code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging UpperCAmelCase__ = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def _a ( a :Dict , a :Any , a :Dict , a :int=None ) -> Optional[Any]: # Initialise PyTorch model a = XLNetConfig.from_json_file(a ) a = finetuning_task.lower() if finetuning_task is not None else '''''' if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) a = finetuning_task a = GLUE_TASKS_NUM_LABELS[finetuning_task] a = XLNetForSequenceClassification(a ) elif "squad" in finetuning_task: a = finetuning_task a = XLNetForQuestionAnswering(a ) else: a = XLNetLMHeadModel(a ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(a , a , a ) # Save pytorch-model a = os.path.join(a , a ) a = os.path.join(a , a ) print(F"""Save PyTorch model to {os.path.abspath(a )}""" ) torch.save(model.state_dict() , a ) print(F"""Save configuration file to {os.path.abspath(a )}""" ) with open(a , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) UpperCAmelCase__ = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
117
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel UpperCAmelCase__ = logging.getLogger(__name__) def _a ( a :Union[str, Any] , a :Tuple ) -> Optional[Any]: # save results if os.path.exists(a ): if os.path.exists(os.path.join(a , '''config.json''' ) ) and os.path.isfile( os.path.join(a , '''config.json''' ) ): os.remove(os.path.join(a , '''config.json''' ) ) if os.path.exists(os.path.join(a , '''pytorch_model.bin''' ) ) and os.path.isfile( os.path.join(a , '''pytorch_model.bin''' ) ): os.remove(os.path.join(a , '''pytorch_model.bin''' ) ) else: os.makedirs(a ) model.save_pretrained(a ) def _a ( a :List[Any] , a :Union[str, Any]=False ) -> int: a = 2 if unlogit: a = torch.pow(a , a ) a = p * torch.log(a ) a = 0 return -plogp.sum(dim=-1 ) def _a ( a :List[str] ) -> Union[str, Any]: logger.info('''lv, h >\t''' + '''\t'''.join(F"""{x + 1}""" for x in range(len(a ) ) ) ) for row in range(len(a ) ): if tensor.dtype != torch.long: logger.info(F"""layer {row + 1}:\t""" + '''\t'''.join(F"""{x:.5f}""" for x in tensor[row].cpu().data ) ) else: logger.info(F"""layer {row + 1}:\t""" + '''\t'''.join(F"""{x:d}""" for x in tensor[row].cpu().data ) ) def _a ( a :Optional[int] , a :Dict , a :Tuple , a :Tuple=True , a :Union[str, Any]=True , a :str=None , a :Union[str, Any]=False ) -> int: a , a = model.config.num_hidden_layers, model.config.num_attention_heads a = torch.zeros(a , a ).to(args.device ) a = torch.zeros(a , a ).to(args.device ) if head_mask is None: a = torch.ones(a , a ).to(args.device ) head_mask.requires_grad_(requires_grad=a ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: a = None a = 0.0 a = 0.0 for step, inputs in enumerate(tqdm(a , desc='''Iteration''' , disable=args.local_rank not in [-1, 0] ) ): a = tuple(t.to(args.device ) for t in inputs ) ((a) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) a = model(a , labels=a , head_mask=a ) # (loss), lm_logits, presents, (all hidden_states), (attentions) a , a , a = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(a ): a = entropy(attn.detach() , a ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(a ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: a = 2 a = torch.pow(torch.pow(a , a ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: a = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''' ) print_ad_tensor(a ) if compute_importance: logger.info('''Head importance scores''' ) print_ad_tensor(a ) logger.info('''Head ranked by importance scores''' ) a = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) a = torch.arange( head_importance.numel() , device=args.device ) a = head_ranks.view_as(a ) print_ad_tensor(a ) return attn_entropy, head_importance, total_loss def _a ( a :Optional[Any] , a :List[Any] , a :str ) -> Optional[Any]: a , a , a = compute_heads_importance(a , a , a , compute_entropy=a ) a = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , a , original_score * args.masking_threshold ) a = torch.ones_like(a ) a = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) a = original_score while current_score >= original_score * args.masking_threshold: a = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads a = float('''Inf''' ) a = head_importance.view(-1 ).sort()[1] if len(a ) <= num_to_mask: print('''BREAK BY num_to_mask''' ) break # mask heads a = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist() ) ) a = new_head_mask.view(-1 ) a = 0.0 a = new_head_mask.view_as(a ) a = new_head_mask.clone().detach() print_ad_tensor(a ) # Compute metric and head importance again a , a , a = compute_heads_importance( a , a , a , compute_entropy=a , head_mask=a ) a = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , a , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('''Final head mask''' ) print_ad_tensor(a ) np.save(os.path.join(args.output_dir , '''head_mask.npy''' ) , head_mask.detach().cpu().numpy() ) return head_mask def _a ( a :List[Any] , a :Optional[int] , a :Tuple , a :List[str] ) -> List[str]: a = datetime.now() a , a , a = compute_heads_importance( a , a , a , compute_entropy=a , compute_importance=a , head_mask=a ) a = 1 / loss a = datetime.now() - before_time a = sum(p.numel() for p in model.parameters() ) a = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(a ) ) } for k, v in heads_to_prune.items(): if isinstance(a , a ): a = [ v, ] assert sum(len(a ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(a ) a = sum(p.numel() for p in model.parameters() ) a = datetime.now() a , a , a = compute_heads_importance( a , a , a , compute_entropy=a , compute_importance=a , head_mask=a , actually_pruned=a , ) a = 1 / loss a = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , a , a , pruned_num_params / original_num_params * 100 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , a , a ) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 100 ) save_model(a , args.output_dir ) def _a ( ) -> int: a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=a , type=a , required=a , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=a , type=a , required=a , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=a , type=a , required=a , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=a , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=a , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=a , type=a , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=a , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''' ) parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''' ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''' ) parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''' ) parser.add_argument( '''--masking_threshold''' , default=0.9 , type=a , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=a , help='''Amount to heads to masking at each masking step.''' ) parser.add_argument('''--metric_name''' , default='''acc''' , type=a , help='''Metric to use for head masking.''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=a , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=a , help='''Batch size.''' ) parser.add_argument('''--seed''' , type=a , default=42 ) parser.add_argument('''--local_rank''' , type=a , default=-1 , help='''local_rank for distributed training on gpus''' ) parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''' ) parser.add_argument('''--server_ip''' , type=a , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=a , default='''''' , help='''Can be used for distant debugging.''' ) a = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=a ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: a = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' ) a = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) a = torch.device('''cuda''' , args.local_rank ) a = 1 torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) a = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: a = nn.parallel.DistributedDataParallel( a , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=a ) elif args.n_gpu > 1: a = nn.DataParallel(a ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=a ) torch.save(a , os.path.join(args.output_dir , '''run_args.bin''' ) ) logger.info('''Training/evaluation parameters %s''' , a ) # Prepare dataset a = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) a = (torch.from_numpy(a ),) a = TensorDataset(*a ) a = RandomSampler(a ) a = DataLoader(a , sampler=a , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(a , a , a ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: a = mask_heads(a , a , a ) prune_heads(a , a , a , a ) if __name__ == "__main__": main()
117
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase__ : int = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = ['''pixel_values'''] def __init__( self , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = 0.9 , _UpperCAmelCase = PILImageResampling.BICUBIC , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = 1 / 255 , _UpperCAmelCase = True , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(**_UpperCAmelCase) __A : Union[str, Any] = size if size is not None else {'shortest_edge': 224} __A : Optional[int] = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase) __A : int = crop_size if crop_size is not None else {'height': 224, 'width': 224} __A : str = get_size_dict(_UpperCAmelCase , param_name='crop_size') __A : Tuple = do_resize __A : str = size __A : Optional[Any] = crop_pct __A : int = resample __A : str = do_center_crop __A : str = crop_size __A : List[Any] = do_rescale __A : List[Any] = rescale_factor __A : Any = do_normalize __A : Any = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __A : Optional[int] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = PILImageResampling.BICUBIC , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' __A : Any = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(F'size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}') if crop_pct is not None: if "shortest_edge" in size: __A : int = int(size['shortest_edge'] / crop_pct) elif "height" in size and "width" in size: if size["height"] == size["width"]: __A : List[Any] = int(size['height'] / crop_pct) else: __A : Any = (int(size['height'] / crop_pct), int(size['width'] / crop_pct)) else: raise ValueError('Invalid size for resize: {}'.format(_UpperCAmelCase)) __A : List[Any] = get_resize_output_image_size(_UpperCAmelCase , size=_UpperCAmelCase , default_to_square=_UpperCAmelCase) else: if "shortest_edge" in size: __A : int = get_resize_output_image_size(_UpperCAmelCase , size=size['shortest_edge'] , default_to_square=_UpperCAmelCase) elif "height" in size and "width" in size: __A : Any = (size['height'], size['width']) else: raise ValueError('Invalid size for resize: {}'.format(_UpperCAmelCase)) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' __A : int = get_size_dict(_UpperCAmelCase) if "height" not in size or "width" not in size: raise ValueError(F'size must contain \'height\' and \'width\' as keys. Got {size.keys()}') return center_crop(_UpperCAmelCase , size=(size['height'], size['width']) , data_format=_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , **_UpperCAmelCase , ): '''simple docstring''' __A : Optional[int] = do_resize if do_resize is not None else self.do_resize __A : Optional[Any] = crop_pct if crop_pct is not None else self.crop_pct __A : Dict = resample if resample is not None else self.resample __A : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop __A : Dict = do_rescale if do_rescale is not None else self.do_rescale __A : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor __A : str = do_normalize if do_normalize is not None else self.do_normalize __A : Union[str, Any] = image_mean if image_mean is not None else self.image_mean __A : Dict = image_std if image_std is not None else self.image_std __A : str = size if size is not None else self.size __A : List[Any] = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase) __A : Optional[int] = crop_size if crop_size is not None else self.crop_size __A : Optional[Any] = get_size_dict(_UpperCAmelCase , param_name='crop_size') __A : Optional[int] = make_list_of_images(_UpperCAmelCase) if not valid_images(_UpperCAmelCase): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.') if do_center_crop and crop_pct is None: raise ValueError('Crop_pct must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. __A : int = [to_numpy_array(_UpperCAmelCase) for image in images] if do_resize: __A : int = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , crop_pct=_UpperCAmelCase , resample=_UpperCAmelCase) for image in images] if do_center_crop: __A : Optional[int] = [self.center_crop(image=_UpperCAmelCase , size=_UpperCAmelCase) for image in images] if do_rescale: __A : Union[str, Any] = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase) for image in images] if do_normalize: __A : List[Any] = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase) for image in images] __A : List[str] = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase) for image in images] __A : List[Any] = {'pixel_values': images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase)
338
'''simple docstring''' lowercase__ : List[Any] = '''Input must be a string of 8 numbers plus letter''' lowercase__ : Optional[Any] = '''TRWAGMYFPDXBNJZSQVHLCKE''' def _lowerCAmelCase ( __snake_case : str ) -> bool: if not isinstance(__snake_case , __snake_case ): __A : str = f'Expected string as input, found {type(__snake_case ).__name__}' raise TypeError(__snake_case ) __A : Any = spanish_id.replace('-' , '' ).upper() if len(__snake_case ) != 9: raise ValueError(__snake_case ) try: __A : Optional[Any] = int(spanish_id_clean[0:8] ) __A : int = spanish_id_clean[8] except ValueError as ex: raise ValueError(__snake_case ) from ex if letter.isdigit(): raise ValueError(__snake_case ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
338
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class _snake_case( metaclass=UpperCAmelCase ): __snake_case: str = ['speech'] def __init__(self : List[Any] , *a : List[str] , **a : Optional[Any] ) -> Optional[int]: """simple docstring""" requires_backends(self , ['speech'] ) class _snake_case( metaclass=UpperCAmelCase ): __snake_case: List[str] = ['speech'] def __init__(self : Dict , *a : Any , **a : Optional[Any] ) -> str: """simple docstring""" requires_backends(self , ['speech'] )
531
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __a ( unittest.TestCase ): _a : int = MODEL_FOR_MASKED_LM_MAPPING _a : Tuple = TF_MODEL_FOR_MASKED_LM_MAPPING def UpperCAmelCase__ ( self ) -> int: """simple docstring""" super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='tf' ) _UpperCAmelCase = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=6 ) , [ {'sequence': 'My name is grouped', 'score': 2.1e-0_5, 'token': 38015, 'token_str': ' grouped'}, {'sequence': 'My name is accuser', 'score': 2.1e-0_5, 'token': 25506, 'token_str': ' accuser'}, ] , ) _UpperCAmelCase = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=6 ) , [ { 'sequence': 'The largest city in France is grouped', 'score': 2.1e-0_5, 'token': 38015, 'token_str': ' grouped', }, { 'sequence': 'The largest city in France is accuser', 'score': 2.1e-0_5, 'token': 25506, 'token_str': ' accuser', }, ] , ) _UpperCAmelCase = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=6 ) , [ {'sequence': 'My name is Clara', 'score': 2e-0_5, 'token': 13606, 'token_str': ' Clara'}, {'sequence': 'My name is Patrick', 'score': 2e-0_5, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 1.9e-0_5, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='pt' ) _UpperCAmelCase = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=6 ) , [ {'sequence': 'My name is Maul', 'score': 2.2e-0_5, 'token': 35676, 'token_str': ' Maul'}, {'sequence': 'My name isELS', 'score': 2.2e-0_5, 'token': 16416, 'token_str': 'ELS'}, ] , ) _UpperCAmelCase = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=6 ) , [ { 'sequence': 'The largest city in France is Maul', 'score': 2.2e-0_5, 'token': 35676, 'token_str': ' Maul', }, {'sequence': 'The largest city in France isELS', 'score': 2.2e-0_5, 'token': 16416, 'token_str': 'ELS'}, ] , ) _UpperCAmelCase = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=6 ) , [ {'sequence': 'My name is Patrick', 'score': 2.1e-0_5, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 2e-0_5, 'token': 2941, 'token_str': ' Te'}, {'sequence': 'My name is Clara', 'score': 2e-0_5, 'token': 13606, 'token_str': ' Clara'}, ] , ) _UpperCAmelCase = unmasker('My name is <mask> <mask>' , top_k=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=6 ) , [ [ { 'score': 2.2e-0_5, 'token': 35676, 'token_str': ' Maul', 'sequence': '<s>My name is Maul<mask></s>', }, {'score': 2.2e-0_5, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name isELS<mask></s>'}, ], [ { 'score': 2.2e-0_5, 'token': 35676, 'token_str': ' Maul', 'sequence': '<s>My name is<mask> Maul</s>', }, {'score': 2.2e-0_5, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name is<mask>ELS</s>'}, ], ] , ) @require_torch_gpu def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = pipeline('fill-mask' , model='hf-internal-testing/tiny-random-distilbert' , device=0 , framework='pt' ) # convert model to fp16 pipe.model.half() _UpperCAmelCase = pipe('Paris is the [MASK] of France.' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow @require_torch def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='pt' ) self.run_large_test(_SCREAMING_SNAKE_CASE ) @slow @require_tf def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='tf' ) self.run_large_test(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _UpperCAmelCase = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ) , [ {'sequence': 'My name is John', 'score': 0.008, 'token': 610, 'token_str': ' John'}, {'sequence': 'My name is Chris', 'score': 0.007, 'token': 1573, 'token_str': ' Chris'}, ] , ) _UpperCAmelCase = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ) , [ { 'sequence': 'The largest city in France is Paris', 'score': 0.251, 'token': 2201, 'token_str': ' Paris', }, { 'sequence': 'The largest city in France is Lyon', 'score': 0.214, 'token': 12790, 'token_str': ' Lyon', }, ] , ) _UpperCAmelCase = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ) , [ {'sequence': 'My name is Patrick', 'score': 0.005, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Clara', 'score': 0.000, 'token': 13606, 'token_str': ' Clara'}, {'sequence': 'My name is Te', 'score': 0.000, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='pt' ) _UpperCAmelCase = None _UpperCAmelCase = None self.run_pipeline_test(_SCREAMING_SNAKE_CASE , [] ) @require_tf def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='tf' ) _UpperCAmelCase = None _UpperCAmelCase = None self.run_pipeline_test(_SCREAMING_SNAKE_CASE , [] ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('The provided tokenizer has no mask token, (probably reformer or wav2vec2)' ) _UpperCAmelCase = FillMaskPipeline(model=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [ f'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" _UpperCAmelCase = fill_masker.tokenizer _UpperCAmelCase = fill_masker.model _UpperCAmelCase = fill_masker( f'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( _SCREAMING_SNAKE_CASE , [ {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE ), 'token': ANY(_SCREAMING_SNAKE_CASE ), 'token_str': ANY(_SCREAMING_SNAKE_CASE )}, {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE ), 'token': ANY(_SCREAMING_SNAKE_CASE ), 'token_str': ANY(_SCREAMING_SNAKE_CASE )}, {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE ), 'token': ANY(_SCREAMING_SNAKE_CASE ), 'token_str': ANY(_SCREAMING_SNAKE_CASE )}, {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE ), 'token': ANY(_SCREAMING_SNAKE_CASE ), 'token_str': ANY(_SCREAMING_SNAKE_CASE )}, {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE ), 'token': ANY(_SCREAMING_SNAKE_CASE ), 'token_str': ANY(_SCREAMING_SNAKE_CASE )}, ] , ) _UpperCAmelCase = fill_masker([f'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( _SCREAMING_SNAKE_CASE , [ {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE ), 'token': ANY(_SCREAMING_SNAKE_CASE ), 'token_str': ANY(_SCREAMING_SNAKE_CASE )}, {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE ), 'token': ANY(_SCREAMING_SNAKE_CASE ), 'token_str': ANY(_SCREAMING_SNAKE_CASE )}, {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE ), 'token': ANY(_SCREAMING_SNAKE_CASE ), 'token_str': ANY(_SCREAMING_SNAKE_CASE )}, {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE ), 'token': ANY(_SCREAMING_SNAKE_CASE ), 'token_str': ANY(_SCREAMING_SNAKE_CASE )}, {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE ), 'token': ANY(_SCREAMING_SNAKE_CASE ), 'token_str': ANY(_SCREAMING_SNAKE_CASE )}, ] , ) _UpperCAmelCase = fill_masker([f'''This is a {tokenizer.mask_token}''', f'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( _SCREAMING_SNAKE_CASE , [ [ {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE ), 'token': ANY(_SCREAMING_SNAKE_CASE ), 'token_str': ANY(_SCREAMING_SNAKE_CASE )}, {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE ), 'token': ANY(_SCREAMING_SNAKE_CASE ), 'token_str': ANY(_SCREAMING_SNAKE_CASE )}, {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE ), 'token': ANY(_SCREAMING_SNAKE_CASE ), 'token_str': ANY(_SCREAMING_SNAKE_CASE )}, {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE ), 'token': ANY(_SCREAMING_SNAKE_CASE ), 'token_str': ANY(_SCREAMING_SNAKE_CASE )}, {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE ), 'token': ANY(_SCREAMING_SNAKE_CASE ), 'token_str': ANY(_SCREAMING_SNAKE_CASE )}, ], [ {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE ), 'token': ANY(_SCREAMING_SNAKE_CASE ), 'token_str': ANY(_SCREAMING_SNAKE_CASE )}, {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE ), 'token': ANY(_SCREAMING_SNAKE_CASE ), 'token_str': ANY(_SCREAMING_SNAKE_CASE )}, {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE ), 'token': ANY(_SCREAMING_SNAKE_CASE ), 'token_str': ANY(_SCREAMING_SNAKE_CASE )}, {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE ), 'token': ANY(_SCREAMING_SNAKE_CASE ), 'token_str': ANY(_SCREAMING_SNAKE_CASE )}, {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE ), 'token': ANY(_SCREAMING_SNAKE_CASE ), 'token_str': ANY(_SCREAMING_SNAKE_CASE )}, ], ] , ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_SCREAMING_SNAKE_CASE ): fill_masker('This is' ) self.run_test_top_k(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.run_test_targets(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.run_test_top_k_targets(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.fill_mask_with_duplicate_targets_and_top_k(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.fill_mask_with_multiple_masks(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _UpperCAmelCase = tokenizer.get_vocab() _UpperCAmelCase = sorted(vocab.keys() )[:2] # Pipeline argument _UpperCAmelCase = FillMaskPipeline(model=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , targets=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _SCREAMING_SNAKE_CASE , [ {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE ), 'token': ANY(_SCREAMING_SNAKE_CASE ), 'token_str': ANY(_SCREAMING_SNAKE_CASE )}, {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE ), 'token': ANY(_SCREAMING_SNAKE_CASE ), 'token_str': ANY(_SCREAMING_SNAKE_CASE )}, ] , ) _UpperCAmelCase = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(_SCREAMING_SNAKE_CASE ) ) # Call argument _UpperCAmelCase = FillMaskPipeline(model=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=_SCREAMING_SNAKE_CASE ) self.assertEqual( _SCREAMING_SNAKE_CASE , [ {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE ), 'token': ANY(_SCREAMING_SNAKE_CASE ), 'token_str': ANY(_SCREAMING_SNAKE_CASE )}, {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE ), 'token': ANY(_SCREAMING_SNAKE_CASE ), 'token_str': ANY(_SCREAMING_SNAKE_CASE )}, ] , ) _UpperCAmelCase = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(_SCREAMING_SNAKE_CASE ) ) # Score equivalence _UpperCAmelCase = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [top_mask['token_str'] for top_mask in outputs] _UpperCAmelCase = [top_mask['score'] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_SCREAMING_SNAKE_CASE ) == set(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [top_mask['score'] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE ) , nested_simplify(_SCREAMING_SNAKE_CASE ) ) # Raises with invalid with self.assertRaises(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[''] ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets='' ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = FillMaskPipeline(model=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , top_k=2 ) _UpperCAmelCase = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _SCREAMING_SNAKE_CASE , [ {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE ), 'token': ANY(_SCREAMING_SNAKE_CASE ), 'token_str': ANY(_SCREAMING_SNAKE_CASE )}, {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE ), 'token': ANY(_SCREAMING_SNAKE_CASE ), 'token_str': ANY(_SCREAMING_SNAKE_CASE )}, ] , ) _UpperCAmelCase = FillMaskPipeline(model=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _SCREAMING_SNAKE_CASE , [ {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE ), 'token': ANY(_SCREAMING_SNAKE_CASE ), 'token_str': ANY(_SCREAMING_SNAKE_CASE )}, {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE ), 'token': ANY(_SCREAMING_SNAKE_CASE ), 'token_str': ANY(_SCREAMING_SNAKE_CASE )}, ] , ) self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE ) , nested_simplify(_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _UpperCAmelCase = tokenizer.get_vocab() _UpperCAmelCase = FillMaskPipeline(model=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE ) # top_k=2, ntargets=3 _UpperCAmelCase = sorted(vocab.keys() )[:3] _UpperCAmelCase = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=_SCREAMING_SNAKE_CASE ) # If we use the most probably targets, and filter differently, we should still # have the same results _UpperCAmelCase = [el['token_str'] for el in sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x["score"] , reverse=_SCREAMING_SNAKE_CASE )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_SCREAMING_SNAKE_CASE ).issubset(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=_SCREAMING_SNAKE_CASE ) # They should yield exactly the same result self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE ) , nested_simplify(_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _UpperCAmelCase = FillMaskPipeline(model=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = tokenizer.get_vocab() # String duplicates + id duplicates _UpperCAmelCase = sorted(vocab.keys() )[:3] _UpperCAmelCase = [targets[0], targets[1], targets[0], targets[2], targets[1]] _UpperCAmelCase = fill_masker(f'''My name is {tokenizer.mask_token}''' , targets=_SCREAMING_SNAKE_CASE , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 3 ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" _UpperCAmelCase = FillMaskPipeline(model=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = fill_masker( f'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _SCREAMING_SNAKE_CASE , [ [ {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE ), 'token': ANY(_SCREAMING_SNAKE_CASE ), 'token_str': ANY(_SCREAMING_SNAKE_CASE )}, {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE ), 'token': ANY(_SCREAMING_SNAKE_CASE ), 'token_str': ANY(_SCREAMING_SNAKE_CASE )}, ], [ {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE ), 'token': ANY(_SCREAMING_SNAKE_CASE ), 'token_str': ANY(_SCREAMING_SNAKE_CASE )}, {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE ), 'token': ANY(_SCREAMING_SNAKE_CASE ), 'token_str': ANY(_SCREAMING_SNAKE_CASE )}, ], [ {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE ), 'token': ANY(_SCREAMING_SNAKE_CASE ), 'token_str': ANY(_SCREAMING_SNAKE_CASE )}, {'sequence': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE ), 'token': ANY(_SCREAMING_SNAKE_CASE ), 'token_str': ANY(_SCREAMING_SNAKE_CASE )}, ], ] , )
618
0
import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def _snake_case (): UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument('--model_ckpt' , type=__lowercase , default='microsoft/unixcoder-base-nine') parser.add_argument('--num_epochs' , type=__lowercase , default=5) parser.add_argument('--batch_size' , type=__lowercase , default=6) parser.add_argument('--gradient_accumulation_steps' , type=__lowercase , default=1) parser.add_argument('--freeze' , type=__lowercase , default=__lowercase) parser.add_argument('--learning_rate' , type=__lowercase , default=5e-4) parser.add_argument('--seed' , type=__lowercase , default=0) parser.add_argument('--lr_scheduler_type' , type=__lowercase , default='cosine') parser.add_argument('--num_warmup_steps' , type=__lowercase , default=10) parser.add_argument('--weight_decay' , type=__lowercase , default=0.01) parser.add_argument('--output_dir' , type=__lowercase , default='./results') return parser.parse_args() snake_case__ : List[Any] = load("""accuracy""") def _snake_case (__lowercase): UpperCamelCase_ , UpperCamelCase_ = eval_pred UpperCamelCase_ = np.argmax(__lowercase , axis=1) return metric.compute(predictions=__lowercase , references=__lowercase) class _a ( UpperCAmelCase__ ): """simple docstring""" def __init__( self , _UpperCAmelCase ) -> None: super().__init__() UpperCamelCase_ = trainer def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) -> Dict: if control.should_evaluate: UpperCamelCase_ = deepcopy(_UpperCAmelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='train' ) return control_copy def _snake_case (): UpperCamelCase_ = get_args() set_seed(args.seed) UpperCamelCase_ = load_dataset('codeparrot/codecomplex' , split='train') UpperCamelCase_ = dataset.train_test_split(test_size=0.2) UpperCamelCase_ = train_test['test'].train_test_split(test_size=0.5) UpperCamelCase_ = DatasetDict( { 'train': train_test['train'], 'test': test_validation['train'], 'valid': test_validation['test'], }) print('Loading tokenizer and model') UpperCamelCase_ = AutoTokenizer.from_pretrained(args.model_ckpt) UpperCamelCase_ = tokenizer.eos_token UpperCamelCase_ = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7) UpperCamelCase_ = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): UpperCamelCase_ = False UpperCamelCase_ = ClassLabel(num_classes=7 , names=list(set(train_test_validation['train']['complexity']))) def tokenize(__lowercase): UpperCamelCase_ = tokenizer(example['src'] , truncation=__lowercase , max_length=1024) UpperCamelCase_ = labels.straint(example['complexity']) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } UpperCamelCase_ = train_test_validation.map( __lowercase , batched=__lowercase , remove_columns=train_test_validation['train'].column_names , ) UpperCamelCase_ = DataCollatorWithPadding(tokenizer=__lowercase) UpperCamelCase_ = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='epoch' , save_strategy='epoch' , logging_strategy='epoch' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='accuracy' , run_name='complexity-java' , report_to='wandb' , ) UpperCamelCase_ = Trainer( model=__lowercase , args=__lowercase , train_dataset=tokenized_datasets['train'] , eval_dataset=tokenized_datasets['valid'] , tokenizer=__lowercase , data_collator=__lowercase , compute_metrics=__lowercase , ) print('Training...') trainer.add_callback(CustomCallback(__lowercase)) trainer.train() if __name__ == "__main__": main()
618
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer snake_case__ : List[str] = logging.get_logger(__name__) snake_case__ : Optional[int] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} snake_case__ : Optional[Any] = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } snake_case__ : List[str] = { """google/realm-cc-news-pretrained-embedder""": 5_1_2, """google/realm-cc-news-pretrained-encoder""": 5_1_2, """google/realm-cc-news-pretrained-scorer""": 5_1_2, """google/realm-cc-news-pretrained-openqa""": 5_1_2, """google/realm-orqa-nq-openqa""": 5_1_2, """google/realm-orqa-nq-reader""": 5_1_2, """google/realm-orqa-wq-openqa""": 5_1_2, """google/realm-orqa-wq-reader""": 5_1_2, } snake_case__ : Tuple = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_INIT_CONFIGURATION A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = RealmTokenizer def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase="[UNK]" , _UpperCAmelCase="[SEP]" , _UpperCAmelCase="[PAD]" , _UpperCAmelCase="[CLS]" , _UpperCAmelCase="[MASK]" , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ) -> Optional[Any]: super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , tokenize_chinese_chars=_UpperCAmelCase , strip_accents=_UpperCAmelCase , **_UpperCAmelCase , ) UpperCamelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _UpperCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _UpperCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _UpperCAmelCase ) != tokenize_chinese_chars ): UpperCamelCase_ = getattr(_UpperCAmelCase , normalizer_state.pop('type' ) ) UpperCamelCase_ = do_lower_case UpperCamelCase_ = strip_accents UpperCamelCase_ = tokenize_chinese_chars UpperCamelCase_ = normalizer_class(**_UpperCAmelCase ) UpperCamelCase_ = do_lower_case def _UpperCAmelCase ( self , _UpperCAmelCase , **_UpperCAmelCase ) -> List[Any]: UpperCamelCase_ = PaddingStrategy.MAX_LENGTH UpperCamelCase_ = text UpperCamelCase_ = kwargs.pop('text_pair' , _UpperCAmelCase ) UpperCamelCase_ = kwargs.pop('return_tensors' , _UpperCAmelCase ) UpperCamelCase_ = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(_UpperCAmelCase ): if batch_text_pair is not None: UpperCamelCase_ = batch_text_pair[idx] else: UpperCamelCase_ = None UpperCamelCase_ = super().__call__(_UpperCAmelCase , _UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase_ = encoded_candidates.get('input_ids' ) UpperCamelCase_ = encoded_candidates.get('attention_mask' ) UpperCamelCase_ = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(_UpperCAmelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(_UpperCAmelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(_UpperCAmelCase ) UpperCamelCase_ = {key: item for key, item in output_data.items() if len(_UpperCAmelCase ) != 0} return BatchEncoding(_UpperCAmelCase , tensor_type=_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=None ) -> Union[str, Any]: UpperCamelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> List[int]: UpperCamelCase_ = [self.sep_token_id] UpperCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> Tuple[str]: UpperCamelCase_ = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase ) return tuple(_UpperCAmelCase )
618
1
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) -> str: if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path SCREAMING_SNAKE_CASE_ = quote(__UpperCAmelCase ) return hfh.hf_hub_url(__UpperCAmelCase , __UpperCAmelCase , repo_type='dataset' , revision=__UpperCAmelCase )
31
import operator as op def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> Any: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = lambda __UpperCAmelCase , __UpperCAmelCase : int(x / y ) # noqa: E731 integer division operation SCREAMING_SNAKE_CASE_ = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' ) print('-' * (30 + len(__UpperCAmelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(__UpperCAmelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) else: SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) SCREAMING_SNAKE_CASE_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' ) stack.append( str(opr[x](int(__UpperCAmelCase ) , int(__UpperCAmelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(__UpperCAmelCase ) , sep=' | ' , ) return int(stack[0] ) if __name__ == "__main__": lowerCamelCase__ : Tuple = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
31
1
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __a = logging.getLogger(__name__) __a = tf.data.AUTOTUNE def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = argparse.ArgumentParser(description='''Train a masked language model on TPU.''' ) parser.add_argument( '''--pretrained_model_config''' , type=_lowercase , default='''roberta-base''' , help='''The model config to use. Note that we don\'t copy the model\'s weights, only the config!''' , ) parser.add_argument( '''--tokenizer''' , type=_lowercase , default='''unigram-tokenizer-wikitext''' , help='''The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model\'s vocab size.''' , ) parser.add_argument( '''--per_replica_batch_size''' , type=_lowercase , default=8 , help='''Batch size per TPU core.''' , ) parser.add_argument( '''--no_tpu''' , action='''store_true''' , help='''If set, run on CPU and don\'t try to initialize a TPU. Useful for debugging on non-TPU instances.''' , ) parser.add_argument( '''--tpu_name''' , type=_lowercase , help='''Name of TPU resource to initialize. Should be blank on Colab, and \'local\' on TPU VMs.''' , default='''local''' , ) parser.add_argument( '''--tpu_zone''' , type=_lowercase , help='''Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.''' , ) parser.add_argument( '''--gcp_project''' , type=_lowercase , help='''Google cloud project name. Only used for non-Colab TPU nodes.''' ) parser.add_argument( '''--bfloat16''' , action='''store_true''' , help='''Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.''' , ) parser.add_argument( '''--train_dataset''' , type=_lowercase , help='''Path to training dataset to load. If the path begins with `gs://`''' ''' then the dataset will be loaded from a Google Cloud Storage bucket.''' , ) parser.add_argument( '''--shuffle_buffer_size''' , type=_lowercase , default=2**18 , help='''Size of the shuffle buffer (in samples)''' , ) parser.add_argument( '''--eval_dataset''' , type=_lowercase , help='''Path to evaluation dataset to load. If the path begins with `gs://`''' ''' then the dataset will be loaded from a Google Cloud Storage bucket.''' , ) parser.add_argument( '''--num_epochs''' , type=_lowercase , default=1 , help='''Number of epochs to train for.''' , ) parser.add_argument( '''--learning_rate''' , type=_lowercase , default=1E-4 , help='''Learning rate to use for training.''' , ) parser.add_argument( '''--weight_decay_rate''' , type=_lowercase , default=1E-3 , help='''Weight decay rate to use for training.''' , ) parser.add_argument( '''--max_length''' , type=_lowercase , default=512 , help='''Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py''' , ) parser.add_argument( '''--mlm_probability''' , type=_lowercase , default=0.15 , help='''Fraction of tokens to mask during training.''' , ) parser.add_argument('''--output_dir''' , type=_lowercase , required=_lowercase , help='''Path to save model checkpoints to.''' ) parser.add_argument('''--hub_model_id''' , type=_lowercase , help='''Model ID to upload to on the Hugging Face Hub.''' ) UpperCAmelCase_ : str = parser.parse_args() return args def lowerCamelCase__ ( _lowercase ): '''simple docstring''' try: if args.tpu_name: UpperCAmelCase_ : int = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: UpperCAmelCase_ : List[Any] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( '''Couldn\'t connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or ''' '''--gcp_project. When running on a TPU VM, use --tpu_name local.''' ) tf.config.experimental_connect_to_cluster(_lowercase ) tf.tpu.experimental.initialize_tpu_system(_lowercase ) return tpu def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Any = 0 for file in file_list: UpperCAmelCase_ : Union[str, Any] = file.split('''/''' )[-1] UpperCAmelCase_ : Optional[int] = re.search(r'''-\d+-(\d+)\.tfrecord''' , _lowercase ).group(1 ) UpperCAmelCase_ : Optional[int] = int(_lowercase ) num_samples += sample_count return num_samples def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None ): '''simple docstring''' UpperCAmelCase_ : Any = count_samples(_lowercase ) UpperCAmelCase_ : int = tf.data.Dataset.from_tensor_slices(_lowercase ) if shuffle: UpperCAmelCase_ : Optional[Any] = dataset.shuffle(len(_lowercase ) ) UpperCAmelCase_ : Tuple = tf.data.TFRecordDataset(_lowercase , num_parallel_reads=_lowercase ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here UpperCAmelCase_ : Optional[int] = dataset.apply(tf.data.experimental.assert_cardinality(_lowercase ) ) UpperCAmelCase_ : Dict = dataset.map(_lowercase , num_parallel_calls=_lowercase ) if shuffle: assert shuffle_buffer_size is not None UpperCAmelCase_ : Union[str, Any] = dataset.shuffle(args.shuffle_buffer_size ) UpperCAmelCase_ : Optional[int] = dataset.batch(_lowercase , drop_remainder=_lowercase ) UpperCAmelCase_ : Optional[int] = dataset.map(_lowercase , num_parallel_calls=_lowercase ) UpperCAmelCase_ : Tuple = dataset.prefetch(_lowercase ) return dataset def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if not args.no_tpu: UpperCAmelCase_ : List[Any] = initialize_tpu(_lowercase ) UpperCAmelCase_ : Optional[int] = tf.distribute.TPUStrategy(_lowercase ) else: UpperCAmelCase_ : Any = tf.distribute.OneDeviceStrategy(device='''/gpu:0''' ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy('''mixed_bfloat16''' ) UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(args.tokenizer ) UpperCAmelCase_ : Union[str, Any] = AutoConfig.from_pretrained(args.pretrained_model_config ) UpperCAmelCase_ : Dict = tokenizer.vocab_size UpperCAmelCase_ : int = tf.io.gfile.glob(os.path.join(args.train_dataset , '''*.tfrecord''' ) ) if not training_records: raise ValueError(f'''No .tfrecord files found in {args.train_dataset}.''' ) UpperCAmelCase_ : Optional[int] = tf.io.gfile.glob(os.path.join(args.eval_dataset , '''*.tfrecord''' ) ) if not eval_records: raise ValueError(f'''No .tfrecord files found in {args.eval_dataset}.''' ) UpperCAmelCase_ : Tuple = count_samples(_lowercase ) UpperCAmelCase_ : Dict = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) UpperCAmelCase_ : Optional[Any] = steps_per_epoch * args.num_epochs with strategy.scope(): UpperCAmelCase_ : List[Any] = TFAutoModelForMaskedLM.from_config(_lowercase ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built UpperCAmelCase_, UpperCAmelCase_ : List[str] = create_optimizer( num_train_steps=_lowercase , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=_lowercase , metrics=['''accuracy'''] ) def decode_fn(_lowercase ): UpperCAmelCase_ : Optional[Any] = { '''input_ids''': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), '''attention_mask''': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(_lowercase , _lowercase ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. UpperCAmelCase_ : str = DataCollatorForLanguageModeling( tokenizer=_lowercase , mlm_probability=args.mlm_probability , mlm=_lowercase , return_tensors='''tf''' ) def mask_with_collator(_lowercase ): # TF really needs an isin() function UpperCAmelCase_ : Optional[Any] = ( ~tf.cast(batch['''attention_mask'''] , tf.bool ) | (batch['''input_ids'''] == tokenizer.cls_token_id) | (batch['''input_ids'''] == tokenizer.sep_token_id) ) UpperCAmelCase_, UpperCAmelCase_ : List[str] = data_collator.tf_mask_tokens( batch['''input_ids'''] , vocab_size=len(_lowercase ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=_lowercase , ) return batch UpperCAmelCase_ : List[str] = args.per_replica_batch_size * strategy.num_replicas_in_sync UpperCAmelCase_ : Optional[Any] = prepare_dataset( _lowercase , decode_fn=_lowercase , mask_fn=_lowercase , batch_size=_lowercase , shuffle=_lowercase , shuffle_buffer_size=args.shuffle_buffer_size , ) UpperCAmelCase_ : Union[str, Any] = prepare_dataset( _lowercase , decode_fn=_lowercase , mask_fn=_lowercase , batch_size=_lowercase , shuffle=_lowercase , ) UpperCAmelCase_ : int = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=_lowercase ) ) model.fit( _lowercase , validation_data=_lowercase , epochs=args.num_epochs , callbacks=_lowercase , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __a = parse_args() main(args)
300
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class __a( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_ : Optional[int] = '''hf-internal-testing/tiny-random-t5''' UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = tokenizer('''This is me''' ,return_tensors='''pt''' ) UpperCAmelCase_ : int = model.to_bettertransformer() self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) UpperCAmelCase_ : List[str] = model.generate(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = model.reverse_bettertransformer() self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = AutoModelForSeqaSeqLM.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertFalse( any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) UpperCAmelCase_ : Optional[Any] = model_reloaded.generate(**_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ) def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Dict = '''hf-internal-testing/tiny-random-t5''' UpperCAmelCase_ : Any = AutoModelForSeqaSeqLM.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_SCREAMING_SNAKE_CASE ): model.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = model.reverse_bettertransformer() model.save_pretrained(_SCREAMING_SNAKE_CASE )
300
1
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def a__ (__lowercase :Optional[Any] , __lowercase :Tuple , __lowercase :Optional[int] = None ) -> str: if version.parse(hfh.__version__ ).release < version.parse('''0.11.0''' ).release: # old versions of hfh don't url-encode the file path _A : Union[str, Any] = quote(snake_case__ ) return hfh.hf_hub_url(snake_case__ , snake_case__ , repo_type='''dataset''' , revision=snake_case__ )
206
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _snake_case = logging.get_logger(__name__) _snake_case = {'''vocab_file''': '''spiece.model'''} _snake_case = { '''vocab_file''': { '''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''', } } class _snake_case ( _lowercase ): def __init__( self: List[str] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[Any]=False , __lowerCamelCase: Tuple=True , __lowerCamelCase: Union[str, Any]=False , __lowerCamelCase: str="<s>" , __lowerCamelCase: str="</s>" , __lowerCamelCase: Tuple="<unk>" , __lowerCamelCase: str="<sep>" , __lowerCamelCase: Optional[int]="<pad>" , __lowerCamelCase: List[Any]="<cls>" , __lowerCamelCase: List[Any]="<mask>" , __lowerCamelCase: int=["<eop>", "<eod>"] , __lowerCamelCase: Optional[Dict[str, Any]] = None , **__lowerCamelCase: Any , ) -> None: __UpperCAmelCase : Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token __UpperCAmelCase : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__lowerCamelCase , remove_space=__lowerCamelCase , keep_accents=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) __UpperCAmelCase : List[str] = 3 __UpperCAmelCase : str = do_lower_case __UpperCAmelCase : int = remove_space __UpperCAmelCase : str = keep_accents __UpperCAmelCase : List[str] = vocab_file __UpperCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) __UpperCAmelCase : int = jieba __UpperCAmelCase : Optional[int] = str.maketrans(" \n" , "\u2582\u2583" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _lowerCamelCase ( self: List[str] ) -> List[Any]: return len(self.sp_model ) def _lowerCamelCase ( self: Tuple ) -> int: __UpperCAmelCase : Tuple = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self: Optional[Any] ) -> int: __UpperCAmelCase : Dict = self.__dict__.copy() __UpperCAmelCase : Union[str, Any] = None return state def __setstate__( self: List[Any] , __lowerCamelCase: int ) -> Dict: __UpperCAmelCase : List[str] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCAmelCase : Tuple = {} __UpperCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCamelCase ( self: Dict , __lowerCamelCase: Optional[Any] ) -> List[str]: if self.remove_space: __UpperCAmelCase : List[str] = " ".join(inputs.strip().split() ) else: __UpperCAmelCase : Tuple = inputs __UpperCAmelCase : str = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: __UpperCAmelCase : Optional[Any] = unicodedata.normalize("NFKD" , __lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = "".join([c for c in outputs if not unicodedata.combining(__lowerCamelCase )] ) if self.do_lower_case: __UpperCAmelCase : Optional[int] = outputs.lower() return outputs def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: str ) -> List[str]: __UpperCAmelCase : Union[str, Any] = self.preprocess_text(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) __UpperCAmelCase : int = [] for piece in pieces: if len(__lowerCamelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): __UpperCAmelCase : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(__lowerCamelCase , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __UpperCAmelCase : Optional[int] = cur_pieces[1:] else: __UpperCAmelCase : Optional[Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__lowerCamelCase ) else: new_pieces.append(__lowerCamelCase ) return new_pieces def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: Optional[int] ) -> List[Any]: return self.sp_model.PieceToId(__lowerCamelCase ) def _lowerCamelCase ( self: str , __lowerCamelCase: int ) -> Optional[Any]: return self.sp_model.IdToPiece(__lowerCamelCase ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Any ) -> Optional[int]: __UpperCAmelCase : List[Any] = "".join(__lowerCamelCase ).replace(__lowerCamelCase , " " ).strip() return out_string def _lowerCamelCase ( self: Any , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase : Any = [self.sep_token_id] __UpperCAmelCase : Dict = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None , __lowerCamelCase: bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is not None: return ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1, 1] return ([0] * len(__lowerCamelCase )) + [1, 1] def _lowerCamelCase ( self: Dict , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase : str = [self.sep_token_id] __UpperCAmelCase : str = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase : Optional[Any] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , "wb" ) as fi: __UpperCAmelCase : Any = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,) def _lowerCamelCase ( self: Any , *__lowerCamelCase: List[Any] , **__lowerCamelCase: Optional[Any] ) -> Any: __UpperCAmelCase : Dict = super()._decode(*__lowerCamelCase , **__lowerCamelCase ) __UpperCAmelCase : Tuple = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" ) return text
382
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __lowerCAmelCase : Dict = logging.get_logger(__name__) __lowerCAmelCase : Optional[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __lowerCAmelCase : Optional[Any] = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } __lowerCAmelCase : Dict = { "distilbert-base-uncased": 5_12, "distilbert-base-uncased-distilled-squad": 5_12, "distilbert-base-cased": 5_12, "distilbert-base-cased-distilled-squad": 5_12, "distilbert-base-german-cased": 5_12, "distilbert-base-multilingual-cased": 5_12, } __lowerCAmelCase : Union[str, Any] = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class a_ ( __UpperCamelCase ): UpperCamelCase_ : Union[str, Any] = VOCAB_FILES_NAMES UpperCamelCase_ : str = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : List[Any] = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : Tuple = ["input_ids", "attention_mask"] UpperCamelCase_ : int = DistilBertTokenizer def __init__( self : Optional[int] , snake_case__ : Dict=None , snake_case__ : int=None , snake_case__ : Tuple=True , snake_case__ : Union[str, Any]="[UNK]" , snake_case__ : Tuple="[SEP]" , snake_case__ : List[str]="[PAD]" , snake_case__ : int="[CLS]" , snake_case__ : Any="[MASK]" , snake_case__ : str=True , snake_case__ : str=None , **snake_case__ : Tuple , ): super().__init__( snake_case__ , tokenizer_file=snake_case__ , do_lower_case=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , tokenize_chinese_chars=snake_case__ , strip_accents=snake_case__ , **snake_case__ , ) lowerCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , snake_case__ ) != do_lower_case or normalizer_state.get("""strip_accents""" , snake_case__ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , snake_case__ ) != tokenize_chinese_chars ): lowerCAmelCase__ = getattr(snake_case__ , normalizer_state.pop("""type""" ) ) lowerCAmelCase__ = do_lower_case lowerCAmelCase__ = strip_accents lowerCAmelCase__ = tokenize_chinese_chars lowerCAmelCase__ = normalizer_class(**snake_case__ ) lowerCAmelCase__ = do_lower_case def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : int=None ): lowerCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : str , snake_case__ : Optional[str] = None ): lowerCAmelCase__ = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
674
"""simple docstring""" from math import pi, sqrt def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" if num <= 0: raise ValueError("""math domain error""" ) if num > 1_71.5: raise OverflowError("""math range error""" ) elif num - int(lowerCamelCase__ ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(lowerCamelCase__ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def _UpperCAmelCase ( ): """simple docstring""" assert gamma(0.5 ) == sqrt(lowerCamelCase__ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() __lowerCAmelCase : Dict = 1.0 while num: __lowerCAmelCase : Any = float(input("Gamma of: ")) print(F"gamma({num}) = {gamma(num)}") print("\nEnter 0 to exit...")
