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched a_ : Any = image_processing(_snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
570
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) _UpperCAmelCase : Optional[int] = pytest.mark.integration @pytest.mark.parametrize('''path''' ,['''paws''', '''csv'''] ) def snake_case__ ( UpperCamelCase ,UpperCamelCase ) -> Dict: inspect_dataset(UpperCamelCase ,UpperCamelCase ) _UpperCamelCase : Optional[Any] = path + '''.py''' assert script_name in os.listdir(UpperCamelCase ) assert "__pycache__" not in os.listdir(UpperCamelCase ) @pytest.mark.filterwarnings('''ignore:inspect_metric is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.parametrize('''path''' ,['''accuracy'''] ) def snake_case__ ( UpperCamelCase ,UpperCamelCase ) -> int: inspect_metric(UpperCamelCase ,UpperCamelCase ) _UpperCamelCase : List[str] = path + '''.py''' assert script_name in os.listdir(UpperCamelCase ) assert "__pycache__" not in os.listdir(UpperCamelCase ) @pytest.mark.parametrize( '''path, config_name, expected_splits''' ,[ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] ,) def snake_case__ ( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> int: _UpperCamelCase : List[str] = get_dataset_config_info(UpperCamelCase ,config_name=UpperCamelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' ,[ ('''paws''', None, ValueError), ] ,) def snake_case__ ( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> List[str]: with pytest.raises(UpperCamelCase ): get_dataset_config_info(UpperCamelCase ,config_name=UpperCamelCase ) @pytest.mark.parametrize( '''path, expected''' ,[ ('''squad''', '''plain_text'''), ('''acronym_identification''', '''default'''), ('''lhoestq/squad''', '''plain_text'''), ('''lhoestq/test''', '''default'''), ('''lhoestq/demo1''', '''lhoestq--demo1'''), ('''dalle-mini/wit''', '''dalle-mini--wit'''), ] ,) def snake_case__ ( UpperCamelCase ,UpperCamelCase ) -> Union[str, Any]: _UpperCamelCase : int = get_dataset_config_names(UpperCamelCase ) assert expected in config_names @pytest.mark.parametrize( '''path, expected_configs, expected_splits_in_first_config''' ,[ ('''squad''', ['''plain_text'''], ['''train''', '''validation''']), ('''dalle-mini/wit''', ['''dalle-mini--wit'''], ['''train''']), ('''paws''', ['''labeled_final''', '''labeled_swap''', '''unlabeled_final'''], ['''train''', '''test''', '''validation''']), ] ,) def snake_case__ ( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Dict: _UpperCamelCase : Dict = get_dataset_infos(UpperCamelCase ) assert list(infos.keys() ) == expected_configs _UpperCamelCase : Dict = expected_configs[0] assert expected_config in infos _UpperCamelCase : Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( '''path, expected_config, expected_splits''' ,[ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] ,) def snake_case__ ( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Union[str, Any]: _UpperCamelCase : List[Any] = get_dataset_infos(UpperCamelCase ) assert expected_config in infos _UpperCamelCase : Union[str, Any] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' ,[ ('''paws''', None, ValueError), ] ,) def snake_case__ ( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> List[Any]: with pytest.raises(UpperCamelCase ): get_dataset_split_names(UpperCamelCase ,config_name=UpperCamelCase )
683
0
'''simple docstring''' import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class __magic_name__ ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : Any = AutoImageProcessor.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) lowercase_ : List[str] = AutoModelForImageClassification.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) model.to(lowercase_ ) from datasets import load_dataset lowercase_ : Any = load_dataset("""nielsr/rvlcdip-demo""" ) lowercase_ : Optional[Any] = dataset["""train"""][0]["""image"""].convert("""RGB""" ) lowercase_ : str = image_processor(lowercase_ , return_tensors="""pt""" ).to(lowercase_ ) # forward pass with torch.no_grad(): lowercase_ : Optional[Any] = model(**lowercase_ ) lowercase_ : Dict = outputs.logits lowercase_ : Optional[int] = torch.Size((1, 16) ) self.assertEqual(logits.shape , lowercase_ ) lowercase_ : List[str] = torch.tensor( [-0.41_58, -0.40_92, -0.43_47] , device=lowercase_ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , lowercase_ , atol=1E-4 ) )
705
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __magic_name__ : def __init__( self : int , lowercase_ : Optional[Any] , lowercase_ : List[Any]=13 , lowercase_ : List[str]=10 , lowercase_ : Union[str, Any]=3 , lowercase_ : str=2 , lowercase_ : Optional[Any]=2 , lowercase_ : int=True , lowercase_ : List[Any]=True , lowercase_ : Union[str, Any]=32 , lowercase_ : Union[str, Any]=5 , lowercase_ : str=4 , lowercase_ : Dict=37 , lowercase_ : Tuple="gelu" , lowercase_ : int=0.1 , lowercase_ : Optional[Any]=0.1 , lowercase_ : Any=10 , lowercase_ : Tuple=0.02 , lowercase_ : Any="divided_space_time" , lowercase_ : Tuple=None , ): lowercase_ : int = parent lowercase_ : str = batch_size lowercase_ : List[str] = image_size lowercase_ : str = num_channels lowercase_ : List[Any] = patch_size lowercase_ : Optional[Any] = num_frames lowercase_ : Dict = is_training lowercase_ : int = use_labels lowercase_ : List[str] = hidden_size lowercase_ : Dict = num_hidden_layers lowercase_ : Dict = num_attention_heads lowercase_ : Any = intermediate_size lowercase_ : Optional[int] = hidden_act lowercase_ : Optional[Any] = hidden_dropout_prob lowercase_ : List[Any] = attention_probs_dropout_prob lowercase_ : Any = attention_type lowercase_ : Union[str, Any] = initializer_range lowercase_ : List[str] = scope lowercase_ : Optional[int] = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token lowercase_ : Dict = (image_size // patch_size) ** 2 lowercase_ : List[Any] = (num_frames) * self.num_patches_per_frame + 1 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Optional[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowercase_ : int = None if self.use_labels: lowercase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) lowercase_ : Optional[Any] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : int = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) lowercase_ : Any = self.num_labels return config def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : List[str] ): lowercase_ : Optional[Any] = TimesformerModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ : int = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : Optional[int] , lowercase_ : List[str] , lowercase_ : str ): lowercase_ : Dict = TimesformerForVideoClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ : int = model(lowercase_ ) # verify the logits shape lowercase_ : List[Any] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : List[str] = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ : int = config_and_inputs lowercase_ : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( _UpperCAmelCase, _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () UpperCamelCase__ = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Any = TimesformerModelTester(self ) lowercase_ : Union[str, Any] = ConfigTester( self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : Tuple=False ): lowercase_ : List[Any] = copy.deepcopy(lowercase_ ) if return_labels: if model_class in get_values(lowercase_ ): lowercase_ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) return inputs_dict def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="""TimeSformer does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): pass def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ , lowercase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : str = model_class(lowercase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase_ , nn.Linear ) ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ , lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Dict = model_class(lowercase_ ) lowercase_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Union[str, Any] = [*signature.parameters.keys()] lowercase_ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*lowercase_ ) @slow def SCREAMING_SNAKE_CASE_ ( self : Any ): for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Any = TimesformerModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str ): if not self.has_attentions: pass else: lowercase_ , lowercase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : List[str] = True for model_class in self.all_model_classes: lowercase_ : str = self.model_tester.seq_length lowercase_ : int = self.model_tester.num_frames lowercase_ : int = True lowercase_ : Any = False lowercase_ : str = True lowercase_ : int = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): lowercase_ : List[Any] = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) lowercase_ : List[str] = outputs.attentions self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase_ : List[str] = True lowercase_ : str = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): lowercase_ : Dict = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) lowercase_ : int = outputs.attentions self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) lowercase_ : Optional[Any] = len(lowercase_ ) # Check attention is always last and order is fine lowercase_ : Tuple = True lowercase_ : Dict = True lowercase_ : str = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): lowercase_ : str = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) self.assertEqual(out_len + 1 , len(lowercase_ ) ) lowercase_ : Optional[Any] = outputs.attentions self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): def check_hidden_states_output(lowercase_ : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : Dict ): lowercase_ : List[str] = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): lowercase_ : Optional[Any] = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) lowercase_ : Dict = outputs.hidden_states lowercase_ : List[Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowercase_ ) , lowercase_ ) lowercase_ : List[Any] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase_ , lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : List[str] = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ : Optional[int] = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def lowerCamelCase ( ) -> Optional[int]: lowercase_ : List[str] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) lowercase_ : List[Any] = np.load(UpperCAmelCase__ ) return list(UpperCAmelCase__ ) @require_torch @require_vision class __magic_name__ ( unittest.TestCase): @cached_property def SCREAMING_SNAKE_CASE_ ( self : str ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Any = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to( lowercase_ ) lowercase_ : Optional[Any] = self.default_image_processor lowercase_ : Any = prepare_video() lowercase_ : Optional[int] = image_processor(video[:8] , return_tensors="""pt""" ).to(lowercase_ ) # forward pass with torch.no_grad(): lowercase_ : Optional[Any] = model(**lowercase_ ) # verify the logits lowercase_ : Any = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , lowercase_ ) lowercase_ : int = torch.tensor([-0.30_16, -0.77_13, -0.42_05] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4 ) )
30
0
'''simple docstring''' from __future__ import annotations def __magic_name__ ( __UpperCAmelCase ) -> list[int]: '''simple docstring''' return [ord(__UpperCAmelCase ) - 96 for elem in plain] def __magic_name__ ( __UpperCAmelCase ) -> str: '''simple docstring''' return "".join(chr(elem + 96 ) for elem in encoded ) def __magic_name__ ( ) -> None: '''simple docstring''' snake_case_ = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''', __UpperCAmelCase ) print('''Decoded:''', decode(__UpperCAmelCase ) ) if __name__ == "__main__": main()
640
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging a : Any = logging.get_logger(__name__) class a ( _lowerCamelCase ): snake_case_ = "linear" snake_case_ = "cosine" snake_case_ = "cosine_with_restarts" snake_case_ = "polynomial" snake_case_ = "constant" snake_case_ = "constant_with_warmup" snake_case_ = "piecewise_constant" def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase = -1 ) -> Dict: '''simple docstring''' return LambdaLR(__UpperCAmelCase, lambda __UpperCAmelCase : 1, last_epoch=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase = -1 ) -> Dict: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1.0, __UpperCAmelCase ) ) return 1.0 return LambdaLR(__UpperCAmelCase, __UpperCAmelCase, last_epoch=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase = -1 ) -> Any: '''simple docstring''' snake_case_ = {} snake_case_ = step_rules.split(''',''' ) for rule_str in rule_list[:-1]: snake_case_ ,snake_case_ = rule_str.split(''':''' ) snake_case_ = int(__UpperCAmelCase ) snake_case_ = float(__UpperCAmelCase ) snake_case_ = value snake_case_ = float(rule_list[-1] ) def create_rules_function(__UpperCAmelCase, __UpperCAmelCase ): def rule_func(__UpperCAmelCase ) -> float: snake_case_ = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__UpperCAmelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func snake_case_ = create_rules_function(__UpperCAmelCase, __UpperCAmelCase ) return LambdaLR(__UpperCAmelCase, __UpperCAmelCase, last_epoch=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=-1 ) -> List[Any]: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1, __UpperCAmelCase ) ) return max( 0.0, float(num_training_steps - current_step ) / float(max(1, num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase = 0.5, __UpperCAmelCase = -1 ) -> Optional[Any]: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1, __UpperCAmelCase ) ) snake_case_ = float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) ) return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(__UpperCAmelCase ) * 2.0 * progress )) ) return LambdaLR(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase = 1, __UpperCAmelCase = -1 ) -> Dict: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1, __UpperCAmelCase ) ) snake_case_ = float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(__UpperCAmelCase ) * progress) % 1.0) )) ) return LambdaLR(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=1e-7, __UpperCAmelCase=1.0, __UpperCAmelCase=-1 ) -> str: '''simple docstring''' snake_case_ = optimizer.defaults['''lr'''] if not (lr_init > lr_end): raise ValueError(F"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})" ) def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1, __UpperCAmelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: snake_case_ = lr_init - lr_end snake_case_ = num_training_steps - num_warmup_steps snake_case_ = 1 - (current_step - num_warmup_steps) / decay_steps snake_case_ = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) a : Tuple = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase = None, __UpperCAmelCase = None, __UpperCAmelCase = None, __UpperCAmelCase = 1, __UpperCAmelCase = 1.0, __UpperCAmelCase = -1, ) -> int: '''simple docstring''' snake_case_ = SchedulerType(__UpperCAmelCase ) snake_case_ = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__UpperCAmelCase, last_epoch=__UpperCAmelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__UpperCAmelCase, step_rules=__UpperCAmelCase, last_epoch=__UpperCAmelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F"{name} requires `num_warmup_steps`, please provide that argument." ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__UpperCAmelCase, num_warmup_steps=__UpperCAmelCase, last_epoch=__UpperCAmelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F"{name} requires `num_training_steps`, please provide that argument." ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __UpperCAmelCase, num_warmup_steps=__UpperCAmelCase, num_training_steps=__UpperCAmelCase, num_cycles=__UpperCAmelCase, last_epoch=__UpperCAmelCase, ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __UpperCAmelCase, num_warmup_steps=__UpperCAmelCase, num_training_steps=__UpperCAmelCase, power=__UpperCAmelCase, last_epoch=__UpperCAmelCase, ) return schedule_func( __UpperCAmelCase, num_warmup_steps=__UpperCAmelCase, num_training_steps=__UpperCAmelCase, last_epoch=__UpperCAmelCase )
640
1
'''simple docstring''' import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any]=1_3 , lowerCAmelCase_ : List[str]=7 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : List[Any]=9_9 , lowerCAmelCase_ : Tuple=3_2 , lowerCAmelCase_ : Any=5 , lowerCAmelCase_ : Any=4 , lowerCAmelCase_ : Dict=3_7 , lowerCAmelCase_ : Tuple="gelu" , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : str=5_1_2 , lowerCAmelCase_ : Dict=1_6 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : Optional[int]=0.02 , lowerCAmelCase_ : Optional[int]=4 , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_attention_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_choices def lowercase ( self : List[str] ) -> Optional[int]: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_attention_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowercase ( self : Dict ) -> Dict: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def lowercase ( self : Tuple ) -> int: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = True __lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = True a_ = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def lowercase ( self : Any ) -> Dict: __lowerCAmelCase = FlaxRobertaPreLayerNormModelTester(self ) @slow def lowercase ( self : Tuple ) -> List[str]: for model_class_name in self.all_model_classes: __lowerCAmelCase = model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCAmelCase_ ) __lowerCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCAmelCase_ ) @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase ( self : int ) -> int: __lowerCAmelCase = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCAmelCase_ ) __lowerCAmelCase = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = [1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape ) , lowerCAmelCase_ ) # compare the actual values for a slice. __lowerCAmelCase = np.array( [[[40.48_80, 18.01_99, -5.23_67], [-1.88_77, -4.08_85, 10.70_85], [-2.26_13, -5.61_10, 7.26_65]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def lowercase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase = FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCAmelCase_ ) __lowerCAmelCase = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) __lowerCAmelCase = model(lowerCAmelCase_ )[0] # compare the actual values for a slice. __lowerCAmelCase = np.array( [[[0.02_08, -0.03_56, 0.02_37], [-0.15_69, -0.04_11, -0.26_26], [0.18_79, 0.01_25, -0.00_89]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
709
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _snake_case : Optional[int] = logging.get_logger(__name__) _snake_case : List[Any] = '▁' _snake_case : Tuple = {'vocab_file': 'spiece.model'} _snake_case : Optional[int] = { 'vocab_file': { 'google/reformer-crime-and-punishment': ( 'https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model' ) } } _snake_case : Union[str, Any] = { 'google/reformer-crime-and-punishment': 524288, } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["""input_ids""", """attention_mask"""] def __init__( self : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any="</s>" , lowerCAmelCase_ : Any="<unk>" , lowerCAmelCase_ : List[Any]=[] , lowerCAmelCase_ : Optional[Dict[str, Any]] = None , **lowerCAmelCase_ : Any , ) -> None: __lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , additional_special_tokens=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase_ , ) __lowerCAmelCase = vocab_file __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase_ ) @property def lowercase ( self : Any ) -> Any: return self.sp_model.get_piece_size() def lowercase ( self : int ) -> Dict[str, int]: __lowerCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ) -> Any: __lowerCAmelCase = self.__dict__.copy() __lowerCAmelCase = None return state def __setstate__( self : Dict , lowerCAmelCase_ : str ) -> str: __lowerCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __lowerCAmelCase = {} __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase ( self : int , lowerCAmelCase_ : str ) -> List[str]: return self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : Dict ) -> Tuple: return self.sp_model.piece_to_id(lowerCAmelCase_ ) def lowercase ( self : Any , lowerCAmelCase_ : int ) -> Optional[int]: if index < self.sp_model.get_piece_size(): __lowerCAmelCase = self.sp_model.IdToPiece(lowerCAmelCase_ ) return token def lowercase ( self : Optional[int] , lowerCAmelCase_ : Tuple ) -> List[str]: __lowerCAmelCase = [] __lowerCAmelCase = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCAmelCase_ ) + token __lowerCAmelCase = [] else: current_sub_tokens.append(lowerCAmelCase_ ) out_string += self.sp_model.decode(lowerCAmelCase_ ) return out_string.strip() def lowercase ( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase_ , 'wb' ) as fi: __lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase_ ) return (out_vocab_file,)
421
0
import functools def __UpperCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] ) -> int: """simple docstring""" if not isinstance(a_ , a_ ) or not all(isinstance(a_ , a_ ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(a_ ) != 3 or not all(isinstance(a_ , a_ ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(a_ ) == 0: return 0 if min(a_ ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(a_ ) >= 3_66: raise ValueError('All days elements should be less than 366' ) SCREAMING_SNAKE_CASE_ : Optional[int] = set(a_ ) @functools.cache def dynamic_programming(lowerCamelCase_ : List[Any] ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
105
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class a_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=9_9 , lowercase_=6_4 , lowercase_=5 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=1_6 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_=None , ) -> Dict: '''simple docstring''' lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_input_mask lowerCAmelCase_ = use_token_type_ids lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = type_vocab_size lowerCAmelCase_ = type_sequence_label_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = num_labels lowerCAmelCase_ = num_choices lowerCAmelCase_ = scope lowerCAmelCase_ = vocab_size - 1 def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ = None if self.use_input_mask: lowerCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ = None if self.use_labels: lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase_ = self.get_config() return config, input_ids, input_mask, token_labels def _lowercase ( self ) -> Optional[int]: '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def _lowercase ( self ) -> List[str]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self.prepare_config_and_inputs() lowerCAmelCase_ = True return config, input_ids, input_mask, token_labels def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' lowerCAmelCase_ = GPTNeoXModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ ) lowerCAmelCase_ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' lowerCAmelCase_ = True lowerCAmelCase_ = GPTNeoXModel(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' lowerCAmelCase_ = GPTNeoXForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = self.num_labels lowerCAmelCase_ = GPTNeoXForQuestionAnswering(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = self.num_labels lowerCAmelCase_ = GPTNeoXForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = self.num_labels lowerCAmelCase_ = GPTNeoXForTokenClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' lowerCAmelCase_ = True lowerCAmelCase_ = GPTNeoXForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() # first forward pass lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , use_cache=lowercase_ ) lowerCAmelCase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase_ = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , output_hidden_states=lowercase_ ) lowerCAmelCase_ = output_from_no_past['hidden_states'][0] lowerCAmelCase_ = model( lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] # select random slice lowerCAmelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-3 ) ) def _lowercase ( self ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = config_and_inputs lowerCAmelCase_ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( a_ , a_ , a_ , unittest.TestCase ): '''simple docstring''' __a: str = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) __a: Optional[Any] = (GPTNeoXForCausalLM,) if is_torch_available() else () __a: List[str] = ( { '''feature-extraction''': GPTNeoXModel, '''question-answering''': GPTNeoXForQuestionAnswering, '''text-classification''': GPTNeoXForSequenceClassification, '''text-generation''': GPTNeoXForCausalLM, '''token-classification''': GPTNeoXForTokenClassification, '''zero-shot''': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) __a: Any = False __a: Tuple = False __a: List[Any] = False __a: Optional[int] = False def _lowercase ( self ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = GPTNeoXModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=lowercase_ , hidden_size=6_4 , num_attention_heads=8 ) def _lowercase ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowercase_ , lowercase_ , lowercase_ ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowercase_ , lowercase_ , lowercase_ ) def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() lowerCAmelCase_ = None self.model_tester.create_and_check_model_as_decoder(lowercase_ , lowercase_ , lowercase_ ) def _lowercase ( self ) -> Any: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowercase_ , lowercase_ , lowercase_ ) def _lowercase ( self ) -> int: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowercase_ ) def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_ ) def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase_ ) def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) @unittest.skip(reason='Feed forward chunking is not implemented' ) def _lowercase ( self ) -> str: '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def _lowercase ( self , lowercase_ ) -> List[str]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ = ids_tensor([1, 1_0] , config.vocab_size ) lowerCAmelCase_ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase_ = GPTNeoXModel(lowercase_ ) original_model.to(lowercase_ ) original_model.eval() lowerCAmelCase_ = original_model(lowercase_ ).last_hidden_state lowerCAmelCase_ = original_model(lowercase_ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase_ = {'type': scaling_type, 'factor': 10.0} lowerCAmelCase_ = GPTNeoXModel(lowercase_ ) scaled_model.to(lowercase_ ) scaled_model.eval() lowerCAmelCase_ = scaled_model(lowercase_ ).last_hidden_state lowerCAmelCase_ = scaled_model(lowercase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5 ) ) @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ) -> Any: '''simple docstring''' lowerCAmelCase_ = AutoTokenizer.from_pretrained('EleutherAI/pythia-410m-deduped' ) for checkpointing in [True, False]: lowerCAmelCase_ = GPTNeoXForCausalLM.from_pretrained('EleutherAI/pythia-410m-deduped' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(lowercase_ ) lowerCAmelCase_ = tokenizer('My favorite food is' , return_tensors='pt' ).to(lowercase_ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 lowerCAmelCase_ = 'My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure' lowerCAmelCase_ = model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=2_0 ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ )[0] self.assertEqual(lowercase_ , lowercase_ )
318
0
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser _lowerCAmelCase = logging.getLogger(__name__) torch.set_grad_enabled(False) _lowerCAmelCase = 'cuda' if torch.cuda.is_available() else 'cpu' def a__ ( a , a=1_0_0 , a=" " ) -> List[str]: A_ : Optional[int] = text.split(a ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(a ) , a )] def a__ ( a ) -> dict: A_ , A_ : Optional[Any] = [], [] for title, text in zip(documents['''title'''] , documents['''text'''] ): if text is not None: for passage in split_text(a ): titles.append(title if title is not None else '''''' ) texts.append(a ) return {"title": titles, "text": texts} def a__ ( a , a , a ) -> dict: A_ : Optional[Any] = ctx_tokenizer( documents['''title'''] , documents['''text'''] , truncation=a , padding='''longest''' , return_tensors='''pt''' )['''input_ids'''] A_ : List[Any] = ctx_encoder(input_ids.to(device=a ) , return_dict=a ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def a__ ( a , a , a , ) -> Optional[int]: ###################################### logger.info('''Step 1 - Create the dataset''' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way A_ : Union[str, Any] = load_dataset( '''csv''' , data_files=[rag_example_args.csv_path] , split='''train''' , delimiter='''\t''' , column_names=['''title''', '''text'''] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words A_ : int = dataset.map(a , batched=a , num_proc=processing_args.num_proc ) # And compute the embeddings A_ : Tuple = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=a ) A_ : Tuple = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) A_ : Dict = Features( {'''text''': Value('''string''' ), '''title''': Value('''string''' ), '''embeddings''': Sequence(Value('''float32''' ) )} ) # optional, save as float32 instead of float64 to save space A_ : Union[str, Any] = dataset.map( partial(a , ctx_encoder=a , ctx_tokenizer=a ) , batched=a , batch_size=processing_args.batch_size , features=a , ) # And finally save your dataset A_ : Any = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset''' ) dataset.save_to_disk(a ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('''Step 2 - Index the dataset''' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search A_ : Optional[Any] = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('''embeddings''' , custom_index=a ) # And save the index A_ : int = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset_hnsw_index.faiss''' ) dataset.get_index('''embeddings''' ).save(a ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class __UpperCAmelCase: """simple docstring""" __magic_name__ = field( default=str(Path(A__ ).parent / """test_run""" / """dummy-kb""" / """my_knowledge_dataset.csv""" ) , metadata={"""help""": """Path to a tab-separated csv file with columns 'title' and 'text'"""} , ) __magic_name__ = field( default=A__ , metadata={"""help""": """Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."""} , ) __magic_name__ = field( default="""facebook/rag-sequence-nq""" , metadata={"""help""": """The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"""} , ) __magic_name__ = field( default="""facebook/dpr-ctx_encoder-multiset-base""" , metadata={ """help""": ( """The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or""" """ 'facebook/dpr-ctx_encoder-multiset-base'""" ) } , ) __magic_name__ = field( default=str(Path(A__ ).parent / """test_run""" / """dummy-kb""" ) , metadata={"""help""": """Path to a directory where the dataset passages and the index will be saved"""} , ) @dataclass class __UpperCAmelCase: """simple docstring""" __magic_name__ = field( default=A__ , metadata={ """help""": """The number of processes to use to split the documents into passages. Default is single process.""" } , ) __magic_name__ = field( default=16 , metadata={ """help""": """The batch size to use when computing the passages embeddings using the DPR context encoder.""" } , ) @dataclass class __UpperCAmelCase: """simple docstring""" __magic_name__ = field( default=768 , metadata={"""help""": """The dimension of the embeddings to pass to the HNSW Faiss index."""} , ) __magic_name__ = field( default=128 , metadata={ """help""": ( """The number of bi-directional links created for every new element during the HNSW index construction.""" ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) _lowerCAmelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: _lowerCAmelCase = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
236
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class __UpperCAmelCase( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ): """simple docstring""" A_ : str = 10 def UpperCAmelCase ( self ): """simple docstring""" A_ : Optional[Any] = [1, 2, 3, 4] A_ : Union[str, Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(__magic_name__ , self.block_size , 0 ) , __magic_name__ ) def UpperCAmelCase ( self ): """simple docstring""" A_ : List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] A_ : Union[str, Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(__magic_name__ , self.block_size , 0 ) , __magic_name__ ) def UpperCAmelCase ( self ): """simple docstring""" A_ : Tuple = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] A_ : Union[str, Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(__magic_name__ , self.block_size , 0 ) , __magic_name__ ) def UpperCAmelCase ( self ): """simple docstring""" A_ : Optional[Any] = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' A_ , A_ : Optional[Any] = process_story(__magic_name__ ) self.assertEqual(__magic_name__ , [] ) def UpperCAmelCase ( self ): """simple docstring""" A_ : int = '''''' A_ , A_ : Union[str, Any] = process_story(__magic_name__ ) self.assertEqual(__magic_name__ , [] ) self.assertEqual(__magic_name__ , [] ) def UpperCAmelCase ( self ): """simple docstring""" A_ : int = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) A_ , A_ : Optional[int] = process_story(__magic_name__ ) A_ : List[str] = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(__magic_name__ , __magic_name__ ) A_ : Union[str, Any] = ['''It was the best of times.'''] self.assertEqual(__magic_name__ , __magic_name__ ) def UpperCAmelCase ( self ): """simple docstring""" A_ : List[str] = torch.tensor([1, 2, 3, 4] ) A_ : Any = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(__magic_name__ , 0 ).numpy() , expected.numpy() ) def UpperCAmelCase ( self ): """simple docstring""" A_ : Any = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) A_ : str = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__magic_name__ , 23 ).numpy() , expected.numpy() ) def UpperCAmelCase ( self ): """simple docstring""" A_ : Optional[int] = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) A_ : Union[str, Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__magic_name__ , 1 ).numpy() , expected.numpy() ) def UpperCAmelCase ( self ): """simple docstring""" A_ : int = 101 A_ : List[str] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) A_ : Tuple = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) A_ : Optional[Any] = compute_token_type_ids(__magic_name__ , __magic_name__ ) np.testing.assert_array_equal(__magic_name__ , __magic_name__ )
236
1
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str: if number > 0: raise ValueError("input must be a negative integer" ) UpperCAmelCase_ = len(bin(snake_case__ )[3:] ) UpperCAmelCase_ = bin(abs(snake_case__ ) - (1 << binary_number_length) )[3:] UpperCAmelCase_ = ( ( """1""" + """0""" * (binary_number_length - len(snake_case__ )) + twos_complement_number ) if number < 0 else """0""" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
579
def a__ ( snake_case__ : int , snake_case__ : int ): return x if y == 0 else greatest_common_divisor(snake_case__ , x % y ) def a__ ( snake_case__ : int , snake_case__ : int ): return (x * y) // greatest_common_divisor(snake_case__ , snake_case__ ) def a__ ( snake_case__ : int = 20 ): _UpperCAmelCase : Union[str, Any] = 1 for i in range(1 , n + 1 ): _UpperCAmelCase : Dict = lcm(snake_case__ , snake_case__ ) return g if __name__ == "__main__": print(F'{solution() = }')
643
0
'''simple docstring''' from __future__ import annotations def A_ ( snake_case ): SCREAMING_SNAKE_CASE:Optional[int] = str(__snake_case ) return n == n[::-1] def A_ ( snake_case = 1000000 ): SCREAMING_SNAKE_CASE:str = 0 for i in range(1 , __snake_case ): if is_palindrome(__snake_case ) and is_palindrome(bin(__snake_case ).split("b" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
712
'''simple docstring''' from ..utils import DummyObject, requires_backends class _snake_case ( metaclass=_a ): _A : Any = ['''torch''', '''torchsde'''] def __init__( self : Any ,*SCREAMING_SNAKE_CASE__ : int ,**SCREAMING_SNAKE_CASE__ : Tuple ): requires_backends(self ,["torch", "torchsde"] ) @classmethod def __UpperCamelCase ( cls : Dict ,*SCREAMING_SNAKE_CASE__ : Dict ,**SCREAMING_SNAKE_CASE__ : Optional[Any] ): requires_backends(cls ,["torch", "torchsde"] ) @classmethod def __UpperCamelCase ( cls : List[str] ,*SCREAMING_SNAKE_CASE__ : int ,**SCREAMING_SNAKE_CASE__ : Optional[Any] ): requires_backends(cls ,["torch", "torchsde"] )
465
0
"""simple docstring""" import warnings from functools import wraps from typing import Callable def __lowerCAmelCase ( __UpperCamelCase : Callable ): '''simple docstring''' @wraps(__UpperCamelCase ) def _inner_fn(*__UpperCamelCase : List[str] , **__UpperCamelCase : Optional[Any] ): warnings.warn( (F'\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.') , __UpperCamelCase , ) return fn(*__UpperCamelCase , **__UpperCamelCase ) return _inner_fn
58
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # General docstring SCREAMING_SNAKE_CASE = """MobileNetV1Config""" # Base docstring SCREAMING_SNAKE_CASE = """google/mobilenet_v1_1.0_224""" SCREAMING_SNAKE_CASE = [1, 1_024, 7, 7] # Image classification docstring SCREAMING_SNAKE_CASE = """google/mobilenet_v1_1.0_224""" SCREAMING_SNAKE_CASE = """tabby, tabby cat""" SCREAMING_SNAKE_CASE = [ """google/mobilenet_v1_1.0_224""", """google/mobilenet_v1_0.75_192""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None )-> int: """simple docstring""" UpperCamelCase = {} if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCamelCase = model.mobilenet_va else: UpperCamelCase = model UpperCamelCase = "MobilenetV1/Conv2d_0/" UpperCamelCase = backbone.conv_stem.convolution.weight UpperCamelCase = backbone.conv_stem.normalization.bias UpperCamelCase = backbone.conv_stem.normalization.weight UpperCamelCase = backbone.conv_stem.normalization.running_mean UpperCamelCase = backbone.conv_stem.normalization.running_var for i in range(13 ): UpperCamelCase = i + 1 UpperCamelCase = i * 2 UpperCamelCase = backbone.layer[pt_index] UpperCamelCase = F"MobilenetV1/Conv2d_{tf_index}_depthwise/" UpperCamelCase = pointer.convolution.weight UpperCamelCase = pointer.normalization.bias UpperCamelCase = pointer.normalization.weight UpperCamelCase = pointer.normalization.running_mean UpperCamelCase = pointer.normalization.running_var UpperCamelCase = backbone.layer[pt_index + 1] UpperCamelCase = F"MobilenetV1/Conv2d_{tf_index}_pointwise/" UpperCamelCase = pointer.convolution.weight UpperCamelCase = pointer.normalization.bias UpperCamelCase = pointer.normalization.weight UpperCamelCase = pointer.normalization.running_mean UpperCamelCase = pointer.normalization.running_var if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCamelCase = "MobilenetV1/Logits/Conv2d_1c_1x1/" UpperCamelCase = model.classifier.weight UpperCamelCase = model.classifier.bias return tf_to_pt_map def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> List[str]: """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model UpperCamelCase = tf.train.list_variables(UpperCAmelCase_ ) UpperCamelCase = {} for name, shape in init_vars: logger.info(F"Loading TF weight {name} with shape {shape}" ) UpperCamelCase = tf.train.load_variable(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCamelCase = array # Build TF to PyTorch weights loading map UpperCamelCase = _build_tf_to_pytorch_map(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) for name, pointer in tf_to_pt_map.items(): logger.info(F"Importing {name}" ) if name not in tf_weights: logger.info(F"{name} not in tf pre-trained weights, skipping" ) continue UpperCamelCase = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise" ) UpperCamelCase = np.transpose(UpperCAmelCase_ , (2, 3, 0, 1) ) elif "weights" in name: logger.info("Transposing" ) if len(pointer.shape ) == 2: # copying into linear layer UpperCamelCase = array.squeeze().transpose() else: UpperCamelCase = np.transpose(UpperCAmelCase_ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" ) logger.info(F"Initialize PyTorch weight {name} {array.shape}" ) UpperCamelCase = torch.from_numpy(UpperCAmelCase_ ) tf_weights.pop(UpperCAmelCase_ , UpperCAmelCase_ ) tf_weights.pop(name + "/RMSProp" , UpperCAmelCase_ ) tf_weights.pop(name + "/RMSProp_1" , UpperCAmelCase_ ) tf_weights.pop(name + "/ExponentialMovingAverage" , UpperCAmelCase_ ) logger.info(F"Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}" ) return model def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ )-> torch.Tensor: """simple docstring""" UpperCamelCase , UpperCamelCase = features.shape[-2:] UpperCamelCase , UpperCamelCase = conv_layer.stride UpperCamelCase , UpperCamelCase = conv_layer.kernel_size if in_height % stride_height == 0: UpperCamelCase = max(kernel_height - stride_height , 0 ) else: UpperCamelCase = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: UpperCamelCase = max(kernel_width - stride_width , 0 ) else: UpperCamelCase = max(kernel_width - (in_width % stride_width) , 0 ) UpperCamelCase = pad_along_width // 2 UpperCamelCase = pad_along_width - pad_left UpperCamelCase = pad_along_height // 2 UpperCamelCase = pad_along_height - pad_top UpperCamelCase = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(UpperCAmelCase_ , UpperCAmelCase_ , "constant" , 0.0 ) class __a ( nn.Module ): def __init__( self : List[Any] , UpperCAmelCase_ : MobileNetVaConfig , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] = 1 , UpperCAmelCase_ : Optional[int] = 1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[bool] = True , UpperCAmelCase_ : Optional[bool or str] = True , )-> None: """simple docstring""" super().__init__() UpperCamelCase = config if in_channels % groups != 0: raise ValueError(f"Input channels ({in_channels}) are not divisible by {groups} groups." ) if out_channels % groups != 0: raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups." ) UpperCamelCase = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) UpperCamelCase = nn.Convad( in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=UpperCAmelCase_ , stride=UpperCAmelCase_ , padding=UpperCAmelCase_ , groups=UpperCAmelCase_ , bias=UpperCAmelCase_ , padding_mode="zeros" , ) if use_normalization: UpperCamelCase = nn.BatchNormad( num_features=UpperCAmelCase_ , eps=config.layer_norm_eps , momentum=0.9997 , affine=UpperCAmelCase_ , track_running_stats=UpperCAmelCase_ , ) else: UpperCamelCase = None if use_activation: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCamelCase = ACTaFN[use_activation] elif isinstance(config.hidden_act , UpperCAmelCase_ ): UpperCamelCase = ACTaFN[config.hidden_act] else: UpperCamelCase = config.hidden_act else: UpperCamelCase = None def _SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase_ : torch.Tensor )-> torch.Tensor: """simple docstring""" if self.config.tf_padding: UpperCamelCase = apply_tf_padding(UpperCAmelCase_ , self.convolution ) UpperCamelCase = self.convolution(UpperCAmelCase_ ) if self.normalization is not None: UpperCamelCase = self.normalization(UpperCAmelCase_ ) if self.activation is not None: UpperCamelCase = self.activation(UpperCAmelCase_ ) return features class __a ( _lowerCAmelCase ): UpperCamelCase_ : List[str] = MobileNetVaConfig UpperCamelCase_ : Dict = load_tf_weights_in_mobilenet_va UpperCamelCase_ : List[str] = '''mobilenet_v1''' UpperCamelCase_ : Optional[int] = '''pixel_values''' UpperCamelCase_ : List[Any] = False def _SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase_ : Union[nn.Linear, nn.Convad] )-> None: """simple docstring""" if isinstance(UpperCAmelCase_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(UpperCAmelCase_ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) SCREAMING_SNAKE_CASE = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SCREAMING_SNAKE_CASE = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , _lowerCAmelCase , ) class __a ( _lowerCAmelCase ): def __init__( self : str , UpperCAmelCase_ : MobileNetVaConfig , UpperCAmelCase_ : bool = True )-> Optional[int]: """simple docstring""" super().__init__(UpperCAmelCase_ ) UpperCamelCase = config UpperCamelCase = 32 UpperCamelCase = max(int(depth * config.depth_multiplier ) , config.min_depth ) UpperCamelCase = MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=config.num_channels , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=2 , ) UpperCamelCase = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] UpperCamelCase = nn.ModuleList() for i in range(13 ): UpperCamelCase = out_channels if strides[i] == 2 or i == 0: depth *= 2 UpperCamelCase = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=strides[i] , groups=UpperCAmelCase_ , ) ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=1 , ) ) UpperCamelCase = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def _SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase_ : Dict )-> List[str]: """simple docstring""" raise NotImplementedError @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None , )-> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: """simple docstring""" UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values" ) UpperCamelCase = self.conv_stem(UpperCAmelCase_ ) UpperCamelCase = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): UpperCamelCase = layer_module(UpperCAmelCase_ ) if output_hidden_states: UpperCamelCase = all_hidden_states + (hidden_states,) UpperCamelCase = hidden_states if self.pooler is not None: UpperCamelCase = torch.flatten(self.pooler(UpperCAmelCase_ ) , start_dim=1 ) else: UpperCamelCase = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase_ , pooler_output=UpperCAmelCase_ , hidden_states=UpperCAmelCase_ , ) @add_start_docstrings( ''' MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , _lowerCAmelCase , ) class __a ( _lowerCAmelCase ): def __init__( self : str , UpperCAmelCase_ : MobileNetVaConfig )-> None: """simple docstring""" super().__init__(UpperCAmelCase_ ) UpperCamelCase = config.num_labels UpperCamelCase = MobileNetVaModel(UpperCAmelCase_ ) UpperCamelCase = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head UpperCamelCase = nn.Dropout(config.classifier_dropout_prob , inplace=UpperCAmelCase_ ) UpperCamelCase = nn.Linear(UpperCAmelCase_ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[bool] = None , )-> Union[tuple, ImageClassifierOutputWithNoAttention]: """simple docstring""" UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase = self.mobilenet_va(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_ ) UpperCamelCase = outputs.pooler_output if return_dict else outputs[1] UpperCamelCase = self.classifier(self.dropout(UpperCAmelCase_ ) ) UpperCamelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCamelCase = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCamelCase = "single_label_classification" else: UpperCamelCase = "multi_label_classification" if self.config.problem_type == "regression": UpperCamelCase = MSELoss() if self.num_labels == 1: UpperCamelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCamelCase = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) elif self.config.problem_type == "single_label_classification": UpperCamelCase = CrossEntropyLoss() UpperCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCamelCase = BCEWithLogitsLoss() UpperCamelCase = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) if not return_dict: UpperCamelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=UpperCAmelCase_ , logits=UpperCAmelCase_ , hidden_states=outputs.hidden_states , )
554
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __A =logging.get_logger(__name__) class _snake_case ( a__ ): lowerCAmelCase :Optional[int] = ['''pixel_values'''] def __init__( self , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PILImageResampling.BICUBIC , _lowerCamelCase = True , _lowerCamelCase = 1 / 255 , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = True , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase) UpperCAmelCase__ : List[Any] = size if size is not None else {"""height""": 384, """width""": 384} UpperCAmelCase__ : int = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase) UpperCAmelCase__ : Union[str, Any] = do_resize UpperCAmelCase__ : int = size UpperCAmelCase__ : Union[str, Any] = resample UpperCAmelCase__ : Union[str, Any] = do_rescale UpperCAmelCase__ : Any = rescale_factor UpperCAmelCase__ : Optional[int] = do_normalize UpperCAmelCase__ : str = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase__ : Any = image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase__ : int = do_convert_rgb def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PILImageResampling.BICUBIC , _lowerCamelCase = None , **_lowerCamelCase , ): UpperCAmelCase__ : List[str] = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''') UpperCAmelCase__ : List[Any] = (size["""height"""], size["""width"""]) return resize(_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): return rescale(_lowerCamelCase , scale=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): return normalize(_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ): UpperCAmelCase__ : List[Any] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ : List[str] = resample if resample is not None else self.resample UpperCAmelCase__ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase__ : int = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase__ : Optional[int] = image_mean if image_mean is not None else self.image_mean UpperCAmelCase__ : Union[str, Any] = image_std if image_std is not None else self.image_std UpperCAmelCase__ : Dict = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase__ : Optional[int] = size if size is not None else self.size UpperCAmelCase__ : Optional[Any] = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase) UpperCAmelCase__ : Dict = make_list_of_images(_lowerCamelCase) if not valid_images(_lowerCamelCase): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""") if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""") if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""") if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""") # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase__ : List[Any] = [convert_to_rgb(_lowerCamelCase) for image in images] # All transformations expect numpy arrays. UpperCAmelCase__ : int = [to_numpy_array(_lowerCamelCase) for image in images] if do_resize: UpperCAmelCase__ : Tuple = [self.resize(image=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase) for image in images] if do_rescale: UpperCAmelCase__ : Tuple = [self.rescale(image=_lowerCamelCase , scale=_lowerCamelCase) for image in images] if do_normalize: UpperCAmelCase__ : List[str] = [self.normalize(image=_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase) for image in images] UpperCAmelCase__ : Tuple = [to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase) for image in images] UpperCAmelCase__ : Dict = BatchFeature(data={"""pixel_values""": images} , tensor_type=_lowerCamelCase) return encoded_outputs
113
'''simple docstring''' import warnings from functools import wraps from typing import Callable def _UpperCamelCase ( UpperCamelCase__ ): @wraps(UpperCamelCase__ ) def _inner_fn(*UpperCamelCase__ , **UpperCamelCase__ ): warnings.warn( (f'''\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.''') , UpperCamelCase__ , ) return fn(*UpperCamelCase__ , **UpperCamelCase__ ) return _inner_fn
113
1
'''simple docstring''' import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params UpperCamelCase_ = getLogger(__name__) UpperCamelCase_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowerCamelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : int = 8 , UpperCAmelCase__ : str = DEFAULT_DEVICE , UpperCAmelCase__ : List[str]=False , UpperCAmelCase__ : Any="summarization" , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : Optional[Any] , ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = Path(UpperCAmelCase__ ).open('w' , encoding='utf-8' ) SCREAMING_SNAKE_CASE__ :str = str(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(UpperCAmelCase__ ).to(UpperCAmelCase__ ) if fpaa: SCREAMING_SNAKE_CASE__ :Optional[int] = model.half() SCREAMING_SNAKE_CASE__ :Optional[Any] = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) logger.info(F'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type. SCREAMING_SNAKE_CASE__ :Dict = time.time() # update config with task specific params use_task_specific_params(UpperCAmelCase__ , UpperCAmelCase__ ) if prefix is None: SCREAMING_SNAKE_CASE__ :List[str] = prefix or getattr(model.config , 'prefix' , '' ) or '' for examples_chunk in tqdm(list(chunks(UpperCAmelCase__ , UpperCAmelCase__ ) ) ): SCREAMING_SNAKE_CASE__ :Tuple = [prefix + text for text in examples_chunk] SCREAMING_SNAKE_CASE__ :Tuple = tokenizer(UpperCAmelCase__ , return_tensors='pt' , truncation=UpperCAmelCase__ , padding='longest' ).to(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :Optional[int] = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **UpperCAmelCase__ , ) SCREAMING_SNAKE_CASE__ :Optional[int] = tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ , clean_up_tokenization_spaces=UpperCAmelCase__ ) for hypothesis in dec: fout.write(hypothesis + '\n' ) fout.flush() fout.close() SCREAMING_SNAKE_CASE__ :List[Any] = int(time.time() - start_time ) # seconds SCREAMING_SNAKE_CASE__ :int = len(UpperCAmelCase__ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowerCamelCase ( ) -> List[str]: '''simple docstring''' return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' ) def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any]=True ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = argparse.ArgumentParser() parser.add_argument('model_name' , type=UpperCAmelCase__ , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('input_path' , type=UpperCAmelCase__ , help='like cnn_dm/test.source' ) parser.add_argument('save_path' , type=UpperCAmelCase__ , help='where to save summaries' ) parser.add_argument('--reference_path' , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help='like cnn_dm/test.target' ) parser.add_argument('--score_path' , type=UpperCAmelCase__ , required=UpperCAmelCase__ , default='metrics.json' , help='where to save metrics' ) parser.add_argument('--device' , type=UpperCAmelCase__ , required=UpperCAmelCase__ , default=UpperCAmelCase__ , help='cuda, cuda:1, cpu etc.' ) parser.add_argument( '--prefix' , type=UpperCAmelCase__ , required=UpperCAmelCase__ , default=UpperCAmelCase__ , help='will be added to the begininng of src examples' ) parser.add_argument('--task' , type=UpperCAmelCase__ , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=UpperCAmelCase__ , default=8 , required=UpperCAmelCase__ , help='batch size' ) parser.add_argument( '--n_obs' , type=UpperCAmelCase__ , default=-1 , required=UpperCAmelCase__ , help='How many observations. Defaults to all.' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--dump-args' , action='store_true' , help='print the custom hparams with the results' ) parser.add_argument( '--info' , nargs='?' , type=UpperCAmelCase__ , const=datetime_now() , help=( 'use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.' ' lang=en-ru. If no value is passed, the current datetime string will be used.' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ :Tuple = parser.parse_known_args() SCREAMING_SNAKE_CASE__ :Any = parse_numeric_n_bool_cl_kwargs(UpperCAmelCase__ ) if parsed_args and verbose: print(F'''parsed the following generate kwargs: {parsed_args}''' ) SCREAMING_SNAKE_CASE__ :Optional[int] = [' ' + x.rstrip() if 't5' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: SCREAMING_SNAKE_CASE__ :Any = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=UpperCAmelCase__ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F'''score_path {args.score_path} will be overwritten unless you type ctrl-c.''' ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('Can\'t mix --fp16 and --device cpu' ) SCREAMING_SNAKE_CASE__ :Dict = generate_summaries_or_translations( UpperCAmelCase__ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **UpperCAmelCase__ , ) if args.reference_path is None: return {} # Compute scores SCREAMING_SNAKE_CASE__ :Tuple = calculate_bleu if 'translation' in args.task else calculate_rouge SCREAMING_SNAKE_CASE__ :List[str] = [x.rstrip() for x in open(args.save_path ).readlines()] SCREAMING_SNAKE_CASE__ :int = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(UpperCAmelCase__ )] SCREAMING_SNAKE_CASE__ :dict = score_fn(UpperCAmelCase__ , UpperCAmelCase__ ) scores.update(UpperCAmelCase__ ) if args.dump_args: scores.update(UpperCAmelCase__ ) if args.info: SCREAMING_SNAKE_CASE__ :Union[str, Any] = args.info if verbose: print(UpperCAmelCase__ ) if args.score_path is not None: json.dump(UpperCAmelCase__ , open(args.score_path , 'w' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
209