674
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Dict = { 'configuration_lxmert': ['LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LxmertConfig'], 'tokenization_lxmert': ['LxmertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = ['LxmertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = [ 'LxmertEncoder', 'LxmertForPreTraining', 'LxmertForQuestionAnswering', 'LxmertModel', 'LxmertPreTrainedModel', 'LxmertVisualFeatureEncoder', 'LxmertXLayer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = [ 'TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLxmertForPreTraining', 'TFLxmertMainLayer', 'TFLxmertModel', 'TFLxmertPreTrainedModel', 'TFLxmertVisualFeatureEncoder', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys a : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
556
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : Optional[Any] = { 'configuration_mvp': ['MVP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MvpConfig', 'MvpOnnxConfig'], 'tokenization_mvp': ['MvpTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = ['MvpTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ 'MVP_PRETRAINED_MODEL_ARCHIVE_LIST', 'MvpForCausalLM', 'MvpForConditionalGeneration', 'MvpForQuestionAnswering', 'MvpForSequenceClassification', 'MvpModel', 'MvpPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys a : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
556
1
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCAmelCase = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
220
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all BART models at https://huggingface.co/models?filter=bart __UpperCAmelCase = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, 'tokenizer_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json', }, } __UpperCAmelCase = { 'facebook/bart-base': 1024, 'facebook/bart-large': 1024, 'facebook/bart-large-mnli': 1024, 'facebook/bart-large-cnn': 1024, 'facebook/bart-large-xsum': 1024, 'yjernite/bart_eli5': 1024, } class _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ['input_ids', 'attention_mask'] A = BartTokenizer def __init__( self ,__SCREAMING_SNAKE_CASE=None ,__SCREAMING_SNAKE_CASE=None ,__SCREAMING_SNAKE_CASE=None ,__SCREAMING_SNAKE_CASE="replace" ,__SCREAMING_SNAKE_CASE="<s>" ,__SCREAMING_SNAKE_CASE="</s>" ,__SCREAMING_SNAKE_CASE="</s>" ,__SCREAMING_SNAKE_CASE="<s>" ,__SCREAMING_SNAKE_CASE="<unk>" ,__SCREAMING_SNAKE_CASE="<pad>" ,__SCREAMING_SNAKE_CASE="<mask>" ,__SCREAMING_SNAKE_CASE=False ,__SCREAMING_SNAKE_CASE=True ,**__SCREAMING_SNAKE_CASE ,): super().__init__( __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,tokenizer_file=__SCREAMING_SNAKE_CASE ,errors=__SCREAMING_SNAKE_CASE ,bos_token=__SCREAMING_SNAKE_CASE ,eos_token=__SCREAMING_SNAKE_CASE ,sep_token=__SCREAMING_SNAKE_CASE ,cls_token=__SCREAMING_SNAKE_CASE ,unk_token=__SCREAMING_SNAKE_CASE ,pad_token=__SCREAMING_SNAKE_CASE ,mask_token=__SCREAMING_SNAKE_CASE ,add_prefix_space=__SCREAMING_SNAKE_CASE ,trim_offsets=__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ,) SCREAMING_SNAKE_CASE : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' ,__SCREAMING_SNAKE_CASE ) != add_prefix_space: SCREAMING_SNAKE_CASE : Optional[Any] = getattr(__SCREAMING_SNAKE_CASE ,pre_tok_state.pop('type' ) ) SCREAMING_SNAKE_CASE : int = add_prefix_space SCREAMING_SNAKE_CASE : Tuple = pre_tok_class(**__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : int = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE : int = 'post_processor' SCREAMING_SNAKE_CASE : List[Any] = getattr(self.backend_tokenizer ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE : List[str] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE : str = tuple(state['sep'] ) if "cls" in state: SCREAMING_SNAKE_CASE : Tuple = tuple(state['cls'] ) SCREAMING_SNAKE_CASE : Tuple = False if state.get('add_prefix_space' ,__SCREAMING_SNAKE_CASE ) != add_prefix_space: SCREAMING_SNAKE_CASE : int = add_prefix_space SCREAMING_SNAKE_CASE : Any = True if state.get('trim_offsets' ,__SCREAMING_SNAKE_CASE ) != trim_offsets: SCREAMING_SNAKE_CASE : Optional[int] = trim_offsets SCREAMING_SNAKE_CASE : List[Any] = True if changes_to_apply: SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(__SCREAMING_SNAKE_CASE ,state.pop('type' ) ) SCREAMING_SNAKE_CASE : Optional[int] = component_class(**__SCREAMING_SNAKE_CASE ) setattr(self.backend_tokenizer ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) @property def __a ( self ): if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def __a ( self ,__SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : List[str] = AddedToken(__SCREAMING_SNAKE_CASE ,lstrip=__SCREAMING_SNAKE_CASE ,rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) else value SCREAMING_SNAKE_CASE : List[Any] = value def __a ( self ,*__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : Optional[Any] = kwargs.get('is_split_into_words' ,__SCREAMING_SNAKE_CASE ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) def __a ( self ,*__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : List[str] = kwargs.get('is_split_into_words' ,__SCREAMING_SNAKE_CASE ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = None ): SCREAMING_SNAKE_CASE : Union[str, Any] = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE ,name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE ) def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE=None ): SCREAMING_SNAKE_CASE : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = None ): SCREAMING_SNAKE_CASE : Union[str, Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
220
1
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a_ = logging.get_logger(__name__) a_ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} a_ = { """vocab_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""", }, """merges_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""", }, """tokenizer_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""", }, } a_ = { """gpt2""": 1_0_2_4, """gpt2-medium""": 1_0_2_4, """gpt2-large""": 1_0_2_4, """gpt2-xl""": 1_0_2_4, """distilgpt2""": 1_0_2_4, } class UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase =VOCAB_FILES_NAMES UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase =["""input_ids""", """attention_mask"""] UpperCamelCase =GPTaTokenizer def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_=False , **UpperCamelCase_ , ) -> int: super().__init__( A_ , A_ , tokenizer_file=A_ , unk_token=A_ , bos_token=A_ , eos_token=A_ , add_prefix_space=A_ , **A_ , ) __lowercase : Union[str, Any] = kwargs.pop('''add_bos_token''' , A_ ) __lowercase : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , A_ ) != add_prefix_space: __lowercase : Optional[Any] = getattr(A_ , pre_tok_state.pop('''type''' ) ) __lowercase : Any = add_prefix_space __lowercase : int = pre_tok_class(**A_ ) __lowercase : List[Any] = add_prefix_space def _lowerCamelCase ( self , *UpperCamelCase_ , **UpperCamelCase_ ) -> int: __lowercase : int = kwargs.get('''is_split_into_words''' , A_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*A_ , **A_ ) def _lowerCamelCase ( self , *UpperCamelCase_ , **UpperCamelCase_ ) -> int: __lowercase : Any = kwargs.get('''is_split_into_words''' , A_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*A_ , **A_ ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ) -> str: __lowercase : List[str] = self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ ) def _lowerCamelCase ( self , UpperCamelCase_ ) -> List[str]: __lowercase : Union[str, Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(A_ , add_special_tokens=A_ ) + [self.eos_token_id] ) if len(A_ ) > self.model_max_length: __lowercase : Any = input_ids[-self.model_max_length :] return input_ids
76
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels _A : Optional[int] = object() # For specifying empty leaf dict `{}` _A : Tuple = object() def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: SCREAMING_SNAKE_CASE__ = tuple((re.compile(x + '''$''' ) for x in qs) ) for i in range(len(lowerCAmelCase_ ) - len(lowerCAmelCase_ ) + 1 ): SCREAMING_SNAKE_CASE__ = [x.match(lowerCAmelCase_ ) for x, y in zip(lowerCAmelCase_ , ks[i:] )] if matches and all(lowerCAmelCase_ ): return True return False def __snake_case ( lowerCAmelCase_ ) -> int: def replace(lowerCAmelCase_ , lowerCAmelCase_ ): for rule, replacement in rules: if _match(lowerCAmelCase_ , lowerCAmelCase_ ): return replacement return val return replace def __snake_case ( ) -> Optional[int]: return [ # embeddings (("transformer", "wpe", "embedding"), P('''mp''' , lowerCAmelCase_ )), (("transformer", "wte", "embedding"), P('''mp''' , lowerCAmelCase_ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(lowerCAmelCase_ , '''mp''' )), (("attention", "out_proj", "kernel"), P('''mp''' , lowerCAmelCase_ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(lowerCAmelCase_ , '''mp''' )), (("mlp", "c_fc", "bias"), P('''mp''' )), (("mlp", "c_proj", "kernel"), P('''mp''' , lowerCAmelCase_ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def __snake_case ( lowerCAmelCase_ ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = _get_partition_rules() SCREAMING_SNAKE_CASE__ = _replacement_rules(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = {k: _unmatched for k in flatten_dict(lowerCAmelCase_ )} SCREAMING_SNAKE_CASE__ = {k: replace(lowerCAmelCase_ , lowerCAmelCase_ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(lowerCAmelCase_ ) )
100
0
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): _lowerCamelCase : str = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _lowerCamelCase : Any = 12_8022 _lowerCamelCase : Any = 12_8028 @require_sentencepiece class snake_case__ ( __snake_case , unittest.TestCase ): '''simple docstring''' __A = MaMaaaTokenizer __A = False __A = False __A = True def UpperCamelCase ( self : str ) -> Optional[Any]: super().setUp() UpperCAmelCase_ = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] UpperCAmelCase_ = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) UpperCAmelCase_ = Path(self.tmpdirname ) save_json(lowerCAmelCase_ , save_dir / VOCAB_FILES_NAMES['''vocab_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(lowerCAmelCase_ , save_dir / VOCAB_FILES_NAMES['''spm_file'''] ) UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self : Optional[Any] , **lowerCAmelCase_ : int ) -> List[Any]: return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def UpperCamelCase ( self : Any , lowerCAmelCase_ : List[str] ) -> Optional[Any]: return ( "This is a test", "This is a test", ) def UpperCamelCase ( self : List[Any] ) -> Dict: UpperCAmelCase_ = '''</s>''' UpperCAmelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_ ) , lowerCAmelCase_ ) def UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''</s>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''<s>''' ) self.assertEqual(len(lowerCAmelCase_ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip('''Skip this test while all models are still to be uploaded.''' ) def UpperCamelCase ( self : List[Any] ) -> Optional[int]: pass def UpperCamelCase ( self : int ) -> List[Any]: UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCAmelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [2, 3, 4, 5, 6] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(lowerCAmelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) UpperCAmelCase_ = tokenizer.convert_tokens_to_string(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , '''This is a test''' ) @slow def UpperCamelCase ( self : int ) -> List[Any]: # fmt: off UpperCAmelCase_ = {'''input_ids''': [[12_80_22, 11_01_08, 3_97, 11, 3_82_72, 22_47, 12_48_11, 2_85, 1_81_05, 15_86, 2_07, 7, 3_95_34, 44_28, 3_97, 10_19, 1_81_05, 15_86, 2_07, 7, 4_13_37, 1_67_86, 2_41, 7, 2_02_14, 17, 12_56_90, 1_03_98, 7, 4_43_78, 5_80_69, 6_83_42, 77_98, 73_43, 11, 2_99, 3_33_10, 4, 1_58, 3_73_50, 9_40_77, 45_69, 2_99, 3_33_10, 90, 4, 5_28_40, 2_90, 4, 3_12_70, 1_12, 2_99, 6_82, 4, 5_28_40, 3_99_53, 1_40_79, 1_93, 5_25_19, 9_08_94, 1_78_94, 12_06_97, 11, 4_04_45, 5_51, 17, 10_19, 5_25_19, 9_08_94, 1_77_56, 9_63, 11, 4_04_45, 4_80, 17, 97_92, 11_20, 51_73, 13_93, 62_40, 1_67_86, 2_41, 12_09_96, 28, 12_45, 13_93, 11_82_40, 1_11_23, 10_19, 9_36_12, 26_91, 1_06_18, 9_80_58, 12_04_09, 19_28, 2_79, 4, 4_06_83, 3_67, 1_78, 2_07, 10_19, 1_03, 10_31_21, 5_06, 6_52_96, 5, 2], [12_80_22, 2_12_17, 3_67, 1_17, 12_54_50, 1_28, 7_19, 7, 73_08, 40, 9_36_12, 1_26_69, 11_16, 1_67_04, 71, 1_77_85, 36_99, 1_55_92, 35, 1_44, 95_84, 2_41, 1_19_43, 7_13, 9_50, 7_99, 22_47, 8_84_27, 1_50, 1_49, 11_88_13, 12_07_06, 10_19, 10_69_06, 8_15_18, 28, 12_24, 2_27_99, 3_97, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [12_80_22, 16_58, 12_33_11, 51_55, 55_78, 47_22, 2_79, 1_49_47, 23_66, 11_20, 11_97, 14, 13_48, 92_32, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name='''facebook/m2m100_418M''' , revision='''c168bae485c864188cf9aa0e4108b0b6934dc91e''' , ) @require_torch @require_sentencepiece @require_tokenizers class snake_case__ ( unittest.TestCase ): '''simple docstring''' __A = '''facebook/m2m100_418M''' __A = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] __A = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off __A = [EN_CODE, 593, 1949, 11_5781, 4, 7_1586, 4234, 6_0633, 12_6233, 432, 12_3808, 1_5592, 1197, 11_7132, 12_0618, 5, 2] @classmethod def UpperCamelCase ( cls : List[Any] ) -> int: UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en''' , tgt_lang='''fr''' ) UpperCAmelCase_ = 1 return cls def UpperCamelCase ( self : Dict ) -> List[str]: self.assertEqual(self.tokenizer.get_lang_id('''ar''' ) , 12_80_06 ) self.assertEqual(self.tokenizer.get_lang_id('''en''' ) , 12_80_22 ) self.assertEqual(self.tokenizer.get_lang_id('''ro''' ) , 12_80_76 ) self.assertEqual(self.tokenizer.get_lang_id('''mr''' ) , 12_80_63 ) def UpperCamelCase ( self : Dict ) -> str: UpperCAmelCase_ = self.tokenizer.get_vocab() self.assertEqual(len(lowerCAmelCase_ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab['''<unk>'''] , 3 ) self.assertIn(self.tokenizer.get_lang_token('''en''' ) , lowerCAmelCase_ ) def UpperCamelCase ( self : Any ) -> int: UpperCAmelCase_ = '''en''' UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ ) def UpperCamelCase ( self : Any ) -> Optional[Any]: self.assertIn(lowerCAmelCase_ , self.tokenizer.all_special_ids ) # fmt: off UpperCAmelCase_ = [FR_CODE, 53_64, 82, 86_42, 4, 2_94, 47, 8, 1_40_28, 1_36, 32_86, 97_06, 6, 9_07_97, 6, 14_40_12, 1_62, 8_81_28, 3_00_61, 5, 2] # fmt: on UpperCAmelCase_ = self.tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase_ ) def UpperCamelCase ( self : str ) -> Union[str, Any]: UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(lowerCAmelCase_ ) UpperCAmelCase_ = MaMaaaTokenizer.from_pretrained(lowerCAmelCase_ ) self.assertDictEqual(new_tok.lang_token_to_id , lowerCAmelCase_ ) @require_torch def UpperCamelCase ( self : Dict ) -> Dict: UpperCAmelCase_ = '''en''' UpperCAmelCase_ = '''fr''' UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , return_tensors='''pt''' ) UpperCAmelCase_ = shift_tokens_right( batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: UpperCAmelCase_ = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def UpperCamelCase ( self : int ) -> str: UpperCAmelCase_ = '''mr''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) UpperCAmelCase_ = '''zh''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def UpperCamelCase ( self : Dict ) -> Any: UpperCAmelCase_ = '''mr''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) UpperCAmelCase_ = '''zh''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def UpperCamelCase ( self : List[Any] ) -> str: UpperCAmelCase_ = self.tokenizer._build_translation_inputs('''A test''' , return_tensors='''pt''' , src_lang='''en''' , tgt_lang='''ar''' ) self.assertEqual( nested_simplify(lowerCAmelCase_ ) , { # en_XX, A, test, EOS '''input_ids''': [[12_80_22, 58, 41_83, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 12_80_06, } , )
407
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Optional[int] = logging.get_logger(__name__) _lowerCamelCase : Optional[Any] = { 'edbeeching/decision-transformer-gym-hopper-medium': ( 'https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class snake_case__ ( __snake_case ): '''simple docstring''' __A = '''decision_transformer''' __A = ['''past_key_values'''] __A = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Optional[Any] , lowerCAmelCase_ : List[str]=17 , lowerCAmelCase_ : List[str]=4 , lowerCAmelCase_ : List[str]=1_28 , lowerCAmelCase_ : str=40_96 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : Optional[Any]=10_24 , lowerCAmelCase_ : List[Any]=3 , lowerCAmelCase_ : Any=1 , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Union[str, Any]="relu" , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : Optional[int]=1e-5 , lowerCAmelCase_ : Tuple=0.02 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Optional[Any]=5_02_56 , lowerCAmelCase_ : Any=5_02_56 , lowerCAmelCase_ : str=False , lowerCAmelCase_ : List[str]=False , **lowerCAmelCase_ : List[Any] , ) -> Any: UpperCAmelCase_ = state_dim UpperCAmelCase_ = act_dim UpperCAmelCase_ = hidden_size UpperCAmelCase_ = max_ep_len UpperCAmelCase_ = action_tanh UpperCAmelCase_ = vocab_size UpperCAmelCase_ = n_positions UpperCAmelCase_ = n_layer UpperCAmelCase_ = n_head UpperCAmelCase_ = n_inner UpperCAmelCase_ = activation_function UpperCAmelCase_ = resid_pdrop UpperCAmelCase_ = embd_pdrop UpperCAmelCase_ = attn_pdrop UpperCAmelCase_ = layer_norm_epsilon UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scale_attn_weights UpperCAmelCase_ = use_cache UpperCAmelCase_ = scale_attn_by_inverse_layer_idx UpperCAmelCase_ = reorder_and_upcast_attn UpperCAmelCase_ = bos_token_id UpperCAmelCase_ = eos_token_id super().__init__(bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ )
407
1
import numpy as np def __lowerCAmelCase ( __snake_case , __snake_case , __snake_case = 1E-12 , __snake_case = 100 , ): assert np.shape(__snake_case )[0] == np.shape(__snake_case )[1] # Ensure proper dimensionality. assert np.shape(__snake_case )[0] == np.shape(__snake_case )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(__snake_case ) == np.iscomplexobj(__snake_case ) __lowerCAmelCase = np.iscomplexobj(__snake_case ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(__snake_case , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __lowerCAmelCase = False __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 1E12 while not convergence: # Multiple matrix by the vector. __lowerCAmelCase = np.dot(__snake_case , __snake_case ) # Normalize the resulting output vector. __lowerCAmelCase = w / np.linalg.norm(__snake_case ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __lowerCAmelCase = vector.conj().T if is_complex else vector.T __lowerCAmelCase = np.dot(__snake_case , np.dot(__snake_case , __snake_case ) ) # Check convergence. __lowerCAmelCase = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __lowerCAmelCase = True __lowerCAmelCase = lambda_ if is_complex: __lowerCAmelCase = np.real(lambda_ ) return lambda_, vector def __lowerCAmelCase ( ): __lowerCAmelCase = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) __lowerCAmelCase = np.array([41, 4, 20] ) __lowerCAmelCase = real_input_matrix.astype(np.complexaaa ) __lowerCAmelCase = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __lowerCAmelCase = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": __lowerCAmelCase = real_input_matrix __lowerCAmelCase = real_vector elif problem_type == "complex": __lowerCAmelCase = complex_input_matrix __lowerCAmelCase = complex_vector # Our implementation. __lowerCAmelCase , __lowerCAmelCase = power_iteration(__snake_case , __snake_case ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __lowerCAmelCase , __lowerCAmelCase = np.linalg.eigh(__snake_case ) # Last eigenvalue is the maximum one. __lowerCAmelCase = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __lowerCAmelCase = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(__snake_case ) - np.abs(__snake_case ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
367
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class _UpperCamelCase (a_ ): snake_case_ = (PNDMScheduler,) snake_case_ = (("""num_inference_steps""", 50),) def __UpperCAmelCase ( self , **__UpperCamelCase )-> int: __lowerCAmelCase = { "num_train_timesteps": 1_0_0_0, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", } config.update(**__UpperCamelCase ) return config def __UpperCAmelCase ( self , __UpperCamelCase=0 , **__UpperCamelCase )-> Optional[int]: __lowerCAmelCase = dict(self.forward_default_kwargs ) __lowerCAmelCase = kwargs.pop("num_inference_steps" , __UpperCamelCase ) __lowerCAmelCase = self.dummy_sample __lowerCAmelCase = 0.1 * sample __lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: __lowerCAmelCase = self.get_scheduler_config(**__UpperCamelCase ) __lowerCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals __lowerCAmelCase = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCamelCase ) __lowerCAmelCase = scheduler_class.from_pretrained(__UpperCamelCase ) new_scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals __lowerCAmelCase = dummy_past_residuals[:] __lowerCAmelCase = scheduler.step_prk(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample __lowerCAmelCase = new_scheduler.step_prk(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" __lowerCAmelCase = scheduler.step_plms(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample __lowerCAmelCase = new_scheduler.step_plms(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __UpperCAmelCase ( self )-> Dict: pass def __UpperCAmelCase ( self , __UpperCamelCase=0 , **__UpperCamelCase )-> Dict: __lowerCAmelCase = dict(self.forward_default_kwargs ) __lowerCAmelCase = kwargs.pop("num_inference_steps" , __UpperCamelCase ) __lowerCAmelCase = self.dummy_sample __lowerCAmelCase = 0.1 * sample __lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals (must be after setting timesteps) __lowerCAmelCase = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCamelCase ) __lowerCAmelCase = scheduler_class.from_pretrained(__UpperCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residual (must be after setting timesteps) __lowerCAmelCase = dummy_past_residuals[:] __lowerCAmelCase = scheduler.step_prk(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample __lowerCAmelCase = new_scheduler.step_prk(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" __lowerCAmelCase = scheduler.step_plms(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample __lowerCAmelCase = new_scheduler.step_plms(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __UpperCAmelCase ( self , **__UpperCamelCase )-> Tuple: __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config(**__UpperCamelCase ) __lowerCAmelCase = scheduler_class(**__UpperCamelCase ) __lowerCAmelCase = 1_0 __lowerCAmelCase = self.dummy_model() __lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(__UpperCamelCase ) for i, t in enumerate(scheduler.prk_timesteps ): __lowerCAmelCase = model(__UpperCamelCase , __UpperCamelCase ) __lowerCAmelCase = scheduler.step_prk(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): __lowerCAmelCase = model(__UpperCamelCase , __UpperCamelCase ) __lowerCAmelCase = scheduler.step_plms(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample return sample def __UpperCAmelCase ( self )-> int: __lowerCAmelCase = dict(self.forward_default_kwargs ) __lowerCAmelCase = kwargs.pop("num_inference_steps" , __UpperCamelCase ) for scheduler_class in self.scheduler_classes: __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**__UpperCamelCase ) __lowerCAmelCase = self.dummy_sample __lowerCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(__UpperCamelCase , "set_timesteps" ): scheduler.set_timesteps(__UpperCamelCase ) elif num_inference_steps is not None and not hasattr(__UpperCamelCase , "set_timesteps" ): __lowerCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] __lowerCAmelCase = dummy_past_residuals[:] __lowerCAmelCase = scheduler.step_prk(__UpperCamelCase , 0 , __UpperCamelCase , **__UpperCamelCase ).prev_sample __lowerCAmelCase = scheduler.step_prk(__UpperCamelCase , 1 , __UpperCamelCase , **__UpperCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __lowerCAmelCase = scheduler.step_plms(__UpperCamelCase , 0 , __UpperCamelCase , **__UpperCamelCase ).prev_sample __lowerCAmelCase = scheduler.step_plms(__UpperCamelCase , 1 , __UpperCamelCase , **__UpperCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __UpperCAmelCase ( self )-> List[str]: for timesteps in [1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__UpperCamelCase ) def __UpperCAmelCase ( self )-> Any: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__UpperCamelCase ) __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config(steps_offset=1 ) __lowerCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(1_0 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_0_1, 8_5_1, 8_5_1, 8_0_1, 8_0_1, 7_5_1, 7_5_1, 7_0_1, 7_0_1, 6_5_1, 6_5_1, 6_0_1, 6_0_1, 5_0_1, 4_0_1, 3_0_1, 2_0_1, 1_0_1, 1] ) , ) def __UpperCAmelCase ( self )-> int: for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1] , [0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=__UpperCamelCase , beta_end=__UpperCamelCase ) def __UpperCAmelCase ( self )-> Optional[int]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__UpperCamelCase ) def __UpperCAmelCase ( self )-> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCamelCase ) def __UpperCAmelCase ( self )-> List[Any]: for t in [1, 5, 1_0]: self.check_over_forward(time_step=__UpperCamelCase ) def __UpperCAmelCase ( self )-> Optional[Any]: for t, num_inference_steps in zip([1, 5, 1_0] , [1_0, 5_0, 1_0_0] ): self.check_over_forward(num_inference_steps=__UpperCamelCase ) def __UpperCAmelCase ( self )-> int: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 __lowerCAmelCase = 2_7 for scheduler_class in self.scheduler_classes: __lowerCAmelCase = self.dummy_sample __lowerCAmelCase = 0.1 * sample __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(__UpperCamelCase ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): __lowerCAmelCase = scheduler.step_prk(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample def __UpperCAmelCase ( self )-> Dict: with self.assertRaises(__UpperCamelCase ): __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def __UpperCAmelCase ( self )-> Any: __lowerCAmelCase = self.full_loop() __lowerCAmelCase = torch.sum(torch.abs(__UpperCamelCase ) ) __lowerCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 1_9_8.1_3_1_8 ) < 1e-2 assert abs(result_mean.item() - 0.2_5_8_0 ) < 1e-3 def __UpperCAmelCase ( self )-> str: __lowerCAmelCase = self.full_loop(prediction_type="v_prediction" ) __lowerCAmelCase = torch.sum(torch.abs(__UpperCamelCase ) ) __lowerCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 6_7.3_9_8_6 ) < 1e-2 assert abs(result_mean.item() - 0.0_8_7_8 ) < 1e-3 def __UpperCAmelCase ( self )-> Any: # We specify different beta, so that the first alpha is 0.99 __lowerCAmelCase = self.full_loop(set_alpha_to_one=__UpperCamelCase , beta_start=0.0_1 ) __lowerCAmelCase = torch.sum(torch.abs(__UpperCamelCase ) ) __lowerCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 2_3_0.0_3_9_9 ) < 1e-2 assert abs(result_mean.item() - 0.2_9_9_5 ) < 1e-3 def __UpperCAmelCase ( self )-> Optional[Any]: # We specify different beta, so that the first alpha is 0.99 __lowerCAmelCase = self.full_loop(set_alpha_to_one=__UpperCamelCase , beta_start=0.0_1 ) __lowerCAmelCase = torch.sum(torch.abs(__UpperCamelCase ) ) __lowerCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 1_8_6.9_4_8_2 ) < 1e-2 assert abs(result_mean.item() - 0.2_4_3_4 ) < 1e-3
367
1
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): UpperCamelCase__ = ConsistencyModelPipeline UpperCamelCase__ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS UpperCamelCase__ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt UpperCamelCase__ = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) @property def snake_case_ ( self): A__ = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet''' , ) return unet @property def snake_case_ ( self): A__ = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet_class_cond''' , ) return unet def snake_case_ ( self , a__=False): if class_cond: A__ = self.dummy_cond_unet else: A__ = self.dummy_uncond_unet # Default to CM multistep sampler A__ = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) A__ = { "unet": unet, "scheduler": scheduler, } return components def snake_case_ ( self , a__ , a__=0): if str(__a).startswith('''mps'''): A__ = torch.manual_seed(__a) else: A__ = torch.Generator(device=__a).manual_seed(__a) A__ = { "batch_size": 1, "num_inference_steps": None, "timesteps": [2_2, 0], "generator": generator, "output_type": "np", } return inputs def snake_case_ ( self): A__ = "cpu" # ensure determinism for the device-dependent torch.Generator A__ = self.get_dummy_components() A__ = ConsistencyModelPipeline(**__a) A__ = pipe.to(__a) pipe.set_progress_bar_config(disable=__a) A__ = self.get_dummy_inputs(__a) A__ = pipe(**__a).images assert image.shape == (1, 3_2, 3_2, 3) A__ = image[0, -3:, -3:, -1] A__ = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def snake_case_ ( self): A__ = "cpu" # ensure determinism for the device-dependent torch.Generator A__ = self.get_dummy_components(class_cond=__a) A__ = ConsistencyModelPipeline(**__a) A__ = pipe.to(__a) pipe.set_progress_bar_config(disable=__a) A__ = self.get_dummy_inputs(__a) A__ = 0 A__ = pipe(**__a).images assert image.shape == (1, 3_2, 3_2, 3) A__ = image[0, -3:, -3:, -1] A__ = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def snake_case_ ( self): A__ = "cpu" # ensure determinism for the device-dependent torch.Generator A__ = self.get_dummy_components() A__ = ConsistencyModelPipeline(**__a) A__ = pipe.to(__a) pipe.set_progress_bar_config(disable=__a) A__ = self.get_dummy_inputs(__a) A__ = 1 A__ = None A__ = pipe(**__a).images assert image.shape == (1, 3_2, 3_2, 3) A__ = image[0, -3:, -3:, -1] A__ = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def snake_case_ ( self): A__ = "cpu" # ensure determinism for the device-dependent torch.Generator A__ = self.get_dummy_components(class_cond=__a) A__ = ConsistencyModelPipeline(**__a) A__ = pipe.to(__a) pipe.set_progress_bar_config(disable=__a) A__ = self.get_dummy_inputs(__a) A__ = 1 A__ = None A__ = 0 A__ = pipe(**__a).images assert image.shape == (1, 3_2, 3_2, 3) A__ = image[0, -3:, -3:, -1] A__ = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def snake_case_ ( self): super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self , a__=0 , a__=False , a__="cpu" , a__=torch.floataa , a__=(1, 3, 6_4, 6_4)): A__ = torch.manual_seed(__a) A__ = { "num_inference_steps": None, "timesteps": [2_2, 0], "class_labels": 0, "generator": generator, "output_type": "np", } if get_fixed_latents: A__ = self.get_fixed_latents(seed=__a , device=__a , dtype=__a , shape=__a) A__ = latents return inputs def snake_case_ ( self , a__=0 , a__="cpu" , a__=torch.floataa , a__=(1, 3, 6_4, 6_4)): if type(__a) == str: A__ = torch.device(__a) A__ = torch.Generator(device=__a).manual_seed(__a) A__ = randn_tensor(__a , generator=__a , device=__a , dtype=__a) return latents def snake_case_ ( self): A__ = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''') A__ = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) A__ = ConsistencyModelPipeline(unet=__a , scheduler=__a) pipe.to(torch_device=__a) pipe.set_progress_bar_config(disable=__a) A__ = self.get_inputs() A__ = pipe(**__a).images assert image.shape == (1, 6_4, 6_4, 3) A__ = image[0, -3:, -3:, -1] A__ = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def snake_case_ ( self): A__ = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''') A__ = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) A__ = ConsistencyModelPipeline(unet=__a , scheduler=__a) pipe.to(torch_device=__a) pipe.set_progress_bar_config(disable=__a) A__ = self.get_inputs() A__ = 1 A__ = None A__ = pipe(**__a).images assert image.shape == (1, 6_4, 6_4, 3) A__ = image[0, -3:, -3:, -1] A__ = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 @require_torch_a def snake_case_ ( self): A__ = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''') A__ = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) A__ = ConsistencyModelPipeline(unet=__a , scheduler=__a) pipe.to(torch_device=__a , torch_dtype=torch.floataa) pipe.set_progress_bar_config(disable=__a) A__ = self.get_inputs(get_fixed_latents=__a , device=__a) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__a , enable_math=__a , enable_mem_efficient=__a): A__ = pipe(**__a).images assert image.shape == (1, 6_4, 6_4, 3) A__ = image[0, -3:, -3:, -1] A__ = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 @require_torch_a def snake_case_ ( self): A__ = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''') A__ = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) A__ = ConsistencyModelPipeline(unet=__a , scheduler=__a) pipe.to(torch_device=__a , torch_dtype=torch.floataa) pipe.set_progress_bar_config(disable=__a) A__ = self.get_inputs(get_fixed_latents=__a , device=__a) A__ = 1 A__ = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__a , enable_math=__a , enable_mem_efficient=__a): A__ = pipe(**__a).images assert image.shape == (1, 6_4, 6_4, 3) A__ = image[0, -3:, -3:, -1] A__ = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
707
import numpy as np def lowerCAmelCase__ ( UpperCamelCase_ : np.array )-> np.array: return 1 / (1 + np.exp(-vector )) def lowerCAmelCase__ ( UpperCamelCase_ : np.array )-> np.array: return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
526
0
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : List[str] = filter(lambda A_ : p.requires_grad , model.parameters() ) lowerCAmelCase__ : Optional[int] = sum([np.prod(p.size() ) for p in model_parameters] ) return params __UpperCamelCase : int = logging.getLogger(__name__) def __SCREAMING_SNAKE_CASE ( A_ , A_ ): if metric == "rouge2": lowerCAmelCase__ : Optional[int] = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": lowerCAmelCase__ : Union[str, Any] = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": lowerCAmelCase__ : Dict = '''{val_avg_em:.4f}-{step_count}''' elif metric == "loss": lowerCAmelCase__ : Dict = '''{val_avg_loss:.4f}-{step_count}''' else: raise NotImplementedError( f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ''' function.''' ) lowerCAmelCase__ : List[str] = ModelCheckpoint( dirpath=__lowerCamelCase , filename=__lowerCamelCase , monitor=f'val_{metric}' , mode='''max''' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def __SCREAMING_SNAKE_CASE ( A_ , A_ ): return EarlyStopping( monitor=f'val_{metric}' , mode='''min''' if '''loss''' in metric else '''max''' , patience=__lowerCamelCase , verbose=__lowerCamelCase , ) class SCREAMING_SNAKE_CASE ( pl.Callback ): """simple docstring""" def __lowerCAmelCase ( self : int ,lowercase_ : Optional[Any] ,lowercase_ : List[str] ): lowerCAmelCase__ : List[Any] = {F'lr_group_{i}': param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(lowercase_ ) @rank_zero_only def __lowerCAmelCase ( self : Optional[Any] ,lowercase_ : pl.Trainer ,lowercase_ : pl.LightningModule ,lowercase_ : str ,lowercase_ : Tuple=True ): logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' ) lowerCAmelCase__ : int = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results lowerCAmelCase__ : int = Path(pl_module.hparams.output_dir ) if type_path == "test": lowerCAmelCase__ : Optional[Any] = od / '''test_results.txt''' lowerCAmelCase__ : List[str] = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. lowerCAmelCase__ : int = od / F'{type_path}_results/{trainer.global_step:05d}.txt' lowerCAmelCase__ : List[Any] = od / F'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=lowercase_ ) generations_file.parent.mkdir(exist_ok=lowercase_ ) with open(lowercase_ ,'''a+''' ) as writer: for key in sorted(lowercase_ ): if key in ["log", "progress_bar", "preds"]: continue lowerCAmelCase__ : Any = metrics[key] if isinstance(lowercase_ ,torch.Tensor ): lowerCAmelCase__ : Optional[int] = val.item() lowerCAmelCase__ : Union[str, Any] = F'{key}: {val:.6f}\n' writer.write(lowercase_ ) if not save_generations: return if "preds" in metrics: lowerCAmelCase__ : List[str] = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(lowercase_ ) @rank_zero_only def __lowerCAmelCase ( self : int ,lowercase_ : int ,lowercase_ : Union[str, Any] ): try: lowerCAmelCase__ : str = pl_module.model.model.num_parameters() except AttributeError: lowerCAmelCase__ : Any = pl_module.model.num_parameters() lowerCAmelCase__ : List[str] = count_trainable_parameters(lowercase_ ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1E6, '''grad_mp''': n_trainable_pars / 1E6} ) @rank_zero_only def __lowerCAmelCase ( self : Dict ,lowercase_ : pl.Trainer ,lowercase_ : pl.LightningModule ): save_json(pl_module.metrics ,pl_module.metrics_save_path ) return self._write_logs(lowercase_ ,lowercase_ ,'''test''' ) @rank_zero_only def __lowerCAmelCase ( self : Optional[Any] ,lowercase_ : pl.Trainer ,lowercase_ : Dict ): save_json(pl_module.metrics ,pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
450
'''simple docstring''' from collections.abc import Iterable from typing import Generic, TypeVar lowerCAmelCase_ : Optional[int] = TypeVar("_T") class UpperCamelCase__ ( Generic[_T] ): def __init__( self : Dict , lowerCamelCase : Iterable[_T] | None = None ): '''simple docstring''' a__ = list(iterable or [] ) a__ = [] def __len__( self : Optional[Any] ): '''simple docstring''' return len(self._stacka ) + len(self._stacka ) def __repr__( self : List[Any] ): '''simple docstring''' return F'''Queue({tuple(self._stacka[::-1] + self._stacka )})''' def __a ( self : Union[str, Any] , lowerCamelCase : _T ): '''simple docstring''' self._stacka.append(lowerCamelCase ) def __a ( self : Dict ): '''simple docstring''' a__ = self._stacka.pop a__ = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("Queue is empty" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
489
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''', '''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''', } class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = '''roberta''' def __init__( self , snake_case_=50_265 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3_072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=2 , snake_case_=0.02 , snake_case_=1e-1_2 , snake_case_=1 , snake_case_=0 , snake_case_=2 , snake_case_="absolute" , snake_case_=True , snake_case_=None , **snake_case_ , ) -> str: super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = use_cache __lowerCAmelCase = classifier_dropout class lowerCAmelCase_ ( A__ ): '''simple docstring''' @property def A__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __lowerCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
573
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def lowercase (_lowerCAmelCase ): __lowerCAmelCase = SwinConfig() __lowerCAmelCase = swin_name.split("""_""" ) __lowerCAmelCase = name_split[1] __lowerCAmelCase = int(name_split[4] ) __lowerCAmelCase = int(name_split[3][-1] ) if model_size == "tiny": __lowerCAmelCase = 96 __lowerCAmelCase = (2, 2, 6, 2) __lowerCAmelCase = (3, 6, 12, 24) elif model_size == "small": __lowerCAmelCase = 96 __lowerCAmelCase = (2, 2, 18, 2) __lowerCAmelCase = (3, 6, 12, 24) elif model_size == "base": __lowerCAmelCase = 128 __lowerCAmelCase = (2, 2, 18, 2) __lowerCAmelCase = (4, 8, 16, 32) else: __lowerCAmelCase = 192 __lowerCAmelCase = (2, 2, 18, 2) __lowerCAmelCase = (6, 12, 24, 48) if "in22k" in swin_name: __lowerCAmelCase = 2_1841 else: __lowerCAmelCase = 1000 __lowerCAmelCase = """huggingface/label-files""" __lowerCAmelCase = """imagenet-1k-id2label.json""" __lowerCAmelCase = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) __lowerCAmelCase = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} __lowerCAmelCase = img_size __lowerCAmelCase = num_classes __lowerCAmelCase = embed_dim __lowerCAmelCase = depths __lowerCAmelCase = num_heads __lowerCAmelCase = window_size return config def lowercase (_lowerCAmelCase ): if "patch_embed.proj" in name: __lowerCAmelCase = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __lowerCAmelCase = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: __lowerCAmelCase = """encoder.""" + name if "attn.proj" in name: __lowerCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: __lowerCAmelCase = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __lowerCAmelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __lowerCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __lowerCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "norm.weight": __lowerCAmelCase = """layernorm.weight""" if name == "norm.bias": __lowerCAmelCase = """layernorm.bias""" if "head" in name: __lowerCAmelCase = name.replace("""head""" , """classifier""" ) else: __lowerCAmelCase = """swin.""" + name return name def lowercase (_lowerCAmelCase , _lowerCAmelCase ): for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(_lowerCAmelCase ) if "mask" in key: continue elif "qkv" in key: __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase = int(key_split[1] ) __lowerCAmelCase = int(key_split[3] ) __lowerCAmelCase = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[ dim : dim * 2, : ] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[ :dim ] __lowerCAmelCase = val[ dim : dim * 2 ] __lowerCAmelCase = val[ -dim: ] else: __lowerCAmelCase = val return orig_state_dict def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() __lowerCAmelCase = get_swin_config(_lowerCAmelCase ) __lowerCAmelCase = SwinForImageClassification(_lowerCAmelCase ) model.eval() __lowerCAmelCase = convert_state_dict(timm_model.state_dict() , _lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) __lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCAmelCase = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swin_name.replace("""_""" , """-""" ) ) ) __lowerCAmelCase = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) __lowerCAmelCase = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ) __lowerCAmelCase = timm_model(inputs["""pixel_values"""] ) __lowerCAmelCase = model(**_lowerCAmelCase ).logits assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) print(f"""Saving model {swin_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCAmelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swin_name''', default='''swin_tiny_patch4_window7_224''', type=str, help='''Name of the Swin timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
573
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCAmelCase__ ( metaclass=UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["torch", "transformers", "onnx"] def __init__( self : Tuple , *a__ : Dict , **a__ : Optional[Any] ): requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __snake_case ( cls : List[str] , *a__ : Union[str, Any] , **a__ : Optional[int] ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __snake_case ( cls : Optional[Any] , *a__ : List[Any] , **a__ : Union[str, Any] ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCAmelCase__ ( metaclass=UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["torch", "transformers", "onnx"] def __init__( self : Union[str, Any] , *a__ : int , **a__ : Optional[int] ): requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __snake_case ( cls : Tuple , *a__ : Union[str, Any] , **a__ : Any ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __snake_case ( cls : List[Any] , *a__ : List[str] , **a__ : List[Any] ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCAmelCase__ ( metaclass=UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["torch", "transformers", "onnx"] def __init__( self : Dict , *a__ : int , **a__ : str ): requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __snake_case ( cls : Tuple , *a__ : str , **a__ : Optional[int] ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __snake_case ( cls : Optional[Any] , *a__ : int , **a__ : str ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCAmelCase__ ( metaclass=UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["torch", "transformers", "onnx"] def __init__( self : Optional[Any] , *a__ : Union[str, Any] , **a__ : List[str] ): requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __snake_case ( cls : Optional[int] , *a__ : Union[str, Any] , **a__ : Any ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __snake_case ( cls : Optional[int] , *a__ : str , **a__ : int ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCAmelCase__ ( metaclass=UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["torch", "transformers", "onnx"] def __init__( self : Optional[int] , *a__ : Dict , **a__ : List[Any] ): requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __snake_case ( cls : int , *a__ : List[str] , **a__ : str ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __snake_case ( cls : int , *a__ : int , **a__ : Any ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCAmelCase__ ( metaclass=UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["torch", "transformers", "onnx"] def __init__( self : Any , *a__ : Tuple , **a__ : int ): requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __snake_case ( cls : int , *a__ : List[Any] , **a__ : str ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __snake_case ( cls : Dict , *a__ : Tuple , **a__ : Tuple ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
51
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { "EleutherAI/gpt-neo-1.3B": "https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __UpperCAmelCase (__A ): '''simple docstring''' _UpperCamelCase : Tuple = 'gpt_neo' _UpperCamelCase : Optional[Any] = ['past_key_values'] _UpperCamelCase : int = {'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self , snake_case_=50_257 , snake_case_=2_048 , snake_case_=2_048 , snake_case_=24 , snake_case_=[[["global", "local"], 12]] , snake_case_=16 , snake_case_=None , snake_case_=256 , snake_case_="gelu_new" , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=1E-5 , snake_case_=0.02 , snake_case_=True , snake_case_=50_256 , snake_case_=50_256 , **snake_case_ , ): '''simple docstring''' A__ : int = vocab_size A__ : Optional[Any] = max_position_embeddings A__ : int = hidden_size A__ : List[Any] = num_layers A__ : Any = num_heads A__ : List[str] = intermediate_size A__ : Dict = window_size A__ : Optional[int] = activation_function A__ : Optional[int] = resid_dropout A__ : List[str] = embed_dropout A__ : str = attention_dropout A__ : List[str] = classifier_dropout A__ : str = layer_norm_epsilon A__ : str = initializer_range A__ : Any = use_cache A__ : List[str] = bos_token_id A__ : Any = eos_token_id A__ : Optional[Any] = attention_types A__ : List[Any] = self.expand_attention_types_params(snake_case_ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.attention_layers)` == `config.num_layers` """ F'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' F'''`config.num_layers = {self.num_layers}`. ''' """`config.attention_layers` is prepared using `config.attention_types`. """ """Please verify the value of `config.attention_types` argument.""" ) super().__init__(bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) @staticmethod def lowerCamelCase ( snake_case_ ): '''simple docstring''' A__ : Optional[Any] = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def _A( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): import torch A__ : Union[str, Any] = input.size() A__ : str = len(lowerCAmelCase ) A__ : Union[str, Any] = shape[dimension] A__ : Dict = torch.arange(0 , lowerCAmelCase , lowerCAmelCase ) A__ : Dict = torch.div(sizedim - size , lowerCAmelCase , rounding_mode="""floor""" ) + 1 A__ : str = torch.arange(lowerCAmelCase ) + low_indices[:min_length][:, None] A__ : str = [slice(lowerCAmelCase )] * rank A__ : Optional[Any] = indices A__ : Tuple = input[s] A__ : List[str] = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(lowerCAmelCase ) def _A( lowerCAmelCase , lowerCAmelCase ): import torch A__ : Optional[Any] = torch.arange(1 , lowerCAmelCase ) A__ : int = torch.remainder(lowerCAmelCase , lowerCAmelCase ) A__ : str = remainders == 0 A__ : Tuple = candidates[divisor_indices] A__ : Any = torch.max(lowerCAmelCase ) return largest_divisor, torch.div(lowerCAmelCase , lowerCAmelCase , rounding_mode="""floor""" ) class __UpperCAmelCase (__A ): '''simple docstring''' @property def lowerCamelCase ( self ): '''simple docstring''' A__ : Any = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(snake_case_ , direction="""inputs""" ) A__ : str = {0: """batch""", 1: """past_sequence + sequence"""} else: A__ : Optional[Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowerCamelCase ( self ): '''simple docstring''' return self._config.num_heads def lowerCamelCase ( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , ): '''simple docstring''' A__ : Optional[int] = super(snake_case_ , self ).generate_dummy_inputs( snake_case_ , batch_size=snake_case_ , seq_length=snake_case_ , is_pair=snake_case_ , framework=snake_case_ ) # We need to order the input in the way they appears in the forward() A__ : List[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch A__ , A__ : Dict = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values A__ : Any = seqlen + 2 A__ : Any = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) A__ : List[Any] = [ (torch.zeros(snake_case_ ), torch.zeros(snake_case_ )) for _ in range(self.num_layers ) ] A__ : Tuple = common_inputs["""attention_mask"""] if self.use_past: A__ : List[Any] = ordered_inputs["""attention_mask"""].dtype A__ : Optional[Any] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(snake_case_ , snake_case_ , dtype=snake_case_ )] , dim=1 ) return ordered_inputs @property def lowerCamelCase ( self ): '''simple docstring''' return 13
363
0
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class lowercase__ ( ctypes.Structure ): A__ : Optional[Any] =[("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def _lowercase ( ) -> str: '''simple docstring''' if os.name == "nt": SCREAMING_SNAKE_CASE__ = CursorInfo() SCREAMING_SNAKE_CASE__ = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE__ = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) elif os.name == "posix": sys.stdout.write('\033[?25l' ) sys.stdout.flush() def _lowercase ( ) -> List[Any]: '''simple docstring''' if os.name == "nt": SCREAMING_SNAKE_CASE__ = CursorInfo() SCREAMING_SNAKE_CASE__ = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE__ = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) elif os.name == "posix": sys.stdout.write('\033[?25h' ) sys.stdout.flush() @contextmanager def _lowercase ( ) -> List[str]: '''simple docstring''' try: hide_cursor() yield finally: show_cursor()
702
from collections import defaultdict class lowercase__ : def __init__( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE__ = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 SCREAMING_SNAKE_CASE__ = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(UpperCAmelCase_ ) ) ] SCREAMING_SNAKE_CASE__ = defaultdict(UpperCAmelCase_ ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 SCREAMING_SNAKE_CASE__ = (1 << len(UpperCAmelCase_ )) - 1 def A_ ( self : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str ): # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement SCREAMING_SNAKE_CASE__ = self.count_ways_until(UpperCAmelCase_ , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. SCREAMING_SNAKE_CASE__ = total_ways_util return self.dp[mask][task_no] def A_ ( self : Optional[Any] , UpperCAmelCase_ : List[str] ): # Store the list of persons for each task for i in range(len(UpperCAmelCase_ ) ): for j in task_performed[i]: self.task[j].append(UpperCAmelCase_ ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": __snake_case = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. __snake_case = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
400
0
'''simple docstring''' from sklearn.metrics import fa_score import datasets A__ : Any = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' A__ : List[Any] = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' A__ : Tuple = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case__ ( datasets.Metric ): def A_ ( self : Dict ) -> Optional[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) , reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] , ) def A_ ( self : List[Any] , __a : int , __a : Any , __a : Tuple=None , __a : Dict=1 , __a : Any="binary" , __a : Tuple=None ) -> List[Any]: '''simple docstring''' __snake_case : str = fa_score( __a , __a , labels=__a , pos_label=__a , average=__a , sample_weight=__a ) return {"f1": float(__a ) if score.size == 1 else score}
286
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class snake_case__ ( SCREAMING_SNAKE_CASE_ ): @staticmethod @abstractmethod def A_ ( __a : ArgumentParser ) -> List[str]: '''simple docstring''' raise NotImplementedError() @abstractmethod def A_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' raise NotImplementedError()
286
1
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version lowerCAmelCase_ = logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') lowerCAmelCase_ = { 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization lowerCAmelCase_ = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } lowerCAmelCase_ = sorted(arg_to_scheduler.keys()) lowerCAmelCase_ = '{' + ', '.join(arg_to_scheduler_choices) + '}' class _A ( pl.LightningModule ): def __init__( self : Tuple , _A : argparse.Namespace , _A : int=None , _A : Any="base" , _A : Optional[Any]=None , _A : int=None , _A : List[str]=None , **_A : Tuple , ) -> Dict: """simple docstring""" super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(_A ) lowercase : Union[str, Any] = 0 lowercase : Any = Path(self.hparams.output_dir ) lowercase : Optional[Any] = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: lowercase : Tuple = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=_A , **_A , ) else: lowercase : PretrainedConfig = config lowercase : List[str] = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(self.hparams , _A , _A ): assert hasattr(self.config , _A ), f"""model config doesn't have a `{p}` attribute""" setattr(self.config , _A , getattr(self.hparams , _A ) ) if tokenizer is None: lowercase : int = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=_A , ) else: lowercase : PreTrainedTokenizer = tokenizer lowercase : int = MODEL_MODES[mode] if model is None: lowercase : Optional[int] = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=_A , ) else: lowercase : Union[str, Any] = model def __a ( self : Any , *_A : Tuple , **_A : Tuple ) -> Any: """simple docstring""" lowercase : Dict = self.model_type.from_pretrained(*_A , **_A ) def __a ( self : str ) -> List[Any]: """simple docstring""" lowercase : str = arg_to_scheduler[self.hparams.lr_scheduler] lowercase : Dict = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) lowercase : str = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1} return scheduler def __a ( self : int ) -> Tuple: """simple docstring""" lowercase : List[Any] = self.model lowercase : Any = ['''bias''', '''LayerNorm.weight'''] lowercase : Optional[int] = [ { '''params''': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters '''weight_decay''': self.hparams.weight_decay, }, { '''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] if self.hparams.adafactor: lowercase : Any = Adafactor( _A , lr=self.hparams.learning_rate , scale_parameter=_A , relative_step=_A ) else: lowercase : Optional[Any] = AdamW( _A , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) lowercase : Optional[int] = optimizer lowercase : Tuple = self.get_lr_scheduler() return [optimizer], [scheduler] def __a ( self : Dict , _A : Union[str, Any] , _A : Tuple ) -> str: """simple docstring""" return self.validation_step(_A , _A ) def __a ( self : int , _A : List[str] ) -> Optional[int]: """simple docstring""" return self.validation_end(_A ) def __a ( self : Tuple ) -> int: """simple docstring""" lowercase : str = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores lowercase : Tuple = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __a ( self : Dict , _A : Union[str, Any] ) -> List[Any]: """simple docstring""" if stage == "test": lowercase : Any = len(self.test_dataloader().dataset ) else: lowercase : List[str] = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=_A ) lowercase : List[Any] = len(self.train_dataloader().dataset ) def __a ( self : List[str] , _A : str , _A : int , _A : bool = False ) -> List[str]: """simple docstring""" raise NotImplementedError('''You must implement this for your task''' ) def __a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return self.train_loader def __a ( self : Optional[int] ) -> Dict: """simple docstring""" return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=_A ) def __a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=_A ) def __a ( self : int , _A : str ) -> List[str]: """simple docstring""" return os.path.join( self.hparams.data_dir , '''cached_{}_{}_{}'''.format( _A , list(filter(_A , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def __a ( self : List[Any] , _A : Dict[str, Any] ) -> None: """simple docstring""" lowercase : Optional[int] = self.output_dir.joinpath('''best_tfmr''' ) lowercase : Union[str, Any] = self.step_count self.model.save_pretrained(_A ) self.tokenizer.save_pretrained(_A ) @staticmethod def __a ( _A : int , _A : List[str] ) -> List[Any]: """simple docstring""" parser.add_argument( '''--model_name_or_path''' , default=_A , type=_A , required=_A , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--config_name''' , default='''''' , type=_A , help='''Pretrained config name or path if not the same as model_name''' ) parser.add_argument( '''--tokenizer_name''' , default=_A , type=_A , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument( '''--cache_dir''' , default=str(Path(_A ).parent / '''test_run''' / '''cache''' ) , type=_A , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , ) parser.add_argument( '''--encoder_layerdrop''' , type=_A , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--decoder_layerdrop''' , type=_A , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--dropout''' , type=_A , help='''Dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--attention_dropout''' , type=_A , help='''Attention dropout probability (Optional). Goes into model.config''' , ) parser.add_argument('''--learning_rate''' , default=5E-5 , type=_A , help='''The initial learning rate for Adam.''' ) parser.add_argument( '''--lr_scheduler''' , default='''linear''' , choices=_A , metavar=_A , type=_A , help='''Learning rate scheduler''' , ) parser.add_argument('''--weight_decay''' , default=0.0 , type=_A , help='''Weight decay if we apply some.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=_A , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--warmup_steps''' , default=0 , type=_A , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--num_workers''' , default=4 , type=_A , help='''kwarg passed to DataLoader''' ) parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=_A ) parser.add_argument('''--train_batch_size''' , default=32 , type=_A ) parser.add_argument('''--eval_batch_size''' , default=32 , type=_A ) parser.add_argument('''--adafactor''' , action='''store_true''' ) class _A ( pl.Callback ): def __a ( self : Tuple , _A : str , _A : List[Any] ) -> Optional[int]: """simple docstring""" if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _A ( pl.Callback ): def __a ( self : Optional[int] , _A : Union[str, Any] , _A : Optional[int] ) -> Dict: """simple docstring""" for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(_A ) class _A ( pl.Callback ): def __a ( self : Tuple , _A : List[str] , _A : str ) -> Tuple: """simple docstring""" lowercase : Tuple = trainer.lr_schedulers[0]['''scheduler'''] lowercase : List[str] = {f"""lr_group_{i}""": lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(_A ) def __a ( self : int , _A : pl.Trainer , _A : pl.LightningModule ) -> int: """simple docstring""" rank_zero_info('''***** Validation results *****''' ) lowercase : str = trainer.callback_metrics # Log results for key in sorted(_A ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(_A , str(metrics[key] ) ) ) def __a ( self : List[Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> Tuple: """simple docstring""" rank_zero_info('''***** Test results *****''' ) lowercase : Optional[int] = trainer.callback_metrics # Log and save results to file lowercase : Dict = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' ) with open(_A , '''w''' ) as writer: for key in sorted(_A ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(_A , str(metrics[key] ) ) ) writer.write('''{} = {}\n'''.format(_A , str(metrics[key] ) ) ) def snake_case( __magic_name__ , __magic_name__ ) -> None: '''simple docstring''' parser.add_argument( '''--output_dir''' , default=str(Path(__magic_name__ ).parent / '''test_run''' / '''model_checkpoints''' ) , type=__magic_name__ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=__magic_name__ , default='''O2''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=__magic_name__ ) parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=__magic_name__ , help='''Max gradient norm''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' ) parser.add_argument( '''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=__magic_name__ , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--seed''' , type=__magic_name__ , default=42 , help='''random seed for initialization''' ) parser.add_argument( '''--data_dir''' , default=str(Path(__magic_name__ ).parent / '''test_run''' / '''dummy-train-data''' ) , type=__magic_name__ , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__=None , __magic_name__=True , __magic_name__=[] , __magic_name__=None , __magic_name__=None , **__magic_name__ , ) -> Optional[int]: '''simple docstring''' pl.seed_everything(args.seed ) # init model lowercase : List[str] = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=__magic_name__ ) # add custom checkpoints if checkpoint_callback is None: lowercase : List[Any] = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(__magic_name__ ) if logging_callback is None: lowercase : List[Any] = LoggingCallback() lowercase : int = {} if args.fpaa: lowercase : List[str] = 16 if args.gpus > 1: lowercase : Optional[int] = '''auto''' lowercase : Tuple = '''ddp''' lowercase : Any = args.accumulate_grad_batches lowercase : Tuple = None lowercase : str = '''auto''' lowercase : str = pl.Trainer.from_argparse_args( __magic_name__ , weights_summary=__magic_name__ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=__magic_name__ , val_check_interval=1 , num_sanity_val_steps=2 , **__magic_name__ , ) if args.do_train: trainer.fit(__magic_name__ ) else: print('''RAG modeling tests with new set functions successfuly executed!''' ) return trainer