'''simple docstring''' import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ = get_tests_dir('''fixtures/test_sentencepiece.model''') UpperCamelCase_ = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') UpperCamelCase_ = '''pt''' if is_torch_available() else '''tf''' @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE( _SCREAMING_SNAKE_CASE , unittest.TestCase ): A_ : Tuple = CamembertTokenizer A_ : Dict = CamembertTokenizerFast A_ : Any = True A_ : List[Any] = True def __lowerCamelCase ( self : int ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE__ :Optional[int] = CamembertTokenizer(UpperCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCamelCase ( self : int ) -> int: SCREAMING_SNAKE_CASE__ :List[Any] = '<pad>' SCREAMING_SNAKE_CASE__ :Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase_ ) , UpperCamelCase_ ) def __lowerCamelCase ( self : int ) -> int: SCREAMING_SNAKE_CASE__ :Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>NOTUSED' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(UpperCamelCase_ ) , 10_04 ) def __lowerCamelCase ( self : List[str] ) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 10_05 ) def __lowerCamelCase ( self : Union[str, Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ :Any = CamembertTokenizer(UpperCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ :Dict = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ :Optional[int] = 'I was born in 92000, and this is falsé.' SCREAMING_SNAKE_CASE__ :List[str] = tokenizer.encode(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :str = rust_tokenizer.encode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :int = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Dict = rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) SCREAMING_SNAKE_CASE__ :int = tokenizer.convert_ids_to_tokens(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Tuple = rust_tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def __lowerCamelCase ( self : Optional[Any] ) -> List[str]: if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE__ :List[str] = self.get_tokenizer() SCREAMING_SNAKE_CASE__ :Dict = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ :Optional[Any] = 'I was born in 92000, and this is falsé.' SCREAMING_SNAKE_CASE__ :Optional[int] = tokenizer.tokenize(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :str = rust_tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Optional[Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Optional[int] = rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :str = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ :Union[str, Any] = tokenizer.encode(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Optional[Any] = rust_tokenizer.encode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) @slow def __lowerCamelCase ( self : Union[str, Any] ) -> Any: # fmt: off SCREAMING_SNAKE_CASE__ :Union[str, Any] = {'input_ids': [[5, 54, 71_96, 2_97, 30, 23, 7_76, 18, 11, 32_15, 37_05, 82_52, 22, 31_64, 11_81, 21_16, 29, 16, 8_13, 25, 7_91, 33_14, 20, 34_46, 38, 2_75_75, 1_20, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_68, 17, 11, 90_88, 20, 15_17, 8, 2_28_04, 1_88_18, 10, 38, 6_29, 6_07, 6_07, 1_42, 19, 71_96, 8_67, 56, 1_03_26, 24, 22_67, 20, 4_16, 50_72, 1_56_12, 2_33, 7_34, 7, 23_99, 27, 16, 30_15, 16_49, 7, 24, 20, 43_38, 23_99, 27, 13, 34_00, 14, 13, 61_89, 8, 9_30, 9, 6]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. SCREAMING_SNAKE_CASE__ :Union[str, Any] = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase_ , model_name='camembert-base' , revision='3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf' , sequences=UpperCamelCase_ , )
209
1
"""simple docstring""" import os def a_ ( ): '''simple docstring''' with open(os.path.dirname(_lowerCAmelCase ) + '/p022_names.txt' ) as file: lowercase__ : Union[str, Any] = str(file.readlines()[0] ) lowercase__ : Tuple = names.replace('"' , '' ).split(',' ) names.sort() lowercase__ : Tuple = 0 lowercase__ : Optional[Any] = 0 for i, name in enumerate(_lowerCAmelCase ): for letter in name: name_score += ord(_lowerCAmelCase ) - 64 total_score += (i + 1) * name_score lowercase__ : Tuple = 0 return total_score if __name__ == "__main__": print(solution())
645
"""simple docstring""" from collections.abc import Sequence def a_ ( _lowerCAmelCase : Sequence[float] , _lowerCAmelCase : float ): '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_lowerCAmelCase ) ) def a_ ( _lowerCAmelCase : Sequence[float] , _lowerCAmelCase : float ): '''simple docstring''' lowercase__ : int = 0.0 for coeff in reversed(_lowerCAmelCase ): lowercase__ : List[Any] = result * x + coeff return result if __name__ == "__main__": _UpperCamelCase : int = (0.0, 0.0, 5.0, 9.3, 7.0) _UpperCamelCase : Dict = 1_0.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
645
1
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case_ : Optional[Any] = logging.get_logger(__name__) snake_case_ : int = '▁' snake_case_ : List[Any] = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', } snake_case_ : Dict = { 'vocab_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json' ), }, 'spm_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model' ) }, } snake_case_ : int = { 'facebook/s2t-small-librispeech-asr': 1_024, } snake_case_ : List[str] = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de'] snake_case_ : str = {'mustc': MUSTC_LANGS} class lowercase__ ( snake_case_ ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = MAX_MODEL_INPUT_SIZES _snake_case = ['''input_ids''', '''attention_mask'''] _snake_case = [] def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<pad>" , lowerCamelCase__="<unk>" , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__ = None , **lowerCamelCase__ , ): '''simple docstring''' UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , do_upper_case=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , tgt_lang=lowerCamelCase__ , lang_codes=lowerCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase__ , ) UpperCamelCase = do_upper_case UpperCamelCase = do_lower_case UpperCamelCase = load_json(lowerCamelCase__ ) UpperCamelCase = {v: k for k, v in self.encoder.items()} UpperCamelCase = spm_file UpperCamelCase = load_spm(lowerCamelCase__ , self.sp_model_kwargs ) if lang_codes is not None: UpperCamelCase = lang_codes UpperCamelCase = LANGUAGES[lang_codes] UpperCamelCase = [f'<lang:{lang}>' for lang in self.langs] UpperCamelCase = {lang: self.sp_model.PieceToId(f'<lang:{lang}>' ) for lang in self.langs} UpperCamelCase = self.lang_tokens UpperCamelCase = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: UpperCamelCase = {} @property def UpperCAmelCase ( self ): '''simple docstring''' return len(self.encoder ) @property def UpperCAmelCase ( self ): '''simple docstring''' return self._tgt_lang @tgt_lang.setter def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = new_tgt_lang self.set_tgt_lang_special_tokens(lowerCamelCase__ ) def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = self.lang_code_to_id[tgt_lang] UpperCamelCase = [lang_code_id] def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' return self.sp_model.encode(lowerCamelCase__ , out_type=lowerCamelCase__ ) def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' return self.encoder.get(lowerCamelCase__ , self.encoder[self.unk_token] ) def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' return self.decoder.get(lowerCamelCase__ , self.unk_token ) def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = [] UpperCamelCase = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: UpperCamelCase = self.sp_model.decode(lowerCamelCase__ ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " UpperCamelCase = [] else: current_sub_tokens.append(lowerCamelCase__ ) UpperCamelCase = self.sp_model.decode(lowerCamelCase__ ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__=None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) UpperCamelCase = [1] * len(self.prefix_tokens ) UpperCamelCase = [1] if token_ids_a is None: return prefix_ones + ([0] * len(lowerCamelCase__ )) + suffix_ones return prefix_ones + ([0] * len(lowerCamelCase__ )) + ([0] * len(lowerCamelCase__ )) + suffix_ones def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCamelCase = {} UpperCamelCase = load_spm(self.spm_file , self.sp_model_kwargs ) def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): '''simple docstring''' UpperCamelCase = Path(lowerCamelCase__ ) assert save_dir.is_dir(), f'{save_directory} should be a directory' UpperCamelCase = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) UpperCamelCase = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , lowerCamelCase__ ) if os.path.abspath(self.spm_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , lowerCamelCase__ ) elif not os.path.isfile(self.spm_file ): with open(lowerCamelCase__ , '''wb''' ) as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) return (str(lowerCamelCase__ ), str(lowerCamelCase__ )) def __snake_case ( _UpperCAmelCase : str, _UpperCAmelCase : Dict[str, Any]): UpperCamelCase = sentencepiece.SentencePieceProcessor(**_UpperCAmelCase) spm.Load(str(_UpperCAmelCase)) return spm def __snake_case ( _UpperCAmelCase : str): with open(_UpperCAmelCase, '''r''') as f: return json.load(_UpperCAmelCase) def __snake_case ( _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : str): with open(_UpperCAmelCase, '''w''') as f: json.dump(_UpperCAmelCase, _UpperCAmelCase, indent=2)
212
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = tempfile.mkdtemp() UpperCamelCase = BlipImageProcessor() UpperCamelCase = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-BertModel''' ) UpperCamelCase = BlipProcessor(lowerCamelCase__ , lowerCamelCase__ ) processor.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self , **lowerCamelCase__ ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase__ ).tokenizer def UpperCAmelCase ( self , **lowerCamelCase__ ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase__ ).image_processor def UpperCAmelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] UpperCamelCase = [Image.fromarray(np.moveaxis(lowerCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) UpperCamelCase = self.get_image_processor(do_normalize=lowerCamelCase__ , padding_value=1.0 ) UpperCamelCase = BlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=lowerCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase__ ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = BlipProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = image_processor(lowerCamelCase__ , return_tensors='''np''' ) UpperCamelCase = processor(images=lowerCamelCase__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = BlipProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) UpperCamelCase = '''lower newer''' UpperCamelCase = processor(text=lowerCamelCase__ ) UpperCamelCase = tokenizer(lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = BlipProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) UpperCamelCase = '''lower newer''' UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = processor(text=lowerCamelCase__ , images=lowerCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase__ ): processor() def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = BlipProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) UpperCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase = processor.batch_decode(lowerCamelCase__ ) UpperCamelCase = tokenizer.batch_decode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = BlipProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) UpperCamelCase = '''lower newer''' UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = processor(text=lowerCamelCase__ , images=lowerCamelCase__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
212
1
import numpy as np import qiskit def lowerCamelCase_ ( _lowercase = 8 , _lowercase = None ) -> int: __A : Any = np.random.default_rng(seed=lowercase__ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. __A : Optional[int] = 6 * key_len # Measurement basis for Alice's qubits. __A : str = rng.integers(2 , size=lowercase__ ) # The set of states Alice will prepare. __A : Union[str, Any] = rng.integers(2 , size=lowercase__ ) # Measurement basis for Bob's qubits. __A : Dict = rng.integers(2 , size=lowercase__ ) # Quantum Circuit to simulate BB84 __A : List[Any] = qiskit.QuantumCircuit(lowercase__ , name="BB84" ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(lowercase__ ): if alice_state[index] == 1: bbaa_circ.x(lowercase__ ) if alice_basis[index] == 1: bbaa_circ.h(lowercase__ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(lowercase__ ): if bob_basis[index] == 1: bbaa_circ.h(lowercase__ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. __A : List[Any] = qiskit.Aer.get_backend("aer_simulator" ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. __A : Union[str, Any] = qiskit.execute(lowercase__ , lowercase__ , shots=1 , seed_simulator=lowercase__ ) # Returns the result of measurement. __A : List[Any] = job.result().get_counts(lowercase__ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. __A : int = "".join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( lowercase__ , lowercase__ , lowercase__ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. __A : Union[str, Any] = gen_key[:key_len] if len(lowercase__ ) >= key_len else gen_key.ljust(lowercase__ , "0" ) return key if __name__ == "__main__": print(F'''The generated key is : {bbaa(8, seed=0)}''') from doctest import testmod testmod()
719
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'vocab_file': 'spiece.model'} UpperCamelCase = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', } } # TODO(PVP) - this should be removed in Transformers v5 UpperCamelCase = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } UpperCamelCase = '▁' class _a ( lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Tuple = VOCAB_FILES_NAMES lowerCamelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ : List[str] = ["""input_ids""", """attention_mask"""] def __init__( self , __UpperCAmelCase , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase=100 , __UpperCAmelCase=None , __UpperCAmelCase = None , __UpperCAmelCase=True , **__UpperCAmelCase , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __A : Dict = [F"<extra_id_{i}>" for i in range(__UpperCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens __A : Any = len(set(filter(lambda __UpperCAmelCase : bool("extra_id" in str(__UpperCAmelCase ) ) , __UpperCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( F"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens" ) if legacy: logger.warning_once( F"You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to" " read the related pull request available at https://github.com/huggingface/transformers/pull/24565" ) __A : Tuple = legacy __A : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , extra_ids=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=__UpperCAmelCase , **__UpperCAmelCase , ) __A : Optional[Any] = vocab_file __A : List[str] = extra_ids __A : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) @staticmethod def __UpperCAmelCase( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: __A : Union[str, Any] = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" F" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this" " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" F" {pretrained_model_name_or_path} automatically truncating your input to" F" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences" F" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with" " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value." , __UpperCAmelCase , ) return max_model_length @property def __UpperCAmelCase( self ): return self.sp_model.get_piece_size() + self._extra_ids def __UpperCAmelCase( self ): __A : List[str] = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(__UpperCAmelCase )) + [1] return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1] def __UpperCAmelCase( self ): return list( set(filter(lambda __UpperCAmelCase : bool(re.search(r"<extra_id_\d+>" , __UpperCAmelCase ) ) is not None , self.additional_special_tokens ) ) ) def __UpperCAmelCase( self ): return [self._convert_token_to_id(__UpperCAmelCase ) for token in self.get_sentinel_tokens()] def __UpperCAmelCase( self , __UpperCAmelCase ): if len(__UpperCAmelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase = None ): __A : List[str] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase = None ): __A : List[Any] = self._add_eos_if_not_present(__UpperCAmelCase ) if token_ids_a is None: return token_ids_a else: __A : str = self._add_eos_if_not_present(__UpperCAmelCase ) return token_ids_a + token_ids_a def __getstate__( self ): __A : Any = self.__dict__.copy() __A : List[str] = None return state def __setstate__( self , __UpperCAmelCase ): __A : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __A : Optional[int] = {} __A : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCAmelCase( self , __UpperCAmelCase , **__UpperCAmelCase ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: __A : List[str] = SPIECE_UNDERLINE + text.replace(__UpperCAmelCase , " " ) return super().tokenize(__UpperCAmelCase , **__UpperCAmelCase ) def __UpperCAmelCase( self , __UpperCAmelCase , **__UpperCAmelCase ): if not self.legacy: __A : Tuple = text.startswith(__UpperCAmelCase ) if is_first: __A : Optional[int] = text[1:] __A : Optional[Any] = self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) if not self.legacy and not is_first and not text.startswith(" " ) and tokens[0].startswith(__UpperCAmelCase ): __A : Tuple = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def __UpperCAmelCase( self , __UpperCAmelCase ): if token.startswith("<extra_id_" ): __A : Optional[Any] = re.match(r"<extra_id_(\d+)>" , __UpperCAmelCase ) __A : Optional[Any] = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(__UpperCAmelCase ) def __UpperCAmelCase( self , __UpperCAmelCase ): if index < self.sp_model.get_piece_size(): __A : Union[str, Any] = self.sp_model.IdToPiece(__UpperCAmelCase ) else: __A : List[Any] = F"<extra_id_{self.vocab_size - 1 - index}>" return token def __UpperCAmelCase( self , __UpperCAmelCase ): __A : int = [] __A : List[Any] = "" __A : str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__UpperCAmelCase ) + token __A : Tuple = True __A : Any = [] else: current_sub_tokens.append(__UpperCAmelCase ) __A : Optional[int] = False out_string += self.sp_model.decode(__UpperCAmelCase ) return out_string.strip() def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase = None ): if not os.path.isdir(__UpperCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __A : Union[str, Any] = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , "wb" ) as fi: __A : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,)
387
0
'''simple docstring''' def __snake_case ( _UpperCAmelCase : Dict): if any(not isinstance(_UpperCAmelCase, _UpperCAmelCase) or x < 0 for x in sequence): raise TypeError('''Sequence must be list of non-negative integers''') for _ in range(len(_UpperCAmelCase)): for i, (rod_upper, rod_lower) in enumerate(zip(_UpperCAmelCase, sequence[1:])): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
212
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class _lowerCAmelCase ( __UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = 'time_series_transformer' SCREAMING_SNAKE_CASE_: List[str] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = "student_t" , lowerCAmelCase_ = "nll" , lowerCAmelCase_ = 1 , lowerCAmelCase_ = [1, 2, 3, 4, 5, 6, 7] , lowerCAmelCase_ = "mean" , lowerCAmelCase_ = 0 , lowerCAmelCase_ = 0 , lowerCAmelCase_ = 0 , lowerCAmelCase_ = 0 , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = 3_2 , lowerCAmelCase_ = 3_2 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = True , lowerCAmelCase_ = "gelu" , lowerCAmelCase_ = 6_4 , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 1_0_0 , lowerCAmelCase_ = 0.02 , lowerCAmelCase_=True , **lowerCAmelCase_ , ) -> str: # time series specific configuration _SCREAMING_SNAKE_CASE : List[str] = prediction_length _SCREAMING_SNAKE_CASE : Tuple = context_length or prediction_length _SCREAMING_SNAKE_CASE : Any = distribution_output _SCREAMING_SNAKE_CASE : List[str] = loss _SCREAMING_SNAKE_CASE : Any = input_size _SCREAMING_SNAKE_CASE : Any = num_time_features _SCREAMING_SNAKE_CASE : List[Any] = lags_sequence _SCREAMING_SNAKE_CASE : Dict = scaling _SCREAMING_SNAKE_CASE : Any = num_dynamic_real_features _SCREAMING_SNAKE_CASE : List[Any] = num_static_real_features _SCREAMING_SNAKE_CASE : List[Any] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(lowerCAmelCase_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) _SCREAMING_SNAKE_CASE : List[str] = cardinality else: _SCREAMING_SNAKE_CASE : Dict = [0] if embedding_dimension and num_static_categorical_features > 0: if len(lowerCAmelCase_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) _SCREAMING_SNAKE_CASE : int = embedding_dimension else: _SCREAMING_SNAKE_CASE : List[str] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] _SCREAMING_SNAKE_CASE : str = num_parallel_samples # Transformer architecture configuration _SCREAMING_SNAKE_CASE : Optional[Any] = input_size * len(lowerCAmelCase_ ) + self._number_of_features _SCREAMING_SNAKE_CASE : int = d_model _SCREAMING_SNAKE_CASE : str = encoder_attention_heads _SCREAMING_SNAKE_CASE : Optional[Any] = decoder_attention_heads _SCREAMING_SNAKE_CASE : List[Any] = encoder_ffn_dim _SCREAMING_SNAKE_CASE : Dict = decoder_ffn_dim _SCREAMING_SNAKE_CASE : Union[str, Any] = encoder_layers _SCREAMING_SNAKE_CASE : Tuple = decoder_layers _SCREAMING_SNAKE_CASE : Dict = dropout _SCREAMING_SNAKE_CASE : Union[str, Any] = attention_dropout _SCREAMING_SNAKE_CASE : Tuple = activation_dropout _SCREAMING_SNAKE_CASE : Union[str, Any] = encoder_layerdrop _SCREAMING_SNAKE_CASE : List[str] = decoder_layerdrop _SCREAMING_SNAKE_CASE : Dict = activation_function _SCREAMING_SNAKE_CASE : str = init_std _SCREAMING_SNAKE_CASE : Tuple = use_cache super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ ) @property def A ( self ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
621
0
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class A : def __init__( self, UpperCamelCase__, UpperCamelCase__ = 13, UpperCamelCase__ = 64, UpperCamelCase__ = 2, UpperCamelCase__ = 3, UpperCamelCase__ = 3, UpperCamelCase__ = True, UpperCamelCase__ = True, UpperCamelCase__ = 128, UpperCamelCase__=[16, 32, 64, 128], UpperCamelCase__ = 7, UpperCamelCase__ = 4, UpperCamelCase__ = 37, UpperCamelCase__ = "gelu", UpperCamelCase__ = 0.1, UpperCamelCase__ = 0.1, UpperCamelCase__ = 10, UpperCamelCase__ = 0.02, UpperCamelCase__ = 2, UpperCamelCase__ = 1, UpperCamelCase__ = 128, UpperCamelCase__ = [2, 2, 2, 2], UpperCamelCase__ = 2, UpperCamelCase__ = 2, ): """simple docstring""" lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = image_size lowerCAmelCase_ = patch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = is_training lowerCAmelCase_ = use_labels lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = type_sequence_label_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = encoder_stride lowerCAmelCase_ = num_attention_outputs lowerCAmelCase_ = embed_dim lowerCAmelCase_ = embed_dim + 1 lowerCAmelCase_ = resolution lowerCAmelCase_ = depths lowerCAmelCase_ = hidden_sizes lowerCAmelCase_ = dim lowerCAmelCase_ = mlp_expansion_ratio def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ = None if self.use_labels: lowerCAmelCase_ = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCAmelCase_ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return EfficientFormerConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=UpperCamelCase__, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, resolution=self.resolution, depths=self.depths, hidden_sizes=self.hidden_sizes, dim=self.dim, mlp_expansion_ratio=self.mlp_expansion_ratio, ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = TFEfficientFormerModel(config=UpperCamelCase__ ) lowerCAmelCase_ = model(UpperCamelCase__, training=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = self.type_sequence_label_size lowerCAmelCase_ = TFEfficientFormerForImageClassification(UpperCamelCase__ ) lowerCAmelCase_ = model(UpperCamelCase__, labels=UpperCamelCase__, training=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase_ = 1 lowerCAmelCase_ = TFEfficientFormerForImageClassification(UpperCamelCase__ ) lowerCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase_ = model(UpperCamelCase__, labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = config_and_inputs lowerCAmelCase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class A ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __snake_case = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) __snake_case = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) __snake_case = False __snake_case = False __snake_case = False __snake_case = False __snake_case = False def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = TFEfficientFormerModelTester(self ) lowerCAmelCase_ = ConfigTester( self, config_class=UpperCamelCase__, has_text_modality=UpperCamelCase__, hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''EfficientFormer does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass @unittest.skip(reason='''EfficientFormer does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = model_class(UpperCamelCase__ ) lowerCAmelCase_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ = [*signature.parameters.keys()] lowerCAmelCase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1], UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" def check_hidden_states_output(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): lowerCAmelCase_ = model_class(UpperCamelCase__ ) lowerCAmelCase_ = model(**self._prepare_for_class(UpperCamelCase__, UpperCamelCase__ ), training=UpperCamelCase__ ) lowerCAmelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase_ = getattr( self.model_tester, '''expected_num_hidden_layers''', self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCamelCase__ ), UpperCamelCase__ ) if hasattr(self.model_tester, '''encoder_seq_length''' ): lowerCAmelCase_ = self.model_tester.encoder_seq_length if hasattr(self.model_tester, '''chunk_length''' ) and self.model_tester.chunk_length > 1: lowerCAmelCase_ = seq_length * self.model_tester.chunk_length else: lowerCAmelCase_ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ), [seq_length, self.model_tester.hidden_size], ) if config.is_encoder_decoder: lowerCAmelCase_ = outputs.decoder_hidden_states self.asseretIsInstance(UpperCamelCase__, (list, tuple) ) self.assertEqual(len(UpperCamelCase__ ), UpperCamelCase__ ) lowerCAmelCase_ = getattr(self.model_tester, '''seq_length''', UpperCamelCase__ ) lowerCAmelCase_ = getattr(self.model_tester, '''decoder_seq_length''', UpperCamelCase__ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ), [decoder_seq_length, self.model_tester.hidden_size], ) lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = True check_hidden_states_output(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ = True check_hidden_states_output(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__=False ): """simple docstring""" lowerCAmelCase_ = super()._prepare_for_class(UpperCamelCase__, UpperCamelCase__, return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) @unittest.skip(reason='''EfficientFormer does not implement masked image modeling yet''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ = TFEfficientFormerModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ = True lowerCAmelCase_ = getattr(self.model_tester, '''seq_length''', UpperCamelCase__ ) lowerCAmelCase_ = getattr(self.model_tester, '''encoder_seq_length''', UpperCamelCase__ ) lowerCAmelCase_ = getattr(self.model_tester, '''key_length''', UpperCamelCase__ ) lowerCAmelCase_ = getattr(self.model_tester, '''chunk_length''', UpperCamelCase__ ) if chunk_length is not None and hasattr(self.model_tester, '''num_hashes''' ): lowerCAmelCase_ = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: lowerCAmelCase_ = True lowerCAmelCase_ = False lowerCAmelCase_ = True lowerCAmelCase_ = model_class(UpperCamelCase__ ) lowerCAmelCase_ = model(**self._prepare_for_class(UpperCamelCase__, UpperCamelCase__ ), training=UpperCamelCase__ ) lowerCAmelCase_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCamelCase__ ), self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase_ = True lowerCAmelCase_ = model_class(UpperCamelCase__ ) lowerCAmelCase_ = model(**self._prepare_for_class(UpperCamelCase__, UpperCamelCase__ ), training=UpperCamelCase__ ) lowerCAmelCase_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCamelCase__ ), self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ), [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length], ) else: self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model lowerCAmelCase_ = model_class(UpperCamelCase__ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes lowerCAmelCase_ = { key: tf.keras.Input(shape=val.shape[1:], dtype=val.dtype, name=UpperCamelCase__ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } lowerCAmelCase_ = model(UpperCamelCase__ ) self.assertTrue(outputs_dict is not None ) def __UpperCamelCase ( ): lowerCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class A ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained('''snap-research/efficientformer-l1-300''' ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = TFEfficientFormerForImageClassification.from_pretrained('''snap-research/efficientformer-l1-300''' ) lowerCAmelCase_ = self.default_image_processor lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = image_processor(images=UpperCamelCase__, return_tensors='''tf''' ) # forward pass lowerCAmelCase_ = model(**UpperCamelCase__, training=UpperCamelCase__ ) # verify the logits lowerCAmelCase_ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape, UpperCamelCase__ ) lowerCAmelCase_ = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3], UpperCamelCase__, atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( '''snap-research/efficientformer-l1-300''' ) lowerCAmelCase_ = self.default_image_processor lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = image_processor(images=UpperCamelCase__, return_tensors='''tf''' ) # forward pass lowerCAmelCase_ = model(**UpperCamelCase__, training=UpperCamelCase__ ) # verify the logits lowerCAmelCase_ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape, UpperCamelCase__ ) lowerCAmelCase_ = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3], UpperCamelCase__, atol=1E-4 ) )
325
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A ( __UpperCAmelCase , unittest.TestCase ): __snake_case = GPTSanJapaneseTokenizer __snake_case = False __snake_case = {'do_clean_text': False, 'add_prefix_space': False} def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" super().setUp() # fmt: off lowerCAmelCase_ = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on lowerCAmelCase_ = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 lowerCAmelCase_ = {'''unk_token''': '''<unk>'''} lowerCAmelCase_ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase_ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''emoji_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.emoji_file, '''w''' ) as emoji_writer: emoji_writer.write(json.dumps(UpperCamelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( self, **UpperCamelCase__ ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = '''こんにちは、世界。 \nこんばんは、㔺界。😀''' lowerCAmelCase_ = '''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ = self.get_input_output_texts(UpperCamelCase__ ) lowerCAmelCase_ = tokenizer.encode(UpperCamelCase__, add_special_tokens=UpperCamelCase__ ) lowerCAmelCase_ = tokenizer.decode(UpperCamelCase__, clean_up_tokenization_spaces=UpperCamelCase__ ) return text, ids def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_tokenizer() # Testing tokenization lowerCAmelCase_ = '''こんにちは、世界。 こんばんは、㔺界。''' lowerCAmelCase_ = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] lowerCAmelCase_ = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__, UpperCamelCase__ ) # Testing conversion to ids without special tokens lowerCAmelCase_ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] lowerCAmelCase_ = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__, UpperCamelCase__ ) # Testing conversion to ids with special tokens lowerCAmelCase_ = tokens + [tokenizer.unk_token] lowerCAmelCase_ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] lowerCAmelCase_ = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_tokenizer() # Testing tokenization lowerCAmelCase_ = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' lowerCAmelCase_ = '''こんにちは、、、、世界。こんばんは、、、、世界。''' lowerCAmelCase_ = tokenizer.encode(UpperCamelCase__ ) lowerCAmelCase_ = tokenizer.decode(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__, UpperCamelCase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization lowerCAmelCase_ = '''こんにちは、世界。''' lowerCAmelCase_ = '''こんばんは、㔺界。😀''' lowerCAmelCase_ = '''こんにちは、世界。こんばんは、世界。😀''' lowerCAmelCase_ = tokenizer.encode(prefix_text + input_text ) lowerCAmelCase_ = tokenizer.encode('''''', prefix_text=prefix_text + input_text ) lowerCAmelCase_ = tokenizer.encode(UpperCamelCase__, prefix_text=UpperCamelCase__ ) lowerCAmelCase_ = tokenizer.decode(UpperCamelCase__ ) lowerCAmelCase_ = tokenizer.decode(UpperCamelCase__ ) lowerCAmelCase_ = tokenizer.decode(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__, UpperCamelCase__ ) self.assertEqual(UpperCamelCase__, UpperCamelCase__ ) self.assertEqual(UpperCamelCase__, UpperCamelCase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization lowerCAmelCase_ = '''こんにちは、世界。''' lowerCAmelCase_ = '''こんばんは、㔺界。😀''' lowerCAmelCase_ = len(tokenizer.encode(UpperCamelCase__ ) ) - 2 lowerCAmelCase_ = len(tokenizer.encode(UpperCamelCase__ ) ) - 2 lowerCAmelCase_ = [1] + [0] * (len_prefix + len_text + 1) lowerCAmelCase_ = [1] * (len_prefix + len_text + 1) + [0] lowerCAmelCase_ = [1] + [1] * (len_prefix) + [0] * (len_text + 1) lowerCAmelCase_ = tokenizer(prefix_text + input_text ).token_type_ids lowerCAmelCase_ = tokenizer('''''', prefix_text=prefix_text + input_text ).token_type_ids lowerCAmelCase_ = tokenizer(UpperCamelCase__, prefix_text=UpperCamelCase__ ).token_type_ids self.assertListEqual(UpperCamelCase__, UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__, UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__, UpperCamelCase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) lowerCAmelCase_ = tokenizer.encode('''あンいワ''' ) lowerCAmelCase_ = tokenizer.encode('''''', prefix_text='''あンいワ''' ) lowerCAmelCase_ = tokenizer.encode('''いワ''', prefix_text='''あン''' ) self.assertEqual(tokenizer.decode(UpperCamelCase__ ), tokenizer.decode(UpperCamelCase__ ) ) self.assertEqual(tokenizer.decode(UpperCamelCase__ ), tokenizer.decode(UpperCamelCase__ ) ) self.assertNotEqual(UpperCamelCase__, UpperCamelCase__ ) self.assertNotEqual(UpperCamelCase__, UpperCamelCase__ ) self.assertEqual(x_token_a[1], x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1], x_token_a[3] ) # SEG token @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) lowerCAmelCase_ = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] lowerCAmelCase_ = tokenizer(UpperCamelCase__, padding=UpperCamelCase__ ) lowerCAmelCase_ = tokenizer.batch_encode_plus(UpperCamelCase__, padding=UpperCamelCase__ ) # fmt: off lowerCAmelCase_ = [[3_5993, 8640, 2_5948, 3_5998, 3_0647, 3_5675, 3_5999, 3_5999], [3_5993, 1_0382, 9868, 3_5998, 3_0646, 9459, 3_0646, 3_5675]] lowerCAmelCase_ = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] lowerCAmelCase_ = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids, UpperCamelCase__ ) self.assertListEqual(x_token.token_type_ids, UpperCamelCase__ ) self.assertListEqual(x_token.attention_mask, UpperCamelCase__ ) self.assertListEqual(x_token_a.input_ids, UpperCamelCase__ ) self.assertListEqual(x_token_a.token_type_ids, UpperCamelCase__ ) self.assertListEqual(x_token_a.attention_mask, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass
325
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __UpperCAmelCase = 16 __UpperCAmelCase = 32 def __UpperCamelCase ( lowercase__ : Accelerator , lowercase__ : int = 16 ) -> int: '''simple docstring''' lowerCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCAmelCase_ : int = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowercase__ : List[Any] ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase_ : List[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase__ , max_length=lowercase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase_ : Union[str, Any] = datasets.map( lowercase__ , batched=lowercase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase_ : Tuple = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase__ : Optional[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase_ : Dict = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase_ : int = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase_ : int = 8 else: lowerCAmelCase_ : str = None return tokenizer.pad( lowercase__ , padding="""longest""" , max_length=lowercase__ , pad_to_multiple_of=lowercase__ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowerCAmelCase_ : Optional[int] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) lowerCAmelCase_ : Any = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __UpperCAmelCase = mocked_dataloaders # noqa: F811 def __UpperCamelCase ( lowercase__ : List[Any] , lowercase__ : Optional[Any] ) -> Any: '''simple docstring''' if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , lowercase__ ) == "1": lowerCAmelCase_ : Any = 2 # Initialize accelerator lowerCAmelCase_ : List[str] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase_ : Any = config["""lr"""] lowerCAmelCase_ : str = int(config["""num_epochs"""] ) lowerCAmelCase_ : Dict = int(config["""seed"""] ) lowerCAmelCase_ : Optional[Any] = int(config["""batch_size"""] ) lowerCAmelCase_ : Optional[int] = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation lowerCAmelCase_ : Optional[int] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCAmelCase_ : Any = batch_size // MAX_GPU_BATCH_SIZE lowerCAmelCase_ : List[Any] = MAX_GPU_BATCH_SIZE set_seed(lowercase__ ) lowerCAmelCase_ , lowerCAmelCase_ : Tuple = get_dataloaders(lowercase__ , lowercase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase_ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowercase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase_ : Union[str, Any] = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase_ : List[Any] = AdamW(params=model.parameters() , lr=lowercase__ ) # Instantiate scheduler lowerCAmelCase_ : Tuple = get_linear_schedule_with_warmup( optimizer=lowercase__ , num_warmup_steps=100 , num_training_steps=(len(lowercase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = accelerator.prepare( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Now we train the model for epoch in range(lowercase__ ): model.train() for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCAmelCase_ : str = model(**lowercase__ ) lowerCAmelCase_ : Optional[Any] = outputs.loss lowerCAmelCase_ : int = loss / gradient_accumulation_steps accelerator.backward(lowercase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() lowerCAmelCase_ : str = 0 for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase_ : List[Any] = model(**lowercase__ ) lowerCAmelCase_ : int = outputs.logits.argmax(dim=-1 ) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = accelerator.gather((predictions, batch["""labels"""]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(lowercase__ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples lowerCAmelCase_ : Optional[Any] = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowerCAmelCase_ : Optional[int] = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=lowercase__ , references=lowercase__ , ) lowerCAmelCase_ : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , lowercase__ ) def __UpperCamelCase ( ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : str = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowercase__ , default=lowercase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowerCAmelCase_ : str = parser.parse_args() lowerCAmelCase_ : Union[str, Any] = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowercase__ , lowercase__ ) if __name__ == "__main__": main()
600
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def __UpperCamelCase ( lowercase__ : Tuple , lowercase__ : Tuple , lowercase__ : Optional[int] , lowercase__ : Optional[int] , lowercase__ : Any ) -> Tuple: '''simple docstring''' for attribute in key.split(""".""" ): lowerCAmelCase_ : List[str] = getattr(lowercase__ , lowercase__ ) if weight_type is not None: lowerCAmelCase_ : Optional[int] = getattr(lowercase__ , lowercase__ ).shape else: lowerCAmelCase_ : Union[str, Any] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": lowerCAmelCase_ : Union[str, Any] = value elif weight_type == "weight_g": lowerCAmelCase_ : Any = value elif weight_type == "weight_v": lowerCAmelCase_ : Dict = value elif weight_type == "bias": lowerCAmelCase_ : List[Any] = value else: lowerCAmelCase_ : Any = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Dict = fairseq_model.state_dict() lowerCAmelCase_ : Optional[int] = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase_ : Dict = False if "conv_layers" in name: load_conv_layer( lowercase__ , lowercase__ , lowercase__ , lowercase__ , hf_model.config.feat_extract_norm == """group""" , ) lowerCAmelCase_ : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): lowerCAmelCase_ : Union[str, Any] = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned): lowerCAmelCase_ : Dict = True if "*" in mapped_key: lowerCAmelCase_ : Any = name.split(lowercase__ )[0].split(""".""" )[-2] lowerCAmelCase_ : Optional[Any] = mapped_key.replace("""*""" , lowercase__ ) if "weight_g" in name: lowerCAmelCase_ : Optional[int] = """weight_g""" elif "weight_v" in name: lowerCAmelCase_ : Optional[int] = """weight_v""" elif "weight" in name: lowerCAmelCase_ : List[str] = """weight""" elif "bias" in name: lowerCAmelCase_ : int = """bias""" else: lowerCAmelCase_ : List[str] = None set_recursively(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) continue if not is_used: unused_weights.append(lowercase__ ) logger.warning(f'Unused weights: {unused_weights}' ) def __UpperCamelCase ( lowercase__ : List[Any] , lowercase__ : Optional[Any] , lowercase__ : int , lowercase__ : int , lowercase__ : str ) -> Dict: '''simple docstring''' lowerCAmelCase_ : int = full_name.split("""conv_layers.""" )[-1] lowerCAmelCase_ : Dict = name.split(""".""" ) lowerCAmelCase_ : Optional[int] = int(items[0] ) lowerCAmelCase_ : Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowerCAmelCase_ : str = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowerCAmelCase_ : List[str] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) lowerCAmelCase_ : Union[str, Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) lowerCAmelCase_ : str = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowercase__ ) @torch.no_grad() def __UpperCamelCase ( lowercase__ : List[Any] , lowercase__ : Dict , lowercase__ : Union[str, Any]=None , lowercase__ : List[Any]=None , lowercase__ : int=True ) -> Any: '''simple docstring''' if config_path is not None: lowerCAmelCase_ : Union[str, Any] = HubertConfig.from_pretrained(lowercase__ ) else: lowerCAmelCase_ : str = HubertConfig() if is_finetuned: if dict_path: lowerCAmelCase_ : Tuple = Dictionary.load(lowercase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCAmelCase_ : str = target_dict.pad_index lowerCAmelCase_ : Optional[int] = target_dict.bos_index lowerCAmelCase_ : Optional[Any] = target_dict.eos_index lowerCAmelCase_ : Union[str, Any] = len(target_dict.symbols ) lowerCAmelCase_ : Any = os.path.join(lowercase__ , """vocab.json""" ) if not os.path.isdir(lowercase__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowercase__ ) ) return os.makedirs(lowercase__ , exist_ok=lowercase__ ) with open(lowercase__ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , lowercase__ ) lowerCAmelCase_ : List[str] = WavaVecaCTCTokenizer( lowercase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowercase__ , ) lowerCAmelCase_ : List[str] = True if config.feat_extract_norm == """layer""" else False lowerCAmelCase_ : str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowercase__ , return_attention_mask=lowercase__ , ) lowerCAmelCase_ : str = WavaVecaProcessor(feature_extractor=lowercase__ , tokenizer=lowercase__ ) processor.save_pretrained(lowercase__ ) lowerCAmelCase_ : Optional[int] = HubertForCTC(lowercase__ ) else: lowerCAmelCase_ : List[Any] = HubertModel(lowercase__ ) if is_finetuned: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowerCAmelCase_ : Tuple = model[0].eval() recursively_load_weights(lowercase__ , lowercase__ , lowercase__ ) hf_wavavec.save_pretrained(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) __UpperCAmelCase = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
600
1
'''simple docstring''' import cmath import math def __a ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ): a__ : Union[str, Any] = math.radians(_lowerCamelCase ) a__ : List[str] = math.radians(_lowerCamelCase ) # Convert voltage and current to rectangular form a__ : List[Any] = cmath.rect(_lowerCamelCase , _lowerCamelCase ) a__ : Union[str, Any] = cmath.rect(_lowerCamelCase , _lowerCamelCase ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
706
'''simple docstring''' class lowerCAmelCase__ : """simple docstring""" def __init__( self : Optional[Any] , A__ : list[int] ) -> None: '''simple docstring''' a__ : Union[str, Any] = len(A__ ) a__ : Tuple = [0] * len_array if len_array > 0: a__ : Dict = array[0] for i in range(1 , A__ ): a__ : Optional[Any] = self.prefix_sum[i - 1] + array[i] def __lowerCAmelCase ( self : int , A__ : int , A__ : int ) -> int: '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def __lowerCAmelCase ( self : Tuple , A__ : int ) -> bool: '''simple docstring''' a__ : Tuple = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(A__ ) return False if __name__ == "__main__": import doctest doctest.testmod()
340
0
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Optional[int] = prime_factors(_lowercase ) if is_square_free(_lowercase ): return -1 if len(_lowercase ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
462
import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class snake_case__ : """simple docstring""" def __init__( self , __lowercase ) -> Optional[Any]: """simple docstring""" if isinstance(__lowercase , __lowercase ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden a__ : int = deepcopy(__lowercase ) elif os.path.exists(__lowercase ): with io.open(__lowercase , """r""" , encoding="""utf-8""" ) as f: a__ : str = json.load(__lowercase ) else: try: a__ : Union[str, Any] = baseaa.urlsafe_baadecode(__lowercase ).decode("""utf-8""" ) a__ : Tuple = json.loads(__lowercase ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( F'''Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}''' ) a__ : Tuple = config self.set_stage_and_offload() def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" a__ : List[Any] = self.get_value("""zero_optimization.stage""" , -1 ) # offload a__ : Tuple = False if self.is_zeroa() or self.is_zeroa(): a__ : Any = set(["""cpu""", """nvme"""] ) a__ : List[str] = set( [ self.get_value("""zero_optimization.offload_optimizer.device""" ), self.get_value("""zero_optimization.offload_param.device""" ), ] ) if len(offload_devices & offload_devices_valid ) > 0: a__ : Tuple = True def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Tuple: """simple docstring""" a__ : Optional[Any] = self.config # find the config node of interest if it exists a__ : Any = ds_key_long.split(""".""" ) a__ : List[Any] = nodes.pop() for node in nodes: a__ : Any = config.get(__lowercase ) if config is None: return None, ds_key return config, ds_key def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase=None ) -> Any: """simple docstring""" a__ , a__ : int = self.find_config_node(__lowercase ) if config is None: return default return config.get(__lowercase , __lowercase ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase=False ) -> Dict: """simple docstring""" a__ : Dict = self.config # find the config node of interest if it exists a__ : Dict = ds_key_long.split(""".""" ) for node in nodes: a__ : Any = config a__ : Optional[Any] = config.get(__lowercase ) if config is None: if must_exist: raise ValueError(F'''Can\'t find {ds_key_long} entry in the config: {self.config}''' ) else: return # if found remove it if parent_config is not None: parent_config.pop(__lowercase ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Optional[Any]: """simple docstring""" a__ : Tuple = self.get_value(__lowercase ) return False if value is None else bool(__lowercase ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Tuple: """simple docstring""" a__ : int = self.get_value(__lowercase ) return False if value is None else not bool(__lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> Dict: """simple docstring""" return self._stage == 2 def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" return self._stage == 3 def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" return self._offload class snake_case__ : """simple docstring""" def __init__( self , __lowercase ) -> Optional[int]: """simple docstring""" a__ : List[str] = engine def SCREAMING_SNAKE_CASE__( self , __lowercase , **__lowercase ) -> List[str]: """simple docstring""" self.engine.backward(__lowercase , **__lowercase ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class snake_case__ (A__ ): """simple docstring""" def __init__( self , __lowercase ) -> int: """simple docstring""" super().__init__(__lowercase , device_placement=__lowercase , scaler=__lowercase ) a__ : Any = hasattr(self.optimizer , """overflow""" ) def SCREAMING_SNAKE_CASE__( self , __lowercase=None ) -> int: """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" if self.__has_overflow__: return self.optimizer.overflow return False class snake_case__ (A__ ): """simple docstring""" def __init__( self , __lowercase , __lowercase ) -> Dict: """simple docstring""" super().__init__(__lowercase , __lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class snake_case__ : """simple docstring""" def __init__( self , __lowercase , __lowercase=0.0_0_1 , __lowercase=0 , **__lowercase ) -> List[str]: """simple docstring""" a__ : Optional[int] = params a__ : List[str] = lr a__ : List[str] = weight_decay a__ : Tuple = kwargs class snake_case__ : """simple docstring""" def __init__( self , __lowercase , __lowercase=None , __lowercase=0 , **__lowercase ) -> Optional[int]: """simple docstring""" a__ : List[Any] = optimizer a__ : List[Any] = total_num_steps a__ : Optional[Any] = warmup_num_steps a__ : Optional[int] = kwargs
136
0
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , _A , _A=13 , _A=7 , _A=True , _A=True , _A=True , _A=True , _A=99 , _A=32 , _A=5 , _A=4 , _A=37 , _A="gelu" , _A=0.1 , _A=0.1 , _A=512 , _A=16 , _A=2 , _A=0.02 , _A=4 , ) -> Tuple: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_attention_mask SCREAMING_SNAKE_CASE_ = use_token_type_ids SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = num_choices def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = None if self.use_attention_mask: SCREAMING_SNAKE_CASE_ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_A , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =True UpperCAmelCase_ =( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = FlaxBertModelTester(self ) @slow def _UpperCamelCase ( self ) -> List[str]: # Only check this for base model, not necessary for all model classes. # This will also help speed-up tests. SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained('''bert-base-cased''' ) SCREAMING_SNAKE_CASE_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_A )
597
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["image_processor", "tokenizer"] UpperCAmelCase_ ="Pix2StructImageProcessor" UpperCAmelCase_ =("T5Tokenizer", "T5TokenizerFast") def __init__( self , _A , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = False super().__init__(_A , _A ) def __call__( self , _A=None , _A = None , _A = True , _A = False , _A = None , _A = None , _A = 2048 , _A = 0 , _A = None , _A = None , _A = False , _A = False , _A = False , _A = False , _A = False , _A = True , _A = None , **_A , ) -> BatchEncoding: if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None and not self.image_processor.is_vqa: SCREAMING_SNAKE_CASE_ = self.tokenizer SCREAMING_SNAKE_CASE_ = self.tokenizer( text=_A , add_special_tokens=_A , padding=_A , truncation=_A , max_length=_A , stride=_A , pad_to_multiple_of=_A , return_attention_mask=_A , return_overflowing_tokens=_A , return_special_tokens_mask=_A , return_offsets_mapping=_A , return_token_type_ids=_A , return_length=_A , verbose=_A , return_tensors=_A , **_A , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values SCREAMING_SNAKE_CASE_ = self.image_processor( _A , return_tensors=_A , max_patches=_A , **_A ) else: # add pixel_values and bbox SCREAMING_SNAKE_CASE_ = self.image_processor( _A , return_tensors=_A , max_patches=_A , header_text=_A , **_A ) if text is not None and not self.image_processor.is_vqa: SCREAMING_SNAKE_CASE_ = self.tokenizer( text=_A , add_special_tokens=_A , padding=_A , truncation=_A , max_length=_A , stride=_A , pad_to_multiple_of=_A , return_attention_mask=_A , return_overflowing_tokens=_A , return_special_tokens_mask=_A , return_offsets_mapping=_A , return_token_type_ids=_A , return_length=_A , verbose=_A , return_tensors=_A , **_A , ) if "attention_mask" in text_encoding: SCREAMING_SNAKE_CASE_ = text_encoding.pop('''attention_mask''' ) if "input_ids" in text_encoding: SCREAMING_SNAKE_CASE_ = text_encoding.pop('''input_ids''' ) else: SCREAMING_SNAKE_CASE_ = None if text_encoding is not None: encoding_image_processor.update(_A ) return encoding_image_processor def _UpperCamelCase ( self , *_A , **_A ) -> int: return self.tokenizer.batch_decode(*_A , **_A ) def _UpperCamelCase ( self , *_A , **_A ) -> List[str]: return self.tokenizer.decode(*_A , **_A ) @property def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
597
1
'''simple docstring''' import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class a__( lowerCamelCase__ ): def lowercase_ ( self : Dict ): a : int = tempfile.mkdtemp() a : str = 8 # DPR tok a : List[str] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] a : Union[str, Any] = os.path.join(self.tmpdirname , 'dpr_tokenizer' ) os.makedirs(__snake_case , exist_ok=__snake_case ) a : Union[str, Any] = os.path.join(__snake_case , DPR_VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) # BART tok a : Optional[Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] a : List[str] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) a : Dict = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] a : Optional[int] = {'unk_token': '<unk>'} a : Dict = os.path.join(self.tmpdirname , 'bart_tokenizer' ) os.makedirs(__snake_case , exist_ok=__snake_case ) a : List[Any] = os.path.join(__snake_case , BART_VOCAB_FILES_NAMES['vocab_file'] ) a : List[str] = os.path.join(__snake_case , BART_VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__snake_case ) ) def lowercase_ ( self : List[Any] ): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def lowercase_ ( self : Any ): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) ) def lowercase_ ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) @require_tokenizers def lowercase_ ( self : Any ): a : Dict = os.path.join(self.tmpdirname , 'rag_tokenizer' ) a : str = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) a : Optional[Any] = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(__snake_case ) rag_tokenizer.save_pretrained(__snake_case ) a : Any = RagTokenizer.from_pretrained(__snake_case , config=__snake_case ) self.assertIsInstance(new_rag_tokenizer.question_encoder , __snake_case ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , __snake_case ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def lowercase_ ( self : int ): a : Dict = RagTokenizer.from_pretrained('facebook/rag-token-nq' ) a : Union[str, Any] = [ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] a : Union[str, Any] = tokenizer(__snake_case ) self.assertIsNotNone(__snake_case ) @slow def lowercase_ ( self : Union[str, Any] ): a : Optional[int] = RagTokenizer.from_pretrained('facebook/rag-sequence-nq' ) a : Dict = [ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] a : str = tokenizer(__snake_case ) self.assertIsNotNone(__snake_case )
526
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase: List[Any] = {'configuration_reformer': ['REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ReformerConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: Dict = ['ReformerTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: Tuple = ['ReformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: List[Any] = [ 'REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ReformerAttention', 'ReformerForMaskedLM', 'ReformerForQuestionAnswering', 'ReformerForSequenceClassification', 'ReformerLayer', 'ReformerModel', 'ReformerModelWithLMHead', 'ReformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys lowerCAmelCase: str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
526
1
import argparse from collections import defaultdict import yaml __lowerCamelCase = 'docs/source/en/_toctree.yml' def UpperCamelCase__ ( UpperCAmelCase ) -> List[str]: """simple docstring""" _a : List[str] = defaultdict(UpperCAmelCase ) for doc in model_doc: counts[doc["local"]] += 1 _a : Any = [key for key, value in counts.items() if value > 1] _a : Any = [] for duplicate_key in duplicates: _a : List[str] = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} ) if len(UpperCAmelCase ) > 1: raise ValueError( F'{duplicate_key} is present several times in the documentation table of content at ' '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] ) # Sort return sorted(UpperCAmelCase , key=lambda UpperCAmelCase : s["title"].lower() ) def UpperCamelCase__ ( UpperCAmelCase=False ) -> str: """simple docstring""" with open(UpperCAmelCase , encoding='''utf-8''' ) as f: _a : Any = yaml.safe_load(f.read() ) # Get to the API doc _a : Union[str, Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 _a : int = content[api_idx]['''sections'''] # Then to the model doc _a : str = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 _a : Any = api_doc[model_idx]['''sections'''] _a : Tuple = [(idx, section) for idx, section in enumerate(UpperCAmelCase ) if '''sections''' in section] _a : Tuple = False for idx, modality_doc in modalities_docs: _a : Optional[int] = modality_doc['''sections'''] _a : Optional[Any] = clean_model_doc_toc(UpperCAmelCase ) if old_modality_doc != new_modality_doc: _a : List[Any] = True if overwrite: _a : List[str] = new_modality_doc if diff: if overwrite: _a : Tuple = model_doc _a : List[str] = api_doc with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(UpperCAmelCase , allow_unicode=UpperCAmelCase ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') __lowerCamelCase = parser.parse_args() check_model_doc(args.fix_and_overwrite)
307
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser __lowerCamelCase = logging.getLogger(__name__) torch.set_grad_enabled(False) __lowerCamelCase = 'cuda' if torch.cuda.is_available() else 'cpu' def UpperCamelCase__ ( UpperCAmelCase , UpperCAmelCase=100 , UpperCAmelCase=" " ) -> List[str]: """simple docstring""" _a : int = text.split(UpperCAmelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(UpperCAmelCase ) , UpperCAmelCase )] def UpperCamelCase__ ( UpperCAmelCase ) -> dict: """simple docstring""" _a , _a : List[Any] = [], [] for title, text in zip(documents['''title'''] , documents['''text'''] ): if text is not None: for passage in split_text(UpperCAmelCase ): titles.append(title if title is not None else '''''' ) texts.append(UpperCAmelCase ) return {"title": titles, "text": texts} def UpperCamelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> dict: """simple docstring""" _a : str = ctx_tokenizer( documents['''title'''] , documents['''text'''] , truncation=UpperCAmelCase , padding='''longest''' , return_tensors='''pt''' )['''input_ids'''] _a : int = ctx_encoder(input_ids.to(device=UpperCAmelCase ) , return_dict=UpperCAmelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def UpperCamelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> str: """simple docstring""" logger.info('''Step 1 - Create the dataset''' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way _a : Any = load_dataset( '''csv''' , data_files=[rag_example_args.csv_path] , split='''train''' , delimiter='''\t''' , column_names=['''title''', '''text'''] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words _a : Union[str, Any] = dataset.map(UpperCAmelCase , batched=UpperCAmelCase , num_proc=processing_args.num_proc ) # And compute the embeddings _a : Optional[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=UpperCAmelCase ) _a : Dict = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) _a : Optional[Any] = Features( {'''text''': Value('''string''' ), '''title''': Value('''string''' ), '''embeddings''': Sequence(Value('''float32''' ) )} ) # optional, save as float32 instead of float64 to save space _a : str = dataset.map( partial(UpperCAmelCase , ctx_encoder=UpperCAmelCase , ctx_tokenizer=UpperCAmelCase ) , batched=UpperCAmelCase , batch_size=processing_args.batch_size , features=UpperCAmelCase , ) # And finally save your dataset _a : List[Any] = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset''' ) dataset.save_to_disk(UpperCAmelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('''Step 2 - Index the dataset''' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search _a : Optional[int] = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('''embeddings''' , custom_index=UpperCAmelCase ) # And save the index _a : List[Any] = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset_hnsw_index.faiss''' ) dataset.get_index('''embeddings''' ).save(UpperCAmelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class UpperCamelCase_ : lowercase = field( default=str(Path(UpperCamelCase ).parent / '''test_run''' / '''dummy-kb''' / '''my_knowledge_dataset.csv''' ) , metadata={'''help''': '''Path to a tab-separated csv file with columns \'title\' and \'text\''''} , ) lowercase = field( default=UpperCamelCase , metadata={'''help''': '''Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'''} , ) lowercase = field( default='''facebook/rag-sequence-nq''' , metadata={'''help''': '''The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''''} , ) lowercase = field( default='''facebook/dpr-ctx_encoder-multiset-base''' , metadata={ '''help''': ( '''The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or''' ''' \'facebook/dpr-ctx_encoder-multiset-base\'''' ) } , ) lowercase = field( default=str(Path(UpperCamelCase ).parent / '''test_run''' / '''dummy-kb''' ) , metadata={'''help''': '''Path to a directory where the dataset passages and the index will be saved'''} , ) @dataclass class UpperCamelCase_ : lowercase = field( default=UpperCamelCase , metadata={ '''help''': '''The number of processes to use to split the documents into passages. Default is single process.''' } , ) lowercase = field( default=16 , metadata={ '''help''': '''The batch size to use when computing the passages embeddings using the DPR context encoder.''' } , ) @dataclass class UpperCamelCase_ : lowercase = field( default=768 , metadata={'''help''': '''The dimension of the embeddings to pass to the HNSW Faiss index.'''} , ) lowercase = field( default=128 , metadata={ '''help''': ( '''The number of bi-directional links created for every new element during the HNSW index construction.''' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) __lowerCamelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: __lowerCamelCase = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
307
1
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Optional[int] = tf.convert_to_tensor( [ [ 8.222_0991, # 3rd highest value; idx. 0 -0.562_0044, 5.2322_9752, 4.038_6393, -6.879_8378, -0.5478_5802, -3.201_2153, 2.9277_7176, 1.8817_1953, 7.3534_1276, # 5th highest value; idx. 9 8.4320_7833, # 2nd highest value; idx. 10 -9.8571_1836, -5.9620_9236, -1.1303_9161, -7.111_5294, -0.836_9633, -5.318_6408, 7.0642_7407, 0.8136_9344, -0.8202_3817, -5.917_9796, 0.5881_3443, -6.9977_8438, 4.7155_1189, -0.1877_1637, 7.4402_0759, # 4th highest value; idx. 25 9.3845_0987, # 1st highest value; idx. 26 2.1266_2941, -9.3256_2038, 2.3565_2522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.5842_5518, 4.5313_9238, -5.5751_0464, -6.2803_0699, -7.1952_9503, -4.0212_2551, 1.3933_7037, -6.0670_7057, 1.5948_0517, -9.64_3119, 0.0390_7799, 0.6723_1762, -8.8820_6726, 6.2711_5922, # 4th highest value; idx. 13 2.2852_0723, 4.8276_7506, 4.3042_1368, 8.827_5313, # 2nd highest value; idx. 17 5.4402_9958, # 5th highest value; idx. 18 -4.473_5794, 7.3857_9536, # 3rd highest value; idx. 20 -2.9105_1663, 2.6194_6077, -2.567_4762, -9.4895_9302, -4.0292_2645, -1.3541_6918, 9.6770_2323, # 1st highest value; idx. 27 -5.8947_8553, 1.8537_0467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) snake_case_ : Any = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 1_0], [0, 2_5], [0, 2_6], [1, 1_3], [1, 1_7], [1, 1_8], [1, 2_0], [1, 2_7]] , dtype=tf.intaa , ) # expected non filtered idx as noted above snake_case_ : Optional[Any] = tf.convert_to_tensor( [8.22_2099, 7.353_4126, 8.43_2078, 7.440_2075, 9.3_8451, 6.27_1159, 8.82_7531, 5.440_2995, 7.385_7956, 9.67_7023] , dtype=tf.floataa , ) # expected non filtered values as noted above snake_case_ : Optional[int] = tf_top_k_top_p_filtering(_lowercase , top_k=1_0 , top_p=0.6 , min_tokens_to_keep=4 ) snake_case_ : Union[str, Any] = output[output != -float("""inf""" )] snake_case_ : Dict = tf.cast( tf.where(tf.not_equal(_lowercase , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(_lowercase , _lowercase , rtol=1E-12 ) tf.debugging.assert_equal(_lowercase , _lowercase ) @require_tf class _lowerCAmelCase ( unittest.TestCase , _UpperCAmelCase ): """simple docstring""" if is_tf_available(): _lowerCamelCase = { '''AutoModelForCausalLM''': TFAutoModelForCausalLM, '''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq, '''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM, '''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq, '''LogitsProcessorList''': TFLogitsProcessorList, '''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor, '''create_tensor_fn''': tf.convert_to_tensor, '''floats_tensor''': floats_tensor, '''return_tensors''': '''tf''', } @slow def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Any = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) snake_case_ : List[Any] = 2 snake_case_ : Dict = 2 class _lowerCAmelCase ( tf.Module ): """simple docstring""" def __init__( self , _lowercase ) -> Any: '''simple docstring''' super(_lowercase , self ).__init__() snake_case_ : Tuple = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=_lowercase , ) def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> List[Any]: '''simple docstring''' snake_case_ : str = self.model.generate( input_ids=_lowercase , attention_mask=_lowercase , max_new_tokens=_lowercase , return_dict_in_generate=_lowercase , ) return {"sequences": outputs["sequences"]} snake_case_ : Any = [[2, 0], [1_0_2, 1_0_3]] snake_case_ : Any = [[1, 0], [1, 1]] snake_case_ : List[Any] = DummyModel(model=_lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_lowercase , _lowercase , signatures={"""serving_default""": dummy_model.serving} ) snake_case_ : str = tf.saved_model.load(_lowercase ).signatures['''serving_default'''] for batch_size in range(1 , len(_lowercase ) + 1 ): snake_case_ : Union[str, Any] = { '''input_ids''': tf.constant(dummy_input_ids[:batch_size] ), '''attention_mask''': tf.constant(dummy_attention_masks[:batch_size] ), } snake_case_ : Optional[int] = serving_func(**_lowercase )['''sequences'''] snake_case_ : Optional[int] = test_model.generate(**_lowercase , max_new_tokens=_lowercase ) tf.debugging.assert_equal(_lowercase , _lowercase ) @slow def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : List[str] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) snake_case_ : Any = 1 snake_case_ : Tuple = 2 class _lowerCAmelCase ( tf.Module ): """simple docstring""" def __init__( self , _lowercase ) -> Any: '''simple docstring''' super(_lowercase , self ).__init__() snake_case_ : List[str] = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=_lowercase , ) def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Any = self.model.generate( input_ids=_lowercase , attention_mask=_lowercase , max_new_tokens=_lowercase , return_dict_in_generate=_lowercase , ) return {"sequences": outputs["sequences"]} snake_case_ : Union[str, Any] = [[2], [1_0_2, 1_0_3]] snake_case_ : int = [[1], [1, 1]] snake_case_ : Any = DummyModel(model=_lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_lowercase , _lowercase , signatures={"""serving_default""": dummy_model.serving} ) snake_case_ : Optional[Any] = tf.saved_model.load(_lowercase ).signatures['''serving_default'''] for input_row in range(len(_lowercase ) ): snake_case_ : str = { '''input_ids''': tf.constant([dummy_input_ids[input_row]] ), '''attention_mask''': tf.constant([dummy_attention_masks[input_row]] ), } snake_case_ : List[str] = serving_func(**_lowercase )['''sequences'''] snake_case_ : Optional[int] = test_model.generate(**_lowercase , max_new_tokens=_lowercase ) tf.debugging.assert_equal(_lowercase , _lowercase ) @slow @require_tensorflow_text def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=_lowercase ) class _lowerCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self ) -> Optional[int]: '''simple docstring''' super().__init__() snake_case_ : int = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(_lowercase , """spiece.model""" ) , """rb""" ).read() ) snake_case_ : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) def UpperCAmelCase__ ( self , _lowercase , *_lowercase , **_lowercase ) -> Dict: '''simple docstring''' snake_case_ : Dict = self.tokenizer.tokenize(_lowercase ) snake_case_ : Union[str, Any] = text.pad_model_inputs( _lowercase , max_seq_length=6_4 , pad_value=self.model.config.pad_token_id ) snake_case_ : Optional[int] = self.model.generate(input_ids=_lowercase , attention_mask=_lowercase ) return self.tokenizer.detokenize(_lowercase ) snake_case_ : Any = CompleteSentenceTransformer() snake_case_ : str = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" ) snake_case_ : Dict = complete_model(_lowercase ) snake_case_ : Optional[int] = tf.keras.Model(_lowercase , _lowercase ) keras_model.save(_lowercase ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Union[str, Any] = { '''do_sample''': True, '''num_beams''': 1, '''top_p''': 0.7, '''top_k''': 1_0, '''temperature''': 0.7, } snake_case_ : Any = 1_4 snake_case_ : Optional[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) snake_case_ : Union[str, Any] = '''Hello, my dog is cute and''' snake_case_ : List[str] = tokenizer(_lowercase , return_tensors="""tf""" ) snake_case_ : List[str] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) snake_case_ : List[str] = 6_3_8 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) snake_case_ : Dict = model.generate(**_lowercase , eos_token_id=_lowercase , **_lowercase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) snake_case_ : List[str] = [6_3_8, 1_9_8] with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) snake_case_ : Optional[Any] = model.generate(**_lowercase , eos_token_id=_lowercase , **_lowercase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Union[str, Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) snake_case_ : List[Any] = '''Hugging Face is a technology company based in New York and Paris.''' snake_case_ : Optional[int] = bart_tokenizer(_lowercase , return_tensors="""tf""" ).input_ids snake_case_ : str = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) snake_case_ : str = bart_model.generate(_lowercase ).numpy() class _lowerCAmelCase ( _UpperCAmelCase ): """simple docstring""" def UpperCAmelCase__ ( self , _lowercase , _lowercase=None , **_lowercase ) -> int: '''simple docstring''' return super().call(_lowercase , **_lowercase ) snake_case_ : List[Any] = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) snake_case_ : List[Any] = bart_model.generate(_lowercase , foo="""bar""" ).numpy() self.assertTrue(np.array_equal(_lowercase , _lowercase ) ) class _lowerCAmelCase ( bart_model.model.encoder.__class__ ): """simple docstring""" def UpperCAmelCase__ ( self , _lowercase , **_lowercase ) -> List[Any]: '''simple docstring''' return super().call(_lowercase , **_lowercase ) snake_case_ : Dict = FakeEncoder(bart_model.config , bart_model.model.shared ) snake_case_ : List[Any] = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) snake_case_ : Dict = bart_model.generate(_lowercase ).numpy() with self.assertRaises(_lowercase ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(_lowercase , foo="""bar""" )
58
def a ( A__ ) -> int: '''simple docstring''' if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(A__ , A__ ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(A__ ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
35
0
"""simple docstring""" import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE = logging.getLogger(__name__) @dataclass(frozen=_lowerCAmelCase ) class __a : UpperCamelCase_ : str UpperCamelCase_ : str UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None @dataclass(frozen=_lowerCAmelCase ) class __a : UpperCamelCase_ : List[int] UpperCamelCase_ : Optional[List[int]] = None UpperCamelCase_ : Optional[List[int]] = None UpperCamelCase_ : Optional[Union[int, float]] = None UpperCamelCase_ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class __a ( _lowerCAmelCase ): UpperCamelCase_ : List[InputFeatures] def __init__( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : bool = False , )-> Dict: """simple docstring""" UpperCamelCase = hans_processors[task]() UpperCamelCase = os.path.join( UpperCAmelCase_ , "cached_{}_{}_{}_{}".format( "dev" if evaluate else "train" , tokenizer.__class__.__name__ , str(UpperCAmelCase_ ) , UpperCAmelCase_ , ) , ) UpperCamelCase = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCamelCase , UpperCamelCase = label_list[2], label_list[1] UpperCamelCase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCamelCase = cached_features_file + ".lock" with FileLock(UpperCAmelCase_ ): if os.path.exists(UpperCAmelCase_ ) and not overwrite_cache: logger.info(f"Loading features from cached file {cached_features_file}" ) UpperCamelCase = torch.load(UpperCAmelCase_ ) else: logger.info(f"Creating features from dataset file at {data_dir}" ) UpperCamelCase = ( processor.get_dev_examples(UpperCAmelCase_ ) if evaluate else processor.get_train_examples(UpperCAmelCase_ ) ) logger.info("Training examples: %s" , len(UpperCAmelCase_ ) ) UpperCamelCase = hans_convert_examples_to_features(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) logger.info("Saving features into cached file %s" , UpperCAmelCase_ ) torch.save(self.features , UpperCAmelCase_ ) def __len__( self : Optional[Any] )-> List[Any]: """simple docstring""" return len(self.features ) def __getitem__( self : Optional[Any] , UpperCAmelCase_ : Any )-> InputFeatures: """simple docstring""" return self.features[i] def _SCREAMING_SNAKE_CASE ( self : str )-> List[Any]: """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class __a : UpperCamelCase_ : List[InputFeatures] def __init__( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] = 128 , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : bool = False , )-> Union[str, Any]: """simple docstring""" UpperCamelCase = hans_processors[task]() UpperCamelCase = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCamelCase , UpperCamelCase = label_list[2], label_list[1] UpperCamelCase = label_list UpperCamelCase = processor.get_dev_examples(UpperCAmelCase_ ) if evaluate else processor.get_train_examples(UpperCAmelCase_ ) UpperCamelCase = hans_convert_examples_to_features(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="convert examples to features" ): if ex_index % 10_000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(UpperCAmelCase_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCamelCase = tf.data.Dataset.from_generator( UpperCAmelCase_ , ( { "example_id": tf.intaa, "input_ids": tf.intaa, "attention_mask": tf.intaa, "token_type_ids": tf.intaa, }, tf.intaa, ) , ( { "example_id": tf.TensorShape([] ), "input_ids": tf.TensorShape([None, None] ), "attention_mask": tf.TensorShape([None, None] ), "token_type_ids": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def _SCREAMING_SNAKE_CASE ( self : Tuple )-> Tuple: """simple docstring""" return self.dataset def __len__( self : List[Any] )-> List[Any]: """simple docstring""" return len(self.features ) def __getitem__( self : Tuple , UpperCAmelCase_ : List[str] )-> InputFeatures: """simple docstring""" return self.features[i] def _SCREAMING_SNAKE_CASE ( self : List[str] )-> List[str]: """simple docstring""" return self.label_list class __a ( _lowerCAmelCase ): def _SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase_ : Tuple )-> Tuple: """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase_ , "heuristics_train_set.txt" ) ) , "train" ) def _SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase_ : List[str] )-> Dict: """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase_ , "heuristics_evaluation_set.txt" ) ) , "dev" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] )-> Optional[Any]: """simple docstring""" return ["contradiction", "entailment", "neutral"] def _SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str )-> str: """simple docstring""" UpperCamelCase = [] for i, line in enumerate(UpperCAmelCase_ ): if i == 0: continue UpperCamelCase = "%s-%s" % (set_type, line[0]) UpperCamelCase = line[5] UpperCamelCase = line[6] UpperCamelCase = line[7][2:] if line[7].startswith("ex" ) else line[7] UpperCamelCase = line[0] examples.append(InputExample(guid=UpperCAmelCase_ , text_a=UpperCAmelCase_ , text_b=UpperCAmelCase_ , label=UpperCAmelCase_ , pairID=UpperCAmelCase_ ) ) return examples def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , )-> Union[str, Any]: """simple docstring""" UpperCamelCase = {label: i for i, label in enumerate(UpperCAmelCase_ )} UpperCamelCase = [] for ex_index, example in tqdm.tqdm(enumerate(UpperCAmelCase_ ) , desc="convert examples to features" ): if ex_index % 1_00_00 == 0: logger.info("Writing example %d" % (ex_index) ) UpperCamelCase = tokenizer( example.text_a , example.text_b , add_special_tokens=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding="max_length" , truncation=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , ) UpperCamelCase = label_map[example.label] if example.label in label_map else 0 UpperCamelCase = int(example.pairID ) features.append(InputFeatures(**UpperCAmelCase_ , label=UpperCAmelCase_ , pairID=UpperCAmelCase_ ) ) for i, example in enumerate(examples[:5] ): logger.info("*** Example ***" ) logger.info(F"guid: {example}" ) logger.info(F"features: {features[i]}" ) return features SCREAMING_SNAKE_CASE = { """hans""": 3, } SCREAMING_SNAKE_CASE = { """hans""": HansProcessor, }
556
"""simple docstring""" import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __a ( _lowerCAmelCase , unittest.TestCase ): UpperCamelCase_ : str = FunnelTokenizer UpperCamelCase_ : Any = FunnelTokenizerFast UpperCamelCase_ : Union[str, Any] = True UpperCamelCase_ : Tuple = True def _SCREAMING_SNAKE_CASE ( self : Tuple )-> Optional[int]: """simple docstring""" super().setUp() UpperCamelCase = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , **UpperCAmelCase_ : Optional[Any] )-> str: """simple docstring""" return FunnelTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Dict , **UpperCAmelCase_ : Any )-> Union[str, Any]: """simple docstring""" return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase_ : Tuple )-> str: """simple docstring""" UpperCamelCase = "UNwant\u00E9d,running" UpperCamelCase = "unwanted, running" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : str )-> List[str]: """simple docstring""" UpperCamelCase = self.tokenizer_class(self.vocab_file ) UpperCamelCase = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(UpperCAmelCase_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [7, 4, 5, 10, 8, 9] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] )-> Optional[int]: """simple docstring""" UpperCamelCase = self.get_tokenizers(do_lower_case=UpperCAmelCase_ ) for tokenizer in tokenizers: UpperCamelCase = tokenizer("UNwant\u00E9d,running" ) UpperCamelCase = len(inputs["input_ids"] ) - 1 self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len ) UpperCamelCase = tokenizer("UNwant\u00E9d,running" , "UNwant\u00E9d,running" ) self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len + [1] * sentence_len )
556
1
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) SCREAMING_SNAKE_CASE__ : Union[str, Any] = logging.getLogger(__name__) SCREAMING_SNAKE_CASE__ : List[str] = """Hello world! cécé herlolip""" SCREAMING_SNAKE_CASE__ : Any = namedtuple( """BertAbsConfig""", [ """temp_dir""", """large""", """use_bert_emb""", """finetune_bert""", """encoder""", """share_emb""", """max_pos""", """enc_layers""", """enc_hidden_size""", """enc_heads""", """enc_ff_size""", """enc_dropout""", """dec_layers""", """dec_hidden_size""", """dec_heads""", """dec_ff_size""", """dec_dropout""", ], ) def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase ) -> Tuple: '''simple docstring''' UpperCAmelCase__ : List[Any] = BertAbsConfig( temp_dir=""".""" , finetune_bert=__lowerCamelCase , large=__lowerCamelCase , share_emb=__lowerCamelCase , use_bert_emb=__lowerCamelCase , encoder="""bert""" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) UpperCAmelCase__ : Any = torch.load(__lowerCamelCase , lambda __lowerCamelCase , __lowerCamelCase : storage ) UpperCAmelCase__ : int = AbsSummarizer(__lowerCamelCase , torch.device("""cpu""" ) , __lowerCamelCase ) original.eval() UpperCAmelCase__ : Tuple = BertAbsSummarizer(__lowerCamelCase , torch.device("""cpu""" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("""convert the model""" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("""Make sure that the models' outputs are identical""" ) UpperCAmelCase__ : Any = BertTokenizer.from_pretrained("""bert-base-uncased""" ) # prepare the model inputs UpperCAmelCase__ : List[Any] = tokenizer.encode("""This is sample éàalj'-.""" ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(__lowerCamelCase )) ) UpperCAmelCase__ : Any = torch.tensor(__lowerCamelCase ).unsqueeze(0 ) UpperCAmelCase__ : Tuple = tokenizer.encode("""This is sample 3 éàalj'-.""" ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(__lowerCamelCase )) ) UpperCAmelCase__ : Dict = torch.tensor(__lowerCamelCase ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass UpperCAmelCase__ : List[str] = encoder_input_ids UpperCAmelCase__ : List[str] = decoder_input_ids UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : Optional[Any] = None UpperCAmelCase__ : Optional[Any] = None UpperCAmelCase__ : Optional[int] = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical UpperCAmelCase__ : Any = original(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )[0] UpperCAmelCase__ : List[str] = original.generator(__lowerCamelCase ) UpperCAmelCase__ : List[Any] = new_model( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )[0] UpperCAmelCase__ : int = new_model.generator(__lowerCamelCase ) UpperCAmelCase__ : List[Any] = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(__lowerCamelCase ) ) UpperCAmelCase__ : Any = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(__lowerCamelCase ) ) UpperCAmelCase__ : str = torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 ) if are_identical: logging.info("""all weights are equal up to 1e-3""" ) else: raise ValueError("""the weights are different. The new model is likely different from the original one.""" ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("""saving the model's state dictionary""" ) torch.save( new_model.state_dict() , """./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : str = argparse.ArgumentParser() parser.add_argument( """--bertabs_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""", ) SCREAMING_SNAKE_CASE__ : int = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
79
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', } __magic_name__ = { '''vocab_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'''}, '''merges_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'''}, } __magic_name__ = { '''ctrl''': 256, } __magic_name__ = { '''Pregnancy''': 168_629, '''Christianity''': 7_675, '''Explain''': 106_423, '''Fitness''': 63_440, '''Saving''': 63_163, '''Ask''': 27_171, '''Ass''': 95_985, '''Joke''': 163_509, '''Questions''': 45_622, '''Thoughts''': 49_605, '''Retail''': 52_342, '''Feminism''': 164_338, '''Writing''': 11_992, '''Atheism''': 192_263, '''Netflix''': 48_616, '''Computing''': 39_639, '''Opinion''': 43_213, '''Alone''': 44_967, '''Funny''': 58_917, '''Gaming''': 40_358, '''Human''': 4_088, '''India''': 1_331, '''Joker''': 77_138, '''Diet''': 36_206, '''Legal''': 11_859, '''Norman''': 4_939, '''Tip''': 72_689, '''Weight''': 52_343, '''Movies''': 46_273, '''Running''': 23_425, '''Science''': 2_090, '''Horror''': 37_793, '''Confession''': 60_572, '''Finance''': 12_250, '''Politics''': 16_360, '''Scary''': 191_985, '''Support''': 12_654, '''Technologies''': 32_516, '''Teenage''': 66_160, '''Event''': 32_769, '''Learned''': 67_460, '''Notion''': 182_770, '''Wikipedia''': 37_583, '''Books''': 6_665, '''Extract''': 76_050, '''Confessions''': 102_701, '''Conspiracy''': 75_932, '''Links''': 63_674, '''Narcissus''': 150_425, '''Relationship''': 54_766, '''Relationships''': 134_796, '''Reviews''': 41_671, '''News''': 4_256, '''Translation''': 26_820, '''multilingual''': 128_406, } def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): snake_case__ = set() snake_case__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case__ = char snake_case__ = set(__lowerCAmelCase ) return pairs class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): _A : Tuple = VOCAB_FILES_NAMES _A : str = PRETRAINED_VOCAB_FILES_MAP _A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : List[Any] = CONTROL_CODES def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase="<unk>" , **lowerCamelCase ): super().__init__(unk_token=lowerCamelCase , **lowerCamelCase ) with open(lowerCamelCase , encoding="utf-8" ) as vocab_handle: snake_case__ = json.load(lowerCamelCase ) snake_case__ = {v: k for k, v in self.encoder.items()} with open(lowerCamelCase , encoding="utf-8" ) as merges_handle: snake_case__ = merges_handle.read().split("\n" )[1:-1] snake_case__ = [tuple(merge.split() ) for merge in merges] snake_case__ = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) snake_case__ = {} @property def A_ ( self ): return len(self.encoder ) def A_ ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def A_ ( self , lowerCamelCase ): if token in self.cache: return self.cache[token] snake_case__ = tuple(lowerCamelCase ) snake_case__ = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) snake_case__ = get_pairs(lowerCamelCase ) if not pairs: return token while True: snake_case__ = min(lowerCamelCase , key=lambda lowerCamelCase : self.bpe_ranks.get(lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break snake_case__ , snake_case__ = bigram snake_case__ = [] snake_case__ = 0 while i < len(lowerCamelCase ): try: snake_case__ = word.index(lowerCamelCase , lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case__ = j if word[i] == first and i < len(lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case__ = tuple(lowerCamelCase ) snake_case__ = new_word if len(lowerCamelCase ) == 1: break else: snake_case__ = get_pairs(lowerCamelCase ) snake_case__ = "@@ ".join(lowerCamelCase ) snake_case__ = word[:-4] snake_case__ = word return word def A_ ( self , lowerCamelCase ): snake_case__ = [] snake_case__ = re.findall(r"\S+\n?" , lowerCamelCase ) for token in words: split_tokens.extend(list(self.bpe(lowerCamelCase ).split(" " ) ) ) return split_tokens def A_ ( self , lowerCamelCase ): return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) ) def A_ ( self , lowerCamelCase ): return self.decoder.get(lowerCamelCase , self.unk_token ) def A_ ( self , lowerCamelCase ): snake_case__ = " ".join(lowerCamelCase ).replace("@@ " , "" ).strip() return out_string def A_ ( self , lowerCamelCase , lowerCamelCase = None ): if not os.path.isdir(lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case__ = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) snake_case__ = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase , ensure_ascii=lowerCamelCase ) + "\n" ) snake_case__ = 0 with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) snake_case__ = token_index writer.write(" ".join(lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
276
0
from manim import * class __A ( UpperCamelCase__ ): def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Union[str, Any] =Rectangle(height=0.5 , width=0.5 ) __magic_name__ : Dict =Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __magic_name__ : Dict =[mem.copy() for i in range(6 )] __magic_name__ : str =[mem.copy() for i in range(6 )] __magic_name__ : Optional[Any] =VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) __magic_name__ : Union[str, Any] =VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) __magic_name__ : Optional[int] =VGroup(__snake_case , __snake_case ).arrange(__snake_case , buff=0 ) __magic_name__ : Dict =Text("""CPU""" , font_size=24 ) __magic_name__ : Union[str, Any] =Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__snake_case ) __magic_name__ : Optional[int] =[mem.copy() for i in range(4 )] __magic_name__ : str =VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) __magic_name__ : int =Text("""GPU""" , font_size=24 ) __magic_name__ : Optional[Any] =Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) gpu.move_to([-1, -1, 0] ) self.add(__snake_case ) __magic_name__ : Optional[Any] =[mem.copy() for i in range(6 )] __magic_name__ : Dict =VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) __magic_name__ : List[str] =Text("""Model""" , font_size=24 ) __magic_name__ : List[str] =Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) model.move_to([3, -1.0, 0] ) self.add(__snake_case ) __magic_name__ : Dict =[] for i, rect in enumerate(__snake_case ): rect.set_stroke(__snake_case ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) __magic_name__ : str =Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__snake_case , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__snake_case ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__snake_case , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__snake_case , buff=0.0 ) self.add(__snake_case ) cpu_targs.append(__snake_case ) __magic_name__ : List[Any] =[mem.copy() for i in range(6 )] __magic_name__ : Union[str, Any] =VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) __magic_name__ : int =Text("""Loaded Checkpoint""" , font_size=24 ) __magic_name__ : int =Group(__snake_case , __snake_case ).arrange(__snake_case , aligned_edge=__snake_case , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) __magic_name__ : str =Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __magic_name__ : int =MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__snake_case , __snake_case ) __magic_name__ : Optional[Any] =MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(__snake_case , DOWN * 2.4 , aligned_edge=key_text.get_left() ) __magic_name__ : Tuple =MarkupText( f"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ) , Write(__snake_case ) ) self.play(Write(__snake_case , run_time=1 ) , Create(__snake_case , run_time=1 ) ) __magic_name__ : Dict =[] __magic_name__ : Dict =[] for i, rect in enumerate(__snake_case ): __magic_name__ : Dict =fill.copy().set_fill(__snake_case , opacity=0.7 ) target.move_to(__snake_case ) first_animations.append(GrowFromCenter(__snake_case , run_time=1 ) ) __magic_name__ : Optional[int] =target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__snake_case , run_time=1.5 ) ) self.play(*__snake_case ) self.play(*__snake_case ) self.wait()
719
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers UpperCAmelCase_ : str = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
367
0
"""simple docstring""" snake_case = 6_5_5_2_1 def snake_case ( lowerCAmelCase_ ) -> int: _snake_case = 1 _snake_case = 0 for plain_chr in plain_text: _snake_case = (a + ord(lowerCAmelCase_ )) % MOD_ADLER _snake_case = (b + a) % MOD_ADLER return (b << 16) | a
103
def a__ ( snake_case__ : int , snake_case__ : int ): return x if y == 0 else greatest_common_divisor(snake_case__ , x % y ) def a__ ( snake_case__ : int , snake_case__ : int ): return (x * y) // greatest_common_divisor(snake_case__ , snake_case__ ) def a__ ( snake_case__ : int = 20 ): _UpperCAmelCase : Union[str, Any] = 1 for i in range(1 , n + 1 ): _UpperCAmelCase : Dict = lcm(snake_case__ , snake_case__ ) return g if __name__ == "__main__": print(F'{solution() = }')
643
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase : Optional[int] = logging.get_logger(__name__) lowercase : Optional[int] = { '''kssteven/ibert-roberta-base''': '''https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json''', '''kssteven/ibert-roberta-large''': '''https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json''', '''kssteven/ibert-roberta-large-mnli''': ( '''https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json''' ), } class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : List[Any] = 'ibert' def __init__( self , _SCREAMING_SNAKE_CASE=3_0522 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-12 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE="absolute" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="none" , **_SCREAMING_SNAKE_CASE , ) -> Tuple: super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) snake_case_ : int = vocab_size snake_case_ : Optional[int] = hidden_size snake_case_ : str = num_hidden_layers snake_case_ : List[str] = num_attention_heads snake_case_ : int = hidden_act snake_case_ : List[Any] = intermediate_size snake_case_ : Tuple = hidden_dropout_prob snake_case_ : Dict = attention_probs_dropout_prob snake_case_ : List[Any] = max_position_embeddings snake_case_ : Dict = type_vocab_size snake_case_ : Optional[Any] = initializer_range snake_case_ : Optional[int] = layer_norm_eps snake_case_ : Tuple = position_embedding_type snake_case_ : Union[str, Any] = quant_mode snake_case_ : List[str] = force_dequant class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' @property def _lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case_ : Any = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case_ : Dict = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
114
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase : str = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys lowercase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
114
1
'''simple docstring''' from __future__ import annotations import math import random from typing import Any class _SCREAMING_SNAKE_CASE: def __init__( self : str ) -> None: SCREAMING_SNAKE_CASE__ :list[Any] = [] SCREAMING_SNAKE_CASE__ :int = 0 SCREAMING_SNAKE_CASE__ :int = 0 def __lowerCamelCase ( self : Any ) -> bool: return self.head == self.tail def __lowerCamelCase ( self : Any , UpperCamelCase_ : Any ) -> None: self.data.append(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :int = self.tail + 1 def __lowerCamelCase ( self : Tuple ) -> Any: SCREAMING_SNAKE_CASE__ :Union[str, Any] = self.data[self.head] SCREAMING_SNAKE_CASE__ :Union[str, Any] = self.head + 1 return ret def __lowerCamelCase ( self : str ) -> int: return self.tail - self.head def __lowerCamelCase ( self : Optional[int] ) -> None: print(self.data ) print('**************' ) print(self.data[self.head : self.tail] ) class _SCREAMING_SNAKE_CASE: def __init__( self : List[str] , UpperCamelCase_ : Any ) -> None: SCREAMING_SNAKE_CASE__ :Tuple = data SCREAMING_SNAKE_CASE__ :MyNode | None = None SCREAMING_SNAKE_CASE__ :MyNode | None = None SCREAMING_SNAKE_CASE__ :int = 1 def __lowerCamelCase ( self : Union[str, Any] ) -> Any: return self.data def __lowerCamelCase ( self : Optional[int] ) -> MyNode | None: return self.left def __lowerCamelCase ( self : List[str] ) -> MyNode | None: return self.right def __lowerCamelCase ( self : List[Any] ) -> int: return self.height def __lowerCamelCase ( self : Optional[Any] , UpperCamelCase_ : Any ) -> None: SCREAMING_SNAKE_CASE__ :List[str] = data def __lowerCamelCase ( self : Dict , UpperCamelCase_ : MyNode | None ) -> None: SCREAMING_SNAKE_CASE__ :Dict = node def __lowerCamelCase ( self : Optional[int] , UpperCamelCase_ : MyNode | None ) -> None: SCREAMING_SNAKE_CASE__ :Union[str, Any] = node def __lowerCamelCase ( self : Union[str, Any] , UpperCamelCase_ : int ) -> None: SCREAMING_SNAKE_CASE__ :Dict = height def lowerCamelCase ( UpperCAmelCase__ : MyNode | None ) -> int: '''simple docstring''' if node is None: return 0 return node.get_height() def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> int: '''simple docstring''' if a > b: return a return b def lowerCamelCase ( UpperCAmelCase__ : MyNode ) -> MyNode: '''simple docstring''' print('left rotation node:' , node.get_data() ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :Any = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :Dict = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(UpperCAmelCase__ ) return ret def lowerCamelCase ( UpperCAmelCase__ : MyNode ) -> MyNode: '''simple docstring''' print('right rotation node:' , node.get_data() ) SCREAMING_SNAKE_CASE__ :Tuple = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :int = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(UpperCAmelCase__ ) return ret def lowerCamelCase ( UpperCAmelCase__ : MyNode ) -> MyNode: '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = node.get_left() assert left_child is not None node.set_left(left_rotation(UpperCAmelCase__ ) ) return right_rotation(UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : MyNode ) -> MyNode: '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = node.get_right() assert right_child is not None node.set_right(right_rotation(UpperCAmelCase__ ) ) return left_rotation(UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : MyNode | None , UpperCAmelCase__ : Any ) -> MyNode | None: '''simple docstring''' if node is None: return MyNode(UpperCAmelCase__ ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , UpperCAmelCase__ ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected SCREAMING_SNAKE_CASE__ :Union[str, Any] = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child SCREAMING_SNAKE_CASE__ :Dict = right_rotation(UpperCAmelCase__ ) else: SCREAMING_SNAKE_CASE__ :str = lr_rotation(UpperCAmelCase__ ) else: node.set_right(insert_node(node.get_right() , UpperCAmelCase__ ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: SCREAMING_SNAKE_CASE__ :Optional[int] = node.get_right() assert right_child is not None if data < right_child.get_data(): SCREAMING_SNAKE_CASE__ :Optional[Any] = rl_rotation(UpperCAmelCase__ ) else: SCREAMING_SNAKE_CASE__ :Union[str, Any] = left_rotation(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :Tuple = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(UpperCAmelCase__ ) return node def lowerCamelCase ( UpperCAmelCase__ : MyNode ) -> Any: '''simple docstring''' while True: SCREAMING_SNAKE_CASE__ :Optional[int] = root.get_right() if right_child is None: break SCREAMING_SNAKE_CASE__ :str = right_child return root.get_data() def lowerCamelCase ( UpperCAmelCase__ : MyNode ) -> Any: '''simple docstring''' while True: SCREAMING_SNAKE_CASE__ :Optional[int] = root.get_left() if left_child is None: break SCREAMING_SNAKE_CASE__ :List[Any] = left_child return root.get_data() def lowerCamelCase ( UpperCAmelCase__ : MyNode , UpperCAmelCase__ : Any ) -> MyNode | None: '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[Any] = root.get_left() SCREAMING_SNAKE_CASE__ :Optional[int] = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: SCREAMING_SNAKE_CASE__ :int = get_left_most(UpperCAmelCase__ ) root.set_data(UpperCAmelCase__ ) root.set_right(del_node(UpperCAmelCase__ , UpperCAmelCase__ ) ) elif left_child is not None: SCREAMING_SNAKE_CASE__ :Union[str, Any] = left_child elif right_child is not None: SCREAMING_SNAKE_CASE__ :Optional[int] = right_child else: return None elif root.get_data() > data: if left_child is None: print('No such data' ) return root else: root.set_left(del_node(UpperCAmelCase__ , UpperCAmelCase__ ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(UpperCAmelCase__ , UpperCAmelCase__ ) ) if get_height(UpperCAmelCase__ ) - get_height(UpperCAmelCase__ ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): SCREAMING_SNAKE_CASE__ :Any = left_rotation(UpperCAmelCase__ ) else: SCREAMING_SNAKE_CASE__ :int = rl_rotation(UpperCAmelCase__ ) elif get_height(UpperCAmelCase__ ) - get_height(UpperCAmelCase__ ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): SCREAMING_SNAKE_CASE__ :Any = right_rotation(UpperCAmelCase__ ) else: SCREAMING_SNAKE_CASE__ :str = lr_rotation(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :Optional[Any] = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(UpperCAmelCase__ ) return root class _SCREAMING_SNAKE_CASE: def __init__( self : List[Any] ) -> None: SCREAMING_SNAKE_CASE__ :MyNode | None = None def __lowerCamelCase ( self : Optional[Any] ) -> int: return get_height(self.root ) def __lowerCamelCase ( self : int , UpperCamelCase_ : Any ) -> None: print('insert:' + str(UpperCamelCase_ ) ) SCREAMING_SNAKE_CASE__ :Dict = insert_node(self.root , UpperCamelCase_ ) def __lowerCamelCase ( self : str , UpperCamelCase_ : Any ) -> None: print('delete:' + str(UpperCamelCase_ ) ) if self.root is None: print('Tree is empty!' ) return SCREAMING_SNAKE_CASE__ :List[Any] = del_node(self.root , UpperCamelCase_ ) def __str__( self : List[Any] , ) -> str: # a level traversale, gives a more intuitive look on the tree SCREAMING_SNAKE_CASE__ :List[str] = '' SCREAMING_SNAKE_CASE__ :Optional[Any] = MyQueue() q.push(self.root ) SCREAMING_SNAKE_CASE__ :int = self.get_height() if layer == 0: return output SCREAMING_SNAKE_CASE__ :str = 0 while not q.is_empty(): SCREAMING_SNAKE_CASE__ :Optional[int] = q.pop() SCREAMING_SNAKE_CASE__ :List[str] = ' ' * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(UpperCamelCase_ ) q.push(UpperCamelCase_ ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space SCREAMING_SNAKE_CASE__ :Tuple = cnt + 1 for i in range(1_00 ): if cnt == math.pow(2 , UpperCamelCase_ ) - 1: SCREAMING_SNAKE_CASE__ :Optional[int] = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def lowerCamelCase ( ) -> None: '''simple docstring''' import doctest doctest.testmod() if __name__ == "__main__": _test() UpperCamelCase_ = AVLtree() UpperCamelCase_ = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
209
'''simple docstring''' from __future__ import annotations UpperCamelCase_ = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def lowerCamelCase ( UpperCAmelCase__ : list[list[int]] , UpperCAmelCase__ : list[int] , UpperCAmelCase__ : list[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : list[list[int]] , ) -> tuple[list[list[int]], list[list[int]]]: '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCAmelCase__ ) ) ] # the reference grid SCREAMING_SNAKE_CASE__ :Any = 1 SCREAMING_SNAKE_CASE__ :Dict = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCAmelCase__ ) ) ] # the action grid SCREAMING_SNAKE_CASE__ :int = init[0] SCREAMING_SNAKE_CASE__ :Optional[Any] = init[1] SCREAMING_SNAKE_CASE__ :List[str] = 0 SCREAMING_SNAKE_CASE__ :List[Any] = g + heuristic[x][y] # cost from starting cell to destination cell SCREAMING_SNAKE_CASE__ :List[Any] = [[f, g, x, y]] SCREAMING_SNAKE_CASE__ :Any = False # flag that is set when search is complete SCREAMING_SNAKE_CASE__ :str = False # flag set if we can't find expand while not found and not resign: if len(UpperCAmelCase__ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() SCREAMING_SNAKE_CASE__ :List[Any] = cell.pop() SCREAMING_SNAKE_CASE__ :Optional[int] = next_cell[2] SCREAMING_SNAKE_CASE__ :Any = next_cell[3] SCREAMING_SNAKE_CASE__ :Dict = next_cell[1] if x == goal[0] and y == goal[1]: SCREAMING_SNAKE_CASE__ :Tuple = True else: for i in range(len(UpperCAmelCase__ ) ): # to try out different valid actions SCREAMING_SNAKE_CASE__ :Optional[int] = x + DIRECTIONS[i][0] SCREAMING_SNAKE_CASE__ :int = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(UpperCAmelCase__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: SCREAMING_SNAKE_CASE__ :str = g + cost SCREAMING_SNAKE_CASE__ :Union[str, Any] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = 1 SCREAMING_SNAKE_CASE__ :Any = i SCREAMING_SNAKE_CASE__ :int = [] SCREAMING_SNAKE_CASE__ :Union[str, Any] = goal[0] SCREAMING_SNAKE_CASE__ :Optional[int] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: SCREAMING_SNAKE_CASE__ :Optional[Any] = x - DIRECTIONS[action[x][y]][0] SCREAMING_SNAKE_CASE__ :Optional[Any] = y - DIRECTIONS[action[x][y]][1] SCREAMING_SNAKE_CASE__ :Optional[int] = xa SCREAMING_SNAKE_CASE__ :int = ya invpath.append([x, y] ) SCREAMING_SNAKE_CASE__ :int = [] for i in range(len(UpperCAmelCase__ ) ): path.append(invpath[len(UpperCAmelCase__ ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCamelCase_ = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCamelCase_ = [0, 0] # all coordinates are given in format [y,x] UpperCamelCase_ = [len(grid) - 1, len(grid[0]) - 1] UpperCamelCase_ = 1 # the cost map which pushes the path closer to the goal UpperCamelCase_ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCamelCase_ = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCamelCase_ = 99 UpperCamelCase_ , UpperCamelCase_ = search(grid, init, goal, cost, heuristic) print('''ACTION MAP''') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
209
1
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": _lowerCamelCase ="%20".join(argv[1:]) if len(argv) > 1 else quote(str(input("Search: "))) print("Googling.....") _lowerCamelCase =f'https://www.google.com/search?q={query}&num=100' _lowerCamelCase =requests.get( url, headers={"User-Agent": str(UserAgent().random)}, ) try: _lowerCamelCase =( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "yuRUbf"}) .find("a") .get("href") ) except AttributeError: _lowerCamelCase =parse_qs( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "kCrYT"}) .find("a") .get("href") )["url"][0] webbrowser.open(link)
252
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCamelCase =16 _lowerCamelCase =32 def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = 16 ): """simple docstring""" SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE =DatasetDict( { 'train': dataset['train'].select(lowerCAmelCase_ ), 'validation': dataset['train'].select(lowerCAmelCase_ ), 'test': dataset['validation'], } ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE =tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowerCAmelCase_, max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE =datasets.map( lowerCAmelCase_, batched=lowerCAmelCase_, remove_columns=['idx', 'sentence1', 'sentence2'], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE =tokenized_datasets.rename_column('label', 'labels' ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE =16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE =8 else: SCREAMING_SNAKE_CASE =None return tokenizer.pad( lowerCAmelCase_, padding='longest', max_length=lowerCAmelCase_, pad_to_multiple_of=lowerCAmelCase_, return_tensors='pt', ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE =DataLoader( tokenized_datasets['train'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =DataLoader( tokenized_datasets['validation'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =DataLoader( tokenized_datasets['test'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader, test_dataloader def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =[] # Download the dataset SCREAMING_SNAKE_CASE =load_dataset('glue', 'mrpc' ) # Create our splits SCREAMING_SNAKE_CASE =StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator SCREAMING_SNAKE_CASE =Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE =config['lr'] SCREAMING_SNAKE_CASE =int(config['num_epochs'] ) SCREAMING_SNAKE_CASE =int(config['seed'] ) SCREAMING_SNAKE_CASE =int(config['batch_size'] ) SCREAMING_SNAKE_CASE =evaluate.load('glue', 'mrpc' ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE =1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE =batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE =MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase_ ) # New Code # # Create our folds: SCREAMING_SNAKE_CASE =kfold.split(np.zeros(datasets['train'].num_rows ), datasets['train']['label'] ) SCREAMING_SNAKE_CASE =[] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =get_fold_dataloaders( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE =AutoModelForSequenceClassification.from_pretrained('bert-base-cased', return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE =model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE =AdamW(params=model.parameters(), lr=lowerCAmelCase_ ) # Instantiate scheduler SCREAMING_SNAKE_CASE =get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_, num_warmup_steps=100, num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.prepare( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =outputs.loss SCREAMING_SNAKE_CASE =loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=lowerCAmelCase_, references=lowerCAmelCase_, ) SCREAMING_SNAKE_CASE =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:', lowerCAmelCase_ ) # New Code # # We also run predictions on the test set at the very end SCREAMING_SNAKE_CASE =[] for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =outputs.logits SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.gather_for_metrics((predictions, batch['labels']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowerCAmelCase_, dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: SCREAMING_SNAKE_CASE =torch.cat(lowerCAmelCase_, dim=0 ) SCREAMING_SNAKE_CASE =torch.stack(lowerCAmelCase_, dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) SCREAMING_SNAKE_CASE =metric.compute(predictions=lowerCAmelCase_, references=lowerCAmelCase_ ) accelerator.print('Average test metrics from all folds:', lowerCAmelCase_ ) def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision', type=lowerCAmelCase_, default=lowerCAmelCase_, choices=['no', 'fp16', 'bf16', 'fp8'], help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.', ) parser.add_argument('--cpu', action='store_true', help='If passed, will train on the CPU.' ) # New Code # parser.add_argument('--num_folds', type=lowerCAmelCase_, default=3, help='The number of splits to perform across the dataset' ) SCREAMING_SNAKE_CASE =parser.parse_args() SCREAMING_SNAKE_CASE ={'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(lowerCAmelCase_, lowerCAmelCase_ ) if __name__ == "__main__": main()
252
1
import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __lowerCamelCase : Union[str, Any] = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. __lowerCamelCase : Optional[int] = importlib.util.spec_from_file_location( '''transformers''', os.path.join(PATH_TO_TRANSFORMERS, '''__init__.py'''), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) __lowerCamelCase : List[Any] = spec.loader.load_module() __lowerCamelCase : Union[str, Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __lowerCamelCase : Dict = re.compile('''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') __lowerCamelCase : Union[str, Any] = { '''CLIPConfigMixin''', '''DecisionTransformerConfigMixin''', '''EncoderDecoderConfigMixin''', '''RagConfigMixin''', '''SpeechEncoderDecoderConfigMixin''', '''VisionEncoderDecoderConfigMixin''', '''VisionTextDualEncoderConfigMixin''', } def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [] for config_class in list(CONFIG_MAPPING.values() ): SCREAMING_SNAKE_CASE_ : Dict = False # source code of `config_class` SCREAMING_SNAKE_CASE_ : Union[str, Any] = inspect.getsource(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = _re_checkpoint.findall(lowerCAmelCase ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = checkpoint # verify the checkpoint name corresponds to the checkpoint link SCREAMING_SNAKE_CASE_ : Any = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: SCREAMING_SNAKE_CASE_ : int = True break SCREAMING_SNAKE_CASE_ : List[Any] = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(lowerCAmelCase ) if len(lowerCAmelCase ) > 0: SCREAMING_SNAKE_CASE_ : Optional[Any] = "\n".join(sorted(lowerCAmelCase ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
216
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available __lowerCamelCase : int = {'''tokenization_herbert''': ['''HerbertTokenizer''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Union[str, Any] = ['''HerbertTokenizerFast'''] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys __lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
216
1