718
import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging lowerCAmelCase_ = logging.get_logger(__name__) class _A : _UpperCamelCase : Dict = None @experimental def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> List[Any]: '''simple docstring''' if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) return _map_with_joblib(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : Tuple = num_proc if num_proc <= len(__magic_name__ ) else len(__magic_name__ ) lowercase : Tuple = [] # We organize the splits ourselve (contiguous splits) for index in range(__magic_name__ ): lowercase : Optional[int] = len(__magic_name__ ) // num_proc lowercase : List[str] = len(__magic_name__ ) % num_proc lowercase : Union[str, Any] = div * index + min(__magic_name__ , __magic_name__ ) lowercase : List[str] = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(__magic_name__ ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F"""Error dividing inputs iterable among processes. """ F"""Total number of objects {len(__magic_name__ )}, """ F"""length: {sum(len(i[1] ) for i in split_kwds )}""" ) logger.info( F"""Spawning {num_proc} processes for {len(__magic_name__ )} objects in slices of {[len(i[1] ) for i in split_kwds]}""" ) lowercase , lowercase : Optional[int] = None, None if not disable_tqdm: lowercase , lowercase : Any = (RLock(),), tqdm.set_lock with Pool(__magic_name__ , initargs=__magic_name__ , initializer=__magic_name__ ) as pool: lowercase : Tuple = pool.map(__magic_name__ , __magic_name__ ) logger.info(F"""Finished {num_proc} processes""" ) lowercase : Union[str, Any] = [obj for proc_res in mapped for obj in proc_res] logger.info(F"""Unpacked {len(__magic_name__ )} objects""" ) return mapped def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Any: '''simple docstring''' import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=__magic_name__ ): return joblib.Parallel()( joblib.delayed(__magic_name__ )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def snake_case( __magic_name__ ) -> List[Any]: '''simple docstring''' lowercase : int = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: lowercase : List[Any] = None
596
0
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys lowerCamelCase__ : List[str] = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") lowerCamelCase__ : List[str] = ( subprocess.check_output(F"""git diff --diff-filter=d --name-only {fork_point_sha}""".split()).decode("""utf-8""").split() ) lowerCamelCase__ : List[str] = """|""".join(sys.argv[1:]) lowerCamelCase__ : Optional[Any] = re.compile(rF"""^({joined_dirs}).*?\.py$""") lowerCamelCase__ : List[Any] = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
33
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[Any]: snake_case__ = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __magic_name__ (snake_case_ ,snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Dict = StableDiffusionLatentUpscalePipeline __lowercase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } __lowercase : List[Any] = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} __lowercase : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowercase : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __lowercase : List[Any] = frozenset([] ) __lowercase : Any = True @property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = 1 snake_case__ = 4 snake_case__ = (16, 16) snake_case__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_a ) return image def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): torch.manual_seed(0 ) snake_case__ = UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=_a , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=_a , only_cross_attention=_a , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) snake_case__ = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) snake_case__ = EulerDiscreteScheduler(prediction_type='''sample''' ) snake_case__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''quick_gelu''' , projection_dim=5_12 , ) snake_case__ = CLIPTextModel(_a ) snake_case__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case__ = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:Optional[Any] , _a:List[str]=0 ): if str(_a ).startswith('''mps''' ): snake_case__ = torch.manual_seed(_a ) else: snake_case__ = torch.Generator(device=_a ).manual_seed(_a ) snake_case__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = '''cpu''' snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) snake_case__ = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) snake_case__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_a , 1e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:str ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): super().test_save_load_local(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:str ): super().test_save_load_optional_components(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**_a ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = 2 snake_case__ = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue snake_case__ = getattr(_a , scheduler_enum.name ) snake_case__ = scheduler_cls.from_config(pipe.scheduler.config ) snake_case__ = pipe(**_a )[0] outputs.append(_a ) assert check_same_shape(_a ) @require_torch_gpu @slow class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = torch.manual_seed(33 ) snake_case__ = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) snake_case__ = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' snake_case__ = pipe(_a , generator=_a , output_type='''latent''' ).images snake_case__ = upscaler( prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0] snake_case__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = torch.manual_seed(33 ) snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) snake_case__ = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' snake_case__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) snake_case__ = upscaler( prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0] snake_case__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5e-2
33
1
"""simple docstring""" import os lowercase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 1_00, '''D''': 5_00, '''M''': 10_00} def UpperCAmelCase ( A : str ): '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = 0 while index < len(A ) - 1: _UpperCAmelCase = SYMBOLS[numerals[index]] _UpperCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCAmelCase ( A : int ): '''simple docstring''' _UpperCAmelCase = '' _UpperCAmelCase = num // 1000 numerals += m_count * "M" num %= 1000 _UpperCAmelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 _UpperCAmelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCAmelCase ( A : str = "/p089_roman.txt" ): '''simple docstring''' _UpperCAmelCase = 0 with open(os.path.dirname(A ) + roman_numerals_filename ) as filea: _UpperCAmelCase = filea.readlines() for line in lines: _UpperCAmelCase = line.strip() _UpperCAmelCase = parse_roman_numerals(A ) _UpperCAmelCase = generate_roman_numerals(A ) savings += len(A ) - len(A ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
24
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowercase = logging.getLogger(__name__) if __name__ == "__main__": lowercase = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=3_05_22, type=int) lowercase = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: lowercase = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') lowercase = Counter() for tk_ids in data: counter.update(tk_ids) lowercase = [0] * args.vocab_size for k, v in counter.items(): lowercase = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
24
1
'''simple docstring''' class __snake_case: '''simple docstring''' def __init__( self , A_ , A_ ) -> str: lowerCAmelCase = name lowerCAmelCase = val def __str__( self ) -> Tuple: return f'{self.__class__.__name__}({self.name}, {self.val})' def __lt__( self , A_ ) -> Any: return self.val < other.val class __snake_case: '''simple docstring''' def __init__( self , A_ ) -> Any: lowerCAmelCase = {} lowerCAmelCase = {} lowerCAmelCase = self.build_heap(lowercase_ ) def __getitem__( self , A_ ) -> List[str]: return self.get_value(lowercase_ ) def __snake_case ( self , A_ ) -> Optional[int]: return (idx - 1) // 2 def __snake_case ( self , A_ ) -> int: return idx * 2 + 1 def __snake_case ( self , A_ ) -> List[Any]: return idx * 2 + 2 def __snake_case ( self , A_ ) -> Any: return self.heap_dict[key] def __snake_case ( self , A_ ) -> str: lowerCAmelCase = len(lowercase_ ) - 1 lowerCAmelCase = self.get_parent_idx(lowercase_ ) for idx, i in enumerate(lowercase_ ): lowerCAmelCase = idx lowerCAmelCase = i.val for i in range(lowercase_ , -1 , -1 ): self.sift_down(lowercase_ , lowercase_ ) return array def __snake_case ( self , A_ , A_ ) -> List[str]: while True: lowerCAmelCase = self.get_left_child_idx(lowercase_ ) # noqa: E741 lowerCAmelCase = self.get_right_child_idx(lowercase_ ) lowerCAmelCase = idx if l < len(lowercase_ ) and array[l] < array[idx]: lowerCAmelCase = l if r < len(lowercase_ ) and array[r] < array[smallest]: lowerCAmelCase = r if smallest != idx: lowerCAmelCase, lowerCAmelCase = array[smallest], array[idx] ( ( lowerCAmelCase ), ( lowerCAmelCase ), ) = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) lowerCAmelCase = smallest else: break def __snake_case ( self , A_ ) -> Dict: lowerCAmelCase = self.get_parent_idx(lowercase_ ) while p >= 0 and self.heap[p] > self.heap[idx]: lowerCAmelCase, lowerCAmelCase = self.heap[idx], self.heap[p] lowerCAmelCase, lowerCAmelCase = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) lowerCAmelCase = p lowerCAmelCase = self.get_parent_idx(lowercase_ ) def __snake_case ( self ) -> List[str]: return self.heap[0] def __snake_case ( self ) -> Optional[int]: lowerCAmelCase, lowerCAmelCase = self.heap[-1], self.heap[0] lowerCAmelCase, lowerCAmelCase = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) lowerCAmelCase = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def __snake_case ( self , A_ ) -> Tuple: self.heap.append(lowercase_ ) lowerCAmelCase = len(self.heap ) - 1 lowerCAmelCase = node.val self.sift_up(len(self.heap ) - 1 ) def __snake_case ( self ) -> Union[str, Any]: return len(self.heap ) == 0 def __snake_case ( self , A_ , A_ ) -> int: assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" lowerCAmelCase = new_value lowerCAmelCase = new_value self.sift_up(self.idx_of_element[node] ) UpperCAmelCase = Node('R', -1) UpperCAmelCase = Node('B', 6) UpperCAmelCase = Node('A', 3) UpperCAmelCase = Node('X', 1) UpperCAmelCase = Node('E', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array UpperCAmelCase = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('Min Heap - before decrease key') for i in my_min_heap.heap: print(i) print('Min Heap - After decrease key of node [B -> -17]') my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
433
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase: List[str] = logging.get_logger() def _lowercase( __a : int , __a : str , __a : LevitConfig , __a : Path , __a : bool = True ): print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": a__ =timm.create_model('levit_128s' , pretrained=__a ) else: a__ =timm.create_model('levit_128' , pretrained=__a ) if hidden_sizes == 192: a__ =timm.create_model('levit_192' , pretrained=__a ) if hidden_sizes == 256: a__ =timm.create_model('levit_256' , pretrained=__a ) if hidden_sizes == 384: a__ =timm.create_model('levit_384' , pretrained=__a ) from_model.eval() a__ =LevitForImageClassificationWithTeacher(__a ).eval() a__ =OrderedDict() a__ =from_model.state_dict() a__ =list(from_model.state_dict().keys() ) a__ =list(our_model.state_dict().keys() ) print(len(__a ) , len(__a ) ) for i in range(len(__a ) ): a__ =weights[og_keys[i]] our_model.load_state_dict(__a ) a__ =torch.randn((2, 3, 224, 224) ) a__ =from_model(__a ) a__ =our_model(__a ).logits assert torch.allclose(__a , __a ), "The model logits don't match the original one." a__ =name print(__a ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) a__ =LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def _lowercase( __a : Path , __a : str = None , __a : bool = True ): a__ ='imagenet-1k-id2label.json' a__ =1000 a__ =(1, num_labels) a__ ='huggingface/label-files' a__ =num_labels a__ =json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) a__ ={int(__a ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} a__ =partial(__a , num_labels=__a , idalabel=__a , labelaid=__a ) a__ ={ 'levit-128S': 128, 'levit-128': 128, 'levit-192': 192, 'levit-256': 256, 'levit-384': 384, } a__ ={ 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __a , names_to_config[model_name] , __a , __a ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __a , __a , __a , __a ) return config, expected_shape if __name__ == "__main__": _lowerCAmelCase: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) _lowerCAmelCase: Union[str, Any] = parser.parse_args() _lowerCAmelCase: Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
20
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def a_ ( self ): __SCREAMING_SNAKE_CASE : List[Any] = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : str = SamImageProcessor() __SCREAMING_SNAKE_CASE : Union[str, Any] = SamProcessor(a__ ) processor.save_pretrained(self.tmpdirname ) def a_ ( self , **a__ ): return AutoProcessor.from_pretrained(self.tmpdirname , **a__ ).image_processor def a_ ( self ): shutil.rmtree(self.tmpdirname ) def a_ ( self ): __SCREAMING_SNAKE_CASE : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __SCREAMING_SNAKE_CASE : Any = [Image.fromarray(np.moveaxis(a__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def a_ ( self ): __SCREAMING_SNAKE_CASE : List[Any] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : List[Any] = self.get_image_processor(do_normalize=a__ , padding_value=1.0 ) __SCREAMING_SNAKE_CASE : Optional[int] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=a__ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , a__ ) def a_ ( self ): __SCREAMING_SNAKE_CASE : Dict = self.get_image_processor() __SCREAMING_SNAKE_CASE : Tuple = SamProcessor(image_processor=a__ ) __SCREAMING_SNAKE_CASE : int = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : Dict = image_processor(a__ , return_tensors="np" ) __SCREAMING_SNAKE_CASE : List[Any] = processor(images=a__ , return_tensors="np" ) input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("reshaped_input_sizes" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def a_ ( self ): __SCREAMING_SNAKE_CASE : str = self.get_image_processor() __SCREAMING_SNAKE_CASE : Any = SamProcessor(image_processor=a__ ) __SCREAMING_SNAKE_CASE : int = [torch.ones((1, 3, 5, 5) )] __SCREAMING_SNAKE_CASE : str = [[1764, 2646]] __SCREAMING_SNAKE_CASE : Optional[Any] = [[683, 1024]] __SCREAMING_SNAKE_CASE : Optional[int] = processor.post_process_masks(a__ , a__ , a__ ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) __SCREAMING_SNAKE_CASE : int = processor.post_process_masks( a__ , torch.tensor(a__ ) , torch.tensor(a__ ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np __SCREAMING_SNAKE_CASE : int = [np.ones((1, 3, 5, 5) )] __SCREAMING_SNAKE_CASE : Tuple = processor.post_process_masks(a__ , np.array(a__ ) , np.array(a__ ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) __SCREAMING_SNAKE_CASE : Tuple = [[1, 0], [0, 1]] with self.assertRaises(a__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = processor.post_process_masks(a__ , np.array(a__ ) , np.array(a__ ) ) @require_vision @require_tf class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def a_ ( self ): __SCREAMING_SNAKE_CASE : Any = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : int = SamImageProcessor() __SCREAMING_SNAKE_CASE : Tuple = SamProcessor(a__ ) processor.save_pretrained(self.tmpdirname ) def a_ ( self , **a__ ): return AutoProcessor.from_pretrained(self.tmpdirname , **a__ ).image_processor def a_ ( self ): shutil.rmtree(self.tmpdirname ) def a_ ( self ): __SCREAMING_SNAKE_CASE : Any = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __SCREAMING_SNAKE_CASE : Optional[Any] = [Image.fromarray(np.moveaxis(a__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def a_ ( self ): __SCREAMING_SNAKE_CASE : str = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : int = self.get_image_processor(do_normalize=a__ , padding_value=1.0 ) __SCREAMING_SNAKE_CASE : int = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=a__ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , a__ ) def a_ ( self ): __SCREAMING_SNAKE_CASE : int = self.get_image_processor() __SCREAMING_SNAKE_CASE : Optional[Any] = SamProcessor(image_processor=a__ ) __SCREAMING_SNAKE_CASE : List[str] = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : Union[str, Any] = image_processor(a__ , return_tensors="np" ) __SCREAMING_SNAKE_CASE : Optional[int] = processor(images=a__ , return_tensors="np" ) input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("reshaped_input_sizes" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def a_ ( self ): __SCREAMING_SNAKE_CASE : int = self.get_image_processor() __SCREAMING_SNAKE_CASE : List[Any] = SamProcessor(image_processor=a__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = [tf.ones((1, 3, 5, 5) )] __SCREAMING_SNAKE_CASE : Union[str, Any] = [[1764, 2646]] __SCREAMING_SNAKE_CASE : Tuple = [[683, 1024]] __SCREAMING_SNAKE_CASE : Union[str, Any] = processor.post_process_masks(a__ , a__ , a__ , return_tensors="tf" ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) __SCREAMING_SNAKE_CASE : Dict = processor.post_process_masks( a__ , tf.convert_to_tensor(a__ ) , tf.convert_to_tensor(a__ ) , return_tensors="tf" , ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np __SCREAMING_SNAKE_CASE : int = [np.ones((1, 3, 5, 5) )] __SCREAMING_SNAKE_CASE : List[Any] = processor.post_process_masks( a__ , np.array(a__ ) , np.array(a__ ) , return_tensors="tf" ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) __SCREAMING_SNAKE_CASE : Tuple = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): __SCREAMING_SNAKE_CASE : str = processor.post_process_masks( a__ , np.array(a__ ) , np.array(a__ ) , return_tensors="tf" ) @require_vision @require_torchvision class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def a_ ( self ): __SCREAMING_SNAKE_CASE : Optional[Any] = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : List[str] = SamImageProcessor() __SCREAMING_SNAKE_CASE : List[str] = SamProcessor(a__ ) processor.save_pretrained(self.tmpdirname ) def a_ ( self , **a__ ): return AutoProcessor.from_pretrained(self.tmpdirname , **a__ ).image_processor def a_ ( self ): shutil.rmtree(self.tmpdirname ) def a_ ( self ): __SCREAMING_SNAKE_CASE : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __SCREAMING_SNAKE_CASE : Optional[Any] = [Image.fromarray(np.moveaxis(a__ , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def a_ ( self ): __SCREAMING_SNAKE_CASE : Optional[int] = self.get_image_processor() __SCREAMING_SNAKE_CASE : int = SamProcessor(image_processor=a__ ) __SCREAMING_SNAKE_CASE : int = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) __SCREAMING_SNAKE_CASE : Optional[int] = [tf.convert_to_tensor(a__ )] __SCREAMING_SNAKE_CASE : Optional[Any] = [torch.tensor(a__ )] __SCREAMING_SNAKE_CASE : int = [[1764, 2646]] __SCREAMING_SNAKE_CASE : Union[str, Any] = [[683, 1024]] __SCREAMING_SNAKE_CASE : Tuple = processor.post_process_masks( a__ , a__ , a__ , return_tensors="tf" ) __SCREAMING_SNAKE_CASE : Any = processor.post_process_masks( a__ , a__ , a__ , return_tensors="pt" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def a_ ( self ): __SCREAMING_SNAKE_CASE : List[Any] = self.get_image_processor() __SCREAMING_SNAKE_CASE : Tuple = SamProcessor(image_processor=a__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : Any = image_processor(a__ , return_tensors="pt" )["pixel_values"].numpy() __SCREAMING_SNAKE_CASE : Dict = processor(images=a__ , return_tensors="pt" )["pixel_values"].numpy() __SCREAMING_SNAKE_CASE : List[Any] = image_processor(a__ , return_tensors="tf" )["pixel_values"].numpy() __SCREAMING_SNAKE_CASE : str = processor(images=a__ , return_tensors="tf" )["pixel_values"].numpy() self.assertTrue(np.allclose(a__ , a__ ) ) self.assertTrue(np.allclose(a__ , a__ ) ) self.assertTrue(np.allclose(a__ , a__ ) )
721
'''simple docstring''' def __A ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = 0 __SCREAMING_SNAKE_CASE : Optional[int] = len(_SCREAMING_SNAKE_CASE ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None __SCREAMING_SNAKE_CASE : List[str] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(_SCREAMING_SNAKE_CASE ): return None __SCREAMING_SNAKE_CASE : int = sorted_collection[point] if current_item == item: return point else: if point < left: __SCREAMING_SNAKE_CASE : Tuple = left __SCREAMING_SNAKE_CASE : Any = point elif point > right: __SCREAMING_SNAKE_CASE : Tuple = right __SCREAMING_SNAKE_CASE : Dict = point else: if item < current_item: __SCREAMING_SNAKE_CASE : Optional[int] = point - 1 else: __SCREAMING_SNAKE_CASE : Optional[Any] = point + 1 return None def __A ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None __SCREAMING_SNAKE_CASE : Tuple = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(_SCREAMING_SNAKE_CASE ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif point > right: return interpolation_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , point - 1 ) else: return interpolation_search_by_recursion( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , point + 1 , _SCREAMING_SNAKE_CASE ) def __A ( _SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" if collection != sorted(_SCREAMING_SNAKE_CASE ): raise ValueError("Collection must be ascending sorted" ) return True if __name__ == "__main__": import sys lowercase = 0 if debug == 1: lowercase = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit('''Sequence must be ascending sorted to apply interpolation search''') lowercase = 67 lowercase = interpolation_search(collection, target) if result is not None: print(F"""{target} found at positions: {result}""") else: print('''Not found''')
564
0
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowercase_ = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Any: from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Dict: from diffusers.utils.testing_utils import pytest_terminal_summary_main _a = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(_UpperCAmelCase , id=_UpperCAmelCase )
562
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
562
1
"""simple docstring""" import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' @register_to_config def __init__(self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False , ): '''simple docstring''' super().__init__() _UpperCamelCase : Optional[Any] = nn.Embedding(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase : Optional[int] = nn.Embedding(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase : Dict = False _UpperCamelCase : Dict = nn.Dropout(p=lowerCAmelCase__ ) _UpperCamelCase : Optional[Any] = TaConfig( vocab_size=lowerCAmelCase__ , d_model=lowerCAmelCase__ , num_heads=lowerCAmelCase__ , d_kv=lowerCAmelCase__ , d_ff=lowerCAmelCase__ , dropout_rate=lowerCAmelCase__ , feed_forward_proj=lowerCAmelCase__ , is_decoder=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , ) _UpperCamelCase : Union[str, Any] = nn.ModuleList() for lyr_num in range(lowerCAmelCase__ ): _UpperCamelCase : Optional[Any] = TaBlock(lowerCAmelCase__ ) self.encoders.append(lowerCAmelCase__ ) _UpperCamelCase : Optional[Any] = TaLayerNorm(lowerCAmelCase__ ) _UpperCamelCase : Optional[int] = nn.Dropout(p=lowerCAmelCase__ ) def lowercase_ (self , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' _UpperCamelCase : Optional[Any] = self.token_embedder(lowerCAmelCase__ ) _UpperCamelCase : Any = encoder_input_tokens.shape[1] _UpperCamelCase : Optional[int] = torch.arange(lowerCAmelCase__ , device=encoder_input_tokens.device ) x += self.position_encoding(lowerCAmelCase__ ) _UpperCamelCase : Optional[Any] = self.dropout_pre(lowerCAmelCase__ ) # inverted the attention mask _UpperCamelCase : Tuple = encoder_input_tokens.size() _UpperCamelCase : Dict = self.get_extended_attention_mask(lowerCAmelCase__ , lowerCAmelCase__ ) for lyr in self.encoders: _UpperCamelCase : List[str] = lyr(lowerCAmelCase__ , lowerCAmelCase__ )[0] _UpperCamelCase : List[str] = self.layer_norm(lowerCAmelCase__ ) return self.dropout_post(lowerCAmelCase__ ), encoder_inputs_mask
239
"""simple docstring""" _SCREAMING_SNAKE_CASE = { 0: """0""", 1: """1""", 2: """2""", 3: """3""", 4: """4""", 5: """5""", 6: """6""", 7: """7""", 8: """8""", 9: """9""", 1_0: """a""", 1_1: """b""", 1_2: """c""", 1_3: """d""", 1_4: """e""", 1_5: """f""", } def __lowerCAmelCase ( __lowerCAmelCase : float ) -> str: assert type(__lowerCAmelCase ) in (int, float) and decimal == int(__lowerCAmelCase ) _UpperCamelCase : Optional[Any] = int(__lowerCAmelCase ) _UpperCamelCase : Optional[int] = "" _UpperCamelCase : List[str] = False if decimal < 0: _UpperCamelCase : List[str] = True decimal *= -1 while decimal > 0: _UpperCamelCase , _UpperCamelCase : str = divmod(__lowerCAmelCase , 16 ) _UpperCamelCase : Any = values[remainder] + hexadecimal _UpperCamelCase : Dict = "0x" + hexadecimal if negative: _UpperCamelCase : int = "-" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
239
1
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass snake_case__ : List[Any] = (3, 9, -1_1, 0, 7, 5, 1, -1) snake_case__ : Optional[Any] = (4, 6, 2, 0, 8, 1_0, 3, -2) @dataclass class _a : """simple docstring""" A_ = 42 A_ = 42 class _a : """simple docstring""" def __init__( self , _UpperCAmelCase ) -> None: UpperCamelCase_ = None for i in sorted(_UpperCAmelCase , reverse=_UpperCAmelCase ): UpperCamelCase_ = Node(_UpperCAmelCase , self.head ) def __iter__( self ) -> Iterator[int]: UpperCamelCase_ = self.head while node: yield node.data UpperCamelCase_ = node.next_node def __len__( self ) -> int: return sum(1 for _ in self ) def __str__( self ) -> str: return " -> ".join([str(_UpperCAmelCase ) for node in self] ) def _snake_case (__lowercase , __lowercase): return SortedLinkedList(list(__lowercase) + list(__lowercase)) if __name__ == "__main__": import doctest doctest.testmod() snake_case__ : str = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
23
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy snake_case__ : Optional[Any] = logging.get_logger(__name__) snake_case__ : List[Any] = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } snake_case__ : int = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } snake_case__ : Optional[int] = { 'jukebox': 5_1_2, } class _a ( A__ ): """simple docstring""" snake_case =VOCAB_FILES_NAMES snake_case =PRETRAINED_VOCAB_FILES_MAP snake_case =PRETRAINED_LYRIC_TOKENS_SIZES snake_case =["""input_ids""", """attention_mask"""] def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case=["v3", "v2", "v2"] , _snake_case=512 , _snake_case=5 , _snake_case="<|endoftext|>" , **_snake_case , ): _UpperCAmelCase =AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else unk_token super().__init__( unk_token=_snake_case , n_genres=_snake_case , version=_snake_case , max_n_lyric_tokens=_snake_case , **_snake_case , ) _UpperCAmelCase =version _UpperCAmelCase =max_n_lyric_tokens _UpperCAmelCase =n_genres with open(_snake_case , encoding="utf-8" ) as vocab_handle: _UpperCAmelCase =json.load(_snake_case ) with open(_snake_case , encoding="utf-8" ) as vocab_handle: _UpperCAmelCase =json.load(_snake_case ) with open(_snake_case , encoding="utf-8" ) as vocab_handle: _UpperCAmelCase =json.load(_snake_case ) _UpperCAmelCase =R"[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: _UpperCAmelCase =oov.replace(R"\-'" , R"\-+'" ) _UpperCAmelCase =regex.compile(_snake_case ) _UpperCAmelCase ={v: k for k, v in self.artists_encoder.items()} _UpperCAmelCase ={v: k for k, v in self.genres_encoder.items()} _UpperCAmelCase ={v: k for k, v in self.lyrics_encoder.items()} @property def SCREAMING_SNAKE_CASE ( self ): return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def SCREAMING_SNAKE_CASE ( self ): return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case , _snake_case ): _UpperCAmelCase =[self.artists_encoder.get(_snake_case , 0 ) for artist in list_artists] for genres in range(len(_snake_case ) ): _UpperCAmelCase =[self.genres_encoder.get(_snake_case , 0 ) for genre in list_genres[genres]] _UpperCAmelCase =list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) _UpperCAmelCase =[[self.lyrics_encoder.get(_snake_case , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def SCREAMING_SNAKE_CASE ( self , _snake_case ): return list(_snake_case ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case , _snake_case , **_snake_case ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase =self.prepare_for_tokenization(_snake_case , _snake_case , _snake_case ) _UpperCAmelCase =self._tokenize(_snake_case ) return artist, genre, lyrics def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case , _snake_case , _snake_case = False ): for idx in range(len(self.version ) ): if self.version[idx] == "v3": _UpperCAmelCase =artists[idx].lower() _UpperCAmelCase =[genres[idx].lower()] else: _UpperCAmelCase =self._normalize(artists[idx] ) + ".v2" _UpperCAmelCase =[ self._normalize(_snake_case ) + ".v2" for genre in genres[idx].split("_" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": _UpperCAmelCase =regex.compile(R"[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+" ) _UpperCAmelCase ="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n" _UpperCAmelCase ={vocab[index]: index + 1 for index in range(len(_snake_case ) )} _UpperCAmelCase =0 _UpperCAmelCase =len(_snake_case ) + 1 _UpperCAmelCase =self.vocab _UpperCAmelCase ={v: k for k, v in self.vocab.items()} _UpperCAmelCase ="" else: _UpperCAmelCase =regex.compile(R"[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+" ) _UpperCAmelCase =self._run_strip_accents(_snake_case ) _UpperCAmelCase =lyrics.replace("\\" , "\n" ) _UpperCAmelCase =self.out_of_vocab.sub("" , _snake_case ), [], [] return artists, genres, lyrics def SCREAMING_SNAKE_CASE ( self , _snake_case ): _UpperCAmelCase =unicodedata.normalize("NFD" , _snake_case ) _UpperCAmelCase =[] for char in text: _UpperCAmelCase =unicodedata.category(_snake_case ) if cat == "Mn": continue output.append(_snake_case ) return "".join(_snake_case ) def SCREAMING_SNAKE_CASE ( self , _snake_case ): _UpperCAmelCase =( [chr(_snake_case ) for i in range(ord("a" ) , ord("z" ) + 1 )] + [chr(_snake_case ) for i in range(ord("A" ) , ord("Z" ) + 1 )] + [chr(_snake_case ) for i in range(ord("0" ) , ord("9" ) + 1 )] + ["."] ) _UpperCAmelCase =frozenset(_snake_case ) _UpperCAmelCase =re.compile(R"_+" ) _UpperCAmelCase ="".join([c if c in accepted else "_" for c in text.lower()] ) _UpperCAmelCase =pattern.sub("_" , _snake_case ).strip("_" ) return text def SCREAMING_SNAKE_CASE ( self , _snake_case ): return " ".join(_snake_case ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case = None , _snake_case = False ): # Convert to TensorType if not isinstance(_snake_case , _snake_case ): _UpperCAmelCase =TensorType(_snake_case ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( "Unable to convert output to TensorFlow tensors format, TensorFlow is not installed." ) import tensorflow as tf _UpperCAmelCase =tf.constant _UpperCAmelCase =tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("Unable to convert output to PyTorch tensors format, PyTorch is not installed." ) import torch _UpperCAmelCase =torch.tensor _UpperCAmelCase =torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("Unable to convert output to JAX tensors format, JAX is not installed." ) import jax.numpy as jnp # noqa: F811 _UpperCAmelCase =jnp.array _UpperCAmelCase =_is_jax else: _UpperCAmelCase =np.asarray _UpperCAmelCase =_is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: _UpperCAmelCase =[inputs] if not is_tensor(_snake_case ): _UpperCAmelCase =as_tensor(_snake_case ) except: # noqa E722 raise ValueError( "Unable to create tensor, you should probably activate truncation and/or padding " "with 'padding=True' 'truncation=True' to have batched tensors with the same length." ) return inputs def __call__( self , _snake_case , _snake_case , _snake_case="" , _snake_case="pt" ): _UpperCAmelCase =[0, 0, 0] _UpperCAmelCase =[artist] * len(self.version ) _UpperCAmelCase =[genres] * len(self.version ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase =self.tokenize(_snake_case , _snake_case , _snake_case ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase =self._convert_token_to_id(_snake_case , _snake_case , _snake_case ) _UpperCAmelCase =[-INFINITY] * len(full_tokens[-1] ) _UpperCAmelCase =[ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_snake_case ) for i in range(len(self.version ) ) ] return BatchEncoding({"input_ids": input_ids, "attention_masks": attention_masks} ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case = None ): if not os.path.isdir(_snake_case ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _UpperCAmelCase =os.path.join( _snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["artists_file"] ) with open(_snake_case , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=_snake_case ) ) _UpperCAmelCase =os.path.join( _snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["genres_file"] ) with open(_snake_case , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=_snake_case ) ) _UpperCAmelCase =os.path.join( _snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["lyrics_file"] ) with open(_snake_case , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_snake_case ) ) return (artists_file, genres_file, lyrics_file) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case , _snake_case ): _UpperCAmelCase =self.artists_decoder.get(_snake_case ) _UpperCAmelCase =[self.genres_decoder.get(_snake_case ) for genre in genres_index] _UpperCAmelCase =[self.lyrics_decoder.get(_snake_case ) for character in lyric_index] return artist, genres, lyrics
408
0
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __a : Dict = logging.get_logger(__name__) __a : Optional[Any] = { "google/efficientnet-b7": "https://huggingface.co/google/efficientnet-b7/resolve/main/config.json", } class __lowercase ( lowercase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE = "efficientnet" def __init__( self : Union[str, Any] , UpperCamelCase_ : int = 3 , UpperCamelCase_ : int = 600 , UpperCamelCase_ : float = 2.0 , UpperCamelCase_ : float = 3.1 , UpperCamelCase_ : int = 8 , UpperCamelCase_ : List[int] = [3, 3, 5, 3, 5, 5, 3] , UpperCamelCase_ : List[int] = [32, 16, 24, 40, 80, 112, 192] , UpperCamelCase_ : List[int] = [16, 24, 40, 80, 112, 192, 320] , UpperCamelCase_ : List[int] = [] , UpperCamelCase_ : List[int] = [1, 2, 2, 2, 1, 2, 1] , UpperCamelCase_ : List[int] = [1, 2, 2, 3, 3, 4, 1] , UpperCamelCase_ : List[int] = [1, 6, 6, 6, 6, 6, 6] , UpperCamelCase_ : float = 0.25 , UpperCamelCase_ : str = "swish" , UpperCamelCase_ : int = 2_560 , UpperCamelCase_ : str = "mean" , UpperCamelCase_ : float = 0.02 , UpperCamelCase_ : float = 0.001 , UpperCamelCase_ : float = 0.99 , UpperCamelCase_ : float = 0.5 , UpperCamelCase_ : float = 0.2 , **UpperCamelCase_ : Dict , ): """simple docstring""" super().__init__(**UpperCamelCase_ ) __A = num_channels __A = image_size __A = width_coefficient __A = depth_coefficient __A = depth_divisor __A = kernel_sizes __A = in_channels __A = out_channels __A = depthwise_padding __A = strides __A = num_block_repeats __A = expand_ratios __A = squeeze_expansion_ratio __A = hidden_act __A = hidden_dim __A = pooling_type __A = initializer_range __A = batch_norm_eps __A = batch_norm_momentum __A = dropout_rate __A = drop_connect_rate __A = sum(UpperCamelCase_ ) * 4 class __lowercase ( lowercase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE = version.parse("1.11" ) @property def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" return 1e-5
199
def _SCREAMING_SNAKE_CASE ( __lowercase : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: """simple docstring""" __A = set() # Replace all the whitespace in our sentence __A = input_str.replace(""" """ , """""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(__lowercase ) == 2_6 def _SCREAMING_SNAKE_CASE ( __lowercase : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: """simple docstring""" __A = [False] * 2_6 for char in input_str: if char.islower(): __A = True elif char.isupper(): __A = True return all(__lowercase ) def _SCREAMING_SNAKE_CASE ( __lowercase : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def _SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" from timeit import timeit __A = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" , setup=__lowercase ) ) print(timeit("""is_pangram_faster()""" , setup=__lowercase ) ) print(timeit("""is_pangram_fastest()""" , setup=__lowercase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
199
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["CLIPFeatureExtractor"] __UpperCamelCase = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
from collections.abc import Sequence def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Sequence[int] | None = None ) -> int: if nums is None or not nums: raise ValueError('''Input sequence should not be empty''' ) SCREAMING_SNAKE_CASE_ : Tuple =nums[0] for i in range(1 , len(UpperCAmelCase_ ) ): SCREAMING_SNAKE_CASE_ : Any =nums[i] SCREAMING_SNAKE_CASE_ : Optional[int] =max(UpperCAmelCase_ , ans + num , UpperCAmelCase_ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user _lowercase = int(input("""Enter number of elements : """).strip()) _lowercase = list(map(int, input("""\nEnter the numbers : """).strip().split()))[:n] print(max_subsequence_sum(array))
443
0
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=99 , a_=32 , a_=5 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=4 , ): '''simple docstring''' __snake_case : Tuple = parent __snake_case : Optional[Any] = batch_size __snake_case : Optional[int] = seq_length __snake_case : Union[str, Any] = is_training __snake_case : int = use_attention_mask __snake_case : Any = use_token_type_ids __snake_case : Any = use_labels __snake_case : List[Any] = vocab_size __snake_case : Optional[Any] = hidden_size __snake_case : int = num_hidden_layers __snake_case : Union[str, Any] = num_attention_heads __snake_case : Any = intermediate_size __snake_case : List[str] = hidden_act __snake_case : Any = hidden_dropout_prob __snake_case : List[Any] = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : Tuple = type_vocab_size __snake_case : Any = type_sequence_label_size __snake_case : List[str] = initializer_range __snake_case : Union[str, Any] = num_choices def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Union[str, Any] = None if self.use_attention_mask: __snake_case : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Optional[int] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=a_ , ) return config, input_ids, attention_mask def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : List[str] = config_and_inputs __snake_case : Tuple = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class _UpperCAmelCase ( __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = FlaxDistilBertModelTester(self ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_class_name in self.all_model_classes: __snake_case : Union[str, Any] = model_class_name.from_pretrained('''distilbert-base-uncased''' ) __snake_case : str = model(np.ones((1, 1) ) ) self.assertIsNotNone(a_ ) @require_flax class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __snake_case : Dict = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __snake_case : Union[str, Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __snake_case : Union[str, Any] = model(a_ , attention_mask=a_ )[0] __snake_case : List[str] = (1, 11, 7_68) self.assertEqual(output.shape , a_ ) __snake_case : Dict = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , a_ , atol=1E-4 ) )
229
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE : Optional[int] = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[int] = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
229
1
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : Optional[int] =1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): __magic_name__ : Union[str, Any] =n - k # Calculate C(n,k) for i in range(lowerCamelCase ): result *= n - i result //= i + 1 return result def lowerCAmelCase_ ( lowerCamelCase ): return binomial_coefficient(2 * node_count , lowerCamelCase ) // (node_count + 1) def lowerCAmelCase_ ( lowerCamelCase ): if n < 0: raise ValueError("""factorial() not defined for negative values""" ) __magic_name__ : List[str] =1 for i in range(1 , n + 1 ): result *= i return result def lowerCAmelCase_ ( lowerCamelCase ): return catalan_number(lowerCamelCase ) * factorial(lowerCamelCase ) if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = int(input("Enter the number of nodes: ").strip() or 0) if node_count <= 0: raise ValueError("We need some nodes to work with.") print( F"""Given {node_count} nodes, there are {binary_tree_count(node_count)} """ F"""binary trees and {catalan_number(node_count)} binary search trees.""" )
21
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( '''kwargs, expected''' , [ ({'''num_shards''': 0, '''max_num_jobs''': 1}, []), ({'''num_shards''': 10, '''max_num_jobs''': 1}, [range(10 )]), ({'''num_shards''': 10, '''max_num_jobs''': 10}, [range(__lowerCAmelCase , i + 1 ) for i in range(10 )]), ({'''num_shards''': 1, '''max_num_jobs''': 10}, [range(1 )]), ({'''num_shards''': 10, '''max_num_jobs''': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'''num_shards''': 3, '''max_num_jobs''': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: snake_case__ = _distribute_shards(**__lowerCAmelCase ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, max_num_jobs, expected''' , [ ({'''foo''': 0}, 10, [{'''foo''': 0}]), ({'''shards''': [0, 1, 2, 3]}, 1, [{'''shards''': [0, 1, 2, 3]}]), ({'''shards''': [0, 1, 2, 3]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}, {'''shards''': [2]}, {'''shards''': [3]}]), ({'''shards''': [0, 1]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}]), ({'''shards''': [0, 1, 2, 3]}, 2, [{'''shards''': [0, 1]}, {'''shards''': [2, 3]}]), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: snake_case__ = _split_gen_kwargs(__lowerCAmelCase , __lowerCAmelCase ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, expected''' , [ ({'''foo''': 0}, 1), ({'''shards''': [0]}, 1), ({'''shards''': [0, 1, 2, 3]}, 4), ({'''shards''': [0, 1, 2, 3], '''foo''': 0}, 4), ({'''shards''': [0, 1, 2, 3], '''other''': (0, 1)}, 4), ({'''shards''': [0, 1, 2, 3], '''shards2''': [0, 1]}, RuntimeError), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: if expected is RuntimeError: with pytest.raises(__lowerCAmelCase ): _number_of_shards_in_gen_kwargs(__lowerCAmelCase ) else: snake_case__ = _number_of_shards_in_gen_kwargs(__lowerCAmelCase ) assert out == expected
33
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowercase (__lowerCamelCase ): _lowerCamelCase = ['''image_processor''', '''tokenizer'''] _lowerCamelCase = '''LayoutLMv3ImageProcessor''' _lowerCamelCase = ('''LayoutLMv3Tokenizer''', '''LayoutLMv3TokenizerFast''') def __init__( self : Any , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Tuple=None , **UpperCAmelCase_ : Any): UpperCamelCase__ : str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCAmelCase_ , ) UpperCamelCase__ : Dict = kwargs.pop('feature_extractor') UpperCamelCase__ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(UpperCAmelCase_ , UpperCAmelCase_) def __call__( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase_ : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase_ : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase_ : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase_ : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , **UpperCAmelCase_ : List[str] , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.') if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.') # first, apply the image processor UpperCamelCase__ : Optional[Any] = self.image_processor(images=UpperCAmelCase_ , return_tensors=UpperCAmelCase_) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCamelCase__ : int = features['words'] UpperCamelCase__ : int = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , stride=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , return_special_tokens_mask=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , return_length=UpperCAmelCase_ , verbose=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , ) # add pixel values UpperCamelCase__ : Any = features.pop('pixel_values') if return_overflowing_tokens is True: UpperCamelCase__ : List[Any] = self.get_overflowing_images(UpperCAmelCase_ , encoded_inputs['overflow_to_sample_mapping']) UpperCamelCase__ : Any = images return encoded_inputs def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str]): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image UpperCamelCase__ : List[str] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx]) if len(UpperCAmelCase_) != len(UpperCAmelCase_): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F' {len(UpperCAmelCase_)} and {len(UpperCAmelCase_)}') return images_with_overflow def __UpperCamelCase ( self : Tuple , *UpperCAmelCase_ : str , **UpperCAmelCase_ : int): return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Optional[Any]): return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_) @property def __UpperCamelCase ( self : Dict): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def __UpperCamelCase ( self : List[Any]): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCAmelCase_ , ) return self.image_processor_class @property def __UpperCamelCase ( self : Any): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCAmelCase_ , ) return self.image_processor
715
'''simple docstring''' import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowerCAmelCase__ = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } lowerCAmelCase__ = {'facebook/blenderbot-3B': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __UpperCAmelCase ( ) -> Union[str, Any]: UpperCamelCase__ : Optional[Any] = ( list(range(ord('!') , ord('~') + 1)) + list(range(ord('¡') , ord('¬') + 1)) + list(range(ord('®') , ord('ÿ') + 1)) ) UpperCamelCase__ : List[Any] = bs[:] UpperCamelCase__ : Optional[int] = 0 for b in range(2**8): if b not in bs: bs.append(lowerCamelCase_) cs.append(2**8 + n) n += 1 UpperCamelCase__ : Union[str, Any] = [chr(lowerCamelCase_) for n in cs] return dict(zip(lowerCamelCase_ , lowerCamelCase_)) def __UpperCAmelCase ( lowerCamelCase_) -> Tuple: UpperCamelCase__ : Any = set() UpperCamelCase__ : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char)) UpperCamelCase__ : str = char return pairs class __lowercase (__lowerCamelCase ): _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict="replace" , UpperCAmelCase_ : int="<s>" , UpperCAmelCase_ : Tuple="</s>" , UpperCAmelCase_ : Any="</s>" , UpperCAmelCase_ : List[Any]="<s>" , UpperCAmelCase_ : List[str]="<unk>" , UpperCAmelCase_ : Any="<pad>" , UpperCAmelCase_ : Optional[Any]="<mask>" , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : List[Any] , ): UpperCamelCase__ : Union[str, Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else bos_token UpperCamelCase__ : List[str] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else eos_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else sep_token UpperCamelCase__ : int = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else cls_token UpperCamelCase__ : Tuple = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else unk_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ : Any = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else mask_token super().__init__( errors=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , **UpperCAmelCase_ , ) with open(UpperCAmelCase_ , encoding='utf-8') as vocab_handle: UpperCamelCase__ : Any = json.load(UpperCAmelCase_) UpperCamelCase__ : Dict = {v: k for k, v in self.encoder.items()} UpperCamelCase__ : Any = errors # how to handle errors in decoding UpperCamelCase__ : Tuple = bytes_to_unicode() UpperCamelCase__ : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase_ , encoding='utf-8') as merges_handle: UpperCamelCase__ : List[Any] = merges_handle.read().split('\n')[1:-1] UpperCamelCase__ : List[Any] = [tuple(merge.split()) for merge in bpe_merges] UpperCamelCase__ : Any = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Dict = {} UpperCamelCase__ : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase__ : Any = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+') @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def __UpperCamelCase ( self : Tuple): return len(self.encoder) def __UpperCamelCase ( self : Tuple): return dict(self.encoder , **self.added_tokens_encoder) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Union[str, Any]): if token in self.cache: return self.cache[token] UpperCamelCase__ : Optional[int] = tuple(UpperCAmelCase_) UpperCamelCase__ : int = get_pairs(UpperCAmelCase_) if not pairs: return token while True: UpperCamelCase__ : Tuple = min(UpperCAmelCase_ , key=lambda UpperCAmelCase_: self.bpe_ranks.get(UpperCAmelCase_ , float('inf'))) if bigram not in self.bpe_ranks: break UpperCamelCase__, UpperCamelCase__ : Tuple = bigram UpperCamelCase__ : Dict = [] UpperCamelCase__ : Optional[int] = 0 while i < len(UpperCAmelCase_): try: UpperCamelCase__ : Tuple = word.index(UpperCAmelCase_ , UpperCAmelCase_) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) UpperCamelCase__ : Any = j if word[i] == first and i < len(UpperCAmelCase_) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 UpperCamelCase__ : List[str] = tuple(UpperCAmelCase_) UpperCamelCase__ : Dict = new_word if len(UpperCAmelCase_) == 1: break else: UpperCamelCase__ : Optional[int] = get_pairs(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_) UpperCamelCase__ : List[Any] = word return word def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Any): UpperCamelCase__ : Optional[Any] = [] for token in re.findall(self.pat , UpperCAmelCase_): UpperCamelCase__ : Optional[int] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase_).split(' ')) return bpe_tokens def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]): return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token)) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Optional[int]): return self.decoder.get(UpperCAmelCase_) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : int): UpperCamelCase__ : int = ''.join(UpperCAmelCase_) UpperCamelCase__ : Any = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8' , errors=self.errors) return text def __UpperCamelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None): if not os.path.isdir(UpperCAmelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase__ : str = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_) + '\n') UpperCamelCase__ : str = 0 with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase_: kv[1]): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!') UpperCamelCase__ : List[Any] = token_index writer.write(' '.join(UpperCAmelCase_) + '\n') index += 1 return vocab_file, merge_file def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase_)) + [1] return [1] + ([0] * len(UpperCAmelCase_)) + [1, 1] + ([0] * len(UpperCAmelCase_)) + [1] def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): UpperCamelCase__ : Any = [self.sep_token_id] UpperCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def __UpperCamelCase ( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : Optional[Any]): UpperCamelCase__ : Tuple = kwargs.pop('add_prefix_space' , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase_) > 0 and not text[0].isspace()): UpperCamelCase__ : str = ' ' + text return (text, kwargs) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): return token_ids_a + [self.eos_token_id] def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : "Conversation"): UpperCamelCase__ : List[str] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text) else: # Generated responses should contain them already. inputs.append(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_) UpperCamelCase__ : int = self.encode(UpperCAmelCase_) if len(UpperCAmelCase_) > self.model_max_length: UpperCamelCase__ : Optional[Any] = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.') return input_ids
6
0
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer _lowercase : Union[str, Any] = ['gpt2'] _lowercase : str = 'gpt2' if is_tf_available(): class _UpperCAmelCase ( tf.Module ): def __init__( self : Any , _lowercase : Union[str, Any] ): super().__init__() __UpperCAmelCase = tokenizer __UpperCAmelCase = AutoConfig.from_pretrained(__UpperCAmelCase ) __UpperCAmelCase = TFGPTaLMHeadModel.from_config(__UpperCAmelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='''text''' ),) ) def a ( self : Dict , _lowercase : Tuple ): __UpperCAmelCase = self.tokenizer(__UpperCAmelCase ) __UpperCAmelCase = tokenized['''input_ids'''].to_tensor() __UpperCAmelCase = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) __UpperCAmelCase = self.model(input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase )['''logits'''] return outputs @require_tf @require_keras_nlp class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Optional[int] ): super().setUp() __UpperCAmelCase = [GPTaTokenizer.from_pretrained(__UpperCAmelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] __UpperCAmelCase = [TFGPTaTokenizer.from_pretrained(__UpperCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __UpperCAmelCase = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] __UpperCAmelCase = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def a ( self : Optional[Any] ): for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: __UpperCAmelCase = tokenizer([test_inputs] , return_tensors='''tf''' ) __UpperCAmelCase = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors __UpperCAmelCase = python_outputs[key].numpy() __UpperCAmelCase = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(__UpperCAmelCase , tf.intaa ) == tf_outputs_values ) ) @slow def a ( self : Dict ): for tf_tokenizer in self.tf_tokenizers: __UpperCAmelCase = tf.function(__UpperCAmelCase ) for test_inputs in self.test_sentences: __UpperCAmelCase = tf.constant(__UpperCAmelCase ) __UpperCAmelCase = compiled_tokenizer(__UpperCAmelCase ) __UpperCAmelCase = tf_tokenizer(__UpperCAmelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def a ( self : Any ): for tf_tokenizer in self.tf_tokenizers: __UpperCAmelCase = ModelToSave(tokenizer=__UpperCAmelCase ) __UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __UpperCAmelCase = model.serving(__UpperCAmelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __UpperCAmelCase = Path(__UpperCAmelCase ) / '''saved.model''' tf.saved_model.save(__UpperCAmelCase , __UpperCAmelCase , signatures={'''serving_default''': model.serving} ) __UpperCAmelCase = tf.saved_model.load(__UpperCAmelCase ) __UpperCAmelCase = loaded_model.signatures['''serving_default'''](__UpperCAmelCase )['''output_0'''] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def a ( self : List[Any] ): for tf_tokenizer in self.tf_tokenizers: __UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __UpperCAmelCase = tf_tokenizer(__UpperCAmelCase ) # Build model with some sample inputs __UpperCAmelCase = tf_tokenizer.get_config() __UpperCAmelCase = TFGPTaTokenizer.from_config(__UpperCAmelCase ) __UpperCAmelCase = model_from_config(__UpperCAmelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def a ( self : Tuple ): for tf_tokenizer in self.tf_tokenizers: # for the test to run __UpperCAmelCase = 12_31_23 for max_length in [3, 5, 10_24]: __UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __UpperCAmelCase = tf_tokenizer(__UpperCAmelCase , max_length=__UpperCAmelCase ) __UpperCAmelCase = out['''input_ids'''].numpy().shape[1] assert out_length == max_length
49
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/config.json""", # See all BART models at https://huggingface.co/models?filter=bart } class _lowerCAmelCase ( _lowercase ): A__ = 'bart' A__ = ['past_key_values'] A__ = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , __UpperCAmelCase=5_0265 , __UpperCAmelCase=1024 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase="gelu" , __UpperCAmelCase=1024 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=0.0 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=2 , **__UpperCAmelCase , ): lowerCAmelCase__ : Union[str, Any] = vocab_size lowerCAmelCase__ : Optional[Any] = max_position_embeddings lowerCAmelCase__ : int = d_model lowerCAmelCase__ : str = encoder_ffn_dim lowerCAmelCase__ : Any = encoder_layers lowerCAmelCase__ : Dict = encoder_attention_heads lowerCAmelCase__ : Union[str, Any] = decoder_ffn_dim lowerCAmelCase__ : Union[str, Any] = decoder_layers lowerCAmelCase__ : Any = decoder_attention_heads lowerCAmelCase__ : Tuple = dropout lowerCAmelCase__ : Any = attention_dropout lowerCAmelCase__ : Any = activation_dropout lowerCAmelCase__ : Optional[Any] = activation_function lowerCAmelCase__ : Union[str, Any] = init_std lowerCAmelCase__ : Union[str, Any] = encoder_layerdrop lowerCAmelCase__ : int = decoder_layerdrop lowerCAmelCase__ : Optional[int] = classifier_dropout lowerCAmelCase__ : str = use_cache lowerCAmelCase__ : int = encoder_layers lowerCAmelCase__ : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , forced_eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , __UpperCAmelCase ): lowerCAmelCase__ : str = self.bos_token_id warnings.warn( f"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ '''The config can simply be saved and uploaded again to be fixed.''' ) class _lowerCAmelCase ( _lowercase ): @property def __magic_name__( self ): if self.task in ["default", "seq2seq-lm"]: lowerCAmelCase__ : Tuple = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: lowerCAmelCase__ : Any = {0: '''batch'''} lowerCAmelCase__ : Tuple = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: lowerCAmelCase__ : Optional[int] = {0: '''batch''', 1: '''decoder_sequence'''} lowerCAmelCase__ : Optional[Any] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. lowerCAmelCase__ : List[str] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: lowerCAmelCase__ , lowerCAmelCase__ : Tuple = self.num_layers for i in range(__UpperCAmelCase ): lowerCAmelCase__ : int = {0: '''batch''', 2: '''past_sequence + sequence'''} lowerCAmelCase__ : Union[str, Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} else: lowerCAmelCase__ : List[str] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def __magic_name__( self ): if self.task in ["default", "seq2seq-lm"]: lowerCAmelCase__ : Dict = super().outputs else: lowerCAmelCase__ : Any = super(__UpperCAmelCase , self ).outputs if self.use_past: lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.num_layers for i in range(__UpperCAmelCase ): lowerCAmelCase__ : List[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} lowerCAmelCase__ : Optional[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ): lowerCAmelCase__ : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Generate decoder inputs lowerCAmelCase__ : int = seq_length if not self.use_past else 1 lowerCAmelCase__ : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = {f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} lowerCAmelCase__ : str = dict(**__UpperCAmelCase , **__UpperCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = common_inputs['''input_ids'''].shape lowerCAmelCase__ : List[str] = common_inputs['''decoder_input_ids'''].shape[1] lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.num_attention_heads lowerCAmelCase__ : Any = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCAmelCase__ : List[Any] = decoder_seq_length + 3 lowerCAmelCase__ : Any = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowerCAmelCase__ : Any = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase )] , dim=1 ) lowerCAmelCase__ : List[str] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowerCAmelCase__ , lowerCAmelCase__ : Any = self.num_layers lowerCAmelCase__ : Union[str, Any] = min(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ : Any = max(__UpperCAmelCase , __UpperCAmelCase ) - min_num_layers lowerCAmelCase__ : Dict = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(__UpperCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase ), ) ) # TODO: test this. lowerCAmelCase__ : Any = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(__UpperCAmelCase , __UpperCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) ) return common_inputs def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ): lowerCAmelCase__ : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowerCAmelCase__ , lowerCAmelCase__ : Any = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowerCAmelCase__ : List[str] = seqlen + 2 lowerCAmelCase__ , lowerCAmelCase__ : int = self.num_layers lowerCAmelCase__ , lowerCAmelCase__ : Tuple = self.num_attention_heads lowerCAmelCase__ : Optional[Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCAmelCase__ : Optional[Any] = common_inputs['''attention_mask'''].dtype lowerCAmelCase__ : List[Any] = torch.cat( [common_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 ) lowerCAmelCase__ : List[Any] = [ (torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(__UpperCAmelCase ) ] return common_inputs def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowerCAmelCase__ : Tuple = compute_effective_axis_dimension( __UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCAmelCase__ : Optional[Any] = tokenizer.num_special_tokens_to_add(__UpperCAmelCase ) lowerCAmelCase__ : int = compute_effective_axis_dimension( __UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence lowerCAmelCase__ : Optional[int] = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size lowerCAmelCase__ : str = dict(tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase ) ) return common_inputs def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ): if self.task in ["default", "seq2seq-lm"]: lowerCAmelCase__ : Union[str, Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) elif self.task == "causal-lm": lowerCAmelCase__ : List[str] = self._generate_dummy_inputs_for_causal_lm( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) else: lowerCAmelCase__ : Optional[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) return common_inputs def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if self.task in ["default", "seq2seq-lm"]: lowerCAmelCase__ : Any = super()._flatten_past_key_values_(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: lowerCAmelCase__ : Dict = super(__UpperCAmelCase , self )._flatten_past_key_values_( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