from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP lowercase : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase : Tuple = "\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained(\"kandinsky-community/Kandinsky-2-1-prior\")\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-1\")\n >>> pipe.to(\"cuda\")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save(\"cat.png\")\n ```\n" def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=8 ): A : Any = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 A : List[Any] = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class __lowercase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Tuple: super().__init__() self.register_modules( text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , movq=__UpperCAmelCase , ) A : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: if latents is None: A : List[Any] = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase , device=__UpperCAmelCase , dtype=__UpperCAmelCase ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) A : str = latents.to(__UpperCAmelCase ) A : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , ) -> int: A : Optional[int] = len(__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else 1 # get prompt text embeddings A : List[Any] = self.tokenizer( __UpperCAmelCase , padding='''max_length''' , truncation=__UpperCAmelCase , max_length=77 , return_attention_mask=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors='''pt''' , ) A : int = text_inputs.input_ids A : Dict = self.tokenizer(__UpperCAmelCase , padding='''longest''' , return_tensors='''pt''' ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(__UpperCAmelCase , __UpperCAmelCase ): A : Dict = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f' {self.tokenizer.model_max_length} tokens: {removed_text}' ) A : Optional[int] = text_input_ids.to(__UpperCAmelCase ) A : List[str] = text_inputs.attention_mask.to(__UpperCAmelCase ) A , A : Tuple = self.text_encoder( input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase ) A : Optional[int] = prompt_embeds.repeat_interleave(__UpperCAmelCase , dim=0 ) A : Dict = text_encoder_hidden_states.repeat_interleave(__UpperCAmelCase , dim=0 ) A : Tuple = text_mask.repeat_interleave(__UpperCAmelCase , dim=0 ) if do_classifier_free_guidance: A : List[str] if negative_prompt is None: A : Optional[Any] = [''''''] * batch_size elif type(__UpperCAmelCase ) is not type(__UpperCAmelCase ): raise TypeError( f'`negative_prompt` should be the same type to `prompt`, but got {type(__UpperCAmelCase )} !=' f' {type(__UpperCAmelCase )}.' ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): A : Optional[int] = [negative_prompt] elif batch_size != len(__UpperCAmelCase ): raise ValueError( f'`negative_prompt`: {negative_prompt} has batch size {len(__UpperCAmelCase )}, but `prompt`:' f' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' ''' the batch size of `prompt`.''' ) else: A : str = negative_prompt A : Tuple = self.tokenizer( __UpperCAmelCase , padding='''max_length''' , max_length=77 , truncation=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors='''pt''' , ) A : Optional[int] = uncond_input.input_ids.to(__UpperCAmelCase ) A : Optional[Any] = uncond_input.attention_mask.to(__UpperCAmelCase ) A , A : Union[str, Any] = self.text_encoder( input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method A : Union[str, Any] = negative_prompt_embeds.shape[1] A : Optional[Any] = negative_prompt_embeds.repeat(1 , __UpperCAmelCase ) A : List[str] = negative_prompt_embeds.view(batch_size * num_images_per_prompt , __UpperCAmelCase ) A : Optional[Any] = uncond_text_encoder_hidden_states.shape[1] A : Union[str, Any] = uncond_text_encoder_hidden_states.repeat(1 , __UpperCAmelCase , 1 ) A : Any = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , __UpperCAmelCase , -1 ) A : Optional[Any] = uncond_text_mask.repeat_interleave(__UpperCAmelCase , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A : str = torch.cat([negative_prompt_embeds, prompt_embeds] ) A : int = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) A : Any = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def snake_case ( self , __UpperCAmelCase=0 ) -> Tuple: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) A : str = torch.device(f'cuda:{gpu_id}' ) A : str = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase=0 ) -> Optional[int]: if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) A : List[Any] = torch.device(f'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=__UpperCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) A : Optional[Any] = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: A , A : Tuple = cpu_offload_with_hook(__UpperCAmelCase , __UpperCAmelCase , prev_module_hook=__UpperCAmelCase ) if self.safety_checker is not None: A , A : Any = cpu_offload_with_hook(self.safety_checker , __UpperCAmelCase , prev_module_hook=__UpperCAmelCase ) # We'll offload the last model manually. A : Dict = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def snake_case ( self ) -> Any: if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(__UpperCAmelCase , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__UpperCAmelCase ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = 5_12 , __UpperCAmelCase = 5_12 , __UpperCAmelCase = 1_00 , __UpperCAmelCase = 4.0 , __UpperCAmelCase = 1 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , ) -> Optional[int]: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): A : Union[str, Any] = 1 elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): A : Tuple = len(__UpperCAmelCase ) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(__UpperCAmelCase )}' ) A : str = self._execution_device A : str = batch_size * num_images_per_prompt A : Tuple = guidance_scale > 1.0 A , A , A : List[str] = self._encode_prompt( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ): A : Any = torch.cat(__UpperCAmelCase , dim=0 ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ): A : List[Any] = torch.cat(__UpperCAmelCase , dim=0 ) if do_classifier_free_guidance: A : Optional[int] = image_embeds.repeat_interleave(__UpperCAmelCase , dim=0 ) A : int = negative_image_embeds.repeat_interleave(__UpperCAmelCase , dim=0 ) A : Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=__UpperCAmelCase ) self.scheduler.set_timesteps(__UpperCAmelCase , device=__UpperCAmelCase ) A : Any = self.scheduler.timesteps A : List[Any] = self.unet.config.in_channels A , A : int = get_new_h_w(__UpperCAmelCase , __UpperCAmelCase , self.movq_scale_factor ) # create initial latent A : List[Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(__UpperCAmelCase ) ): # expand the latents if we are doing classifier free guidance A : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A : str = {'''text_embeds''': prompt_embeds, '''image_embeds''': image_embeds} A : List[str] = self.unet( sample=__UpperCAmelCase , timestep=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , added_cond_kwargs=__UpperCAmelCase , return_dict=__UpperCAmelCase , )[0] if do_classifier_free_guidance: A , A : List[Any] = noise_pred.split(latents.shape[1] , dim=1 ) A , A : int = noise_pred.chunk(2 ) A , A : List[Any] = variance_pred.chunk(2 ) A : str = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) A : Union[str, Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): A , A : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 A : Any = self.scheduler.step( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase , ).prev_sample # post-processing A : str = self.movq.decode(__UpperCAmelCase , force_not_quantize=__UpperCAmelCase )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: A : Any = image * 0.5 + 0.5 A : List[str] = image.clamp(0 , 1 ) A : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": A : Tuple = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCAmelCase )
423
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging lowercase : int = logging.get_logger(__name__) def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): A : str = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ), F'{len(lowerCamelCase_ )} != {len(lowerCamelCase_ )}' dest_layers.load_state_dict(layers_to_copy.state_dict() ) lowercase : Optional[int] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } lowercase : Union[str, Any] = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ ): try: A : Dict = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first' F' {n_student}' ) return list(range(lowerCamelCase_ ) ) def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ ): if n_student > n_teacher: raise ValueError(F'Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}' ) elif n_teacher == n_student: return list(range(lowerCamelCase_ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ = "student" , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_=False , lowerCamelCase_=None , lowerCamelCase_=None , **lowerCamelCase_ , ): A : List[str] = '''encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.''' assert (e is not None) or (d is not None), _msg if isinstance(lowerCamelCase_ , lowerCamelCase_ ): AutoTokenizer.from_pretrained(lowerCamelCase_ ).save_pretrained(lowerCamelCase_ ) # purely for convenience A : List[Any] = AutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase_ ).eval() else: assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), F'teacher must be a model or string got type {type(lowerCamelCase_ )}' A : Tuple = teacher.config.to_diff_dict() try: A , A : str = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: A : str = teacher_e if d is None: A : List[str] = teacher_d init_kwargs.update({'''encoder_layers''': e, '''decoder_layers''': d} ) except AttributeError: # T5 if hasattr(teacher.config , '''num_encoder_layers''' ): A , A : str = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: A , A : List[str] = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: A : Union[str, Any] = teacher_e if d is None: A : Any = teacher_d if hasattr(teacher.config , '''num_encoder_layers''' ): init_kwargs.update({'''num_encoder_layers''': e, '''num_decoder_layers''': d} ) else: init_kwargs.update({'''num_layers''': e, '''num_decoder_layers''': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCamelCase_ ) # Copy weights A : Dict = teacher.config_class(**lowerCamelCase_ ) A : List[str] = AutoModelForSeqaSeqLM.from_config(lowerCamelCase_ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. A : int = student.load_state_dict(teacher.state_dict() , strict=lowerCamelCase_ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save A , A : Tuple = list(range(lowerCamelCase_ ) ), list(range(lowerCamelCase_ ) ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to' F' {save_path}' ) student.save_pretrained(lowerCamelCase_ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: A : List[int] = pick_layers_to_copy(lowerCamelCase_ , lowerCamelCase_ ) if d_layers_to_copy is None: A : List[int] = pick_layers_to_copy(lowerCamelCase_ , lowerCamelCase_ ) try: if hasattr( lowerCamelCase_ , '''prophetnet''' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCamelCase_ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCamelCase_ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCamelCase_ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCamelCase_ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCamelCase_ ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCamelCase_ ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}' ) A : Tuple = { '''teacher_type''': teacher.config.model_type, '''copied_encoder_layers''': e_layers_to_copy, '''copied_decoder_layers''': d_layers_to_copy, } student.save_pretrained(lowerCamelCase_ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
423
1
"""simple docstring""" import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = logging.get_logger() # the current default level is logging.WARNING lowerCAmelCase = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(snake_case_ ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = logging.get_verbosity() lowerCAmelCase = logging.get_logger('transformers.models.bart.tokenization_bart' ) lowerCAmelCase = """Testing 1, 2, 3""" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + '\n' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , '' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + '\n' ) # restore to the original level logging.set_verbosity(snake_case_ ) @mockenv(TRANSFORMERS_VERBOSITY='error' ) def UpperCamelCase__ ( self ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() # this action activates the env var lowerCAmelCase = logging.get_logger('transformers.models.bart.tokenization_bart' ) lowerCAmelCase = os.getenv('TRANSFORMERS_VERBOSITY' , snake_case_ ) lowerCAmelCase = logging.log_levels[env_level_str] lowerCAmelCase = logging.get_verbosity() self.assertEqual( snake_case_ , snake_case_ , F'TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}' , ) # restore to the original level lowerCAmelCase = """""" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='super-error' ) def UpperCamelCase__ ( self ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() lowerCAmelCase = logging.logging.getLogger() with CaptureLogger(snake_case_ ) as cl: # this action activates the env var logging.get_logger('transformers.models.bart.tokenization_bart' ) self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out ) # no need to restore as nothing was changed def UpperCamelCase__ ( self ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() lowerCAmelCase = logging.get_logger('transformers.models.bart.tokenization_bart' ) lowerCAmelCase = """Testing 1, 2, 3""" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1' ): # nothing should be logged as env var disables this method with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , '' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , msg + '\n' ) def _SCREAMING_SNAKE_CASE (): disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
4
'''simple docstring''' import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available __a = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : """simple docstring""" lowercase = 42 lowercase = 42 lowercase = 42 @dataclass class UpperCAmelCase_ : """simple docstring""" lowercase = 42 lowercase = 42 lowercase = None lowercase = None class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = "train" lowercase = "dev" lowercase = "test" class UpperCAmelCase_ : """simple docstring""" @staticmethod def lowerCamelCase ( snake_case_ : Optional[Any] , snake_case_ : Union[Split, str] ): raise NotImplementedError @staticmethod def lowerCamelCase ( snake_case_ : str ): raise NotImplementedError @staticmethod def lowerCamelCase ( snake_case_ : List[InputExample] , snake_case_ : List[str] , snake_case_ : int , snake_case_ : PreTrainedTokenizer , snake_case_ : Optional[int]=False , snake_case_ : Dict="[CLS]" , snake_case_ : str=1 , snake_case_ : Dict="[SEP]" , snake_case_ : List[str]=False , snake_case_ : int=False , snake_case_ : Tuple=0 , snake_case_ : Union[str, Any]=0 , snake_case_ : List[Any]=-100 , snake_case_ : Any=0 , snake_case_ : Union[str, Any]=True , ): snake_case__ : int = {label: i for i, label in enumerate(snake_case_ )} snake_case__ : List[Any] = [] for ex_index, example in enumerate(snake_case_ ): if ex_index % 10_000 == 0: logger.info("""Writing example %d of %d""" , snake_case_ , len(snake_case_ ) ) snake_case__ : Tuple = [] snake_case__ : Dict = [] for word, label in zip(example.words , example.labels ): snake_case__ : Any = tokenizer.tokenize(snake_case_ ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(snake_case_ ) > 0: tokens.extend(snake_case_ ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(snake_case_ ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. snake_case__ : Dict = tokenizer.num_special_tokens_to_add() if len(snake_case_ ) > max_seq_length - special_tokens_count: snake_case__ : Tuple = tokens[: (max_seq_length - special_tokens_count)] snake_case__ : Tuple = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] snake_case__ : Dict = [sequence_a_segment_id] * len(snake_case_ ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: snake_case__ : str = [cls_token] + tokens snake_case__ : Union[str, Any] = [pad_token_label_id] + label_ids snake_case__ : Any = [cls_token_segment_id] + segment_ids snake_case__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(snake_case_ ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. snake_case__ : Tuple = [1 if mask_padding_with_zero else 0] * len(snake_case_ ) # Zero-pad up to the sequence length. snake_case__ : Dict = max_seq_length - len(snake_case_ ) if pad_on_left: snake_case__ : Optional[Any] = ([pad_token] * padding_length) + input_ids snake_case__ : Union[str, Any] = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask snake_case__ : Union[str, Any] = ([pad_token_segment_id] * padding_length) + segment_ids snake_case__ : Union[str, Any] = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(snake_case_ ) == max_seq_length assert len(snake_case_ ) == max_seq_length assert len(snake_case_ ) == max_seq_length assert len(snake_case_ ) == max_seq_length if ex_index < 5: logger.info("""*** Example ***""" ) logger.info("""guid: %s""" , example.guid ) logger.info("""tokens: %s""" , """ """.join([str(snake_case_ ) for x in tokens] ) ) logger.info("""input_ids: %s""" , """ """.join([str(snake_case_ ) for x in input_ids] ) ) logger.info("""input_mask: %s""" , """ """.join([str(snake_case_ ) for x in input_mask] ) ) logger.info("""segment_ids: %s""" , """ """.join([str(snake_case_ ) for x in segment_ids] ) ) logger.info("""label_ids: %s""" , """ """.join([str(snake_case_ ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: snake_case__ : Tuple = None features.append( InputFeatures( input_ids=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , label_ids=snake_case_ ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = 42 lowercase = nn.CrossEntropyLoss().ignore_index def __init__( self : int , snake_case_ : TokenClassificationTask , snake_case_ : str , snake_case_ : PreTrainedTokenizer , snake_case_ : List[str] , snake_case_ : str , snake_case_ : Optional[int] = None , snake_case_ : Tuple=False , snake_case_ : Split = Split.train , ): # Load data features from cache or dataset file snake_case__ : Tuple = os.path.join( snake_case_ , """cached_{}_{}_{}""".format(mode.value , tokenizer.__class__.__name__ , str(snake_case_ ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. snake_case__ : Dict = cached_features_file + """.lock""" with FileLock(snake_case_ ): if os.path.exists(snake_case_ ) and not overwrite_cache: logger.info(f"Loading features from cached file {cached_features_file}" ) snake_case__ : Tuple = torch.load(snake_case_ ) else: logger.info(f"Creating features from dataset file at {data_dir}" ) snake_case__ : Any = token_classification_task.read_examples_from_file(snake_case_ , snake_case_ ) # TODO clean up all this to leverage built-in features of tokenizers snake_case__ : Any = token_classification_task.convert_examples_to_features( snake_case_ , snake_case_ , snake_case_ , snake_case_ , cls_token_at_end=bool(model_type in ["""xlnet"""] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=snake_case_ , pad_on_left=bool(tokenizer.padding_side == """left""" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f"Saving features into cached file {cached_features_file}" ) torch.save(self.features , snake_case_ ) def __len__( self : str ): return len(self.features ) def __getitem__( self : int , snake_case_ : Dict ): return self.features[i] if is_tf_available(): import tensorflow as tf class UpperCAmelCase_ : """simple docstring""" lowercase = 42 lowercase = -1_00 def __init__( self : List[str] , snake_case_ : TokenClassificationTask , snake_case_ : str , snake_case_ : PreTrainedTokenizer , snake_case_ : List[str] , snake_case_ : str , snake_case_ : Optional[int] = None , snake_case_ : Any=False , snake_case_ : Split = Split.train , ): snake_case__ : int = token_classification_task.read_examples_from_file(snake_case_ , snake_case_ ) # TODO clean up all this to leverage built-in features of tokenizers snake_case__ : Optional[Any] = token_classification_task.convert_examples_to_features( snake_case_ , snake_case_ , snake_case_ , snake_case_ , cls_token_at_end=bool(model_type in ["""xlnet"""] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=snake_case_ , pad_on_left=bool(tokenizer.padding_side == """left""" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: snake_case__ : str = tf.data.Dataset.from_generator( snake_case_ , ({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa}, tf.intaa) , ( {"""input_ids""": tf.TensorShape([None] ), """attention_mask""": tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: snake_case__ : str = tf.data.Dataset.from_generator( snake_case_ , ({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa, """token_type_ids""": tf.intaa}, tf.intaa) , ( { """input_ids""": tf.TensorShape([None] ), """attention_mask""": tf.TensorShape([None] ), """token_type_ids""": tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def lowerCamelCase ( self : Optional[Any] ): snake_case__ : Optional[Any] = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : Optional[Any] ): return len(self.features ) def __getitem__( self : str , snake_case_ : List[str] ): return self.features[i]
374
0
'''simple docstring''' import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def snake_case ( a_ : Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : Optional[Any] = [ """decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(a_ , a_ ) def snake_case ( a_ : int ) -> List[str]: """simple docstring""" UpperCamelCase_ : List[str] = emb.weight.shape UpperCamelCase_ : Optional[Any] = nn.Linear(a_ , a_ , bias=a_ ) UpperCamelCase_ : Union[str, Any] = emb.weight.data return lin_layer def snake_case ( a_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : str = torch.load(a_ , map_location="""cpu""" ) UpperCamelCase_ : str = Namespace(**checkpoint["""cfg"""]["""model"""] ) UpperCamelCase_ : Optional[int] = checkpoint["""model"""] remove_ignore_keys_(a_ ) UpperCamelCase_ : Any = state_dict["""decoder.embed_tokens.weight"""].shape[0] UpperCamelCase_ : Optional[int] = {key.replace("""decoder""" , """model""" ): val for key, val in state_dict.items()} UpperCamelCase_ : List[Any] = XGLMConfig( vocab_size=a_ , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""gelu""" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) UpperCamelCase_ : int = XGLMForCausalLM(a_ ) UpperCamelCase_ : Tuple = model.load_state_dict(a_ , strict=a_ ) print(a_ ) UpperCamelCase_ : str = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": UpperCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") UpperCamelCase =parser.parse_args() UpperCamelCase =convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
717
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() UpperCamelCase =logging.get_logger(__name__) UpperCamelCase ={ "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } UpperCamelCase =[ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def snake_case ( a_ : str , a_ : Any , a_ : Dict , a_ : Optional[int] , a_ : Optional[int] ) -> int: """simple docstring""" for attribute in key.split(""".""" ): UpperCamelCase_ : Union[str, Any] = getattr(a_ , a_ ) if weight_type is not None: UpperCamelCase_ : Dict = getattr(a_ , a_ ).shape else: UpperCamelCase_ : int = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": UpperCamelCase_ : str = value elif weight_type == "weight_g": UpperCamelCase_ : str = value elif weight_type == "weight_v": UpperCamelCase_ : Optional[int] = value elif weight_type == "bias": UpperCamelCase_ : Any = value else: UpperCamelCase_ : Dict = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def snake_case ( a_ : Optional[int] , a_ : int ) -> int: """simple docstring""" UpperCamelCase_ : int = [] UpperCamelCase_ : Dict = fairseq_model.state_dict() UpperCamelCase_ : Union[str, Any] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight UpperCamelCase_ : Optional[int] = None for name, value in fairseq_dict.items(): UpperCamelCase_ : Optional[int] = False if "conv_layers" in name: load_conv_layer( a_ , a_ , a_ , a_ , hf_model.config.feat_extract_norm == """group""" , ) UpperCamelCase_ : Any = True elif name.split(""".""" )[0] == "proj": UpperCamelCase_ : Tuple = fairseq_model.proj UpperCamelCase_ : Any = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: UpperCamelCase_ : Dict = True if "*" in mapped_key: UpperCamelCase_ : Optional[int] = name.split(a_ )[0].split(""".""" )[-2] UpperCamelCase_ : Any = mapped_key.replace("""*""" , a_ ) if "weight_g" in name: UpperCamelCase_ : Tuple = """weight_g""" elif "weight_v" in name: UpperCamelCase_ : Union[str, Any] = """weight_v""" elif "bias" in name: UpperCamelCase_ : int = """bias""" elif "weight" in name: UpperCamelCase_ : Optional[int] = """weight""" else: UpperCamelCase_ : int = None set_recursively(a_ , a_ , a_ , a_ , a_ ) continue if not is_used: unused_weights.append(a_ ) logger.warning(f"Unused weights: {unused_weights}" ) return proj_weight def snake_case ( a_ : Any , a_ : Any , a_ : Union[str, Any] , a_ : Dict , a_ : Tuple ) -> List[str]: """simple docstring""" UpperCamelCase_ : Optional[int] = full_name.split("""conv_layers.""" )[-1] UpperCamelCase_ : Optional[Any] = name.split(""".""" ) UpperCamelCase_ : List[Any] = int(items[0] ) UpperCamelCase_ : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) UpperCamelCase_ : List[Any] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) UpperCamelCase_ : Dict = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) UpperCamelCase_ : List[str] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) UpperCamelCase_ : str = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(a_ ) def snake_case ( a_ : str ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ , UpperCamelCase_ : List[str] = emb.weight.shape UpperCamelCase_ : str = nn.Linear(a_ , a_ , bias=a_ ) UpperCamelCase_ : Optional[int] = emb.weight.data return lin_layer def snake_case ( a_ : Any ) -> Tuple: """simple docstring""" with open(a_ , """r""" , encoding="""utf-8""" ) as f: UpperCamelCase_ : Optional[int] = f.readlines() UpperCamelCase_ : Union[str, Any] = [line.split(""" """ )[0] for line in lines] UpperCamelCase_ : List[Any] = len(a_ ) UpperCamelCase_ : Union[str, Any] = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(a_ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def snake_case ( a_ : List[Any] , a_ : str , a_ : int , a_ : int , a_ : Optional[int] , a_ : Any , a_ : Tuple , ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : Dict = WavaVecaConfig.from_pretrained(a_ ) UpperCamelCase_ : Any = SpeechaTextaConfig.from_pretrained( a_ , vocab_size=a_ , decoder_layers=a_ , do_stable_layer_norm=a_ ) UpperCamelCase_ : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=a_ , return_attention_mask=a_ , ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) UpperCamelCase_ : Union[str, Any] = model[0].eval() # set weights for wav2vec2 encoder UpperCamelCase_ : Tuple = WavaVecaModel(a_ ) UpperCamelCase_ : Any = recursively_load_weights_wavaveca(model.encoder , a_ ) UpperCamelCase_ : Any = SpeechaTextaForCausalLM(a_ ) UpperCamelCase_ , UpperCamelCase_ : Optional[Any] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=a_ ) # set output linear layer unexpected_keys.remove("""embed_out""" ) UpperCamelCase_ : Tuple = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(f"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) UpperCamelCase_ : Optional[Any] = SpeechEncoderDecoderModel(encoder=a_ , decoder=a_ ) UpperCamelCase_ : Dict = False # add projection layer UpperCamelCase_ : Any = nn.Parameter(projection_layer.weight ) UpperCamelCase_ : Optional[Any] = nn.Parameter(projection_layer.bias ) UpperCamelCase_ : Dict = create_vocab_dict(a_ ) with open(os.path.join(a_ , """vocab.json""" ) , """w""" ) as fp: json.dump(a_ , a_ ) UpperCamelCase_ : Optional[int] = SpeechaTextaTokenizer(os.path.join(a_ , """vocab.json""" ) ) tokenizer.save_pretrained(a_ ) UpperCamelCase_ : Optional[int] = hf_wavavec.config.to_dict() UpperCamelCase_ : Union[str, Any] = tokenizer.pad_token_id UpperCamelCase_ : List[Any] = tokenizer.bos_token_id UpperCamelCase_ : str = tokenizer.eos_token_id UpperCamelCase_ : Dict = """speech_to_text_2""" UpperCamelCase_ : Optional[Any] = """wav2vec2""" UpperCamelCase_ : Dict = SpeechEncoderDecoderConfig.from_dict(a_ ) hf_wavavec.save_pretrained(a_ ) feature_extractor.save_pretrained(a_ ) if __name__ == "__main__": UpperCamelCase =argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=1_0224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") UpperCamelCase =parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
543
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _lowerCAmelCase ( __snake_case , __snake_case ): '''simple docstring''' lowerCAmelCase_ = "swin" lowerCAmelCase_ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__(self , UpperCAmelCase=224 , UpperCAmelCase=4 , UpperCAmelCase=3 , UpperCAmelCase=96 , UpperCAmelCase=[2, 2, 6, 2] , UpperCAmelCase=[3, 6, 12, 24] , UpperCAmelCase=7 , UpperCAmelCase=4.0 , UpperCAmelCase=True , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=False , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=32 , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ) -> Tuple: super().__init__(**SCREAMING_SNAKE_CASE__ ) _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = embed_dim _snake_case = depths _snake_case = len(SCREAMING_SNAKE_CASE__ ) _snake_case = num_heads _snake_case = window_size _snake_case = mlp_ratio _snake_case = qkv_bias _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = drop_path_rate _snake_case = hidden_act _snake_case = use_absolute_embeddings _snake_case = layer_norm_eps _snake_case = initializer_range _snake_case = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _snake_case = int(embed_dim * 2 ** (len(SCREAMING_SNAKE_CASE__ ) - 1) ) _snake_case = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(SCREAMING_SNAKE_CASE__ ) + 1 )] _snake_case, _snake_case = get_aligned_output_features_output_indices( out_features=SCREAMING_SNAKE_CASE__ , out_indices=SCREAMING_SNAKE_CASE__ , stage_names=self.stage_names ) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = version.parse("1.11" ) @property def lowercase (self ) -> int: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowercase (self ) -> int: return 1e-4
585
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class _lowerCAmelCase : """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] =None def __lowerCAmelCase ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) UpperCamelCase = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Tuple ): """simple docstring""" UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE__ , 'feat_extract.json' ) feat_extract_first.to_json_file(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = self.feature_extraction_class.from_json_file(SCREAMING_SNAKE_CASE__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __lowerCAmelCase ( self : Tuple ): """simple docstring""" UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = feat_extract_first.save_pretrained(SCREAMING_SNAKE_CASE__ )[0] check_json_file_has_correct_format(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = self.feature_extraction_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __lowerCAmelCase ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.feature_extraction_class() self.assertIsNotNone(SCREAMING_SNAKE_CASE__ )
282
0
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _lowerCAmelCase = logging.get_logger(__name__) class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A = ["input_features", "is_longer"] def __init__(self , _UpperCAmelCase=6_4 , _UpperCAmelCase=4_8_0_0_0 , _UpperCAmelCase=4_8_0 , _UpperCAmelCase=1_0 , _UpperCAmelCase=1_0_2_4 , _UpperCAmelCase=0.0 , _UpperCAmelCase=False , _UpperCAmelCase = 0 , _UpperCAmelCase = 1_4_0_0_0 , _UpperCAmelCase = None , _UpperCAmelCase = "fusion" , _UpperCAmelCase = "repeatpad" , **_UpperCAmelCase , ) -> List[str]: super().__init__( feature_size=_UpperCAmelCase , sampling_rate=_UpperCAmelCase , padding_value=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) __UpperCamelCase : Tuple = top_db __UpperCamelCase : Tuple = truncation __UpperCamelCase : int = padding __UpperCamelCase : Union[str, Any] = fft_window_size __UpperCamelCase : Tuple = (fft_window_size >> 1) + 1 __UpperCamelCase : Union[str, Any] = hop_length __UpperCamelCase : Optional[Any] = max_length_s __UpperCamelCase : Optional[int] = max_length_s * sampling_rate __UpperCamelCase : int = sampling_rate __UpperCamelCase : Union[str, Any] = frequency_min __UpperCamelCase : Optional[int] = frequency_max __UpperCamelCase : Optional[int] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_UpperCAmelCase , min_frequency=_UpperCAmelCase , max_frequency=_UpperCAmelCase , sampling_rate=_UpperCAmelCase , norm=_UpperCAmelCase , mel_scale="htk" , ) __UpperCamelCase : Optional[int] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_UpperCAmelCase , min_frequency=_UpperCAmelCase , max_frequency=_UpperCAmelCase , sampling_rate=_UpperCAmelCase , norm="slaney" , mel_scale="slaney" , ) def a_ (self ) -> Dict[str, Any]: __UpperCamelCase : Optional[Any] = copy.deepcopy(self.__dict__ ) __UpperCamelCase : Union[str, Any] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def a_ (self , _UpperCAmelCase , _UpperCAmelCase = None ) -> np.ndarray: __UpperCamelCase : Optional[int] = spectrogram( _UpperCAmelCase , window_function(self.fft_window_size , "hann" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_UpperCAmelCase , log_mel="dB" , ) return log_mel_spectrogram.T def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: __UpperCamelCase : List[str] = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk __UpperCamelCase : Union[str, Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk __UpperCamelCase : List[str] = [0] # randomly choose index for each part __UpperCamelCase : Optional[int] = np.random.choice(ranges[0] ) __UpperCamelCase : Optional[Any] = np.random.choice(ranges[1] ) __UpperCamelCase : Union[str, Any] = np.random.choice(ranges[2] ) __UpperCamelCase : List[str] = mel[idx_front : idx_front + chunk_frames, :] __UpperCamelCase : Any = mel[idx_middle : idx_middle + chunk_frames, :] __UpperCamelCase : int = mel[idx_back : idx_back + chunk_frames, :] __UpperCamelCase : Tuple = torch.tensor(mel[None, None, :] ) __UpperCamelCase : int = torch.nn.functional.interpolate( _UpperCAmelCase , size=[chunk_frames, 6_4] , mode="bilinear" , align_corners=_UpperCAmelCase ) __UpperCamelCase : Any = mel_shrink[0][0].numpy() __UpperCamelCase : List[str] = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> np.array: if waveform.shape[0] > max_length: if truncation == "rand_trunc": __UpperCamelCase : Union[str, Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad __UpperCamelCase : int = len(_UpperCAmelCase ) - max_length __UpperCamelCase : Tuple = np.random.randint(0 , overflow + 1 ) __UpperCamelCase : Union[str, Any] = waveform[idx : idx + max_length] __UpperCamelCase : List[str] = self._np_extract_fbank_features(_UpperCAmelCase , self.mel_filters_slaney )[None, :] elif truncation == "fusion": __UpperCamelCase : Dict = self._np_extract_fbank_features(_UpperCAmelCase , self.mel_filters ) __UpperCamelCase : Union[str, Any] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed __UpperCamelCase : Optional[int] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. __UpperCamelCase : Optional[int] = np.stack([mel, mel, mel, mel] , axis=0 ) __UpperCamelCase : Any = False else: __UpperCamelCase : str = self._random_mel_fusion(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __UpperCamelCase : Tuple = True else: raise NotImplementedError(f"data_truncating {truncation} not implemented" ) else: __UpperCamelCase : List[Any] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": __UpperCamelCase : List[Any] = int(max_length / len(_UpperCAmelCase ) ) __UpperCamelCase : str = np.stack(np.tile(_UpperCAmelCase , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": __UpperCamelCase : int = int(max_length / len(_UpperCAmelCase ) ) __UpperCamelCase : Any = np.stack(np.tile(_UpperCAmelCase , _UpperCAmelCase ) ) __UpperCamelCase : List[Any] = np.pad(_UpperCAmelCase , (0, max_length - waveform.shape[0]) , mode="constant" , constant_values=0 ) if truncation == "fusion": __UpperCamelCase : Any = self._np_extract_fbank_features(_UpperCAmelCase , self.mel_filters ) __UpperCamelCase : List[Any] = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: __UpperCamelCase : Union[str, Any] = self._np_extract_fbank_features(_UpperCAmelCase , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__(self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> BatchFeature: __UpperCamelCase : List[str] = truncation if truncation is not None else self.truncation __UpperCamelCase : Tuple = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" f" was sampled with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) __UpperCamelCase : Optional[Any] = isinstance(_UpperCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) __UpperCamelCase : Union[str, Any] = is_batched_numpy or ( isinstance(_UpperCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __UpperCamelCase : Any = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_UpperCAmelCase , np.ndarray ): __UpperCamelCase : Optional[int] = np.asarray(_UpperCAmelCase , dtype=np.floataa ) elif isinstance(_UpperCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __UpperCamelCase : str = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __UpperCamelCase : List[str] = [np.asarray(_UpperCAmelCase )] # convert to mel spectrogram, truncate and pad if needed. __UpperCamelCase : List[Any] = [ self._get_input_mel(_UpperCAmelCase , max_length if max_length else self.nb_max_samples , _UpperCAmelCase , _UpperCAmelCase ) for waveform in raw_speech ] __UpperCamelCase : Dict = [] __UpperCamelCase : Optional[int] = [] for mel, longer in padded_inputs: input_mel.append(_UpperCAmelCase ) is_longer.append(_UpperCAmelCase ) if truncation == "fusion" and sum(_UpperCAmelCase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer __UpperCamelCase : int = np.random.randint(0 , len(_UpperCAmelCase ) ) __UpperCamelCase : Optional[int] = True if isinstance(input_mel[0] , _UpperCAmelCase ): __UpperCamelCase : Optional[int] = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool __UpperCamelCase : int = [[longer] for longer in is_longer] __UpperCamelCase : List[str] = {"input_features": input_mel, "is_longer": is_longer} __UpperCamelCase : int = BatchFeature(_UpperCAmelCase ) if return_tensors is not None: __UpperCamelCase : List[str] = input_features.convert_to_tensors(_UpperCAmelCase ) return input_features
710
'''simple docstring''' import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class A : '''simple docstring''' def __init__(self , _UpperCAmelCase , _UpperCAmelCase=1_3 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=9_9 , _UpperCAmelCase=3_2 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=3_7 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=5_0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=None , ) -> Any: __UpperCamelCase : Union[str, Any] = parent __UpperCamelCase : Dict = batch_size __UpperCamelCase : Dict = seq_length __UpperCamelCase : Optional[int] = is_training __UpperCamelCase : Optional[Any] = use_input_mask __UpperCamelCase : Optional[Any] = vocab_size __UpperCamelCase : Tuple = hidden_size __UpperCamelCase : Optional[Any] = num_hidden_layers __UpperCamelCase : Optional[Any] = num_attention_heads __UpperCamelCase : Union[str, Any] = intermediate_size __UpperCamelCase : List[str] = hidden_act __UpperCamelCase : Optional[int] = hidden_dropout_prob __UpperCamelCase : Any = attention_probs_dropout_prob __UpperCamelCase : Dict = max_position_embeddings __UpperCamelCase : List[str] = initializer_range __UpperCamelCase : Union[str, Any] = use_labels __UpperCamelCase : Optional[Any] = scope def a_ (self ) -> Tuple: __UpperCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase : Any = None if self.use_input_mask: __UpperCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: __UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase : Any = self.get_config() return config, input_ids, input_mask, token_labels def a_ (self ) -> Tuple: return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) def a_ (self ) -> Dict: ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) : Any = self.prepare_config_and_inputs() __UpperCamelCase : int = True __UpperCamelCase : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __UpperCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ) -> Optional[int]: __UpperCamelCase : Union[str, Any] = BertGenerationEncoder(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __UpperCamelCase : int = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) __UpperCamelCase : List[Any] = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ) -> Any: __UpperCamelCase : Any = True __UpperCamelCase : Optional[Any] = BertGenerationEncoder(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __UpperCamelCase : Tuple = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , ) __UpperCamelCase : Any = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ) -> Optional[int]: __UpperCamelCase : Optional[int] = True __UpperCamelCase : Optional[int] = True __UpperCamelCase : Dict = BertGenerationDecoder(config=_UpperCAmelCase ).to(_UpperCAmelCase ).eval() # first forward pass __UpperCamelCase : Tuple = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase , ) __UpperCamelCase : Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCamelCase : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCamelCase : str = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __UpperCamelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCamelCase : Any = torch.cat([input_mask, next_mask] , dim=-1 ) __UpperCamelCase : Any = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , )["hidden_states"][0] __UpperCamelCase : str = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , )["hidden_states"][0] # select random slice __UpperCamelCase : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCamelCase : int = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCamelCase : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , ) -> Optional[Any]: __UpperCamelCase : List[Any] = BertGenerationDecoder(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __UpperCamelCase : List[str] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a_ (self ) -> Dict: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : str = self.prepare_config_and_inputs() __UpperCamelCase : Any = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' A = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () A = (BertGenerationDecoder,) if is_torch_available() else () A = ( {"feature-extraction": BertGenerationEncoder, "text-generation": BertGenerationDecoder} if is_torch_available() else {} ) def a_ (self ) -> Tuple: __UpperCamelCase : Optional[Any] = BertGenerationEncoderTester(self ) __UpperCamelCase : Optional[Any] = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=3_7 ) def a_ (self ) -> List[Any]: self.config_tester.run_common_tests() def a_ (self ) -> List[str]: __UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def a_ (self ) -> Union[str, Any]: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() __UpperCamelCase : List[Any] = "bert" self.model_tester.create_and_check_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def a_ (self ) -> Any: __UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_UpperCAmelCase ) def a_ (self ) -> Optional[int]: __UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*_UpperCAmelCase ) def a_ (self ) -> Tuple: # This regression test was failing with PyTorch < 1.3 ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() __UpperCamelCase : Optional[int] = None self.model_tester.create_and_check_model_as_decoder( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) def a_ (self ) -> Dict: __UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*_UpperCAmelCase ) @slow def a_ (self ) -> int: __UpperCamelCase : Dict = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) self.assertIsNotNone(_UpperCAmelCase ) @require_torch class A ( unittest.TestCase ): '''simple docstring''' @slow def a_ (self ) -> Tuple: __UpperCamelCase : List[str] = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) __UpperCamelCase : List[str] = torch.tensor([[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_2_6, 3_8_9_9, 2_0_0_3, 1_0_1_4_0, 1_0_2]] ) with torch.no_grad(): __UpperCamelCase : Any = model(_UpperCAmelCase )[0] __UpperCamelCase : List[Any] = torch.Size([1, 8, 1_0_2_4] ) self.assertEqual(output.shape , _UpperCAmelCase ) __UpperCamelCase : List[Any] = torch.tensor( [[[0.1_775, 0.0_083, -0.0_321], [1.6_002, 0.1_287, 0.3_912], [2.1_473, 0.5_791, 0.6_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) @require_torch class A ( unittest.TestCase ): '''simple docstring''' @slow def a_ (self ) -> Tuple: __UpperCamelCase : Any = BertGenerationDecoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) __UpperCamelCase : str = torch.tensor([[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_2_6, 3_8_9_9, 2_0_0_3, 1_0_1_4_0, 1_0_2]] ) with torch.no_grad(): __UpperCamelCase : Tuple = model(_UpperCAmelCase )[0] __UpperCamelCase : Tuple = torch.Size([1, 8, 5_0_3_5_8] ) self.assertEqual(output.shape , _UpperCAmelCase ) __UpperCamelCase : int = torch.tensor( [[[-0.5_788, -2.5_994, -3.7_054], [0.0_438, 4.7_997, 1.8_795], [1.5_862, 6.6_409, 4.4_638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
399
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = { 'configuration_informer': [ 'INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'InformerForPrediction', 'InformerModel', 'InformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
253
from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _a ( lowerCAmelCase__ ): '''simple docstring''' def __UpperCAmelCase( self ): __A : List[str] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__UpperCAmelCase , "embed_dim" ) ) self.parent.assertTrue(hasattr(__UpperCAmelCase , "num_heads" ) ) class _a : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=64 , __UpperCAmelCase=3 , __UpperCAmelCase=[16, 48, 96] , __UpperCAmelCase=[1, 3, 6] , __UpperCAmelCase=[1, 2, 10] , __UpperCAmelCase=[7, 3, 3] , __UpperCAmelCase=[4, 2, 2] , __UpperCAmelCase=[2, 1, 1] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[False, False, True] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-12 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=2 , ): __A : Union[str, Any] = parent __A : Union[str, Any] = batch_size __A : Optional[int] = image_size __A : List[Any] = patch_sizes __A : Optional[int] = patch_stride __A : Dict = patch_padding __A : int = is_training __A : Tuple = use_labels __A : List[str] = num_labels __A : Tuple = num_channels __A : Tuple = embed_dim __A : Optional[int] = num_heads __A : int = stride_kv __A : Optional[int] = depth __A : int = cls_token __A : Optional[Any] = attention_drop_rate __A : Tuple = initializer_range __A : Any = layer_norm_eps def __UpperCAmelCase( self ): __A : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A : Tuple = None if self.use_labels: # create a random int32 tensor of given shape __A : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) __A : Optional[int] = self.get_config() return config, pixel_values, labels def __UpperCAmelCase( self ): return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __A : Optional[Any] = TFCvtModel(config=__UpperCAmelCase ) __A : List[str] = model(__UpperCAmelCase , training=__UpperCAmelCase ) __A : Any = (self.image_size, self.image_size) __A , __A : Any = image_size[0], image_size[1] for i in range(len(self.depth ) ): __A : str = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) __A : List[str] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __A : List[str] = self.num_labels __A : Optional[int] = TFCvtForImageClassification(__UpperCAmelCase ) __A : Optional[int] = model(__UpperCAmelCase , labels=__UpperCAmelCase , training=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase( self ): __A : List[Any] = self.prepare_config_and_inputs() __A , __A , __A : Optional[Any] = config_and_inputs __A : List[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class _a ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : Union[str, Any] = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () lowerCamelCase_ : str = ( {"""feature-extraction""": TFCvtModel, """image-classification""": TFCvtForImageClassification} if is_tf_available() else {} ) lowerCamelCase_ : int = False lowerCamelCase_ : Any = False lowerCamelCase_ : Tuple = False lowerCamelCase_ : str = False lowerCamelCase_ : Dict = False def __UpperCAmelCase( self ): __A : Optional[int] = TFCvtModelTester(self ) __A : str = TFCvtConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def __UpperCAmelCase( self ): self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="Cvt does not output attentions" ) def __UpperCAmelCase( self ): pass @unittest.skip(reason="Cvt does not use inputs_embeds" ) def __UpperCAmelCase( self ): pass @unittest.skip(reason="Cvt does not support input and output embeddings" ) def __UpperCAmelCase( self ): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) def __UpperCAmelCase( self ): super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def __UpperCAmelCase( self ): super().test_keras_fit() @unittest.skip(reason="Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8" ) def __UpperCAmelCase( self ): __A : int = tf.keras.mixed_precision.Policy("mixed_float16" ) tf.keras.mixed_precision.set_global_policy(__UpperCAmelCase ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("float32" ) def __UpperCAmelCase( self ): __A , __A : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : int = model_class(__UpperCAmelCase ) __A : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : Optional[Any] = [*signature.parameters.keys()] __A : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def __UpperCAmelCase( self ): def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __A : Dict = model_class(__UpperCAmelCase ) __A : List[Any] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __A : Optional[int] = outputs.hidden_states __A : int = len(self.model_tester.depth ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __A , __A : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : int = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A : Dict = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __UpperCAmelCase( self ): __A : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __UpperCAmelCase( self ): __A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @slow def __UpperCAmelCase( self ): for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : int = TFCvtModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def lowerCamelCase_ ( ) -> List[Any]: __A : int = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class _a ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCAmelCase( self ): return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __UpperCAmelCase( self ): __A : Any = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __A : int = self.default_image_processor __A : Dict = prepare_img() __A : Dict = image_processor(images=__UpperCAmelCase , return_tensors="tf" ) # forward pass __A : Optional[Any] = model(**__UpperCAmelCase ) # verify the logits __A : int = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __A : Optional[Any] = tf.constant([0.92_85, 0.90_15, -0.31_50] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __UpperCAmelCase , atol=1e-4 ) )
520
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class lowerCamelCase ( unittest.TestCase ): def __init__( self : Any , __snake_case : Tuple , __snake_case : Optional[int]=7 , __snake_case : Tuple=3 , __snake_case : Dict=18 , __snake_case : List[Any]=30 , __snake_case : List[str]=4_00 , __snake_case : int=True , __snake_case : str=None , __snake_case : int=True , __snake_case : Any=None , __snake_case : Optional[int]=True , __snake_case : Optional[Any]=[0.48_145_466, 0.4_578_275, 0.40_821_073] , __snake_case : int=[0.26_862_954, 0.26_130_258, 0.27_577_711] , __snake_case : List[Any]=True , ): '''simple docstring''' _snake_case: str = size if size is not None else {'height': 2_24, 'width': 2_24} _snake_case: str = crop_size if crop_size is not None else {'height': 18, 'width': 18} _snake_case: Dict = parent _snake_case: List[str] = batch_size _snake_case: Optional[int] = num_channels _snake_case: Tuple = image_size _snake_case: Optional[Any] = min_resolution _snake_case: str = max_resolution _snake_case: Dict = do_resize _snake_case: str = size _snake_case: int = do_center_crop _snake_case: int = crop_size _snake_case: str = do_normalize _snake_case: str = image_mean _snake_case: Optional[Any] = image_std _snake_case: Optional[int] = do_convert_rgb def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def SCREAMING_SNAKE_CASE_ ( self : Dict , __snake_case : Tuple=False , __snake_case : List[Any]=False , __snake_case : List[Any]=False ): '''simple docstring''' assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: _snake_case: str = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 2_55 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: _snake_case: Optional[Any] = [] for i in range(self.batch_size ): _snake_case: Union[str, Any] = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(2_55 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension _snake_case: List[Any] = [Image.fromarray(np.moveaxis(__snake_case , 0 , -1 ) ) for x in image_inputs] if torchify: _snake_case: List[Any] = [torch.from_numpy(__snake_case ) for x in image_inputs] return image_inputs @require_torch @require_vision class lowerCamelCase ( __UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = ChineseCLIPImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' _snake_case: Optional[int] = ChineseCLIPImageProcessingTester(self , do_center_crop=__snake_case ) @property def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' _snake_case: List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , 'do_resize' ) ) self.assertTrue(hasattr(__snake_case , 'size' ) ) self.assertTrue(hasattr(__snake_case , 'do_center_crop' ) ) self.assertTrue(hasattr(__snake_case , 'center_crop' ) ) self.assertTrue(hasattr(__snake_case , 'do_normalize' ) ) self.assertTrue(hasattr(__snake_case , 'image_mean' ) ) self.assertTrue(hasattr(__snake_case , 'image_std' ) ) self.assertTrue(hasattr(__snake_case , 'do_convert_rgb' ) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case: int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 2_24, 'width': 2_24} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) _snake_case: Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' _snake_case: Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case: Any = self.image_processor_tester.prepare_inputs(equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input _snake_case: str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _snake_case: Union[str, Any] = image_processing(__snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' _snake_case: Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case: Optional[int] = self.image_processor_tester.prepare_inputs(equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input _snake_case: Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _snake_case: Union[str, Any] = image_processing(__snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' _snake_case: Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case: Union[str, Any] = self.image_processor_tester.prepare_inputs(equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input _snake_case: Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _snake_case: str = image_processing(__snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) @require_torch @require_vision class lowerCamelCase ( __UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = ChineseCLIPImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' _snake_case: str = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=__snake_case ) _snake_case: Optional[int] = 3 @property def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' _snake_case: List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , 'do_resize' ) ) self.assertTrue(hasattr(__snake_case , 'size' ) ) self.assertTrue(hasattr(__snake_case , 'do_center_crop' ) ) self.assertTrue(hasattr(__snake_case , 'center_crop' ) ) self.assertTrue(hasattr(__snake_case , 'do_normalize' ) ) self.assertTrue(hasattr(__snake_case , 'image_mean' ) ) self.assertTrue(hasattr(__snake_case , 'image_std' ) ) self.assertTrue(hasattr(__snake_case , 'do_convert_rgb' ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' _snake_case: List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case: str = self.image_processor_tester.prepare_inputs(equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input _snake_case: Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _snake_case: Union[str, Any] = image_processing(__snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
720
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar A : str = TypeVar('T') class lowerCamelCase ( Generic[T] ): _SCREAMING_SNAKE_CASE = 42 # Cache store of keys _SCREAMING_SNAKE_CASE = 42 # References of the keys in cache _SCREAMING_SNAKE_CASE = 10 # Maximum capacity of cache def __init__( self : List[Any] , __snake_case : int ): '''simple docstring''' _snake_case: Dict = deque() _snake_case: Union[str, Any] = set() if not n: _snake_case: Optional[int] = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: _snake_case: Tuple = n def SCREAMING_SNAKE_CASE_ ( self : Any , __snake_case : T ): '''simple docstring''' if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: _snake_case: int = self.dq_store.pop() self.key_reference.remove(__snake_case ) else: self.dq_store.remove(__snake_case ) self.dq_store.appendleft(__snake_case ) self.key_reference.add(__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' for k in self.dq_store: print(__snake_case ) def __repr__( self : List[Any] ): '''simple docstring''' return f'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() A : LRUCache[str | int] = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
273
0
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput __UpperCamelCase : Any = 'scheduler_config.json' class _UpperCamelCase ( A ): '''simple docstring''' a_ : Dict = 1 a_ : List[str] = 2 a_ : Optional[int] = 3 a_ : Optional[int] = 4 a_ : Union[str, Any] = 5 @dataclass class _UpperCamelCase ( A ): '''simple docstring''' a_ : jnp.ndarray class _UpperCamelCase : '''simple docstring''' a_ : Any = SCHEDULER_CONFIG_NAME a_ : List[str] = ["dtype"] a_ : Optional[int] = [] a_ : Union[str, Any] = True @classmethod def _snake_case ( cls : Optional[int] , _lowerCamelCase : Dict[str, Any] = None , _lowerCamelCase : Optional[str] = None , _lowerCamelCase : Optional[Any]=False , **_lowerCamelCase : Any , ): '''simple docstring''' __lowerCamelCase , __lowerCamelCase : Dict = cls.load_config( pretrained_model_name_or_path=_lowerCamelCase , subfolder=_lowerCamelCase , return_unused_kwargs=_lowerCamelCase , **_lowerCamelCase , ) __lowerCamelCase , __lowerCamelCase : Tuple = cls.from_config(_lowerCamelCase , return_unused_kwargs=_lowerCamelCase , **_lowerCamelCase ) if hasattr(_lowerCamelCase , """create_state""" ) and getattr(_lowerCamelCase , """has_state""" , _lowerCamelCase ): __lowerCamelCase : Optional[int] = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def _snake_case ( self : List[Any] , _lowerCamelCase : Union[str, os.PathLike] , _lowerCamelCase : bool = False , **_lowerCamelCase : Tuple ): '''simple docstring''' self.save_config(save_directory=_lowerCamelCase , push_to_hub=_lowerCamelCase , **_lowerCamelCase ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return self._get_compatibles() @classmethod def _snake_case ( cls : str ): '''simple docstring''' __lowerCamelCase : str = list(set([cls.__name__] + cls._compatibles ) ) __lowerCamelCase : Union[str, Any] = importlib.import_module(__name__.split(""".""" )[0] ) __lowerCamelCase : Optional[int] = [ getattr(_lowerCamelCase , _lowerCamelCase ) for c in compatible_classes_str if hasattr(_lowerCamelCase , _lowerCamelCase ) ] return compatible_classes def _UpperCAmelCase ( UpperCAmelCase : jnp.ndarray , UpperCAmelCase : Tuple[int] ): """simple docstring""" assert len(UpperCAmelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(UpperCAmelCase ) - x.ndim) ) , UpperCAmelCase ) def _UpperCAmelCase ( UpperCAmelCase : int , UpperCAmelCase : Union[str, Any]=0.9_9_9 , UpperCAmelCase : Optional[int]=jnp.floataa ): """simple docstring""" def alpha_bar(UpperCAmelCase : Union[str, Any] ): return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 __lowerCamelCase : Dict = [] for i in range(UpperCAmelCase ): __lowerCamelCase : int = i / num_diffusion_timesteps __lowerCamelCase : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(UpperCAmelCase ) / alpha_bar(UpperCAmelCase ) , UpperCAmelCase ) ) return jnp.array(UpperCAmelCase , dtype=UpperCAmelCase ) @flax.struct.dataclass class _UpperCamelCase : '''simple docstring''' a_ : jnp.ndarray a_ : jnp.ndarray a_ : jnp.ndarray @classmethod def _snake_case ( cls : Optional[int] , _lowerCamelCase : Optional[Any] ): '''simple docstring''' __lowerCamelCase : Tuple = scheduler.config if config.trained_betas is not None: __lowerCamelCase : Union[str, Any] = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": __lowerCamelCase : Dict = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowerCamelCase : List[str] = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowerCamelCase : Any = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( F"""beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}""" ) __lowerCamelCase : Optional[Any] = 1.0 - betas __lowerCamelCase : List[Any] = jnp.cumprod(_lowerCamelCase , axis=0 ) return cls( alphas=_lowerCamelCase , betas=_lowerCamelCase , alphas_cumprod=_lowerCamelCase , ) def _UpperCAmelCase ( UpperCAmelCase : CommonSchedulerState , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : jnp.ndarray ): """simple docstring""" __lowerCamelCase : Optional[Any] = state.alphas_cumprod __lowerCamelCase : int = alphas_cumprod[timesteps] ** 0.5 __lowerCamelCase : Union[str, Any] = sqrt_alpha_prod.flatten() __lowerCamelCase : Optional[Any] = broadcast_to_shape_from_left(UpperCAmelCase , original_samples.shape ) __lowerCamelCase : List[str] = (1 - alphas_cumprod[timesteps]) ** 0.5 __lowerCamelCase : str = sqrt_one_minus_alpha_prod.flatten() __lowerCamelCase : int = broadcast_to_shape_from_left(UpperCAmelCase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def _UpperCAmelCase ( UpperCAmelCase : CommonSchedulerState , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : jnp.ndarray ): """simple docstring""" __lowerCamelCase , __lowerCamelCase : Tuple = get_sqrt_alpha_prod(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : str = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def _UpperCAmelCase ( UpperCAmelCase : CommonSchedulerState , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : jnp.ndarray ): """simple docstring""" __lowerCamelCase , __lowerCamelCase : List[Any] = get_sqrt_alpha_prod(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : Tuple = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
519
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer __UpperCamelCase : List[Any] = ['bert-base-uncased', 'bert-base-cased'] __UpperCamelCase : int = 'hf-internal-testing/tiny-bert-tf-only' if is_tf_available(): class _UpperCamelCase ( tf.keras.Model ): '''simple docstring''' def __init__( self : int , _lowerCamelCase : int ): '''simple docstring''' super().__init__() __lowerCamelCase : Optional[Any] = tokenizer __lowerCamelCase : List[str] = AutoConfig.from_pretrained(_lowerCamelCase ) __lowerCamelCase : Union[str, Any] = TFAutoModel.from_config(_lowerCamelCase ) def _snake_case ( self : List[str] , _lowerCamelCase : Optional[int] ): '''simple docstring''' __lowerCamelCase : List[Any] = self.tokenizer(_lowerCamelCase ) __lowerCamelCase : Optional[int] = self.bert(**_lowerCamelCase ) return out["pooler_output"] @require_tf @require_tensorflow_text class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Optional[int] ): '''simple docstring''' super().setUp() __lowerCamelCase : Dict = [ BertTokenizer.from_pretrained(_lowerCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false __lowerCamelCase : int = [TFBertTokenizer.from_pretrained(_lowerCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(_lowerCamelCase , use_fast_bert_tokenizer=_lowerCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __lowerCamelCase : Optional[int] = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] __lowerCamelCase : Union[str, Any] = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): __lowerCamelCase : List[str] = tokenizer(_lowerCamelCase , return_tensors="""tf""" , padding="""longest""" ) __lowerCamelCase : List[str] = tf_tokenizer(_lowerCamelCase ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def _snake_case ( self : Union[str, Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __lowerCamelCase : Union[str, Any] = tf_tokenizer(self.paired_sentences ) __lowerCamelCase : List[Any] = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def _snake_case ( self : Tuple ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __lowerCamelCase : Dict = tf.function(_lowerCamelCase ) for test_inputs in (self.test_sentences, self.paired_sentences): __lowerCamelCase : List[Any] = tf.constant(_lowerCamelCase ) __lowerCamelCase : Dict = compiled_tokenizer(_lowerCamelCase ) __lowerCamelCase : Union[str, Any] = tf_tokenizer(_lowerCamelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _snake_case ( self : Optional[Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __lowerCamelCase : List[Any] = ModelToSave(tokenizer=_lowerCamelCase ) __lowerCamelCase : Union[str, Any] = tf.convert_to_tensor(self.test_sentences ) __lowerCamelCase : Optional[Any] = model(_lowerCamelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __lowerCamelCase : List[str] = Path(_lowerCamelCase ) / """saved.model""" model.save(_lowerCamelCase ) __lowerCamelCase : Optional[int] = tf.keras.models.load_model(_lowerCamelCase ) __lowerCamelCase : str = loaded_model(_lowerCamelCase ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
519
1
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowerCAmelCase : int = logging.get_logger(__name__) class _A ( __magic_name__): SCREAMING_SNAKE_CASE : str = ['''input_values''', '''attention_mask'''] def __init__( self , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 1_6000 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = 80 , _SCREAMING_SNAKE_CASE = 16 , _SCREAMING_SNAKE_CASE = 64 , _SCREAMING_SNAKE_CASE = "hann_window" , _SCREAMING_SNAKE_CASE = 1.0 , _SCREAMING_SNAKE_CASE = 80 , _SCREAMING_SNAKE_CASE = 7600 , _SCREAMING_SNAKE_CASE = 1e-10 , _SCREAMING_SNAKE_CASE = 2 , _SCREAMING_SNAKE_CASE = True , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(feature_size=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , padding_value=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = do_normalize SCREAMING_SNAKE_CASE_ : List[str] = return_attention_mask SCREAMING_SNAKE_CASE_ : str = num_mel_bins SCREAMING_SNAKE_CASE_ : Optional[Any] = hop_length SCREAMING_SNAKE_CASE_ : Optional[int] = win_length SCREAMING_SNAKE_CASE_ : Optional[Any] = win_function SCREAMING_SNAKE_CASE_ : Any = frame_signal_scale SCREAMING_SNAKE_CASE_ : Optional[Any] = fmin SCREAMING_SNAKE_CASE_ : Any = fmax SCREAMING_SNAKE_CASE_ : Union[str, Any] = mel_floor SCREAMING_SNAKE_CASE_ : str = reduction_factor SCREAMING_SNAKE_CASE_ : Any = win_length * sampling_rate // 1000 SCREAMING_SNAKE_CASE_ : Any = hop_length * sampling_rate // 1000 SCREAMING_SNAKE_CASE_ : int = optimal_fft_length(self.sample_size ) SCREAMING_SNAKE_CASE_ : str = (self.n_fft // 2) + 1 SCREAMING_SNAKE_CASE_ : Tuple = window_function(window_length=self.sample_size , name=self.win_function , periodic=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[Any] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , _SCREAMING_SNAKE_CASE , ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , _SCREAMING_SNAKE_CASE , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def UpperCAmelCase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0.0 ): """simple docstring""" if attention_mask is not None: SCREAMING_SNAKE_CASE_ : str = np.array(_SCREAMING_SNAKE_CASE , np.intaa ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [] for vector, length in zip(_SCREAMING_SNAKE_CASE , attention_mask.sum(-1 ) ): SCREAMING_SNAKE_CASE_ : Optional[Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: SCREAMING_SNAKE_CASE_ : Union[str, Any] = padding_value normed_input_values.append(_SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE_ : List[Any] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = spectrogram( _SCREAMING_SNAKE_CASE , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , ) return log_mel_spec.T def __call__( self , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided audio input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: SCREAMING_SNAKE_CASE_ : List[str] = self._process_audio( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = None if audio_target is not None: SCREAMING_SNAKE_CASE_ : int = self._process_audio( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) if inputs is None: return inputs_target else: SCREAMING_SNAKE_CASE_ : str = inputs_target['input_values'] SCREAMING_SNAKE_CASE_ : Dict = inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: SCREAMING_SNAKE_CASE_ : Dict = decoder_attention_mask return inputs def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) SCREAMING_SNAKE_CASE_ : str = is_batched_numpy or ( isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE_ : str = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): SCREAMING_SNAKE_CASE_ : Optional[int] = np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE_ : Dict = speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE_ : Any = [speech] # needed to make pad() work on spectrogram inputs SCREAMING_SNAKE_CASE_ : Optional[Any] = self.feature_size # convert into correct format for padding if is_target: SCREAMING_SNAKE_CASE_ : str = [self._extract_mel_features(_SCREAMING_SNAKE_CASE ) for waveform in speech] SCREAMING_SNAKE_CASE_ : List[Any] = BatchFeature({'input_values': features} ) SCREAMING_SNAKE_CASE_ : List[str] = self.num_mel_bins else: SCREAMING_SNAKE_CASE_ : Optional[Any] = BatchFeature({'input_values': speech} ) SCREAMING_SNAKE_CASE_ : List[str] = self.pad( _SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE_ : Any = feature_size_hack # convert input values to correct format SCREAMING_SNAKE_CASE_ : Optional[Any] = padded_inputs['input_values'] if not isinstance(input_values[0] , np.ndarray ): SCREAMING_SNAKE_CASE_ : Optional[int] = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): SCREAMING_SNAKE_CASE_ : List[Any] = [array.astype(np.floataa ) for array in input_values] elif isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE_ : int = input_values.astype(np.floataa ) # convert attention_mask to correct format SCREAMING_SNAKE_CASE_ : Optional[int] = padded_inputs.get('attention_mask' ) if attention_mask is not None: SCREAMING_SNAKE_CASE_ : List[Any] = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: SCREAMING_SNAKE_CASE_ : Optional[Any] = ( attention_mask if self._get_padding_strategies(_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) is not PaddingStrategy.DO_NOT_PAD else None ) SCREAMING_SNAKE_CASE_ : List[str] = self.zero_mean_unit_var_norm( padded_inputs['input_values'] , attention_mask=_SCREAMING_SNAKE_CASE , padding_value=self.padding_value ) if return_tensors is not None: SCREAMING_SNAKE_CASE_ : List[Any] = padded_inputs.convert_to_tensors(_SCREAMING_SNAKE_CASE ) return padded_inputs def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = super().to_dict() # Don't serialize these as they are derived from the other properties. SCREAMING_SNAKE_CASE_ : Union[str, Any] = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
353
def A_ ( a , a ): """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
353
1
"""simple docstring""" import numpy as np from PIL import Image def lowerCamelCase ( _snake_case ,_snake_case ,_snake_case ): UpperCAmelCase__ : Tuple = np.array(_snake_case ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : Any = 0 UpperCAmelCase__ : List[str] = 0 UpperCAmelCase__ : Optional[int] = 0 # compute the shape of the output matrix UpperCAmelCase__ : Optional[Any] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape UpperCAmelCase__ : Optional[Any] = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix UpperCAmelCase__ : Optional[Any] = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCAmelCase__ : int = 0 UpperCAmelCase__ : Union[str, Any] = 0 return updated_arr def lowerCamelCase ( _snake_case ,_snake_case ,_snake_case ): UpperCAmelCase__ : Union[str, Any] = np.array(_snake_case ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) UpperCAmelCase__ : Dict = 0 UpperCAmelCase__ : str = 0 UpperCAmelCase__ : Optional[Any] = 0 UpperCAmelCase__ : List[str] = 0 # compute the shape of the output matrix UpperCAmelCase__ : Any = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape UpperCAmelCase__ : Union[str, Any] = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix UpperCAmelCase__ : Dict = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCAmelCase__ : Any = 0 UpperCAmelCase__ : List[str] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image UpperCamelCase__ = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
110
"""simple docstring""" import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def lowerCamelCase ( _snake_case ): UpperCAmelCase__ : int = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(_snake_case ,_snake_case ) def lowerCamelCase ( _snake_case ): UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = emb.weight.shape UpperCAmelCase__ : List[str] = nn.Linear(_snake_case ,_snake_case ,bias=_snake_case ) UpperCAmelCase__ : Any = emb.weight.data return lin_layer def lowerCamelCase ( _snake_case ): UpperCAmelCase__ : Optional[int] = torch.load(_snake_case ,map_location='cpu' ) UpperCAmelCase__ : Any = mam_aaa['args'] or mam_aaa['cfg']['model'] UpperCAmelCase__ : Optional[int] = mam_aaa['model'] remove_ignore_keys_(_snake_case ) UpperCAmelCase__ : Optional[int] = state_dict['encoder.embed_tokens.weight'].shape[0] UpperCAmelCase__ : List[str] = MaMaaaConfig( vocab_size=_snake_case ,max_position_embeddings=1024 ,encoder_layers=args.encoder_layers ,decoder_layers=args.decoder_layers ,encoder_attention_heads=args.encoder_attention_heads ,decoder_attention_heads=args.decoder_attention_heads ,encoder_ffn_dim=args.encoder_ffn_embed_dim ,decoder_ffn_dim=args.decoder_ffn_embed_dim ,d_model=args.encoder_embed_dim ,encoder_layerdrop=args.encoder_layerdrop ,decoder_layerdrop=args.decoder_layerdrop ,dropout=args.dropout ,attention_dropout=args.attention_dropout ,activation_dropout=args.activation_dropout ,activation_function='relu' ,) UpperCAmelCase__ : Optional[int] = state_dict['decoder.embed_tokens.weight'] UpperCAmelCase__ : Union[str, Any] = MaMaaaForConditionalGeneration(_snake_case ) model.model.load_state_dict(_snake_case ,strict=_snake_case ) UpperCAmelCase__ : Optional[Any] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') UpperCamelCase__ = parser.parse_args() UpperCamelCase__ = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
110
1
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {'''vocab_file''': '''spiece.model'''} UpperCAmelCase_ = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', } } # TODO(PVP) - this should be removed in Transformers v5 UpperCAmelCase_ = { '''t5-small''': 512, '''t5-base''': 512, '''t5-large''': 512, '''t5-3b''': 512, '''t5-11b''': 512, } UpperCAmelCase_ = '''▁''' class lowerCAmelCase ( _a ): _SCREAMING_SNAKE_CASE : List[str] =VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Tuple =PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Union[str, Any] =["""input_ids""", """attention_mask"""] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__="</s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__=100 , lowerCAmelCase__=None , lowerCAmelCase__ = None , lowerCAmelCase__=True , **lowerCAmelCase__ , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: _A= [f"<extra_id_{i}>" for i in range(lowerCAmelCase__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _A= len(set(filter(lambda lowerCAmelCase__ : bool('extra_id' in str(lowerCAmelCase__ ) ) , lowerCAmelCase__ ) ) ) if extra_tokens != extra_ids: raise ValueError( f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) if legacy: logger.warning_once( f"You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to" ' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' ) _A= legacy _A= {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , extra_ids=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , legacy=lowerCAmelCase__ , **lowerCAmelCase__ , ) _A= vocab_file _A= extra_ids _A= spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase__ ) @staticmethod def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: _A= TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' f" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this" ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' f" {pretrained_model_name_or_path} automatically truncating your input to" f" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences" f" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with" ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , lowerCAmelCase__ , ) return max_model_length @property def a__ ( self ): return self.sp_model.get_piece_size() + self._extra_ids def a__ ( self ): _A= {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(lowerCAmelCase__ )) + [1] return ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1] def a__ ( self ): return list( set(filter(lambda lowerCAmelCase__ : bool(re.search(r'<extra_id_\d+>' , lowerCAmelCase__ ) ) is not None , self.additional_special_tokens ) ) ) def a__ ( self ): return [self._convert_token_to_id(lowerCAmelCase__ ) for token in self.get_sentinel_tokens()] def a__ ( self , lowerCAmelCase__ ): if len(lowerCAmelCase__ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def a__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ): _A= [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def a__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ): _A= self._add_eos_if_not_present(lowerCAmelCase__ ) if token_ids_a is None: return token_ids_a else: _A= self._add_eos_if_not_present(lowerCAmelCase__ ) return token_ids_a + token_ids_a def __getstate__( self ): _A= self.__dict__.copy() _A= None return state def __setstate__( self , lowerCAmelCase__ ): _A= d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _A= {} _A= spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__ ( self , lowerCAmelCase__ , **lowerCAmelCase__ ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: _A= SPIECE_UNDERLINE + text.replace(lowerCAmelCase__ , ' ' ) return super().tokenize(lowerCAmelCase__ , **lowerCAmelCase__ ) def a__ ( self , lowerCAmelCase__ , **lowerCAmelCase__ ): if not self.legacy: _A= text.startswith(lowerCAmelCase__ ) if is_first: _A= text[1:] _A= self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(lowerCAmelCase__ ): _A= ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def a__ ( self , lowerCAmelCase__ ): if token.startswith('<extra_id_' ): _A= re.match(r'<extra_id_(\d+)>' , lowerCAmelCase__ ) _A= int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(lowerCAmelCase__ ) def a__ ( self , lowerCAmelCase__ ): if index < self.sp_model.get_piece_size(): _A= self.sp_model.IdToPiece(lowerCAmelCase__ ) else: _A= f"<extra_id_{self.vocab_size - 1 - index}>" return token def a__ ( self , lowerCAmelCase__ ): _A= [] _A= '' _A= False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase__ ) + token _A= True _A= [] else: current_sub_tokens.append(lowerCAmelCase__ ) _A= False out_string += self.sp_model.decode(lowerCAmelCase__ ) return out_string.strip() def a__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ): if not os.path.isdir(lowerCAmelCase__ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _A= os.path.join( lowerCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , 'wb' ) as fi: _A= self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,)
476
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json''', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowerCAmelCase ( _a ): _SCREAMING_SNAKE_CASE : List[str] ="""convbert""" def __init__( self , lowerCAmelCase__=30522 , lowerCAmelCase__=768 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=3072 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=512 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__=768 , lowerCAmelCase__=2 , lowerCAmelCase__=9 , lowerCAmelCase__=1 , lowerCAmelCase__=None , **lowerCAmelCase__ , ): super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , ) _A= vocab_size _A= hidden_size _A= num_hidden_layers _A= num_attention_heads _A= intermediate_size _A= hidden_act _A= hidden_dropout_prob _A= attention_probs_dropout_prob _A= max_position_embeddings _A= type_vocab_size _A= initializer_range _A= layer_norm_eps _A= embedding_size _A= head_ratio _A= conv_kernel_size _A= num_groups _A= classifier_dropout class lowerCAmelCase ( _a ): @property def a__ ( self ): if self.task == "multiple-choice": _A= {0: 'batch', 1: 'choice', 2: 'sequence'} else: _A= {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
476
1
'''simple docstring''' lowerCAmelCase__ : List[Any] = 8.3144598 def _a ( __lowerCAmelCase : float , __lowerCAmelCase : float ): """simple docstring""" if temperature < 0: raise Exception('''Temperature cannot be less than 0 K''' ) if molar_mass <= 0: raise Exception('''Molar mass cannot be less than or equal to 0 kg/mol''' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example lowerCAmelCase__ : Union[str, Any] = 300 lowerCAmelCase__ : Optional[Any] = 28 lowerCAmelCase__ : str = rms_speed_of_molecule(temperature, molar_mass) print(f"""Vrms of Nitrogen gas at 300 K is {vrms} m/s""")
347
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' if "model" in orig_key: UpperCAmelCase_ : Optional[int] = orig_key.replace('model.' , '' ) if "norm1" in orig_key: UpperCAmelCase_ : Optional[Any] = orig_key.replace('norm1' , 'attention.output.LayerNorm' ) if "norm2" in orig_key: UpperCAmelCase_ : List[str] = orig_key.replace('norm2' , 'output.LayerNorm' ) if "norm" in orig_key: UpperCAmelCase_ : Dict = orig_key.replace('norm' , 'LayerNorm' ) if "transformer" in orig_key: UpperCAmelCase_ : Any = orig_key.split('.' )[0].split('_' )[-1] UpperCAmelCase_ : Optional[Any] = orig_key.replace(F"transformer_{layer_num}" , F"encoder.layer.{layer_num}" ) if "mha.attn" in orig_key: UpperCAmelCase_ : List[str] = orig_key.replace('mha.attn' , 'attention.self' ) if "mha" in orig_key: UpperCAmelCase_ : Union[str, Any] = orig_key.replace('mha' , 'attention' ) if "W_q" in orig_key: UpperCAmelCase_ : Any = orig_key.replace('W_q' , 'self.query' ) if "W_k" in orig_key: UpperCAmelCase_ : Tuple = orig_key.replace('W_k' , 'self.key' ) if "W_v" in orig_key: UpperCAmelCase_ : List[str] = orig_key.replace('W_v' , 'self.value' ) if "ff1" in orig_key: UpperCAmelCase_ : str = orig_key.replace('ff1' , 'intermediate.dense' ) if "ff2" in orig_key: UpperCAmelCase_ : Dict = orig_key.replace('ff2' , 'output.dense' ) if "ff" in orig_key: UpperCAmelCase_ : Optional[int] = orig_key.replace('ff' , 'output.dense' ) if "mlm_class" in orig_key: UpperCAmelCase_ : Optional[Any] = orig_key.replace('mlm.mlm_class' , 'cls.predictions.decoder' ) if "mlm" in orig_key: UpperCAmelCase_ : Union[str, Any] = orig_key.replace('mlm' , 'cls.predictions.transform' ) if "cls" not in orig_key: UpperCAmelCase_ : List[Any] = 'yoso.' + orig_key return orig_key def lowercase__ ( __snake_case : str , __snake_case : int ): '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCAmelCase_ : Any = orig_state_dict.pop(__snake_case ) if ("pooler" in key) or ("sen_class" in key): continue else: UpperCAmelCase_ : Union[str, Any] = val UpperCAmelCase_ : List[Any] = orig_state_dict['cls.predictions.decoder.bias'] UpperCAmelCase_ : Tuple = torch.arange(__snake_case ).expand((1, -1) ) + 2 return orig_state_dict def lowercase__ ( __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Any = torch.load(__snake_case , map_location='cpu' )['model_state_dict'] UpperCAmelCase_ : Dict = YosoConfig.from_json_file(__snake_case ) UpperCAmelCase_ : str = YosoForMaskedLM(__snake_case ) UpperCAmelCase_ : Dict = convert_checkpoint_helper(config.max_position_embeddings , __snake_case ) print(model.load_state_dict(__snake_case ) ) model.eval() model.save_pretrained(__snake_case ) print(F"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCAmelCase = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
406
0
from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class snake_case__ : '''simple docstring''' __A = field( metadata={'''help''': '''The output directory where the model will be written.'''} , ) __A = field( metadata={ '''help''': ( '''The encoder model checkpoint for weights initialization.''' '''Don\'t set if you want to train an encoder model from scratch.''' ) } , ) __A = field( metadata={ '''help''': ( '''The decoder model checkpoint for weights initialization.''' '''Don\'t set if you want to train a decoder model from scratch.''' ) } , ) __A = field( default=__snake_case , metadata={'''help''': '''Pretrained encoder config name or path if not the same as encoder_model_name'''} ) __A = field( default=__snake_case , metadata={'''help''': '''Pretrained decoder config name or path if not the same as decoder_model_name'''} ) def _lowerCAmelCase ( ): UpperCAmelCase_ = HfArgumentParser((ModelArguments,) ) ((UpperCAmelCase_ ), ) = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: UpperCAmelCase_ = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: UpperCAmelCase_ = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: UpperCAmelCase_ = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: UpperCAmelCase_ = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed UpperCAmelCase_ = True UpperCAmelCase_ = True UpperCAmelCase_ = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=__magic_name__ , decoder_config=__magic_name__ , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens UpperCAmelCase_ = decoder_config.decoder_start_token_id UpperCAmelCase_ = decoder_config.pad_token_id if decoder_start_token_id is None: UpperCAmelCase_ = decoder_config.bos_token_id if pad_token_id is None: UpperCAmelCase_ = decoder_config.eos_token_id # This is necessary to make Flax's generate() work UpperCAmelCase_ = decoder_config.eos_token_id UpperCAmelCase_ = decoder_start_token_id UpperCAmelCase_ = pad_token_id UpperCAmelCase_ = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) UpperCAmelCase_ = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
700
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def _lowerCAmelCase ( __magic_name__ :Optional[int] , __magic_name__ :str , __magic_name__ :str , __magic_name__ :Path , __magic_name__ :str = None , __magic_name__ :str = None , __magic_name__ :str = None , ): if config_name_or_path is None: UpperCAmelCase_ = '''facebook/rag-token-base''' if model_type == '''rag_token''' else '''facebook/rag-sequence-base''' if generator_tokenizer_name_or_path is None: UpperCAmelCase_ = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: UpperCAmelCase_ = question_encoder_name_or_path UpperCAmelCase_ = RagTokenForGeneration if model_type == '''rag_token''' else RagSequenceForGeneration # Save model. UpperCAmelCase_ = RagConfig.from_pretrained(__magic_name__ ) UpperCAmelCase_ = AutoConfig.from_pretrained(__magic_name__ ) UpperCAmelCase_ = AutoConfig.from_pretrained(__magic_name__ ) UpperCAmelCase_ = gen_config UpperCAmelCase_ = question_encoder_config UpperCAmelCase_ = model_class.from_pretrained_question_encoder_generator( __magic_name__ , __magic_name__ , config=__magic_name__ ) rag_model.save_pretrained(__magic_name__ ) # Sanity check. model_class.from_pretrained(__magic_name__ ) # Save tokenizers. UpperCAmelCase_ = AutoTokenizer.from_pretrained(__magic_name__ ) gen_tokenizer.save_pretrained(dest_dir / '''generator_tokenizer/''' ) UpperCAmelCase_ = AutoTokenizer.from_pretrained(__magic_name__ ) question_encoder_tokenizer.save_pretrained(dest_dir / '''question_encoder_tokenizer/''' ) if __name__ == "__main__": _lowerCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--model_type', choices=['rag_sequence', 'rag_token'], required=True, type=str, help='RAG model type: rag_sequence, rag_token', ) parser.add_argument('--dest', type=str, required=True, help='Path to the output checkpoint directory.') parser.add_argument('--generator_name_or_path', type=str, required=True, help='Generator model identifier') parser.add_argument( '--question_encoder_name_or_path', type=str, required=True, help='Question encoder model identifier' ) parser.add_argument( '--generator_tokenizer_name_or_path', type=str, help='Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``', ) parser.add_argument( '--question_encoder_tokenizer_name_or_path', type=str, help='Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``', ) parser.add_argument( '--config_name_or_path', type=str, help=( 'Identifier of the model config to use, if not provided, resolves to a base config for a given' ' ``model_type``' ), ) _lowerCamelCase : List[str] = parser.parse_args() _lowerCamelCase : int = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
407
0
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _a = argparse.ArgumentParser( description=( "Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned" " Distillation" ) ) parser.add_argument("--model_type", default="bert", choices=["bert"]) parser.add_argument("--model_name", default="bert-base-uncased", type=str) parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_bert-base-uncased_0247911.pth", type=str) parser.add_argument("--vocab_transform", action="store_true") _a = parser.parse_args() if args.model_type == "bert": _a = BertForMaskedLM.from_pretrained(args.model_name) _a = "bert" else: raise ValueError("args.model_type should be \"bert\".") _a = model.state_dict() _a = {} for w in ["word_embeddings", "position_embeddings"]: _a = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: _a = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] _a = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: _a = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] _a = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] _a = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] _a = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] _a = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] _a = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] _a = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] _a = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 _a = state_dict["cls.predictions.decoder.weight"] _a = state_dict["cls.predictions.bias"] if args.vocab_transform: for w in ["weight", "bias"]: _a = state_dict[f"""cls.predictions.transform.dense.{w}"""] _a = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
481
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets _a = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" _a = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" _a = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def lowerCAmelCase__(__snake_case ) -> int: '''simple docstring''' def remove_articles(__snake_case ): lowerCamelCase__ = re.compile(R'''\b(a|an|the)\b''' ,re.UNICODE ) return re.sub(__snake_case ,''' ''' ,__snake_case ) def white_space_fix(__snake_case ): return " ".join(text.split() ) def remove_punc(__snake_case ): lowerCamelCase__ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__snake_case ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__snake_case ) ) ) ) def lowerCAmelCase__(__snake_case ,__snake_case ) -> Optional[int]: '''simple docstring''' return int(normalize_answer(__snake_case ) == normalize_answer(__snake_case ) ) def lowerCAmelCase__(__snake_case ,__snake_case ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = [any(compute_exact(__snake_case ,__snake_case ) for ref in refs ) for pred, refs in zip(__snake_case ,__snake_case )] return (sum(__snake_case ) / len(__snake_case )) * 100 def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> int: '''simple docstring''' lowerCamelCase__ = [rgram for rgrams in rgramslist for rgram in rgrams] lowerCamelCase__ = Counter(__snake_case ) lowerCamelCase__ = Counter(__snake_case ) lowerCamelCase__ = Counter() for sgram, scount in sgramcounter.items(): lowerCamelCase__ = scount * numref lowerCamelCase__ = Counter(__snake_case ) lowerCamelCase__ = Counter() for cgram, ccount in cgramcounter.items(): lowerCamelCase__ = ccount * numref # KEEP lowerCamelCase__ = sgramcounter_rep & cgramcounter_rep lowerCamelCase__ = keepgramcounter_rep & rgramcounter lowerCamelCase__ = sgramcounter_rep & rgramcounter lowerCamelCase__ = 0 lowerCamelCase__ = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowerCamelCase__ = 1 lowerCamelCase__ = 1 if len(__snake_case ) > 0: lowerCamelCase__ = keeptmpscorea / len(__snake_case ) if len(__snake_case ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) lowerCamelCase__ = keeptmpscorea / sum(keepgramcounterall_rep.values() ) lowerCamelCase__ = 0 if keepscore_precision > 0 or keepscore_recall > 0: lowerCamelCase__ = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION lowerCamelCase__ = sgramcounter_rep - cgramcounter_rep lowerCamelCase__ = delgramcounter_rep - rgramcounter lowerCamelCase__ = sgramcounter_rep - rgramcounter lowerCamelCase__ = 0 lowerCamelCase__ = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowerCamelCase__ = 1 if len(__snake_case ) > 0: lowerCamelCase__ = deltmpscorea / len(__snake_case ) # ADDITION lowerCamelCase__ = set(__snake_case ) - set(__snake_case ) lowerCamelCase__ = set(__snake_case ) & set(__snake_case ) lowerCamelCase__ = set(__snake_case ) - set(__snake_case ) lowerCamelCase__ = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowerCamelCase__ = 1 lowerCamelCase__ = 1 if len(__snake_case ) > 0: lowerCamelCase__ = addtmpscore / len(__snake_case ) if len(__snake_case ) > 0: lowerCamelCase__ = addtmpscore / len(__snake_case ) lowerCamelCase__ = 0 if addscore_precision > 0 or addscore_recall > 0: lowerCamelCase__ = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ) -> List[str]: '''simple docstring''' lowerCamelCase__ = len(__snake_case ) lowerCamelCase__ = ssent.split(''' ''' ) lowerCamelCase__ = csent.split(''' ''' ) lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = [] for rsent in rsents: lowerCamelCase__ = rsent.split(''' ''' ) lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = [] ragramslist.append(__snake_case ) for i in range(0 ,len(__snake_case ) - 1 ): if i < len(__snake_case ) - 1: lowerCamelCase__ = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(__snake_case ) if i < len(__snake_case ) - 2: lowerCamelCase__ = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(__snake_case ) if i < len(__snake_case ) - 3: lowerCamelCase__ = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(__snake_case ) ragramslist.append(__snake_case ) ragramslist.append(__snake_case ) ragramslist.append(__snake_case ) for i in range(0 ,len(__snake_case ) - 1 ): if i < len(__snake_case ) - 1: lowerCamelCase__ = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(__snake_case ) if i < len(__snake_case ) - 2: lowerCamelCase__ = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(__snake_case ) if i < len(__snake_case ) - 3: lowerCamelCase__ = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(__snake_case ) for i in range(0 ,len(__snake_case ) - 1 ): if i < len(__snake_case ) - 1: lowerCamelCase__ = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(__snake_case ) if i < len(__snake_case ) - 2: lowerCamelCase__ = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(__snake_case ) if i < len(__snake_case ) - 3: lowerCamelCase__ = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(__snake_case ) ((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) = SARIngram(__snake_case ,__snake_case ,__snake_case ,__snake_case ) ((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) = SARIngram(__snake_case ,__snake_case ,__snake_case ,__snake_case ) ((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) = SARIngram(__snake_case ,__snake_case ,__snake_case ,__snake_case ) ((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) = SARIngram(__snake_case ,__snake_case ,__snake_case ,__snake_case ) lowerCamelCase__ = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 lowerCamelCase__ = sum([delascore, delascore, delascore, delascore] ) / 4 lowerCamelCase__ = sum([addascore, addascore, addascore, addascore] ) / 4 lowerCamelCase__ = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def lowerCAmelCase__(__snake_case ,__snake_case = True ,__snake_case = "13a" ,__snake_case = True ) -> Tuple: '''simple docstring''' if lowercase: lowerCamelCase__ = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: lowerCamelCase__ = sacrebleu.metrics.bleu._get_tokenizer(__snake_case )()(__snake_case ) else: lowerCamelCase__ = sacrebleu.TOKENIZERS[tokenizer]()(__snake_case ) elif tokenizer == "moses": lowerCamelCase__ = sacremoses.MosesTokenizer().tokenize(__snake_case ,return_str=__snake_case ,escape=__snake_case ) elif tokenizer == "penn": lowerCamelCase__ = sacremoses.MosesTokenizer().penn_tokenize(__snake_case ,return_str=__snake_case ) else: lowerCamelCase__ = sentence if not return_str: lowerCamelCase__ = normalized_sent.split() return normalized_sent def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ) -> List[Any]: '''simple docstring''' if not (len(__snake_case ) == len(__snake_case ) == len(__snake_case )): raise ValueError('''Sources length must match predictions and references lengths.''' ) lowerCamelCase__ = 0 for src, pred, refs in zip(__snake_case ,__snake_case ,__snake_case ): sari_score += SARIsent(normalize(__snake_case ) ,normalize(__snake_case ) ,[normalize(__snake_case ) for sent in refs] ) lowerCamelCase__ = sari_score / len(__snake_case ) return 100 * sari_score def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case="exp" ,__snake_case=None ,__snake_case=False ,__snake_case=False ,__snake_case=False ,) -> int: '''simple docstring''' lowerCamelCase__ = len(references[0] ) if any(len(__snake_case ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) lowerCamelCase__ = [[refs[i] for refs in references] for i in range(__snake_case )] lowerCamelCase__ = sacrebleu.corpus_bleu( __snake_case ,__snake_case ,smooth_method=__snake_case ,smooth_value=__snake_case ,force=__snake_case ,lowercase=__snake_case ,use_effective_order=__snake_case ,) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def __lowerCamelCase ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = {} result.update({'''sari''': compute_sari(sources=__lowerCAmelCase , predictions=__lowerCAmelCase , references=__lowerCAmelCase )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=__lowerCAmelCase , references=__lowerCAmelCase )} ) result.update({'''exact''': compute_em(predictions=__lowerCAmelCase , references=__lowerCAmelCase )} ) return result
481
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : Optional[int] = logging.get_logger(__name__) _lowerCamelCase : Tuple = '▁' _lowerCamelCase : Optional[int] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} _lowerCamelCase : Optional[int] = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } _lowerCamelCase : Any = { 'google/pegasus-xsum': 512, } class snake_case__ ( __snake_case ): '''simple docstring''' __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = PegasusTokenizer __A = ['''input_ids''', '''attention_mask'''] def __init__( self : Dict , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Any="<pad>" , lowerCAmelCase_ : Union[str, Any]="</s>" , lowerCAmelCase_ : Optional[int]="<unk>" , lowerCAmelCase_ : Tuple="<mask_2>" , lowerCAmelCase_ : int="<mask_1>" , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : int=1_03 , **lowerCAmelCase_ : Dict , ) -> Any: UpperCAmelCase_ = offset if additional_special_tokens is not None: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError( F'''additional_special_tokens should be of type {type(lowerCAmelCase_ )}, but is''' F''' {type(lowerCAmelCase_ )}''' ) UpperCAmelCase_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F'''<unk_{i}>''' for i in range(len(lowerCAmelCase_ ) , self.offset - 1 ) ] if len(set(lowerCAmelCase_ ) ) != len(lowerCAmelCase_ ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' F''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) UpperCAmelCase_ = additional_special_tokens_extended else: UpperCAmelCase_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , mask_token_sent=lowerCAmelCase_ , offset=lowerCAmelCase_ , additional_special_tokens=lowerCAmelCase_ , **lowerCAmelCase_ , ) UpperCAmelCase_ = vocab_file UpperCAmelCase_ = False if not self.vocab_file else True def UpperCamelCase ( self : Optional[int] , lowerCAmelCase_ : Any ) -> Tuple: UpperCAmelCase_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( '''There should be 3 special tokens: mask_token, pad_token, and eos_token +''' F''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def UpperCamelCase ( self : int , lowerCAmelCase_ : List , lowerCAmelCase_ : Optional[List] = None , lowerCAmelCase_ : bool = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(lowerCAmelCase_ ) elif token_ids_a is None: return self._special_token_mask(lowerCAmelCase_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def UpperCamelCase ( self : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any]=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCamelCase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowerCAmelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.vocab_file , lowerCAmelCase_ ) return (out_vocab_file,)
407
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : str = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _lowerCamelCase : Dict = { 'vocab_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/vocab.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/vocab.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/vocab.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/vocab.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/vocab.json', }, 'merges_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/merges.txt', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/merges.txt', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/merges.txt', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/merges.txt', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/merges.txt', }, 'tokenizer_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/tokenizer.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/tokenizer.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/tokenizer.json', }, } _lowerCamelCase : Union[str, Any] = { 'gpt2': 1024, 'gpt2-medium': 1024, 'gpt2-large': 1024, 'gpt2-xl': 1024, 'distilgpt2': 1024, } class snake_case__ ( __snake_case ): '''simple docstring''' __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = ['''input_ids''', '''attention_mask'''] __A = GPTaTokenizer def __init__( self : Union[str, Any] , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Dict="<|endoftext|>" , lowerCAmelCase_ : List[str]="<|endoftext|>" , lowerCAmelCase_ : str="<|endoftext|>" , lowerCAmelCase_ : List[str]=False , **lowerCAmelCase_ : str , ) -> int: super().__init__( lowerCAmelCase_ , lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , **lowerCAmelCase_ , ) UpperCAmelCase_ = kwargs.pop('''add_bos_token''' , lowerCAmelCase_ ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowerCAmelCase_ ) != add_prefix_space: UpperCAmelCase_ = getattr(lowerCAmelCase_ , pre_tok_state.pop('''type''' ) ) UpperCAmelCase_ = add_prefix_space UpperCAmelCase_ = pre_tok_class(**lowerCAmelCase_ ) UpperCAmelCase_ = add_prefix_space def UpperCamelCase ( self : Tuple , *lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Tuple ) -> BatchEncoding: UpperCAmelCase_ = kwargs.get('''is_split_into_words''' , lowerCAmelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_ ) def UpperCamelCase ( self : Dict , *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : Optional[Any] ) -> BatchEncoding: UpperCAmelCase_ = kwargs.get('''is_split_into_words''' , lowerCAmelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_ ) def UpperCamelCase ( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: UpperCAmelCase_ = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ ) def UpperCamelCase ( self : Optional[Any] , lowerCAmelCase_ : "Conversation" ) -> List[int]: UpperCAmelCase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) + [self.eos_token_id] ) if len(lowerCAmelCase_ ) > self.model_max_length: UpperCAmelCase_ = input_ids[-self.model_max_length :] return input_ids
407
1
'''simple docstring''' from __future__ import annotations def _A ( A ,A ) -> int: # Checks if the entire collection has been sorted if len(A ) <= 1 or n <= 1: return insert_next(A ,n - 1 ) rec_insertion_sort(A ,n - 1 ) def _A ( A ,A ) -> List[Any]: # Checks order between adjacent elements if index >= len(A ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order lowercase , lowercase : List[Any] = ( collection[index], collection[index - 1], ) insert_next(A ,index + 1 ) if __name__ == "__main__": lowerCAmelCase : str = input("""Enter integers separated by spaces: """) lowerCAmelCase : list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
372
'''simple docstring''' import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput lowerCAmelCase : Dict = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _UpperCamelCase ( SCREAMING_SNAKE_CASE): '''simple docstring''' def __init__( self , *a_ , a_=None , a_=None , a_=None , **a_ ) -> Any: super().__init__(*a_ , **a_ ) lowercase : Optional[Any] = eval_examples lowercase : Any = post_process_function lowercase : Dict = quant_trainer_args lowercase : List[Any] = 1_2_8 # default number of calibration samples def a__ ( self , a_=None ) -> List[str]: if calib_dataset is None and self.calib_dataset is None: raise ValueError("Trainer: calibration requires an calib_dataset." ) lowercase : Dict = calib_dataset if calib_dataset is not None else self.calib_dataset lowercase : Optional[int] = self._remove_unused_columns(a_ , description="Calibration" ) return DataLoader( a_ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=a_ , ) def a__ ( self , a_=None ) -> str: lowercase : Optional[Any] = self.train_dataset if calib_dataset is None else calib_dataset lowercase : Optional[Any] = self.get_calib_dataloader(a_ ) lowercase : Union[str, Any] = self.model quant_trainer.configure_model(a_ , self.quant_trainer_args , calib=a_ ) model.eval() quant_trainer.enable_calibration(a_ ) logger.info("***** Running calibration *****" ) logger.info(F''' Num examples = {self.calib_num}''' ) logger.info(F''' Batch size = {calib_dataloader.batch_size}''' ) for step, inputs in enumerate(a_ ): # Prediction step lowercase , lowercase , lowercase : Union[str, Any] = self.prediction_step(a_ , a_ , prediction_loss_only=a_ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(a_ , self.quant_trainer_args ) lowercase : List[Any] = model def a__ ( self , a_=None , a_=None , a_=None , a_ = "eval" ) -> int: lowercase : List[str] = self.eval_dataset if eval_dataset is None else eval_dataset lowercase : Union[str, Any] = self.get_eval_dataloader(a_ ) lowercase : Tuple = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowercase : List[str] = self.compute_metrics lowercase : Dict = None lowercase : int = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase : Tuple = eval_loop( a_ , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=a_ , ) finally: lowercase : List[Any] = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: lowercase : Union[str, Any] = self.post_process_function(a_ , a_ , output.predictions ) lowercase : Union[str, Any] = self.compute_metrics(a_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): lowercase : Dict = metrics.pop(a_ ) self.log(a_ ) else: lowercase : Tuple = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowercase : int = self.callback_handler.on_evaluate(self.args , self.state , self.control , a_ ) return metrics def a__ ( self , a_ , a_ , a_=None , a_ = "test" ) -> Optional[int]: lowercase : Dict = self.get_test_dataloader(a_ ) # Temporarily disable metric computation, we will do it in the loop here. lowercase : List[str] = self.compute_metrics lowercase : List[str] = None lowercase : int = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase : Optional[Any] = eval_loop( a_ , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=a_ , ) finally: lowercase : int = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output lowercase : List[str] = self.post_process_function(a_ , a_ , output.predictions , "predict" ) lowercase : Dict = self.compute_metrics(a_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): lowercase : Union[str, Any] = metrics.pop(a_ ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=a_ ) def a__ ( self , a_="./" ) -> Optional[Any]: lowercase : str = self.eval_dataset lowercase : Dict = self.get_eval_dataloader(a_ ) lowercase : Any = next(iter(a_ ) ) # saving device - to make it consistent lowercase : List[Any] = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) # convert to tuple lowercase : Tuple = tuple(v.to(a_ ) for k, v in batch.items() ) logger.info("Converting model to be onnx compatible" ) from pytorch_quantization.nn import TensorQuantizer lowercase : Optional[Any] = True lowercase : int = self.model.to(a_ ) model.eval() model.float() lowercase : Union[str, Any] = model.module if hasattr(a_ , "module" ) else model quant_trainer.configure_model(a_ , self.quant_trainer_args ) lowercase : List[str] = os.path.join(a_ , "model.onnx" ) logger.info(F'''exporting model to {output_model_file}''' ) lowercase : Any = {0: "batch_size", 1: "seq_len"} torch.onnx.export( a_ , a_ , a_ , export_params=a_ , opset_version=1_3 , do_constant_folding=a_ , input_names=["input_ids", "attention_mask", "token_type_ids"] , output_names=["output_start_logits", "output_end_logits"] , dynamic_axes={ "input_ids": axes, "attention_mask": axes, "token_type_ids": axes, "output_start_logits": axes, "output_end_logits": axes, } , verbose=a_ , ) logger.info("onnx export finished" )
372
1
'''simple docstring''' from __future__ import annotations class SCREAMING_SNAKE_CASE : def __init__( self : Any , A__ : list[list[int]] ): """simple docstring""" __lowerCamelCase : List[str] = TypeError( """Matrices must be formed from a list of zero or more lists containing at """ """least one and the same number of values, each of which must be of type """ """int or float.""" ) if len(A__ ) != 0: __lowerCamelCase : Optional[int] = len(rows[0] ) if cols == 0: raise error for row in rows: if len(A__ ) != cols: raise error for value in row: if not isinstance(A__ , (int, float) ): raise error __lowerCamelCase : Tuple = rows else: __lowerCamelCase : Optional[int] = [] def a_ ( self : Optional[Any] ): """simple docstring""" return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def a_ ( self : List[Any] ): """simple docstring""" return len(self.rows ) @property def a_ ( self : Tuple ): """simple docstring""" return len(self.rows[0] ) @property def a_ ( self : Optional[int] ): """simple docstring""" return (self.num_rows, self.num_columns) @property def a_ ( self : int ): """simple docstring""" return self.order[0] == self.order[1] def a_ ( self : Tuple ): """simple docstring""" __lowerCamelCase : List[Any] = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(A__ ) def a_ ( self : List[str] ): """simple docstring""" if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def a_ ( self : Dict ): """simple docstring""" return bool(self.determinant() ) def a_ ( self : List[Any] , A__ : int , A__ : int ): """simple docstring""" __lowerCamelCase : Dict = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(A__ ).determinant() def a_ ( self : Any , A__ : int , A__ : int ): """simple docstring""" if (row + column) % 2 == 0: return self.get_minor(A__ , A__ ) return -1 * self.get_minor(A__ , A__ ) def a_ ( self : Tuple ): """simple docstring""" return Matrix( [ [self.get_minor(A__ , A__ ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def a_ ( self : Optional[Any] ): """simple docstring""" return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def a_ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase : Optional[int] = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(A__ ) def a_ ( self : Union[str, Any] ): """simple docstring""" __lowerCamelCase : Dict = self.determinant() if not determinant: raise TypeError("""Only matrices with a non-zero determinant have an inverse""" ) return self.adjugate() * (1 / determinant) def __repr__( self : List[str] ): """simple docstring""" return str(self.rows ) def __str__( self : str ): """simple docstring""" if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ """[""" + """. """.join([str(A__ ) for value in row] ) + """.]""" for row in self.rows ] ) + "]" ) def a_ ( self : List[Any] , A__ : list[int] , A__ : int | None = None ): """simple docstring""" __lowerCamelCase : List[str] = TypeError("""Row must be a list containing all ints and/or floats""" ) if not isinstance(A__ , A__ ): raise type_error for value in row: if not isinstance(A__ , (int, float) ): raise type_error if len(A__ ) != self.num_columns: raise ValueError( """Row must be equal in length to the other rows in the matrix""" ) if position is None: self.rows.append(A__ ) else: __lowerCamelCase : Tuple = self.rows[0:position] + [row] + self.rows[position:] def a_ ( self : Optional[Any] , A__ : list[int] , A__ : int | None = None ): """simple docstring""" __lowerCamelCase : str = TypeError( """Column must be a list containing all ints and/or floats""" ) if not isinstance(A__ , A__ ): raise type_error for value in column: if not isinstance(A__ , (int, float) ): raise type_error if len(A__ ) != self.num_rows: raise ValueError( """Column must be equal in length to the other columns in the matrix""" ) if position is None: __lowerCamelCase : Optional[Any] = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: __lowerCamelCase : Union[str, Any] = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self : Any , A__ : object ): """simple docstring""" if not isinstance(A__ , A__ ): return NotImplemented return self.rows == other.rows def __ne__( self : List[str] , A__ : object ): """simple docstring""" return not self == other def __neg__( self : Union[str, Any] ): """simple docstring""" return self * -1 def __add__( self : List[Any] , A__ : Matrix ): """simple docstring""" if self.order != other.order: raise ValueError("""Addition requires matrices of the same order""" ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self : int , A__ : Matrix ): """simple docstring""" if self.order != other.order: raise ValueError("""Subtraction requires matrices of the same order""" ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self : Tuple , A__ : Matrix | int | float ): """simple docstring""" if isinstance(A__ , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(A__ , A__ ): if self.num_columns != other.num_rows: raise ValueError( """The number of columns in the first matrix must """ """be equal to the number of rows in the second""" ) return Matrix( [ [Matrix.dot_product(A__ , A__ ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( """A Matrix can only be multiplied by an int, float, or another matrix""" ) def __pow__( self : List[str] , A__ : int ): """simple docstring""" if not isinstance(A__ , A__ ): raise TypeError("""A Matrix can only be raised to the power of an int""" ) if not self.is_square: raise ValueError("""Only square matrices can be raised to a power""" ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( """Only invertable matrices can be raised to a negative power""" ) __lowerCamelCase : Union[str, Any] = self for _ in range(other - 1 ): result *= self return result @classmethod def a_ ( cls : Union[str, Any] , A__ : list[int] , A__ : list[int] ): """simple docstring""" return sum(row[i] * column[i] for i in range(len(A__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
483
'''simple docstring''' from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCAmelCase__ :List[str] = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCAmelCase__ :Optional[int] = typing.Union[np.floataa, int, float] # noqa: UP007 def __lowercase (_lowercase, _lowercase ) -> VectorOut: """simple docstring""" return np.sqrt(np.sum((np.asarray(_lowercase ) - np.asarray(_lowercase )) ** 2 ) ) def __lowercase (_lowercase, _lowercase ) -> VectorOut: """simple docstring""" return sum((va - va) ** 2 for va, va in zip(_lowercase, _lowercase ) ) ** (1 / 2) if __name__ == "__main__": def __lowercase () -> None: """simple docstring""" from timeit import timeit print("""Without Numpy""" ) print( timeit( """euclidean_distance_no_np([1, 2, 3], [4, 5, 6])""", number=10_000, globals=globals(), ) ) print("""With Numpy""" ) print( timeit( """euclidean_distance([1, 2, 3], [4, 5, 6])""", number=10_000, globals=globals(), ) ) benchmark()
483
1