678
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = SwinvaConfig() _snake_case = swinva_name.split("_" ) _snake_case = name_split[1] if "to" in name_split[3]: _snake_case = int(name_split[3][-3:] ) else: _snake_case = int(name_split[3] ) if "to" in name_split[2]: _snake_case = int(name_split[2][-2:] ) else: _snake_case = int(name_split[2][6:] ) if model_size == "tiny": _snake_case = 96 _snake_case = (2, 2, 6, 2) _snake_case = (3, 6, 12, 24) elif model_size == "small": _snake_case = 96 _snake_case = (2, 2, 18, 2) _snake_case = (3, 6, 12, 24) elif model_size == "base": _snake_case = 1_28 _snake_case = (2, 2, 18, 2) _snake_case = (4, 8, 16, 32) else: _snake_case = 1_92 _snake_case = (2, 2, 18, 2) _snake_case = (6, 12, 24, 48) if "to" in swinva_name: _snake_case = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): _snake_case = 2_18_41 _snake_case = "huggingface/label-files" _snake_case = "imagenet-22k-id2label.json" _snake_case = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type="dataset" ) , "r" ) ) _snake_case = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} else: _snake_case = 10_00 _snake_case = "huggingface/label-files" _snake_case = "imagenet-1k-id2label.json" _snake_case = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type="dataset" ) , "r" ) ) _snake_case = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} _snake_case = img_size _snake_case = num_classes _snake_case = embed_dim _snake_case = depths _snake_case = num_heads _snake_case = window_size return config def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if "patch_embed.proj" in name: _snake_case = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: _snake_case = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: _snake_case = "encoder." + name if "attn.proj" in name: _snake_case = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: _snake_case = name.replace("attn" , "attention.self" ) if "norm1" in name: _snake_case = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: _snake_case = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: _snake_case = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: _snake_case = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: _snake_case = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: _snake_case = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: _snake_case = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: _snake_case = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if name == "norm.weight": _snake_case = "layernorm.weight" if name == "norm.bias": _snake_case = "layernorm.bias" if "head" in name: _snake_case = name.replace("head" , "classifier" ) else: _snake_case = "swinv2." + name return name def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): _snake_case = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "mask" in key: continue elif "qkv" in key: _snake_case = key.split("." ) _snake_case = int(key_split[1] ) _snake_case = int(key_split[3] ) _snake_case = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _snake_case = val[:dim, :] _snake_case = val[dim : dim * 2, :] _snake_case = val[-dim:, :] else: _snake_case = val[:dim] _snake_case = val[ dim : dim * 2 ] _snake_case = val[-dim:] else: _snake_case = val return orig_state_dict def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = timm.create_model(SCREAMING_SNAKE_CASE__ , pretrained=SCREAMING_SNAKE_CASE__ ) timm_model.eval() _snake_case = get_swinva_config(SCREAMING_SNAKE_CASE__ ) _snake_case = SwinvaForImageClassification(SCREAMING_SNAKE_CASE__ ) model.eval() _snake_case = convert_state_dict(timm_model.state_dict() , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case = "http://images.cocodataset.org/val2017/000000039769.jpg" _snake_case = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_" , "-" ) ) ) _snake_case = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) _snake_case = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="pt" ) _snake_case = timm_model(inputs["pixel_values"] ) _snake_case = model(**SCREAMING_SNAKE_CASE__ ).logits assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) print(f'''Saving model {swinva_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) model.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , organization="nandwalritik" , commit_message="Add model" , ) if __name__ == "__main__": __magic_name__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swinv2_name""", default="""swinv2_tiny_patch4_window8_256""", type=str, help="""Name of the Swinv2 timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) __magic_name__ : str = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
368
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=3 , lowerCamelCase=30 , lowerCamelCase=400 , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=[0.5, 0.5, 0.5] , lowerCamelCase=[0.5, 0.5, 0.5] , lowerCamelCase=True , lowerCamelCase=1 / 255 , lowerCamelCase=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _snake_case = size if size is not None else {"shortest_edge": 18, "longest_edge": 1_333} _snake_case = parent _snake_case = batch_size _snake_case = num_channels _snake_case = min_resolution _snake_case = max_resolution _snake_case = do_resize _snake_case = size _snake_case = do_normalize _snake_case = image_mean _snake_case = image_std _snake_case = do_rescale _snake_case = rescale_factor _snake_case = do_pad def UpperCamelCase( self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase( self , lowerCamelCase , lowerCamelCase=False ): if not batched: _snake_case = image_inputs[0] if isinstance(lowerCamelCase , Image.Image ): _snake_case , _snake_case = image.size else: _snake_case , _snake_case = image.shape[1], image.shape[2] if w < h: _snake_case = int(self.size["shortest_edge"] * h / w ) _snake_case = self.size["shortest_edge"] elif w > h: _snake_case = self.size["shortest_edge"] _snake_case = int(self.size["shortest_edge"] * w / h ) else: _snake_case = self.size["shortest_edge"] _snake_case = self.size["shortest_edge"] else: _snake_case = [] for image in image_inputs: _snake_case , _snake_case = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _snake_case = max(lowerCamelCase , key=lambda lowerCamelCase : item[0] )[0] _snake_case = max(lowerCamelCase , key=lambda lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = DetaImageProcessor if is_vision_available() else None def UpperCamelCase( self ): _snake_case = DetaImageProcessingTester(self ) @property def UpperCamelCase( self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase( self ): _snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(lowerCamelCase , "image_std" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_rescale" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_pad" ) ) self.assertTrue(hasattr(lowerCamelCase , "size" ) ) def UpperCamelCase( self ): _snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1_333} ) self.assertEqual(image_processor.do_pad , lowerCamelCase ) def UpperCamelCase( self ): pass def UpperCamelCase( self ): # Initialize image_processing _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input _snake_case = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _snake_case , _snake_case = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) _snake_case = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase( self ): # Initialize image_processing _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input _snake_case = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _snake_case , _snake_case = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values _snake_case , _snake_case = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase( self ): # Initialize image_processing _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input _snake_case = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _snake_case , _snake_case = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values _snake_case , _snake_case = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCamelCase( self ): # prepare image and target _snake_case = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: _snake_case = json.loads(f.read() ) _snake_case = {"image_id": 39_769, "annotations": target} # encode them _snake_case = DetaImageProcessor() _snake_case = image_processing(images=lowerCamelCase , annotations=lowerCamelCase , return_tensors="pt" ) # verify pixel values _snake_case = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["pixel_values"].shape , lowerCamelCase ) _snake_case = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCamelCase , atol=1e-4 ) ) # verify area _snake_case = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCamelCase ) ) # verify boxes _snake_case = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCamelCase ) _snake_case = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCamelCase , atol=1e-3 ) ) # verify image_id _snake_case = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCamelCase ) ) # verify is_crowd _snake_case = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCamelCase ) ) # verify class_labels _snake_case = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCamelCase ) ) # verify orig_size _snake_case = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCamelCase ) ) # verify size _snake_case = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCamelCase ) ) @slow def UpperCamelCase( self ): # prepare image, target and masks_path _snake_case = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: _snake_case = json.loads(f.read() ) _snake_case = {"file_name": "000000039769.png", "image_id": 39_769, "segments_info": target} _snake_case = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them _snake_case = DetaImageProcessor(format="coco_panoptic" ) _snake_case = image_processing(images=lowerCamelCase , annotations=lowerCamelCase , masks_path=lowerCamelCase , return_tensors="pt" ) # verify pixel values _snake_case = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["pixel_values"].shape , lowerCamelCase ) _snake_case = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCamelCase , atol=1e-4 ) ) # verify area _snake_case = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCamelCase ) ) # verify boxes _snake_case = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCamelCase ) _snake_case = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCamelCase , atol=1e-3 ) ) # verify image_id _snake_case = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCamelCase ) ) # verify is_crowd _snake_case = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCamelCase ) ) # verify class_labels _snake_case = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCamelCase ) ) # verify masks _snake_case = 822_873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , lowerCamelCase ) # verify orig_size _snake_case = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCamelCase ) ) # verify size _snake_case = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCamelCase ) )
368
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCamelCase : Optional[Any] = {"""configuration_yolos""": ["""YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """YolosConfig""", """YolosOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : str = ["""YolosFeatureExtractor"""] _lowerCamelCase : Any = ["""YolosImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = [ """YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST""", """YolosForObjectDetection""", """YolosModel""", """YolosPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys _lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
87
'''simple docstring''' from functools import lru_cache @lru_cache def snake_case__ ( _A: int ) -> int: '''simple docstring''' if num < 0: raise ValueError("""Number should not be negative.""" ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
370
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase__ = { '''configuration_resnet''': ['''RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ResNetConfig''', '''ResNetOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ResNetForImageClassification''', '''ResNetModel''', '''ResNetPreTrainedModel''', '''ResNetBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFResNetForImageClassification''', '''TFResNetModel''', '''TFResNetPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''FlaxResNetForImageClassification''', '''FlaxResNetModel''', '''FlaxResNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
624
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase_ (lowerCamelCase__ ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowercase__ ,'''embed_dim''' ) ) self.parent.assertTrue(hasattr(lowercase__ ,'''num_heads''' ) ) class lowercase_ : """simple docstring""" def __init__( self : Optional[Any] ,lowercase__ : Optional[int] ,lowercase__ : Optional[int]=1_3 ,lowercase__ : List[Any]=6_4 ,lowercase__ : Optional[int]=3 ,lowercase__ : Dict=[1_6, 4_8, 9_6] ,lowercase__ : Optional[Any]=[1, 3, 6] ,lowercase__ : Tuple=[1, 2, 1_0] ,lowercase__ : Optional[int]=[7, 3, 3] ,lowercase__ : str=[4, 2, 2] ,lowercase__ : Dict=[2, 1, 1] ,lowercase__ : Tuple=[2, 2, 2] ,lowercase__ : Tuple=[False, False, True] ,lowercase__ : int=[0.0, 0.0, 0.0] ,lowercase__ : str=0.0_2 ,lowercase__ : Union[str, Any]=1e-1_2 ,lowercase__ : Optional[int]=True ,lowercase__ : Union[str, Any]=True ,lowercase__ : Optional[Any]=2 ,): __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_sizes __lowercase = patch_stride __lowercase = patch_padding __lowercase = is_training __lowercase = use_labels __lowercase = num_labels __lowercase = num_channels __lowercase = embed_dim __lowercase = num_heads __lowercase = stride_kv __lowercase = depth __lowercase = cls_token __lowercase = attention_drop_rate __lowercase = initializer_range __lowercase = layer_norm_eps def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : str ): return CvtConfig( image_size=self.image_size ,num_labels=self.num_labels ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,num_heads=self.num_heads ,patch_sizes=self.patch_sizes ,patch_padding=self.patch_padding ,patch_stride=self.patch_stride ,stride_kv=self.stride_kv ,depth=self.depth ,cls_token=self.cls_token ,attention_drop_rate=self.attention_drop_rate ,initializer_range=self.initializer_range ,) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : Any ,lowercase__ : List[str] ): __lowercase = CvtModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ) __lowercase = (self.image_size, self.image_size) __lowercase , __lowercase = image_size[0], image_size[1] for i in range(len(self.depth ) ): __lowercase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) __lowercase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.embed_dim[-1], height, width) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Any ,lowercase__ : List[Any] ,lowercase__ : Dict ): __lowercase = self.num_labels __lowercase = CvtForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = (CvtModel, CvtForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE : Optional[int] = ( {'feature-extraction': CvtModel, 'image-classification': CvtForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : str = False def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = CvtModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ,has_text_modality=lowercase__ ,hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE ( self : str ): return @unittest.skip(reason='''Cvt does not output attentions''' ) def SCREAMING_SNAKE_CASE ( self : Any ): pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE ( self : Any ): pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE ( self : str ): pass def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowercase__ ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ): def check_hidden_states_output(lowercase__ : Union[str, Any] ,lowercase__ : Union[str, Any] ,lowercase__ : str ): __lowercase = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowercase__ ,lowercase__ ) ) __lowercase = outputs.hidden_states __lowercase = len(self.model_tester.depth ) self.assertEqual(len(lowercase__ ) ,lowercase__ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) ,[ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] ,) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(lowercase__ ,lowercase__ ,lowercase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(lowercase__ ,lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE ( self : Any ): pass @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ): for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = CvtModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) def _A ( ): """simple docstring""" __lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowercase_ (unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowercase__ ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=lowercase__ ,return_tensors='''pt''' ).to(lowercase__ ) # forward pass with torch.no_grad(): __lowercase = model(**lowercase__ ) # verify the logits __lowercase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape ,lowercase__ ) __lowercase = torch.tensor([0.9_2_8_5, 0.9_0_1_5, -0.3_1_5_0] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowercase__ ,atol=1e-4 ) )
624
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class a__ ( __magic_name__ ): lowercase_ = "realm" def __init__( self : List[str] , UpperCamelCase_ : int=30522 , UpperCamelCase_ : List[str]=768 , UpperCamelCase_ : Optional[Any]=128 , UpperCamelCase_ : Any=12 , UpperCamelCase_ : Optional[int]=12 , UpperCamelCase_ : Dict=8 , UpperCamelCase_ : Any=3072 , UpperCamelCase_ : Any="gelu_new" , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Optional[int]=0.1 , UpperCamelCase_ : Optional[Any]=512 , UpperCamelCase_ : int=2 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : Optional[int]=1e-12 , UpperCamelCase_ : Optional[int]=256 , UpperCamelCase_ : Optional[int]=10 , UpperCamelCase_ : Any=1e-3 , UpperCamelCase_ : Optional[Any]=5 , UpperCamelCase_ : List[Any]=320 , UpperCamelCase_ : Tuple=13353718 , UpperCamelCase_ : Optional[Any]=5000 , UpperCamelCase_ : Union[str, Any]=1 , UpperCamelCase_ : Optional[int]=0 , UpperCamelCase_ : Union[str, Any]=2 , **UpperCamelCase_ : Dict , ): """simple docstring""" super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_) # Common config __UpperCAmelCase : str = vocab_size __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : int = hidden_size __UpperCAmelCase : Tuple = retriever_proj_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : int = num_candidates __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : int = hidden_act __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Dict = layer_norm_eps # Reader config __UpperCAmelCase : Union[str, Any] = span_hidden_size __UpperCAmelCase : str = max_span_width __UpperCAmelCase : Union[str, Any] = reader_layer_norm_eps __UpperCAmelCase : str = reader_beam_size __UpperCAmelCase : Any = reader_seq_len # Retrieval config __UpperCAmelCase : Dict = num_block_records __UpperCAmelCase : List[str] = searcher_beam_size
77
"""simple docstring""" import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( _a , unittest.TestCase ): _a = GPTSwaTokenizer _a = False _a = True _a = False def __lowercase ( self : Tuple ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase = GPTSwaTokenizer(lowerCAmelCase , eos_token="""<unk>""" , bos_token="""<unk>""" , pad_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self : Union[str, Any] , lowerCAmelCase : Tuple ): lowerCAmelCase = """This is a test""" lowerCAmelCase = """This is a test""" return input_text, output_text def __lowercase ( self : List[Any] ): lowerCAmelCase = """<s>""" lowerCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase ) , lowerCAmelCase ) def __lowercase ( self : Any ): lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(lowerCAmelCase ) , 2000 ) def __lowercase ( self : Tuple ): self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def __lowercase ( self : Union[str, Any] ): lowerCAmelCase = GPTSwaTokenizer(lowerCAmelCase ) lowerCAmelCase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [465, 287, 265, 631, 842] ) lowerCAmelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) # fmt: off self.assertListEqual( lowerCAmelCase , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] , ) # fmt: on lowerCAmelCase = tokenizer.convert_tokens_to_ids(lowerCAmelCase ) self.assertListEqual( lowerCAmelCase , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) lowerCAmelCase = tokenizer.convert_ids_to_tokens(lowerCAmelCase ) # fmt: off self.assertListEqual( lowerCAmelCase , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ) # fmt: on def __lowercase ( self : int ): lowerCAmelCase = GPTSwaTokenizer(lowerCAmelCase ) lowerCAmelCase = ["""This is a test""", """I was born in 92000, and this is falsé."""] lowerCAmelCase = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(lowerCAmelCase , lowerCAmelCase ): self.assertListEqual(tokenizer.encode_fast(lowerCAmelCase ) , lowerCAmelCase ) # Test that decode_fast returns the input text for text, token_ids in zip(lowerCAmelCase , lowerCAmelCase ): self.assertEqual(tokenizer.decode_fast(lowerCAmelCase ) , lowerCAmelCase ) @slow def __lowercase ( self : Any ): lowerCAmelCase = [ """<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')""", """Hey there, how are you doing this fine day?""", """This is a text with a trailing spaces followed by a dot .""", """Häj sväjs lillebrör! =)""", """Det är inget fel på Mr. Cool""", ] # fmt: off lowerCAmelCase = {"""input_ids""": [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase , model_name="""AI-Sweden/gpt-sw3-126m""" , sequences=lowerCAmelCase , )
169
0
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch __snake_case : Tuple = logging.get_logger(__name__) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['''pixel_values'''] def __init__( self: str , _SCREAMING_SNAKE_CASE: List[str] = True , _SCREAMING_SNAKE_CASE: Union[str, Any] = None , _SCREAMING_SNAKE_CASE: Dict = PILImageResampling.BILINEAR , _SCREAMING_SNAKE_CASE: int = True , _SCREAMING_SNAKE_CASE: List[str] = 1 / 255 , _SCREAMING_SNAKE_CASE: Union[str, Any] = True , _SCREAMING_SNAKE_CASE: Union[str, Any] = None , _SCREAMING_SNAKE_CASE: List[str] = True , **_SCREAMING_SNAKE_CASE: Tuple , ) -> int: """simple docstring""" super().__init__(**A__) __lowerCAmelCase : Dict = size if size is not None else {"""shortest_edge""": 224} __lowerCAmelCase : Dict = get_size_dict(A__ , default_to_square=A__) __lowerCAmelCase : List[str] = crop_size if crop_size is not None else {"""height""": 256, """width""": 256} __lowerCAmelCase : List[str] = get_size_dict(A__ , param_name="crop_size") __lowerCAmelCase : str = do_resize __lowerCAmelCase : str = size __lowerCAmelCase : Optional[Any] = resample __lowerCAmelCase : Optional[Any] = do_rescale __lowerCAmelCase : str = rescale_factor __lowerCAmelCase : Optional[Any] = do_center_crop __lowerCAmelCase : Dict = crop_size __lowerCAmelCase : Optional[Any] = do_flip_channel_order def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: str = PIL.Image.BILINEAR , _SCREAMING_SNAKE_CASE: int = None , **_SCREAMING_SNAKE_CASE: List[str] , ) -> Any: """simple docstring""" __lowerCAmelCase : Any = get_size_dict(A__ , default_to_square=A__) if "shortest_edge" not in size: raise ValueError(F"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""") __lowerCAmelCase : Union[str, Any] = get_resize_output_image_size(A__ , size=size["shortest_edge"] , default_to_square=A__) return resize(A__ , size=A__ , resample=A__ , data_format=A__ , **A__) def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: List[Any] = None , **_SCREAMING_SNAKE_CASE: Dict , ) -> Tuple: """simple docstring""" __lowerCAmelCase : Optional[Any] = get_size_dict(A__) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""") return center_crop(A__ , size=(size["height"], size["width"]) , data_format=A__ , **A__) def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: List[str] = None , **_SCREAMING_SNAKE_CASE: int , ) -> Dict: """simple docstring""" return rescale(A__ , scale=A__ , data_format=A__ , **A__) def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Any = None) -> Any: """simple docstring""" return flip_channel_order(A__ , data_format=A__) def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] = None , _SCREAMING_SNAKE_CASE: Union[str, Any] = None , _SCREAMING_SNAKE_CASE: Union[str, Any] = None , _SCREAMING_SNAKE_CASE: Tuple = None , _SCREAMING_SNAKE_CASE: Any = None , _SCREAMING_SNAKE_CASE: List[Any] = None , _SCREAMING_SNAKE_CASE: List[str] = None , _SCREAMING_SNAKE_CASE: Optional[int] = None , _SCREAMING_SNAKE_CASE: str = None , _SCREAMING_SNAKE_CASE: Optional[int] = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE: Union[str, Any] , ) -> List[str]: """simple docstring""" __lowerCAmelCase : List[str] = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase : Union[str, Any] = resample if resample is not None else self.resample __lowerCAmelCase : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase : int = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase : Union[str, Any] = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) __lowerCAmelCase : Union[str, Any] = size if size is not None else self.size __lowerCAmelCase : Any = get_size_dict(A__ , default_to_square=A__) __lowerCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase : List[Any] = get_size_dict(A__ , param_name="crop_size") __lowerCAmelCase : Dict = make_list_of_images(A__) if not valid_images(A__): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True.") # All transformations expect numpy arrays. __lowerCAmelCase : str = [to_numpy_array(A__) for image in images] if do_resize: __lowerCAmelCase : Optional[Any] = [self.resize(image=A__ , size=A__ , resample=A__) for image in images] if do_center_crop: __lowerCAmelCase : Dict = [self.center_crop(image=A__ , size=A__) for image in images] if do_rescale: __lowerCAmelCase : int = [self.rescale(image=A__ , scale=A__) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: __lowerCAmelCase : List[Any] = [self.flip_channel_order(image=A__) for image in images] __lowerCAmelCase : Any = [to_channel_dimension_format(A__ , A__) for image in images] __lowerCAmelCase : Any = {"""pixel_values""": images} return BatchFeature(data=A__ , tensor_type=A__) def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: List[str] = None) -> List[Any]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A__) != len(A__): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits") if is_torch_tensor(A__): __lowerCAmelCase : Tuple = target_sizes.numpy() __lowerCAmelCase : List[Any] = [] for idx in range(len(A__)): __lowerCAmelCase : Optional[Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode="bilinear" , align_corners=A__) __lowerCAmelCase : List[Any] = resized_logits[0].argmax(dim=0) semantic_segmentation.append(A__) else: __lowerCAmelCase : int = logits.argmax(dim=1) __lowerCAmelCase : Any = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
720
"""simple docstring""" import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def _lowercase ( __snake_case ) -> Tuple: __lowerCAmelCase : Dict = [ "decoder.version", "decoder.output_projection.weight", "_float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(__snake_case ,__snake_case ) def _lowercase ( __snake_case ) -> List[str]: __lowerCAmelCase , __lowerCAmelCase : List[Any] = emb.weight.shape __lowerCAmelCase : str = nn.Linear(__snake_case ,__snake_case ,bias=__snake_case ) __lowerCAmelCase : Optional[int] = emb.weight.data return lin_layer def _lowercase ( __snake_case ) -> Any: __lowerCAmelCase : List[str] = torch.load(__snake_case ,map_location="cpu" ) __lowerCAmelCase : Dict = Namespace(**checkpoint["cfg"]["model"] ) __lowerCAmelCase : Dict = checkpoint["model"] remove_ignore_keys_(__snake_case ) __lowerCAmelCase : Dict = state_dict["decoder.embed_tokens.weight"].shape[0] __lowerCAmelCase : Optional[int] = {key.replace("decoder" ,"model" ): val for key, val in state_dict.items()} __lowerCAmelCase : List[Any] = XGLMConfig( vocab_size=__snake_case ,max_position_embeddings=args.max_target_positions ,num_layers=args.decoder_layers ,attention_heads=args.decoder_attention_heads ,ffn_dim=args.decoder_ffn_embed_dim ,d_model=args.decoder_embed_dim ,layerdrop=args.decoder_layerdrop ,dropout=args.dropout ,attention_dropout=args.attention_dropout ,activation_dropout=args.activation_dropout ,activation_function="gelu" ,scale_embedding=not args.no_scale_embedding ,tie_word_embeddings=args.share_decoder_input_output_embed ,) __lowerCAmelCase : Union[str, Any] = XGLMForCausalLM(__snake_case ) __lowerCAmelCase : Tuple = model.load_state_dict(__snake_case ,strict=__snake_case ) print(__snake_case ) __lowerCAmelCase : List[str] = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": __snake_case : str = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') __snake_case : Optional[Any] = parser.parse_args() __snake_case : Optional[Any] = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
615
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class A ( _a ): lowercase_ = 42 lowercase_ = 42 lowercase_ = None class A ( _a ,_a ): lowercase_ = 2 @register_to_config def __init__( self : Dict , lowerCAmelCase_ : float = 0.0_2 , lowerCAmelCase_ : float = 1_00 , lowerCAmelCase_ : float = 1.0_0_7 , lowerCAmelCase_ : float = 80 , lowerCAmelCase_ : float = 0.0_5 , lowerCAmelCase_ : float = 50 , ) -> Tuple: """simple docstring""" _a = sigma_max # setable values _a = None _a = None _a = None # sigma(t_i) def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Optional[int] = None ) -> torch.FloatTensor: """simple docstring""" return sample def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, torch.device] = None ) -> List[str]: """simple docstring""" _a = num_inference_steps _a = np.arange(0 , self.num_inference_steps )[::-1].copy() _a = torch.from_numpy(lowerCAmelCase_ ).to(lowerCAmelCase_ ) _a = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] _a = torch.tensor(lowerCAmelCase_ , dtype=torch.floataa , device=lowerCAmelCase_ ) def __lowerCAmelCase ( self : Dict , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : float , lowerCAmelCase_ : Optional[torch.Generator] = None ) -> Tuple[torch.FloatTensor, float]: """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: _a = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: _a = 0 # sample eps ~ N(0, S_noise^2 * I) _a = self.config.s_noise * randn_tensor(sample.shape , generator=lowerCAmelCase_ ).to(sample.device ) _a = sigma + gamma * sigma _a = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : float , lowerCAmelCase_ : float , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True , ) -> Union[KarrasVeOutput, Tuple]: """simple docstring""" _a = sample_hat + sigma_hat * model_output _a = (sample_hat - pred_original_sample) / sigma_hat _a = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=lowerCAmelCase_ , derivative=lowerCAmelCase_ , pred_original_sample=lowerCAmelCase_ ) def __lowerCAmelCase ( self : Dict , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : float , lowerCAmelCase_ : float , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True , ) -> Union[KarrasVeOutput, Tuple]: """simple docstring""" _a = sample_prev + sigma_prev * model_output _a = (sample_prev - pred_original_sample) / sigma_prev _a = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=lowerCAmelCase_ , derivative=lowerCAmelCase_ , pred_original_sample=lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] ) -> List[str]: """simple docstring""" raise NotImplementedError()
22
"""simple docstring""" from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> list[float]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = coefficient_matrix.shape SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = constant_matrix.shape if rowsa != colsa: SCREAMING_SNAKE_CASE__ : Tuple = F'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}''' raise ValueError(__lowerCAmelCase ) if colsa != 1: SCREAMING_SNAKE_CASE__ : str = F'''Constant matrix must be nx1 but received {rowsa}x{colsa}''' raise ValueError(__lowerCAmelCase ) if rowsa != rowsa: SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ F'''received {rowsa}x{colsa} and {rowsa}x{colsa}''' ) raise ValueError(__lowerCAmelCase ) if len(__lowerCAmelCase ) != rowsa: SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( """Number of initial values must be equal to number of rows in coefficient """ F'''matrix but received {len(__lowerCAmelCase )} and {rowsa}''' ) raise ValueError(__lowerCAmelCase ) if iterations <= 0: raise ValueError("""Iterations must be at least 1""" ) SCREAMING_SNAKE_CASE__ : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = table.shape strictly_diagonally_dominant(__lowerCAmelCase ) # Iterates the whole matrix for given number of times for _ in range(__lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : Any = [] for row in range(__lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : List[str] = 0 for col in range(__lowerCAmelCase ): if col == row: SCREAMING_SNAKE_CASE__ : int = table[row][col] elif col == cols - 1: SCREAMING_SNAKE_CASE__ : Optional[Any] = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] SCREAMING_SNAKE_CASE__ : Any = (temp + val) / denom new_val.append(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = new_val return [float(__lowerCAmelCase ) for i in new_val] def _lowercase ( __lowerCAmelCase ) -> bool: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = table.shape SCREAMING_SNAKE_CASE__ : str = True for i in range(0 , __lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : str = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
680
0
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=1E-12 ): '''simple docstring''' lowerCamelCase : Dict = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(SCREAMING_SNAKE_CASE_ , axis=1 ) , a_min=SCREAMING_SNAKE_CASE_ ) ).T lowerCamelCase : str = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(SCREAMING_SNAKE_CASE_ , axis=1 ) , a_min=SCREAMING_SNAKE_CASE_ ) ).T return jnp.matmul(SCREAMING_SNAKE_CASE_ , norm_emb_a.T ) class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' __A : CLIPConfig __A : jnp.dtype = jnp.floataa def _snake_case ( self ): """simple docstring""" lowerCamelCase : Dict = FlaxCLIPVisionModule(self.config.vision_config ) lowerCamelCase : Union[str, Any] = nn.Dense(self.config.projection_dim , use_bias=__A , dtype=self.dtype ) lowerCamelCase : Optional[Any] = self.param("concept_embeds" , jax.nn.initializers.ones , (17, self.config.projection_dim) ) lowerCamelCase : Union[str, Any] = self.param( "special_care_embeds" , jax.nn.initializers.ones , (3, self.config.projection_dim) ) lowerCamelCase : List[Any] = self.param("concept_embeds_weights" , jax.nn.initializers.ones , (17,) ) lowerCamelCase : str = self.param("special_care_embeds_weights" , jax.nn.initializers.ones , (3,) ) def __call__( self , __A ): """simple docstring""" lowerCamelCase : Optional[Any] = self.vision_model(__A )[1] lowerCamelCase : int = self.visual_projection(__A ) lowerCamelCase : Optional[int] = jax_cosine_distance(__A , self.special_care_embeds ) lowerCamelCase : Optional[Any] = jax_cosine_distance(__A , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs lowerCamelCase : Any = 0.0 lowerCamelCase : str = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment lowerCamelCase : int = jnp.round(__A , 3 ) lowerCamelCase : Union[str, Any] = jnp.any(special_scores > 0 , axis=1 , keepdims=__A ) # Use a lower threshold if an image has any special care concept lowerCamelCase : Optional[int] = is_special_care * 0.01 lowerCamelCase : List[Any] = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment lowerCamelCase : Any = jnp.round(__A , 3 ) lowerCamelCase : Optional[int] = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : Union[str, Any] = CLIPConfig __A : Optional[int] = "clip_input" __A : int = FlaxStableDiffusionSafetyCheckerModule def __init__( self , __A , __A = None , __A = 0 , __A = jnp.floataa , __A = True , **__A , ): """simple docstring""" if input_shape is None: lowerCamelCase : int = (1, 224, 224, 3) lowerCamelCase : Union[str, Any] = self.module_class(config=__A , dtype=__A , **__A ) super().__init__(__A , __A , input_shape=__A , seed=__A , dtype=__A , _do_init=_do_init ) def _snake_case ( self , __A , __A , __A = None ): """simple docstring""" lowerCamelCase : List[str] = jax.random.normal(__A , __A ) lowerCamelCase : List[str] = jax.random.split(__A ) lowerCamelCase : Tuple = {"params": params_rng, "dropout": dropout_rng} lowerCamelCase : int = self.module.init(__A , __A )["params"] return random_params def __call__( self , __A , __A = None , ): """simple docstring""" lowerCamelCase : Union[str, Any] = jnp.transpose(__A , (0, 2, 3, 1) ) return self.module.apply( {"params": params or self.params} , jnp.array(__A , dtype=jnp.floataa ) , rngs={} , )
717
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) _snake_case = {'''configuration_beit''': ['''BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BeitConfig''', '''BeitOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''BeitFeatureExtractor'''] _snake_case = ['''BeitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''BEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BeitForImageClassification''', '''BeitForMaskedImageModeling''', '''BeitForSemanticSegmentation''', '''BeitModel''', '''BeitPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''FlaxBeitForImageClassification''', '''FlaxBeitForMaskedImageModeling''', '''FlaxBeitModel''', '''FlaxBeitPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
231
0
import enum import shutil import sys UpperCAmelCase__ = shutil.get_terminal_size() UpperCAmelCase__ = {'''UP''': '''A''', '''DOWN''': '''B''', '''RIGHT''': '''C''', '''LEFT''': '''D'''} class lowercase_ ( enum.Enum ): '''simple docstring''' __snake_case = 0 __snake_case = 1 def _a ( a :Optional[Any] , a :List[str]="" ) -> Any: sys.stdout.write(str(a__ ) + end ) sys.stdout.flush() def _a ( a :Union[str, Any] , a :int , a :Union[str, Any]="" ) -> List[Any]: forceWrite(F"""\u001b[{color}m{content}\u001b[0m""" , a__ ) def _a ( ) -> List[str]: forceWrite('''\r''' ) def _a ( a :Optional[Any] , a :Optional[int] ) -> List[str]: forceWrite(F"""\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}""" ) def _a ( ) -> Dict: forceWrite(''' ''' * TERMINAL_WIDTH ) reset_cursor() def _a ( ) -> Any: reset_cursor() forceWrite('''-''' * TERMINAL_WIDTH )
117
class A__ : def __init__( self : List[str] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE ={} def __UpperCamelCase ( self : Any , _a : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if vertex not in self.adjacency: _SCREAMING_SNAKE_CASE ={} self.num_vertices += 1 def __UpperCamelCase ( self : Optional[int] , _a : Tuple , _a : Tuple , _a : Dict ) -> Union[str, Any]: """simple docstring""" self.add_vertex(_a ) self.add_vertex(_a ) if head == tail: return _SCREAMING_SNAKE_CASE =weight _SCREAMING_SNAKE_CASE =weight def __UpperCamelCase ( self : Dict ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_edges() for edge in edges: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =edge edges.remove((tail, head, weight) ) for i in range(len(_a ) ): _SCREAMING_SNAKE_CASE =list(edges[i] ) edges.sort(key=lambda _a : e[2] ) for i in range(len(_a ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _SCREAMING_SNAKE_CASE =edges[i][2] + 1 for edge in edges: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =edge _SCREAMING_SNAKE_CASE =weight _SCREAMING_SNAKE_CASE =weight def __str__( self : str ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE ='''''' for tail in self.adjacency: for head in self.adjacency[tail]: _SCREAMING_SNAKE_CASE =self.adjacency[head][tail] string += f"{head} -> {tail} == {weight}\n" return string.rstrip('''\n''' ) def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =[] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __UpperCamelCase ( self : Any ) -> Any: """simple docstring""" return self.adjacency.keys() @staticmethod def __UpperCamelCase ( _a : List[str]=None , _a : Optional[int]=None ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =Graph() if vertices is None: _SCREAMING_SNAKE_CASE =[] if edges is None: _SCREAMING_SNAKE_CASE =[] for vertex in vertices: g.add_vertex(_a ) for edge in edges: g.add_edge(*_a ) return g class A__ : def __init__( self : List[Any] ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE ={} _SCREAMING_SNAKE_CASE ={} def __len__( self : Optional[int] ) -> Tuple: """simple docstring""" return len(self.parent ) def __UpperCamelCase ( self : Dict , _a : Optional[Any] ) -> int: """simple docstring""" if item in self.parent: return self.find(_a ) _SCREAMING_SNAKE_CASE =item _SCREAMING_SNAKE_CASE =0 return item def __UpperCamelCase ( self : str , _a : Tuple ) -> Union[str, Any]: """simple docstring""" if item not in self.parent: return self.make_set(_a ) if item != self.parent[item]: _SCREAMING_SNAKE_CASE =self.find(self.parent[item] ) return self.parent[item] def __UpperCamelCase ( self : Dict , _a : Optional[int] , _a : List[Any] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.find(_a ) _SCREAMING_SNAKE_CASE =self.find(_a ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _SCREAMING_SNAKE_CASE =roota return roota if self.rank[roota] < self.rank[roota]: _SCREAMING_SNAKE_CASE =roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _SCREAMING_SNAKE_CASE =roota return roota return None @staticmethod def __UpperCamelCase ( _a : int ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =graph.num_vertices _SCREAMING_SNAKE_CASE =Graph.UnionFind() _SCREAMING_SNAKE_CASE =[] while num_components > 1: _SCREAMING_SNAKE_CASE ={} for vertex in graph.get_vertices(): _SCREAMING_SNAKE_CASE =-1 _SCREAMING_SNAKE_CASE =graph.get_edges() for edge in edges: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =edge edges.remove((tail, head, weight) ) for edge in edges: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =edge _SCREAMING_SNAKE_CASE =union_find.find(_a ) _SCREAMING_SNAKE_CASE =union_find.find(_a ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _SCREAMING_SNAKE_CASE =[head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _SCREAMING_SNAKE_CASE =[head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =cheap_edge[vertex] if union_find.find(_a ) != union_find.find(_a ): union_find.union(_a , _a ) mst_edges.append(cheap_edge[vertex] ) _SCREAMING_SNAKE_CASE =num_components - 1 _SCREAMING_SNAKE_CASE =Graph.build(edges=_a ) return mst
691
0
"""simple docstring""" from typing import Any def _A (__a , __a , __a , __a , __a , ) -> list: """simple docstring""" _validation( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # Creates data structures and fill initial step SCREAMING_SNAKE_CASE_ : Tuple = {} SCREAMING_SNAKE_CASE_ : Any = {} for state in states_space: SCREAMING_SNAKE_CASE_ : List[Any] = observations_space[0] SCREAMING_SNAKE_CASE_ : Optional[Any] = ( initial_probabilities[state] * emission_probabilities[state][observation] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__snake_case ) ): SCREAMING_SNAKE_CASE_ : Optional[Any] = observations_space[o] SCREAMING_SNAKE_CASE_ : Dict = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function SCREAMING_SNAKE_CASE_ : Dict = '''''' SCREAMING_SNAKE_CASE_ : Tuple = -1 for k_state in states_space: SCREAMING_SNAKE_CASE_ : Tuple = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: SCREAMING_SNAKE_CASE_ : List[Any] = probability SCREAMING_SNAKE_CASE_ : Optional[Any] = k_state # Update probabilities and pointers dicts SCREAMING_SNAKE_CASE_ : Tuple = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) SCREAMING_SNAKE_CASE_ : Optional[int] = arg_max # The final observation SCREAMING_SNAKE_CASE_ : Dict = observations_space[len(__snake_case ) - 1] # argmax for given final observation SCREAMING_SNAKE_CASE_ : Optional[int] = '''''' SCREAMING_SNAKE_CASE_ : Dict = -1 for k_state in states_space: SCREAMING_SNAKE_CASE_ : int = probabilities[(k_state, final_observation)] if probability > max_probability: SCREAMING_SNAKE_CASE_ : List[Any] = probability SCREAMING_SNAKE_CASE_ : Optional[int] = k_state SCREAMING_SNAKE_CASE_ : Dict = arg_max # Process pointers backwards SCREAMING_SNAKE_CASE_ : int = last_state SCREAMING_SNAKE_CASE_ : str = [] for o in range(len(__snake_case ) - 1 , -1 , -1 ): result.append(__snake_case ) SCREAMING_SNAKE_CASE_ : int = pointers[previous, observations_space[o]] result.reverse() return result def _A (__a , __a , __a , __a , __a , ) -> None: """simple docstring""" _validate_not_empty( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) _validate_lists(__snake_case , __snake_case ) _validate_dicts( __snake_case , __snake_case , __snake_case ) def _A (__a , __a , __a , __a , __a , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def _A (__a , __a ) -> None: """simple docstring""" _validate_list(__snake_case , '''observations_space''' ) _validate_list(__snake_case , '''states_space''' ) def _A (__a , __a ) -> None: """simple docstring""" if not isinstance(_object , __snake_case ): SCREAMING_SNAKE_CASE_ : Optional[int] = f'{var_name} must be a list' raise ValueError(__snake_case ) else: for x in _object: if not isinstance(__snake_case , __snake_case ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = f'{var_name} must be a list of strings' raise ValueError(__snake_case ) def _A (__a , __a , __a , ) -> None: """simple docstring""" _validate_dict(__snake_case , '''initial_probabilities''' , __snake_case ) _validate_nested_dict(__snake_case , '''transition_probabilities''' ) _validate_nested_dict(__snake_case , '''emission_probabilities''' ) def _A (__a , __a ) -> None: """simple docstring""" _validate_dict(_object , __snake_case , __snake_case ) for x in _object.values(): _validate_dict(__snake_case , __snake_case , __snake_case , __snake_case ) def _A (__a , __a , __a , __a = False ) -> None: """simple docstring""" if not isinstance(_object , __snake_case ): SCREAMING_SNAKE_CASE_ : List[str] = f'{var_name} must be a dict' raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = f'{var_name} all keys must be strings' raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object.values() ): SCREAMING_SNAKE_CASE_ : int = '''nested dictionary ''' if nested else '''''' SCREAMING_SNAKE_CASE_ : int = f'{var_name} {nested_text}all values must be {value_type.__name__}' raise ValueError(__snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
712
"""simple docstring""" import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Any , lowercase_ : Dict , lowercase_ : str=3 , lowercase_ : Dict=7 , lowercase_ : Any=True , lowercase_ : List[Any]=True , lowercase_ : Union[str, Any]=False , lowercase_ : Optional[int]=True , lowercase_ : Union[str, Any]=99 , lowercase_ : Dict=32 , lowercase_ : Union[str, Any]=5 , lowercase_ : Optional[Any]=4 , lowercase_ : List[str]=37 , lowercase_ : int="gelu" , lowercase_ : int=0.1 , lowercase_ : List[str]=0.1 , lowercase_ : Any=512 , lowercase_ : List[Any]=16 , lowercase_ : Union[str, Any]=2 , lowercase_ : Dict=0.02 , lowercase_ : Optional[int]=3 , lowercase_ : Dict=4 , lowercase_ : Optional[int]=None , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = parent SCREAMING_SNAKE_CASE_ : Optional[int] = batch_size SCREAMING_SNAKE_CASE_ : List[str] = seq_length SCREAMING_SNAKE_CASE_ : Optional[Any] = is_training SCREAMING_SNAKE_CASE_ : Dict = use_input_mask SCREAMING_SNAKE_CASE_ : Union[str, Any] = use_token_type_ids SCREAMING_SNAKE_CASE_ : str = use_labels SCREAMING_SNAKE_CASE_ : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE_ : str = num_hidden_layers SCREAMING_SNAKE_CASE_ : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE_ : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE_ : int = hidden_act SCREAMING_SNAKE_CASE_ : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : str = max_position_embeddings SCREAMING_SNAKE_CASE_ : Dict = type_vocab_size SCREAMING_SNAKE_CASE_ : str = type_sequence_label_size SCREAMING_SNAKE_CASE_ : List[Any] = initializer_range SCREAMING_SNAKE_CASE_ : int = num_labels SCREAMING_SNAKE_CASE_ : Dict = num_choices SCREAMING_SNAKE_CASE_ : Tuple = scope def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) SCREAMING_SNAKE_CASE_ : Tuple = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length]) SCREAMING_SNAKE_CASE_ : Optional[Any] = None SCREAMING_SNAKE_CASE_ : Union[str, Any] = None SCREAMING_SNAKE_CASE_ : Dict = None SCREAMING_SNAKE_CASE_ : Optional[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size] , self.num_choices) SCREAMING_SNAKE_CASE_ : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=lowercase_ , ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : List[Any] , lowercase_ : int , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = FalconModel(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Optional[Any] = model(lowercase_ , attention_mask=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = model(lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : int , lowercase_ : Dict , lowercase_ : int , lowercase_ : str , lowercase_ : str , lowercase_ : int , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : int , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = True SCREAMING_SNAKE_CASE_ : Optional[int] = FalconModel(lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = model(lowercase_ , attention_mask=lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : List[str] , lowercase_ : List[str] , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = FalconForCausalLM(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Any = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : Any , lowercase_ : int , lowercase_ : str , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : str , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : List[Any] = True SCREAMING_SNAKE_CASE_ : Optional[int] = FalconForCausalLM(config=lowercase_) model.to(lowercase_) model.eval() # first forward pass SCREAMING_SNAKE_CASE_ : Optional[Any] = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , use_cache=lowercase_ , ) SCREAMING_SNAKE_CASE_ : List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size) SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and SCREAMING_SNAKE_CASE_ : Dict = torch.cat([input_ids, next_tokens] , dim=-1) SCREAMING_SNAKE_CASE_ : List[Any] = torch.cat([input_mask, next_mask] , dim=-1) SCREAMING_SNAKE_CASE_ : List[str] = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_hidden_states=lowercase_ , )['''hidden_states'''][0] SCREAMING_SNAKE_CASE_ : Any = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , past_key_values=lowercase_ , output_hidden_states=lowercase_ , )['''hidden_states'''][0] # select random slice SCREAMING_SNAKE_CASE_ : int = ids_tensor((1,) , output_from_past.shape[-1]).item() SCREAMING_SNAKE_CASE_ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE_ : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-3)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE_ : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) __UpperCamelCase = (FalconForCausalLM,) if is_torch_available() else () __UpperCamelCase = ( { "feature-extraction": FalconModel, "text-classification": FalconForSequenceClassification, "text-generation": FalconForCausalLM, "question-answering": FalconForQuestionAnswering, "token-classification": FalconForTokenClassification, "zero-shot": FalconForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = FalconModelTester(self) SCREAMING_SNAKE_CASE_ : List[Any] = ConfigTester(self , config_class=lowercase_ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: SCREAMING_SNAKE_CASE_ : Optional[int] = alibi self.model_tester.create_and_check_model(lowercase_ , *lowercase_) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Tuple = 3 SCREAMING_SNAKE_CASE_ : Tuple = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE_ : Optional[int] = input_ids.ne(1).to(lowercase_) SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) SCREAMING_SNAKE_CASE_ : Tuple = FalconForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Optional[int] = 3 SCREAMING_SNAKE_CASE_ : int = '''single_label_classification''' SCREAMING_SNAKE_CASE_ : Optional[int] = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE_ : Optional[Any] = input_ids.ne(1).to(lowercase_) SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) SCREAMING_SNAKE_CASE_ : Union[str, Any] = FalconForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : List[Any] = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE_ : Optional[Any] = FalconForCausalLM(lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : str = model(lowercase_ , use_cache=lowercase_) SCREAMING_SNAKE_CASE_ : Any = input_ids.shape[0] SCREAMING_SNAKE_CASE_ : Dict = model._convert_to_rw_cache(result.past_key_values) SCREAMING_SNAKE_CASE_ : int = model._convert_cache_to_standard_format(lowercase_ , lowercase_) for layer in range(len(lowercase_)): for tensor_idx in range(2): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx])) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : int = 3 SCREAMING_SNAKE_CASE_ : Tuple = '''multi_label_classification''' SCREAMING_SNAKE_CASE_ : Tuple = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE_ : List[str] = input_ids.ne(1).to(lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) SCREAMING_SNAKE_CASE_ : int = FalconForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Tuple = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(lowercase_ , '''use_cache'''): return SCREAMING_SNAKE_CASE_ : Union[str, Any] = model_class(lowercase_).to(lowercase_) if "use_cache" not in inputs: SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : str = model(**lowercase_) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return SCREAMING_SNAKE_CASE_ : Tuple = ( getattr(lowercase_ , '''decoder_layers''' , lowercase_) or getattr(lowercase_ , '''num_decoder_layers''' , lowercase_) or config.num_hidden_layers ) SCREAMING_SNAKE_CASE_ : str = getattr(lowercase_ , '''num_kv_heads''' , config.num_attention_heads) SCREAMING_SNAKE_CASE_ : Tuple = getattr(lowercase_ , '''d_model''' , config.hidden_size) SCREAMING_SNAKE_CASE_ : Dict = embed_dim // num_attention_heads SCREAMING_SNAKE_CASE_ : int = outputs['''past_key_values'''] self.assertEqual(len(lowercase_) , lowercase_) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = inputs['''input_ids'''].shape for i in range(lowercase_): if config.new_decoder_architecture: SCREAMING_SNAKE_CASE_ : Dict = config.num_attention_heads elif config.multi_query: SCREAMING_SNAKE_CASE_ : Optional[Any] = 1 self.assertEqual(len(past_kv[0]) , 2) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim)) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim)) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = AutoTokenizer.from_pretrained('''Rocketknight1/falcon-rw-1b''') SCREAMING_SNAKE_CASE_ : Optional[int] = FalconForCausalLM.from_pretrained('''Rocketknight1/falcon-rw-1b''') model.eval() model.to(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer('''My favorite food is''' , return_tensors='''pt''').to(lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( '''My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.''' ) SCREAMING_SNAKE_CASE_ : Optional[int] = model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=19) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer.batch_decode(lowercase_)[0] self.assertEqual(lowercase_ , lowercase_) @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoTokenizer.from_pretrained(lowercase_) SCREAMING_SNAKE_CASE_ : str = FalconForCausalLM.from_pretrained(lowercase_) model.eval() model.to(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer('''My favorite food is''' , return_tensors='''pt''').to(lowercase_) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=4) model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=4) model.generate(**lowercase_ , num_beams=2 , max_new_tokens=4) @slow def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: SCREAMING_SNAKE_CASE_ : List[str] = AutoTokenizer.from_pretrained(lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = FalconForCausalLM.from_pretrained(lowercase_) model.eval() model.to(device=lowercase_) SCREAMING_SNAKE_CASE_ : int = tokenizer('''My favorite food is''' , return_tensors='''pt''').to(lowercase_) # Test results are the same with and without cache SCREAMING_SNAKE_CASE_ : Any = model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=20 , use_cache=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=20 , use_cache=lowercase_) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0)
176
0
"""simple docstring""" from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Namespace ): '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) SCREAMING_SNAKE_CASE__ = "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n" class lowercase ( _UpperCAmelCase ): @staticmethod def _snake_case ( lowercase ) -> Optional[int]: lowerCAmelCase = parser.add_parser( """convert""" , help="""CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.""" , ) train_parser.add_argument("""--model_type""" , type=lowercase , required=lowercase , help="""Model's type.""" ) train_parser.add_argument( """--tf_checkpoint""" , type=lowercase , required=lowercase , help="""TensorFlow checkpoint path or folder.""" ) train_parser.add_argument( """--pytorch_dump_output""" , type=lowercase , required=lowercase , help="""Path to the PyTorch saved model output.""" ) train_parser.add_argument("""--config""" , type=lowercase , default="""""" , help="""Configuration file path or folder.""" ) train_parser.add_argument( """--finetuning_task_name""" , type=lowercase , default=lowercase , help="""Optional fine-tuning task name if the TF model was a finetuned model.""" , ) train_parser.set_defaults(func=lowercase ) def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase , *lowercase , ) -> Optional[int]: lowerCAmelCase = logging.get_logger("""transformers-cli/converting""" ) self._logger.info(f'Loading model {model_type}' ) lowerCAmelCase = model_type lowerCAmelCase = tf_checkpoint lowerCAmelCase = pytorch_dump_output lowerCAmelCase = config lowerCAmelCase = finetuning_task_name def _snake_case ( self ) -> Optional[Any]: if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowercase ) if "ckpt" in self._tf_checkpoint.lower(): lowerCAmelCase = self._tf_checkpoint lowerCAmelCase = """""" else: lowerCAmelCase = self._tf_checkpoint lowerCAmelCase = """""" convert_transfo_xl_checkpoint_to_pytorch( lowercase , self._config , self._pytorch_dump_output , lowercase ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowercase ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowercase ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( """--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]""" )
532