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase : str = logging.get_logger(__name__) def lowerCAmelCase ( UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE: int = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""encoder.deit.blocks.{i}.norm1.weight""", F"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.norm1.bias""", F"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.attn.proj.weight""", F"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.attn.proj.bias""", F"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.norm2.weight""", F"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.norm2.bias""", F"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc1.weight""", F"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc1.bias""", F"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc2.weight""", F"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.mlp.fc2.bias""", F"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] ) -> Dict: """simple docstring""" for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) __SCREAMING_SNAKE_CASE: Union[str, Any] = state_dict.pop(F"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) __SCREAMING_SNAKE_CASE: List[str] = in_proj_weight[ : encoder_config.hidden_size, : ] __SCREAMING_SNAKE_CASE: str = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] __SCREAMING_SNAKE_CASE: Union[str, Any] = in_proj_weight[ -encoder_config.hidden_size :, : ] def lowerCAmelCase ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE: Tuple = dct.pop(UpperCamelCase__ ) __SCREAMING_SNAKE_CASE: int = val def lowerCAmelCase ( UpperCamelCase__ : str ) -> Union[str, Any]: """simple docstring""" if "handwritten" in checkpoint_url: __SCREAMING_SNAKE_CASE: List[Any] = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: __SCREAMING_SNAKE_CASE: str = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' __SCREAMING_SNAKE_CASE: List[str] = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert('''RGB''' ) return im @torch.no_grad() def lowerCAmelCase ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE: List[Any] = ViTConfig(image_size=384 , qkv_bias=UpperCamelCase__ ) __SCREAMING_SNAKE_CASE: Optional[Any] = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: __SCREAMING_SNAKE_CASE: Optional[Any] = 768 elif "large" in checkpoint_url: # use ViT-large encoder __SCREAMING_SNAKE_CASE: Optional[Any] = 1_024 __SCREAMING_SNAKE_CASE: Any = 4_096 __SCREAMING_SNAKE_CASE: str = 24 __SCREAMING_SNAKE_CASE: List[Any] = 16 __SCREAMING_SNAKE_CASE: Optional[int] = 1_024 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: __SCREAMING_SNAKE_CASE: Optional[int] = False __SCREAMING_SNAKE_CASE: Union[str, Any] = '''relu''' __SCREAMING_SNAKE_CASE: Dict = 1_024 __SCREAMING_SNAKE_CASE: str = True __SCREAMING_SNAKE_CASE: Optional[int] = False __SCREAMING_SNAKE_CASE: int = False # load HuggingFace model __SCREAMING_SNAKE_CASE: int = ViTModel(UpperCamelCase__ , add_pooling_layer=UpperCamelCase__ ) __SCREAMING_SNAKE_CASE: int = TrOCRForCausalLM(UpperCamelCase__ ) __SCREAMING_SNAKE_CASE: Optional[Any] = VisionEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) model.eval() # load state_dict of original model, rename some keys __SCREAMING_SNAKE_CASE: List[str] = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='''cpu''' , check_hash=UpperCamelCase__ )['''model'''] __SCREAMING_SNAKE_CASE: Optional[int] = create_rename_keys(UpperCamelCase__ , UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): __SCREAMING_SNAKE_CASE: Optional[Any] = state_dict.pop(UpperCamelCase__ ) if key.startswith('''decoder''' ) and "output_projection" not in key: __SCREAMING_SNAKE_CASE: Optional[Any] = val else: __SCREAMING_SNAKE_CASE: Dict = val # load state dict model.load_state_dict(UpperCamelCase__ ) # Check outputs on an image __SCREAMING_SNAKE_CASE: Union[str, Any] = ViTImageProcessor(size=encoder_config.image_size ) __SCREAMING_SNAKE_CASE: Union[str, Any] = RobertaTokenizer.from_pretrained('''roberta-large''' ) __SCREAMING_SNAKE_CASE: List[Any] = TrOCRProcessor(UpperCamelCase__ , UpperCamelCase__ ) __SCREAMING_SNAKE_CASE: int = processor(images=prepare_img(UpperCamelCase__ ) , return_tensors='''pt''' ).pixel_values # verify logits __SCREAMING_SNAKE_CASE: int = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) __SCREAMING_SNAKE_CASE: List[str] = model(pixel_values=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ) __SCREAMING_SNAKE_CASE: Any = outputs.logits __SCREAMING_SNAKE_CASE: Optional[Any] = torch.Size([1, 1, 50_265] ) if "trocr-base-handwritten" in checkpoint_url: __SCREAMING_SNAKE_CASE: Tuple = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: __SCREAMING_SNAKE_CASE: List[str] = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: __SCREAMING_SNAKE_CASE: Any = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: __SCREAMING_SNAKE_CASE: Optional[int] = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , UpperCamelCase__ , atol=1E-3 ), "First elements of logits not as expected" Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) lowerCAmelCase : List[Any] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
202
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] ) -> str: """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCAmelCase ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE: Dict = tmp_path / '''cache''' __SCREAMING_SNAKE_CASE: Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __SCREAMING_SNAKE_CASE: Tuple = JsonDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ ).read() _check_json_dataset(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE: List[str] = tmp_path / '''cache''' __SCREAMING_SNAKE_CASE: Tuple = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __SCREAMING_SNAKE_CASE: Any = features.copy() if features else default_expected_features __SCREAMING_SNAKE_CASE: List[Any] = ( Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __SCREAMING_SNAKE_CASE: Tuple = JsonDatasetReader(UpperCamelCase__ , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_json_dataset(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def lowerCAmelCase ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[int] = tmp_path / '''cache''' __SCREAMING_SNAKE_CASE: Dict = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} __SCREAMING_SNAKE_CASE: int = features.copy() if features else default_expected_features __SCREAMING_SNAKE_CASE: List[Any] = ( Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __SCREAMING_SNAKE_CASE: Union[str, Any] = JsonDatasetReader(UpperCamelCase__ , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE: str = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} __SCREAMING_SNAKE_CASE: Dict = features.copy() __SCREAMING_SNAKE_CASE: Optional[int] = ( Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __SCREAMING_SNAKE_CASE: Union[str, Any] = tmp_path / '''cache''' __SCREAMING_SNAKE_CASE: Tuple = JsonDatasetReader(UpperCamelCase__ , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : str , UpperCamelCase__ : int ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE: List[Any] = tmp_path / '''cache''' __SCREAMING_SNAKE_CASE: Optional[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __SCREAMING_SNAKE_CASE: Dict = JsonDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ , split=UpperCamelCase__ ).read() _check_json_dataset(UpperCamelCase__ , UpperCamelCase__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str ) -> Any: """simple docstring""" if issubclass(UpperCamelCase__ , UpperCamelCase__ ): __SCREAMING_SNAKE_CASE: Optional[Any] = jsonl_path elif issubclass(UpperCamelCase__ , UpperCamelCase__ ): __SCREAMING_SNAKE_CASE: List[str] = [jsonl_path] __SCREAMING_SNAKE_CASE: List[Any] = tmp_path / '''cache''' __SCREAMING_SNAKE_CASE: Union[str, Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __SCREAMING_SNAKE_CASE: Tuple = JsonDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_json_dataset(UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any]=("train",) ) -> List[str]: """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) for split in splits: __SCREAMING_SNAKE_CASE: Tuple = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = tmp_path / '''cache''' __SCREAMING_SNAKE_CASE: List[str] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __SCREAMING_SNAKE_CASE: Dict = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ ).read() _check_json_datasetdict(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = tmp_path / '''cache''' __SCREAMING_SNAKE_CASE: Union[str, Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __SCREAMING_SNAKE_CASE: str = features.copy() if features else default_expected_features __SCREAMING_SNAKE_CASE: Optional[int] = ( Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __SCREAMING_SNAKE_CASE: Dict = JsonDatasetReader({'''train''': jsonl_path} , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_json_datasetdict(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> Optional[Any]: """simple docstring""" if split: __SCREAMING_SNAKE_CASE: str = {split: jsonl_path} else: __SCREAMING_SNAKE_CASE: Dict = '''train''' __SCREAMING_SNAKE_CASE: Tuple = {'''train''': jsonl_path, '''test''': jsonl_path} __SCREAMING_SNAKE_CASE: Tuple = tmp_path / '''cache''' __SCREAMING_SNAKE_CASE: str = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __SCREAMING_SNAKE_CASE: int = JsonDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_json_datasetdict(UpperCamelCase__ , UpperCamelCase__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase ( UpperCamelCase__ : Dict ) -> Optional[int]: """simple docstring""" return json.load(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Any ) -> Any: """simple docstring""" return [json.loads(UpperCamelCase__ ) for line in buffer] class a : @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(_lowerCAmelCase , _lowerCAmelCase , lines=_lowerCAmelCase ).write() buffer.seek(0 ) __SCREAMING_SNAKE_CASE: str = load_json_function(_lowerCAmelCase ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert isinstance(exported_content[0] , _lowerCAmelCase ) assert len(_lowerCAmelCase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(_lowerCAmelCase , _lowerCAmelCase , lines=_lowerCAmelCase , orient=_lowerCAmelCase ).write() buffer.seek(0 ) __SCREAMING_SNAKE_CASE: Optional[int] = load_json(_lowerCAmelCase ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_lowerCAmelCase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_lowerCAmelCase ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(_lowerCAmelCase , _lowerCAmelCase , lines=_lowerCAmelCase , num_proc=2 ).write() buffer.seek(0 ) __SCREAMING_SNAKE_CASE: Optional[Any] = load_json_function(_lowerCAmelCase ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert isinstance(exported_content[0] , _lowerCAmelCase ) assert len(_lowerCAmelCase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(_lowerCAmelCase , _lowerCAmelCase , lines=_lowerCAmelCase , orient=_lowerCAmelCase , num_proc=2 ).write() buffer.seek(0 ) __SCREAMING_SNAKE_CASE: Dict = load_json(_lowerCAmelCase ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_lowerCAmelCase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_lowerCAmelCase ) == 10 def snake_case_ ( self , _lowerCAmelCase ): """simple docstring""" with pytest.raises(_lowerCAmelCase ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowerCAmelCase , _lowerCAmelCase , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: Any = tmp_path_factory.mktemp('''data''' ) / f"""test.json.{extension}""" __SCREAMING_SNAKE_CASE: Any = str(shared_datadir / f"""test_file.json.{extension}""" ) JsonDatasetWriter(_lowerCAmelCase , _lowerCAmelCase , compression=_lowerCAmelCase ).write() with fsspec.open(_lowerCAmelCase , '''rb''' , compression='''infer''' ) as f: __SCREAMING_SNAKE_CASE: Optional[Any] = f.read() with fsspec.open(_lowerCAmelCase , '''rb''' , compression='''infer''' ) as f: __SCREAMING_SNAKE_CASE: Any = f.read() assert exported_content == original_content
202
1
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class lowerCAmelCase__ ( unittest.TestCase ): def __UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: A = 'ylacombe/bark-small' A = tempfile.mkdtemp() A = 'en_speaker_1' A = 'This is a test string' A = 'speaker_embeddings_path.json' A = 'speaker_embeddings' def __UpperCamelCase ( self : Optional[Any] , **__UpperCamelCase : Any ) -> Dict: return AutoTokenizer.from_pretrained(self.checkpoint , **__UpperCamelCase ) def __UpperCamelCase ( self : Optional[Any] ) -> int: shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self : int ) -> List[Any]: A = self.get_tokenizer() A = BarkProcessor(tokenizer=__UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) A = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __UpperCamelCase ( self : Optional[Any] ) -> List[str]: A = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) A = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) A = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __UpperCamelCase ( self : Any ) -> List[str]: A = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) A = 35 A = 2 A = 8 A = { 'semantic_prompt': np.ones(__UpperCamelCase ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset A = processor(text=self.input_string , voice_preset=__UpperCamelCase ) A = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__UpperCamelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file A = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(__UpperCamelCase , **__UpperCamelCase ) A = processor(text=self.input_string , voice_preset=__UpperCamelCase ) A = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__UpperCamelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub A = processor(text=self.input_string , voice_preset=self.voice_preset ) def __UpperCamelCase ( self : List[str] ) -> Dict: A = self.get_tokenizer() A = BarkProcessor(tokenizer=__UpperCamelCase ) A = processor(text=self.input_string ) A = tokenizer( self.input_string , padding='max_length' , max_length=256 , add_special_tokens=__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
716
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def lowerCamelCase_ ( lowerCAmelCase__ : int ) -> Optional[Any]: '''simple docstring''' A = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) def lowerCamelCase_ ( lowerCAmelCase__ : Optional[int] ) -> List[Any]: '''simple docstring''' A , A = emb.weight.shape A = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ , bias=lowerCAmelCase__ ) A = emb.weight.data return lin_layer def lowerCamelCase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int]=None ) -> Optional[int]: '''simple docstring''' A = {} for old_key in state_dict.keys(): A = old_key if "moe_layer.experts." in key: if expert_idx is not None: A = key.replace('moe_layer.experts.0' , F'''ffn.experts.expert_{expert_idx}''' ) else: A = key.replace('moe_layer.experts.' , 'ffn.experts.expert_' ) if "gate" in key: A = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier' ) if "fc2" and "experts" not in key: A = key.replace('.fc2.' , '.ffn.fc2.' ) if "fc1" and "experts" not in key: A = key.replace('.fc1.' , '.ffn.fc1.' ) if ".encoder_attn." in key: A = key.replace('.encoder_attn.' , '.cross_attention.' ) if "encoder_attn_layer_norm" in key: A = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm' ) if "final_layer_norm" in key: A = key.replace('final_layer_norm' , 'ff_layer_norm' ) A = state_dict[old_key] return new_dict def lowerCamelCase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str = WEIGHTS_NAME ) -> List[str]: '''simple docstring''' A = [] A = 0 os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) for expert in range(lowerCAmelCase__ ): A = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(lowerCAmelCase__ ): A = torch.load(lowerCAmelCase__ )['model'] remove_ignore_keys_(lowerCAmelCase__ ) A = rename_fairseq_keys(lowerCAmelCase__ , lowerCAmelCase__ ) A = os.path.join( lowerCAmelCase__ , weights_name.replace('.bin' , F'''-{len(lowerCAmelCase__ )+1:05d}-of-???.bin''' ) ) torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(lowerCAmelCase__ )[0]].dtype ) # Add the last block A = os.path.join(lowerCAmelCase__ , weights_name.replace('.bin' , F'''-{len(lowerCAmelCase__ )+1:05d}-of-???.bin''' ) ) A = torch.load(switch_checkpoint_path + '-shared.pt' )['model'] remove_ignore_keys_(lowerCAmelCase__ ) A = rename_fairseq_keys(lowerCAmelCase__ , lowerCAmelCase__ ) A = shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(lowerCAmelCase__ ) == 1: A = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) # Otherwise, let's build the index A = {} for idx, shard in enumerate(lowerCAmelCase__ ): A = weights_name.replace('.bin' , F'''-{idx+1:05d}-of-{len(lowerCAmelCase__ ):05d}.bin''' ) A = os.path.join(lowerCAmelCase__ , weights_name.replace('.bin' , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) ) for key in shard: A = shard_file # Add the metadata A = {'total_size': total_size} A = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , 'w' , encoding='utf-8' ) as f: A = json.dumps(lowerCAmelCase__ , indent=2 , sort_keys=lowerCAmelCase__ ) + '\n' f.write(lowerCAmelCase__ ) return metadata, index if __name__ == "__main__": __snake_case :Optional[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) __snake_case :int =parser.parse_args() __snake_case , __snake_case :List[Any] =shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) __snake_case :Dict =NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) __snake_case :Optional[int] =NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
224
0
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def A_ ( snake_case ): SCREAMING_SNAKE_CASE:Optional[Any] = [] if isinstance(snake_case , snake_case ): for v in tree.values(): shapes.extend(_fetch_dims(snake_case ) ) elif isinstance(snake_case , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(snake_case ) ) elif isinstance(snake_case , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError("Not supported" ) return shapes @torch.jit.ignore def A_ ( snake_case , snake_case ): SCREAMING_SNAKE_CASE:List[str] = [] for d in reversed(snake_case ): idx.append(flat_idx % d ) SCREAMING_SNAKE_CASE:Dict = flat_idx // d return tuple(reversed(snake_case ) ) @torch.jit.ignore def A_ ( snake_case , snake_case , snake_case , snake_case = None , snake_case = None , ): # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(snake_case ) -> None: SCREAMING_SNAKE_CASE:List[Any] = True for i in range(len(snake_case ) ): SCREAMING_SNAKE_CASE:List[Any] = -1 * (i + 1) l[reversed_idx] &= tally SCREAMING_SNAKE_CASE:Union[str, Any] = l[reversed_idx] if start_edges is None: SCREAMING_SNAKE_CASE:Any = [s == 0 for s in start] reduce_edge_list(snake_case ) if end_edges is None: SCREAMING_SNAKE_CASE:str = [e == (d - 1) for e, d in zip(snake_case , snake_case )] reduce_edge_list(snake_case ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(snake_case ) == 0: return [()] elif len(snake_case ) == 1: return [(slice(start[0] , end[0] + 1 ),)] SCREAMING_SNAKE_CASE:List[Tuple[slice, ...]] = [] SCREAMING_SNAKE_CASE:List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(snake_case , snake_case ): if s == e: path_list.append(slice(snake_case , s + 1 ) ) else: break SCREAMING_SNAKE_CASE:Tuple[slice, ...] = tuple(snake_case ) SCREAMING_SNAKE_CASE:Any = len(snake_case ) # start == end, and we're done if divergence_idx == len(snake_case ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None SCREAMING_SNAKE_CASE:List[Any] = start[divergence_idx] return tuple( path + (slice(snake_case , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None SCREAMING_SNAKE_CASE:str = end[divergence_idx] return tuple( path + (slice(snake_case , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) SCREAMING_SNAKE_CASE:Any = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def A_ ( snake_case , snake_case , snake_case , snake_case ): SCREAMING_SNAKE_CASE:str = t.shape[:no_batch_dims] SCREAMING_SNAKE_CASE:List[Any] = list(_flat_idx_to_idx(snake_case , snake_case ) ) # _get_minimal_slice_set is inclusive SCREAMING_SNAKE_CASE:Any = list(_flat_idx_to_idx(flat_end - 1 , snake_case ) ) # Get an ordered list of slices to perform SCREAMING_SNAKE_CASE:Tuple = _get_minimal_slice_set( snake_case , snake_case , snake_case , ) SCREAMING_SNAKE_CASE:List[Any] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def A_ ( snake_case , snake_case , snake_case , snake_case , snake_case = False , snake_case = None , snake_case = False , ): if not (len(snake_case ) > 0): raise ValueError("Must provide at least one input" ) SCREAMING_SNAKE_CASE:Dict = [shape[:no_batch_dims] for shape in _fetch_dims(snake_case )] SCREAMING_SNAKE_CASE:int = tuple([max(snake_case ) for s in zip(*snake_case )] ) def _prep_inputs(snake_case ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: SCREAMING_SNAKE_CASE:str = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) SCREAMING_SNAKE_CASE:Any = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: SCREAMING_SNAKE_CASE:int = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t SCREAMING_SNAKE_CASE:Dict[str, Any] = tensor_tree_map(_prep_inputs , snake_case ) SCREAMING_SNAKE_CASE:Optional[int] = None if _out is not None: SCREAMING_SNAKE_CASE:Tuple = tensor_tree_map(lambda snake_case : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) SCREAMING_SNAKE_CASE:Any = 1 for d in orig_batch_dims: flat_batch_dim *= d SCREAMING_SNAKE_CASE:Optional[int] = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(snake_case ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t SCREAMING_SNAKE_CASE:Dict = 0 SCREAMING_SNAKE_CASE:str = prepped_outputs for _ in range(snake_case ): # Chunk the input if not low_mem: SCREAMING_SNAKE_CASE:List[Any] = _select_chunk else: SCREAMING_SNAKE_CASE:Optional[int] = partial( _chunk_slice , flat_start=snake_case , flat_end=min(snake_case , i + chunk_size ) , no_batch_dims=len(snake_case ) , ) SCREAMING_SNAKE_CASE:Dict[str, Any] = tensor_tree_map(snake_case , snake_case ) # Run the layer on the chunk SCREAMING_SNAKE_CASE:List[str] = layer(**snake_case ) # Allocate space for the output if out is None: SCREAMING_SNAKE_CASE:Optional[int] = tensor_tree_map(lambda snake_case : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , snake_case ) # Put the chunk in its pre-allocated space if isinstance(snake_case , snake_case ): def assign(snake_case , snake_case ) -> None: for k, v in da.items(): if isinstance(snake_case , snake_case ): assign(snake_case , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: SCREAMING_SNAKE_CASE:List[Any] = da[k] assign(snake_case , snake_case ) elif isinstance(snake_case , snake_case ): for xa, xa in zip(snake_case , snake_case ): if _add_into_out: xa[i : i + chunk_size] += xa else: SCREAMING_SNAKE_CASE:Union[str, Any] = xa elif isinstance(snake_case , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: SCREAMING_SNAKE_CASE:Dict = output_chunk else: raise ValueError("Not supported" ) i += chunk_size SCREAMING_SNAKE_CASE:Union[str, Any] = tensor_tree_map(lambda snake_case : t.view(orig_batch_dims + t.shape[1:] ) , snake_case ) return out class _snake_case : def __init__( self : Dict ,SCREAMING_SNAKE_CASE__ : int = 512 ,): SCREAMING_SNAKE_CASE:Dict = max_chunk_size SCREAMING_SNAKE_CASE:Optional[int] = None SCREAMING_SNAKE_CASE:Optional[tuple] = None def __UpperCamelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : Callable ,SCREAMING_SNAKE_CASE__ : tuple ,SCREAMING_SNAKE_CASE__ : int ): logging.info("Tuning chunk size..." ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size SCREAMING_SNAKE_CASE:List[int] = [2**l for l in range(int(math.log(self.max_chunk_size ,2 ) ) + 1 )] SCREAMING_SNAKE_CASE:Tuple = [c for c in candidates if c > min_chunk_size] SCREAMING_SNAKE_CASE:str = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(SCREAMING_SNAKE_CASE__ : int ) -> bool: try: with torch.no_grad(): fn(*SCREAMING_SNAKE_CASE__ ,chunk_size=SCREAMING_SNAKE_CASE__ ) return True except RuntimeError: return False SCREAMING_SNAKE_CASE:List[str] = 0 SCREAMING_SNAKE_CASE:int = len(SCREAMING_SNAKE_CASE__ ) - 1 while i > min_viable_chunk_size_index: SCREAMING_SNAKE_CASE:List[Any] = test_chunk_size(candidates[i] ) if not viable: SCREAMING_SNAKE_CASE:Optional[Any] = (min_viable_chunk_size_index + i) // 2 else: SCREAMING_SNAKE_CASE:Union[str, Any] = i SCREAMING_SNAKE_CASE:Optional[int] = (i + len(SCREAMING_SNAKE_CASE__ ) - 1) // 2 return candidates[min_viable_chunk_size_index] def __UpperCamelCase ( self : int ,SCREAMING_SNAKE_CASE__ : Iterable ,SCREAMING_SNAKE_CASE__ : Iterable ): SCREAMING_SNAKE_CASE:Optional[int] = True for aa, aa in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): assert type(SCREAMING_SNAKE_CASE__ ) == type(SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ ,(list, tuple) ): consistent &= self._compare_arg_caches(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) elif isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE:Any = [v for _, v in sorted(aa.items() ,key=lambda SCREAMING_SNAKE_CASE__ : x[0] )] SCREAMING_SNAKE_CASE:str = [v for _, v in sorted(aa.items() ,key=lambda SCREAMING_SNAKE_CASE__ : x[0] )] consistent &= self._compare_arg_caches(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) else: consistent &= aa == aa return consistent def __UpperCamelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : Callable ,SCREAMING_SNAKE_CASE__ : tuple ,SCREAMING_SNAKE_CASE__ : int ,): SCREAMING_SNAKE_CASE:List[str] = True SCREAMING_SNAKE_CASE:tuple = tree_map(lambda SCREAMING_SNAKE_CASE__ : a.shape if isinstance(SCREAMING_SNAKE_CASE__ ,torch.Tensor ) else a ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:int = self._compare_arg_caches(self.cached_arg_data ,SCREAMING_SNAKE_CASE__ ) else: # Otherwise, we can reuse the precomputed value SCREAMING_SNAKE_CASE:Dict = False if not consistent: SCREAMING_SNAKE_CASE:int = self._determine_favorable_chunk_size( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,) SCREAMING_SNAKE_CASE:Optional[Any] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
143
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def A_ ( snake_case , snake_case , snake_case , snake_case , snake_case=True , snake_case="pt" ): SCREAMING_SNAKE_CASE:Optional[int] = {"add_prefix_space": True} if isinstance(snake_case , snake_case ) and not line.startswith(" " ) else {} SCREAMING_SNAKE_CASE:Any = padding_side return tokenizer( [line] , max_length=snake_case , padding="max_length" if pad_to_max_length else None , truncation=snake_case , return_tensors=snake_case , add_special_tokens=snake_case , **snake_case , ) def A_ ( snake_case , snake_case , snake_case=None , ): SCREAMING_SNAKE_CASE:List[str] = input_ids.ne(snake_case ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class _snake_case ( _a ): def __init__( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Tuple="train" ,SCREAMING_SNAKE_CASE__ : List[Any]=None ,SCREAMING_SNAKE_CASE__ : Optional[int]=None ,SCREAMING_SNAKE_CASE__ : List[str]=None ,SCREAMING_SNAKE_CASE__ : Any="" ,): super().__init__() SCREAMING_SNAKE_CASE:int = Path(SCREAMING_SNAKE_CASE__ ).joinpath(type_path + ".source" ) SCREAMING_SNAKE_CASE:Optional[int] = Path(SCREAMING_SNAKE_CASE__ ).joinpath(type_path + ".target" ) SCREAMING_SNAKE_CASE:List[str] = self.get_char_lens(self.src_file ) SCREAMING_SNAKE_CASE:Tuple = max_source_length SCREAMING_SNAKE_CASE:Any = max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' SCREAMING_SNAKE_CASE:List[Any] = tokenizer SCREAMING_SNAKE_CASE:str = prefix if n_obs is not None: SCREAMING_SNAKE_CASE:Union[str, Any] = self.src_lens[:n_obs] SCREAMING_SNAKE_CASE:Dict = src_lang SCREAMING_SNAKE_CASE:Optional[int] = tgt_lang def __len__( self : Union[str, Any] ): return len(self.src_lens ) def __getitem__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : str ): SCREAMING_SNAKE_CASE:List[str] = index + 1 # linecache starts at 1 SCREAMING_SNAKE_CASE:Union[str, Any] = self.prefix + linecache.getline(str(self.src_file ) ,SCREAMING_SNAKE_CASE__ ).rstrip("\n" ) SCREAMING_SNAKE_CASE:Union[str, Any] = linecache.getline(str(self.tgt_file ) ,SCREAMING_SNAKE_CASE__ ).rstrip("\n" ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer ,SCREAMING_SNAKE_CASE__ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right SCREAMING_SNAKE_CASE:str = ( self.tokenizer.question_encoder if isinstance(self.tokenizer ,SCREAMING_SNAKE_CASE__ ) else self.tokenizer ) SCREAMING_SNAKE_CASE:Optional[Any] = self.tokenizer.generator if isinstance(self.tokenizer ,SCREAMING_SNAKE_CASE__ ) else self.tokenizer SCREAMING_SNAKE_CASE:int = encode_line(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,self.max_source_length ,"right" ) SCREAMING_SNAKE_CASE:List[Any] = encode_line(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,self.max_target_length ,"right" ) SCREAMING_SNAKE_CASE:Dict = source_inputs["input_ids"].squeeze() SCREAMING_SNAKE_CASE:List[str] = target_inputs["input_ids"].squeeze() SCREAMING_SNAKE_CASE:List[str] = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def __UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Dict ): return [len(SCREAMING_SNAKE_CASE__ ) for x in Path(SCREAMING_SNAKE_CASE__ ).open().readlines()] def __UpperCamelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Optional[Any] ): SCREAMING_SNAKE_CASE:Dict = torch.stack([x["input_ids"] for x in batch] ) SCREAMING_SNAKE_CASE:Union[str, Any] = torch.stack([x["attention_mask"] for x in batch] ) SCREAMING_SNAKE_CASE:int = torch.stack([x["decoder_input_ids"] for x in batch] ) SCREAMING_SNAKE_CASE:Union[str, Any] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer ,SCREAMING_SNAKE_CASE__ ) else self.tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE:Dict = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer ,SCREAMING_SNAKE_CASE__ ) else self.tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE:Dict = trim_batch(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:List[Any] = trim_batch(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Tuple = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch A_ = getLogger(__name__) def A_ ( snake_case ): return list(itertools.chain.from_iterable(snake_case ) ) def A_ ( snake_case ): SCREAMING_SNAKE_CASE:Tuple = get_git_info() save_json(snake_case , os.path.join(snake_case , "git_log.json" ) ) def A_ ( snake_case , snake_case , snake_case=4 , **snake_case ): with open(snake_case , "w" ) as f: json.dump(snake_case , snake_case , indent=snake_case , **snake_case ) def A_ ( snake_case ): with open(snake_case ) as f: return json.load(snake_case ) def A_ ( ): SCREAMING_SNAKE_CASE:int = git.Repo(search_parent_directories=snake_case ) SCREAMING_SNAKE_CASE:Any = { "repo_id": str(snake_case ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def A_ ( snake_case , snake_case ): return list(map(snake_case , snake_case ) ) def A_ ( snake_case , snake_case ): with open(snake_case , "wb" ) as f: return pickle.dump(snake_case , snake_case ) def A_ ( snake_case ): def remove_articles(snake_case ): return re.sub(r"\b(a|an|the)\b" , " " , snake_case ) def white_space_fix(snake_case ): return " ".join(text.split() ) def remove_punc(snake_case ): SCREAMING_SNAKE_CASE:Optional[int] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(snake_case ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case ) ) ) ) def A_ ( snake_case , snake_case ): SCREAMING_SNAKE_CASE:Optional[Any] = normalize_answer(snake_case ).split() SCREAMING_SNAKE_CASE:Optional[int] = normalize_answer(snake_case ).split() SCREAMING_SNAKE_CASE:Optional[int] = Counter(snake_case ) & Counter(snake_case ) SCREAMING_SNAKE_CASE:List[str] = sum(common.values() ) if num_same == 0: return 0 SCREAMING_SNAKE_CASE:Union[str, Any] = 1.0 * num_same / len(snake_case ) SCREAMING_SNAKE_CASE:List[Any] = 1.0 * num_same / len(snake_case ) SCREAMING_SNAKE_CASE:str = (2 * precision * recall) / (precision + recall) return fa def A_ ( snake_case , snake_case ): return normalize_answer(snake_case ) == normalize_answer(snake_case ) def A_ ( snake_case , snake_case ): assert len(snake_case ) == len(snake_case ) SCREAMING_SNAKE_CASE:Optional[Any] = 0 for hypo, pred in zip(snake_case , snake_case ): em += exact_match_score(snake_case , snake_case ) if len(snake_case ) > 0: em /= len(snake_case ) return {"em": em} def A_ ( snake_case ): return model_prefix.startswith("rag" ) def A_ ( snake_case , snake_case , snake_case ): SCREAMING_SNAKE_CASE:List[str] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead SCREAMING_SNAKE_CASE:Dict = "dropout_rate" for p in extra_params: if getattr(snake_case , snake_case , snake_case ): if not hasattr(snake_case , snake_case ) and not hasattr(snake_case , equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(snake_case ) ) delattr(snake_case , snake_case ) continue SCREAMING_SNAKE_CASE:Optional[int] = p if hasattr(snake_case , snake_case ) else equivalent_param[p] setattr(snake_case , snake_case , getattr(snake_case , snake_case ) ) delattr(snake_case , snake_case ) return hparams, config
143
1
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=12 , A_=7 , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=32 , A_=2 , A_=4 , A_=37 , A_=0.1 , A_=0.1 , A_=512 , A_=0.02 , A_=0 , A_=None , ) -> List[Any]: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =seq_length __UpperCamelCase =is_training __UpperCamelCase =use_input_mask __UpperCamelCase =use_labels __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =projection_dim __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =dropout __UpperCamelCase =attention_dropout __UpperCamelCase =max_position_embeddings __UpperCamelCase =initializer_range __UpperCamelCase =scope __UpperCamelCase =bos_token_id def _a ( self ) -> Dict: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =None if self.use_input_mask: __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: __UpperCamelCase =input_mask.numpy() __UpperCamelCase =input_mask.shape __UpperCamelCase =np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase__ ): __UpperCamelCase =1 __UpperCamelCase =0 __UpperCamelCase =self.get_config() return config, input_ids, tf.convert_to_tensor(lowerCamelCase__ ) def _a ( self ) -> List[str]: return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def _a ( self , A_ , A_ , A_ ) -> Dict: __UpperCamelCase =TFBlipTextModel(config=lowerCamelCase__ ) __UpperCamelCase =model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , training=lowerCamelCase__ ) __UpperCamelCase =model(lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _a ( self ) -> Tuple: __UpperCamelCase =self.prepare_config_and_inputs() __UpperCamelCase =config_and_inputs __UpperCamelCase ={"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Tuple = (TFBlipTextModel,) if is_tf_available() else () UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : Optional[Any] = False def _a ( self ) -> List[str]: __UpperCamelCase =BlipTextModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def _a ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def _a ( self ) -> Tuple: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def _a ( self ) -> Optional[int]: pass def _a ( self ) -> Dict: pass @unittest.skip(reason='Blip does not use inputs_embeds' ) def _a ( self ) -> List[str]: pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _a ( self ) -> Any: pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _a ( self ) -> Optional[int]: pass @slow def _a ( self ) -> Optional[Any]: for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =TFBlipTextModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def _a ( self , A_=True ) -> Dict: super().test_pt_tf_model_equivalence(allow_missing_keys=lowerCamelCase__ )
718
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex _A = logging.getLogger(__name__) class UpperCAmelCase__ : """simple docstring""" def __init__( self ) -> int: __UpperCamelCase =False def _a ( self , A_ , A_ , A_ , A_ ) -> List[Any]: if not self.initialized: __UpperCamelCase =RagRetriever( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , index=A_ , init_retrieval=A_ , ) __UpperCamelCase =True def _a ( self ) -> Optional[Any]: self.retriever.index.init_index() def _a ( self , A_ , A_ ) -> Dict: __UpperCamelCase , __UpperCamelCase =self.retriever._main_retrieve(A_ , A_ ) return doc_ids, retrieved_doc_embeds class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_ , A_ , A_ , A_=None ) -> Dict: if index is not None and index.is_initialized() and len(A_ ) > 0: raise ValueError( 'When using Ray for distributed fine-tuning, ' 'you\'ll need to provide the paths instead, ' 'as the dataset and the index are loaded ' 'separately. More info in examples/rag/use_own_knowledge_dataset.py ' ) super().__init__( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , index=A_ , init_retrieval=A_ , ) __UpperCamelCase =retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(A_ , A_ , A_ , A_ ) for worker in self.retrieval_workers ] ) def _a ( self ) -> Union[str, Any]: logger.info('initializing retrieval' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def _a ( self , A_ , A_ ) -> Optional[int]: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __UpperCamelCase =self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __UpperCamelCase , __UpperCamelCase =ray.get(random_worker.retrieve.remote(A_ , A_ ) ) else: __UpperCamelCase , __UpperCamelCase =self._main_retrieve(A_ , A_ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A_ ) @classmethod def _a ( cls , A_ , A_=None , **A_ ) -> List[str]: return super(A_ , cls ).get_tokenizers(A_ , A_ , **A_ ) @classmethod def _a ( cls , A_ , A_ , A_=None , **A_ ) -> str: __UpperCamelCase =kwargs.pop('config' , A_ ) or RagConfig.from_pretrained(A_ , **A_ ) __UpperCamelCase =RagTokenizer.from_pretrained(A_ , config=A_ ) __UpperCamelCase =rag_tokenizer.question_encoder __UpperCamelCase =rag_tokenizer.generator if indexed_dataset is not None: __UpperCamelCase ='custom' __UpperCamelCase =CustomHFIndex(config.retrieval_vector_size , A_ ) else: __UpperCamelCase =cls._build_index(A_ ) return cls( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , retrieval_workers=A_ , index=A_ , )
682
0
'''simple docstring''' from __future__ import annotations import math def lowerCAmelCase (__A): """simple docstring""" if num <= 0: _a = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(__A) _a = [True] * (num + 1) _a = [] _a = 2 _a = int(math.sqrt(__A)) while start <= end: # If start is a prime if sieve[start] is True: prime.append(__A) # Set multiples of start be False for i in range(start * start , num + 1 , __A): if sieve[i] is True: _a = False start += 1 for j in range(end + 1 , num + 1): if sieve[j] is True: prime.append(__A) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
11
'''simple docstring''' import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=None , ) -> Dict: '''simple docstring''' A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_input_mask A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = type_sequence_label_size A_ = initializer_range A_ = num_labels A_ = num_choices A_ = scope def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self ) -> List[str]: '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = DistilBertModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = DistilBertForMaskedLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = DistilBertForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = self.num_labels A_ = DistilBertForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Any: '''simple docstring''' A_ = self.num_labels A_ = DistilBertForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' A_ = self.num_choices A_ = DistilBertForMultipleChoice(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = self.prepare_config_and_inputs() ((A_) , (A_) , (A_) , (A_) , (A_) , (A_)) = config_and_inputs A_ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class A__ ( _snake_case , _snake_case , unittest.TestCase ): lowercase = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowercase = ( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowercase = True lowercase = True lowercase = True lowercase = True def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = DistilBertModelTester(self ) A_ = ConfigTester(self , config_class=UpperCamelCase__ , dim=37 ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCamelCase__ ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCamelCase__ ) def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCamelCase__ ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCamelCase__ ) @slow def snake_case_ ( self ) -> Tuple: '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = DistilBertModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @slow @require_torch_gpu def snake_case_ ( self ) -> str: '''simple docstring''' A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return A_ = True A_ = model_class(config=UpperCamelCase__ ) A_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) A_ = torch.jit.trace( UpperCamelCase__ , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(UpperCamelCase__ , os.path.join(UpperCamelCase__ , """traced_model.pt""" ) ) A_ = torch.jit.load(os.path.join(UpperCamelCase__ , """traced_model.pt""" ) , map_location=UpperCamelCase__ ) loaded(inputs_dict["""input_ids"""].to(UpperCamelCase__ ) , inputs_dict["""attention_mask"""].to(UpperCamelCase__ ) ) @require_torch class A__ ( unittest.TestCase ): @slow def snake_case_ ( self ) -> int: '''simple docstring''' A_ = DistilBertModel.from_pretrained("""distilbert-base-uncased""" ) A_ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) A_ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ )[0] A_ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , UpperCamelCase__ ) A_ = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCamelCase__ , atol=1e-4 ) )
288
0
"""simple docstring""" from __future__ import annotations import math class __snake_case: def __init__( self , __lowerCamelCase ): '''simple docstring''' __A : Optional[Any] = size # approximate the overall size of segment tree with given value __A : Tuple = [0 for i in range(0 , 4 * size )] # create array to store lazy update __A : Optional[int] = [0 for i in range(0 , 4 * size )] __A : Dict = [0 for i in range(0 , 4 * size )] # flag for lazy update def _a ( self , __lowerCamelCase ): '''simple docstring''' return idx * 2 def _a ( self , __lowerCamelCase ): '''simple docstring''' return idx * 2 + 1 def _a ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' if left_element == right_element: __A : Optional[int] = a[left_element - 1] else: __A : Optional[int] = (left_element + right_element) // 2 self.build(self.left(UpperCamelCase_ ) , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) self.build(self.right(UpperCamelCase_ ) , mid + 1 , UpperCamelCase_ , UpperCamelCase_ ) __A : List[str] = max( self.segment_tree[self.left(UpperCamelCase_ )] , self.segment_tree[self.right(UpperCamelCase_ )] ) def _a ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' if self.flag[idx] is True: __A : Tuple = self.lazy[idx] __A : Dict = False if left_element != right_element: __A : Tuple = self.lazy[idx] __A : Optional[int] = self.lazy[idx] __A : Union[str, Any] = True __A : Dict = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: __A : int = val if left_element != right_element: __A : Tuple = val __A : str = val __A : List[Any] = True __A : Any = True return True __A : Dict = (left_element + right_element) // 2 self.update(self.left(UpperCamelCase_ ) , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) self.update(self.right(UpperCamelCase_ ) , mid + 1 , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __A : str = max( self.segment_tree[self.left(UpperCamelCase_ )] , self.segment_tree[self.right(UpperCamelCase_ )] ) return True def _a ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' if self.flag[idx] is True: __A : Dict = self.lazy[idx] __A : Union[str, Any] = False if left_element != right_element: __A : Dict = self.lazy[idx] __A : Tuple = self.lazy[idx] __A : List[Any] = True __A : List[str] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] __A : List[str] = (left_element + right_element) // 2 __A : Optional[int] = self.query(self.left(UpperCamelCase_ ) , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __A : Optional[Any] = self.query(self.right(UpperCamelCase_ ) , mid + 1 , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return max(UpperCamelCase_ , UpperCamelCase_ ) def __str__( self ): '''simple docstring''' return str([self.query(1 , 1 , self.size , UpperCamelCase_ , UpperCamelCase_ ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": lowerCamelCase : Union[str, Any] =[1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] lowerCamelCase : Optional[Any] =15 lowerCamelCase : Tuple =SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 1_11) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 2_35) print(segt)
714
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __snake_case( A_ , unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = DiTPipeline _UpperCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } _UpperCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCAmelCase = False def _a ( self ): '''simple docstring''' torch.manual_seed(0 ) __A : str = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=__lowerCamelCase , activation_fn='gelu-approximate' , num_embeds_ada_norm=1000 , norm_type='ada_norm_zero' , norm_elementwise_affine=__lowerCamelCase , ) __A : int = AutoencoderKL() __A : Optional[int] = DDIMScheduler() __A : str = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def _a ( self , __lowerCamelCase , __lowerCamelCase=0 ): '''simple docstring''' if str(__lowerCamelCase ).startswith('mps' ): __A : Optional[Any] = torch.manual_seed(__lowerCamelCase ) else: __A : Tuple = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) __A : Tuple = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def _a ( self ): '''simple docstring''' __A : List[Any] = 'cpu' __A : List[Any] = self.get_dummy_components() __A : Dict = self.pipeline_class(**__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __A : Tuple = self.get_dummy_inputs(__lowerCamelCase ) __A : Dict = pipe(**__lowerCamelCase ).images __A : int = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) __A : Union[str, Any] = np.array([0.29_46, 0.66_01, 0.43_29, 0.32_96, 0.41_44, 0.53_19, 0.72_73, 0.50_13, 0.44_57] ) __A : Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCamelCase , 1e-3 ) def _a ( self ): '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=__lowerCamelCase , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _a ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __snake_case( unittest.TestCase ): '''simple docstring''' def _a ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self ): '''simple docstring''' __A : List[Any] = torch.manual_seed(0 ) __A : Tuple = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) __A : Union[str, Any] = ['vase', 'umbrella', 'white shark', 'white wolf'] __A : Dict = pipe.get_label_ids(__lowerCamelCase ) __A : Optional[int] = pipe(__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=40 , output_type='np' ).images for word, image in zip(__lowerCamelCase , __lowerCamelCase ): __A : Optional[int] = load_numpy( F'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' ) assert np.abs((expected_image - image).max() ) < 1e-2 def _a ( self ): '''simple docstring''' __A : Optional[Any] = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) __A : Tuple = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) __A : Optional[int] = ['vase', 'umbrella'] __A : Dict = pipe.get_label_ids(__lowerCamelCase ) __A : Optional[int] = torch.manual_seed(0 ) __A : List[Any] = pipe(__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=25 , output_type='np' ).images for word, image in zip(__lowerCamelCase , __lowerCamelCase ): __A : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' F'/dit/{word}_512.npy' ) assert np.abs((expected_image - image).max() ) < 1e-1
237
0
"""simple docstring""" from __future__ import annotations def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(_lowerCamelCase ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(_lowerCamelCase ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
46
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE = { 'vocab_file': {'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'}, 'tokenizer_file': { 'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json' }, } SCREAMING_SNAKE_CASE = {'mobilebert-uncased': 5_1_2} SCREAMING_SNAKE_CASE = {} class __UpperCAmelCase ( __A ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = MobileBertTokenizer def __init__( self , __A=None , __A=None , __A=True , __A="[UNK]" , __A="[SEP]" , __A="[PAD]" , __A="[CLS]" , __A="[MASK]" , __A=True , __A=None , **__A , ): super().__init__( __A , tokenizer_file=__A , do_lower_case=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , tokenize_chinese_chars=__A , strip_accents=__A , **__A , ) __a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __A ) != do_lower_case or normalizer_state.get("""strip_accents""" , __A ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __A ) != tokenize_chinese_chars ): __a = getattr(__A , normalizer_state.pop("""type""" ) ) __a = do_lower_case __a = strip_accents __a = tokenize_chinese_chars __a = normalizer_class(**__A ) __a = do_lower_case def snake_case_ ( self , __A , __A=None ): __a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case_ ( self , __A , __A = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case_ ( self , __A , __A = None ): __a = self._tokenizer.model.save(__A , name=__A ) return tuple(__A )
99
0
"""simple docstring""" def lowerCAmelCase (__UpperCamelCase : str , __UpperCamelCase : Any ): """simple docstring""" print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(__UpperCamelCase ): for j in range(__UpperCamelCase ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ) , end='''\t''' ) else: print('''INF''' , end='''\t''' ) print() def lowerCAmelCase (__UpperCamelCase : Optional[Any] , __UpperCamelCase : List[str] ): """simple docstring""" __UpperCamelCase =[[float('''inf''' ) for _ in range(__UpperCamelCase )] for _ in range(__UpperCamelCase )] for i in range(__UpperCamelCase ): for j in range(__UpperCamelCase ): __UpperCamelCase =graph[i][j] # check vertex k against all other vertices (i, j) for k in range(__UpperCamelCase ): # looping through rows of graph array for i in range(__UpperCamelCase ): # looping through columns of graph array for j in range(__UpperCamelCase ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): __UpperCamelCase =dist[i][k] + dist[k][j] _print_dist(__UpperCamelCase , __UpperCamelCase ) return dist, v if __name__ == "__main__": __lowercase = int(input('''Enter number of vertices: ''')) __lowercase = int(input('''Enter number of edges: ''')) __lowercase = [[float('''inf''') for i in range(v)] for j in range(v)] for i in range(v): __lowercase = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('''\nEdge ''', i + 1) __lowercase = int(input('''Enter source:''')) __lowercase = int(input('''Enter destination:''')) __lowercase = float(input('''Enter weight:''')) __lowercase = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
705
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase (__UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] ): """simple docstring""" assert isinstance(__UpperCamelCase , __UpperCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCAmelCase (__UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] ): """simple docstring""" __UpperCamelCase =tmp_path / '''cache''' __UpperCamelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCamelCase =JsonDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase , keep_in_memory=__UpperCamelCase ).read() _check_json_dataset(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCAmelCase (__UpperCamelCase : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] ): """simple docstring""" __UpperCamelCase =tmp_path / '''cache''' __UpperCamelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCamelCase =features.copy() if features else default_expected_features __UpperCamelCase =( Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCamelCase =JsonDatasetReader(__UpperCamelCase , features=__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_json_dataset(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def lowerCAmelCase (__UpperCamelCase : int , __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] ): """simple docstring""" __UpperCamelCase =tmp_path / '''cache''' __UpperCamelCase ={'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} __UpperCamelCase =features.copy() if features else default_expected_features __UpperCamelCase =( Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCamelCase =JsonDatasetReader(__UpperCamelCase , features=__UpperCamelCase , cache_dir=__UpperCamelCase ).read() assert isinstance(__UpperCamelCase , __UpperCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def lowerCAmelCase (__UpperCamelCase : Tuple , __UpperCamelCase : List[str] ): """simple docstring""" __UpperCamelCase ={'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} __UpperCamelCase =features.copy() __UpperCamelCase =( Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCamelCase =tmp_path / '''cache''' __UpperCamelCase =JsonDatasetReader(__UpperCamelCase , features=__UpperCamelCase , cache_dir=__UpperCamelCase ).read() assert isinstance(__UpperCamelCase , __UpperCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCAmelCase (__UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : str ): """simple docstring""" __UpperCamelCase =tmp_path / '''cache''' __UpperCamelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCamelCase =JsonDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase , split=__UpperCamelCase ).read() _check_json_dataset(__UpperCamelCase , __UpperCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def lowerCAmelCase (__UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple ): """simple docstring""" if issubclass(__UpperCamelCase , __UpperCamelCase ): __UpperCamelCase =jsonl_path elif issubclass(__UpperCamelCase , __UpperCamelCase ): __UpperCamelCase =[jsonl_path] __UpperCamelCase =tmp_path / '''cache''' __UpperCamelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCamelCase =JsonDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_json_dataset(__UpperCamelCase , __UpperCamelCase ) def lowerCAmelCase (__UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict=("train",) ): """simple docstring""" assert isinstance(__UpperCamelCase , __UpperCamelCase ) for split in splits: __UpperCamelCase =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCAmelCase (__UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] ): """simple docstring""" __UpperCamelCase =tmp_path / '''cache''' __UpperCamelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCamelCase =JsonDatasetReader({'''train''': jsonl_path} , cache_dir=__UpperCamelCase , keep_in_memory=__UpperCamelCase ).read() _check_json_datasetdict(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCAmelCase (__UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] ): """simple docstring""" __UpperCamelCase =tmp_path / '''cache''' __UpperCamelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCamelCase =features.copy() if features else default_expected_features __UpperCamelCase =( Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCamelCase =JsonDatasetReader({'''train''': jsonl_path} , features=__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_json_datasetdict(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCAmelCase (__UpperCamelCase : Optional[int] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] ): """simple docstring""" if split: __UpperCamelCase ={split: jsonl_path} else: __UpperCamelCase ='''train''' __UpperCamelCase ={'''train''': jsonl_path, '''test''': jsonl_path} __UpperCamelCase =tmp_path / '''cache''' __UpperCamelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCamelCase =JsonDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_json_datasetdict(__UpperCamelCase , __UpperCamelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase (__UpperCamelCase : Dict ): """simple docstring""" return json.load(__UpperCamelCase ) def lowerCAmelCase (__UpperCamelCase : Optional[Any] ): """simple docstring""" return [json.loads(__UpperCamelCase ) for line in buffer] class _lowercase : """simple docstring""" @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def UpperCAmelCase_ ( self : Dict , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , lines=UpperCamelCase__ ).write() buffer.seek(0 ) __UpperCamelCase =load_json_function(UpperCamelCase__ ) assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert isinstance(exported_content[0] , UpperCamelCase__ ) assert len(UpperCamelCase__ ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def UpperCAmelCase_ ( self : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : List[str] ) -> str: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , lines=UpperCamelCase__ , orient=UpperCamelCase__ ).write() buffer.seek(0 ) __UpperCamelCase =load_json(UpperCamelCase__ ) assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase__ , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(UpperCamelCase__ ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def UpperCAmelCase_ ( self : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : List[Any] ) -> Any: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , lines=UpperCamelCase__ , num_proc=2 ).write() buffer.seek(0 ) __UpperCamelCase =load_json_function(UpperCamelCase__ ) assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert isinstance(exported_content[0] , UpperCamelCase__ ) assert len(UpperCamelCase__ ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def UpperCAmelCase_ ( self : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str ) -> Any: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , lines=UpperCamelCase__ , orient=UpperCamelCase__ , num_proc=2 ).write() buffer.seek(0 ) __UpperCamelCase =load_json(UpperCamelCase__ ) assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase__ , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(UpperCamelCase__ ) == 10 def UpperCAmelCase_ ( self : List[Any] , UpperCamelCase__ : List[Any] ) -> Dict: '''simple docstring''' with pytest.raises(UpperCamelCase__ ): with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def UpperCAmelCase_ ( self : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any ) -> Tuple: '''simple docstring''' __UpperCamelCase =tmp_path_factory.mktemp('''data''' ) / f"""test.json.{extension}""" __UpperCamelCase =str(shared_datadir / f"""test_file.json.{extension}""" ) JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , compression=UpperCamelCase__ ).write() with fsspec.open(UpperCamelCase__ , '''rb''' , compression='''infer''' ) as f: __UpperCamelCase =f.read() with fsspec.open(UpperCamelCase__ , '''rb''' , compression='''infer''' ) as f: __UpperCamelCase =f.read() assert exported_content == original_content
296
0