"""simple docstring""" import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase : def __init__( self , lowercase , lowercase=13 , lowercase=32 , lowercase=2 , lowercase=3 , lowercase=16 , lowercase=[1, 2, 1] , lowercase=[2, 2, 4] , lowercase=2 , lowercase=2.0 , lowercase=True , lowercase=0.0 , lowercase=0.0 , lowercase=0.1 , lowercase="gelu" , lowercase=False , lowercase=True , lowercase=0.02 , lowercase=1e-5 , lowercase=True , lowercase=None , lowercase=True , lowercase=10 , lowercase=8 , ) -> Union[str, Any]: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = num_channels lowerCAmelCase = embed_dim lowerCAmelCase = depths lowerCAmelCase = num_heads lowerCAmelCase = window_size lowerCAmelCase = mlp_ratio lowerCAmelCase = qkv_bias lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = drop_path_rate lowerCAmelCase = hidden_act lowerCAmelCase = use_absolute_embeddings lowerCAmelCase = patch_norm lowerCAmelCase = layer_norm_eps lowerCAmelCase = initializer_range lowerCAmelCase = is_training lowerCAmelCase = scope lowerCAmelCase = use_labels lowerCAmelCase = type_sequence_label_size lowerCAmelCase = encoder_stride def _snake_case ( self ) -> Tuple: lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = self.get_config() return config, pixel_values, labels def _snake_case ( self ) -> str: return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _snake_case ( self , lowercase , lowercase , lowercase ) -> Tuple: lowerCAmelCase = SwinvaModel(config=lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase ) lowerCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _snake_case ( self , lowercase , lowercase , lowercase ) -> str: lowerCAmelCase = SwinvaForMaskedImageModeling(config=lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase = 1 lowerCAmelCase = SwinvaForMaskedImageModeling(lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _snake_case ( self , lowercase , lowercase , lowercase ) -> Dict: lowerCAmelCase = self.type_sequence_label_size lowerCAmelCase = SwinvaForImageClassification(lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self ) -> Tuple: lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = config_and_inputs lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = ( {'feature-extraction': SwinvaModel, 'image-classification': SwinvaForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def _snake_case ( self ) -> Any: lowerCAmelCase = SwinvaModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=lowercase , embed_dim=37 ) def _snake_case ( self ) -> Tuple: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self ) -> int: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) @unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" ) def _snake_case ( self ) -> str: pass @unittest.skip(reason="""Swinv2 does not use inputs_embeds""" ) def _snake_case ( self ) -> str: pass def _snake_case ( self ) -> Tuple: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , nn.Linear ) ) def _snake_case ( self ) -> Optional[int]: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(lowercase ) lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase = [*signature.parameters.keys()] lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowercase ) def _snake_case ( self ) -> Tuple: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = True for model_class in self.all_model_classes: lowerCAmelCase = True lowerCAmelCase = False lowerCAmelCase = True lowerCAmelCase = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): lowerCAmelCase = model(**self._prepare_for_class(lowercase , lowercase ) ) lowerCAmelCase = outputs.attentions lowerCAmelCase = len(self.model_tester.depths ) self.assertEqual(len(lowercase ) , lowercase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase = True lowerCAmelCase = config.window_size**2 lowerCAmelCase = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): lowerCAmelCase = model(**self._prepare_for_class(lowercase , lowercase ) ) lowerCAmelCase = outputs.attentions self.assertEqual(len(lowercase ) , lowercase ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) lowerCAmelCase = len(lowercase ) # Check attention is always last and order is fine lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): lowerCAmelCase = model(**self._prepare_for_class(lowercase , lowercase ) ) if hasattr(self.model_tester , """num_hidden_states_types""" ): lowerCAmelCase = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states lowerCAmelCase = 2 self.assertEqual(out_len + added_hidden_states , len(lowercase ) ) lowerCAmelCase = outputs.attentions self.assertEqual(len(lowercase ) , lowercase ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase ) -> List[str]: lowerCAmelCase = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): lowerCAmelCase = model(**self._prepare_for_class(lowercase , lowercase ) ) lowerCAmelCase = outputs.hidden_states lowerCAmelCase = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowercase ) , lowercase ) # Swinv2 has a different seq_length lowerCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowerCAmelCase = outputs.reshaped_hidden_states self.assertEqual(len(lowercase ) , lowercase ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = reshaped_hidden_states[0].shape lowerCAmelCase = ( reshaped_hidden_states[0].view(lowercase , lowercase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _snake_case ( self ) -> Dict: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowerCAmelCase = True self.check_hidden_states_output(lowercase , lowercase , lowercase , lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase = True self.check_hidden_states_output(lowercase , lowercase , lowercase , lowercase ) def _snake_case ( self ) -> int: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowerCAmelCase = True self.check_hidden_states_output(lowercase , lowercase , lowercase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase = True self.check_hidden_states_output(lowercase , lowercase , lowercase , (padded_height, padded_width) ) def _snake_case ( self ) -> Any: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowercase ) def _snake_case ( self ) -> Tuple: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase ) @slow def _snake_case ( self ) -> Any: for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = SwinvaModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def _snake_case ( self ) -> Any: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = _config_zero_init(lowercase ) for model_class in self.all_model_classes: lowerCAmelCase = model_class(config=lowercase ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class lowercase ( unittest.TestCase ): @cached_property def _snake_case ( self ) -> Any: return ( AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ) if is_vision_available() else None ) @slow def _snake_case ( self ) -> Tuple: lowerCAmelCase = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to( lowercase ) lowerCAmelCase = self.default_image_processor lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowerCAmelCase = image_processor(images=lowercase , return_tensors="""pt""" ).to(lowercase ) # forward pass with torch.no_grad(): lowerCAmelCase = model(**lowercase ) # verify the logits lowerCAmelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowercase ) lowerCAmelCase = torch.tensor([-0.3_947, -0.4_306, 0.0_026] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1e-4 ) )
532
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class UpperCamelCase__ : def __init__( self : List[str] , lowerCamelCase : Any , lowerCamelCase : Tuple=1_3 , lowerCamelCase : Union[str, Any]=7 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : Tuple=True , lowerCamelCase : Any=True , lowerCamelCase : Dict=True , lowerCamelCase : Optional[int]=9_9 , lowerCamelCase : int=3_2 , lowerCamelCase : List[Any]=2 , lowerCamelCase : Optional[Any]=4 , lowerCamelCase : Optional[Any]=3_7 , lowerCamelCase : int="gelu" , lowerCamelCase : Any=0.1 , lowerCamelCase : str=0.1 , lowerCamelCase : Tuple=5_1_2 , lowerCamelCase : List[Any]=1_6 , lowerCamelCase : Union[str, Any]=2 , lowerCamelCase : Union[str, Any]=0.02 , lowerCamelCase : int=False , lowerCamelCase : Any=True , lowerCamelCase : int="None" , lowerCamelCase : Optional[Any]=3 , lowerCamelCase : str=4 , lowerCamelCase : Tuple=None , ): '''simple docstring''' a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_input_mask a__ = use_token_type_ids a__ = use_labels a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = type_sequence_label_size a__ = initializer_range a__ = num_labels a__ = num_choices a__ = relative_attention a__ = position_biased_input a__ = pos_att_type a__ = scope def __a ( self : Tuple ): '''simple docstring''' a__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a__ = None if self.use_input_mask: a__ = random_attention_mask([self.batch_size, self.seq_length] ) a__ = None if self.use_token_type_ids: a__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a__ = None a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a__ = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=__UpperCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self : Optional[Any] , lowerCamelCase : Dict , lowerCamelCase : List[str] , lowerCamelCase : str , lowerCamelCase : List[str] , lowerCamelCase : Optional[Any] , lowerCamelCase : int , lowerCamelCase : Dict ): '''simple docstring''' a__ = TFDebertaVaModel(config=__UpperCamelCase ) a__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a__ = [input_ids, input_mask] a__ = model(__UpperCamelCase ) a__ = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : Optional[Any] , lowerCamelCase : int , lowerCamelCase : Tuple , lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : int , lowerCamelCase : str ): '''simple docstring''' a__ = TFDebertaVaForMaskedLM(config=__UpperCamelCase ) a__ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } a__ = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self : str , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : Tuple , lowerCamelCase : str , lowerCamelCase : Optional[Any] ): '''simple docstring''' a__ = self.num_labels a__ = TFDebertaVaForSequenceClassification(config=__UpperCamelCase ) a__ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } a__ = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : str , lowerCamelCase : Any , lowerCamelCase : List[Any] , lowerCamelCase : List[Any] ): '''simple docstring''' a__ = self.num_labels a__ = TFDebertaVaForTokenClassification(config=__UpperCamelCase ) a__ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } a__ = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self : Optional[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : str , lowerCamelCase : Dict , lowerCamelCase : Optional[int] , lowerCamelCase : Dict , lowerCamelCase : Optional[int] ): '''simple docstring''' a__ = TFDebertaVaForQuestionAnswering(config=__UpperCamelCase ) a__ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } a__ = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self : str ): '''simple docstring''' a__ = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) = config_and_inputs a__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class UpperCamelCase__ ( _UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): lowerCAmelCase__ : List[str] = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) lowerCAmelCase__ : str = ( { 'feature-extraction': TFDebertaVaModel, 'fill-mask': TFDebertaVaForMaskedLM, 'question-answering': TFDebertaVaForQuestionAnswering, 'text-classification': TFDebertaVaForSequenceClassification, 'token-classification': TFDebertaVaForTokenClassification, 'zero-shot': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase__ : int = False lowerCAmelCase__ : Tuple = False def __a ( self : Optional[Any] ): '''simple docstring''' a__ = TFDebertaVaModelTester(self ) a__ = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 ) def __a ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def __a ( self : List[str] ): '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __a ( self : List[Any] ): '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase ) def __a ( self : Tuple ): '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCamelCase ) def __a ( self : Optional[Any] ): '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCamelCase ) def __a ( self : List[Any] ): '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase ) @slow def __a ( self : Dict ): '''simple docstring''' a__ = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) self.assertIsNotNone(__UpperCamelCase ) @require_tf class UpperCamelCase__ ( unittest.TestCase ): @unittest.skip(reason="Model not available yet" ) def __a ( self : int ): '''simple docstring''' pass @slow def __a ( self : Optional[int] ): '''simple docstring''' a__ = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) a__ = tf.constant([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) a__ = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) a__ = model(__UpperCamelCase , attention_mask=__UpperCamelCase )[0] a__ = tf.constant( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , __UpperCamelCase , atol=1e-4 )
719
'''simple docstring''' def _lowerCamelCase (__lowerCamelCase : list[list[float]] ) -> list[list[float]]: a__ = [] for data in source_data: for i, el in enumerate(__lowerCamelCase ): if len(__lowerCamelCase ) < i + 1: data_lists.append([] ) data_lists[i].append(float(__lowerCamelCase ) ) return data_lists def _lowerCamelCase (__lowerCamelCase : list[list[float]] , __lowerCamelCase : list[int] ) -> list[list[float]]: a__ = [] for dlist, weight in zip(__lowerCamelCase , __lowerCamelCase ): a__ = min(__lowerCamelCase ) a__ = max(__lowerCamelCase ) a__ = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: a__ = f'''Invalid weight of {weight:f} provided''' raise ValueError(__lowerCamelCase ) score_lists.append(__lowerCamelCase ) return score_lists def _lowerCamelCase (__lowerCamelCase : list[list[float]] ) -> list[float]: a__ = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(__lowerCamelCase ): a__ = final_scores[j] + ele return final_scores def _lowerCamelCase (__lowerCamelCase : list[list[float]] , __lowerCamelCase : list[int] ) -> list[list[float]]: a__ = get_data(__lowerCamelCase ) a__ = calculate_each_score(__lowerCamelCase , __lowerCamelCase ) a__ = generate_final_scores(__lowerCamelCase ) # append scores to source data for i, ele in enumerate(__lowerCamelCase ): source_data[i].append(__lowerCamelCase ) return source_data
289
0
'''simple docstring''' from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('''socket.socket''' ) @patch('''builtins.open''' ) def a_ ( __snake_case : Union[str, Any] , __snake_case : Tuple ) -> Optional[Any]: """simple docstring""" # ===== initialization ===== lowerCamelCase_ =Mock() lowerCamelCase_ =conn, Mock() lowerCamelCase_ =iter([1, None] ) lowerCamelCase_ =lambda __snake_case : next(__snake_case ) # ===== invoke ===== send_file(filename='''mytext.txt''' , testing=__snake_case ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
676
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __UpperCamelCase ( lowerCamelCase__ ): def __init__( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM lowerCamelCase_ =DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowerCAmelCase, scheduler=lowerCAmelCase ) @torch.no_grad() def __call__( self, lowerCAmelCase = 1, lowerCAmelCase = None, lowerCAmelCase = 0.0, lowerCAmelCase = 50, lowerCAmelCase = None, lowerCAmelCase = "pil", lowerCAmelCase = True, ): """simple docstring""" if isinstance(self.unet.config.sample_size, lowerCAmelCase ): lowerCamelCase_ =( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: lowerCamelCase_ =(batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(lowerCAmelCase, lowerCAmelCase ) and len(lowerCAmelCase ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowerCAmelCase )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCamelCase_ =randn_tensor(lowerCAmelCase, generator=lowerCAmelCase, device=self.device, dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(lowerCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCamelCase_ =self.unet(lowerCAmelCase, lowerCAmelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCamelCase_ =self.scheduler.step( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, eta=lowerCAmelCase, use_clipped_model_output=lowerCAmelCase, generator=lowerCAmelCase ).prev_sample lowerCamelCase_ =(image / 2 + 0.5).clamp(0, 1 ) lowerCamelCase_ =image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": lowerCamelCase_ =self.numpy_to_pil(lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase )
676
1
class a__ : def __init__( self : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : int=None , lowerCamelCase_ : int=None ): a_ : List[str] = data a_ : Union[str, Any] = previous a_ : str = next_node def __str__( self : str ): return F'''{self.data}''' def UpperCAmelCase( self : List[Any] ): return self.data def UpperCAmelCase( self : Dict ): return self.next def UpperCAmelCase( self : Dict ): return self.previous class a__ : def __init__( self : List[str] , lowerCamelCase_ : Union[str, Any] ): a_ : Any = head def __iter__( self : List[Any] ): return self def UpperCAmelCase( self : Union[str, Any] ): if not self.current: raise StopIteration else: a_ : Optional[int] = self.current.get_data() a_ : str = self.current.get_next() return value class a__ : def __init__( self : Union[str, Any] ): a_ : List[Any] = None # First node in list a_ : Union[str, Any] = None # Last node in list def __str__( self : Dict ): a_ : List[Any] = self.head a_ : str = [] while current is not None: nodes.append(current.get_data() ) a_ : Optional[Any] = current.get_next() return " ".join(str(_UpperCAmelCase ) for node in nodes ) def __contains__( self : str , lowerCamelCase_ : int ): a_ : Union[str, Any] = self.head while current: if current.get_data() == value: return True a_ : str = current.get_next() return False def __iter__( self : Union[str, Any] ): return LinkedListIterator(self.head ) def UpperCAmelCase( self : str ): if self.head: return self.head.get_data() return None def UpperCAmelCase( self : Optional[Any] ): if self.tail: return self.tail.get_data() return None def UpperCAmelCase( self : Union[str, Any] , lowerCamelCase_ : Node ): if self.head is None: a_ : Any = node a_ : int = node else: self.insert_before_node(self.head , _UpperCAmelCase ) def UpperCAmelCase( self : List[Any] , lowerCamelCase_ : Node ): if self.head is None: self.set_head(_UpperCAmelCase ) else: self.insert_after_node(self.tail , _UpperCAmelCase ) def UpperCAmelCase( self : str , lowerCamelCase_ : int ): a_ : int = Node(_UpperCAmelCase ) if self.head is None: self.set_head(_UpperCAmelCase ) else: self.set_tail(_UpperCAmelCase ) def UpperCAmelCase( self : List[Any] , lowerCamelCase_ : Node , lowerCamelCase_ : Node ): a_ : Optional[int] = node a_ : List[Any] = node.previous if node.get_previous() is None: a_ : Tuple = node_to_insert else: a_ : Tuple = node_to_insert a_ : Dict = node_to_insert def UpperCAmelCase( self : Tuple , lowerCamelCase_ : Node , lowerCamelCase_ : Node ): a_ : str = node a_ : Union[str, Any] = node.next if node.get_next() is None: a_ : Union[str, Any] = node_to_insert else: a_ : Any = node_to_insert a_ : Union[str, Any] = node_to_insert def UpperCAmelCase( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : int ): a_ : str = 1 a_ : Union[str, Any] = Node(_UpperCAmelCase ) a_ : Any = self.head while node: if current_position == position: self.insert_before_node(_UpperCAmelCase , _UpperCAmelCase ) return current_position += 1 a_ : List[Any] = node.next self.insert_after_node(self.tail , _UpperCAmelCase ) def UpperCAmelCase( self : Tuple , lowerCamelCase_ : int ): a_ : Any = self.head while node: if node.get_data() == item: return node a_ : Tuple = node.get_next() raise Exception("""Node not found""" ) def UpperCAmelCase( self : Optional[Any] , lowerCamelCase_ : Optional[int] ): if (node := self.get_node(_UpperCAmelCase )) is not None: if node == self.head: a_ : Union[str, Any] = self.head.get_next() if node == self.tail: a_ : Union[str, Any] = self.tail.get_previous() self.remove_node_pointers(_UpperCAmelCase ) @staticmethod def UpperCAmelCase( lowerCamelCase_ : Node ): if node.get_next(): a_ : int = node.previous if node.get_previous(): a_ : Optional[int] = node.next a_ : List[str] = None a_ : int = None def UpperCAmelCase( self : int ): return self.head is None def _a ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
714
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __lowerCamelCase = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __lowerCamelCase = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __lowerCamelCase = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def _a ( __UpperCamelCase , __UpperCamelCase ): a_ : List[Any] = len([g for position, g in enumerate(__UpperCamelCase ) if g == main_target[position]] ) return (item, float(__UpperCamelCase )) def _a ( __UpperCamelCase , __UpperCamelCase ): a_ : List[Any] = random.randint(0 , len(__UpperCamelCase ) - 1 ) a_ : Tuple = parent_a[:random_slice] + parent_a[random_slice:] a_ : Optional[Any] = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _a ( __UpperCamelCase , __UpperCamelCase ): a_ : Optional[int] = list(__UpperCamelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: a_ : int = random.choice(__UpperCamelCase ) return "".join(__UpperCamelCase ) def _a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): a_ : Tuple = [] # Generate more children proportionally to the fitness score. a_ : Any = int(parent_a[1] * 1_0_0 ) + 1 a_ : int = 1_0 if child_n >= 1_0 else child_n for _ in range(__UpperCamelCase ): a_ : Tuple = population_score[random.randint(0 , __UpperCamelCase )][0] a_ , a_ : List[str] = crossover(parent_a[0] , __UpperCamelCase ) # Append new string to the population list. pop.append(mutate(__UpperCamelCase , __UpperCamelCase ) ) pop.append(mutate(__UpperCamelCase , __UpperCamelCase ) ) return pop def _a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: a_ : Union[str, Any] = F'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(__UpperCamelCase ) # Verify that the target contains no genes besides the ones inside genes variable. a_ : List[str] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: a_ : Optional[Any] = F'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(__UpperCamelCase ) # Generate random starting population. a_ : str = [] for _ in range(__UpperCamelCase ): population.append("""""".join([random.choice(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) )] ) ) # Just some logs to know what the algorithms is doing. a_ , a_ : List[str] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(__UpperCamelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. a_ : Tuple = [evaluate(__UpperCamelCase , __UpperCamelCase ) for item in population] # Check if there is a matching evolution. a_ : Optional[Any] = sorted(__UpperCamelCase , key=lambda __UpperCamelCase : x[1] , reverse=__UpperCamelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 1_0 == 0: print( F'''\nGeneration: {generation}''' F'''\nTotal Population:{total_population}''' F'''\nBest score: {population_score[0][1]}''' F'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. a_ : List[str] = population[: int(N_POPULATION / 3 )] population.clear() population.extend(__UpperCamelCase ) # Normalize population score to be between 0 and 1. a_ : Optional[Any] = [ (item, score / len(__UpperCamelCase )) for item, score in population_score ] # This is selection for i in range(__UpperCamelCase ): population.extend(select(population_score[int(__UpperCamelCase )] , __UpperCamelCase , __UpperCamelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(__UpperCamelCase ) > N_POPULATION: break if __name__ == "__main__": __lowerCamelCase = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) __lowerCamelCase = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = basic(target_str, genes_list) print( f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
478
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase__ : Optional[Any] = {'''configuration_encoder_decoder''': ['''EncoderDecoderConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[str] = ['''EncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : int = ['''TFEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Dict = ['''FlaxEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys lowercase__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
123
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowercase__ : Optional[Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowercase__ : List[str] = { '''vocab_file''': { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''unc-nlp/lxmert-base-uncased''': ( '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json''' ), }, } lowercase__ : str = { '''unc-nlp/lxmert-base-uncased''': 5_12, } lowercase__ : Dict = { '''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True}, } class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : Optional[Any] = VOCAB_FILES_NAMES _lowerCAmelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : Tuple = PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase : List[str] = LxmertTokenizer def __init__( self : Dict , lowercase_ : Any=None , lowercase_ : Union[str, Any]=None , lowercase_ : int=True , lowercase_ : List[str]="[UNK]" , lowercase_ : int="[SEP]" , lowercase_ : Union[str, Any]="[PAD]" , lowercase_ : Optional[int]="[CLS]" , lowercase_ : Union[str, Any]="[MASK]" , lowercase_ : Tuple=True , lowercase_ : Tuple=None , **lowercase_ : Union[str, Any] , ): super().__init__( lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , tokenize_chinese_chars=lowercase_ , strip_accents=lowercase_ , **lowercase_ , ) snake_case_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowercase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowercase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowercase_ ) != tokenize_chinese_chars ): snake_case_ : int = getattr(lowercase_ , normalizer_state.pop('''type''' ) ) snake_case_ : str = do_lower_case snake_case_ : int = strip_accents snake_case_ : str = tokenize_chinese_chars snake_case_ : Tuple = normalizer_class(**lowercase_ ) snake_case_ : Any = do_lower_case def _snake_case ( self : str , lowercase_ : Any , lowercase_ : List[str]=None ): snake_case_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _snake_case ( self : str , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ): snake_case_ : str = [self.sep_token_id] snake_case_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case ( self : Tuple , lowercase_ : str , lowercase_ : Optional[str] = None ): snake_case_ : List[str] = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ )
123
1
'''simple docstring''' def A__ ( __lowerCAmelCase : str ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
9
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py UpperCamelCase : Optional[Any] = 'src/diffusers' # Matches is_xxx_available() UpperCamelCase : Union[str, Any] = re.compile(r'is\_([a-z_]*)_available\(\)') # Matches from xxx import bla UpperCamelCase : Optional[Any] = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') UpperCamelCase : Optional[int] = '\n{0} = None\n' UpperCamelCase : Optional[Any] = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n' UpperCamelCase : Any = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' def A__ ( __lowerCAmelCase : Union[str, Any] ): lowerCamelCase__ = _re_backend.findall(__lowerCAmelCase ) if len(__lowerCAmelCase ) == 0: return None return "_and_".join(__lowerCAmelCase ) def A__ ( ): with open(os.path.join(__lowerCAmelCase , """__init__.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase__ = f.readlines() # Get to the point we do the actual imports for type checking lowerCamelCase__ = 0 lowerCamelCase__ = {} # Go through the end of the file while line_index < len(__lowerCAmelCase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block lowerCamelCase__ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("""else:""" ): line_index += 1 line_index += 1 lowerCamelCase__ = [] # Until we unindent, add backend objects to the list while line_index < len(__lowerCAmelCase ) and len(lines[line_index] ) > 1: lowerCamelCase__ = lines[line_index] lowerCamelCase__ = _re_single_line_import.search(__lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__lowerCAmelCase ) > 0: lowerCamelCase__ = objects else: line_index += 1 return backend_specific_objects def A__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict ): if name.isupper(): return DUMMY_CONSTANT.format(__lowerCAmelCase ) elif name.islower(): return DUMMY_FUNCTION.format(__lowerCAmelCase , __lowerCAmelCase ) else: return DUMMY_CLASS.format(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase : Optional[int]=None ): if backend_specific_objects is None: lowerCamelCase__ = read_init() # For special correspondence backend to module name as used in the function requires_modulename lowerCamelCase__ = {} for backend, objects in backend_specific_objects.items(): lowerCamelCase__ = """[""" + """, """.join(F'''"{b}"''' for b in backend.split("""_and_""" ) ) + """]""" lowerCamelCase__ = """# This file is autogenerated by the command `make fix-copies`, do not edit.\n""" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__lowerCAmelCase , __lowerCAmelCase ) for o in objects] ) lowerCamelCase__ = dummy_file return dummy_files def A__ ( __lowerCAmelCase : List[str]=False ): lowerCamelCase__ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py lowerCamelCase__ = {"""torch""": """pt"""} # Locate actual dummy modules and read their content. lowerCamelCase__ = os.path.join(__lowerCAmelCase , """utils""" ) lowerCamelCase__ = { backend: os.path.join(__lowerCAmelCase , F'''dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py''' ) for backend in dummy_files.keys() } lowerCamelCase__ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__lowerCAmelCase ): with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase__ = f.read() else: lowerCamelCase__ = """""" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'''Updating diffusers.utils.dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py as the main ''' """__init__ has new objects.""" ) with open(dummy_file_paths[backend] , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( """The main __init__ has objects that are not present in """ F'''diffusers.utils.dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py. Run `make fix-copies` ''' """to fix this.""" ) if __name__ == "__main__": UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') UpperCamelCase : Any = parser.parse_args() check_dummies(args.fix_and_overwrite)
9
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
62
import math import flax.linen as nn import jax.numpy as jnp def lowerCamelCase__ ( lowercase , lowercase , lowercase = 1 , lowercase = 1 , lowercase = 1.0E4 , lowercase = False , lowercase = 1.0 , ): """simple docstring""" assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F'''Embedding dimension {embedding_dim} should be even''' SCREAMING_SNAKE_CASE : Union[str, Any] = float(embedding_dim // 2 ) SCREAMING_SNAKE_CASE : Dict = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) SCREAMING_SNAKE_CASE : Optional[Any] = min_timescale * jnp.exp(jnp.arange(lowercase , dtype=jnp.floataa ) * -log_timescale_increment ) SCREAMING_SNAKE_CASE : Optional[int] = jnp.expand_dims(lowercase , 1 ) * jnp.expand_dims(lowercase , 0 ) # scale embeddings SCREAMING_SNAKE_CASE : Optional[int] = scale * emb if flip_sin_to_cos: SCREAMING_SNAKE_CASE : List[Any] = jnp.concatenate([jnp.cos(lowercase ), jnp.sin(lowercase )] , axis=1 ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.concatenate([jnp.sin(lowercase ), jnp.cos(lowercase )] , axis=1 ) SCREAMING_SNAKE_CASE : Tuple = jnp.reshape(lowercase , [jnp.shape(lowercase )[0], embedding_dim] ) return signal class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' UpperCamelCase_ : int = 3_2 UpperCamelCase_ : jnp.dtype = jnp.floataa @nn.compact def __call__( self : Tuple , UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE : Any = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="linear_1" )(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.silu(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="linear_2" )(UpperCAmelCase_ ) return temb class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' UpperCamelCase_ : int = 3_2 UpperCamelCase_ : bool = False UpperCamelCase_ : float = 1 @nn.compact def __call__( self : Optional[int] , UpperCAmelCase_ : int ): return get_sinusoidal_embeddings( UpperCAmelCase_ , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
62
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowercase ( A ): '''simple docstring''' _A : List[Any] = ['''image_processor''', '''tokenizer'''] _A : Tuple = '''CLIPImageProcessor''' _A : int = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Dict , _a : Union[str, Any]=None , _a : Union[str, Any]=None , **_a : Dict ): UpperCamelCase__ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) UpperCamelCase__ = kwargs.pop('''feature_extractor''' ) UpperCamelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) def __call__( self : Optional[int] , _a : Any=None , _a : Optional[Any]=None , _a : List[str]=None , **_a : Tuple ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCamelCase__ = self.tokenizer(_a , return_tensors=_a , **_a ) if images is not None: UpperCamelCase__ = self.image_processor(_a , return_tensors=_a , **_a ) if text is not None and images is not None: UpperCamelCase__ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_a ) , tensor_type=_a ) def A_ ( self : Optional[Any] , *_a : int , **_a : str ): return self.tokenizer.batch_decode(*_a , **_a ) def A_ ( self : Dict , *_a : int , **_a : str ): return self.tokenizer.decode(*_a , **_a ) @property def A_ ( self : int ): UpperCamelCase__ = self.tokenizer.model_input_names UpperCamelCase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A_ ( self : str ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def A_ ( self : Tuple ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
591
import math from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class __lowercase ( A ): '''simple docstring''' _A : int = '''data2vec-audio''' def __init__( self : str , _a : List[Any]=32 , _a : str=768 , _a : Any=12 , _a : int=12 , _a : Dict=3_072 , _a : Tuple="gelu" , _a : Optional[Any]=0.1 , _a : str=0.1 , _a : Optional[Any]=0.1 , _a : int=0.0 , _a : Dict=0.1 , _a : Dict=0.1 , _a : Union[str, Any]=0.02 , _a : Any=1E-5 , _a : Tuple="gelu" , _a : str=(512, 512, 512, 512, 512, 512, 512) , _a : Any=(5, 2, 2, 2, 2, 2, 2) , _a : int=(10, 3, 3, 3, 3, 2, 2) , _a : Tuple=False , _a : Optional[Any]=16 , _a : Optional[int]=19 , _a : Dict=5 , _a : List[str]=0.05 , _a : Dict=10 , _a : Dict=2 , _a : List[Any]=0.0 , _a : Optional[Any]=10 , _a : Optional[Any]=0 , _a : Optional[Any]="sum" , _a : int=False , _a : Union[str, Any]=False , _a : Union[str, Any]=256 , _a : Union[str, Any]=(512, 512, 512, 512, 1_500) , _a : List[str]=(5, 3, 3, 1, 1) , _a : Optional[int]=(1, 2, 3, 1, 1) , _a : Tuple=512 , _a : Optional[Any]=0 , _a : Optional[int]=1 , _a : str=2 , _a : int=False , _a : Tuple=3 , _a : Union[str, Any]=2 , _a : List[Any]=3 , _a : str=None , **_a : Optional[int] , ): super().__init__(**_a , pad_token_id=_a , bos_token_id=_a , eos_token_id=_a ) UpperCamelCase__ = hidden_size UpperCamelCase__ = feat_extract_activation UpperCamelCase__ = list(_a ) UpperCamelCase__ = list(_a ) UpperCamelCase__ = list(_a ) UpperCamelCase__ = conv_bias UpperCamelCase__ = num_conv_pos_embeddings UpperCamelCase__ = num_conv_pos_embedding_groups UpperCamelCase__ = conv_pos_kernel_size UpperCamelCase__ = len(self.conv_dim ) UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_dropout UpperCamelCase__ = attention_dropout UpperCamelCase__ = activation_dropout UpperCamelCase__ = feat_proj_dropout UpperCamelCase__ = final_dropout UpperCamelCase__ = layerdrop UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = initializer_range UpperCamelCase__ = vocab_size UpperCamelCase__ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase__ = mask_time_prob UpperCamelCase__ = mask_time_length UpperCamelCase__ = mask_time_min_masks UpperCamelCase__ = mask_feature_prob UpperCamelCase__ = mask_feature_length UpperCamelCase__ = mask_feature_min_masks # ctc loss UpperCamelCase__ = ctc_loss_reduction UpperCamelCase__ = ctc_zero_infinity # adapter UpperCamelCase__ = add_adapter UpperCamelCase__ = adapter_kernel_size UpperCamelCase__ = adapter_stride UpperCamelCase__ = num_adapter_layers UpperCamelCase__ = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCamelCase__ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCamelCase__ = list(_a ) UpperCamelCase__ = list(_a ) UpperCamelCase__ = list(_a ) UpperCamelCase__ = xvector_output_dim @property def A_ ( self : Tuple ): return math.prod(self.conv_stride )
591
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase_ : int = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys UpperCAmelCase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
'''simple docstring''' import argparse import os import re UpperCAmelCase_ : List[str] = '''src/transformers/models/auto''' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict UpperCAmelCase_ : Tuple = re.compile(R'''[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict''') # re pattern that matches identifiers in mappings UpperCAmelCase_ : Dict = re.compile(R'''\s*\(\s*"(\S[^"]+)"''') def _UpperCamelCase (_lowerCamelCase : List[Any] , _lowerCamelCase : bool = False )-> str: '''simple docstring''' with open(_lowerCamelCase , '''r''' , encoding='''utf-8''' ) as f: __snake_case = f.read() __snake_case = content.split('''\n''' ) __snake_case = [] __snake_case = 0 while line_idx < len(_lowerCamelCase ): if _re_intro_mapping.search(lines[line_idx] ) is not None: __snake_case = len(re.search(R'''^(\s*)\S''' , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(''' ''' * indent + '''(''' ): new_lines.append(lines[line_idx] ) line_idx += 1 __snake_case = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": __snake_case = line_idx while not lines[line_idx].startswith(''' ''' * indent + ''')''' ): line_idx += 1 blocks.append('''\n'''.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers __snake_case = sorted(_lowerCamelCase , key=lambda _lowerCamelCase : _re_identifier.search(_lowerCamelCase ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(_lowerCamelCase ) ) elif "\n".join(_lowerCamelCase ) != content: return True def _UpperCamelCase (_lowerCamelCase : bool = False )-> Tuple: '''simple docstring''' __snake_case = [os.path.join(_lowerCamelCase , _lowerCamelCase ) for f in os.listdir(_lowerCamelCase ) if f.endswith('''.py''' )] __snake_case = [sort_auto_mapping(_lowerCamelCase , overwrite=_lowerCamelCase ) for fname in fnames] if not overwrite and any(_lowerCamelCase ): __snake_case = [f for f, d in zip(_lowerCamelCase , _lowerCamelCase ) if d] raise ValueError( f'''The following files have auto mappings that need sorting: {", ".join(_lowerCamelCase )}. Run `make style` to fix''' ''' this.''' ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') UpperCAmelCase_ : List[Any] = parser.parse_args() sort_all_auto_mappings(not args.check_only)
24
1
import math def _A (UpperCamelCase : int ) ->bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _A (UpperCamelCase : float = 0.1 ) ->int: '''simple docstring''' lowerCamelCase__ : Optional[Any] = 3 lowerCamelCase__ : Tuple = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(UpperCamelCase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
713
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def _A (UpperCamelCase : np.ndarray , UpperCamelCase : np.ndarray , UpperCamelCase : np.ndarray , UpperCamelCase : int , UpperCamelCase : int ) ->np.ndarray: '''simple docstring''' lowerCamelCase__ : Union[str, Any] = cva.getAffineTransform(UpperCamelCase , UpperCamelCase ) return cva.warpAffine(UpperCamelCase , UpperCamelCase , (rows, cols) ) if __name__ == "__main__": # read original image _lowercase = cva.imread( str(Path(__file__).resolve().parent.parent / '''image_data''' / '''lena.jpg''') ) # turn image in gray scale value _lowercase = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape _lowercase , _lowercase = gray_img.shape # set different points to rotate image _lowercase = np.array([[50, 50], [2_00, 50], [50, 2_00]], np.floataa) _lowercase = np.array([[10, 1_00], [2_00, 50], [1_00, 2_50]], np.floataa) _lowercase = np.array([[50, 50], [1_50, 50], [1_20, 2_00]], np.floataa) _lowercase = np.array([[10, 1_00], [80, 50], [1_80, 2_50]], np.floataa) # add all rotated images in a list _lowercase = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations _lowercase = plt.figure(1) _lowercase = ['''Original''', '''Rotation 1''', '''Rotation 2''', '''Rotation 3'''] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, '''gray''') plt.title(titles[i]) plt.axis('''off''') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
96
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) __lowerCAmelCase : Tuple = { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json", } class A ( UpperCAmelCase ): a_ = '''lxmert''' a_ = {} def __init__( self : int , __a : Optional[Any]=3_0_5_2_2 , __a : int=7_6_8 , __a : Dict=1_2 , __a : Dict=9_5_0_0 , __a : List[Any]=1_6_0_0 , __a : List[Any]=4_0_0 , __a : Union[str, Any]=3_0_7_2 , __a : Any="gelu" , __a : Optional[Any]=0.1 , __a : List[str]=0.1 , __a : int=5_1_2 , __a : str=2 , __a : List[str]=0.0_2 , __a : Any=1e-12 , __a : Tuple=9 , __a : Any=5 , __a : Dict=5 , __a : Optional[Any]=2_0_4_8 , __a : List[Any]=4 , __a : Union[str, Any]=6.6_7 , __a : Optional[int]=True , __a : Optional[Any]=True , __a : Union[str, Any]=True , __a : str=True , __a : Optional[Any]=True , __a : Optional[int]=True , __a : Dict=True , **__a : Union[str, Any] , ) -> Tuple: __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = num_qa_labels __UpperCAmelCase = num_object_labels __UpperCAmelCase = num_attr_labels __UpperCAmelCase = l_layers __UpperCAmelCase = x_layers __UpperCAmelCase = r_layers __UpperCAmelCase = visual_feat_dim __UpperCAmelCase = visual_pos_dim __UpperCAmelCase = visual_loss_normalizer __UpperCAmelCase = task_matched __UpperCAmelCase = task_mask_lm __UpperCAmelCase = task_obj_predict __UpperCAmelCase = task_qa __UpperCAmelCase = visual_obj_loss __UpperCAmelCase = visual_attr_loss __UpperCAmelCase = visual_feat_loss __UpperCAmelCase = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**__a )
262
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCAmelCase : Optional[int] = { "huggingface/time-series-transformer-tourism-monthly": ( "https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class A ( UpperCAmelCase ): a_ = '''time_series_transformer''' a_ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : str , __a : Optional[int] = None , __a : Optional[int] = None , __a : str = "student_t" , __a : str = "nll" , __a : int = 1 , __a : List[int] = [1, 2, 3, 4, 5, 6, 7] , __a : Optional[Union[str, bool]] = "mean" , __a : int = 0 , __a : int = 0 , __a : int = 0 , __a : int = 0 , __a : Optional[List[int]] = None , __a : Optional[List[int]] = None , __a : int = 3_2 , __a : int = 3_2 , __a : int = 2 , __a : int = 2 , __a : int = 2 , __a : int = 2 , __a : bool = True , __a : str = "gelu" , __a : int = 6_4 , __a : float = 0.1 , __a : float = 0.1 , __a : float = 0.1 , __a : float = 0.1 , __a : float = 0.1 , __a : int = 1_0_0 , __a : float = 0.0_2 , __a : Optional[int]=True , **__a : str , ) -> int: # time series specific configuration __UpperCAmelCase = prediction_length __UpperCAmelCase = context_length or prediction_length __UpperCAmelCase = distribution_output __UpperCAmelCase = loss __UpperCAmelCase = input_size __UpperCAmelCase = num_time_features __UpperCAmelCase = lags_sequence __UpperCAmelCase = scaling __UpperCAmelCase = num_dynamic_real_features __UpperCAmelCase = num_static_real_features __UpperCAmelCase = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(__a ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) __UpperCAmelCase = cardinality else: __UpperCAmelCase = [0] if embedding_dimension and num_static_categorical_features > 0: if len(__a ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) __UpperCAmelCase = embedding_dimension else: __UpperCAmelCase = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] __UpperCAmelCase = num_parallel_samples # Transformer architecture configuration __UpperCAmelCase = input_size * len(__a ) + self._number_of_features __UpperCAmelCase = d_model __UpperCAmelCase = encoder_attention_heads __UpperCAmelCase = decoder_attention_heads __UpperCAmelCase = encoder_ffn_dim __UpperCAmelCase = decoder_ffn_dim __UpperCAmelCase = encoder_layers __UpperCAmelCase = decoder_layers __UpperCAmelCase = dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = activation_dropout __UpperCAmelCase = encoder_layerdrop __UpperCAmelCase = decoder_layerdrop __UpperCAmelCase = activation_function __UpperCAmelCase = init_std __UpperCAmelCase = use_cache super().__init__(is_encoder_decoder=__a , **__a ) @property def snake_case__ ( self : List[Any] ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
262
1
"""simple docstring""" import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class _lowercase ( ctypes.Structure ): """simple docstring""" lowercase__ = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)] def lowerCAmelCase (): """simple docstring""" if os.name == "nt": __UpperCamelCase =CursorInfo() __UpperCamelCase =ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(__UpperCamelCase , ctypes.byref(__UpperCamelCase ) ) __UpperCamelCase =False ctypes.windll.kernelaa.SetConsoleCursorInfo(__UpperCamelCase , ctypes.byref(__UpperCamelCase ) ) elif os.name == "posix": sys.stdout.write('''\033[?25l''' ) sys.stdout.flush() def lowerCAmelCase (): """simple docstring""" if os.name == "nt": __UpperCamelCase =CursorInfo() __UpperCamelCase =ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(__UpperCamelCase , ctypes.byref(__UpperCamelCase ) ) __UpperCamelCase =True ctypes.windll.kernelaa.SetConsoleCursorInfo(__UpperCamelCase , ctypes.byref(__UpperCamelCase ) ) elif os.name == "posix": sys.stdout.write('''\033[?25h''' ) sys.stdout.flush() @contextmanager def lowerCAmelCase (): """simple docstring""" try: hide_cursor() yield finally: show_cursor()
296
"""simple docstring""" import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) __lowercase = logging.getLogger() def lowerCAmelCase (__UpperCamelCase : Path , __UpperCamelCase : list ): """simple docstring""" __UpperCamelCase ='''\n'''.join(__UpperCamelCase ) Path(__UpperCamelCase ).open('''w''' ).writelines(__UpperCamelCase ) __lowercase = '''patrickvonplaten/t5-tiny-random''' __lowercase = '''sshleifer/bart-tiny-random''' __lowercase = '''sshleifer/tiny-mbart''' __lowercase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class _lowercase ( __a ): """simple docstring""" def UpperCAmelCase_ ( self : Dict , UpperCamelCase__ : int ) -> List[str]: '''simple docstring''' __UpperCamelCase =Path(self.get_auto_remove_tmp_dir() ) / '''utest_input.source''' __UpperCamelCase =input_file_name.parent / '''utest_output.txt''' assert not output_file_name.exists() __UpperCamelCase =[''' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'''] _dump_articles(UpperCamelCase__ , UpperCamelCase__ ) __UpperCamelCase =str(Path(self.get_auto_remove_tmp_dir() ) / '''scores.json''' ) __UpperCamelCase ='''translation_en_to_de''' if model == T5_TINY else '''summarization''' __UpperCamelCase =f""" run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 """.split() with patch.object(UpperCamelCase__ , '''argv''' , UpperCamelCase__ ): run_generate() assert Path(UpperCamelCase__ ).exists() # os.remove(Path(output_file_name)) def UpperCAmelCase_ ( self : str ) -> Tuple: '''simple docstring''' self.run_eval_tester(UpperCamelCase__ ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def UpperCAmelCase_ ( self : Optional[int] , UpperCamelCase__ : Union[str, Any] ) -> int: '''simple docstring''' self.run_eval_tester(UpperCamelCase__ ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def UpperCAmelCase_ ( self : List[str] , UpperCamelCase__ : Any ) -> Any: '''simple docstring''' __UpperCamelCase =Path(self.get_auto_remove_tmp_dir() ) / '''utest_input.source''' __UpperCamelCase =input_file_name.parent / '''utest_output.txt''' assert not output_file_name.exists() __UpperCamelCase ={ '''en''': ['''Machine learning is great, isn\'t it?''', '''I like to eat bananas''', '''Tomorrow is another great day!'''], '''de''': [ '''Maschinelles Lernen ist großartig, oder?''', '''Ich esse gerne Bananen''', '''Morgen ist wieder ein toller Tag!''', ], } __UpperCamelCase =Path(self.get_auto_remove_tmp_dir() ) __UpperCamelCase =str(tmp_dir / '''scores.json''' ) __UpperCamelCase =str(tmp_dir / '''val.target''' ) _dump_articles(UpperCamelCase__ , text['''en'''] ) _dump_articles(UpperCamelCase__ , text['''de'''] ) __UpperCamelCase ='''translation_en_to_de''' if model == T5_TINY else '''summarization''' __UpperCamelCase =f""" run_eval_search.py {model} {str(UpperCamelCase__ )} {str(UpperCamelCase__ )} --score_path {score_path} --reference_path {reference_path} --task {task} """.split() testargs.extend(['''--search''', '''num_beams=1:2 length_penalty=0.9:1.0'''] ) with patch.object(UpperCamelCase__ , '''argv''' , UpperCamelCase__ ): with CaptureStdout() as cs: run_search() __UpperCamelCase =[''' num_beams | length_penalty''', model, '''Best score args'''] __UpperCamelCase =['''Info'''] if "translation" in task: expected_strings.append('''bleu''' ) else: expected_strings.extend(UpperCamelCase__ ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(UpperCamelCase__ ).exists() os.remove(Path(UpperCamelCase__ ) )
296
1
import argparse import hashlib # hashlib is only used inside the Test class import struct class __magic_name__ : '''simple docstring''' def __init__( self:Union[str, Any] , _a:List[str] ): snake_case__ = data snake_case__ = [0X67_452_301, 0XEF_CDA_B89, 0X98_BAD_CFE, 0X10_325_476, 0XC3_D2E_1F0] @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:Dict , _a:List[str] ): return ((n << b) | (n >> (32 - b))) & 0XFF_FFF_FFF def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = B'''\x80''' + B'''\x00''' * (63 - (len(self.data ) + 8) % 64) snake_case__ = self.data + padding + struct.pack('''>Q''' , 8 * len(self.data ) ) return padded_data def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:Optional[Any] ): snake_case__ = list(struct.unpack('''>16L''' , _a ) ) + [0] * 64 for i in range(16 , 80 ): snake_case__ = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.padding() snake_case__ = self.split_blocks() for block in self.blocks: snake_case__ = self.expand_block(_a ) snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = self.h for i in range(0 , 80 ): if 0 <= i < 20: snake_case__ = (b & c) | ((~b) & d) snake_case__ = 0X5A_827_999 elif 20 <= i < 40: snake_case__ = b ^ c ^ d snake_case__ = 0X6E_D9E_BA1 elif 40 <= i < 60: snake_case__ = (b & c) | (b & d) | (c & d) snake_case__ = 0X8F_1BB_CDC elif 60 <= i < 80: snake_case__ = b ^ c ^ d snake_case__ = 0XCA_62C_1D6 snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = ( self.rotate(_a , 5 ) + f + e + k + expanded_block[i] & 0XFF_FFF_FFF, a, self.rotate(_a , 30 ), c, d, ) snake_case__ = ( self.h[0] + a & 0XFF_FFF_FFF, self.h[1] + b & 0XFF_FFF_FFF, self.h[2] + c & 0XFF_FFF_FFF, self.h[3] + d & 0XFF_FFF_FFF, self.h[4] + e & 0XFF_FFF_FFF, ) return ("{:08x}" * 5).format(*self.h ) def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: snake_case__ = B'''Test String''' assert SHAaHash(__lowerCAmelCase ).final_hash() == hashlib.shaa(__lowerCAmelCase ).hexdigest() # noqa: S324 def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: snake_case__ = argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) snake_case__ = parser.parse_args() snake_case__ = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: snake_case__ = f.read() else: snake_case__ = bytes(__lowerCAmelCase , '''utf-8''' ) print(SHAaHash(__lowerCAmelCase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
33
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = (UniPCMultistepScheduler,) UpperCamelCase = (('''num_inference_steps''', 25),) def snake_case_( self , **A ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = { """num_train_timesteps""": 1000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """solver_order""": 2, """solver_type""": """bh2""", } config.update(**A ) return config def snake_case_( self , A=0 , **A ) -> List[Any]: _SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) _SCREAMING_SNAKE_CASE = kwargs.pop("""num_inference_steps""" , A ) _SCREAMING_SNAKE_CASE = self.dummy_sample _SCREAMING_SNAKE_CASE = 0.1 * sample _SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _SCREAMING_SNAKE_CASE = self.get_scheduler_config(**A ) _SCREAMING_SNAKE_CASE = scheduler_class(**A ) scheduler.set_timesteps(A ) # copy over dummy past residuals _SCREAMING_SNAKE_CASE = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A ) _SCREAMING_SNAKE_CASE = scheduler_class.from_pretrained(A ) new_scheduler.set_timesteps(A ) # copy over dummy past residuals _SCREAMING_SNAKE_CASE = dummy_past_residuals[: new_scheduler.config.solver_order] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = sample, sample for t in range(A , time_step + scheduler.config.solver_order + 1 ): _SCREAMING_SNAKE_CASE = scheduler.step(A , A , A , **A ).prev_sample _SCREAMING_SNAKE_CASE = new_scheduler.step(A , A , A , **A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_( self , A=0 , **A ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) _SCREAMING_SNAKE_CASE = kwargs.pop("""num_inference_steps""" , A ) _SCREAMING_SNAKE_CASE = self.dummy_sample _SCREAMING_SNAKE_CASE = 0.1 * sample _SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _SCREAMING_SNAKE_CASE = self.get_scheduler_config() _SCREAMING_SNAKE_CASE = scheduler_class(**A ) scheduler.set_timesteps(A ) # copy over dummy past residuals (must be after setting timesteps) _SCREAMING_SNAKE_CASE = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A ) _SCREAMING_SNAKE_CASE = scheduler_class.from_pretrained(A ) # copy over dummy past residuals new_scheduler.set_timesteps(A ) # copy over dummy past residual (must be after setting timesteps) _SCREAMING_SNAKE_CASE = dummy_past_residuals[: new_scheduler.config.solver_order] _SCREAMING_SNAKE_CASE = scheduler.step(A , A , A , **A ).prev_sample _SCREAMING_SNAKE_CASE = new_scheduler.step(A , A , A , **A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_( self , A=None , **A ) -> Dict: if scheduler is None: _SCREAMING_SNAKE_CASE = self.scheduler_classes[0] _SCREAMING_SNAKE_CASE = self.get_scheduler_config(**A ) _SCREAMING_SNAKE_CASE = scheduler_class(**A ) _SCREAMING_SNAKE_CASE = self.scheduler_classes[0] _SCREAMING_SNAKE_CASE = self.get_scheduler_config(**A ) _SCREAMING_SNAKE_CASE = scheduler_class(**A ) _SCREAMING_SNAKE_CASE = 10 _SCREAMING_SNAKE_CASE = self.dummy_model() _SCREAMING_SNAKE_CASE = self.dummy_sample_deter scheduler.set_timesteps(A ) for i, t in enumerate(scheduler.timesteps ): _SCREAMING_SNAKE_CASE = model(A , A ) _SCREAMING_SNAKE_CASE = scheduler.step(A , A , A ).prev_sample return sample def snake_case_( self ) -> Any: _SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) _SCREAMING_SNAKE_CASE = kwargs.pop("""num_inference_steps""" , A ) for scheduler_class in self.scheduler_classes: _SCREAMING_SNAKE_CASE = self.get_scheduler_config() _SCREAMING_SNAKE_CASE = scheduler_class(**A ) _SCREAMING_SNAKE_CASE = self.dummy_sample _SCREAMING_SNAKE_CASE = 0.1 * sample if num_inference_steps is not None and hasattr(A , """set_timesteps""" ): scheduler.set_timesteps(A ) elif num_inference_steps is not None and not hasattr(A , """set_timesteps""" ): _SCREAMING_SNAKE_CASE = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.15, residual + 0.10] _SCREAMING_SNAKE_CASE = dummy_past_residuals[: scheduler.config.solver_order] _SCREAMING_SNAKE_CASE = scheduler.timesteps[5] _SCREAMING_SNAKE_CASE = scheduler.timesteps[6] _SCREAMING_SNAKE_CASE = scheduler.step(A , A , A , **A ).prev_sample _SCREAMING_SNAKE_CASE = scheduler.step(A , A , A , **A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case_( self ) -> Union[str, Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults _SCREAMING_SNAKE_CASE = UniPCMultistepScheduler(**self.get_scheduler_config() ) _SCREAMING_SNAKE_CASE = self.full_loop(scheduler=A ) _SCREAMING_SNAKE_CASE = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 _SCREAMING_SNAKE_CASE = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _SCREAMING_SNAKE_CASE = DEISMultistepScheduler.from_config(scheduler.config ) _SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(scheduler.config ) _SCREAMING_SNAKE_CASE = UniPCMultistepScheduler.from_config(scheduler.config ) _SCREAMING_SNAKE_CASE = self.full_loop(scheduler=A ) _SCREAMING_SNAKE_CASE = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 def snake_case_( self ) -> Dict: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=A ) def snake_case_( self ) -> Dict: self.check_over_configs(thresholding=A ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=A , prediction_type=A , sample_max_value=A , solver_order=A , solver_type=A , ) def snake_case_( self ) -> Optional[int]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A ) def snake_case_( self ) -> Union[str, Any]: for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=A , solver_type=A , prediction_type=A , ) _SCREAMING_SNAKE_CASE = self.full_loop( solver_order=A , solver_type=A , prediction_type=A , ) assert not torch.isnan(A ).any(), "Samples have nan numbers" def snake_case_( self ) -> str: self.check_over_configs(lower_order_final=A ) self.check_over_configs(lower_order_final=A ) def snake_case_( self ) -> Optional[Any]: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=A , time_step=0 ) def snake_case_( self ) -> Tuple: _SCREAMING_SNAKE_CASE = self.full_loop() _SCREAMING_SNAKE_CASE = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 def snake_case_( self ) -> Tuple: _SCREAMING_SNAKE_CASE = self.full_loop(prediction_type="""v_prediction""" ) _SCREAMING_SNAKE_CASE = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.1014 ) < 1e-3 def snake_case_( self ) -> Dict: _SCREAMING_SNAKE_CASE = self.scheduler_classes[0] _SCREAMING_SNAKE_CASE = self.get_scheduler_config(thresholding=A , dynamic_thresholding_ratio=0 ) _SCREAMING_SNAKE_CASE = scheduler_class(**A ) _SCREAMING_SNAKE_CASE = 10 _SCREAMING_SNAKE_CASE = self.dummy_model() _SCREAMING_SNAKE_CASE = self.dummy_sample_deter.half() scheduler.set_timesteps(A ) for i, t in enumerate(scheduler.timesteps ): _SCREAMING_SNAKE_CASE = model(A , A ) _SCREAMING_SNAKE_CASE = scheduler.step(A , A , A ).prev_sample assert sample.dtype == torch.floataa def snake_case_( self , **A ) -> str: for scheduler_class in self.scheduler_classes: _SCREAMING_SNAKE_CASE = self.get_scheduler_config(**A ) _SCREAMING_SNAKE_CASE = scheduler_class(**A ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
314
0
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters lowercase_ = (7_20, 12_80) # Height, Width lowercase_ = (0.4, 0.6) # if height or width lower than this scale, drop it. lowercase_ = 1 / 1_00 lowercase_ = "" lowercase_ = "" lowercase_ = "" lowercase_ = 2_50 def __lowerCAmelCase ( ): '''simple docstring''' __snake_case , __snake_case : str = get_dataset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for index in range(__SCREAMING_SNAKE_CASE ): __snake_case : List[str] = random.sample(range(len(__SCREAMING_SNAKE_CASE ) ) , 4 ) __snake_case , __snake_case , __snake_case : int = update_image_and_anno( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , filter_scale=__SCREAMING_SNAKE_CASE , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __snake_case : Any = random_chars(3_2 ) __snake_case : Any = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0] __snake_case : int = F'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}''' cva.imwrite(F'''{file_root}.jpg''' , __SCREAMING_SNAKE_CASE , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(F'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' ) __snake_case : List[str] = [] for anno in new_annos: __snake_case : Optional[int] = anno[3] - anno[1] __snake_case : Tuple = anno[4] - anno[2] __snake_case : Any = anno[1] + width / 2 __snake_case : Union[str, Any] = anno[2] + height / 2 __snake_case : str = F'''{anno[0]} {x_center} {y_center} {width} {height}''' annos_list.append(__SCREAMING_SNAKE_CASE ) with open(F'''{file_root}.txt''' , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ): '''simple docstring''' __snake_case : List[Any] = [] __snake_case : Dict = [] for label_file in glob.glob(os.path.join(__SCREAMING_SNAKE_CASE , """*.txt""" ) ): __snake_case : str = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(__SCREAMING_SNAKE_CASE ) as in_file: __snake_case : Union[str, Any] = in_file.readlines() __snake_case : Union[str, Any] = os.path.join(__SCREAMING_SNAKE_CASE , F'''{label_name}.jpg''' ) __snake_case : Optional[Any] = [] for obj_list in obj_lists: __snake_case : Tuple = obj_list.rstrip("""\n""" ).split(""" """ ) __snake_case : Optional[int] = float(obj[1] ) - float(obj[3] ) / 2 __snake_case : List[str] = float(obj[2] ) - float(obj[4] ) / 2 __snake_case : Optional[Any] = float(obj[1] ) + float(obj[3] ) / 2 __snake_case : Optional[Any] = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(__SCREAMING_SNAKE_CASE ) labels.append(__SCREAMING_SNAKE_CASE ) return img_paths, labels def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : tuple[int, int] , __SCREAMING_SNAKE_CASE : tuple[float, float] , __SCREAMING_SNAKE_CASE : float = 0.0 , ): '''simple docstring''' __snake_case : Tuple = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) __snake_case : Any = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __snake_case : int = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __snake_case : Dict = int(scale_x * output_size[1] ) __snake_case : Tuple = int(scale_y * output_size[0] ) __snake_case : Dict = [] __snake_case : int = [] for i, index in enumerate(__SCREAMING_SNAKE_CASE ): __snake_case : List[str] = all_img_list[index] path_list.append(__SCREAMING_SNAKE_CASE ) __snake_case : str = all_annos[index] __snake_case : Optional[Any] = cva.imread(__SCREAMING_SNAKE_CASE ) if i == 0: # top-left __snake_case : List[Any] = cva.resize(__SCREAMING_SNAKE_CASE , (divid_point_x, divid_point_y) ) __snake_case : Optional[Any] = img for bbox in img_annos: __snake_case : List[str] = bbox[1] * scale_x __snake_case : str = bbox[2] * scale_y __snake_case : Union[str, Any] = bbox[3] * scale_x __snake_case : Any = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right __snake_case : Any = cva.resize(__SCREAMING_SNAKE_CASE , (output_size[1] - divid_point_x, divid_point_y) ) __snake_case : Optional[Any] = img for bbox in img_annos: __snake_case : List[Any] = scale_x + bbox[1] * (1 - scale_x) __snake_case : int = bbox[2] * scale_y __snake_case : List[Any] = scale_x + bbox[3] * (1 - scale_x) __snake_case : Dict = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left __snake_case : Optional[Any] = cva.resize(__SCREAMING_SNAKE_CASE , (divid_point_x, output_size[0] - divid_point_y) ) __snake_case : Dict = img for bbox in img_annos: __snake_case : List[str] = bbox[1] * scale_x __snake_case : int = scale_y + bbox[2] * (1 - scale_y) __snake_case : Union[str, Any] = bbox[3] * scale_x __snake_case : List[str] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right __snake_case : Union[str, Any] = cva.resize( __SCREAMING_SNAKE_CASE , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) __snake_case : int = img for bbox in img_annos: __snake_case : List[Any] = scale_x + bbox[1] * (1 - scale_x) __snake_case : Optional[int] = scale_y + bbox[2] * (1 - scale_y) __snake_case : Dict = scale_x + bbox[3] * (1 - scale_x) __snake_case : Any = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: __snake_case : Union[str, Any] = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" __snake_case : Optional[Any] = ascii_lowercase + digits return "".join(random.choice(__SCREAMING_SNAKE_CASE ) for _ in range(__SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": main() print("DONE ✅")