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() snake_case_ : Any = logging.get_logger('transformers.models.speecht5') def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): hf_model.apply_weight_norm() _UpperCamelCase : Any = checkpoint['input_conv.weight_g'] _UpperCamelCase : str = checkpoint['input_conv.weight_v'] _UpperCamelCase : Union[str, Any] = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): _UpperCamelCase : int = checkpoint[f'upsamples.{i}.1.weight_g'] _UpperCamelCase : List[Any] = checkpoint[f'upsamples.{i}.1.weight_v'] _UpperCamelCase : List[str] = checkpoint[f'upsamples.{i}.1.bias'] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): _UpperCamelCase : int = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_g'] _UpperCamelCase : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_v'] _UpperCamelCase : Union[str, Any] = checkpoint[f'blocks.{i}.convs1.{j}.1.bias'] _UpperCamelCase : Tuple = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_g'] _UpperCamelCase : Tuple = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_v'] _UpperCamelCase : Tuple = checkpoint[f'blocks.{i}.convs2.{j}.1.bias'] _UpperCamelCase : Any = checkpoint['output_conv.1.weight_g'] _UpperCamelCase : str = checkpoint['output_conv.1.weight_v'] _UpperCamelCase : int = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_=None , ): if config_path is not None: _UpperCamelCase : List[Any] = SpeechTaHifiGanConfig.from_pretrained(UpperCAmelCase_ ) else: _UpperCamelCase : List[Any] = SpeechTaHifiGanConfig() _UpperCamelCase : Optional[int] = SpeechTaHifiGan(UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = torch.load(UpperCAmelCase_ ) load_weights(orig_checkpoint['model']['generator'] , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : str = np.load(UpperCAmelCase_ ) _UpperCamelCase : Tuple = stats[0].reshape(-1 ) _UpperCamelCase : Union[str, Any] = stats[1].reshape(-1 ) _UpperCamelCase : Optional[int] = torch.from_numpy(UpperCAmelCase_ ).float() _UpperCamelCase : List[str] = torch.from_numpy(UpperCAmelCase_ ).float() model.save_pretrained(UpperCAmelCase_ ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(UpperCAmelCase_ ) if __name__ == "__main__": snake_case_ : Dict = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) snake_case_ : str = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
195
'''simple docstring''' from __future__ import annotations def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase , _UpperCamelCase : Dict = position _UpperCamelCase : Any = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] _UpperCamelCase : Optional[Any] = [] for position in positions: _UpperCamelCase , _UpperCamelCase : Any = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(UpperCAmelCase_ ) return permissible_positions def A__ ( UpperCAmelCase_ ): return not any(elem == 0 for row in board for elem in row ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if is_complete(UpperCAmelCase_ ): return True for position in get_valid_pos(UpperCAmelCase_ , len(UpperCAmelCase_ ) ): _UpperCamelCase , _UpperCamelCase : Any = position if board[y][x] == 0: _UpperCamelCase : int = curr + 1 if open_knight_tour_helper(UpperCAmelCase_ , UpperCAmelCase_ , curr + 1 ): return True _UpperCamelCase : Union[str, Any] = 0 return False def A__ ( UpperCAmelCase_ ): _UpperCamelCase : Dict = [[0 for i in range(UpperCAmelCase_ )] for j in range(UpperCAmelCase_ )] for i in range(UpperCAmelCase_ ): for j in range(UpperCAmelCase_ ): _UpperCamelCase : Tuple = 1 if open_knight_tour_helper(UpperCAmelCase_ , (i, j) , 1 ): return board _UpperCamelCase : Union[str, Any] = 0 _UpperCamelCase : int = f'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(UpperCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
195
1
import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin _UpperCAmelCase : List[Any] = random.Random() if is_torch_available(): import torch def lowerCAmelCase_ (lowercase__ : int , lowercase__ : List[str]=1.0 , lowercase__ : str=None , lowercase__ : List[Any]=None ) -> Dict: '''simple docstring''' if rng is None: lowerCAmelCase__ = global_rng lowerCAmelCase__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict=7 , SCREAMING_SNAKE_CASE_ : str=400 , SCREAMING_SNAKE_CASE_ : int=2_000 , SCREAMING_SNAKE_CASE_ : Optional[int]=1 , SCREAMING_SNAKE_CASE_ : Any=0.0 , SCREAMING_SNAKE_CASE_ : Dict=16_000 , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : List[Any]=True , ): lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = min_seq_length lowerCAmelCase__ = max_seq_length lowerCAmelCase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase__ = feature_size lowerCAmelCase__ = padding_value lowerCAmelCase__ = sampling_rate lowerCAmelCase__ = return_attention_mask lowerCAmelCase__ = do_normalize def __snake_case ( self : Tuple ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any]=False , SCREAMING_SNAKE_CASE_ : int=False ): def _flatten(SCREAMING_SNAKE_CASE_ : str ): return list(itertools.chain(*SCREAMING_SNAKE_CASE_ ) ) if equal_length: lowerCAmelCase__ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCAmelCase__ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase__ = [np.asarray(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCAmelCase_ ( snake_case__ , unittest.TestCase ): UpperCamelCase_ :Tuple = ASTFeatureExtractor def __snake_case ( self : List[str] ): lowerCAmelCase__ = ASTFeatureExtractionTester(self ) def __snake_case ( self : str ): # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase__ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowerCAmelCase__ = [np.asarray(SCREAMING_SNAKE_CASE_ ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase__ = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values lowerCAmelCase__ = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) # Test batched lowerCAmelCase__ = feat_extract(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , return_tensors='''np''' ).input_values lowerCAmelCase__ = feat_extract(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase__ = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowerCAmelCase__ = np.asarray(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = feat_extract(SCREAMING_SNAKE_CASE_ , return_tensors='''np''' ).input_values lowerCAmelCase__ = feat_extract(SCREAMING_SNAKE_CASE_ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) @require_torch def __snake_case ( self : List[Any] ): import torch lowerCAmelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ = np.random.rand(100 ).astype(np.floataa ) lowerCAmelCase__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase__ = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCAmelCase__ = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): from datasets import load_dataset lowerCAmelCase__ = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech lowerCAmelCase__ = ds.sort('''id''' ).select(range(SCREAMING_SNAKE_CASE_ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] @require_torch def __snake_case ( self : int ): # fmt: off lowerCAmelCase__ = torch.tensor( [-0.9_894, -1.2_776, -0.9_066, -1.2_776, -0.9_349, -1.2_609, -1.0_386, -1.2_776, -1.1_561, -1.2_776, -1.2_052, -1.2_723, -1.2_190, -1.2_132, -1.2_776, -1.1_133, -1.1_953, -1.1_343, -1.1_584, -1.2_203, -1.1_770, -1.2_474, -1.2_381, -1.1_936, -0.9_270, -0.8_317, -0.8_049, -0.7_706, -0.7_565, -0.7_869] ) # fmt: on lowerCAmelCase__ = self._load_datasamples(1 ) lowerCAmelCase__ = ASTFeatureExtractor() lowerCAmelCase__ = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 1_024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
288
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase : str = { "configuration_blenderbot_small": [ "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotSmallConfig", "BlenderbotSmallOnnxConfig", ], "tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[str] = ["BlenderbotSmallTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[str] = [ "BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotSmallForCausalLM", "BlenderbotSmallForConditionalGeneration", "BlenderbotSmallModel", "BlenderbotSmallPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = [ "TFBlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallModel", "TFBlenderbotSmallPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[str] = [ "FlaxBlenderbotSmallForConditionalGeneration", "FlaxBlenderbotSmallModel", "FlaxBlenderbotSmallPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys _UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
288
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class _lowercase : """simple docstring""" lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None # sigma(t_i) @classmethod def _UpperCAmelCase ( cls ): '''simple docstring''' return cls() @dataclass class _lowercase ( A_ ): """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 class _lowercase ( A_ , A_ ): """simple docstring""" @property def _UpperCAmelCase ( self ): '''simple docstring''' return True @register_to_config def __init__( self , UpperCAmelCase = 0.02 , UpperCAmelCase = 100 , UpperCAmelCase = 1.007 , UpperCAmelCase = 80 , UpperCAmelCase = 0.05 , UpperCAmelCase = 50 , ): '''simple docstring''' pass def _UpperCAmelCase ( self ): '''simple docstring''' return KarrasVeSchedulerState.create() def _UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = () ): '''simple docstring''' _lowercase = jnp.arange(0 , UpperCAmelCase )[::-1].copy() _lowercase = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=UpperCAmelCase , schedule=jnp.array(UpperCAmelCase , dtype=jnp.floataa ) , timesteps=UpperCAmelCase , ) def _UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ): '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: _lowercase = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: _lowercase = 0 # sample eps ~ N(0, S_noise^2 * I) _lowercase = random.split(UpperCAmelCase , num=1 ) _lowercase = self.config.s_noise * random.normal(key=UpperCAmelCase , shape=sample.shape ) _lowercase = sigma + gamma * sigma _lowercase = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = True , ): '''simple docstring''' _lowercase = sample_hat + sigma_hat * model_output _lowercase = (sample_hat - pred_original_sample) / sigma_hat _lowercase = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , state=UpperCAmelCase ) def _UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = True , ): '''simple docstring''' _lowercase = sample_prev + sigma_prev * model_output _lowercase = (sample_prev - pred_original_sample) / sigma_prev _lowercase = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , state=UpperCAmelCase ) def _UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): '''simple docstring''' raise NotImplementedError()
398
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase = { '''configuration_swiftformer''': [ '''SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwiftFormerConfig''', '''SwiftFormerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwiftFormerForImageClassification''', '''SwiftFormerModel''', '''SwiftFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
157
0
"""simple docstring""" def a ( __UpperCAmelCase : List[str] ) -> Union[str, Any]: __magic_name__: Optional[Any] = len(__UpperCAmelCase ) while cur > 1: # Find the maximum number in arr __magic_name__: str = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi __magic_name__: Optional[int] = arr[mi::-1] + arr[mi + 1 : len(__UpperCAmelCase )] # Reverse whole list __magic_name__: int = arr[cur - 1 :: -1] + arr[cur : len(__UpperCAmelCase )] cur -= 1 return arr if __name__ == "__main__": __lowerCamelCase = input('Enter numbers separated by a comma:\n').strip() __lowerCamelCase = [int(item) for item in user_input.split(',')] print(pancake_sort(unsorted))
213
"""simple docstring""" from math import factorial __lowerCamelCase = {str(digit): factorial(digit) for digit in range(10)} def a ( __UpperCAmelCase : int ) -> int: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""Parameter number must be int""" ) if number < 0: raise ValueError("""Parameter number must be greater than or equal to 0""" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(__UpperCAmelCase ) ) def a ( __UpperCAmelCase : int = 6_0 , __UpperCAmelCase : int = 1_0_0_0_0_0_0 ) -> int: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""Parameters chain_length and number_limit must be int""" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( """Parameters chain_length and number_limit must be greater than 0""" ) # the counter for the chains with the exact desired length __magic_name__: Optional[Any] = 0 # the cached sizes of the previous chains __magic_name__: dict[int, int] = {} for start_chain_element in range(1 , __UpperCAmelCase ): # The temporary set will contain the elements of the chain __magic_name__: Tuple = set() __magic_name__: Optional[Any] = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. __magic_name__: Dict = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(__UpperCAmelCase ) chain_set_length += 1 __magic_name__: Union[str, Any] = digit_factorial_sum(__UpperCAmelCase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] __magic_name__: int = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(f'''{solution()}''')
213
1
"""simple docstring""" from __future__ import annotations lowerCamelCase__ : Union[str, Any] = tuple[int, int, int] lowerCamelCase__ : List[Any] = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase lowerCamelCase__ : int = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" # -------------------------- default selection -------------------------- # rotors -------------------------- lowerCamelCase__ : Optional[int] = "EGZWVONAHDCLFQMSIPJBYUKXTR" lowerCamelCase__ : Tuple = "FOBHMDKEXQNRAULPGSJVTYICZW" lowerCamelCase__ : Optional[int] = "ZJXESIUQLHAVRMDOYGTNFWPBKC" # reflector -------------------------- lowerCamelCase__ : Tuple = { "A": "N", "N": "A", "B": "O", "O": "B", "C": "P", "P": "C", "D": "Q", "Q": "D", "E": "R", "R": "E", "F": "S", "S": "F", "G": "T", "T": "G", "H": "U", "U": "H", "I": "V", "V": "I", "J": "W", "W": "J", "K": "X", "X": "K", "L": "Y", "Y": "L", "M": "Z", "Z": "M", } # -------------------------- extra rotors -------------------------- lowerCamelCase__ : Any = "RMDJXFUWGISLHVTCQNKYPBEZOA" lowerCamelCase__ : Any = "SGLCPQWZHKXAREONTFBVIYJUDM" lowerCamelCase__ : Tuple = "HVSICLTYKQUBXDWAJZOMFGPREN" lowerCamelCase__ : List[Any] = "RZWQHFMVDBKICJLNTUXAGYPSOE" lowerCamelCase__ : Dict = "LFKIJODBEGAMQPXVUHYSTCZRWN" lowerCamelCase__ : str = "KOAEGVDHXPQZMLFTYWJNBRCIUS" def UpperCamelCase ( _lowerCAmelCase : RotorPositionT, _lowerCAmelCase : RotorSelectionT, _lowerCAmelCase : str ) -> Dict: if (unique_rotsel := len(set(_UpperCamelCase ) )) < 3: _UpperCAmelCase : List[Any] = f'''Please use 3 unique rotors (not {unique_rotsel})''' raise Exception(_UpperCamelCase ) # Checks if rotor positions are valid _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[str] = rotpos if not 0 < rotorposa <= len(_UpperCamelCase ): _UpperCAmelCase : Union[str, Any] = f'''First rotor position is not within range of 1..26 ({rotorposa}''' raise ValueError(_UpperCamelCase ) if not 0 < rotorposa <= len(_UpperCamelCase ): _UpperCAmelCase : Optional[int] = f'''Second rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(_UpperCamelCase ) if not 0 < rotorposa <= len(_UpperCamelCase ): _UpperCAmelCase : Dict = f'''Third rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(_UpperCamelCase ) # Validates string and returns dict _UpperCAmelCase : Dict = _plugboard(_UpperCamelCase ) return rotpos, rotsel, pbdict def UpperCamelCase ( _lowerCAmelCase : str ) -> Tuple: if not isinstance(_UpperCamelCase, _UpperCamelCase ): _UpperCAmelCase : Any = f'''Plugboard setting isn\'t type string ({type(_UpperCamelCase )})''' raise TypeError(_UpperCamelCase ) elif len(_UpperCamelCase ) % 2 != 0: _UpperCAmelCase : Union[str, Any] = f'''Odd number of symbols ({len(_UpperCamelCase )})''' raise Exception(_UpperCamelCase ) elif pbstring == "": return {} pbstring.replace(""" """, """""" ) # Checks if all characters are unique _UpperCAmelCase : Union[str, Any] = set() for i in pbstring: if i not in abc: _UpperCAmelCase : Any = f'''\'{i}\' not in list of symbols''' raise Exception(_UpperCamelCase ) elif i in tmppbl: _UpperCAmelCase : List[str] = f'''Duplicate symbol ({i})''' raise Exception(_UpperCamelCase ) else: tmppbl.add(_UpperCamelCase ) del tmppbl # Created the dictionary _UpperCAmelCase : Optional[int] = {} for j in range(0, len(_UpperCamelCase ) - 1, 2 ): _UpperCAmelCase : Tuple = pbstring[j + 1] _UpperCAmelCase : str = pbstring[j] return pb def UpperCamelCase ( _lowerCAmelCase : str, _lowerCAmelCase : RotorPositionT, _lowerCAmelCase : RotorSelectionT = (rotora, rotora, rotora), _lowerCAmelCase : str = "", ) -> int: _UpperCAmelCase : List[Any] = text.upper() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Tuple = _validator( _UpperCamelCase, _UpperCamelCase, plugb.upper() ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = rotor_position _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 _UpperCAmelCase : Union[str, Any] = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: _UpperCAmelCase : Dict = plugboard[symbol] # rotor ra -------------------------- _UpperCAmelCase : List[str] = abc.index(_UpperCamelCase ) + rotorposa _UpperCAmelCase : Tuple = rotora[index % len(_UpperCamelCase )] # rotor rb -------------------------- _UpperCAmelCase : str = abc.index(_UpperCamelCase ) + rotorposa _UpperCAmelCase : Dict = rotora[index % len(_UpperCamelCase )] # rotor rc -------------------------- _UpperCAmelCase : Tuple = abc.index(_UpperCamelCase ) + rotorposa _UpperCAmelCase : Tuple = rotora[index % len(_UpperCamelCase )] # reflector -------------------------- # this is the reason you don't need another machine to decipher _UpperCAmelCase : List[Any] = reflector[symbol] # 2nd rotors _UpperCAmelCase : int = abc[rotora.index(_UpperCamelCase ) - rotorposa] _UpperCAmelCase : List[str] = abc[rotora.index(_UpperCamelCase ) - rotorposa] _UpperCAmelCase : int = abc[rotora.index(_UpperCamelCase ) - rotorposa] # 2nd plugboard if symbol in plugboard: _UpperCAmelCase : str = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(_UpperCamelCase ): _UpperCAmelCase : Dict = 0 rotorposa += 1 if rotorposa >= len(_UpperCamelCase ): _UpperCAmelCase : Optional[int] = 0 rotorposa += 1 if rotorposa >= len(_UpperCamelCase ): _UpperCAmelCase : List[str] = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(_UpperCamelCase ) return "".join(_UpperCamelCase ) if __name__ == "__main__": lowerCamelCase__ : Optional[int] = "This is my Python script that emulates the Enigma machine from WWII." lowerCamelCase__ : Optional[int] = (1, 1, 1) lowerCamelCase__ : int = "pictures" lowerCamelCase__ : List[str] = (rotora, rotora, rotora) lowerCamelCase__ : str = enigma(message, rotor_pos, rotor_sel, pb) print('''Encrypted message:''', en) print('''Decrypted message:''', enigma(en, rotor_pos, rotor_sel, pb))
238
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowercase__ : str = logging.get_logger(__name__) class lowerCamelCase ( lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = ['''pixel_values'''] def __init__( self : Dict , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Dict[str, int]] = None , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Union[int, float] = 1 / 255 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , **UpperCAmelCase__ : Any , ) ->None: super().__init__(**UpperCAmelCase__ ) UpperCAmelCase_ = size if size is not None else {'''shortest_edge''': 256} UpperCAmelCase_ = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) UpperCAmelCase_ = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase_ = get_size_dict(UpperCAmelCase__ ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = resample UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase__ ( self : List[Any] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Dict[str, int] , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Optional[Any] , ) ->np.ndarray: UpperCAmelCase_ = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) UpperCAmelCase_ = get_resize_output_image_size(UpperCAmelCase__ , size=size['''shortest_edge'''] , default_to_square=UpperCAmelCase__ ) return resize(UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def lowerCAmelCase__ ( self : List[Any] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Dict[str, int] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : List[Any] , ) ->np.ndarray: UpperCAmelCase_ = get_size_dict(UpperCAmelCase__ ) return center_crop(UpperCAmelCase__ , size=(size['''height'''], size['''width''']) , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def lowerCAmelCase__ ( self : str , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : float , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Tuple ) ->np.ndarray: return rescale(UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def lowerCAmelCase__ ( self : Dict , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Union[float, List[float]] , UpperCAmelCase__ : Union[float, List[float]] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Optional[int] , ) ->np.ndarray: return normalize(UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def lowerCAmelCase__ ( self : Optional[Any] , UpperCAmelCase__ : ImageInput , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : PILImageResampling = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[float] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCAmelCase__ : List[Any] , ) ->int: UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(UpperCAmelCase__ ) UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. UpperCAmelCase_ = [to_numpy_array(UpperCAmelCase__ ) for image in images] if do_resize: UpperCAmelCase_ = [self.resize(image=UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_center_crop: UpperCAmelCase_ = [self.center_crop(image=UpperCAmelCase__ , size=UpperCAmelCase__ ) for image in images] if do_rescale: UpperCAmelCase_ = [self.rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ ) for image in images] if do_normalize: UpperCAmelCase_ = [self.normalize(image=UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ ) for image in images] UpperCAmelCase_ = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] UpperCAmelCase_ = {'''pixel_values''': images} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ )
390
0
"""simple docstring""" from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
711
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = field(default="summarization" , metadata={"include_in_asdict_even_if_is_default": True} ) SCREAMING_SNAKE_CASE__ :ClassVar[Features] = Features({"text": Value("string" )} ) SCREAMING_SNAKE_CASE__ :ClassVar[Features] = Features({"summary": Value("string" )} ) SCREAMING_SNAKE_CASE__ :str = "text" SCREAMING_SNAKE_CASE__ :str = "summary" @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
51
0
"""simple docstring""" from __future__ import annotations import collections import pprint from pathlib import Path def a_ ( __a ): return "".join(sorted(__a ) ) def a_ ( __a ): return word_by_signature[signature(__a )] __snake_case : str = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') __snake_case : Union[str, Any] = sorted({word.strip().lower() for word in data.splitlines()}) __snake_case : Dict = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": __snake_case : Tuple = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
571
"""simple docstring""" import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any]=1_3 , _lowerCamelCase : Optional[Any]=7 , _lowerCamelCase : Tuple=True , _lowerCamelCase : List[Any]=True , _lowerCamelCase : Dict=True , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : List[str]=9_9 , _lowerCamelCase : Any=3_2 , _lowerCamelCase : List[Any]=5 , _lowerCamelCase : int=4 , _lowerCamelCase : List[Any]=3_7 , _lowerCamelCase : Optional[Any]="gelu" , _lowerCamelCase : Optional[int]=0.1 , _lowerCamelCase : Optional[Any]=0.1 , _lowerCamelCase : List[Any]=5_1_2 , _lowerCamelCase : List[str]=1_6 , _lowerCamelCase : Dict=2 , _lowerCamelCase : int=0.02 , _lowerCamelCase : str=4 , ): A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_attention_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_choices def A__ ( self : List[str] ): A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_attention_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def A__ ( self : Union[str, Any] ): A__ = self.prepare_config_and_inputs() A__ , A__ , A__ , A__ = config_and_inputs A__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class UpperCamelCase ( a , unittest.TestCase ): """simple docstring""" _lowerCamelCase : List[str] =( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def A__ ( self : Tuple ): A__ = FlaxAlbertModelTester(self ) @slow def A__ ( self : List[str] ): for model_class_name in self.all_model_classes: A__ = model_class_name.from_pretrained('''albert-base-v2''' ) A__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCamelCase ) @require_flax class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : List[Any] ): A__ = FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) A__ = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) A__ = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) A__ = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0] A__ = (1, 1_1, 7_6_8) self.assertEqual(output.shape , _lowerCamelCase ) A__ = np.array( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _lowerCamelCase , atol=1E-4 ) )
571
1
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A : str = {"""configuration_mmbt""": ["""MMBTConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Any = ["""MMBTForClassification""", """MMBTModel""", """ModalEmbeddings"""] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys _A : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
518
"""simple docstring""" from graphs.minimum_spanning_tree_kruskal import kruskal def __magic_name__ ( ) -> Optional[Any]: lowercase : Optional[Any] = 9 lowercase : str = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] lowercase : List[str] = kruskal(__snake_case , __snake_case ) lowercase : Tuple = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(__snake_case ) == sorted(__snake_case )
518
1
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Tuple = 2 snake_case_ : Any = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(SCREAMING_SNAKE_CASE__ ) if n > 1: factors.append(SCREAMING_SNAKE_CASE__ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
480
"""simple docstring""" import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging a_ = { '''cola''': 2, '''mnli''': 3, '''mrpc''': 2, '''sst-2''': 2, '''sts-b''': 1, '''qqp''': 2, '''qnli''': 2, '''rte''': 2, '''wnli''': 2, } logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str]=None ): """simple docstring""" snake_case_ : Optional[int] = XLNetConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) snake_case_ : int = finetuning_task.lower() if finetuning_task is not None else """""" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f'Building PyTorch XLNetForSequenceClassification model from configuration: {config}' ) snake_case_ : List[Any] = finetuning_task snake_case_ : Optional[Any] = GLUE_TASKS_NUM_LABELS[finetuning_task] snake_case_ : str = XLNetForSequenceClassification(SCREAMING_SNAKE_CASE__ ) elif "squad" in finetuning_task: snake_case_ : Tuple = finetuning_task snake_case_ : List[Any] = XLNetForQuestionAnswering(SCREAMING_SNAKE_CASE__ ) else: snake_case_ : int = XLNetLMHeadModel(SCREAMING_SNAKE_CASE__ ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save pytorch-model snake_case_ : List[str] = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[Any] = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(f'Save PyTorch model to {os.path.abspath(SCREAMING_SNAKE_CASE__ )}' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE__ ) print(f'Save configuration file to {os.path.abspath(SCREAMING_SNAKE_CASE__ )}' ) with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--xlnet_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained XLNet model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--finetuning_task''', default=None, type=str, help='''Name of a task on which the XLNet TensorFlow model was fine-tuned''', ) a_ = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
480
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer _lowercase: List[str] = logging.get_logger(__name__) _lowercase: Union[str, Any] = {'vocab_file': 'vocab.txt'} _lowercase: str = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } _lowercase: List[str] = { 'YituTech/conv-bert-base': 5_1_2, 'YituTech/conv-bert-medium-small': 5_1_2, 'YituTech/conv-bert-small': 5_1_2, } _lowercase: Tuple = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class lowerCamelCase__ ( _A ): UpperCamelCase__ =VOCAB_FILES_NAMES UpperCamelCase__ =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ =PRETRAINED_INIT_CONFIGURATION UpperCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ =ConvBertTokenizer def __init__( self : str , lowercase__ : Optional[int]=None , lowercase__ : List[Any]=None , lowercase__ : Dict=True , lowercase__ : Optional[Any]="[UNK]" , lowercase__ : Optional[Any]="[SEP]" , lowercase__ : Tuple="[PAD]" , lowercase__ : Any="[CLS]" , lowercase__ : int="[MASK]" , lowercase__ : Any=True , lowercase__ : Optional[Any]=None , **lowercase__ : Dict , ): super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , do_lower_case=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , tokenize_chinese_chars=UpperCamelCase__ , strip_accents=UpperCamelCase__ , **UpperCamelCase__ , ) _lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase__ ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase__ ) != tokenize_chinese_chars ): _lowerCAmelCase = getattr(UpperCamelCase__ , normalizer_state.pop('type' ) ) _lowerCAmelCase = do_lower_case _lowerCAmelCase = strip_accents _lowerCAmelCase = tokenize_chinese_chars _lowerCAmelCase = normalizer_class(**UpperCamelCase__ ) _lowerCAmelCase = do_lower_case def SCREAMING_SNAKE_CASE__ ( self : int , lowercase__ : int , lowercase__ : str=None ): _lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE__ ( self : List[Any] , lowercase__ : List[int] , lowercase__ : Optional[List[int]] = None ): _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE__ ( self : Tuple , lowercase__ : str , lowercase__ : Optional[str] = None ): _lowerCAmelCase = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ )
710
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCamelCase__ ( UpperCAmelCase ,unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE__ ( self : str ): _lowerCAmelCase = ort.SessionOptions() _lowerCAmelCase = False return options def SCREAMING_SNAKE_CASE__ ( self : Tuple ): _lowerCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) _lowerCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) _lowerCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , safety_checker=lowercase__ , feature_extractor=lowercase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase__ ) _lowerCAmelCase = 'A red cat sitting on a park bench' _lowerCAmelCase = np.random.RandomState(0 ) _lowerCAmelCase = pipe( prompt=lowercase__ , image=lowercase__ , mask_image=lowercase__ , guidance_scale=7.5 , num_inference_steps=10 , generator=lowercase__ , output_type='np' , ) _lowerCAmelCase = output.images _lowerCAmelCase = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) _lowerCAmelCase = np.array([0.2_5_1_4, 0.3_0_0_7, 0.3_5_1_7, 0.1_7_9_0, 0.2_3_8_2, 0.3_1_6_7, 0.1_9_4_4, 0.2_2_7_3, 0.2_4_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def SCREAMING_SNAKE_CASE__ ( self : Dict ): _lowerCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) _lowerCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) _lowerCAmelCase = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-inpainting' , subfolder='scheduler' , revision='onnx' ) _lowerCAmelCase = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , scheduler=lowercase__ , safety_checker=lowercase__ , feature_extractor=lowercase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase__ ) _lowerCAmelCase = 'A red cat sitting on a park bench' _lowerCAmelCase = np.random.RandomState(0 ) _lowerCAmelCase = pipe( prompt=lowercase__ , image=lowercase__ , mask_image=lowercase__ , guidance_scale=7.5 , num_inference_steps=20 , generator=lowercase__ , output_type='np' , ) _lowerCAmelCase = output.images _lowerCAmelCase = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) _lowerCAmelCase = np.array([0.0_0_8_6, 0.0_0_7_7, 0.0_0_8_3, 0.0_0_9_3, 0.0_1_0_7, 0.0_1_3_9, 0.0_0_9_4, 0.0_0_9_7, 0.0_1_2_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
225
0
'''simple docstring''' from __future__ import annotations import numpy as np def snake_case ( snake_case : list[float] ) -> Tuple: """simple docstring""" return np.maximum(0 , snake_case ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
284
'''simple docstring''' import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _UpperCamelCase : Optional[Any] = logging.getLogger(__name__) _UpperCamelCase : List[Any] = "Hello world! cécé herlolip" _UpperCamelCase : int = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def snake_case ( snake_case : int , snake_case : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = BertAbsConfig( temp_dir='.' , finetune_bert=snake_case , large=snake_case , share_emb=snake_case , use_bert_emb=snake_case , encoder='bert' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) lowerCAmelCase = torch.load(snake_case , lambda snake_case , snake_case : storage ) lowerCAmelCase = AbsSummarizer(snake_case , torch.device('cpu' ) , snake_case ) original.eval() lowerCAmelCase = BertAbsSummarizer(snake_case , torch.device('cpu' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('convert the model' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('Make sure that the models\' outputs are identical' ) lowerCAmelCase = BertTokenizer.from_pretrained('bert-base-uncased' ) # prepare the model inputs lowerCAmelCase = tokenizer.encode('This is sample éàalj\'-.' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case )) ) lowerCAmelCase = torch.tensor(snake_case ).unsqueeze(0 ) lowerCAmelCase = tokenizer.encode('This is sample 3 éàalj\'-.' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case )) ) lowerCAmelCase = torch.tensor(snake_case ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass lowerCAmelCase = encoder_input_ids lowerCAmelCase = decoder_input_ids lowerCAmelCase = lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = lowerCAmelCase = None lowerCAmelCase = lowerCAmelCase = None lowerCAmelCase = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical lowerCAmelCase = original(snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case )[0] lowerCAmelCase = original.generator(snake_case ) lowerCAmelCase = new_model( snake_case , snake_case , snake_case , snake_case , snake_case )[0] lowerCAmelCase = new_model.generator(snake_case ) lowerCAmelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(snake_case ) ) lowerCAmelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(snake_case ) ) lowerCAmelCase = torch.allclose(snake_case , snake_case , atol=1e-3 ) if are_identical: logging.info('all weights are equal up to 1e-3' ) else: raise ValueError('the weights are different. The new model is likely different from the original one.' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('saving the model\'s state dictionary' ) torch.save( new_model.state_dict() , './bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' ) if __name__ == "__main__": _UpperCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) _UpperCamelCase : Optional[int] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
284
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { 'configuration_timesformer': ['TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimesformerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ 'TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimesformerModel', 'TimesformerForVideoClassification', 'TimesformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
711
'''simple docstring''' from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
44
0
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed lowercase__ : Tuple = 'true' def lowerCamelCase__ ( _A , _A=82 , _A=16 ): '''simple docstring''' set_seed(42 ) snake_case_ = RegressionModel() snake_case_ = deepcopy(__lowerCAmelCase ) snake_case_ = RegressionDataset(length=__lowerCAmelCase ) snake_case_ = DataLoader(__lowerCAmelCase , batch_size=__lowerCAmelCase ) model.to(accelerator.device ) snake_case_ , snake_case_ = accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase ) return model, ddp_model, dataloader def lowerCamelCase__ ( _A , _A=False ): '''simple docstring''' snake_case_ = AutoTokenizer.from_pretrained("hf-internal-testing/mrpc-bert-base-cased" ) snake_case_ = load_dataset("glue" , "mrpc" , split="validation" ) def tokenize_function(_A ): snake_case_ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase ) return outputs with accelerator.main_process_first(): snake_case_ = dataset.map( __lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) snake_case_ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_A ): if use_longest: return tokenizer.pad(__lowerCAmelCase , padding="longest" , return_tensors="pt" ) return tokenizer.pad(__lowerCAmelCase , padding="max_length" , max_length=128 , return_tensors="pt" ) return DataLoader(__lowerCAmelCase , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=16 ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' snake_case_ = Accelerator(dispatch_batches=__lowerCAmelCase , split_batches=__lowerCAmelCase ) snake_case_ = get_dataloader(__lowerCAmelCase , not dispatch_batches ) snake_case_ = AutoModelForSequenceClassification.from_pretrained( "hf-internal-testing/mrpc-bert-base-cased" , return_dict=__lowerCAmelCase ) snake_case_ , snake_case_ = accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def lowerCamelCase__ ( _A , _A , _A ): '''simple docstring''' snake_case_ = [] for batch in dataloader: snake_case_ , snake_case_ = batch.values() with torch.no_grad(): snake_case_ = model(__lowerCAmelCase ) snake_case_ , snake_case_ = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) snake_case_ , snake_case_ = [], [] for logit, targ in logits_and_targets: logits.append(__lowerCAmelCase ) targs.append(__lowerCAmelCase ) snake_case_ , snake_case_ = torch.cat(__lowerCAmelCase ), torch.cat(__lowerCAmelCase ) return logits, targs def lowerCamelCase__ ( _A , _A=82 , _A=False , _A=False , _A=16 ): '''simple docstring''' snake_case_ , snake_case_ , snake_case_ = get_basic_setup(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) snake_case_ , snake_case_ = generate_predictions(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) assert ( len(__lowerCAmelCase ) == num_samples ), f"Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__lowerCAmelCase )}" def lowerCamelCase__ ( _A = False , _A = False ): '''simple docstring''' snake_case_ = evaluate.load("glue" , "mrpc" ) snake_case_ , snake_case_ = get_mrpc_setup(__lowerCAmelCase , __lowerCAmelCase ) # First do baseline snake_case_ , snake_case_ , snake_case_ = setup["no"] model.to(__lowerCAmelCase ) model.eval() for batch in dataloader: batch.to(__lowerCAmelCase ) with torch.inference_mode(): snake_case_ = model(**__lowerCAmelCase ) snake_case_ = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__lowerCAmelCase , references=batch["labels"] ) snake_case_ = metric.compute() # Then do distributed snake_case_ , snake_case_ , snake_case_ = setup["ddp"] model.eval() for batch in dataloader: with torch.inference_mode(): snake_case_ = model(**__lowerCAmelCase ) snake_case_ = outputs.logits.argmax(dim=-1 ) snake_case_ = batch["labels"] snake_case_ , snake_case_ = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__lowerCAmelCase , references=__lowerCAmelCase ) snake_case_ = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f"Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n" def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = Accelerator(split_batches=__lowerCAmelCase , dispatch_batches=__lowerCAmelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("**Testing gather_for_metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`" ) test_mrpc(__lowerCAmelCase , __lowerCAmelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test torch metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: snake_case_ = Accelerator(split_batches=__lowerCAmelCase , dispatch_batches=__lowerCAmelCase ) if accelerator.is_local_main_process: print(f"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99" ) test_torch_metrics(__lowerCAmelCase , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test last batch is not dropped when perfectly divisible**" ) snake_case_ = Accelerator() test_torch_metrics(__lowerCAmelCase , 512 ) accelerator.state._reset_state() def lowerCamelCase__ ( _A ): '''simple docstring''' main() if __name__ == "__main__": main()
376
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : str = "cpu" , __lowerCAmelCase : Union[str, None] = None ): lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location=__lowerCAmelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(__lowerCAmelCase , torch.Tensor ): raise TypeError("""FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin""" ) lowerCamelCase__ = v.half() if save_path is None: # overwrite src_path lowerCamelCase__ = src_path torch.save(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": fire.Fire(convert)
50
0
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class lowercase ( SCREAMING_SNAKE_CASE__ ): def A__ ( self): lowercase = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(A__ ,'''hidden_sizes''')) self.parent.assertTrue(hasattr(A__ ,'''num_attention_heads''')) self.parent.assertTrue(hasattr(A__ ,'''num_encoder_blocks''')) class lowercase : def __init__( self ,A__ ,A__=1_3 ,A__=6_4 ,A__=3 ,A__=4 ,A__=[2, 2, 2, 2] ,A__=[8, 4, 2, 1] ,A__=[1_6, 3_2, 6_4, 1_2_8] ,A__=[1, 4, 8, 1_6] ,A__=[1, 2, 4, 8] ,A__=True ,A__=True ,A__="gelu" ,A__=0.1 ,A__=0.1 ,A__=0.02 ,A__=3 ,A__=None ,): lowercase = parent lowercase = batch_size lowercase = image_size lowercase = num_channels lowercase = num_encoder_blocks lowercase = sr_ratios lowercase = depths lowercase = hidden_sizes lowercase = downsampling_rates lowercase = num_attention_heads lowercase = is_training lowercase = use_labels lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = initializer_range lowercase = num_labels lowercase = scope def A__ ( self): lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels) lowercase = self.get_config() return config, pixel_values, labels def A__ ( self): return SegformerConfig( image_size=self.image_size ,num_channels=self.num_channels ,num_encoder_blocks=self.num_encoder_blocks ,depths=self.depths ,hidden_sizes=self.hidden_sizes ,num_attention_heads=self.num_attention_heads ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,initializer_range=self.initializer_range ,) def A__ ( self ,A__ ,A__ ,A__): lowercase = SegformerModel(config=A__) model.to(A__) model.eval() lowercase = model(A__) lowercase = lowercase = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], expected_height, expected_width)) def A__ ( self ,A__ ,A__ ,A__): lowercase = self.num_labels lowercase = SegformerForSemanticSegmentation(A__) model.to(A__) model.eval() lowercase = model(A__) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) lowercase = model(A__ ,labels=A__) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) self.parent.assertGreater(result.loss ,0.0) def A__ ( self ,A__ ,A__ ,A__): lowercase = 1 lowercase = SegformerForSemanticSegmentation(config=A__) model.to(A__) model.eval() lowercase = torch.randint(0 ,1 ,(self.batch_size, self.image_size, self.image_size)).to(A__) lowercase = model(A__ ,labels=A__) self.parent.assertGreater(result.loss ,0.0) def A__ ( self): lowercase = self.prepare_config_and_inputs() lowercase , lowercase , lowercase = config_and_inputs lowercase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowercase_ : Optional[int] =( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) lowercase_ : Optional[int] =( { '''feature-extraction''': SegformerModel, '''image-classification''': SegformerForImageClassification, '''image-segmentation''': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) lowercase_ : Optional[int] =True lowercase_ : Any =False lowercase_ : Any =False lowercase_ : Union[str, Any] =False def A__ ( self): lowercase = SegformerModelTester(self) lowercase = SegformerConfigTester(self ,config_class=A__) def A__ ( self): self.config_tester.run_common_tests() def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__) def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*A__) def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*A__) @unittest.skip('''SegFormer does not use inputs_embeds''') def A__ ( self): pass @unittest.skip('''SegFormer does not have get_input_embeddings method and get_output_embeddings methods''') def A__ ( self): pass def A__ ( self): lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(A__) lowercase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,A__) def A__ ( self): lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = True for model_class in self.all_model_classes: lowercase = True lowercase = False lowercase = True lowercase = model_class(A__) model.to(A__) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(A__ ,A__)) lowercase = outputs.attentions lowercase = sum(self.model_tester.depths) self.assertEqual(len(A__) ,A__) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase = True lowercase = model_class(A__) model.to(A__) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(A__ ,A__)) lowercase = outputs.attentions self.assertEqual(len(A__) ,A__) # verify the first attentions (first block, first layer) lowercase = (self.model_tester.image_size // 4) ** 2 lowercase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:]) ,[self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] ,) # verify the last attentions (last block, last layer) lowercase = (self.model_tester.image_size // 3_2) ** 2 lowercase = (self.model_tester.image_size // (3_2 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:]) ,[self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] ,) lowercase = len(A__) # Check attention is always last and order is fine lowercase = True lowercase = True lowercase = model_class(A__) model.to(A__) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(A__ ,A__)) self.assertEqual(out_len + 1 ,len(A__)) lowercase = outputs.attentions self.assertEqual(len(A__) ,A__) # verify the first attentions (first block, first layer) lowercase = (self.model_tester.image_size // 4) ** 2 lowercase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:]) ,[self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] ,) def A__ ( self): def check_hidden_states_output(A__ ,A__ ,A__): lowercase = model_class(A__) model.to(A__) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(A__ ,A__)) lowercase = outputs.hidden_states lowercase = self.model_tester.num_encoder_blocks self.assertEqual(len(A__) ,A__) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]) ,[ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] ,) lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = True check_hidden_states_output(A__ ,A__ ,A__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase = True check_hidden_states_output(A__ ,A__ ,A__) def A__ ( self): if not self.model_tester.is_training: return lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = True for model_class in self.all_model_classes: if model_class in get_values(A__): continue lowercase = model_class(A__) model.to(A__) model.train() lowercase = self._prepare_for_class(A__ ,A__ ,return_labels=A__) lowercase = model(**A__).loss loss.backward() @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def A__ ( self): pass @slow def A__ ( self): for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = SegformerModel.from_pretrained(A__) self.assertIsNotNone(A__) def UpperCamelCase ( ): '''simple docstring''' lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class lowercase ( unittest.TestCase ): @slow def A__ ( self): # only resize + normalize lowercase = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) ,keep_ratio=A__ ,align=A__ ,do_random_crop=A__) lowercase = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''').to( A__) lowercase = prepare_img() lowercase = image_processor(images=A__ ,return_tensors='''pt''') lowercase = encoded_inputs.pixel_values.to(A__) with torch.no_grad(): lowercase = model(A__) lowercase = torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8)) self.assertEqual(outputs.logits.shape ,A__) lowercase = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ]).to(A__) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] ,A__ ,atol=1E-4)) @slow def A__ ( self): # only resize + normalize lowercase = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) ,keep_ratio=A__ ,align=A__ ,do_random_crop=A__) lowercase = SegformerForSemanticSegmentation.from_pretrained( '''nvidia/segformer-b1-finetuned-cityscapes-1024-1024''').to(A__) lowercase = prepare_img() lowercase = image_processor(images=A__ ,return_tensors='''pt''') lowercase = encoded_inputs.pixel_values.to(A__) with torch.no_grad(): lowercase = model(A__) lowercase = torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8)) self.assertEqual(outputs.logits.shape ,A__) lowercase = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ]).to(A__) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] ,A__ ,atol=1E-1)) @slow def A__ ( self): # only resize + normalize lowercase = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) ,keep_ratio=A__ ,align=A__ ,do_random_crop=A__) lowercase = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''').to( A__) lowercase = prepare_img() lowercase = image_processor(images=A__ ,return_tensors='''pt''') lowercase = encoded_inputs.pixel_values.to(A__) with torch.no_grad(): lowercase = model(A__) lowercase = outputs.logits.detach().cpu() lowercase = image_processor.post_process_semantic_segmentation(outputs=A__ ,target_sizes=[(5_0_0, 3_0_0)]) lowercase = torch.Size((5_0_0, 3_0_0)) self.assertEqual(segmentation[0].shape ,A__) lowercase = image_processor.post_process_semantic_segmentation(outputs=A__) lowercase = torch.Size((1_2_8, 1_2_8)) self.assertEqual(segmentation[0].shape ,A__)
633
def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' return int((input_a, input_a).count(0 ) == 0 ) def UpperCamelCase ( ): '''simple docstring''' assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
633
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE ) class __snake_case ( SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ = field(default='language-modeling' , metadata={'include_in_asdict_even_if_is_default': True} ) SCREAMING_SNAKE_CASE__ = Features({'text': Value('string' )} ) SCREAMING_SNAKE_CASE__ = Features({} ) SCREAMING_SNAKE_CASE__ = "text" @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return {self.text_column: "text"}
193
from typing import Dict from .base import GenericTensor, Pipeline class __snake_case ( SCREAMING_SNAKE_CASE ): def SCREAMING_SNAKE_CASE_ ( self ,a_=None ,a_=None ,a_=None ,**a_ ): """simple docstring""" if tokenize_kwargs is None: lowerCAmelCase__ = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) lowerCAmelCase__ = truncation lowerCAmelCase__ = tokenize_kwargs lowerCAmelCase__ = {} if return_tensors is not None: lowerCAmelCase__ = return_tensors return preprocess_params, {}, postprocess_params def SCREAMING_SNAKE_CASE_ ( self ,a_ ,**a_ ): """simple docstring""" lowerCAmelCase__ = self.framework lowerCAmelCase__ = self.tokenizer(a_ ,return_tensors=a_ ,**a_ ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self ,a_ ): """simple docstring""" lowerCAmelCase__ = self.model(**a_ ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_=False ): """simple docstring""" # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self ,*a_ ,**a_ ): """simple docstring""" return super().__call__(*a_ ,**a_ )
193
1
def lowerCAmelCase_ ( snake_case_ : str = 1_00_00_00 ) -> int: '''simple docstring''' UpperCAmelCase_ = set(range(3 , __lowerCAmelCase , 2 ) ) primes.add(2 ) for p in range(3 , __lowerCAmelCase , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , __lowerCAmelCase , __lowerCAmelCase ) ) ) UpperCAmelCase_ = [float(__lowerCAmelCase ) for n in range(limit + 1 )] for p in primes: for n in range(__lowerCAmelCase , limit + 1 , __lowerCAmelCase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f"{solution() = }")
712
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_: Dict ={ 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: int =[ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_: Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
415
0
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar __a: Any = TypeVar('''T''') class SCREAMING_SNAKE_CASE__ ( Generic[T] ): '''simple docstring''' _lowerCamelCase = 42 # Cache store of keys _lowerCamelCase = 42 # References of the keys in cache _lowerCamelCase = 10 # Maximum capacity of cache def __init__( self : Optional[int] , lowerCamelCase : int ) -> None: """simple docstring""" _UpperCAmelCase = deque() _UpperCAmelCase = set() if not n: _UpperCAmelCase = sys.maxsize elif n < 0: raise ValueError("""n should be an integer greater than 0.""" ) else: _UpperCAmelCase = n def lowerCamelCase ( self : Optional[Any] , lowerCamelCase : T ) -> None: """simple docstring""" if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: _UpperCAmelCase = self.dq_store.pop() self.key_reference.remove(lowerCamelCase ) else: self.dq_store.remove(lowerCamelCase ) self.dq_store.appendleft(lowerCamelCase ) self.key_reference.add(lowerCamelCase ) def lowerCamelCase ( self : str ) -> None: """simple docstring""" for k in self.dq_store: print(lowerCamelCase ) def __repr__( self : Optional[Any] ) -> str: """simple docstring""" return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() __a: LRUCache[str | int] = LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
108
'''simple docstring''' import doctest from collections import deque import numpy as np class lowercase_ : """simple docstring""" def __init__( self : Optional[Any] ): __lowercase = [2, 1, 2, -1] __lowercase = [1, 2, 3, 4] def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = len(self.first_signal ) __lowercase = len(self.second_signal ) __lowercase = max(lowercase__ ,lowercase__ ) # create a zero matrix of max_length x max_length __lowercase = [[0] * max_length for i in range(lowercase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowercase__ ): __lowercase = deque(self.second_signal ) rotated_signal.rotate(lowercase__ ) for j, item in enumerate(lowercase__ ): matrix[i][j] += item # multiply the matrix with the first signal __lowercase = np.matmul(np.transpose(lowercase__ ) ,np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowercase__ ,2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
41
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
712
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: A_ : str = None A_ : int = logging.get_logger(__name__) A_ : int = {"vocab_file": "sentencepiece.model", "tokenizer_file": "tokenizer.json"} A_ : Union[str, Any] = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, "tokenizer_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/tokenizer.json", }, } A_ : Dict = { "google/rembert": 256, } A_ : Union[str, Any] = "▁" class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = RemBertTokenizer def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , **__SCREAMING_SNAKE_CASE , ): # Mask token behave like a normal word, i.e. include the space before it snake_case__ : Any = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token super().__init__( __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , remove_space=__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) snake_case__ : List[Any] = do_lower_case snake_case__ : Union[str, Any] = remove_space snake_case__ : Tuple = keep_accents snake_case__ : Optional[int] = vocab_file snake_case__ : Union[str, Any] = False if not self.vocab_file else True def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): snake_case__ : str = [self.sep_token_id] snake_case__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): snake_case__ : int = [self.sep_token_id] snake_case__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error("""Vocabulary path ({}) should be a directory""".format(__SCREAMING_SNAKE_CASE ) ) return snake_case__ : Optional[Any] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
419