390
lowercase_ = "0.18.2" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
390
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class UpperCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' _lowercase : int = StableUnCLIPImgaImgPipeline _lowercase : Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS _lowercase : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _lowercase : List[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _lowercase : Union[str, Any] = frozenset([] ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = 32 _lowerCAmelCase = embedder_hidden_size # image encoding components _lowerCAmelCase = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) _lowerCAmelCase = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=_lowercase , projection_dim=_lowercase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) _lowerCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=_lowercase ) _lowerCAmelCase = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) _lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) _lowerCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowercase , layers_per_block=1 , upcast_attention=_lowercase , use_linear_projection=_lowercase , ) torch.manual_seed(0 ) _lowerCAmelCase = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="""v_prediction""" , set_alpha_to_one=_lowercase , steps_offset=1 , ) torch.manual_seed(0 ) _lowerCAmelCase = AutoencoderKL() _lowerCAmelCase = { # image encoding components """feature_extractor""": feature_extractor, """image_encoder""": image_encoder.eval(), # image noising components """image_normalizer""": image_normalizer.eval(), """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder.eval(), """unet""": unet.eval(), """scheduler""": scheduler, """vae""": vae.eval(), } return components def _lowercase ( self , _lowercase , _lowercase=0 , _lowercase=True ): """simple docstring""" if str(_lowercase ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(_lowercase ) else: _lowerCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) _lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowercase ) ).to(_lowercase ) if pil_image: _lowerCAmelCase = input_image * 0.5 + 0.5 _lowerCAmelCase = input_image.clamp(0 , 1 ) _lowerCAmelCase = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _lowerCAmelCase = DiffusionPipeline.numpy_to_pil(_lowercase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = StableUnCLIPImgaImgPipeline(**_lowercase ) _lowerCAmelCase = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) _lowerCAmelCase = self.get_dummy_inputs(_lowercase ) inputs.update({"""image_embeds""": None} ) _lowerCAmelCase = sd_pipe(**_lowercase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowerCAmelCase = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = torch_device in ["""cpu""", """mps"""] self._test_attention_slicing_forward_pass(test_max_difference=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=_lowercase ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _lowercase ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_max_difference=_lowercase ) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy""" ) _lowerCAmelCase = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-l-img2img""" , torch_dtype=torch.floataa ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) _lowerCAmelCase = pipe(_lowercase , """anime turle""" , generator=_lowercase , output_type="""np""" ) _lowerCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowercase , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy""" ) _lowerCAmelCase = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) _lowerCAmelCase = pipe(_lowercase , """anime turle""" , generator=_lowercase , output_type="""np""" ) _lowerCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowercase , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCAmelCase = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa ) _lowerCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _lowerCAmelCase = pipe( _lowercase , """anime turtle""" , num_inference_steps=2 , output_type="""np""" , ) _lowerCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
5
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING __a : List[Any] = logging.get_logger(__name__) @add_end_docstrings(snake_case__ ) class __UpperCAmelCase ( snake_case__ ): """simple docstring""" def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) requires_backends(self , "decord" ) self.check_model_type(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> List[str]: """simple docstring""" UpperCamelCase = {} if frame_sampling_rate is not None: UpperCamelCase = frame_sampling_rate if num_frames is not None: UpperCamelCase = num_frames UpperCamelCase = {} if top_k is not None: UpperCamelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return super().__call__(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=1 ) -> List[Any]: """simple docstring""" if num_frames is None: UpperCamelCase = self.model.config.num_frames if video.startswith("http://" ) or video.startswith("https://" ): UpperCamelCase = BytesIO(requests.get(SCREAMING_SNAKE_CASE ).content ) UpperCamelCase = VideoReader(SCREAMING_SNAKE_CASE ) videoreader.seek(0 ) UpperCamelCase = 0 UpperCamelCase = num_frames * frame_sampling_rate - 1 UpperCamelCase = np.linspace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num=SCREAMING_SNAKE_CASE , dtype=np.intaa ) UpperCamelCase = videoreader.get_batch(SCREAMING_SNAKE_CASE ).asnumpy() UpperCamelCase = list(SCREAMING_SNAKE_CASE ) UpperCamelCase = self.image_processor(SCREAMING_SNAKE_CASE , return_tensors=self.framework ) return model_inputs def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase = self.model(**SCREAMING_SNAKE_CASE ) return model_outputs def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=5 ) -> Optional[Any]: """simple docstring""" if top_k > self.model.config.num_labels: UpperCamelCase = self.model.config.num_labels if self.framework == "pt": UpperCamelCase = model_outputs.logits.softmax(-1 )[0] UpperCamelCase , UpperCamelCase = probs.topk(SCREAMING_SNAKE_CASE ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) UpperCamelCase = scores.tolist() UpperCamelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )]
606
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _A : Any = { '''configuration_convnext''': ['''CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvNextConfig''', '''ConvNextOnnxConfig'''] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Optional[int] = ['''ConvNextFeatureExtractor'''] _A : List[str] = ['''ConvNextImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Dict = [ '''CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvNextForImageClassification''', '''ConvNextModel''', '''ConvNextPreTrainedModel''', '''ConvNextBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str = [ '''TFConvNextForImageClassification''', '''TFConvNextModel''', '''TFConvNextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _A : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
709
'''simple docstring''' def UpperCamelCase_ ( snake_case_ : int ) -> list[int]: '''simple docstring''' if num <= 0: raise ValueError("""Input must be a positive integer""" ) __lowerCAmelCase = [True] * (num + 1) __lowerCAmelCase = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , snake_case_ ): __lowerCAmelCase = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() _A : Tuple = int(input('''Enter a positive integer: ''').strip()) print(prime_sieve_eratosthenes(user_num))
330
0
from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCAmelCase__ : Dict ={'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys lowerCAmelCase__ : List[str] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
101
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ = { 'configuration_rag': ['RagConfig'], 'retrieval_rag': ['RagRetriever'], 'tokenization_rag': ['RagTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'RagModel', 'RagPreTrainedModel', 'RagSequenceForGeneration', 'RagTokenForGeneration', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'TFRagModel', 'TFRagPreTrainedModel', 'TFRagSequenceForGeneration', 'TFRagTokenForGeneration', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
253
0
'''simple docstring''' from __future__ import annotations def __magic_name__( _A , _A ): '''simple docstring''' UpperCamelCase__ = 0 UpperCamelCase__ = len(_SCREAMING_SNAKE_CASE ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: UpperCamelCase__ = i + 1 else: UpperCamelCase__ = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"""{two_pointer([2, 7, 11, 15], 9) = }""")
701
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase_ : str = logging.get_logger(__name__) lowerCamelCase_ : Optional[int] = { '''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __a : Tuple = "deformable_detr" __a : str = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : List[Any] , lowercase : List[Any]=True , lowercase : Tuple=None , lowercase : Tuple=3 , lowercase : List[str]=3_0_0 , lowercase : List[Any]=1_0_2_4 , lowercase : List[Any]=6 , lowercase : Tuple=1_0_2_4 , lowercase : Union[str, Any]=8 , lowercase : Optional[Any]=6 , lowercase : Tuple=1_0_2_4 , lowercase : Any=8 , lowercase : List[str]=0.0 , lowercase : Any=True , lowercase : Union[str, Any]="relu" , lowercase : Dict=2_5_6 , lowercase : Optional[int]=0.1 , lowercase : Optional[int]=0.0 , lowercase : List[str]=0.0 , lowercase : Any=0.0_2 , lowercase : Optional[int]=1.0 , lowercase : Tuple=True , lowercase : Optional[int]=False , lowercase : Any="sine" , lowercase : List[str]="resnet50" , lowercase : List[str]=True , lowercase : Optional[int]=False , lowercase : int=4 , lowercase : str=4 , lowercase : Dict=4 , lowercase : int=False , lowercase : List[Any]=3_0_0 , lowercase : List[Any]=False , lowercase : Dict=1 , lowercase : int=5 , lowercase : List[Any]=2 , lowercase : List[str]=1 , lowercase : Tuple=1 , lowercase : Dict=5 , lowercase : Dict=2 , lowercase : Dict=0.1 , lowercase : List[str]=0.2_5 , lowercase : Tuple=False , **lowercase : str , ) -> str: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCamelCase__ = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowercase , lowercase ): UpperCamelCase__ = backbone_config.get("""model_type""" ) UpperCamelCase__ = CONFIG_MAPPING[backbone_model_type] UpperCamelCase__ = config_class.from_dict(lowercase ) UpperCamelCase__ = use_timm_backbone UpperCamelCase__ = backbone_config UpperCamelCase__ = num_channels UpperCamelCase__ = num_queries UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = d_model UpperCamelCase__ = encoder_ffn_dim UpperCamelCase__ = encoder_layers UpperCamelCase__ = encoder_attention_heads UpperCamelCase__ = decoder_ffn_dim UpperCamelCase__ = decoder_layers UpperCamelCase__ = decoder_attention_heads UpperCamelCase__ = dropout UpperCamelCase__ = attention_dropout UpperCamelCase__ = activation_dropout UpperCamelCase__ = activation_function UpperCamelCase__ = init_std UpperCamelCase__ = init_xavier_std UpperCamelCase__ = encoder_layerdrop UpperCamelCase__ = auxiliary_loss UpperCamelCase__ = position_embedding_type UpperCamelCase__ = backbone UpperCamelCase__ = use_pretrained_backbone UpperCamelCase__ = dilation # deformable attributes UpperCamelCase__ = num_feature_levels UpperCamelCase__ = encoder_n_points UpperCamelCase__ = decoder_n_points UpperCamelCase__ = two_stage UpperCamelCase__ = two_stage_num_proposals UpperCamelCase__ = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher UpperCamelCase__ = class_cost UpperCamelCase__ = bbox_cost UpperCamelCase__ = giou_cost # Loss coefficients UpperCamelCase__ = mask_loss_coefficient UpperCamelCase__ = dice_loss_coefficient UpperCamelCase__ = bbox_loss_coefficient UpperCamelCase__ = giou_loss_coefficient UpperCamelCase__ = eos_coefficient UpperCamelCase__ = focal_alpha UpperCamelCase__ = disable_custom_kernels super().__init__(is_encoder_decoder=lowercase , **lowercase ) @property def A ( self : str ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def A ( self : Tuple ) -> int: '''simple docstring''' return self.d_model def A ( self : Dict ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: UpperCamelCase__ = self.backbone_config.to_dict() UpperCamelCase__ = self.__class__.model_type return output
265
0
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Any = logging.get_logger(__name__) _lowerCamelCase : Optional[int] = """https://openaipublic.azureedge.net/jukebox/models/""" _lowerCamelCase : Optional[Any] = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: """simple docstring""" if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: A__ = key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: A__ = key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: A__ = key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: A__ = key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: A__ = key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: A__ = key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: A__ = key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: A__ = key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: """simple docstring""" A__ = {} import re A__ = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) A__ = re.compile( R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) A__ = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) A__ = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) A__ = re.compile( R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) A__ = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) A__ = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) A__ = re.compile( R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) A__ = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(lowercase_ ): A__ = re_encoder_block_conv_in.match(lowercase_ ) A__ = regex_match.groups() A__ = int(groups[2] ) * 2 + int(groups[3] ) A__ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" A__ = re_encoder_block_conv_in.sub(lowercase_ , lowercase_ ) elif re_encoder_block_resnet.fullmatch(lowercase_ ): A__ = re_encoder_block_resnet.match(lowercase_ ) A__ = regex_match.groups() A__ = int(groups[2] ) * 2 + int(groups[3] ) A__ = {'''1''': 1, '''3''': 2}[groups[-2]] A__ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" A__ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" A__ = prefix + resnet_block A__ = re_encoder_block_resnet.sub(lowercase_ , lowercase_ ) elif re_encoder_block_proj_out.fullmatch(lowercase_ ): A__ = re_encoder_block_proj_out.match(lowercase_ ) A__ = regex_match.groups() A__ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" A__ = re_encoder_block_proj_out.sub(lowercase_ , lowercase_ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(lowercase_ ): A__ = re_decoder_block_conv_out.match(lowercase_ ) A__ = regex_match.groups() A__ = int(groups[2] ) * 2 + int(groups[3] ) - 2 A__ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" A__ = re_decoder_block_conv_out.sub(lowercase_ , lowercase_ ) elif re_decoder_block_resnet.fullmatch(lowercase_ ): A__ = re_decoder_block_resnet.match(lowercase_ ) A__ = regex_match.groups() A__ = int(groups[2] ) * 2 + int(groups[3] ) - 2 A__ = {'''1''': 1, '''3''': 2}[groups[-2]] A__ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" A__ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" A__ = prefix + resnet_block A__ = re_decoder_block_resnet.sub(lowercase_ , lowercase_ ) elif re_decoder_block_proj_in.fullmatch(lowercase_ ): A__ = re_decoder_block_proj_in.match(lowercase_ ) A__ = regex_match.groups() A__ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" A__ = re_decoder_block_proj_in.sub(lowercase_ , lowercase_ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(lowercase_ ): A__ = re_prior_cond_conv_out.match(lowercase_ ) A__ = regex_match.groups() A__ = int(groups[1] ) * 2 + int(groups[2] ) - 2 A__ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" A__ = re_prior_cond_conv_out.sub(lowercase_ , lowercase_ ) elif re_prior_cond_resnet.fullmatch(lowercase_ ): A__ = re_prior_cond_resnet.match(lowercase_ ) A__ = regex_match.groups() A__ = int(groups[1] ) * 2 + int(groups[2] ) - 2 A__ = {'''1''': 1, '''3''': 2}[groups[-2]] A__ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" A__ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" A__ = prefix + resnet_block A__ = re_prior_cond_resnet.sub(lowercase_ , lowercase_ ) elif re_prior_cond_proj_in.fullmatch(lowercase_ ): A__ = re_prior_cond_proj_in.match(lowercase_ ) A__ = regex_match.groups() A__ = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" A__ = re_prior_cond_proj_in.sub(lowercase_ , lowercase_ ) # keep original key else: A__ = original_key A__ = replace_key(lowercase_ ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: A__ = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) A__ = original_key A__ = original_key A__ = value return new_dict @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase_=None , lowercase_=None ) -> str: """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ): A__ = requests.get(f"""{PREFIX}{file}""" , allow_redirects=lowercase_ ) os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=lowercase_ ) open(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" , '''wb''' ).write(r.content ) A__ = MODEL_MAPPING[model_name.split('''/''' )[-1]] A__ = JukeboxConfig.from_pretrained(lowercase_ ) A__ = JukeboxModel(lowercase_ ) A__ = [] A__ = {} for i, dict_name in enumerate(lowercase_ ): A__ = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )['''model'''] A__ = {} for k in old_dic.keys(): if k.endswith('''.b''' ): A__ = old_dic[k] elif k.endswith('''.w''' ): A__ = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: A__ = old_dic[k] else: A__ = old_dic[k] A__ = '''vqvae''' if i == 0 else f"""priors.{3 - i}""" A__ = fix_jukebox_keys(lowercase_ , model.state_dict() , lowercase_ , lowercase_ ) weight_dict.append(lowercase_ ) A__ = weight_dict.pop(0 ) model.vqvae.load_state_dict(lowercase_ ) for i in range(len(lowercase_ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) with open(f"""{pytorch_dump_folder_path}/mapping.json""" , '''w''' ) as txtfile: json.dump(lowercase_ , lowercase_ ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) return weight_dict if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) _lowerCamelCase : Optional[int] = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
87
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list: """simple docstring""" if len(lowercase_ ) <= 1: return [tuple(lowercase_ )] A__ = [] def generate(lowercase_ , lowercase_ ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , lowercase_ ) for i in range(k - 1 ): if k % 2 == 0: # k is even A__ , A__ = arr[k - 1], arr[i] else: # k is odd A__ , A__ = arr[k - 1], arr[0] generate(k - 1 , lowercase_ ) generate(len(lowercase_ ) , lowercase_ ) return res if __name__ == "__main__": _lowerCamelCase : int = input("""Enter numbers separated by a comma:\n""").strip() _lowerCamelCase : str = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
87
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE (UpperCAmelCase ): def __init__( self : List[Any] , a : List[str] , a : List[Any] , a : Tuple , a : str , a : Optional[int] , a : str , a : List[Any] , )-> List[str]: """simple docstring""" super().__init__() self.register_modules( vae=a , text_encoder=a , tokenizer=a , unet=a , scheduler=a , safety_checker=a , feature_extractor=a , ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : str = "auto" )-> Any: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(a ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Optional[Any]: """simple docstring""" self.enable_attention_slicing(a ) @torch.no_grad() def __call__( self : Dict , a : Optional[int] , a : Tuple = 512 , a : str = 512 , a : Optional[int] = 50 , a : List[Any] = 7.5 , a : Dict = None , a : Any = 1 , a : Optional[int] = 0.0 , a : int = None , a : int = None , a : Union[str, Any] = "pil" , a : Dict = True , a : Optional[Any] = None , a : Optional[Any] = 1 , a : Any = None , **a : Union[str, Any] , )-> Tuple: """simple docstring""" if isinstance(a , a ): lowercase__ = 1 elif isinstance(a , a ): lowercase__ = len(a ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(a )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(a , a ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(a )}.""" ) # get prompt text embeddings lowercase__ = self.tokenizer( a , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) lowercase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) lowercase__ = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: lowercase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowercase__ , lowercase__ , lowercase__ = text_embeddings.shape lowercase__ = text_embeddings.repeat(1 , a , 1 ) lowercase__ = text_embeddings.view(bs_embed * num_images_per_prompt , a , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase__ = 42 if negative_prompt is None: lowercase__ = [''] elif type(a ) is not type(a ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(a )} !=""" f""" {type(a )}.""" ) elif isinstance(a , a ): lowercase__ = [negative_prompt] elif batch_size != len(a ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(a )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ' the batch size of `prompt`.' ) else: lowercase__ = negative_prompt lowercase__ = text_input_ids.shape[-1] lowercase__ = self.tokenizer( a , padding='max_length' , max_length=a , truncation=a , return_tensors='pt' , ) lowercase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase__ = uncond_embeddings.shape[1] lowercase__ = uncond_embeddings.repeat(a , a , 1 ) lowercase__ = uncond_embeddings.view(batch_size * num_images_per_prompt , a , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) lowercase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowercase__ = torch.randn( a , generator=a , device='cpu' , dtype=a ).to(self.device ) lowercase__ = torch.randn(a , generator=a , device='cpu' , dtype=a ).to( self.device ) else: lowercase__ = torch.randn( a , generator=a , device=self.device , dtype=a ) lowercase__ = torch.randn(a , generator=a , device=self.device , dtype=a ) else: if latents_reference.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) lowercase__ = latents_reference.to(self.device ) lowercase__ = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images lowercase__ = (latents_shape[3] - latents_shape_reference[3]) // 2 lowercase__ = (latents_shape[2] - latents_shape_reference[2]) // 2 lowercase__ = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx lowercase__ = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy lowercase__ = 0 if dx < 0 else dx lowercase__ = 0 if dy < 0 else dy lowercase__ = max(-dx , 0 ) lowercase__ = max(-dy , 0 ) # import pdb # pdb.set_trace() lowercase__ = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(a ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowercase__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ = {} if accepts_eta: lowercase__ = eta for i, t in enumerate(self.progress_bar(a ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(a , a ) # predict the noise residual lowercase__ = self.unet(a , a , encoder_hidden_states=a ).sample # perform guidance if do_classifier_free_guidance: lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowercase__ = self.scheduler.step(a , a , a , **a ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(a , a , a ) lowercase__ = 1 / 0.18215 * latents lowercase__ = self.vae.decode(a ).sample lowercase__ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: lowercase__ = self.feature_extractor(self.numpy_to_pil(a ) , return_tensors='pt' ).to( self.device ) lowercase__ , lowercase__ = self.safety_checker( images=a , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: lowercase__ = None if output_type == "pil": lowercase__ = self.numpy_to_pil(a ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=a , nsfw_content_detected=a )
715
from string import ascii_uppercase lowercase_ = {str(ord(c) - 55): c for c in ascii_uppercase} def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('int() can\'t convert non-string with explicit base' ) if num < 0: raise ValueError('parameter must be positive int' ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if base in (0, 1): raise ValueError('base must be >= 2' ) if base > 36: raise ValueError('base must be <= 36' ) lowercase__ = '' lowercase__ = 0 lowercase__ = 0 while div != 1: lowercase__ , lowercase__ = divmod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if base >= 11 and 9 < mod < 36: lowercase__ = ALPHABET_VALUES[str(_SCREAMING_SNAKE_CASE )] else: lowercase__ = str(_SCREAMING_SNAKE_CASE ) new_value += actual_value lowercase__ = num // base lowercase__ = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(_SCREAMING_SNAKE_CASE ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1_000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
45
0
'''simple docstring''' import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def _UpperCamelCase ( UpperCamelCase__ ): UpperCAmelCase__ : Optional[Any] = model.config UpperCAmelCase__ : Optional[int] = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 1_6, 3_2] , window_size=original_config.window_size , embed_dim=1_2_8 , ) UpperCAmelCase__ : Union[str, Any] = MBartConfig( is_decoder=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , add_cross_attention=lowerCamelCase_ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=lowerCamelCase_ , add_final_layer_norm=lowerCamelCase_ , ) return encoder_config, decoder_config def _UpperCamelCase ( UpperCamelCase__ ): if "encoder.model" in name: UpperCAmelCase__ : Union[str, Any] = name.replace("""encoder.model""" , """encoder""" ) if "decoder.model" in name: UpperCAmelCase__ : Optional[int] = name.replace("""decoder.model""" , """decoder""" ) if "patch_embed.proj" in name: UpperCAmelCase__ : Union[str, Any] = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: UpperCAmelCase__ : int = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if name.startswith("""encoder""" ): if "layers" in name: UpperCAmelCase__ : Tuple = '''encoder.''' + name if "attn.proj" in name: UpperCAmelCase__ : str = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "mask" not in name: UpperCAmelCase__ : int = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: UpperCAmelCase__ : int = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: UpperCAmelCase__ : List[Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: UpperCAmelCase__ : Union[str, Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: UpperCAmelCase__ : List[str] = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": UpperCAmelCase__ : int = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": UpperCAmelCase__ : Optional[int] = '''encoder.layernorm.bias''' return name def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): for key in orig_state_dict.copy().keys(): UpperCAmelCase__ : List[str] = orig_state_dict.pop(lowerCamelCase_ ) if "qkv" in key: UpperCAmelCase__ : List[str] = key.split(""".""" ) UpperCAmelCase__ : Tuple = int(key_split[3] ) UpperCAmelCase__ : Tuple = int(key_split[5] ) UpperCAmelCase__ : Union[str, Any] = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCAmelCase__ : str = val[:dim, :] UpperCAmelCase__ : str = val[dim : dim * 2, :] UpperCAmelCase__ : List[Any] = val[-dim:, :] else: UpperCAmelCase__ : Optional[Any] = val[:dim] UpperCAmelCase__ : Dict = val[dim : dim * 2] UpperCAmelCase__ : Union[str, Any] = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: UpperCAmelCase__ : Optional[Any] = val return orig_state_dict def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=False ): # load original model UpperCAmelCase__ : List[Any] = DonutModel.from_pretrained(lowerCamelCase_ ).eval() # load HuggingFace model UpperCAmelCase__ : List[Any] = get_configs(lowerCamelCase_ ) UpperCAmelCase__ : List[Any] = DonutSwinModel(lowerCamelCase_ ) UpperCAmelCase__ : Optional[Any] = MBartForCausalLM(lowerCamelCase_ ) UpperCAmelCase__ : Dict = VisionEncoderDecoderModel(encoder=lowerCamelCase_ , decoder=lowerCamelCase_ ) model.eval() UpperCAmelCase__ : Any = original_model.state_dict() UpperCAmelCase__ : Union[str, Any] = convert_state_dict(lowerCamelCase_ , lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) # verify results on scanned document UpperCAmelCase__ : str = load_dataset("""hf-internal-testing/example-documents""" ) UpperCAmelCase__ : str = dataset['''test'''][0]['''image'''].convert("""RGB""" ) UpperCAmelCase__ : Optional[Any] = XLMRobertaTokenizerFast.from_pretrained(lowerCamelCase_ , from_slow=lowerCamelCase_ ) UpperCAmelCase__ : Any = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) UpperCAmelCase__ : int = DonutProcessor(lowerCamelCase_ , lowerCamelCase_ ) UpperCAmelCase__ : Optional[int] = processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": UpperCAmelCase__ : Union[str, Any] = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' UpperCAmelCase__ : Union[str, Any] = '''When is the coffee break?''' UpperCAmelCase__ : str = task_prompt.replace("""{user_input}""" , lowerCamelCase_ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": UpperCAmelCase__ : Optional[Any] = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: UpperCAmelCase__ : int = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": UpperCAmelCase__ : Optional[int] = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": UpperCAmelCase__ : str = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt UpperCAmelCase__ : Union[str, Any] = '''hello world''' else: raise ValueError("""Model name not supported""" ) UpperCAmelCase__ : Any = original_model.decoder.tokenizer(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , return_tensors="""pt""" )[ '''input_ids''' ] UpperCAmelCase__ : Optional[Any] = original_model.encoder.model.patch_embed(lowerCamelCase_ ) UpperCAmelCase__ : List[str] = model.encoder.embeddings(lowerCamelCase_ ) assert torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) # verify encoder hidden states UpperCAmelCase__ : int = original_model.encoder(lowerCamelCase_ ) UpperCAmelCase__ : Tuple = model.encoder(lowerCamelCase_ ).last_hidden_state assert torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-2 ) # verify decoder hidden states UpperCAmelCase__ : List[Any] = original_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).logits UpperCAmelCase__ : List[str] = model(lowerCamelCase_ , decoder_input_ids=lowerCamelCase_ ).logits assert torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase_ ) processor.save_pretrained(lowerCamelCase_ ) if push_to_hub: model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) if __name__ == "__main__": __A =argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) __A =parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
407
import string from math import logaa def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ ): A : List[str] = document.translate( str.maketrans('''''' , '''''' , string.punctuation ) ).replace('''\n''' , '''''' ) A : Optional[int] = document_without_punctuation.split(''' ''' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ ): A : Dict = corpus.lower().translate( str.maketrans('''''' , '''''' , string.punctuation ) ) # strip all punctuation and replace it with '' A : Dict = corpus_without_punctuation.split('''\n''' ) A : List[Any] = term.lower() return (len([doc for doc in docs if term in doc] ), len(lowerCamelCase_ )) def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False ): if smoothing: if n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('''df must be > 0''' ) elif n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(logaa(n / df ) , 3 ) def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ ): return round(tf * idf , 3 )
542
0
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu A_ :Tuple = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: A_ :List[Any] = json.load(f) @require_torch class __A ( unittest.TestCase ): """simple docstring""" def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" return FSMTTokenizer.from_pretrained(lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : List[Any] =FSMTForConditionalGeneration.from_pretrained(lowerCamelCase__ ).to(lowerCamelCase__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Optional[Any] =f'facebook/wmt19-{pair}' __UpperCamelCase : str =self.get_tokenizer(lowerCamelCase__ ) __UpperCamelCase : Dict =self.get_model(lowerCamelCase__ ) __UpperCamelCase : List[Any] =bleu_data[pair]['src'] __UpperCamelCase : Optional[Any] =bleu_data[pair]['tgt'] __UpperCamelCase : Union[str, Any] =tokenizer(lowerCamelCase__ , return_tensors='pt' , truncation=lowerCamelCase__ , padding='longest' ).to(lowerCamelCase__ ) __UpperCamelCase : List[str] =model.generate( input_ids=batch.input_ids , num_beams=8 , ) __UpperCamelCase : int =tokenizer.batch_decode( lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ , clean_up_tokenization_spaces=lowerCamelCase__ ) __UpperCamelCase : List[str] =calculate_bleu(lowerCamelCase__ , lowerCamelCase__ ) print(lowerCamelCase__ ) self.assertGreaterEqual(scores['bleu'] , lowerCamelCase__ )
154
A_ :str = '''Tobias Carryer''' from time import time class __A : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=int(time() ) ): # noqa: B008 """simple docstring""" __UpperCamelCase : Optional[int] =multiplier __UpperCamelCase : str =increment __UpperCamelCase : Union[str, Any] =modulo __UpperCamelCase : str =seed def __lowercase ( self ): """simple docstring""" __UpperCamelCase : int =(self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. A_ :Optional[int] = LinearCongruentialGenerator(1664525, 1013904223, 2 << 31) while True: print(lcg.next_number())
154
1
"""simple docstring""" from __future__ import annotations class _lowerCAmelCase : def __init__( self , UpperCamelCase__ ) -> None: '''simple docstring''' snake_case : List[str] = data snake_case : Node | None = None snake_case : Node | None = None def __lowerCAmelCase ( lowercase : Node | None ) -> None: # In Order traversal of the tree """simple docstring""" if tree: display(tree.left ) print(tree.data ) display(tree.right ) def __lowerCAmelCase ( lowercase : Node | None ) -> int: """simple docstring""" return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def __lowerCAmelCase ( lowercase : Node ) -> bool: """simple docstring""" if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def __lowerCAmelCase ( ) -> None: # Main function for testing. """simple docstring""" snake_case : str = Node(1 ) snake_case : Dict = Node(2 ) snake_case : List[str] = Node(3 ) snake_case : Union[str, Any] = Node(4 ) snake_case : str = Node(5 ) snake_case : str = Node(6 ) snake_case : int = Node(7 ) snake_case : List[str] = Node(8 ) snake_case : Union[str, Any] = Node(9 ) print(is_full_binary_tree(lowercase ) ) print(depth_of_tree(lowercase ) ) print("Tree is: " ) display(lowercase ) if __name__ == "__main__": main()
178
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __lowerCAmelCase ( lowercase : Optional[int] ) -> Union[str, Any]: """simple docstring""" snake_case ,snake_case : List[str] = image.size snake_case ,snake_case : int = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 snake_case : Any = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) snake_case : Dict = np.array(lowercase ).astype(np.floataa ) / 255.0 snake_case : List[str] = image[None].transpose(0 , 3 , 1 , 2 ) snake_case : List[Any] = torch.from_numpy(lowercase ) return 2.0 * image - 1.0 class _lowerCAmelCase ( snake_case_ ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> Optional[Any]: '''simple docstring''' super().__init__() self.register_modules(vqvae=UpperCamelCase__ , unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) @torch.no_grad() def __call__( self , UpperCamelCase__ = None , UpperCamelCase__ = 1 , UpperCamelCase__ = 100 , UpperCamelCase__ = 0.0 , UpperCamelCase__ = None , UpperCamelCase__ = "pil" , UpperCamelCase__ = True , ) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' if isinstance(UpperCamelCase__ , PIL.Image.Image ): snake_case : Tuple = 1 elif isinstance(UpperCamelCase__ , torch.Tensor ): snake_case : str = image.shape[0] else: raise ValueError(F'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(UpperCamelCase__ )}' ) if isinstance(UpperCamelCase__ , PIL.Image.Image ): snake_case : Optional[int] = preprocess(UpperCamelCase__ ) snake_case ,snake_case : List[str] = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image snake_case : Any = (batch_size, self.unet.config.in_channels // 2, height, width) snake_case : List[str] = next(self.unet.parameters() ).dtype snake_case : int = randn_tensor(UpperCamelCase__ , generator=UpperCamelCase__ , device=self.device , dtype=UpperCamelCase__ ) snake_case : List[Any] = image.to(device=self.device , dtype=UpperCamelCase__ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(UpperCamelCase__ , device=self.device ) snake_case : Optional[Any] = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler snake_case : Optional[int] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] snake_case : Optional[int] = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) snake_case : Union[str, Any] = {} if accepts_eta: snake_case : List[str] = eta for t in self.progress_bar(UpperCamelCase__ ): # concat latents and low resolution image in the channel dimension. snake_case : int = torch.cat([latents, image] , dim=1 ) snake_case : List[Any] = self.scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) # predict the noise residual snake_case : int = self.unet(UpperCamelCase__ , UpperCamelCase__ ).sample # compute the previous noisy sample x_t -> x_t-1 snake_case : List[Any] = self.scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample # decode the image latents with the VQVAE snake_case : Optional[int] = self.vqvae.decode(UpperCamelCase__ ).sample snake_case : Tuple = torch.clamp(UpperCamelCase__ , -1.0 , 1.0 ) snake_case : Union[str, Any] = image / 2 + 0.5 snake_case : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case : Union[str, Any] = self.numpy_to_pil(UpperCamelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase__ )
178
1
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[int] = 0.00 lowerCamelCase__ : int = 0 for resistor in resistors: if resistor <= 0: lowerCamelCase__ : Union[str, Any] = f'''Resistor at index {index} has a negative or zero value!''' raise ValueError(_lowerCamelCase ) first_sum += 1 / float(_lowerCamelCase ) index += 1 return 1 / first_sum def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : str = 0.00 lowerCamelCase__ : Optional[int] = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowerCamelCase__ : Optional[int] = f'''Resistor at index {index} has a negative value!''' raise ValueError(_lowerCamelCase ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
696
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 A_ : Optional[int] = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_ = 1_4 ): '''simple docstring''' if group not in primes: raise ValueError('Unsupported Group' ) lowerCamelCase__ : int = primes[group]['prime'] lowerCamelCase__ : Optional[int] = primes[group]['generator'] lowerCamelCase__ : Any = int(hexlify(urandom(3_2 ) ), base=1_6 ) def a__ (self ): '''simple docstring''' return hex(self.__private_key )[2:] def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = pow(self.generator, self.__private_key, self.prime ) return hex(lowerCamelCase_ )[2:] def a__ (self, lowerCamelCase_ ): '''simple docstring''' return ( 2 <= key <= self.prime - 2 and pow(lowerCamelCase_, (self.prime - 1) // 2, self.prime ) == 1 ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = int(lowerCamelCase_, base=1_6 ) if not self.is_valid_public_key(lowerCamelCase_ ): raise ValueError('Invalid public key' ) lowerCamelCase__ : Tuple = pow(lowerCamelCase_, self.__private_key, self.prime ) return shaaaa(str(lowerCamelCase_ ).encode() ).hexdigest() @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' return ( 2 <= remote_public_key_str <= prime - 2 and pow(lowerCamelCase_, (prime - 1) // 2, lowerCamelCase_ ) == 1 ) @staticmethod def a__ (lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = 1_4 ): '''simple docstring''' lowerCamelCase__ : Dict = int(lowerCamelCase_, base=1_6 ) lowerCamelCase__ : List[Any] = int(lowerCamelCase_, base=1_6 ) lowerCamelCase__ : List[str] = primes[group]['prime'] if not DiffieHellman.is_valid_public_key_static(lowerCamelCase_, lowerCamelCase_ ): raise ValueError('Invalid public key' ) lowerCamelCase__ : Dict = pow(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) return shaaaa(str(lowerCamelCase_ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
696
1
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class A: '''simple docstring''' UpperCamelCase = 42 # [batch_size x 3] UpperCamelCase = 42 # [batch_size x 3] UpperCamelCase = 42 # [batch_size x 3] UpperCamelCase = 42 # [batch_size x 3] UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def a__ ( self : List[Any] ) -> torch.Tensor: """simple docstring""" lowerCamelCase_ = torch.arange(self.height * self.width ) lowerCamelCase_ = torch.stack( [ pixel_indices % self.width, torch.div(A_ , self.width , rounding_mode='trunc' ), ] , axis=1 , ) return coords @property def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ , *lowerCamelCase_ = self.shape lowerCamelCase_ = int(np.prod(A_ ) ) lowerCamelCase_ = self.get_image_coords() lowerCamelCase_ = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) lowerCamelCase_ = self.get_camera_rays(A_ ) lowerCamelCase_ = rays.view(A_ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def a__ ( self : int , A_ : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowerCamelCase_ , *lowerCamelCase_ , lowerCamelCase_ = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] lowerCamelCase_ = coords.view(A_ , -1 , 2 ) lowerCamelCase_ = self.resolution() lowerCamelCase_ = self.fov() lowerCamelCase_ = (flat.float() / (res - 1)) * 2 - 1 lowerCamelCase_ = fracs * torch.tan(fov / 2 ) lowerCamelCase_ = fracs.view(A_ , -1 , 2 ) lowerCamelCase_ = ( self.z.view(A_ , 1 , 3 ) + self.x.view(A_ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(A_ , 1 , 3 ) * fracs[:, :, 1:] ) lowerCamelCase_ = directions / directions.norm(dim=-1 , keepdim=A_ ) lowerCamelCase_ = torch.stack( [ torch.broadcast_to(self.origin.view(A_ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(A_ , *A_ , 2 , 3 ) def a__ ( self : Any , A_ : int , A_ : int ) -> "DifferentiableProjectiveCamera": """simple docstring""" assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=A_ , height=A_ , x_fov=self.x_fov , y_fov=self.y_fov , ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): lowerCamelCase_ = np.array([np.sin(lowercase ), np.cos(lowercase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) lowerCamelCase_ = -z * 4 lowerCamelCase_ = np.array([np.cos(lowercase ), -np.sin(lowercase ), 0.0] ) lowerCamelCase_ = np.cross(lowercase , lowercase ) origins.append(lowercase ) xs.append(lowercase ) ys.append(lowercase ) zs.append(lowercase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(lowercase , axis=0 ) ).float() , width=lowercase , height=lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(lowercase )) , )
70
"""simple docstring""" from __future__ import annotations def a_ ( lowercase__ :list[float] ): if len(lowercase__ ) < 2: raise ValueError("""Monogons and Digons are not polygons in the Euclidean space""" ) if any(i <= 0 for i in nums ): raise ValueError("""All values must be greater than 0""" ) __lowerCamelCase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
281
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCAmelCase : """simple docstring""" lowerCAmelCase_ = MBartConfig lowerCAmelCase_ = {} lowerCAmelCase_ = """gelu""" def __init__( self : Tuple , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple=13 , UpperCamelCase__ : Tuple=7 , UpperCamelCase__ : Dict=True , UpperCamelCase__ : Dict=False , UpperCamelCase__ : Optional[int]=99 , UpperCamelCase__ : Dict=32 , UpperCamelCase__ : Optional[int]=2 , UpperCamelCase__ : List[Any]=4 , UpperCamelCase__ : Optional[Any]=37 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : str=0.1 , UpperCamelCase__ : Tuple=20 , UpperCamelCase__ : Dict=2 , UpperCamelCase__ : str=1 , UpperCamelCase__ : Union[str, Any]=0 , ) -> Optional[int]: _UpperCamelCase =parent _UpperCamelCase =batch_size _UpperCamelCase =seq_length _UpperCamelCase =is_training _UpperCamelCase =use_labels _UpperCamelCase =vocab_size _UpperCamelCase =hidden_size _UpperCamelCase =num_hidden_layers _UpperCamelCase =num_attention_heads _UpperCamelCase =intermediate_size _UpperCamelCase =hidden_dropout_prob _UpperCamelCase =attention_probs_dropout_prob _UpperCamelCase =max_position_embeddings _UpperCamelCase =eos_token_id _UpperCamelCase =pad_token_id _UpperCamelCase =bos_token_id def UpperCamelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: _UpperCamelCase =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _UpperCamelCase =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _UpperCamelCase =tf.concat([input_ids, eos_tensor] , axis=1 ) _UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase =self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _UpperCamelCase =prepare_mbart_inputs_dict(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return config, inputs_dict def UpperCamelCase__ ( self : int , UpperCamelCase__ : Dict , UpperCamelCase__ : int ) -> Any: _UpperCamelCase =TFMBartModel(config=UpperCamelCase__ ).get_decoder() _UpperCamelCase =inputs_dict['''input_ids'''] _UpperCamelCase =input_ids[:1, :] _UpperCamelCase =inputs_dict['''attention_mask'''][:1, :] _UpperCamelCase =inputs_dict['''head_mask'''] _UpperCamelCase =1 # first forward pass _UpperCamelCase =model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , head_mask=UpperCamelCase__ , use_cache=UpperCamelCase__ ) _UpperCamelCase , _UpperCamelCase =outputs.to_tuple() _UpperCamelCase =past_key_values[1] def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , ): """simple docstring""" if attention_mask is None: _UpperCamelCase =tf.cast(tf.math.not_equal(__SCREAMING_SNAKE_CASE , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _UpperCamelCase =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _UpperCamelCase =tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCamelCase =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _UpperCamelCase =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase ( lowercase_ , lowercase_ , unittest.TestCase): """simple docstring""" lowerCAmelCase_ = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowerCAmelCase_ = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowerCAmelCase_ = ( { """conversational""": TFMBartForConditionalGeneration, """feature-extraction""": TFMBartModel, """summarization""": TFMBartForConditionalGeneration, """text2text-generation""": TFMBartForConditionalGeneration, """translation""": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowerCAmelCase_ = True lowerCAmelCase_ = False lowerCAmelCase_ = False def UpperCamelCase__ ( self : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int ) -> int: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def UpperCamelCase__ ( self : int ) -> Optional[Any]: _UpperCamelCase =TFMBartModelTester(self ) _UpperCamelCase =ConfigTester(self , config_class=UpperCamelCase__ ) def UpperCamelCase__ ( self : Union[str, Any] ) -> Dict: self.config_tester.run_common_tests() def UpperCamelCase__ ( self : List[Any] ) -> List[Any]: _UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCamelCase__ ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase ( unittest.TestCase): """simple docstring""" lowerCAmelCase_ = [ """ UN Chief Says There Is No Military Solution in Syria""", ] lowerCAmelCase_ = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", ] lowerCAmelCase_ = """facebook/mbart-large-en-ro""" @cached_property def UpperCamelCase__ ( self : Optional[Any] ) -> Dict: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCamelCase__ ( self : List[str] ) -> Any: _UpperCamelCase =TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def UpperCamelCase__ ( self : int , **UpperCamelCase__ : Union[str, Any] ) -> int: _UpperCamelCase =self.translate_src_text(**UpperCamelCase__ ) self.assertListEqual(self.expected_text , UpperCamelCase__ ) def UpperCamelCase__ ( self : Union[str, Any] , **UpperCamelCase__ : Union[str, Any] ) -> Tuple: _UpperCamelCase =self.tokenizer(self.src_text , **UpperCamelCase__ , return_tensors='''tf''' ) _UpperCamelCase =self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) _UpperCamelCase =self.tokenizer.batch_decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) return generated_words @slow def UpperCamelCase__ ( self : List[str] ) -> List[str]: self._assert_generated_batch_equal_expected()
700
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =DPTConfig(embedding_type='''hybrid''' ) if "large" in checkpoint_url: _UpperCamelCase =1024 _UpperCamelCase =4096 _UpperCamelCase =24 _UpperCamelCase =16 _UpperCamelCase =[5, 11, 17, 23] _UpperCamelCase =[256, 512, 1024, 1024] _UpperCamelCase =(1, 384, 384) if "nyu" or "midas" in checkpoint_url: _UpperCamelCase =768 _UpperCamelCase =[1, 1, 1, 0.5] _UpperCamelCase =[256, 512, 768, 768] _UpperCamelCase =150 _UpperCamelCase =16 _UpperCamelCase =(1, 384, 384) _UpperCamelCase =False _UpperCamelCase ='''project''' if "ade" in checkpoint_url: _UpperCamelCase =True _UpperCamelCase =768 _UpperCamelCase =[1, 1, 1, 0.5] _UpperCamelCase =150 _UpperCamelCase =16 _UpperCamelCase ='''huggingface/label-files''' _UpperCamelCase ='''ade20k-id2label.json''' _UpperCamelCase =json.load(open(cached_download(hf_hub_url(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) ) , '''r''' ) ) _UpperCamelCase ={int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} _UpperCamelCase =idalabel _UpperCamelCase ={v: k for k, v in idalabel.items()} _UpperCamelCase =[1, 150, 480, 480] return config, expected_shape def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _UpperCamelCase =name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: _UpperCamelCase =name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: _UpperCamelCase =name.replace('''patch_embed''' , '''''' ) if "pos_embed" in name: _UpperCamelCase =name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: _UpperCamelCase =name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: _UpperCamelCase =name.replace('''proj''' , '''projection''' ) if "blocks" in name: _UpperCamelCase =name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: _UpperCamelCase =name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _UpperCamelCase =name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name and "backbone" not in name: _UpperCamelCase =name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name and "backbone" not in name: _UpperCamelCase =name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: _UpperCamelCase =name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: _UpperCamelCase =name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: _UpperCamelCase =name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: _UpperCamelCase =name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: _UpperCamelCase =name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: _UpperCamelCase =name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: _UpperCamelCase =int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _UpperCamelCase =name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: _UpperCamelCase =name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: _UpperCamelCase =name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: _UpperCamelCase =name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: _UpperCamelCase =name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: _UpperCamelCase =name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _UpperCamelCase =name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: _UpperCamelCase =name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: _UpperCamelCase =name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: _UpperCamelCase =name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: _UpperCamelCase =name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: _UpperCamelCase =name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: _UpperCamelCase =name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: _UpperCamelCase =name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: _UpperCamelCase =name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: _UpperCamelCase =name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: _UpperCamelCase =name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: _UpperCamelCase =name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: _UpperCamelCase =name.replace('''bn''' , '''batch_norm''' ) if "head" in name: _UpperCamelCase =name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: _UpperCamelCase =name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: _UpperCamelCase =name.replace('''auxlayer''' , '''auxiliary_head.head''' ) if "backbone" in name: _UpperCamelCase =name.replace('''backbone''' , '''backbone.bit.encoder''' ) if ".." in name: _UpperCamelCase =name.replace('''..''' , '''.''' ) if "stem.conv" in name: _UpperCamelCase =name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: _UpperCamelCase =name.replace('''blocks''' , '''layers''' ) if "convolution" in name and "backbone" in name: _UpperCamelCase =name.replace('''convolution''' , '''conv''' ) if "layer" in name and "backbone" in name: _UpperCamelCase =name.replace('''layer''' , '''layers''' ) if "backbone.bit.encoder.bit" in name: _UpperCamelCase =name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''' ) if "embedder.conv" in name: _UpperCamelCase =name.replace('''embedder.conv''' , '''embedder.convolution''' ) if "backbone.bit.encoder.stem.norm" in name: _UpperCamelCase =name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''' ) return name def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCamelCase =state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) _UpperCamelCase =state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase =in_proj_weight[: config.hidden_size, :] _UpperCamelCase =in_proj_bias[: config.hidden_size] _UpperCamelCase =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCamelCase =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCamelCase =in_proj_weight[ -config.hidden_size :, : ] _UpperCamelCase =in_proj_bias[-config.hidden_size :] def _a (): """simple docstring""" _UpperCamelCase ='''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCamelCase =Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase , _UpperCamelCase =get_dpt_config(__SCREAMING_SNAKE_CASE ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") _UpperCamelCase =torch.load(__SCREAMING_SNAKE_CASE , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(__SCREAMING_SNAKE_CASE ) # rename keys for key in state_dict.copy().keys(): _UpperCamelCase =state_dict.pop(__SCREAMING_SNAKE_CASE ) _UpperCamelCase =val # read in qkv matrices read_in_q_k_v(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # load HuggingFace model _UpperCamelCase =DPTForSemanticSegmentation(__SCREAMING_SNAKE_CASE ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(__SCREAMING_SNAKE_CASE ) model.load_state_dict(__SCREAMING_SNAKE_CASE ) model.eval() # Check outputs on an image _UpperCamelCase =480 if '''ade''' in checkpoint_url else 384 _UpperCamelCase =DPTImageProcessor(size=__SCREAMING_SNAKE_CASE ) _UpperCamelCase =prepare_img() _UpperCamelCase =image_processor(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) # forward pass _UpperCamelCase =model(**__SCREAMING_SNAKE_CASE ).logits if '''ade''' in checkpoint_url else model(**__SCREAMING_SNAKE_CASE ).predicted_depth if show_prediction: _UpperCamelCase =( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=__SCREAMING_SNAKE_CASE , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if push_to_hub: model.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) if __name__ == "__main__": __lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) parser.add_argument( '--show_prediction', action='store_true', ) __lowerCamelCase : Dict = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
271
0
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __snake_case = [ '''cross_validation.py''', '''gradient_accumulation.py''', '''local_sgd.py''', '''multi_process_metrics.py''', '''memory.py''', '''automatic_gradient_accumulation.py''', '''fsdp_with_peak_mem_tracking.py''', '''deepspeed_with_config_support.py''', '''megatron_lm_gpt_pretraining.py''', ] class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: List[str],A_: str,A_: bool,A_: str = None,A_: list = None ): '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = os.path.abspath(os.path.join('examples','by_feature' ) ) __UpperCamelCase = os.path.abspath('examples' ) for item in os.listdir(A_ ): if item not in EXCLUDE_EXAMPLES: __UpperCamelCase = os.path.join(A_,A_ ) if os.path.isfile(A_ ) and ".py" in item_path: with self.subTest( tested_script=A_,feature_script=A_,tested_section='main()' if parser_only else 'training_function()',): __UpperCamelCase = compare_against_test( os.path.join(A_,A_ ),A_,A_,A_ ) __UpperCamelCase = '\n'.join(A_ ) if special_strings is not None: for string in special_strings: __UpperCamelCase = diff.replace(A_,'' ) self.assertEqual(A_,'' ) def snake_case_ ( self: int ): '''simple docstring''' self.one_complete_example('complete_nlp_example.py',A_ ) self.one_complete_example('complete_nlp_example.py',A_ ) def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = os.path.abspath(os.path.join('examples','cv_example.py' ) ) __UpperCamelCase = [ ' ' * 16 + '{\n\n', ' ' * 20 + '"accuracy": eval_metric["accuracy"],\n\n', ' ' * 20 + '"f1": eval_metric["f1"],\n\n', ' ' * 20 + '"train_loss": total_loss.item() / len(train_dataloader),\n\n', ' ' * 20 + '"epoch": epoch,\n\n', ' ' * 16 + '},\n\n', ' ' * 16 + 'step=epoch,\n', ' ' * 12, ' ' * 8 + 'for step, batch in enumerate(active_dataloader):\n', ] self.one_complete_example('complete_cv_example.py',A_,A_,A_ ) self.one_complete_example('complete_cv_example.py',A_,A_,A_ ) @mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """1"""} ) class __lowerCamelCase (_a ): _lowercase = False @classmethod def snake_case_ ( cls: int ): '''simple docstring''' super().setUpClass() __UpperCamelCase = tempfile.mkdtemp() __UpperCamelCase = os.path.join(cls._tmpdir,'default_config.yml' ) write_basic_config(save_location=cls.configPath ) __UpperCamelCase = ['accelerate', 'launch', '--config_file', cls.configPath] @classmethod def snake_case_ ( cls: Optional[Any] ): '''simple docstring''' super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = F''' examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir,'epoch_0' ) ) ) def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = F''' examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} '''.split() __UpperCamelCase = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir,'step_2' ) ) ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = F''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir,'epoch_0' )} '''.split() __UpperCamelCase = run_command(self._launch_args + testargs,return_stdout=A_ ) self.assertNotIn('epoch 0:',A_ ) self.assertIn('epoch 1:',A_ ) def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = F''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir,'step_2' )} '''.split() __UpperCamelCase = run_command(self._launch_args + testargs,return_stdout=A_ ) if torch.cuda.is_available(): __UpperCamelCase = torch.cuda.device_count() else: __UpperCamelCase = 1 if num_processes > 1: self.assertNotIn('epoch 0:',A_ ) self.assertIn('epoch 1:',A_ ) else: self.assertIn('epoch 0:',A_ ) self.assertIn('epoch 1:',A_ ) @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = '\n examples/by_feature/cross_validation.py\n --num_folds 2\n '.split() with mock.patch.dict(os.environ,{'TESTING_MOCKED_DATALOADERS': '0'} ): __UpperCamelCase = run_command(self._launch_args + testargs,return_stdout=A_ ) __UpperCamelCase = re.findall('({.+})',A_ ) __UpperCamelCase = [r for r in results if 'accuracy' in r][-1] __UpperCamelCase = ast.literal_eval(A_ ) self.assertGreaterEqual(results['accuracy'],0.7_5 ) def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = ['examples/by_feature/multi_process_metrics.py'] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ,{'WANDB_MODE': 'offline'} ) def snake_case_ ( self: Dict ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: __UpperCamelCase = F''' examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(A_,'tracking' ) ) ) def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = ['examples/by_feature/gradient_accumulation.py'] run_command(self._launch_args + testargs ) def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = ['examples/by_feature/local_sgd.py'] run_command(self._launch_args + testargs )
1
'''simple docstring''' def __lowerCamelCase ( UpperCAmelCase_ = 10_00 ) ->int: return sum(e for e in range(3 , UpperCAmelCase_ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f"""{solution() = }""")
368
0
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class _A : def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=19 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , ) -> Any: '''simple docstring''' UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = scope def _a (self ) -> List[str]: '''simple docstring''' UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _a (self ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=SCREAMING_SNAKE_CASE_ , esmfold_config={'''trunk''': {'''num_blocks''': 2}, '''fp16_esm''': False} , ) return config def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' UpperCamelCase__ = EsmForProteinFolding(config=SCREAMING_SNAKE_CASE_ ).float() model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def _a (self ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _A ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : int =False SCREAMING_SNAKE_CASE_ : Union[str, Any] =(EsmForProteinFolding,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : Optional[int] =() SCREAMING_SNAKE_CASE_ : List[str] ={} if is_torch_available() else {} SCREAMING_SNAKE_CASE_ : int =False def _a (self ) -> int: '''simple docstring''' UpperCamelCase__ = EsmFoldModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def _a (self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def _a (self ) -> Tuple: '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) @unittest.skip('''Does not support attention outputs''' ) def _a (self ) -> str: '''simple docstring''' pass @unittest.skip def _a (self ) -> Any: '''simple docstring''' pass @unittest.skip('''Esm does not support embedding resizing''' ) def _a (self ) -> Dict: '''simple docstring''' pass @unittest.skip('''Esm does not support embedding resizing''' ) def _a (self ) -> Tuple: '''simple docstring''' pass @unittest.skip('''ESMFold does not support passing input embeds!''' ) def _a (self ) -> List[Any]: '''simple docstring''' pass @unittest.skip('''ESMFold does not support head pruning.''' ) def _a (self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip('''ESMFold does not support head pruning.''' ) def _a (self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip('''ESMFold does not support head pruning.''' ) def _a (self ) -> Any: '''simple docstring''' pass @unittest.skip('''ESMFold does not support head pruning.''' ) def _a (self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip('''ESMFold does not support head pruning.''' ) def _a (self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip('''ESMFold does not output hidden states in the normal way.''' ) def _a (self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip('''ESMfold does not output hidden states in the normal way.''' ) def _a (self ) -> int: '''simple docstring''' pass @unittest.skip('''ESMFold only has one output format.''' ) def _a (self ) -> Dict: '''simple docstring''' pass @unittest.skip('''This test doesn\'t work for ESMFold and doesn\'t test core functionality''' ) def _a (self ) -> Dict: '''simple docstring''' pass @unittest.skip('''ESMFold does not support input chunking.''' ) def _a (self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip('''ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.''' ) def _a (self ) -> int: '''simple docstring''' pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def _a (self ) -> Dict: '''simple docstring''' pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def _a (self ) -> Dict: '''simple docstring''' pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def _a (self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip('''ESMFold doesn\'t support data parallel.''' ) def _a (self ) -> List[str]: '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _a (self ) -> Optional[Any]: '''simple docstring''' pass @require_torch class _A ( __UpperCamelCase ): @slow def _a (self ) -> Any: '''simple docstring''' UpperCamelCase__ = EsmForProteinFolding.from_pretrained('''facebook/esmfold_v1''' ).float() model.eval() UpperCamelCase__ = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ )['''positions'''] UpperCamelCase__ = torch.tensor([2.5828, 0.7993, -10.9334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
469
__magic_name__ ={ '''Pillow''': '''Pillow<10.0.0''', '''accelerate''': '''accelerate>=0.20.3''', '''av''': '''av==9.2.0''', '''beautifulsoup4''': '''beautifulsoup4''', '''black''': '''black~=23.1''', '''codecarbon''': '''codecarbon==1.2.0''', '''cookiecutter''': '''cookiecutter==1.7.3''', '''dataclasses''': '''dataclasses''', '''datasets''': '''datasets!=2.5.0''', '''decord''': '''decord==0.6.0''', '''deepspeed''': '''deepspeed>=0.9.3''', '''diffusers''': '''diffusers''', '''dill''': '''dill<0.3.5''', '''evaluate''': '''evaluate>=0.2.0''', '''fairscale''': '''fairscale>0.3''', '''faiss-cpu''': '''faiss-cpu''', '''fastapi''': '''fastapi''', '''filelock''': '''filelock''', '''flax''': '''flax>=0.4.1,<=0.7.0''', '''ftfy''': '''ftfy''', '''fugashi''': '''fugashi>=1.0''', '''GitPython''': '''GitPython<3.1.19''', '''hf-doc-builder''': '''hf-doc-builder>=0.3.0''', '''huggingface-hub''': '''huggingface-hub>=0.14.1,<1.0''', '''importlib_metadata''': '''importlib_metadata''', '''ipadic''': '''ipadic>=1.0.0,<2.0''', '''isort''': '''isort>=5.5.4''', '''jax''': '''jax>=0.2.8,!=0.3.2,<=0.4.13''', '''jaxlib''': '''jaxlib>=0.1.65,<=0.4.13''', '''jieba''': '''jieba''', '''kenlm''': '''kenlm''', '''keras-nlp''': '''keras-nlp>=0.3.1''', '''librosa''': '''librosa''', '''nltk''': '''nltk''', '''natten''': '''natten>=0.14.6''', '''numpy''': '''numpy>=1.17''', '''onnxconverter-common''': '''onnxconverter-common''', '''onnxruntime-tools''': '''onnxruntime-tools>=1.4.2''', '''onnxruntime''': '''onnxruntime>=1.4.0''', '''opencv-python''': '''opencv-python''', '''optuna''': '''optuna''', '''optax''': '''optax>=0.0.8,<=0.1.4''', '''packaging''': '''packaging>=20.0''', '''parameterized''': '''parameterized''', '''phonemizer''': '''phonemizer''', '''protobuf''': '''protobuf''', '''psutil''': '''psutil''', '''pyyaml''': '''pyyaml>=5.1''', '''pydantic''': '''pydantic<2''', '''pytest''': '''pytest>=7.2.0''', '''pytest-timeout''': '''pytest-timeout''', '''pytest-xdist''': '''pytest-xdist''', '''python''': '''python>=3.8.0''', '''ray[tune]''': '''ray[tune]''', '''regex''': '''regex!=2019.12.17''', '''requests''': '''requests''', '''rhoknp''': '''rhoknp>=1.1.0,<1.3.1''', '''rjieba''': '''rjieba''', '''rouge-score''': '''rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1''', '''ruff''': '''ruff>=0.0.241,<=0.0.259''', '''sacrebleu''': '''sacrebleu>=1.4.12,<2.0.0''', '''sacremoses''': '''sacremoses''', '''safetensors''': '''safetensors>=0.3.1''', '''sagemaker''': '''sagemaker>=2.31.0''', '''scikit-learn''': '''scikit-learn''', '''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''', '''sigopt''': '''sigopt''', '''starlette''': '''starlette''', '''sudachipy''': '''sudachipy>=0.6.6''', '''sudachidict_core''': '''sudachidict_core>=20220729''', '''tensorflow-cpu''': '''tensorflow-cpu>=2.6,<2.14''', '''tensorflow''': '''tensorflow>=2.6,<2.14''', '''tensorflow-text''': '''tensorflow-text<2.14''', '''tf2onnx''': '''tf2onnx''', '''timeout-decorator''': '''timeout-decorator''', '''timm''': '''timm''', '''tokenizers''': '''tokenizers>=0.11.1,!=0.11.3,<0.14''', '''torch''': '''torch>=1.9,!=1.12.0''', '''torchaudio''': '''torchaudio''', '''torchvision''': '''torchvision''', '''pyctcdecode''': '''pyctcdecode>=0.4.0''', '''tqdm''': '''tqdm>=4.27''', '''unidic''': '''unidic>=1.0.2''', '''unidic_lite''': '''unidic_lite>=1.0.7''', '''urllib3''': '''urllib3<2.0.0''', '''uvicorn''': '''uvicorn''', }
469
1
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def lowerCAmelCase__ ( lowerCamelCase_ : Optional[Any]): '''simple docstring''' lowerCAmelCase__ : List[str] = args.pruning_method lowerCAmelCase__ : Optional[Any] = args.threshold lowerCAmelCase__ : Tuple = args.model_name_or_path.rstrip('''/''') lowerCAmelCase__ : Optional[Any] = args.target_model_path print(f"""Load fine-pruned model from {model_name_or_path}""") lowerCAmelCase__ : List[str] = torch.load(os.path.join(SCREAMING_SNAKE_CASE__ ,'''pytorch_model.bin''')) lowerCAmelCase__ : int = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: lowerCAmelCase__ : Any = tensor print(f"""Copied layer {name}""") elif "classifier" in name or "qa_output" in name: lowerCAmelCase__ : Optional[int] = tensor print(f"""Copied layer {name}""") elif "bias" in name: lowerCAmelCase__ : Union[str, Any] = tensor print(f"""Copied layer {name}""") else: if pruning_method == "magnitude": lowerCAmelCase__ : Dict = MagnitudeBinarizer.apply(inputs=SCREAMING_SNAKE_CASE__ ,threshold=SCREAMING_SNAKE_CASE__) lowerCAmelCase__ : Optional[int] = tensor * mask print(f"""Pruned layer {name}""") elif pruning_method == "topK": if "mask_scores" in name: continue lowerCAmelCase__ : Optional[int] = name[:-6] lowerCAmelCase__ : Union[str, Any] = model[f"""{prefix_}mask_scores"""] lowerCAmelCase__ : str = TopKBinarizer.apply(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) lowerCAmelCase__ : List[str] = tensor * mask print(f"""Pruned layer {name}""") elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue lowerCAmelCase__ : Tuple = name[:-6] lowerCAmelCase__ : Any = model[f"""{prefix_}mask_scores"""] lowerCAmelCase__ : int = ThresholdBinarizer.apply(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) lowerCAmelCase__ : Tuple = tensor * mask print(f"""Pruned layer {name}""") elif pruning_method == "l0": if "mask_scores" in name: continue lowerCAmelCase__ : List[str] = name[:-6] lowerCAmelCase__ : Optional[Any] = model[f"""{prefix_}mask_scores"""] lowerCAmelCase__ : Union[str, Any] = -0.1, 1.1 lowerCAmelCase__ : Any = torch.sigmoid(SCREAMING_SNAKE_CASE__) lowerCAmelCase__ : Union[str, Any] = s * (r - l) + l lowerCAmelCase__ : Dict = s_bar.clamp(min=0.0 ,max=1.0) lowerCAmelCase__ : List[str] = tensor * mask print(f"""Pruned layer {name}""") else: raise ValueError('''Unknown pruning method''') if target_model_path is None: lowerCAmelCase__ : int = os.path.join( os.path.dirname(SCREAMING_SNAKE_CASE__) ,f"""bertarized_{os.path.basename(SCREAMING_SNAKE_CASE__)}""") if not os.path.isdir(SCREAMING_SNAKE_CASE__): shutil.copytree(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) print(f"""\nCreated folder {target_model_path}""") torch.save(SCREAMING_SNAKE_CASE__ ,os.path.join(SCREAMING_SNAKE_CASE__ ,'''pytorch_model.bin''')) print('''\nPruned model saved! See you later!''') if __name__ == "__main__": __snake_case : Tuple =argparse.ArgumentParser() parser.add_argument( '--pruning_method', choices=['l0', 'magnitude', 'topK', 'sigmoied_threshold'], type=str, required=True, help=( 'Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,' ' sigmoied_threshold = Soft movement pruning)' ), ) parser.add_argument( '--threshold', type=float, required=False, help=( 'For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.' 'For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.' 'Not needed for `l0`' ), ) parser.add_argument( '--model_name_or_path', type=str, required=True, help='Folder containing the model that was previously fine-pruned', ) parser.add_argument( '--target_model_path', default=None, type=str, required=False, help='Folder containing the model that was previously fine-pruned', ) __snake_case : List[Any] =parser.parse_args() main(args)
647
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE_ = { """configuration_ctrl""": ["""CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CTRLConfig"""], """tokenization_ctrl""": ["""CTRLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """CTRLForSequenceClassification""", """CTRLLMHeadModel""", """CTRLModel""", """CTRLPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCTRLForSequenceClassification""", """TFCTRLLMHeadModel""", """TFCTRLModel""", """TFCTRLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
237
0
"""simple docstring""" import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets _lowercase = ''' @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' _lowercase = '''\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. ''' _lowercase = ''' Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=["About 95 species are currently accepted ."] >>> predictions=["About 95 you now get in ."] >>> references=[["About 95 species are currently known ."]] >>> wiki_split = datasets.load_metric("wiki_split") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0} ''' def _snake_case ( snake_case__ : List[str] ): def remove_articles(snake_case__ : List[Any] ): A = re.compile(r'\b(a|an|the)\b' , re.UNICODE ) return re.sub(snake_case__ , ' ' , snake_case__ ) def white_space_fix(snake_case__ : Tuple ): return " ".join(text.split() ) def remove_punc(snake_case__ : int ): A = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(snake_case__ : Union[str, Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case__ ) ) ) ) def _snake_case ( snake_case__ : str , snake_case__ : List[Any] ): return int(normalize_answer(snake_case__ ) == normalize_answer(snake_case__ ) ) def _snake_case ( snake_case__ : int , snake_case__ : Union[str, Any] ): A = [any(compute_exact(snake_case__ , snake_case__ ) for ref in refs ) for pred, refs in zip(snake_case__ , snake_case__ )] return (sum(snake_case__ ) / len(snake_case__ )) * 100 def _snake_case ( snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : Optional[Any] ): A = [rgram for rgrams in rgramslist for rgram in rgrams] A = Counter(snake_case__ ) A = Counter(snake_case__ ) A = Counter() for sgram, scount in sgramcounter.items(): A = scount * numref A = Counter(snake_case__ ) A = Counter() for cgram, ccount in cgramcounter.items(): A = ccount * numref # KEEP A = sgramcounter_rep & cgramcounter_rep A = keepgramcounter_rep & rgramcounter A = sgramcounter_rep & rgramcounter A = 0 A = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. A = 1 A = 1 if len(snake_case__ ) > 0: A = keeptmpscorea / len(snake_case__ ) if len(snake_case__ ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) A = keeptmpscorea / sum(keepgramcounterall_rep.values() ) A = 0 if keepscore_precision > 0 or keepscore_recall > 0: A = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION A = sgramcounter_rep - cgramcounter_rep A = delgramcounter_rep - rgramcounter A = sgramcounter_rep - rgramcounter A = 0 A = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. A = 1 if len(snake_case__ ) > 0: A = deltmpscorea / len(snake_case__ ) # ADDITION A = set(snake_case__ ) - set(snake_case__ ) A = set(snake_case__ ) & set(snake_case__ ) A = set(snake_case__ ) - set(snake_case__ ) A = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. A = 1 A = 1 if len(snake_case__ ) > 0: A = addtmpscore / len(snake_case__ ) if len(snake_case__ ) > 0: A = addtmpscore / len(snake_case__ ) A = 0 if addscore_precision > 0 or addscore_recall > 0: A = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def _snake_case ( snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : str ): A = len(snake_case__ ) A = ssent.split(' ' ) A = csent.split(' ' ) A = [] A = [] A = [] A = [] A = [] A = [] A = [] A = [] A = [] A = [] for rsent in rsents: A = rsent.split(' ' ) A = [] A = [] A = [] ragramslist.append(snake_case__ ) for i in range(0 , len(snake_case__ ) - 1 ): if i < len(snake_case__ ) - 1: A = ragrams[i] + ' ' + ragrams[i + 1] ragrams.append(snake_case__ ) if i < len(snake_case__ ) - 2: A = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] ragrams.append(snake_case__ ) if i < len(snake_case__ ) - 3: A = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] + ' ' + ragrams[i + 3] ragrams.append(snake_case__ ) ragramslist.append(snake_case__ ) ragramslist.append(snake_case__ ) ragramslist.append(snake_case__ ) for i in range(0 , len(snake_case__ ) - 1 ): if i < len(snake_case__ ) - 1: A = sagrams[i] + ' ' + sagrams[i + 1] sagrams.append(snake_case__ ) if i < len(snake_case__ ) - 2: A = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] sagrams.append(snake_case__ ) if i < len(snake_case__ ) - 3: A = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] + ' ' + sagrams[i + 3] sagrams.append(snake_case__ ) for i in range(0 , len(snake_case__ ) - 1 ): if i < len(snake_case__ ) - 1: A = cagrams[i] + ' ' + cagrams[i + 1] cagrams.append(snake_case__ ) if i < len(snake_case__ ) - 2: A = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] cagrams.append(snake_case__ ) if i < len(snake_case__ ) - 3: A = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] + ' ' + cagrams[i + 3] cagrams.append(snake_case__ ) ((A) , (A) , (A)) = SARIngram(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) ((A) , (A) , (A)) = SARIngram(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) ((A) , (A) , (A)) = SARIngram(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) ((A) , (A) , (A)) = SARIngram(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) A = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 A = sum([delascore, delascore, delascore, delascore] ) / 4 A = sum([addascore, addascore, addascore, addascore] ) / 4 A = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def _snake_case ( snake_case__ : Dict , snake_case__ : bool = True , snake_case__ : str = "13a" , snake_case__ : bool = True ): # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: A = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: A = sacrebleu.metrics.bleu._get_tokenizer(snake_case__ )()(snake_case__ ) else: A = sacrebleu.TOKENIZERS[tokenizer]()(snake_case__ ) elif tokenizer == "moses": A = sacremoses.MosesTokenizer().tokenize(snake_case__ , return_str=snake_case__ , escape=snake_case__ ) elif tokenizer == "penn": A = sacremoses.MosesTokenizer().penn_tokenize(snake_case__ , return_str=snake_case__ ) else: A = sentence if not return_str: A = normalized_sent.split() return normalized_sent def _snake_case ( snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict ): if not (len(snake_case__ ) == len(snake_case__ ) == len(snake_case__ )): raise ValueError('Sources length must match predictions and references lengths.' ) A = 0 for src, pred, refs in zip(snake_case__ , snake_case__ , snake_case__ ): sari_score += SARIsent(normalize(snake_case__ ) , normalize(snake_case__ ) , [normalize(snake_case__ ) for sent in refs] ) A = sari_score / len(snake_case__ ) return 100 * sari_score def _snake_case ( snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : Union[str, Any]="exp" , snake_case__ : Dict=None , snake_case__ : Union[str, Any]=False , snake_case__ : Dict=False , snake_case__ : Optional[Any]=False , ): A = len(references[0] ) if any(len(snake_case__ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) A = [[refs[i] for refs in references] for i in range(snake_case__ )] A = sacrebleu.corpus_bleu( snake_case__ , snake_case__ , smooth_method=snake_case__ , smooth_value=snake_case__ , force=snake_case__ , lowercase=snake_case__ , use_effective_order=snake_case__ , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' ,id='sequence' ) ,id='references' ), } ) ,codebase_urls=[ 'https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py', 'https://github.com/cocoxu/simplification/blob/master/SARI.py', 'https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py', 'https://github.com/mjpost/sacreBLEU', ] ,reference_urls=[ 'https://www.aclweb.org/anthology/Q16-1029.pdf', 'https://github.com/mjpost/sacreBLEU', 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] ,) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[Any] ,A_ : int ,A_ : Any ) -> Union[str, Any]: A = {} result.update({'sari': compute_sari(sources=A_ ,predictions=A_ ,references=A_ )} ) result.update({'sacrebleu': compute_sacrebleu(predictions=A_ ,references=A_ )} ) result.update({'exact': compute_em(predictions=A_ ,references=A_ )} ) return result
22
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Tuple = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[str]=0 ) -> Dict: A = floats_tensor((1, 3, 128, 128) ,rng=random.Random(A_ ) ) A = np.random.RandomState(A_ ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) A = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = PNDMScheduler.from_config(pipe.scheduler.config ,skip_prk_steps=A_ ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) # warmup pass to apply optimizations A = pipe(**self.get_dummy_inputs() ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> str: A = ort.SessionOptions() A = False return options def _SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) A = init_image.resize((768, 512) ) # using the PNDM scheduler by default A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='onnx' ,safety_checker=A_ ,feature_extractor=A_ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=A_ ) A = 'A fantasy landscape, trending on artstation' A = np.random.RandomState(0 ) A = pipe( prompt=A_ ,image=A_ ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=A_ ,output_type='np' ,) A = output.images A = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) A = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) A = init_image.resize((768, 512) ) A = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,subfolder='scheduler' ,revision='onnx' ) A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,revision='onnx' ,scheduler=A_ ,safety_checker=A_ ,feature_extractor=A_ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=A_ ) A = 'A fantasy landscape, trending on artstation' A = np.random.RandomState(0 ) A = pipe( prompt=A_ ,image=A_ ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=20 ,generator=A_ ,output_type='np' ,) A = output.images A = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) A = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
22
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase : Any = { '''configuration_squeezebert''': [ '''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SqueezeBertConfig''', '''SqueezeBertOnnxConfig''', ], '''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = ['''SqueezeBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ '''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SqueezeBertForMaskedLM''', '''SqueezeBertForMultipleChoice''', '''SqueezeBertForQuestionAnswering''', '''SqueezeBertForSequenceClassification''', '''SqueezeBertForTokenClassification''', '''SqueezeBertModel''', '''SqueezeBertModule''', '''SqueezeBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys lowerCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
149
import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : int = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase : int = { '''vocab_file''': { '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json''', }, '''merges_file''': { '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''Salesforce/codegen-350M-mono''': ( '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json''' ), }, } lowerCamelCase : str = { '''Salesforce/codegen-350M-mono''': 20_48, } class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[Any] = VOCAB_FILES_NAMES _A : List[str] = PRETRAINED_VOCAB_FILES_MAP _A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Tuple = ['''input_ids''', '''attention_mask'''] _A : List[str] = CodeGenTokenizer def __init__( self : Optional[int] , __a : str=None , __a : Optional[Any]=None , __a : Optional[Any]=None , __a : Dict="<|endoftext|>" , __a : Optional[int]="<|endoftext|>" , __a : Any="<|endoftext|>" , __a : List[Any]=False , **__a : List[Any] , ) -> List[str]: """simple docstring""" super().__init__( __a , __a , tokenizer_file=__a , unk_token=__a , bos_token=__a , eos_token=__a , add_prefix_space=__a , **__a , ) if kwargs.pop("""add_bos_token""" , __a ): __lowercase : Optional[Any] = kwargs.pop("""name_or_path""" , """""" ) raise ValueError( """Currenty GPT2's fast tokenizer does NOT support adding a BOS token.""" """Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n""" F"`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n" F"`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n" """This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.""" """ so that the fast tokenizer works correctly.""" ) __lowercase : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __a ) != add_prefix_space: __lowercase : Union[str, Any] = getattr(__a , pre_tok_state.pop("""type""" ) ) __lowercase : List[str] = add_prefix_space __lowercase : str = pre_tok_class(**__a ) __lowercase : str = add_prefix_space def lowerCAmelCase ( self : List[Any] , *__a : Tuple , **__a : Tuple ) -> BatchEncoding: """simple docstring""" __lowercase : int = kwargs.get("""is_split_into_words""" , __a ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__a , **__a ) def lowerCAmelCase ( self : int , *__a : List[Any] , **__a : List[str] ) -> BatchEncoding: """simple docstring""" __lowercase : List[Any] = kwargs.get("""is_split_into_words""" , __a ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*__a , **__a ) def lowerCAmelCase ( self : Any , __a : str , __a : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __lowercase : Dict = self._tokenizer.model.save(__a , name=__a ) return tuple(__a ) def lowerCAmelCase ( self : Union[str, Any] , __a : Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] , __a : bool = False , __a : bool = None , __a : Optional[List[str]] = None , **__a : Optional[Any] , ) -> str: """simple docstring""" __lowercase : int = super().decode( token_ids=__a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a , **__a , ) if truncate_before_pattern is not None and len(__a ) > 0: __lowercase : Any = self.truncate(__a , __a ) return decoded_text def lowerCAmelCase ( self : List[str] , __a : int , __a : Tuple ) -> List[str]: """simple docstring""" def find_re(__a : int , __a : Any , __a : str ): __lowercase : Dict = pattern.search(__a , __a ) return m.start() if m else -1 __lowercase : Any = [re.compile(__a , re.MULTILINE ) for pattern in truncate_before_pattern] __lowercase : Dict = list(re.finditer("""^print""" , __a , re.MULTILINE ) ) if len(__a ) > 1: __lowercase : Tuple = completion[: prints[1].start()] __lowercase : Any = list(re.finditer("""^def""" , __a , re.MULTILINE ) ) if len(__a ) > 1: __lowercase : Dict = completion[: defs[1].start()] __lowercase : Union[str, Any] = 0 __lowercase : int = [ pos for pos in [find_re(__a , __a , __a ) for terminal in terminals] if pos != -1 ] if len(__a ) > 0: return completion[: min(__a )] else: return completion
149
1
"""simple docstring""" def lowercase__ ( lowerCAmelCase__ : str , lowerCAmelCase__ : int ) -> str: '''simple docstring''' a__ : list[list[str]] = [[] for _ in range(lowerCAmelCase__ )] a__ : List[Any] = key - 1 if key <= 0: raise ValueError("Height of grid can't be 0 or negative" ) if key == 1 or len(lowerCAmelCase__ ) <= key: return input_string for position, character in enumerate(lowerCAmelCase__ ): a__ : Optional[Any] = position % (lowest * 2) # puts it in bounds a__ : Dict = min(lowerCAmelCase__ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(lowerCAmelCase__ ) a__ : List[Any] = ["".join(lowerCAmelCase__ ) for row in temp_grid] a__ : int = "".join(lowerCAmelCase__ ) return output_string def lowercase__ ( lowerCAmelCase__ : str , lowerCAmelCase__ : int ) -> str: '''simple docstring''' a__ : Any = [] a__ : str = key - 1 if key <= 0: raise ValueError("Height of grid can't be 0 or negative" ) if key == 1: return input_string a__ : list[list[str]] = [[] for _ in range(lowerCAmelCase__ )] # generates template for position in range(len(lowerCAmelCase__ ) ): a__ : List[Any] = position % (lowest * 2) # puts it in bounds a__ : Tuple = min(lowerCAmelCase__ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append("*" ) a__ : Any = 0 for row in temp_grid: # fills in the characters a__ : List[Any] = input_string[counter : counter + len(lowerCAmelCase__ )] grid.append(list(lowerCAmelCase__ ) ) counter += len(lowerCAmelCase__ ) a__ : List[Any] = "" # reads as zigzag for position in range(len(lowerCAmelCase__ ) ): a__ : int = position % (lowest * 2) # puts it in bounds a__ : Any = min(lowerCAmelCase__ , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def lowercase__ ( lowerCAmelCase__ : str ) -> dict[int, str]: '''simple docstring''' a__ : List[Any] = {} for key_guess in range(1 , len(lowerCAmelCase__ ) ): # tries every key a__ : Optional[Any] = decrypt(lowerCAmelCase__ , lowerCAmelCase__ ) return results if __name__ == "__main__": import doctest doctest.testmod()
251
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def lowercase__ ( lowerCAmelCase__ : Union[str, Any] ) -> str: '''simple docstring''' return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def lowercase__ ( lowerCAmelCase__ : List[str] ) -> str: '''simple docstring''' a__ : Any = create_tensor(lowerCAmelCase__ ) a__ : Optional[Any] = gather(lowerCAmelCase__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def lowercase__ ( lowerCAmelCase__ : Dict ) -> Union[str, Any]: '''simple docstring''' a__ : str = [state.process_index] a__ : Optional[int] = gather_object(lowerCAmelCase__ ) assert len(lowerCAmelCase__ ) == state.num_processes, F"{gathered_obj}, {len(lowerCAmelCase__ )} != {state.num_processes}" assert gathered_obj == list(range(state.num_processes ) ), F"{gathered_obj} != {list(range(state.num_processes ) )}" def lowercase__ ( lowerCAmelCase__ : Optional[Any] ) -> Tuple: '''simple docstring''' a__ : str = create_tensor(lowerCAmelCase__ ) a__ : Any = broadcast(lowerCAmelCase__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def lowercase__ ( lowerCAmelCase__ : Dict ) -> Union[str, Any]: '''simple docstring''' # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: a__ : Any = torch.arange(state.num_processes + 1 ).to(state.device ) else: a__ : Union[str, Any] = torch.arange(state.num_processes ).to(state.device ) a__ : List[Any] = pad_across_processes(lowerCAmelCase__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def lowercase__ ( lowerCAmelCase__ : Dict ) -> str: '''simple docstring''' # For now runs on only two processes if state.num_processes != 2: return a__ : List[str] = create_tensor(lowerCAmelCase__ ) a__ : Union[str, Any] = reduce(lowerCAmelCase__ , "sum" ) a__ : List[str] = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ ), F"{reduced_tensor} != {truth_tensor}" def lowercase__ ( lowerCAmelCase__ : List[str] ) -> int: '''simple docstring''' # For now runs on only two processes if state.num_processes != 2: return a__ : Tuple = create_tensor(lowerCAmelCase__ ) a__ : Dict = reduce(lowerCAmelCase__ , "mean" ) a__ : Tuple = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ ), F"{reduced_tensor} != {truth_tensor}" def lowercase__ ( lowerCAmelCase__ : str ) -> Union[str, Any]: '''simple docstring''' # For xla_spawn (TPUs) main() def lowercase__ ( ) -> Optional[int]: '''simple docstring''' a__ : List[str] = PartialState() state.print(F"State: {state}" ) state.print("testing gather" ) test_gather(lowerCAmelCase__ ) state.print("testing gather_object" ) test_gather_object(lowerCAmelCase__ ) state.print("testing broadcast" ) test_broadcast(lowerCAmelCase__ ) state.print("testing pad_across_processes" ) test_pad_across_processes(lowerCAmelCase__ ) state.print("testing reduce_sum" ) test_reduce_sum(lowerCAmelCase__ ) state.print("testing reduce_mean" ) test_reduce_mean(lowerCAmelCase__ ) if __name__ == "__main__": main()
251
1
def _UpperCAmelCase ( a : int = 50 ): snake_case__ = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F'''{solution() = }''')
654
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration a__ = 5_0_0_0_0_0 a__ , a__ = os.path.split(__file__) a__ = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def _UpperCAmelCase ( a : datasets.Dataset , **a : Tuple ): snake_case__ = dataset.map(**a ) @get_duration def _UpperCAmelCase ( a : datasets.Dataset , **a : Optional[Any] ): snake_case__ = dataset.filter(**a ) def _UpperCAmelCase ( ): snake_case__ = {"""num examples""": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ = datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} ) snake_case__ = generate_example_dataset( os.path.join(a , """dataset.arrow""" ) , a , num_examples=a ) snake_case__ = transformers.AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=a ) def tokenize(a : Union[str, Any] ): return tokenizer(examples["""text"""] ) snake_case__ = map(a ) snake_case__ = map(a , batched=a ) snake_case__ = map(a , function=lambda a : None , batched=a ) with dataset.formatted_as(type="""numpy""" ): snake_case__ = map(a , function=lambda a : None , batched=a ) with dataset.formatted_as(type="""pandas""" ): snake_case__ = map(a , function=lambda a : None , batched=a ) with dataset.formatted_as(type="""torch""" , columns="""numbers""" ): snake_case__ = map(a , function=lambda a : None , batched=a ) with dataset.formatted_as(type="""tensorflow""" , columns="""numbers""" ): snake_case__ = map(a , function=lambda a : None , batched=a ) snake_case__ = map(a , function=a , batched=a ) snake_case__ = filter(a ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(a , """wb""" ) as f: f.write(json.dumps(a ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
654
1
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowercase : str = logging.get_logger(__name__) class lowerCamelCase__ ( __a): '''simple docstring''' def __init__( self :List[Any] , *a :Tuple , **a :Any ) -> None: warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , lowerCAmelCase_ , ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
719
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
94
0
from __future__ import annotations def UpperCamelCase__ ( _A: int | float | str , _A: int | float | str ): '''simple docstring''' if nth_term == "": return [""] __lowerCamelCase = int(a_ ) __lowerCamelCase = int(a_ ) __lowerCamelCase = [] for temp in range(int(a_ ) ): series.append(f'''1 / {pow(temp + 1 , int(a_ ) )}''' if series else """1""" ) return series if __name__ == "__main__": import doctest doctest.testmod() _a : int = int(input('Enter the last number (nth term) of the P-Series')) _a : Dict = int(input('Enter the power for P-Series')) print('Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p') print(p_series(nth_term, power))
479
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCamelCase__ : Optional[int] = abspath(join(dirname(__file__), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def __A ( a_ : Dict )-> str: '''simple docstring''' config.addinivalue_line( '''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def __A ( a_ : Dict )-> Tuple: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(a_ ) def __A ( a_ : Union[str, Any] )-> List[Any]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE : List[str] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(a_ , id=a_ ) def __A ( a_ : Dict , a_ : List[str] )-> Dict: '''simple docstring''' if exitstatus == 5: SCREAMING_SNAKE_CASE : List[str] = 0 # Doctest custom flag to ignore output. lowerCamelCase__ : Tuple = doctest.register_optionflag("IGNORE_RESULT") lowerCamelCase__ : Optional[int] = doctest.OutputChecker class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :Optional[Any] ) -> Dict: '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) lowerCamelCase__ : str = CustomOutputChecker lowerCamelCase__ : Any = HfDoctestModule lowerCamelCase__ : int = HfDocTestParser
698
0
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants lowercase__ : Tuple = 3_00 # TEMPERATURE (unit = K) def _lowerCAmelCase ( __snake_case : float , __snake_case : float , __snake_case : float , ) -> float: if donor_conc <= 0: raise ValueError('Donor concentration should be positive' ) elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive' ) elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive' ) elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
338
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : str = logging.get_logger(__name__) lowercase__ : Any = { '''microsoft/git-base''': '''https://huggingface.co/microsoft/git-base/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''git_vision_model''' def __init__( self , _UpperCAmelCase=768 , _UpperCAmelCase=3072 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3 , _UpperCAmelCase=224 , _UpperCAmelCase=16 , _UpperCAmelCase="quick_gelu" , _UpperCAmelCase=1e-5 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(**_UpperCAmelCase) __A : str = hidden_size __A : List[Any] = intermediate_size __A : Any = num_hidden_layers __A : Tuple = num_attention_heads __A : Dict = num_channels __A : int = patch_size __A : str = image_size __A : Union[str, Any] = initializer_range __A : int = attention_dropout __A : Dict = layer_norm_eps __A : int = hidden_act @classmethod def SCREAMING_SNAKE_CASE ( cls , _UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase) __A ,__A : Optional[int] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase) # get the vision config dict if we are loading from GITConfig if config_dict.get('model_type') == "git": __A : List[Any] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.') return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase) class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''git''' def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=6 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1024 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=101 , _UpperCAmelCase=102 , _UpperCAmelCase=None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , **_UpperCAmelCase) if vision_config is None: __A : str = {} logger.info('vision_config is None. initializing the GitVisionConfig with default values.') __A : List[Any] = GitVisionConfig(**_UpperCAmelCase) __A : int = vocab_size __A : Optional[Any] = hidden_size __A : List[Any] = num_hidden_layers __A : Tuple = num_attention_heads __A : Dict = hidden_act __A : Optional[int] = intermediate_size __A : str = hidden_dropout_prob __A : str = attention_probs_dropout_prob __A : int = max_position_embeddings __A : str = initializer_range __A : int = layer_norm_eps __A : Tuple = position_embedding_type __A : Dict = use_cache __A : Tuple = tie_word_embeddings __A : Optional[Any] = num_image_with_embedding __A : Dict = bos_token_id __A : Tuple = eos_token_id def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = copy.deepcopy(self.__dict__) __A : Any = self.vision_config.to_dict() __A : List[str] = self.__class__.model_type return output
338
1
'''simple docstring''' class _SCREAMING_SNAKE_CASE: def __init__( self : List[Any] , UpperCamelCase_ : list[int] ) -> None: SCREAMING_SNAKE_CASE__ :str = len(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Optional[Any] = [0] * len_array if len_array > 0: SCREAMING_SNAKE_CASE__ :Optional[Any] = array[0] for i in range(1 , UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ :str = self.prefix_sum[i - 1] + array[i] def __lowerCamelCase ( self : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def __lowerCamelCase ( self : str , UpperCamelCase_ : int ) -> bool: SCREAMING_SNAKE_CASE__ :List[str] = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(UpperCamelCase_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
209
'''simple docstring''' import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py UpperCamelCase_ = '''.''' if __name__ == "__main__": UpperCamelCase_ = os.path.join(REPO_PATH, '''utils/documentation_tests.txt''') UpperCamelCase_ = [] UpperCamelCase_ = [] with open(doctest_file_path) as fp: for line in fp: UpperCamelCase_ = line.strip() UpperCamelCase_ = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: UpperCamelCase_ = '''\n'''.join(non_existent_paths) raise ValueError(f"`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}") if all_paths != sorted(all_paths): raise ValueError('''Files in `utils/documentation_tests.txt` are not in alphabetical order.''')
209
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: __A = None __A = logging.get_logger(__name__) __A = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'} __A = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, 'tokenizer_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json', }, } __A = { 'google/rembert': 256, } __A = '▁' class _lowerCAmelCase ( a__ ): """simple docstring""" __magic_name__ :Tuple = VOCAB_FILES_NAMES __magic_name__ :List[Any] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ :int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ :Union[str, Any] = RemBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , **__UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :List[str] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token super().__init__( lowercase__ , tokenizer_file=lowercase__ , do_lower_case=lowercase__ , remove_space=lowercase__ , keep_accents=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , pad_token=lowercase__ , cls_token=lowercase__ , mask_token=lowercase__ , **lowercase__ , ) lowerCAmelCase__ :Any = do_lower_case lowerCAmelCase__ :Union[str, Any] = remove_space lowerCAmelCase__ :Any = keep_accents lowerCAmelCase__ :Union[str, Any] = vocab_file lowerCAmelCase__ :str = False if not self.vocab_file else True def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' lowerCAmelCase__ :str = [self.sep_token_id] lowerCAmelCase__ :Tuple = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowercase__ )) + [1] + ([0] * len(lowercase__ )) + [1] return [1] + ([0] * len(lowercase__ )) + [1] def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = [self.sep_token_id] lowerCAmelCase__ :Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' if not os.path.isdir(lowercase__ ): logger.error('Vocabulary path ({}) should be a directory'.format(lowercase__ ) ) return lowerCAmelCase__ :Dict = os.path.join( lowercase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ): copyfile(self.vocab_file , lowercase__ ) return (out_vocab_file,)
703
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent __A = {"""UserAgent""": UserAgent().random} def __A (_SCREAMING_SNAKE_CASE ) ->dict: """simple docstring""" lowerCAmelCase__ :Dict = script.contents[0] lowerCAmelCase__ :int = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class _lowerCAmelCase : """simple docstring""" def __init__( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :List[str] = F"https://www.instagram.com/{username}/" lowerCAmelCase__ :List[str] = self.get_json() def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = requests.get(self.url , headers=__UpperCAmelCase ).text lowerCAmelCase__ :Optional[int] = BeautifulSoup(__UpperCAmelCase , 'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): '''simple docstring''' return F"{self.__class__.__name__}('{self.username}')" def __str__( self ): '''simple docstring''' return F"{self.fullname} ({self.username}) is {self.biography}" @property def snake_case ( self ): '''simple docstring''' return self.user_data["username"] @property def snake_case ( self ): '''simple docstring''' return self.user_data["full_name"] @property def snake_case ( self ): '''simple docstring''' return self.user_data["biography"] @property def snake_case ( self ): '''simple docstring''' return self.user_data["business_email"] @property def snake_case ( self ): '''simple docstring''' return self.user_data["external_url"] @property def snake_case ( self ): '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def snake_case ( self ): '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def snake_case ( self ): '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def snake_case ( self ): '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def snake_case ( self ): '''simple docstring''' return self.user_data["is_verified"] @property def snake_case ( self ): '''simple docstring''' return self.user_data["is_private"] def __A (_SCREAMING_SNAKE_CASE = "github" ) ->None: """simple docstring""" import os if os.environ.get('CI' ): return # test failing on GitHub Actions lowerCAmelCase__ :str = InstagramUser(_SCREAMING_SNAKE_CASE ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _SCREAMING_SNAKE_CASE ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 12_0000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() __A = InstagramUser("""github""") print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
560
0
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowercase = 16 _lowercase = 32 def _A (UpperCamelCase : Accelerator , UpperCamelCase : DatasetDict , UpperCamelCase : List[int] , UpperCamelCase : List[int] , UpperCamelCase : int = 16 ) ->int: '''simple docstring''' lowerCamelCase__ : Tuple = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCamelCase__ : Optional[Any] = DatasetDict( { """train""": dataset["""train"""].select(UpperCamelCase ), """validation""": dataset["""train"""].select(UpperCamelCase ), """test""": dataset["""validation"""], } ) def tokenize_function(UpperCamelCase : List[Any] ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase__ : Any = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=UpperCamelCase , max_length=UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCamelCase__ : Dict = datasets.map( UpperCamelCase , batched=UpperCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase__ : int = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(UpperCamelCase : str ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCamelCase__ : int = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCamelCase__ : List[Any] = 16 elif accelerator.mixed_precision != "no": lowerCamelCase__ : List[Any] = 8 else: lowerCamelCase__ : Any = None return tokenizer.pad( UpperCamelCase , padding="""longest""" , max_length=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. lowerCamelCase__ : Optional[int] = DataLoader( tokenized_datasets["""train"""] , shuffle=UpperCamelCase , collate_fn=UpperCamelCase , batch_size=UpperCamelCase ) lowerCamelCase__ : Any = DataLoader( tokenized_datasets["""validation"""] , shuffle=UpperCamelCase , collate_fn=UpperCamelCase , batch_size=UpperCamelCase ) lowerCamelCase__ : Any = DataLoader( tokenized_datasets["""test"""] , shuffle=UpperCamelCase , collate_fn=UpperCamelCase , batch_size=UpperCamelCase ) return train_dataloader, eval_dataloader, test_dataloader def _A (UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] ) ->Dict: '''simple docstring''' lowerCamelCase__ : List[Any] = [] # Download the dataset lowerCamelCase__ : Optional[int] = load_dataset("""glue""" , """mrpc""" ) # Create our splits lowerCamelCase__ : int = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator lowerCamelCase__ : Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase__ : List[Any] = config["""lr"""] lowerCamelCase__ : List[Any] = int(config["""num_epochs"""] ) lowerCamelCase__ : int = int(config["""seed"""] ) lowerCamelCase__ : Any = int(config["""batch_size"""] ) lowerCamelCase__ : Optional[int] = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation lowerCamelCase__ : Optional[int] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCamelCase__ : Optional[Any] = batch_size // MAX_GPU_BATCH_SIZE lowerCamelCase__ : int = MAX_GPU_BATCH_SIZE set_seed(UpperCamelCase ) # New Code # # Create our folds: lowerCamelCase__ : Dict = kfold.split(np.zeros(datasets["""train"""].num_rows ) , datasets["""train"""]["""label"""] ) lowerCamelCase__ : Optional[Any] = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(UpperCamelCase ): lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ : Optional[Any] = get_fold_dataloaders( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase__ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase__ : Optional[int] = model.to(accelerator.device ) # Instantiate optimizer lowerCamelCase__ : List[str] = AdamW(params=model.parameters() , lr=UpperCamelCase ) # Instantiate scheduler lowerCamelCase__ : Optional[Any] = get_linear_schedule_with_warmup( optimizer=UpperCamelCase , num_warmup_steps=100 , num_training_steps=(len(UpperCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ : List[str] = accelerator.prepare( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # Now we train the model for epoch in range(UpperCamelCase ): model.train() for step, batch in enumerate(UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCamelCase__ : List[Any] = model(**UpperCamelCase ) lowerCamelCase__ : Optional[Any] = outputs.loss lowerCamelCase__ : str = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase__ : Union[str, Any] = model(**UpperCamelCase ) lowerCamelCase__ : Optional[Any] = outputs.logits.argmax(dim=-1 ) lowerCamelCase__ ,lowerCamelCase__ : Optional[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=UpperCamelCase , references=UpperCamelCase , ) lowerCamelCase__ : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , UpperCamelCase ) # New Code # # We also run predictions on the test set at the very end lowerCamelCase__ : Union[str, Any] = [] for step, batch in enumerate(UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase__ : List[str] = model(**UpperCamelCase ) lowerCamelCase__ : Union[str, Any] = outputs.logits lowerCamelCase__ ,lowerCamelCase__ : Tuple = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(UpperCamelCase , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: lowerCamelCase__ : Dict = torch.cat(UpperCamelCase , dim=0 ) lowerCamelCase__ : str = torch.stack(UpperCamelCase , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) lowerCamelCase__ : List[Any] = metric.compute(predictions=UpperCamelCase , references=UpperCamelCase ) accelerator.print("""Average test metrics from all folds:""" , UpperCamelCase ) def _A () ->List[Any]: '''simple docstring''' lowerCamelCase__ : int = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=UpperCamelCase , default=UpperCamelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""" , type=UpperCamelCase , default=3 , help="""The number of splits to perform across the dataset""" ) lowerCamelCase__ : Optional[int] = parser.parse_args() lowerCamelCase__ : int = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(UpperCamelCase , UpperCamelCase ) if __name__ == "__main__": main()
157
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name _lowercase = ''' Examples: ```py >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior") >>> pipe_prior.to("cuda") >>> prompt = "red cat, 4k photo" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> zero_image_emb = out.negative_image_embeds >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder") >>> pipe.to("cuda") >>> image = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=50, ... ).images >>> image[0].save("cat.png") ``` ''' def _A (UpperCamelCase : Any , UpperCamelCase : Tuple , UpperCamelCase : List[Any]=8 ) ->Optional[int]: '''simple docstring''' lowerCamelCase__ : Optional[int] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowerCamelCase__ : int = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __A ( A_ ): def __init__(self , __magic_name__ , __magic_name__ , __magic_name__ , ): super().__init__() self.register_modules( unet=__magic_name__ , scheduler=__magic_name__ , movq=__magic_name__ , ) lowerCamelCase__ : Union[str, Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _snake_case (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): if latents is None: lowerCamelCase__ : Any = randn_tensor(__magic_name__ , generator=__magic_name__ , device=__magic_name__ , dtype=__magic_name__ ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) lowerCamelCase__ : Optional[int] = latents.to(__magic_name__ ) lowerCamelCase__ : Dict = latents * scheduler.init_noise_sigma return latents def _snake_case (self , __magic_name__=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) lowerCamelCase__ : int = torch.device(f"cuda:{gpu_id}" ) lowerCamelCase__ : Any = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__magic_name__ , __magic_name__ ) def _snake_case (self , __magic_name__=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) lowerCamelCase__ : Any = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=__magic_name__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowerCamelCase__ : str = None for cpu_offloaded_model in [self.unet, self.movq]: lowerCamelCase__ ,lowerCamelCase__ : Optional[Any] = cpu_offload_with_hook(__magic_name__ , __magic_name__ , prev_module_hook=__magic_name__ ) # We'll offload the last model manually. lowerCamelCase__ : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _snake_case (self ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(__magic_name__ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__magic_name__ ) def __call__(self , __magic_name__ , __magic_name__ , __magic_name__ = 512 , __magic_name__ = 512 , __magic_name__ = 100 , __magic_name__ = 4.0 , __magic_name__ = 1 , __magic_name__ = None , __magic_name__ = None , __magic_name__ = "pil" , __magic_name__ = True , ): lowerCamelCase__ : Any = self._execution_device lowerCamelCase__ : List[Any] = guidance_scale > 1.0 if isinstance(__magic_name__ , __magic_name__ ): lowerCamelCase__ : List[Any] = torch.cat(__magic_name__ , dim=0 ) lowerCamelCase__ : str = image_embeds.shape[0] * num_images_per_prompt if isinstance(__magic_name__ , __magic_name__ ): lowerCamelCase__ : Tuple = torch.cat(__magic_name__ , dim=0 ) if do_classifier_free_guidance: lowerCamelCase__ : Tuple = image_embeds.repeat_interleave(__magic_name__ , dim=0 ) lowerCamelCase__ : str = negative_image_embeds.repeat_interleave(__magic_name__ , dim=0 ) lowerCamelCase__ : Any = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__magic_name__ ) self.scheduler.set_timesteps(__magic_name__ , device=__magic_name__ ) lowerCamelCase__ : Optional[int] = self.scheduler.timesteps lowerCamelCase__ : Tuple = self.unet.config.in_channels lowerCamelCase__ ,lowerCamelCase__ : int = downscale_height_and_width(__magic_name__ , __magic_name__ , self.movq_scale_factor ) # create initial latent lowerCamelCase__ : Union[str, Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , __magic_name__ , __magic_name__ , __magic_name__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(__magic_name__ ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase__ : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase__ : str = {"""image_embeds""": image_embeds} lowerCamelCase__ : Any = self.unet( sample=__magic_name__ , timestep=__magic_name__ , encoder_hidden_states=__magic_name__ , added_cond_kwargs=__magic_name__ , return_dict=__magic_name__ , )[0] if do_classifier_free_guidance: lowerCamelCase__ ,lowerCamelCase__ : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) lowerCamelCase__ ,lowerCamelCase__ : Any = noise_pred.chunk(2 ) lowerCamelCase__ ,lowerCamelCase__ : str = variance_pred.chunk(2 ) lowerCamelCase__ : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowerCamelCase__ : List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowerCamelCase__ ,lowerCamelCase__ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase__ : Tuple = self.scheduler.step( __magic_name__ , __magic_name__ , __magic_name__ , generator=__magic_name__ , )[0] # post-processing lowerCamelCase__ : Optional[int] = self.movq.decode(__magic_name__ , force_not_quantize=__magic_name__ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: lowerCamelCase__ : Tuple = image * 0.5 + 0.5 lowerCamelCase__ : Tuple = image.clamp(0 , 1 ) lowerCamelCase__ : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCamelCase__ : Tuple = self.numpy_to_pil(__magic_name__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=__magic_name__ )
157
1
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase( _a , unittest.TestCase ): snake_case_ : Optional[Any] = RobertaTokenizer snake_case_ : Union[str, Any] = RobertaTokenizerFast snake_case_ : Union[str, Any] = True snake_case_ : Tuple = {"cls_token": "<s>"} def SCREAMING_SNAKE_CASE_ ( self : int ) -> Optional[int]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __snake_case = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] __snake_case = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) ) __snake_case = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] __snake_case = {"unk_token": "<unk>"} __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , **SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , **SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[str]: '''simple docstring''' __snake_case = "lower newer" __snake_case = "lower newer" return input_text, output_text def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Optional[int]: '''simple docstring''' __snake_case = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __snake_case = "lower newer" __snake_case = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] __snake_case = tokenizer.tokenize(SCREAMING_SNAKE_CASE ) # , add_prefix_space=True) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __snake_case = tokens + [tokenizer.unk_token] __snake_case = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> str: '''simple docstring''' __snake_case = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=SCREAMING_SNAKE_CASE ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] ) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=SCREAMING_SNAKE_CASE ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2] , ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' __snake_case = self.tokenizer_class.from_pretrained("roberta-base" ) __snake_case = tokenizer.encode("sequence builders" , add_special_tokens=SCREAMING_SNAKE_CASE ) __snake_case = tokenizer.encode("multi-sequence build" , add_special_tokens=SCREAMING_SNAKE_CASE ) __snake_case = tokenizer.encode( "sequence builders" , add_special_tokens=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE ) __snake_case = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE ) __snake_case = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE ) __snake_case = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' __snake_case = self.get_tokenizer() __snake_case = "Encode this sequence." __snake_case = tokenizer.byte_encoder[" ".encode("utf-8" )[0]] # Testing encoder arguments __snake_case = tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE ) __snake_case = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __snake_case = tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE ) __snake_case = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({"bos_token": "<s>"} ) __snake_case = tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) __snake_case = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Testing spaces after special tokens __snake_case = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE )} ) # mask token has a left space __snake_case = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) __snake_case = "Encode <mask> sequence" __snake_case = "Encode <mask>sequence" __snake_case = tokenizer.encode(SCREAMING_SNAKE_CASE ) __snake_case = encoded.index(SCREAMING_SNAKE_CASE ) __snake_case = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __snake_case = tokenizer.encode(SCREAMING_SNAKE_CASE ) __snake_case = encoded.index(SCREAMING_SNAKE_CASE ) __snake_case = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> int: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __snake_case = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) __snake_case = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) __snake_case = "A, <mask> AllenNLP sentence." __snake_case = tokenizer_r.encode_plus(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , return_token_type_ids=SCREAMING_SNAKE_CASE ) __snake_case = tokenizer_p.encode_plus(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , return_token_type_ids=SCREAMING_SNAKE_CASE ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) __snake_case = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) __snake_case = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Dict: '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __snake_case = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE , trim_offsets=SCREAMING_SNAKE_CASE ) __snake_case = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __snake_case = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["add_prefix_space"] , SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state["add_prefix_space"] , SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state["trim_offsets"] , SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __snake_case = "hello" # `hello` is a token in the vocabulary of `pretrained_name` __snake_case = f'''{text_of_1_token} {text_of_1_token}''' __snake_case = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE , trim_offsets=SCREAMING_SNAKE_CASE ) __snake_case = tokenizer_r(SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE ) + 1, len(SCREAMING_SNAKE_CASE ) + 1 + len(SCREAMING_SNAKE_CASE )) , ) __snake_case = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE , trim_offsets=SCREAMING_SNAKE_CASE ) __snake_case = tokenizer_r(SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE ) + 1, len(SCREAMING_SNAKE_CASE ) + 1 + len(SCREAMING_SNAKE_CASE )) , ) __snake_case = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE , trim_offsets=SCREAMING_SNAKE_CASE ) __snake_case = tokenizer_r(SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE ), len(SCREAMING_SNAKE_CASE ) + 1 + len(SCREAMING_SNAKE_CASE )) , ) __snake_case = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE , trim_offsets=SCREAMING_SNAKE_CASE ) __snake_case = tokenizer_r(SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE ), len(SCREAMING_SNAKE_CASE ) + 1 + len(SCREAMING_SNAKE_CASE )) , ) __snake_case = f''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __snake_case = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE , trim_offsets=SCREAMING_SNAKE_CASE ) __snake_case = tokenizer_r(SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(SCREAMING_SNAKE_CASE ) + 1, 1 + len(SCREAMING_SNAKE_CASE ) + 1 + len(SCREAMING_SNAKE_CASE )) , ) __snake_case = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE , trim_offsets=SCREAMING_SNAKE_CASE ) __snake_case = tokenizer_r(SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(SCREAMING_SNAKE_CASE ), 1 + len(SCREAMING_SNAKE_CASE ) + 1 + len(SCREAMING_SNAKE_CASE )) , ) __snake_case = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE , trim_offsets=SCREAMING_SNAKE_CASE ) __snake_case = tokenizer_r(SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(SCREAMING_SNAKE_CASE ), 1 + len(SCREAMING_SNAKE_CASE ) + 1 + len(SCREAMING_SNAKE_CASE )) , )