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCAmelCase :int = logging.get_logger(__name__) lowerCAmelCase :Any = '''▁''' lowerCAmelCase :str = {'''vocab_file''': '''sentencepiece.bpe.model'''} lowerCAmelCase :str = { '''vocab_file''': { '''facebook/mbart-large-50-one-to-many-mmt''': ( '''https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model''' ), } } lowerCAmelCase :Dict = { '''facebook/mbart-large-50-one-to-many-mmt''': 1_0_2_4, } # fmt: off lowerCAmelCase :Union[str, Any] = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''', '''af_ZA''', '''az_AZ''', '''bn_IN''', '''fa_IR''', '''he_IL''', '''hr_HR''', '''id_ID''', '''ka_GE''', '''km_KH''', '''mk_MK''', '''ml_IN''', '''mn_MN''', '''mr_IN''', '''pl_PL''', '''ps_AF''', '''pt_XX''', '''sv_SE''', '''sw_KE''', '''ta_IN''', '''te_IN''', '''th_TH''', '''tl_XX''', '''uk_UA''', '''ur_PK''', '''xh_ZA''', '''gl_ES''', '''sl_SI'''] class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Any = VOCAB_FILES_NAMES A_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP A_ : Dict = ["""input_ids""", """attention_mask"""] A_ : List[int] = [] A_ : List[int] = [] def __init__( self : int , _A : Tuple , _A : Any=None , _A : Optional[int]=None , _A : List[str]="</s>" , _A : Any="</s>" , _A : List[str]="<s>" , _A : Union[str, Any]="<unk>" , _A : str="<pad>" , _A : str="<mask>" , _A : Optional[Dict[str, Any]] = None , **_A : Optional[int] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : Any = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token __magic_name__ : str = {} if sp_model_kwargs is None else sp_model_kwargs __magic_name__ : Optional[int] = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=_A , tgt_lang=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) __magic_name__ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_A ) ) __magic_name__ : Any = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __magic_name__ : List[str] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __magic_name__ : Union[str, Any] = 1 __magic_name__ : Optional[Any] = len(self.sp_model ) __magic_name__ : Union[str, Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_A ) } __magic_name__ : str = {v: k for k, v in self.lang_code_to_id.items()} __magic_name__ : Dict = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __magic_name__ : int = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __magic_name__ : Tuple = src_lang if src_lang is not None else 'en_XX' __magic_name__ : List[Any] = self.lang_code_to_id[self._src_lang] __magic_name__ : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __lowerCAmelCase ( self : Tuple ) -> int: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __lowerCAmelCase ( self : Optional[int] ) -> str: return self._src_lang @src_lang.setter def __lowerCAmelCase ( self : Tuple , _A : str ) -> None: __magic_name__ : int = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Optional[Any] ) -> Dict: __magic_name__ : Optional[int] = self.__dict__.copy() __magic_name__ : int = None return state def __setstate__( self : Union[str, Any] , _A : Dict ) -> None: __magic_name__ : Optional[int] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __magic_name__ : int = {} __magic_name__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self : Optional[Any] ) -> Dict: __magic_name__ : str = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCAmelCase ( self : int , _A : str ) -> List[str]: return self.sp_model.encode(_A , out_type=_A ) def __lowerCAmelCase ( self : Union[str, Any] , _A : str ) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __magic_name__ : Optional[int] = self.sp_model.PieceToId(_A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __lowerCAmelCase ( self : Dict , _A : int ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __lowerCAmelCase ( self : int , _A : Any ) -> Dict: __magic_name__ : List[str] = [] __magic_name__ : Optional[int] = '' __magic_name__ : List[str] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_A ) + token __magic_name__ : List[str] = True __magic_name__ : List[Any] = [] else: current_sub_tokens.append(_A ) __magic_name__ : List[Any] = False out_string += self.sp_model.decode(_A ) return out_string.strip() def __lowerCAmelCase ( self : str , _A : str , _A : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(_A ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : Optional[int] = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , 'wb' ) as fi: __magic_name__ : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,) def __lowerCAmelCase ( self : Dict , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) __magic_name__ : Any = [1] * len(self.prefix_tokens ) __magic_name__ : Optional[int] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_A )) + suffix_ones return prefix_ones + ([0] * len(_A )) + ([0] * len(_A )) + suffix_ones def __lowerCAmelCase ( self : int , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowerCAmelCase ( self : int , _A : List[str] , _A : str , _A : Optional[str] , _A : Optional[str] , **_A : int ) -> str: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __magic_name__ : Optional[Any] = src_lang __magic_name__ : Tuple = self(_A , add_special_tokens=_A , return_tensors=_A , **_A ) __magic_name__ : Optional[int] = self.convert_tokens_to_ids(_A ) __magic_name__ : Tuple = tgt_lang_id return inputs def __lowerCAmelCase ( self : Tuple , _A : List[str] , _A : str = "en_XX" , _A : Optional[List[str]] = None , _A : str = "ro_RO" , **_A : List[Any] , ) -> BatchEncoding: __magic_name__ : List[str] = src_lang __magic_name__ : List[Any] = tgt_lang return super().prepare_seqaseq_batch(_A , _A , **_A ) def __lowerCAmelCase ( self : Union[str, Any] ) -> int: return self.set_src_lang_special_tokens(self.src_lang ) def __lowerCAmelCase ( self : Any ) -> Dict: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowerCAmelCase ( self : Optional[Any] , _A : str ) -> None: __magic_name__ : Tuple = self.lang_code_to_id[src_lang] __magic_name__ : Optional[int] = [self.cur_lang_code_id] __magic_name__ : Tuple = [self.eos_token_id] def __lowerCAmelCase ( self : str , _A : str ) -> None: __magic_name__ : List[Any] = self.lang_code_to_id[tgt_lang] __magic_name__ : Dict = [self.cur_lang_code_id] __magic_name__ : List[str] = [self.eos_token_id]
561
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase :Optional[Any] = logging.get_logger(__name__) lowerCAmelCase :Optional[Any] = { '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Optional[int] = """instructblip_vision_model""" def __init__( self : List[Any] , _A : Dict=1408 , _A : Union[str, Any]=6144 , _A : Optional[int]=39 , _A : Optional[int]=16 , _A : Optional[int]=224 , _A : Any=14 , _A : Optional[int]="gelu" , _A : str=1E-6 , _A : str=0.0 , _A : str=1E-10 , _A : Optional[Any]=True , **_A : List[Any] , ) -> Dict: super().__init__(**_A ) __magic_name__ : Optional[int] = hidden_size __magic_name__ : int = intermediate_size __magic_name__ : List[Any] = num_hidden_layers __magic_name__ : int = num_attention_heads __magic_name__ : Any = patch_size __magic_name__ : Tuple = image_size __magic_name__ : int = initializer_range __magic_name__ : str = attention_dropout __magic_name__ : int = layer_norm_eps __magic_name__ : Optional[int] = hidden_act __magic_name__ : Tuple = qkv_bias @classmethod def __lowerCAmelCase ( cls : List[Any] , _A : Union[str, os.PathLike] , **_A : Union[str, Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(_A ) __magic_name__ , __magic_name__ : Union[str, Any] = cls.get_config_dict(_A , **_A ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __magic_name__ : Dict = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_A , **_A ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Tuple = """instructblip_qformer""" def __init__( self : Dict , _A : Dict=30522 , _A : List[str]=768 , _A : Tuple=12 , _A : List[Any]=12 , _A : Optional[int]=3072 , _A : Optional[Any]="gelu" , _A : Tuple=0.1 , _A : Any=0.1 , _A : int=512 , _A : Tuple=0.02 , _A : Optional[Any]=1E-12 , _A : List[Any]=0 , _A : Tuple="absolute" , _A : Dict=2 , _A : Tuple=1408 , **_A : int , ) -> Optional[int]: super().__init__(pad_token_id=_A , **_A ) __magic_name__ : Any = vocab_size __magic_name__ : str = hidden_size __magic_name__ : Optional[int] = num_hidden_layers __magic_name__ : str = num_attention_heads __magic_name__ : str = hidden_act __magic_name__ : List[str] = intermediate_size __magic_name__ : List[str] = hidden_dropout_prob __magic_name__ : Tuple = attention_probs_dropout_prob __magic_name__ : List[Any] = max_position_embeddings __magic_name__ : Union[str, Any] = initializer_range __magic_name__ : List[str] = layer_norm_eps __magic_name__ : Union[str, Any] = position_embedding_type __magic_name__ : Any = cross_attention_frequency __magic_name__ : int = encoder_hidden_size @classmethod def __lowerCAmelCase ( cls : int , _A : Union[str, os.PathLike] , **_A : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(_A ) __magic_name__ , __magic_name__ : str = cls.get_config_dict(_A , **_A ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __magic_name__ : Union[str, Any] = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_A , **_A ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : int = """instructblip""" A_ : Any = True def __init__( self : int , _A : Optional[int]=None , _A : List[str]=None , _A : Union[str, Any]=None , _A : Any=32 , **_A : int ) -> Any: super().__init__(**_A ) if vision_config is None: __magic_name__ : Any = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: __magic_name__ : Union[str, Any] = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: __magic_name__ : List[str] = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) __magic_name__ : Union[str, Any] = InstructBlipVisionConfig(**_A ) __magic_name__ : str = InstructBlipQFormerConfig(**_A ) __magic_name__ : int = text_config['model_type'] if 'model_type' in text_config else 'opt' __magic_name__ : Tuple = CONFIG_MAPPING[text_model_type](**_A ) __magic_name__ : Optional[Any] = self.text_config.tie_word_embeddings __magic_name__ : int = self.text_config.is_encoder_decoder __magic_name__ : List[Any] = num_query_tokens __magic_name__ : Tuple = self.vision_config.hidden_size __magic_name__ : int = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __magic_name__ : int = 1.0 __magic_name__ : List[Any] = 0.02 @classmethod def __lowerCAmelCase ( cls : str , _A : InstructBlipVisionConfig , _A : InstructBlipQFormerConfig , _A : PretrainedConfig , **_A : int , ) -> Union[str, Any]: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_A , ) def __lowerCAmelCase ( self : List[Any] ) -> int: __magic_name__ : int = copy.deepcopy(self.__dict__ ) __magic_name__ : str = self.vision_config.to_dict() __magic_name__ : List[str] = self.qformer_config.to_dict() __magic_name__ : Tuple = self.text_config.to_dict() __magic_name__ : str = self.__class__.model_type return output
561
1
'''simple docstring''' from __future__ import annotations def a_ ( _UpperCAmelCase : list[float] ) -> float: __snake_case : str = 0.0_0 __snake_case : Union[str, Any] = 0 for resistor in resistors: if resistor <= 0: __snake_case : Union[str, Any] = f'''Resistor at index {index} has a negative or zero value!''' raise ValueError(_UpperCAmelCase ) first_sum += 1 / float(_UpperCAmelCase ) index += 1 return 1 / first_sum def a_ ( _UpperCAmelCase : list[float] ) -> float: __snake_case : Optional[Any] = 0.0_0 __snake_case : Any = 0 for resistor in resistors: sum_r += resistor if resistor < 0: __snake_case : Optional[Any] = f'''Resistor at index {index} has a negative value!''' raise ValueError(_UpperCAmelCase ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
703
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin A__ : Tuple = random.Random() def a_ ( _UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : Optional[Any]=1.0 ,_UpperCAmelCase : Optional[Any]=None ,_UpperCAmelCase : List[str]=None ) -> Optional[Any]: if rng is None: __snake_case : Any = global_rng __snake_case : Union[str, Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class snake_case__ ( unittest.TestCase ): def __init__( self : Tuple , __a : Optional[Any] , __a : Optional[int]=7 , __a : Any=400 , __a : str=2000 , __a : Union[str, Any]=1 , __a : Union[str, Any]=0.0 , __a : Tuple=16000 , __a : str=True , __a : int=True , ) -> Any: '''simple docstring''' __snake_case : List[str] = parent __snake_case : List[str] = batch_size __snake_case : List[str] = min_seq_length __snake_case : Tuple = max_seq_length __snake_case : Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __snake_case : List[Any] = feature_size __snake_case : List[Any] = padding_value __snake_case : Tuple = sampling_rate __snake_case : Tuple = return_attention_mask __snake_case : Dict = do_normalize def A_ ( self : List[str] ) -> Optional[int]: '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def A_ ( self : List[Any] , __a : str=False , __a : Optional[int]=False ) -> str: '''simple docstring''' def _flatten(__a : Dict ): return list(itertools.chain(*__a ) ) if equal_length: __snake_case : List[Any] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __snake_case : str = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __snake_case : Optional[Any] = [np.asarray(__a ) for x in speech_inputs] return speech_inputs class snake_case__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): A__ = WavaVecaFeatureExtractor def A_ ( self : int ) -> Union[str, Any]: '''simple docstring''' __snake_case : Union[str, Any] = WavaVecaFeatureExtractionTester(self ) def A_ ( self : Dict , __a : Tuple ) -> Any: '''simple docstring''' self.assertTrue(np.all(np.mean(__a , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__a , axis=0 ) - 1 ) < 1e-3 ) ) def A_ ( self : Dict ) -> int: '''simple docstring''' # Tests that all call wrap to encode_plus and batch_encode_plus __snake_case : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __snake_case : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __snake_case : Optional[Any] = [np.asarray(__a ) for speech_input in speech_inputs] # Test not batched input __snake_case : Optional[Any] = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values __snake_case : Tuple = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(__a , __a , atol=1e-3 ) ) # Test batched __snake_case : Union[str, Any] = feat_extract(__a , return_tensors='np' ).input_values __snake_case : Tuple = feat_extract(__a , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(__a , __a ): self.assertTrue(np.allclose(__a , __a , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. __snake_case : Optional[int] = [floats_list((1, x) )[0] for x in (800, 800, 800)] __snake_case : List[str] = np.asarray(__a ) __snake_case : Union[str, Any] = feat_extract(__a , return_tensors='np' ).input_values __snake_case : List[Any] = feat_extract(__a , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(__a , __a ): self.assertTrue(np.allclose(__a , __a , atol=1e-3 ) ) def A_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' __snake_case : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __snake_case : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __snake_case : Dict = ['longest', 'max_length', 'do_not_pad'] __snake_case : Any = [None, 1600, None] for max_length, padding in zip(__a , __a ): __snake_case : Any = feat_extract(__a , padding=__a , max_length=__a , return_tensors='np' ) __snake_case : Optional[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def A_ ( self : Optional[int] ) -> List[str]: '''simple docstring''' __snake_case : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __snake_case : List[Any] = range(800 , 1400 , 200 ) __snake_case : Any = [floats_list((1, x) )[0] for x in lengths] __snake_case : Tuple = ['longest', 'max_length', 'do_not_pad'] __snake_case : Dict = [None, 1600, None] for max_length, padding in zip(__a , __a ): __snake_case : str = feat_extract(__a , max_length=__a , padding=__a ) __snake_case : str = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def A_ ( self : List[str] ) -> str: '''simple docstring''' __snake_case : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __snake_case : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __snake_case : Any = feat_extract( __a , truncation=__a , max_length=1000 , padding='max_length' , return_tensors='np' ) __snake_case : List[str] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def A_ ( self : List[Any] ) -> Any: '''simple docstring''' __snake_case : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __snake_case : Optional[int] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __snake_case : Union[str, Any] = feat_extract( __a , truncation=__a , max_length=1000 , padding='longest' , return_tensors='np' ) __snake_case : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) __snake_case : int = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __snake_case : Any = feat_extract( __a , truncation=__a , max_length=2000 , padding='longest' , return_tensors='np' ) __snake_case : Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) @require_torch def A_ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' import torch __snake_case : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __snake_case : Dict = np.random.rand(100 ).astype(np.floataa ) __snake_case : Any = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __snake_case : Dict = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __snake_case : List[Any] = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def A_ ( self : Optional[int] ) -> Dict: '''simple docstring''' # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: __snake_case : List[str] = WavaVecaConfig.from_pretrained(__a ) __snake_case : str = WavaVecaFeatureExtractor.from_pretrained(__a ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == 'layer' )
124
0
"""simple docstring""" import itertools import string from collections.abc import Generator, Iterable def a ( __UpperCAmelCase : Iterable[str] , __UpperCAmelCase : int ) -> str: __magic_name__: Optional[int] = iter(__UpperCAmelCase ) while True: __magic_name__: List[Any] = tuple(itertools.islice(__UpperCAmelCase , __UpperCAmelCase ) ) if not chunk: return yield chunk def a ( __UpperCAmelCase : str ) -> Tuple: __magic_name__: Any = "".join([c.upper() for c in dirty if c in string.ascii_letters] ) __magic_name__: Optional[int] = "" if len(__UpperCAmelCase ) < 2: return dirty for i in range(len(__UpperCAmelCase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(__UpperCAmelCase ) & 1: clean += "X" return clean def a ( __UpperCAmelCase : str ) -> List[str]: __magic_name__: Optional[Any] = "ABCDEFGHIKLMNOPQRSTUVWXYZ" # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler __magic_name__: Optional[Any] = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(__UpperCAmelCase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(__UpperCAmelCase ) return table def a ( __UpperCAmelCase : str , __UpperCAmelCase : str ) -> List[str]: __magic_name__: Any = generate_table(__UpperCAmelCase ) __magic_name__: Optional[Any] = prepare_input(__UpperCAmelCase ) __magic_name__: Optional[int] = "" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__UpperCAmelCase , 2 ): __magic_name__: int = divmod(table.index(__UpperCAmelCase ) , 5 ) __magic_name__: int = divmod(table.index(__UpperCAmelCase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def a ( __UpperCAmelCase : str , __UpperCAmelCase : str ) -> List[Any]: __magic_name__: int = generate_table(__UpperCAmelCase ) __magic_name__: int = "" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__UpperCAmelCase , 2 ): __magic_name__: Optional[int] = divmod(table.index(__UpperCAmelCase ) , 5 ) __magic_name__: List[Any] = divmod(table.index(__UpperCAmelCase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
96
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCAmelCase : Dict = logging.get_logger(__name__) class __lowerCAmelCase ( UpperCamelCase__): _lowercase : List[str] = ["""input_values""", """attention_mask"""] def __init__( self , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 1_6_0_0_0 , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = False , lowerCAmelCase__ = 8_0 , lowerCAmelCase__ = 1_6 , lowerCAmelCase__ = 6_4 , lowerCAmelCase__ = "hann_window" , lowerCAmelCase__ = 1.0 , lowerCAmelCase__ = 8_0 , lowerCAmelCase__ = 7_6_0_0 , lowerCAmelCase__ = 1E-10 , lowerCAmelCase__ = 2 , lowerCAmelCase__ = True , **lowerCAmelCase__ , ) -> str: '''simple docstring''' super().__init__(feature_size=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , padding_value=lowerCAmelCase__ , **lowerCAmelCase__ ) a__ : Tuple =do_normalize a__ : Tuple =return_attention_mask a__ : str =num_mel_bins a__ : Any =hop_length a__ : Optional[Any] =win_length a__ : int =win_function a__ : List[str] =frame_signal_scale a__ : List[str] =fmin a__ : str =fmax a__ : Dict =mel_floor a__ : Any =reduction_factor a__ : str =win_length * sampling_rate // 1_0_0_0 a__ : List[str] =hop_length * sampling_rate // 1_0_0_0 a__ : Optional[Any] =optimal_fft_length(self.sample_size ) a__ : Any =(self.n_fft // 2) + 1 a__ : List[Any] =window_function(window_length=self.sample_size , name=self.win_function , periodic=lowerCAmelCase__ ) a__ : Optional[int] =mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm="slaney" , mel_scale="slaney" , ) if frame_signal_scale != 1.0: warnings.warn( "The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers" , lowerCAmelCase__ , ) if reduction_factor != 2.0: warnings.warn( "The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers" , lowerCAmelCase__ , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _lowercase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 0.0 ) -> List[np.ndarray]: '''simple docstring''' if attention_mask is not None: a__ : List[Any] =np.array(lowerCAmelCase__ , np.intaa ) a__ : Optional[Any] =[] for vector, length in zip(lowerCAmelCase__ , attention_mask.sum(-1 ) ): a__ : Tuple =(vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: a__ : Any =padding_value normed_input_values.append(lowerCAmelCase__ ) else: a__ : Optional[int] =[(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def _lowercase ( self , lowerCAmelCase__ , ) -> np.ndarray: '''simple docstring''' a__ : Dict =spectrogram( lowerCAmelCase__ , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel="log10" , ) return log_mel_spec.T def __call__( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> BatchFeature: '''simple docstring''' if audio is None and audio_target is None: raise ValueError("You must provide either `audio` or `audio_target` values." ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) if audio is not None: a__ : Dict =self._process_audio( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ , ) else: a__ : str =None if audio_target is not None: a__ : int =self._process_audio( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ , ) if inputs is None: return inputs_target else: a__ : Any =inputs_target["input_values"] a__ : List[Any] =inputs_target.get("attention_mask" ) if decoder_attention_mask is not None: a__ : Optional[int] =decoder_attention_mask return inputs def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> BatchFeature: '''simple docstring''' a__ : List[Any] =isinstance(lowerCAmelCase__ , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) a__ : Optional[int] =is_batched_numpy or ( isinstance(lowerCAmelCase__ , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: a__ : int =[np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(lowerCAmelCase__ , np.ndarray ): a__ : List[Any] =np.asarray(lowerCAmelCase__ , dtype=np.floataa ) elif isinstance(lowerCAmelCase__ , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): a__ : Optional[Any] =speech.astype(np.floataa ) # always return batch if not is_batched: a__ : Union[str, Any] =[speech] # needed to make pad() work on spectrogram inputs a__ : Union[str, Any] =self.feature_size # convert into correct format for padding if is_target: a__ : Dict =[self._extract_mel_features(lowerCAmelCase__ ) for waveform in speech] a__ : str =BatchFeature({"input_values": features} ) a__ : List[str] =self.num_mel_bins else: a__ : List[str] =BatchFeature({"input_values": speech} ) a__ : Optional[int] =self.pad( lowerCAmelCase__ , padding=lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , ) a__ : Any =feature_size_hack # convert input values to correct format a__ : List[Any] =padded_inputs["input_values"] if not isinstance(input_values[0] , np.ndarray ): a__ : Union[str, Any] =[np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for array in input_values] elif ( not isinstance(lowerCAmelCase__ , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): a__ : str =[array.astype(np.floataa ) for array in input_values] elif isinstance(lowerCAmelCase__ , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): a__ : Optional[int] =input_values.astype(np.floataa ) # convert attention_mask to correct format a__ : str =padded_inputs.get("attention_mask" ) if attention_mask is not None: a__ : str =[np.asarray(lowerCAmelCase__ , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: a__ : Union[str, Any] =( attention_mask if self._get_padding_strategies(lowerCAmelCase__ , max_length=lowerCAmelCase__ ) is not PaddingStrategy.DO_NOT_PAD else None ) a__ : List[Any] =self.zero_mean_unit_var_norm( padded_inputs["input_values"] , attention_mask=lowerCAmelCase__ , padding_value=self.padding_value ) if return_tensors is not None: a__ : int =padded_inputs.convert_to_tensors(lowerCAmelCase__ ) return padded_inputs def _lowercase ( self ) -> Dict[str, Any]: '''simple docstring''' a__ : Optional[int] =super().to_dict() # Don't serialize these as they are derived from the other properties. a__ : Optional[Any] =["window", "mel_filters", "sample_size", "sample_stride", "n_fft", "n_freqs"] for name in names: if name in output: del output[name] return output
563
0
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path A__ : str= ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) A__ : list[int]= [ord(letter) for letter in string.ascii_lowercase] A__ : set[int]= {ord(char) for char in VALID_CHARS} A__ : list[str]= ["the", "be", "to", "of", "and", "in", "that", "have"] def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str | None: """simple docstring""" UpperCamelCase__ = '' UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 for keychar, cipherchar in zip(cycle(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(SCREAMING_SNAKE_CASE ) return decoded def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> list[str]: """simple docstring""" UpperCamelCase__ = [] for key in product(SCREAMING_SNAKE_CASE , repeat=3 ): UpperCamelCase__ = try_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if encoded is not None: possibles.append(SCREAMING_SNAKE_CASE ) return possibles def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list[str]: """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def lowerCAmelCase_( SCREAMING_SNAKE_CASE = "p059_cipher.txt" ) -> int: """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = Path(SCREAMING_SNAKE_CASE ).parent.joinpath(SCREAMING_SNAKE_CASE ).read_text(encoding='utf-8' ) UpperCamelCase__ = [int(SCREAMING_SNAKE_CASE ) for number in data.strip().split(',' )] UpperCamelCase__ = filter_valid_chars(SCREAMING_SNAKE_CASE ) for common_word in COMMON_WORDS: UpperCamelCase__ = filter_common_word(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) == 1: break UpperCamelCase__ = possibles[0] return sum(ord(SCREAMING_SNAKE_CASE ) for char in decoded_text ) if __name__ == "__main__": print(F"""{solution() = }""")
707
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py A__ : Any= """src/diffusers""" # Matches is_xxx_available() A__ : Tuple= re.compile(r"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla A__ : Any= re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") A__ : Optional[Any]= """ {0} = None """ A__ : List[Any]= """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ A__ : Dict= """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = _re_backend.findall(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) == 0: return None return "_and_".join(SCREAMING_SNAKE_CASE ) def lowerCAmelCase_( ) -> str: """simple docstring""" with open(os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase__ = f.readlines() # Get to the point we do the actual imports for type checking UpperCamelCase__ = 0 UpperCamelCase__ = {} # Go through the end of the file while line_index < len(SCREAMING_SNAKE_CASE ): # If the line contains is_backend_available, we grab all objects associated with the `else` block UpperCamelCase__ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('else:' ): line_index += 1 line_index += 1 UpperCamelCase__ = [] # Until we unindent, add backend objects to the list while line_index < len(SCREAMING_SNAKE_CASE ) and len(lines[line_index] ) > 1: UpperCamelCase__ = lines[line_index] UpperCamelCase__ = _re_single_line_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(SCREAMING_SNAKE_CASE ) > 0: UpperCamelCase__ = objects else: line_index += 1 return backend_specific_objects def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(SCREAMING_SNAKE_CASE ) elif name.islower(): return DUMMY_FUNCTION.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return DUMMY_CLASS.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE=None ) -> int: """simple docstring""" if backend_specific_objects is None: UpperCamelCase__ = read_init() # For special correspondence backend to module name as used in the function requires_modulename UpperCamelCase__ = {} for backend, objects in backend_specific_objects.items(): UpperCamelCase__ = '[' + ', '.join(F'"{b}"' for b in backend.split('_and_' ) ) + ']' UpperCamelCase__ = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for o in objects] ) UpperCamelCase__ = dummy_file return dummy_files def lowerCAmelCase_( SCREAMING_SNAKE_CASE=False ) -> int: """simple docstring""" UpperCamelCase__ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py UpperCamelCase__ = {'torch': 'pt'} # Locate actual dummy modules and read their content. UpperCamelCase__ = os.path.join(SCREAMING_SNAKE_CASE , 'utils' ) UpperCamelCase__ = { backend: os.path.join(SCREAMING_SNAKE_CASE , F'dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py' ) for backend in dummy_files.keys() } UpperCamelCase__ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase__ = f.read() else: UpperCamelCase__ = '' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'Updating diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py as the main ' '__init__ has new objects.' ) with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( 'The main __init__ has objects that are not present in ' F'diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py. Run `make fix-copies` ' 'to fix this.' ) if __name__ == "__main__": A__ : Any= argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") A__ : Optional[int]= parser.parse_args() check_dummies(args.fix_and_overwrite)
20
0
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __A = logging.getLogger(__name__) class _A ( UpperCamelCase ): """simple docstring""" def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : Optional[int]=None ) -> List[str]: __UpperCAmelCase =self.layer[current_layer](__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , head_mask[current_layer] ) __UpperCAmelCase =layer_outputs[0] return hidden_states @add_start_docstrings( 'The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.' , UpperCamelCase , ) class _A ( UpperCamelCase ): """simple docstring""" def __init__( self : int , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]: super().__init__(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =BertEncoderWithPabee(__SCREAMING_SNAKE_CASE ) self.init_weights() __UpperCAmelCase =0 __UpperCAmelCase =0 __UpperCAmelCase =0 __UpperCAmelCase =0 def _a ( self : Any , __SCREAMING_SNAKE_CASE : List[str] ) -> int: __UpperCAmelCase =threshold def _a ( self : Any , __SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: __UpperCAmelCase =patience def _a ( self : Optional[Any] ) -> Tuple: __UpperCAmelCase =0 __UpperCAmelCase =0 def _a ( self : List[str] ) -> str: __UpperCAmelCase =self.inference_layers_num / self.inference_instances_num __UpperCAmelCase =( f'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' f''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(__SCREAMING_SNAKE_CASE ) @add_start_docstrings_to_model_forward(__SCREAMING_SNAKE_CASE ) def _a ( self : int , __SCREAMING_SNAKE_CASE : int=None , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : int=None , __SCREAMING_SNAKE_CASE : Dict=False , ) -> str: if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" ) elif input_ids is not None: __UpperCAmelCase =input_ids.size() elif inputs_embeds is not None: __UpperCAmelCase =inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""" ) __UpperCAmelCase =input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __UpperCAmelCase =torch.ones(__SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE ) if token_type_ids is None: __UpperCAmelCase =torch.zeros(__SCREAMING_SNAKE_CASE , dtype=torch.long , device=__SCREAMING_SNAKE_CASE ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __UpperCAmelCase =self.get_extended_attention_mask(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =encoder_hidden_states.size() __UpperCAmelCase =(encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __UpperCAmelCase =torch.ones(__SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =self.invert_attention_mask(__SCREAMING_SNAKE_CASE ) else: __UpperCAmelCase =None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __UpperCAmelCase =self.get_head_mask(__SCREAMING_SNAKE_CASE , self.config.num_hidden_layers ) __UpperCAmelCase =self.embeddings( input_ids=__SCREAMING_SNAKE_CASE , position_ids=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , inputs_embeds=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =embedding_output if self.training: __UpperCAmelCase =[] for i in range(self.config.num_hidden_layers ): __UpperCAmelCase =self.encoder.adaptive_forward( __SCREAMING_SNAKE_CASE , current_layer=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , head_mask=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =self.pooler(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =output_layers[i](output_dropout(__SCREAMING_SNAKE_CASE ) ) res.append(__SCREAMING_SNAKE_CASE ) elif self.patience == 0: # Use all layers for inference __UpperCAmelCase =self.encoder( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , head_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , ) __UpperCAmelCase =self.pooler(encoder_outputs[0] ) __UpperCAmelCase =[output_layers[self.config.num_hidden_layers - 1](__SCREAMING_SNAKE_CASE )] else: __UpperCAmelCase =0 __UpperCAmelCase =None __UpperCAmelCase =0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __UpperCAmelCase =self.encoder.adaptive_forward( __SCREAMING_SNAKE_CASE , current_layer=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , head_mask=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =self.pooler(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =output_layers[i](__SCREAMING_SNAKE_CASE ) if regression: __UpperCAmelCase =logits.detach() if patient_result is not None: __UpperCAmelCase =patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __UpperCAmelCase =0 else: __UpperCAmelCase =logits.detach().argmax(dim=1 ) if patient_result is not None: __UpperCAmelCase =patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(__SCREAMING_SNAKE_CASE ) ): patient_counter += 1 else: __UpperCAmelCase =0 __UpperCAmelCase =logits if patient_counter == self.patience: break __UpperCAmelCase =[patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( 'Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. ' , UpperCamelCase , ) class _A ( UpperCamelCase ): """simple docstring""" def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : Any ) -> Dict: super().__init__(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =config.num_labels __UpperCAmelCase =BertModelWithPabee(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =nn.Dropout(config.hidden_dropout_prob ) __UpperCAmelCase =nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(__SCREAMING_SNAKE_CASE ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : int=None , ) -> List[Any]: __UpperCAmelCase =self.bert( input_ids=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , position_ids=__SCREAMING_SNAKE_CASE , head_mask=__SCREAMING_SNAKE_CASE , inputs_embeds=__SCREAMING_SNAKE_CASE , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __UpperCAmelCase =(logits[-1],) if labels is not None: __UpperCAmelCase =None __UpperCAmelCase =0 for ix, logits_item in enumerate(__SCREAMING_SNAKE_CASE ): if self.num_labels == 1: # We are doing regression __UpperCAmelCase =MSELoss() __UpperCAmelCase =loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __UpperCAmelCase =CrossEntropyLoss() __UpperCAmelCase =loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __UpperCAmelCase =loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __UpperCAmelCase =(total_loss / total_weights,) + outputs return outputs
68
from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class _A ( UpperCamelCase ): """simple docstring""" lowerCamelCase : Tuple = 'ctrl' lowerCamelCase : Any = ['past_key_values'] lowerCamelCase : Optional[int] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=246534 , __SCREAMING_SNAKE_CASE : int=256 , __SCREAMING_SNAKE_CASE : Optional[Any]=1280 , __SCREAMING_SNAKE_CASE : Optional[Any]=8192 , __SCREAMING_SNAKE_CASE : int=48 , __SCREAMING_SNAKE_CASE : Union[str, Any]=16 , __SCREAMING_SNAKE_CASE : int=0.1 , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : List[Any]=1e-6 , __SCREAMING_SNAKE_CASE : List[str]=0.02 , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , **__SCREAMING_SNAKE_CASE : int , ) -> Any: __UpperCAmelCase =vocab_size __UpperCAmelCase =n_positions __UpperCAmelCase =n_embd __UpperCAmelCase =n_layer __UpperCAmelCase =n_head __UpperCAmelCase =dff __UpperCAmelCase =resid_pdrop __UpperCAmelCase =embd_pdrop __UpperCAmelCase =layer_norm_epsilon __UpperCAmelCase =initializer_range __UpperCAmelCase =use_cache super().__init__(**__SCREAMING_SNAKE_CASE )
68
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = { """configuration_mobilebert""": [ """MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileBertConfig""", """MobileBertOnnxConfig""", ], """tokenization_mobilebert""": ["""MobileBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["""MobileBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileBertForMaskedLM""", """MobileBertForMultipleChoice""", """MobileBertForNextSentencePrediction""", """MobileBertForPreTraining""", """MobileBertForQuestionAnswering""", """MobileBertForSequenceClassification""", """MobileBertForTokenClassification""", """MobileBertLayer""", """MobileBertModel""", """MobileBertPreTrainedModel""", """load_tf_weights_in_mobilebert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileBertForMaskedLM""", """TFMobileBertForMultipleChoice""", """TFMobileBertForNextSentencePrediction""", """TFMobileBertForPreTraining""", """TFMobileBertForQuestionAnswering""", """TFMobileBertForSequenceClassification""", """TFMobileBertForTokenClassification""", """TFMobileBertMainLayer""", """TFMobileBertModel""", """TFMobileBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
562
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: super().__init__() # make sure scheduler can always be converted to DDIM A__ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE__ = 1 , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 0.0 , SCREAMING_SNAKE_CASE__ = 50 , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "pil" , SCREAMING_SNAKE_CASE__ = True , ) -> Union[ImagePipelineOutput, Tuple]: # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , SCREAMING_SNAKE_CASE__ ): A__ = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: A__ = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(SCREAMING_SNAKE_CASE__ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE__ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) A__ = randn_tensor(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output A__ = self.unet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 A__ = self.scheduler.step( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , eta=SCREAMING_SNAKE_CASE__ , use_clipped_model_output=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).prev_sample A__ = (image / 2 + 0.5).clamp(0 , 1 ) A__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A__ = self.numpy_to_pil(SCREAMING_SNAKE_CASE__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE__ )
562
1
'''simple docstring''' from sklearn.metrics import fa_score import datasets __SCREAMING_SNAKE_CASE : str = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' __SCREAMING_SNAKE_CASE : Dict = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' __SCREAMING_SNAKE_CASE : Tuple = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): """simple docstring""" def _UpperCAmelCase ( self : List[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"] , ) def _UpperCAmelCase ( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : Dict , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=1 , lowerCAmelCase : Tuple="binary" , lowerCAmelCase : Dict=None ): A_ = fa_score( lowerCAmelCase , lowerCAmelCase , labels=lowerCAmelCase , pos_label=lowerCAmelCase , average=lowerCAmelCase , sample_weight=lowerCAmelCase ) return {"f1": float(lowerCAmelCase ) if score.size == 1 else score}
452
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _lowerCamelCase( lowercase__ ) -> List[Any]: '''simple docstring''' if not is_accelerate_available(): return method __lowercase= version.parse(accelerate.__version__ ).base_version if version.parse(lowercase__ ) < version.parse('0.17.0' ): return method def wrapper(self , *lowercase__ , **lowercase__ ): if hasattr(self , '_hf_hook' ) and hasattr(self._hf_hook , 'pre_forward' ): self._hf_hook.pre_forward(self ) return method(self , *lowercase__ , **lowercase__ ) return wrapper
230
0
'''simple docstring''' SCREAMING_SNAKE_CASE__ = 8.31_44_62 # Unit - J mol-1 K-1 def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> float: if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> float: if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
35
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class a_ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=[1, 2, 1] , _SCREAMING_SNAKE_CASE=[2, 2, 4] , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=2.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=["stage1", "stage2", "stage3"] , _SCREAMING_SNAKE_CASE=[1, 2, 3] , ) -> Any: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = embed_dim UpperCamelCase = depths UpperCamelCase = num_heads UpperCamelCase = window_size UpperCamelCase = mlp_ratio UpperCamelCase = qkv_bias UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = drop_path_rate UpperCamelCase = hidden_act UpperCamelCase = use_absolute_embeddings UpperCamelCase = patch_norm UpperCamelCase = layer_norm_eps UpperCamelCase = initializer_range UpperCamelCase = is_training UpperCamelCase = scope UpperCamelCase = use_labels UpperCamelCase = type_sequence_label_size UpperCamelCase = encoder_stride UpperCamelCase = out_features UpperCamelCase = out_indices def A__ ( self ) -> Any: """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = self.get_config() return config, pixel_values, labels def A__ ( self ) -> str: """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = MaskFormerSwinModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) UpperCamelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCamelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase = MaskFormerSwinBackbone(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_SCREAMING_SNAKE_CASE ): UpperCamelCase = ["""stem"""] UpperCamelCase = MaskFormerSwinBackbone(config=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> str: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase ,UpperCamelCase ,UpperCamelCase = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a_ ( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowercase = {"""feature-extraction""": MaskFormerSwinModel} if is_torch_available() else {} lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = MaskFormerSwinModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( """`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with""" """ `nn.DataParallel`""" ) ) def A__ ( self ) -> List[str]: """simple docstring""" pass def A__ ( self ) -> Dict: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self ) -> int: """simple docstring""" return def A__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_SCREAMING_SNAKE_CASE ) @unittest.skip("""Swin does not use inputs_embeds""" ) def A__ ( self ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""Swin does not support feedforward chunking""" ) def A__ ( self ) -> Dict: """simple docstring""" pass def A__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def A__ ( self ) -> int: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) @unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" ) def A__ ( self ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" ) def A__ ( self ) -> List[str]: """simple docstring""" pass def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase = outputs.hidden_states UpperCamelCase = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # Swin has a different seq_length UpperCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def A__ ( self ) -> str: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCamelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = 3 UpperCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCamelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCamelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) @unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" ) def A__ ( self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def A__ ( self ) -> str: """simple docstring""" pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def A__ ( self ) -> List[Any]: """simple docstring""" pass def A__ ( self ) -> Any: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ): UpperCamelCase = 0 return t def check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE={} ): with torch.no_grad(): UpperCamelCase = model(**_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase = model(**_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).to_tuple() def recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if isinstance(_SCREAMING_SNAKE_CASE , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ) , set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ) , atol=1e-5 ) , msg=( """Tuple and dict output are not equal. Difference:""" F" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:" F" {torch.isnan(_SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(_SCREAMING_SNAKE_CASE )}. Dict has" F" `nan`: {torch.isnan(_SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(_SCREAMING_SNAKE_CASE )}." ) , ) recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {"""output_hidden_states""": True} ) UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {"""output_hidden_states""": True} ) @require_torch class a_ ( unittest.TestCase , lowerCamelCase ): lowercase = (MaskFormerSwinBackbone,) if is_torch_available() else () lowercase = MaskFormerSwinConfig def A__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase = MaskFormerSwinModelTester(self ) def A__ ( self ) -> str: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = inputs_dict["""pixel_values"""].shape[0] for backbone_class in self.all_model_classes: UpperCamelCase = backbone_class(_SCREAMING_SNAKE_CASE ) backbone.to(_SCREAMING_SNAKE_CASE ) backbone.eval() UpperCamelCase = backbone(**_SCREAMING_SNAKE_CASE ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _SCREAMING_SNAKE_CASE ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True UpperCamelCase = backbone(**_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) UpperCamelCase ,UpperCamelCase ,UpperCamelCase = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: UpperCamelCase = backbone(**_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.attentions )
35
1
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) # TODO Update this a = { "facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json", # See all ESM models at https://huggingface.co/models?filter=esm } class __a ( _snake_case ): __UpperCamelCase : str = 'esm' def __init__( self : Tuple ,lowerCamelCase : List[Any]=None ,lowerCamelCase : str=None ,lowerCamelCase : Any=None ,lowerCamelCase : Union[str, Any]=768 ,lowerCamelCase : Tuple=12 ,lowerCamelCase : int=12 ,lowerCamelCase : Optional[int]=3072 ,lowerCamelCase : List[Any]=0.1 ,lowerCamelCase : Optional[int]=0.1 ,lowerCamelCase : Any=1026 ,lowerCamelCase : str=0.02 ,lowerCamelCase : int=1E-1_2 ,lowerCamelCase : Union[str, Any]="absolute" ,lowerCamelCase : Optional[Any]=True ,lowerCamelCase : str=None ,lowerCamelCase : Optional[int]=False ,lowerCamelCase : int=False ,lowerCamelCase : Union[str, Any]=None ,lowerCamelCase : Any=None ,**lowerCamelCase : Any ,): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase ,mask_token_id=lowerCamelCase ,**lowerCamelCase ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = emb_layer_norm_before __SCREAMING_SNAKE_CASE = token_dropout __SCREAMING_SNAKE_CASE = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) __SCREAMING_SNAKE_CASE = EsmFoldConfig() elif isinstance(lowerCamelCase ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = EsmFoldConfig(**lowerCamelCase ) __SCREAMING_SNAKE_CASE = esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) __SCREAMING_SNAKE_CASE = get_default_vocab_list() else: __SCREAMING_SNAKE_CASE = vocab_list else: __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if self.esmfold_config is not None and getattr(self.esmfold_config ,"""use_esm_attn_map""" ,lowerCamelCase ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = super().to_dict() if isinstance(self.esmfold_config ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = self.esmfold_config.to_dict() return output @dataclass class __a : __UpperCamelCase : str = None __UpperCamelCase : bool = True __UpperCamelCase : bool = False __UpperCamelCase : bool = False __UpperCamelCase : bool = False __UpperCamelCase : float = 0 __UpperCamelCase : bool = True __UpperCamelCase : bool = False __UpperCamelCase : int = 128 __UpperCamelCase : "TrunkConfig" = None def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' if self.trunk is None: __SCREAMING_SNAKE_CASE = TrunkConfig() elif isinstance(self.trunk ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = TrunkConfig(**self.trunk ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = asdict(self ) __SCREAMING_SNAKE_CASE = self.trunk.to_dict() return output @dataclass class __a : __UpperCamelCase : int = 48 __UpperCamelCase : int = 1024 __UpperCamelCase : int = 128 __UpperCamelCase : int = 32 __UpperCamelCase : int = 32 __UpperCamelCase : int = 32 __UpperCamelCase : float = 0 __UpperCamelCase : float = 0 __UpperCamelCase : bool = False __UpperCamelCase : int = 4 __UpperCamelCase : Optional[int] = 128 __UpperCamelCase : "StructureModuleConfig" = None def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' if self.structure_module is None: __SCREAMING_SNAKE_CASE = StructureModuleConfig() elif isinstance(self.structure_module ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" f""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" f""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) __SCREAMING_SNAKE_CASE = self.sequence_state_dim // self.sequence_head_width __SCREAMING_SNAKE_CASE = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" f""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" f""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(f"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = asdict(self ) __SCREAMING_SNAKE_CASE = self.structure_module.to_dict() return output @dataclass class __a : __UpperCamelCase : int = 384 __UpperCamelCase : int = 128 __UpperCamelCase : int = 16 __UpperCamelCase : int = 128 __UpperCamelCase : int = 12 __UpperCamelCase : int = 4 __UpperCamelCase : int = 8 __UpperCamelCase : float = 0.1 __UpperCamelCase : int = 8 __UpperCamelCase : int = 1 __UpperCamelCase : int = 2 __UpperCamelCase : int = 7 __UpperCamelCase : int = 10 __UpperCamelCase : float = 1E-8 __UpperCamelCase : float = 1E5 def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' return asdict(self ) def __magic_name__ ( ) -> Dict: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
109
from collections import deque def __UpperCamelCase ( _A ): lowerCAmelCase_ = len(_A ) lowerCAmelCase_ = deque() lowerCAmelCase_ = [False for _ in range(_A )] lowerCAmelCase_ = [-1 for _ in range(_A )] lowerCAmelCase_ = index_of[:] def strong_connect(_A , _A , _A ): lowerCAmelCase_ = index # the number when this node is seen lowerCAmelCase_ = index # lowest rank node reachable from here index += 1 stack.append(_A ) lowerCAmelCase_ = True for w in g[v]: if index_of[w] == -1: lowerCAmelCase_ = strong_connect(_A , _A , _A ) lowerCAmelCase_ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: lowerCAmelCase_ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: lowerCAmelCase_ = [] lowerCAmelCase_ = stack.pop() lowerCAmelCase_ = False component.append(_A ) while w != v: lowerCAmelCase_ = stack.pop() lowerCAmelCase_ = False component.append(_A ) components.append(_A ) return index lowerCAmelCase_ = [] for v in range(_A ): if index_of[v] == -1: strong_connect(_A , 0 , _A ) return components def __UpperCamelCase ( _A , _A ): lowerCAmelCase_ = [[] for _ in range(_A )] for u, v in edges: g[u].append(_A ) return g if __name__ == "__main__": # Test _A = 7 _A = [0, 0, 1, 2, 3, 3, 4, 4, 6] _A = [1, 3, 2, 0, 1, 4, 5, 6, 5] _A = [(u, v) for u, v in zip(source, target)] _A = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
431
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCamelCase__ : List[Any] = logging.get_logger(__name__) class _lowercase ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = ['''input_features''', '''attention_mask'''] def __init__( self ,lowerCamelCase_=80 ,lowerCamelCase_=16000 ,lowerCamelCase_=80 ,lowerCamelCase_=0.0 ,lowerCamelCase_=True ,lowerCamelCase_=True ,lowerCamelCase_=True ,**lowerCamelCase_ ,) -> Tuple: '''simple docstring''' super().__init__(feature_size=lowerCamelCase_ ,sampling_rate=lowerCamelCase_ ,padding_value=lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase__ : List[Any] = num_mel_bins UpperCAmelCase__ : Dict = do_ceptral_normalize UpperCAmelCase__ : List[str] = normalize_means UpperCAmelCase__ : List[str] = normalize_vars UpperCAmelCase__ : Any = True def lowerCAmelCase__ ( self ,lowerCamelCase_ ,) -> np.ndarray: '''simple docstring''' UpperCAmelCase__ : Optional[int] = waveform * (2**15) # Kaldi compliance: 16-bit signed integers UpperCAmelCase__ : List[Any] = torch.from_numpy(lowerCamelCase_ ).unsqueeze(0 ) UpperCAmelCase__ : int = ta_kaldi.fbank(lowerCamelCase_ ,num_mel_bins=self.num_mel_bins ,sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def lowerCAmelCase__ ( lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = True ,lowerCamelCase_ = True ,lowerCamelCase_ = 0.0 ,) -> np.ndarray: '''simple docstring''' if normalize_means: UpperCAmelCase__ : List[str] = x[:input_length].mean(axis=0 ) UpperCAmelCase__ : Tuple = np.subtract(lowerCamelCase_ ,lowerCamelCase_ ) if normalize_vars: UpperCAmelCase__ : Dict = x[:input_length].std(axis=0 ) UpperCAmelCase__ : List[str] = np.divide(lowerCamelCase_ ,lowerCamelCase_ ) if input_length < x.shape[0]: UpperCAmelCase__ : Optional[Any] = padding_value # make sure array is in float32 UpperCAmelCase__ : Optional[Any] = x.astype(np.floataa ) return x def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ = None ) -> List[np.ndarray]: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(lowerCamelCase_ ,lowerCamelCase_ ,self.normalize_means ,self.normalize_vars ,self.padding_value ) for x, n in zip(lowerCamelCase_ ,lowerCamelCase_ ) ] def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ = False ,lowerCamelCase_ = None ,lowerCamelCase_ = False ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,**lowerCamelCase_ ,) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) UpperCAmelCase__ : List[str] = isinstance(lowerCamelCase_ ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) UpperCAmelCase__ : Any = is_batched_numpy or ( isinstance(lowerCamelCase_ ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase__ : Any = [np.asarray(lowerCamelCase_ ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase_ ,np.ndarray ): UpperCAmelCase__ : Dict = np.asarray(lowerCamelCase_ ,dtype=np.floataa ) elif isinstance(lowerCamelCase_ ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCAmelCase__ : List[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase__ : Any = [raw_speech] # extract fbank features UpperCAmelCase__ : List[Any] = [self._extract_fbank_features(lowerCamelCase_ ) for waveform in raw_speech] # convert into correct format for padding UpperCAmelCase__ : Union[str, Any] = BatchFeature({'''input_features''': features} ) UpperCAmelCase__ : Any = self.pad( lowerCamelCase_ ,padding=lowerCamelCase_ ,max_length=lowerCamelCase_ ,truncation=lowerCamelCase_ ,pad_to_multiple_of=lowerCamelCase_ ,return_attention_mask=lowerCamelCase_ ,**lowerCamelCase_ ,) # make sure list is in array format UpperCAmelCase__ : List[Any] = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] ,lowerCamelCase_ ): UpperCAmelCase__ : Union[str, Any] = [np.asarray(lowerCamelCase_ ,dtype=np.floataa ) for feature in input_features] UpperCAmelCase__ : List[Any] = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: UpperCAmelCase__ : List[Any] = [np.asarray(lowerCamelCase_ ,dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: UpperCAmelCase__ : Optional[Any] = ( np.array(lowerCamelCase_ ,dtype=np.intaa ) if self._get_padding_strategies(lowerCamelCase_ ,max_length=lowerCamelCase_ ) is not PaddingStrategy.DO_NOT_PAD else None ) UpperCAmelCase__ : Any = self.normalize( padded_inputs['''input_features'''] ,attention_mask=lowerCamelCase_ ) if return_tensors is not None: UpperCAmelCase__ : List[str] = padded_inputs.convert_to_tensors(lowerCamelCase_ ) return padded_inputs
704
'''simple docstring''' import unittest import numpy as np def __UpperCamelCase( _A : np.ndarray , _A : np.ndarray , _A : np.ndarray , _A : np.ndarray | None = None , ): '''simple docstring''' UpperCAmelCase__ : Any = np.shape(_A ) UpperCAmelCase__ : List[Any] = np.shape(_A ) UpperCAmelCase__ : Tuple = np.shape(_A ) if shape_a[0] != shape_b[0]: UpperCAmelCase__ : Any = ( '''Expected the same number of rows for A and B. ''' F'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(_A ) if shape_b[1] != shape_c[1]: UpperCAmelCase__ : List[str] = ( '''Expected the same number of columns for B and C. ''' F'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(_A ) UpperCAmelCase__ : Optional[Any] = pseudo_inv if a_inv is None: try: UpperCAmelCase__ : str = np.linalg.inv(_A ) except np.linalg.LinAlgError: raise ValueError( '''Input matrix A is not invertible. Cannot compute Schur complement.''' ) return mat_c - mat_b.T @ a_inv @ mat_b class _lowercase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase__ : int = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase__ : List[Any] = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase__ : Optional[Any] = np.array([[2, 1], [6, 3]] ) UpperCAmelCase__ : Tuple = schur_complement(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase__ : Tuple = np.block([[a, b], [b.T, c]] ) UpperCAmelCase__ : int = np.linalg.det(lowerCamelCase_ ) UpperCAmelCase__ : Optional[Any] = np.linalg.det(lowerCamelCase_ ) UpperCAmelCase__ : Union[str, Any] = np.linalg.det(lowerCamelCase_ ) self.assertAlmostEqual(lowerCamelCase_ ,det_a * det_s ) def lowerCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase__ : Tuple = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase__ : Tuple = np.array([[2, 1], [6, 3]] ) with self.assertRaises(lowerCamelCase_ ): schur_complement(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) def lowerCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase__ : Dict = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase__ : str = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase__ : Any = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(lowerCamelCase_ ): schur_complement(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
496
0