706
def _lowerCAmelCase ( _lowerCAmelCase ) -> int: '''simple docstring''' __snake_case = abs(_lowerCAmelCase ) __snake_case = 0 while n > 0: res += n % 10 n //= 10 return res def _lowerCAmelCase ( _lowerCAmelCase ) -> int: '''simple docstring''' __snake_case = abs(_lowerCAmelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def _lowerCAmelCase ( _lowerCAmelCase ) -> int: '''simple docstring''' return sum(int(_lowerCAmelCase ) for c in str(abs(_lowerCAmelCase ) ) ) def _lowerCAmelCase ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(_lowerCAmelCase , _lowerCAmelCase ) -> None: __snake_case = F'''{func.__name__}({value})''' __snake_case = timeit(F'''__main__.{call}''' , setup="import __main__" ) print(F'''{call:56} = {func(_lowerCAmelCase )} -- {timing:.4f} seconds''' ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(_lowerCAmelCase , _lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
473
0
'''simple docstring''' from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class _snake_case (__SCREAMING_SNAKE_CASE): def __init__( self ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = False ,_snake_case = False ,_snake_case = None ,**_snake_case ,): UpperCAmelCase_ : int = path_or_paths UpperCAmelCase_ : Optional[int] = split if split or isinstance(_snake_case ,_snake_case ) else "train" UpperCAmelCase_ : Tuple = features UpperCAmelCase_ : int = cache_dir UpperCAmelCase_ : Optional[Any] = keep_in_memory UpperCAmelCase_ : Any = streaming UpperCAmelCase_ : List[str] = num_proc UpperCAmelCase_ : int = kwargs @abstractmethod def UpperCamelCase__ ( self ): pass class _snake_case (__SCREAMING_SNAKE_CASE): def __init__( self ,_snake_case = None ,_snake_case = None ,_snake_case = False ,_snake_case = False ,_snake_case = None ,**_snake_case ,): UpperCAmelCase_ : Union[str, Any] = features UpperCAmelCase_ : Dict = cache_dir UpperCAmelCase_ : int = keep_in_memory UpperCAmelCase_ : int = streaming UpperCAmelCase_ : Tuple = num_proc UpperCAmelCase_ : Optional[Any] = kwargs @abstractmethod def UpperCamelCase__ ( self ): pass
71
'''simple docstring''' from __future__ import annotations from typing import Any class __snake_case : def __init__( self, A, A, A = 0 ): """simple docstring""" lowerCamelCase , lowerCamelCase : str = row, column lowerCamelCase : List[str] = [[default_value for c in range(A )] for r in range(A )] def __str__( self ): """simple docstring""" lowerCamelCase : Any = F'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier lowerCamelCase : List[Any] = 0 for row_vector in self.array: for obj in row_vector: lowerCamelCase : List[Any] = max(A, len(str(A ) ) ) lowerCamelCase : int = F'''%{max_element_length}s''' # Make string and return def single_line(A ) -> str: nonlocal string_format_identifier lowerCamelCase : List[str] = '[' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(A ) for row_vector in self.array ) return s def __repr__( self ): """simple docstring""" return str(self ) def UpperCAmelCase_ ( self, A ): """simple docstring""" if not (isinstance(A, (list, tuple) ) and len(A ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self, A ): """simple docstring""" assert self.validate_indicies(A ) return self.array[loc[0]][loc[1]] def __setitem__( self, A, A ): """simple docstring""" assert self.validate_indicies(A ) lowerCamelCase : List[Any] = value def __add__( self, A ): """simple docstring""" assert isinstance(A, A ) assert self.row == another.row and self.column == another.column # Add lowerCamelCase : Optional[int] = Matrix(self.row, self.column ) for r in range(self.row ): for c in range(self.column ): lowerCamelCase : Any = self[r, c] + another[r, c] return result def __neg__( self ): """simple docstring""" lowerCamelCase : List[str] = Matrix(self.row, self.column ) for r in range(self.row ): for c in range(self.column ): lowerCamelCase : Union[str, Any] = -self[r, c] return result def __sub__( self, A ): """simple docstring""" return self + (-another) def __mul__( self, A ): """simple docstring""" if isinstance(A, (int, float) ): # Scalar multiplication lowerCamelCase : List[Any] = Matrix(self.row, self.column ) for r in range(self.row ): for c in range(self.column ): lowerCamelCase : Optional[Any] = self[r, c] * another return result elif isinstance(A, A ): # Matrix multiplication assert self.column == another.row lowerCamelCase : List[Any] = Matrix(self.row, another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: lowerCamelCase : Tuple = F'''Unsupported type given for another ({type(A )})''' raise TypeError(A ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Optional[int] = Matrix(self.column, self.row ) for r in range(self.row ): for c in range(self.column ): lowerCamelCase : str = self[r, c] return result def UpperCAmelCase_ ( self, A, A ): """simple docstring""" assert isinstance(A, A ) and isinstance(A, A ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate lowerCamelCase : Union[str, Any] = v.transpose() lowerCamelCase : Optional[int] = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def UpperCAmelCase ( ): # a^(-1) lowerCamelCase : Optional[Any] = Matrix(3 , 3 , 0) for i in range(3): lowerCamelCase : Union[str, Any] = 1 print(F'''a^(-1) is {ainv}''') # u, v lowerCamelCase : Dict = Matrix(3 , 1 , 0) lowerCamelCase , lowerCamelCase , lowerCamelCase : Optional[int] = 1, 2, -3 lowerCamelCase : Tuple = Matrix(3 , 1 , 0) lowerCamelCase , lowerCamelCase , lowerCamelCase : Union[str, Any] = 4, -2, 5 print(F'''u is {u}''') print(F'''v is {v}''') print(F'''uv^T is {u * v.transpose()}''') # Sherman Morrison print(F'''(a + uv^T)^(-1) is {ainv.sherman_morrison(UpperCAmelCase__ , UpperCAmelCase__)}''') def UpperCAmelCase ( ): import doctest doctest.testmod() testa()
320
0
'''simple docstring''' import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class __SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any]=13 , UpperCAmelCase__ : Any=7 , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Tuple=99 , UpperCAmelCase__ : Optional[int]=32 , UpperCAmelCase__ : Dict=5 , UpperCAmelCase__ : List[Any]=4 , UpperCAmelCase__ : List[str]=4 , UpperCAmelCase__ : Dict="gelu" , UpperCAmelCase__ : Optional[Any]=0.0 , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : Any=512 , UpperCAmelCase__ : List[str]=16 , UpperCAmelCase__ : str=2 , UpperCAmelCase__ : Optional[Any]=0.02 , UpperCAmelCase__ : List[str]=3 , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : Optional[int]=None , ): '''simple docstring''' lowercase : Optional[int] =parent lowercase : Tuple =batch_size lowercase : Optional[int] =seq_length lowercase : Optional[Any] =is_training lowercase : Any =use_input_mask lowercase : Any =use_token_type_ids lowercase : Dict =use_labels lowercase : Any =vocab_size lowercase : int =hidden_size lowercase : List[Any] =num_hidden_layers lowercase : str =num_attention_heads lowercase : Optional[int] =intermediate_multiple_size lowercase : str =hidden_act lowercase : List[Any] =hidden_dropout lowercase : Tuple =attention_dropout lowercase : Optional[int] =weight_tying lowercase : List[Any] =max_position_embeddings lowercase : Union[str, Any] =type_vocab_size lowercase : Optional[int] =type_sequence_label_size lowercase : List[str] =initializer_range lowercase : List[Any] =num_labels lowercase : Union[str, Any] =num_choices lowercase : Union[str, Any] =scope def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase : Any =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Tuple =None if self.use_input_mask: lowercase : Optional[int] =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Tuple =None if self.use_labels: lowercase : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Tuple =self.get_config() return config, input_ids, input_mask, token_labels def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' lowercase , lowercase , lowercase , lowercase : Optional[int] =self.prepare_config_and_inputs() lowercase : Dict =True return config, input_ids, input_mask, token_labels def lowerCamelCase_ ( self : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] ): '''simple docstring''' lowercase : int =GPTNeoXJapaneseModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowercase : List[Any] =model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) lowercase : Optional[Any] =model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict ): '''simple docstring''' lowercase : str =True lowercase : Dict =GPTNeoXJapaneseModel(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowercase : int =model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[str] ): '''simple docstring''' lowercase : int =GPTNeoXJapaneseForCausalLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowercase : Union[str, Any] =model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : int ): '''simple docstring''' lowercase : int =True lowercase : Optional[Any] =GPTNeoXJapaneseForCausalLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() # first forward pass lowercase : Tuple =model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , use_cache=UpperCAmelCase__ ) lowercase : Dict =outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase : Any =ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase : Optional[Any] =ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase : Tuple =torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase : Union[str, Any] =torch.cat([input_mask, next_mask] , dim=-1 ) lowercase : List[Any] =model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ ) lowercase : Any =output_from_no_past['''hidden_states'''][0] lowercase : Optional[int] =model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , )['''hidden_states'''][0] # select random slice lowercase : Tuple =ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase : List[Any] =output_from_no_past[:, -3:, random_slice_idx].detach() lowercase : int =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' lowercase : Optional[Any] =self.prepare_config_and_inputs() lowercase , lowercase , lowercase , lowercase : Union[str, Any] =config_and_inputs lowercase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , unittest.TestCase ): lowerCamelCase_ = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () lowerCamelCase_ = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () lowerCamelCase_ = ( {'feature-extraction': GPTNeoXJapaneseModel, 'text-generation': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' lowercase : Union[str, Any] =GPTNeoXJapaneseModelTester(self ) lowercase : str =ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=37 ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase_ ( self : int ): '''simple docstring''' lowercase , lowercase , lowercase , lowercase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowercase , lowercase , lowercase , lowercase : Dict =self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' # This regression test was failing with PyTorch < 1.3 lowercase , lowercase , lowercase , lowercase : Tuple =self.model_tester.prepare_config_and_inputs_for_decoder() lowercase : Any =None self.model_tester.create_and_check_model_as_decoder(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase , lowercase , lowercase , lowercase : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase_ ( self : str ): '''simple docstring''' lowercase : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*UpperCAmelCase__ ) @slow def lowerCamelCase_ ( self : int ): '''simple docstring''' lowercase : Any ='''abeja/gpt-neox-japanese-2.7b''' lowercase : Optional[int] =['''データサイエンティストとは、''', '''100年後に必要とされる会社は、''', '''フルリモートの環境で働くために必要なことは、''', '''国境の長いトンネルを抜けると''', '''美味しい日本食といえば、'''] lowercase : Any =[ '''データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。''', '''100年後に必要とされる会社は、「人」が中心の会社です。''', '''フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。''', '''国境の長いトンネルを抜けると、そこは雪国だった。''', '''美味しい日本食といえば、やっぱりお寿司ですよね。''', ] lowercase : Optional[int] =GPTNeoXJapaneseTokenizer.from_pretrained(UpperCAmelCase__ ) lowercase : List[Any] =GPTNeoXJapaneseForCausalLM.from_pretrained(UpperCAmelCase__ ) lowercase : List[str] =[] for prompt in prompts: lowercase : Optional[Any] =tokenizer(UpperCAmelCase__ , return_tensors='''pt''' ).input_ids lowercase : List[Any] =model.generate(UpperCAmelCase__ , max_length=50 ) lowercase : List[str] =tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ ) predicted_outputs += generated_string self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
88
'''simple docstring''' import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) UpperCamelCase_ = logging.getLogger(__name__) UpperCamelCase_ = tf.data.AUTOTUNE def _lowerCAmelCase ( ) -> Any: lowercase : Dict =argparse.ArgumentParser(description='''Train a masked language model on TPU.''' ) parser.add_argument( '''--pretrained_model_config''' , type=__magic_name__ , default='''roberta-base''' , help='''The model config to use. Note that we don\'t copy the model\'s weights, only the config!''' , ) parser.add_argument( '''--tokenizer''' , type=__magic_name__ , default='''unigram-tokenizer-wikitext''' , help='''The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model\'s vocab size.''' , ) parser.add_argument( '''--per_replica_batch_size''' , type=__magic_name__ , default=8 , help='''Batch size per TPU core.''' , ) parser.add_argument( '''--no_tpu''' , action='''store_true''' , help='''If set, run on CPU and don\'t try to initialize a TPU. Useful for debugging on non-TPU instances.''' , ) parser.add_argument( '''--tpu_name''' , type=__magic_name__ , help='''Name of TPU resource to initialize. Should be blank on Colab, and \'local\' on TPU VMs.''' , default='''local''' , ) parser.add_argument( '''--tpu_zone''' , type=__magic_name__ , help='''Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.''' , ) parser.add_argument( '''--gcp_project''' , type=__magic_name__ , help='''Google cloud project name. Only used for non-Colab TPU nodes.''' ) parser.add_argument( '''--bfloat16''' , action='''store_true''' , help='''Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.''' , ) parser.add_argument( '''--train_dataset''' , type=__magic_name__ , help='''Path to training dataset to load. If the path begins with `gs://`''' ''' then the dataset will be loaded from a Google Cloud Storage bucket.''' , ) parser.add_argument( '''--shuffle_buffer_size''' , type=__magic_name__ , default=2**18 , help='''Size of the shuffle buffer (in samples)''' , ) parser.add_argument( '''--eval_dataset''' , type=__magic_name__ , help='''Path to evaluation dataset to load. If the path begins with `gs://`''' ''' then the dataset will be loaded from a Google Cloud Storage bucket.''' , ) parser.add_argument( '''--num_epochs''' , type=__magic_name__ , default=1 , help='''Number of epochs to train for.''' , ) parser.add_argument( '''--learning_rate''' , type=__magic_name__ , default=1E-4 , help='''Learning rate to use for training.''' , ) parser.add_argument( '''--weight_decay_rate''' , type=__magic_name__ , default=1E-3 , help='''Weight decay rate to use for training.''' , ) parser.add_argument( '''--max_length''' , type=__magic_name__ , default=512 , help='''Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py''' , ) parser.add_argument( '''--mlm_probability''' , type=__magic_name__ , default=0.1_5 , help='''Fraction of tokens to mask during training.''' , ) parser.add_argument('''--output_dir''' , type=__magic_name__ , required=__magic_name__ , help='''Path to save model checkpoints to.''' ) parser.add_argument('''--hub_model_id''' , type=__magic_name__ , help='''Model ID to upload to on the Hugging Face Hub.''' ) lowercase : Union[str, Any] =parser.parse_args() return args def _lowerCAmelCase ( __magic_name__ : List[str] ) -> List[Any]: try: if args.tpu_name: lowercase : Dict =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: lowercase : Optional[int] =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( '''Couldn\'t connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or ''' '''--gcp_project. When running on a TPU VM, use --tpu_name local.''' ) tf.config.experimental_connect_to_cluster(__magic_name__ ) tf.tpu.experimental.initialize_tpu_system(__magic_name__ ) return tpu def _lowerCAmelCase ( __magic_name__ : Tuple ) -> Union[str, Any]: lowercase : str =0 for file in file_list: lowercase : List[str] =file.split('''/''' )[-1] lowercase : Union[str, Any] =re.search(R'''-\d+-(\d+)\.tfrecord''' , __magic_name__ ).group(1 ) lowercase : int =int(__magic_name__ ) num_samples += sample_count return num_samples def _lowerCAmelCase ( __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int]=None ) -> str: lowercase : int =count_samples(__magic_name__ ) lowercase : Union[str, Any] =tf.data.Dataset.from_tensor_slices(__magic_name__ ) if shuffle: lowercase : Union[str, Any] =dataset.shuffle(len(__magic_name__ ) ) lowercase : Any =tf.data.TFRecordDataset(__magic_name__ , num_parallel_reads=__magic_name__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here lowercase : Optional[int] =dataset.apply(tf.data.experimental.assert_cardinality(__magic_name__ ) ) lowercase : str =dataset.map(__magic_name__ , num_parallel_calls=__magic_name__ ) if shuffle: assert shuffle_buffer_size is not None lowercase : int =dataset.shuffle(args.shuffle_buffer_size ) lowercase : Optional[int] =dataset.batch(__magic_name__ , drop_remainder=__magic_name__ ) lowercase : int =dataset.map(__magic_name__ , num_parallel_calls=__magic_name__ ) lowercase : Union[str, Any] =dataset.prefetch(__magic_name__ ) return dataset def _lowerCAmelCase ( __magic_name__ : Any ) -> str: if not args.no_tpu: lowercase : Optional[Any] =initialize_tpu(__magic_name__ ) lowercase : Any =tf.distribute.TPUStrategy(__magic_name__ ) else: lowercase : Optional[Any] =tf.distribute.OneDeviceStrategy(device='''/gpu:0''' ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy('''mixed_bfloat16''' ) lowercase : Any =AutoTokenizer.from_pretrained(args.tokenizer ) lowercase : Union[str, Any] =AutoConfig.from_pretrained(args.pretrained_model_config ) lowercase : Optional[Any] =tokenizer.vocab_size lowercase : str =tf.io.gfile.glob(os.path.join(args.train_dataset , '''*.tfrecord''' ) ) if not training_records: raise ValueError(f'''No .tfrecord files found in {args.train_dataset}.''' ) lowercase : Optional[int] =tf.io.gfile.glob(os.path.join(args.eval_dataset , '''*.tfrecord''' ) ) if not eval_records: raise ValueError(f'''No .tfrecord files found in {args.eval_dataset}.''' ) lowercase : Any =count_samples(__magic_name__ ) lowercase : str =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) lowercase : Union[str, Any] =steps_per_epoch * args.num_epochs with strategy.scope(): lowercase : List[Any] =TFAutoModelForMaskedLM.from_config(__magic_name__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built lowercase , lowercase : Dict =create_optimizer( num_train_steps=__magic_name__ , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=__magic_name__ , metrics=['''accuracy'''] ) def decode_fn(__magic_name__ : Optional[Any] ): lowercase : Union[str, Any] ={ '''input_ids''': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), '''attention_mask''': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(__magic_name__ , __magic_name__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. lowercase : str =DataCollatorForLanguageModeling( tokenizer=__magic_name__ , mlm_probability=args.mlm_probability , mlm=__magic_name__ , return_tensors='''tf''' ) def mask_with_collator(__magic_name__ : Dict ): # TF really needs an isin() function lowercase : int =( ~tf.cast(batch['''attention_mask'''] , tf.bool ) | (batch['''input_ids'''] == tokenizer.cls_token_id) | (batch['''input_ids'''] == tokenizer.sep_token_id) ) lowercase , lowercase : Union[str, Any] =data_collator.tf_mask_tokens( batch['''input_ids'''] , vocab_size=len(__magic_name__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=__magic_name__ , ) return batch lowercase : List[str] =args.per_replica_batch_size * strategy.num_replicas_in_sync lowercase : Dict =prepare_dataset( __magic_name__ , decode_fn=__magic_name__ , mask_fn=__magic_name__ , batch_size=__magic_name__ , shuffle=__magic_name__ , shuffle_buffer_size=args.shuffle_buffer_size , ) lowercase : Union[str, Any] =prepare_dataset( __magic_name__ , decode_fn=__magic_name__ , mask_fn=__magic_name__ , batch_size=__magic_name__ , shuffle=__magic_name__ , ) lowercase : Tuple =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=__magic_name__ ) ) model.fit( __magic_name__ , validation_data=__magic_name__ , epochs=args.num_epochs , callbacks=__magic_name__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": UpperCamelCase_ = parse_args() main(args)
88
1
from abc import ABC, abstractmethod from argparse import ArgumentParser class __lowercase (__UpperCamelCase ): """simple docstring""" @staticmethod @abstractmethod def UpperCAmelCase ( A ) -> Union[str, Any]: raise NotImplementedError() @abstractmethod def UpperCAmelCase ( self ) -> Tuple: raise NotImplementedError()
587
'''simple docstring''' import math def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False _snake_case = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=1 , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = factor * value _snake_case = value while not is_prime(SCREAMING_SNAKE_CASE__ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **SCREAMING_SNAKE_CASE__ ) return value
672
0
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class _UpperCAmelCase ( lowercase ): lowerCamelCase_ : Union[List[PIL.Image.Image], np.ndarray] lowerCamelCase_ : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
704
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCAmelCase ( lowercase , unittest.TestCase ): lowerCamelCase_ : Tuple = CodeGenTokenizer lowerCamelCase_ : str = CodeGenTokenizerFast lowerCamelCase_ : List[str] = True lowerCamelCase_ : Dict = {"""add_prefix_space""": True} lowerCamelCase_ : Any = False def _snake_case ( self : Optional[Any]): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE_ :Optional[int] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] SCREAMING_SNAKE_CASE_ :List[Any] = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase)))) SCREAMING_SNAKE_CASE_ :Optional[int] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] SCREAMING_SNAKE_CASE_ :str = {"unk_token": "<unk>"} SCREAMING_SNAKE_CASE_ :int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) SCREAMING_SNAKE_CASE_ :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as fp: fp.write(json.dumps(UpperCAmelCase) + "\n") with open(self.merges_file , "w" , encoding="utf-8") as fp: fp.write("\n".join(UpperCAmelCase)) def _snake_case ( self : Dict , **UpperCAmelCase : List[str]): kwargs.update(self.special_tokens_map) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase) def _snake_case ( self : Optional[Any] , **UpperCAmelCase : Any): kwargs.update(self.special_tokens_map) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase) def _snake_case ( self : Any , UpperCAmelCase : List[Any]): SCREAMING_SNAKE_CASE_ :Tuple = "lower newer" SCREAMING_SNAKE_CASE_ :Tuple = "lower newer" return input_text, output_text def _snake_case ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ :Optional[int] = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) SCREAMING_SNAKE_CASE_ :List[Any] = "lower newer" SCREAMING_SNAKE_CASE_ :Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] SCREAMING_SNAKE_CASE_ :Tuple = tokenizer.tokenize(UpperCAmelCase , add_prefix_space=UpperCAmelCase) self.assertListEqual(UpperCAmelCase , UpperCAmelCase) SCREAMING_SNAKE_CASE_ :List[Any] = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE_ :Optional[Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase) , UpperCAmelCase) def _snake_case ( self : str): if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE_ :Union[str, Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ :List[str] = self.get_rust_tokenizer(add_prefix_space=UpperCAmelCase) SCREAMING_SNAKE_CASE_ :List[str] = "lower newer" # Testing tokenization SCREAMING_SNAKE_CASE_ :Dict = tokenizer.tokenize(UpperCAmelCase , add_prefix_space=UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Optional[int] = rust_tokenizer.tokenize(UpperCAmelCase) self.assertListEqual(UpperCAmelCase , UpperCAmelCase) # Testing conversion to ids without special tokens SCREAMING_SNAKE_CASE_ :Union[str, Any] = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase , add_prefix_space=UpperCAmelCase) SCREAMING_SNAKE_CASE_ :int = rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase) self.assertListEqual(UpperCAmelCase , UpperCAmelCase) # Testing conversion to ids with special tokens SCREAMING_SNAKE_CASE_ :Optional[Any] = self.get_rust_tokenizer(add_prefix_space=UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Dict = tokenizer.encode(UpperCAmelCase , add_prefix_space=UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Optional[int] = rust_tokenizer.encode(UpperCAmelCase) self.assertListEqual(UpperCAmelCase , UpperCAmelCase) # Testing the unknown token SCREAMING_SNAKE_CASE_ :Union[str, Any] = tokens + [rust_tokenizer.unk_token] SCREAMING_SNAKE_CASE_ :Optional[Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(UpperCAmelCase) , UpperCAmelCase) def _snake_case ( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[Any]): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def _snake_case ( self : Tuple , UpperCAmelCase : Any=15): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})"): SCREAMING_SNAKE_CASE_ :Any = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase) # Simple input SCREAMING_SNAKE_CASE_ :List[str] = "This is a simple input" SCREAMING_SNAKE_CASE_ :Optional[Any] = ["This is a simple input 1", "This is a simple input 2"] SCREAMING_SNAKE_CASE_ :Union[str, Any] = ("This is a simple input", "This is a pair") SCREAMING_SNAKE_CASE_ :Optional[int] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(UpperCAmelCase , tokenizer_r.encode , UpperCAmelCase , max_length=UpperCAmelCase , padding="max_length") # Simple input self.assertRaises(UpperCAmelCase , tokenizer_r.encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding="max_length") # Simple input self.assertRaises( UpperCAmelCase , tokenizer_r.batch_encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding="max_length" , ) # Pair input self.assertRaises(UpperCAmelCase , tokenizer_r.encode , UpperCAmelCase , max_length=UpperCAmelCase , padding="max_length") # Pair input self.assertRaises(UpperCAmelCase , tokenizer_r.encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding="max_length") # Pair input self.assertRaises( UpperCAmelCase , tokenizer_r.batch_encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding="max_length" , ) def _snake_case ( self : Tuple): SCREAMING_SNAKE_CASE_ :Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>") # Simple input SCREAMING_SNAKE_CASE_ :List[Any] = "This is a simple input" SCREAMING_SNAKE_CASE_ :List[Any] = ["This is a simple input looooooooong", "This is a simple input"] SCREAMING_SNAKE_CASE_ :Optional[int] = ("This is a simple input", "This is a pair") SCREAMING_SNAKE_CASE_ :Optional[int] = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] SCREAMING_SNAKE_CASE_ :Any = tokenizer.pad_token_id SCREAMING_SNAKE_CASE_ :List[str] = tokenizer(UpperCAmelCase , padding="max_length" , max_length=30 , return_tensors="np") SCREAMING_SNAKE_CASE_ :Optional[Any] = tokenizer(UpperCAmelCase , padding=UpperCAmelCase , truncate=UpperCAmelCase , return_tensors="np") SCREAMING_SNAKE_CASE_ :Optional[Any] = tokenizer(*UpperCAmelCase , padding="max_length" , max_length=60 , return_tensors="np") SCREAMING_SNAKE_CASE_ :Optional[Any] = tokenizer(UpperCAmelCase , padding=UpperCAmelCase , truncate=UpperCAmelCase , return_tensors="np") # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] , 30) self.assertTrue(pad_token_id in out_s["input_ids"]) self.assertTrue(0 in out_s["attention_mask"]) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] , 33) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0]) self.assertFalse(0 in out_sa["attention_mask"][0]) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1]) self.assertTrue(0 in out_sa["attention_mask"][1]) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] , 60) self.assertTrue(pad_token_id in out_p["input_ids"]) self.assertTrue(0 in out_p["attention_mask"]) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] , 52) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0]) self.assertFalse(0 in out_pa["attention_mask"][0]) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1]) self.assertTrue(0 in out_pa["attention_mask"][1]) def _snake_case ( self : Optional[Any]): SCREAMING_SNAKE_CASE_ :Tuple = "$$$" SCREAMING_SNAKE_CASE_ :str = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=UpperCAmelCase , add_bos_token=UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Optional[int] = "This is a simple input" SCREAMING_SNAKE_CASE_ :int = ["This is a simple input 1", "This is a simple input 2"] SCREAMING_SNAKE_CASE_ :List[str] = tokenizer.bos_token_id SCREAMING_SNAKE_CASE_ :int = tokenizer(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Optional[int] = tokenizer(UpperCAmelCase) self.assertEqual(out_s.input_ids[0] , UpperCAmelCase) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids)) SCREAMING_SNAKE_CASE_ :Optional[Any] = tokenizer.decode(out_s.input_ids) SCREAMING_SNAKE_CASE_ :List[str] = tokenizer.batch_decode(out_sa.input_ids) self.assertEqual(decode_s.split()[0] , UpperCAmelCase) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa)) @slow def _snake_case ( self : Tuple): SCREAMING_SNAKE_CASE_ :Optional[int] = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono") SCREAMING_SNAKE_CASE_ :List[str] = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" SCREAMING_SNAKE_CASE_ :str = "\nif len_a > len_b: result = a\nelse: result = b" SCREAMING_SNAKE_CASE_ :Optional[int] = tokenizer.encode(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Optional[Any] = ["^#", re.escape("<|endoftext|>"), "^'''", "^\"\"\"", "\n\n\n"] SCREAMING_SNAKE_CASE_ :Any = tokenizer.decode(UpperCAmelCase , truncate_before_pattern=UpperCAmelCase) self.assertEqual(UpperCAmelCase , UpperCAmelCase) def _snake_case ( self : Dict): pass
140
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _UpperCamelCase : Optional[Any] =logging.get_logger(__name__) def lowerCamelCase_ ( A_ , A_ ): __lowerCamelCase = b.T __lowerCamelCase = np.sum(np.square(UpperCamelCase_ ) , axis=1 ) __lowerCamelCase = np.sum(np.square(UpperCamelCase_ ) , axis=0 ) __lowerCamelCase = np.matmul(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = aa[:, None] - 2 * ab + ba[None, :] return d def lowerCamelCase_ ( A_ , A_ ): __lowerCamelCase = x.reshape(-1 , 3 ) __lowerCamelCase = squared_euclidean_distance(UpperCamelCase_ , UpperCamelCase_ ) return np.argmin(UpperCamelCase_ , axis=1 ) class _SCREAMING_SNAKE_CASE ( _snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ['pixel_values'] def __init__( self , _snake_case = None , _snake_case = True , _snake_case = None , _snake_case = PILImageResampling.BILINEAR , _snake_case = True , _snake_case = True , **_snake_case , ): """simple docstring""" super().__init__(**__lowerCamelCase ) __lowerCamelCase = size if size is not None else {'''height''': 2_56, '''width''': 2_56} __lowerCamelCase = get_size_dict(__lowerCamelCase ) __lowerCamelCase = np.array(__lowerCamelCase ) if clusters is not None else None __lowerCamelCase = do_resize __lowerCamelCase = size __lowerCamelCase = resample __lowerCamelCase = do_normalize __lowerCamelCase = do_color_quantize def _lowerCamelCase ( self , _snake_case , _snake_case , _snake_case = PILImageResampling.BILINEAR , _snake_case = None , **_snake_case , ): """simple docstring""" __lowerCamelCase = get_size_dict(__lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( __lowerCamelCase , size=(size['''height'''], size['''width''']) , resample=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self , _snake_case , _snake_case = None , ): """simple docstring""" __lowerCamelCase = rescale(image=__lowerCamelCase , scale=1 / 1_27.5 , data_format=__lowerCamelCase ) __lowerCamelCase = image - 1 return image def _lowerCamelCase ( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = ChannelDimension.FIRST , **_snake_case , ): """simple docstring""" __lowerCamelCase = do_resize if do_resize is not None else self.do_resize __lowerCamelCase = size if size is not None else self.size __lowerCamelCase = get_size_dict(__lowerCamelCase ) __lowerCamelCase = resample if resample is not None else self.resample __lowerCamelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCamelCase = do_color_quantize if do_color_quantize is not None else self.do_color_quantize __lowerCamelCase = clusters if clusters is not None else self.clusters __lowerCamelCase = np.array(__lowerCamelCase ) __lowerCamelCase = make_list_of_images(__lowerCamelCase ) if not valid_images(__lowerCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_color_quantize and clusters is None: raise ValueError('''Clusters must be specified if do_color_quantize is True.''' ) # All transformations expect numpy arrays. __lowerCamelCase = [to_numpy_array(__lowerCamelCase ) for image in images] if do_resize: __lowerCamelCase = [self.resize(image=__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase ) for image in images] if do_normalize: __lowerCamelCase = [self.normalize(image=__lowerCamelCase ) for image in images] if do_color_quantize: __lowerCamelCase = [to_channel_dimension_format(__lowerCamelCase , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __lowerCamelCase = np.array(__lowerCamelCase ) __lowerCamelCase = color_quantize(__lowerCamelCase , __lowerCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __lowerCamelCase = images.shape[0] __lowerCamelCase = images.reshape(__lowerCamelCase , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __lowerCamelCase = list(__lowerCamelCase ) else: __lowerCamelCase = [to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase ) for image in images] __lowerCamelCase = {'''input_ids''': images} return BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase )
316
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def a__ ( UpperCamelCase_ : str, UpperCamelCase_ : str ): UpperCAmelCase__ :Any = list(UpperCamelCase_ ) UpperCAmelCase__ :Optional[int] = list(UpperCamelCase_ ) UpperCAmelCase__ :str = 0 for i in range(len(UpperCamelCase_ ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase__ :Union[str, Any] = '''_''' if count > 1: return False else: return "".join(UpperCamelCase_ ) def a__ ( UpperCamelCase_ : list[str] ): UpperCAmelCase__ :int = [] while True: UpperCAmelCase__ :Dict = ['''$'''] * len(UpperCamelCase_ ) UpperCAmelCase__ :List[str] = [] for i in range(len(UpperCamelCase_ ) ): for j in range(i + 1, len(UpperCamelCase_ ) ): UpperCAmelCase__ :Optional[Any] = compare_string(binary[i], binary[j] ) if k is False: UpperCAmelCase__ :Any = '''*''' UpperCAmelCase__ :List[Any] = '''*''' temp.append('''X''' ) for i in range(len(UpperCamelCase_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(UpperCamelCase_ ) == 0: return pi UpperCAmelCase__ :Tuple = list(set(UpperCamelCase_ ) ) def a__ ( UpperCamelCase_ : int, UpperCamelCase_ : Sequence[float] ): UpperCAmelCase__ :int = [] for minterm in minterms: UpperCAmelCase__ :int = '''''' for _ in range(UpperCamelCase_ ): UpperCAmelCase__ :Optional[int] = str(minterm % 2 ) + string minterm //= 2 temp.append(UpperCamelCase_ ) return temp def a__ ( UpperCamelCase_ : str, UpperCamelCase_ : str, UpperCamelCase_ : int ): UpperCAmelCase__ :Dict = list(UpperCamelCase_ ) UpperCAmelCase__ :str = list(UpperCamelCase_ ) UpperCAmelCase__ :str = 0 for i in range(len(UpperCamelCase_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def a__ ( UpperCamelCase_ : list[list[int]], UpperCamelCase_ : list[str] ): UpperCAmelCase__ :Optional[Any] = [] UpperCAmelCase__ :List[Any] = [0] * len(UpperCamelCase_ ) for i in range(len(chart[0] ) ): UpperCAmelCase__ :Optional[Any] = 0 UpperCAmelCase__ :Union[str, Any] = -1 for j in range(len(UpperCamelCase_ ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase__ :Any = j if count == 1: UpperCAmelCase__ :Any = 1 for i in range(len(UpperCamelCase_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(UpperCamelCase_ ) ): UpperCAmelCase__ :int = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase__ :Optional[int] = 0 UpperCAmelCase__ :Dict = -1 UpperCAmelCase__ :Optional[Any] = 0 for i in range(len(UpperCamelCase_ ) ): UpperCAmelCase__ :str = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase__ :Any = count_n UpperCAmelCase__ :List[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(UpperCamelCase_ ) ): UpperCAmelCase__ :Optional[int] = 0 def a__ ( UpperCamelCase_ : list[str], UpperCamelCase_ : list[str] ): UpperCAmelCase__ :List[str] = [[0 for x in range(len(UpperCamelCase_ ) )] for x in range(len(UpperCamelCase_ ) )] for i in range(len(UpperCamelCase_ ) ): UpperCAmelCase__ :Tuple = prime_implicants[i].count('''_''' ) for j in range(len(UpperCamelCase_ ) ): if is_for_table(prime_implicants[i], binary[j], UpperCamelCase_ ): UpperCAmelCase__ :List[str] = 1 return chart def a__ ( ): UpperCAmelCase__ :int = int(input('''Enter the no. of variables\n''' ) ) UpperCAmelCase__ :Tuple = [ float(UpperCamelCase_ ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] UpperCAmelCase__ :Union[str, Any] = decimal_to_binary(UpperCamelCase_, UpperCamelCase_ ) UpperCAmelCase__ :Optional[Any] = check(UpperCamelCase_ ) print('''Prime Implicants are:''' ) print(UpperCamelCase_ ) UpperCAmelCase__ :Optional[int] = prime_implicant_chart(UpperCamelCase_, UpperCamelCase_ ) UpperCAmelCase__ :Dict = selection(UpperCamelCase_, UpperCamelCase_ ) print('''Essential Prime Implicants are:''' ) print(UpperCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
467
0
'''simple docstring''' from statistics import mean import numpy as np def __UpperCAmelCase ( _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : int ) -> list: __snake_case = 0 # Number of processes finished __snake_case = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. __snake_case = [0] * no_of_process # List to include calculation results __snake_case = [0] * no_of_process # Sort by arrival time. __snake_case = [burst_time[i] for i in np.argsort(_UpperCAmelCase )] __snake_case = [process_name[i] for i in np.argsort(_UpperCAmelCase )] arrival_time.sort() while no_of_process > finished_process_count: __snake_case = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: __snake_case = arrival_time[i] __snake_case = 0 # Index showing the location of the process being performed __snake_case = 0 # Saves the current response ratio. __snake_case = 0 for i in range(0 , _UpperCAmelCase ): if finished_process[i] == 0 and arrival_time[i] <= current_time: __snake_case = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: __snake_case = temp __snake_case = i # Calculate the turn around time __snake_case = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. __snake_case = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def __UpperCAmelCase ( _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : int ) -> list: __snake_case = [0] * no_of_process for i in range(0 , _UpperCAmelCase ): __snake_case = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": a : Dict = 5 a : List[Any] = ['''A''', '''B''', '''C''', '''D''', '''E'''] a : List[str] = [1, 2, 3, 4, 5] a : str = [1, 2, 3, 4, 5] a : List[Any] = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) a : Optional[Any] = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''') for i in range(0, no_of_process): print( F'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t''' F'''{turn_around_time[i]}\t\t\t{waiting_time[i]}''' ) print(F'''average waiting time : {mean(waiting_time):.5f}''') print(F'''average turn around time : {mean(turn_around_time):.5f}''')
700
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def A ( self : Any ): """simple docstring""" return self.__class__(**{k: copy.deepcopy(a_ ) for k, v in self.__dict__.items()} )
680
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a_ : Union[str, Any] = logging.get_logger(__name__) a_ : List[str] = {'vocab_file': 'sentencepiece.bpe.model'} a_ : str = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } a_ : str = { 'moussaKam/mbarthez': 10_24, 'moussaKam/barthez': 10_24, 'moussaKam/barthez-orangesum-title': 10_24, } a_ : Tuple = '▁' class _snake_case ( A__ ): _lowercase : Dict = VOCAB_FILES_NAMES _lowercase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _lowercase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Optional[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self , a , a="<s>" , a="</s>" , a="</s>" , a="<s>" , a="<unk>" , a="<pad>" , a="<mask>" , a = None , **a , ) -> None: # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE = AddedToken(a , lstrip=a , rstrip=a) if isinstance(a , a) else mask_token SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a , eos_token=a , unk_token=a , sep_token=a , cls_token=a , pad_token=a , mask_token=a , sp_model_kwargs=self.sp_model_kwargs , **a , ) SCREAMING_SNAKE_CASE = vocab_file SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(a)) SCREAMING_SNAKE_CASE = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} SCREAMING_SNAKE_CASE = len(self.sp_model) - 1 SCREAMING_SNAKE_CASE = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] SCREAMING_SNAKE_CASE = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self , a , a = None , a = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a) if token_ids_a is None: return [1] + ([0] * len(a)) + [1] return [1] + ([0] * len(a)) + [1, 1] + ([0] * len(a)) + [1] def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> List[int]: SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: return len(self.sp_model) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(a): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def SCREAMING_SNAKE_CASE__ ( self , a) -> List[str]: return self.sp_model.encode(a , out_type=a) def SCREAMING_SNAKE_CASE__ ( self , a) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE = self.sp_model.PieceToId(a) return spm_id if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE__ ( self , a) -> Union[str, Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(a) def SCREAMING_SNAKE_CASE__ ( self , a) -> List[Any]: SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = '' SCREAMING_SNAKE_CASE = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a) + token SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = [] else: current_sub_tokens.append(a) SCREAMING_SNAKE_CASE = False out_string += self.sp_model.decode(a) return out_string.strip() def __getstate__( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = self.__dict__.copy() SCREAMING_SNAKE_CASE = None return state def __setstate__( self , a) -> int: SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> Tuple[str]: if not os.path.isdir(a): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return SCREAMING_SNAKE_CASE = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(a) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , a) elif not os.path.isfile(self.vocab_file): with open(a , 'wb') as fi: SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(a) return (out_vocab_file,)
73
import sys import turtle def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): my_pen.up() my_pen.goto(vertexa[0] , vertexa[1]) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1]) my_pen.goto(vertexa[0] , vertexa[1]) my_pen.goto(vertexa[0] , vertexa[1]) if depth == 0: return triangle(_UpperCAmelCase , get_mid(_UpperCAmelCase , _UpperCAmelCase) , get_mid(_UpperCAmelCase , _UpperCAmelCase) , depth - 1) triangle(_UpperCAmelCase , get_mid(_UpperCAmelCase , _UpperCAmelCase) , get_mid(_UpperCAmelCase , _UpperCAmelCase) , depth - 1) triangle(_UpperCAmelCase , get_mid(_UpperCAmelCase , _UpperCAmelCase) , get_mid(_UpperCAmelCase , _UpperCAmelCase) , depth - 1) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( 'Correct format for using this script: ' 'python fractals.py <int:depth_for_fractal>' ) a_ : Any = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('red') a_ : str = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
73
1
'''simple docstring''' import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class lowerCamelCase ( __A ): def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' _snake_case: List[str] = tempfile.mkdtemp() _snake_case: Union[str, Any] = 8 # DPR tok _snake_case: int = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _snake_case: List[Any] = os.path.join(self.tmpdirname , 'dpr_tokenizer' ) os.makedirs(__snake_case , exist_ok=__snake_case ) _snake_case: List[str] = os.path.join(__snake_case , DPR_VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) # BART tok _snake_case: Optional[Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _snake_case: List[str] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) _snake_case: int = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _snake_case: List[str] = {'unk_token': '<unk>'} _snake_case: List[str] = os.path.join(self.tmpdirname , 'bart_tokenizer' ) os.makedirs(__snake_case , exist_ok=__snake_case ) _snake_case: str = os.path.join(__snake_case , BART_VOCAB_FILES_NAMES['vocab_file'] ) _snake_case: List[str] = os.path.join(__snake_case , BART_VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__snake_case ) ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) @require_tokenizers def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' _snake_case: Dict = os.path.join(self.tmpdirname , 'rag_tokenizer' ) _snake_case: Any = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) _snake_case: Tuple = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(__snake_case ) rag_tokenizer.save_pretrained(__snake_case ) _snake_case: int = RagTokenizer.from_pretrained(__snake_case , config=__snake_case ) self.assertIsInstance(new_rag_tokenizer.question_encoder , __snake_case ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , __snake_case ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' _snake_case: List[str] = RagTokenizer.from_pretrained('facebook/rag-token-nq' ) _snake_case: Optional[Any] = [ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] _snake_case: str = tokenizer(__snake_case ) self.assertIsNotNone(__snake_case ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' _snake_case: str = RagTokenizer.from_pretrained('facebook/rag-sequence-nq' ) _snake_case: int = [ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] _snake_case: str = tokenizer(__snake_case ) self.assertIsNotNone(__snake_case )
704
'''simple docstring''' def lowercase_ ( lowercase__ = 50 ) ->int: _snake_case: Union[str, Any] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'{solution() = }')
273
0
'''simple docstring''' def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = [0 for i in range(r + 1 )] # nc0 = 1 __snake_case : Optional[Any] = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. __snake_case : Optional[Any] = min(_lowerCamelCase , _lowerCamelCase ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
26
def lowercase ( _a ) -> int: if not isinstance(_a ,_a ) or number < 0: raise ValueError("Input must be a non-negative integer" ) UpperCAmelCase_: List[Any] = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
137
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=18 , SCREAMING_SNAKE_CASE__=30 , SCREAMING_SNAKE_CASE__=4_00 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=True , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = size if size is not None else {"""shortest_edge""": 20} SCREAMING_SNAKE_CASE__ : List[Any] = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} SCREAMING_SNAKE_CASE__ : Any = parent SCREAMING_SNAKE_CASE__ : List[str] = batch_size SCREAMING_SNAKE_CASE__ : Dict = num_channels SCREAMING_SNAKE_CASE__ : List[Any] = image_size SCREAMING_SNAKE_CASE__ : Dict = min_resolution SCREAMING_SNAKE_CASE__ : Dict = max_resolution SCREAMING_SNAKE_CASE__ : Optional[int] = do_resize SCREAMING_SNAKE_CASE__ : Optional[Any] = size SCREAMING_SNAKE_CASE__ : Union[str, Any] = do_center_crop SCREAMING_SNAKE_CASE__ : Optional[Any] = crop_size SCREAMING_SNAKE_CASE__ : List[str] = do_flip_channel_order def __magic_name__ (self ) -> int: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class lowerCAmelCase_ (a__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase : str = MobileViTImageProcessor if is_vision_available() else None def __magic_name__ (self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = MobileViTImageProcessingTester(self ) @property def __magic_name__ (self ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , """do_resize""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , """size""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , """do_center_crop""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , """center_crop""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , """do_flip_channel_order""" ) ) def __magic_name__ (self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" pass def __magic_name__ (self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE__ : List[str] = image_processing(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __magic_name__ (self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , numpify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE__ : Optional[int] = image_processing(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __magic_name__ (self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , torchify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE__ : Optional[Any] = image_processing(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
545
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : str = logging.get_logger(__name__) UpperCAmelCase__ : Dict = { 'microsoft/unispeech-large-1500h-cv': ( 'https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : List[str] = '''unispeech''' def __init__(self , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=7_68 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=30_72 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-5 , SCREAMING_SNAKE_CASE__="group" , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , SCREAMING_SNAKE_CASE__=(5, 2, 2, 2, 2, 2, 2) , SCREAMING_SNAKE_CASE__=(10, 3, 3, 3, 3, 2, 2) , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=1_28 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=0.05 , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=3_20 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=1_00 , SCREAMING_SNAKE_CASE__=2_56 , SCREAMING_SNAKE_CASE__=2_56 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__="mean" , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=2_56 , SCREAMING_SNAKE_CASE__=80 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.5 , **SCREAMING_SNAKE_CASE__ , ) -> List[Any]: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ , pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE__ : Optional[Any] = feat_extract_norm SCREAMING_SNAKE_CASE__ : Any = feat_extract_activation SCREAMING_SNAKE_CASE__ : Union[str, Any] = list(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = list(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = list(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = conv_bias SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_conv_pos_embeddings SCREAMING_SNAKE_CASE__ : Optional[Any] = num_conv_pos_embedding_groups SCREAMING_SNAKE_CASE__ : Dict = len(self.conv_dim ) SCREAMING_SNAKE_CASE__ : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE__ : str = intermediate_size SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_act SCREAMING_SNAKE_CASE__ : Any = num_attention_heads SCREAMING_SNAKE_CASE__ : Dict = hidden_dropout SCREAMING_SNAKE_CASE__ : List[str] = attention_dropout SCREAMING_SNAKE_CASE__ : Any = activation_dropout SCREAMING_SNAKE_CASE__ : int = feat_proj_dropout SCREAMING_SNAKE_CASE__ : List[Any] = final_dropout SCREAMING_SNAKE_CASE__ : str = layerdrop SCREAMING_SNAKE_CASE__ : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE__ : Dict = initializer_range SCREAMING_SNAKE_CASE__ : Dict = num_ctc_classes SCREAMING_SNAKE_CASE__ : List[Any] = vocab_size SCREAMING_SNAKE_CASE__ : str = do_stable_layer_norm SCREAMING_SNAKE_CASE__ : Dict = use_weighted_layer_sum SCREAMING_SNAKE_CASE__ : Union[str, Any] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE__ : Tuple = apply_spec_augment SCREAMING_SNAKE_CASE__ : Optional[int] = mask_time_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = mask_time_length SCREAMING_SNAKE_CASE__ : List[str] = mask_time_min_masks SCREAMING_SNAKE_CASE__ : Tuple = mask_feature_prob SCREAMING_SNAKE_CASE__ : Any = mask_feature_length SCREAMING_SNAKE_CASE__ : int = mask_feature_min_masks # parameters for pretraining with codevector quantized representations SCREAMING_SNAKE_CASE__ : Dict = num_codevectors_per_group SCREAMING_SNAKE_CASE__ : Any = num_codevector_groups SCREAMING_SNAKE_CASE__ : str = contrastive_logits_temperature SCREAMING_SNAKE_CASE__ : str = feat_quantizer_dropout SCREAMING_SNAKE_CASE__ : Optional[Any] = num_negatives SCREAMING_SNAKE_CASE__ : Tuple = codevector_dim SCREAMING_SNAKE_CASE__ : List[Any] = proj_codevector_dim SCREAMING_SNAKE_CASE__ : Tuple = diversity_loss_weight # ctc loss SCREAMING_SNAKE_CASE__ : int = ctc_loss_reduction SCREAMING_SNAKE_CASE__ : str = ctc_zero_infinity # pretraining loss SCREAMING_SNAKE_CASE__ : List[str] = replace_prob @property def __magic_name__ (self ) -> Tuple: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
545
1
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def __A ( _lowercase ): # picklable for multiprocessing '''simple docstring''' return x.sum() def __A ( _lowercase ): # picklable for multiprocessing '''simple docstring''' return i + 1 @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" A_ = 42 A_ = 42 class SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): """simple docstring""" def __A ( self: List[Any] ) -> Tuple: _A = {} _A = [] _A = 1 _A = [1, 2] _A = {"a": 1, "b": 2} _A = {"a": [1, 2], "b": [3, 4]} _A = {"a": {"1": 1}, "b": 2} _A = {"a": 1, "b": 2, "c": 3, "d": 4} _A = {} _A = [] _A = 2 _A = [2, 3] _A = {"a": 2, "b": 3} _A = {"a": [2, 3], "b": [4, 5]} _A = {"a": {"1": 2}, "b": 3} _A = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) _A = 2 self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) , lowerCamelCase__ ) _A = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} _A = {"a": 2, "b": 0, "c": 2} _A = { "a": np.eye(2 ).astype(lowerCamelCase__ ), "b": np.zeros(3 ).astype(lowerCamelCase__ ), "c": np.ones(2 ).astype(lowerCamelCase__ ), } self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ , map_numpy=lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(lowerCamelCase__ , lowerCamelCase__ , map_numpy=lowerCamelCase__ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ , map_numpy=lowerCamelCase__ , num_proc=lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(lowerCamelCase__ , lowerCamelCase__ , map_numpy=lowerCamelCase__ , num_proc=lowerCamelCase__ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(lowerCamelCase__ ): # can't pickle a local lambda map_nested(lambda __A : x + 1 , lowerCamelCase__ , num_proc=lowerCamelCase__ ) def __A ( self: str ) -> Optional[int]: _A = {"a": 1, "b": 2} _A = {"a": 3, "b": 4} _A = {"a": 5, "b": 6} _A = sorted([('''a''', (1, 3, 5)), ('''b''', (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) ) , lowerCamelCase__ ) def __A ( self: List[Any] ) -> Union[str, Any]: class SCREAMING_SNAKE_CASE : """simple docstring""" A_ = 'bar' _A = Foo() self.assertEqual(foo.my_attr , '''bar''' ) with temporary_assignment(lowerCamelCase__ , '''my_attr''' , '''BAR''' ): self.assertEqual(foo.my_attr , '''BAR''' ) self.assertEqual(foo.my_attr , '''bar''' ) @pytest.mark.parametrize( '''iterable_length, num_proc, expected_num_proc''' , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def __A ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' with patch('''datasets.utils.py_utils._single_map_nested''' ) as mock_single_map_nested, patch( '''datasets.parallel.parallel.Pool''' ) as mock_multiprocessing_pool: _A = {f"""{i}""": i for i in range(_lowercase )} _A = map_nested(lambda _lowercase : x + 10 , _lowercase , num_proc=_lowercase , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): """simple docstring""" @require_tf def __A ( self: str ) -> Union[str, Any]: import tensorflow as tf from tensorflow.keras import layers _A = layers.Dense(2 ) def gen_random_output(): _A = tf.random.uniform((1, 3) ) return model(lowerCamelCase__ ).numpy() with temp_seed(42 , set_tensorflow=lowerCamelCase__ ): _A = gen_random_output() with temp_seed(42 , set_tensorflow=lowerCamelCase__ ): _A = gen_random_output() _A = gen_random_output() np.testing.assert_equal(lowerCamelCase__ , lowerCamelCase__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __A ( self: Optional[int] ) -> Any: import torch def gen_random_output(): _A = torch.nn.Linear(3 , 2 ) _A = torch.rand(1 , 3 ) return model(lowerCamelCase__ ).detach().numpy() with temp_seed(42 , set_pytorch=lowerCamelCase__ ): _A = gen_random_output() with temp_seed(42 , set_pytorch=lowerCamelCase__ ): _A = gen_random_output() _A = gen_random_output() np.testing.assert_equal(lowerCamelCase__ , lowerCamelCase__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __A ( self: Optional[Any] ) -> int: def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): _A = gen_random_output() with temp_seed(42 ): _A = gen_random_output() _A = gen_random_output() np.testing.assert_equal(lowerCamelCase__ , lowerCamelCase__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize('''input_data''' , [{}] ) def __A ( _lowercase ): '''simple docstring''' _A = NestedDataStructure(_lowercase ).data assert output_data == input_data @pytest.mark.parametrize( '''data, expected_output''' , [ ({}, []), ([], []), ('''foo''', ['''foo''']), (['''foo''', '''bar'''], ['''foo''', '''bar''']), ([['''foo''', '''bar''']], ['''foo''', '''bar''']), ([[['''foo'''], ['''bar''']]], ['''foo''', '''bar''']), ([[['''foo'''], '''bar''']], ['''foo''', '''bar''']), ({'''a''': 1, '''b''': 2}, [1, 2]), ({'''a''': [1, 2], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[1, 2]], '''b''': [[3, 4]]}, [1, 2, 3, 4]), ({'''a''': [[1, 2]], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [[[3], [4]]]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [[3, 4]]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [3, [4]]}, [1, 2, 3, 4]), ({'''a''': {'''1''': 1}, '''b''': 2}, [1, 2]), ({'''a''': {'''1''': [1]}, '''b''': 2}, [1, 2]), ({'''a''': {'''1''': [1]}, '''b''': [2]}, [1, 2]), ] , ) def __A ( _lowercase , _lowercase ): '''simple docstring''' _A = NestedDataStructure(_lowercase ).flatten() assert output == expected_output def __A ( ): '''simple docstring''' _A = A(x=1 , y='''foobar''' ) _A = {"x": 1, "y": "foobar"} assert asdict(_lowercase ) == expected_output _A = {"a": {"b": A(x=10 , y='''foo''' )}, "c": [A(x=20 , y='''bar''' )]} _A = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(_lowercase ) == expected_output with pytest.raises(_lowercase ): asdict([1, A(x=10 , y='''foo''' )] ) def __A ( _lowercase ): '''simple docstring''' return text.split() def __A ( _lowercase ): '''simple docstring''' yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def __A ( ): '''simple docstring''' with Pool(2 ) as pool: _A = list(iflatmap_unordered(_lowercase , _split_text , kwargs_iterable=[{'''text''': '''hello there'''}] * 10 ) ) assert out.count('''hello''' ) == 10 assert out.count('''there''' ) == 10 assert len(_lowercase ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: _A = list(iflatmap_unordered(_lowercase , _split_text , kwargs_iterable=[{'''text''': '''hello there'''}] * 10 ) ) assert out.count('''hello''' ) == 10 assert out.count('''there''' ) == 10 assert len(_lowercase ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: _A = [] for yield_time, content in iflatmap_unordered( _lowercase , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{'''content''': '''a'''}, {'''content''': '''b'''}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(_lowercase ) assert out.count('''a''' ) == 2 assert out.count('''b''' ) == 2 assert len(_lowercase ) == 4
484
def snake_case__ ( lowercase , lowercase ): if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
613
0
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class lowerCamelCase__ ( UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCamelCase : List[Any] = 'pixel_values' _UpperCamelCase : List[Any] = False _UpperCamelCase : Tuple = TimmBackboneConfig def __init__( self , snake_case , **snake_case ): '''simple docstring''' requires_backends(self , "timm" ) super().__init__(snake_case ) UpperCamelCase__ = config if config.backbone is None: raise ValueError("backbone is not set in the config. Please set it to a timm model name." ) if config.backbone not in timm.list_models(): raise ValueError(F'''backbone {config.backbone} is not supported by timm.''' ) if hasattr(snake_case , "out_features" ) and config.out_features is not None: raise ValueError("out_features is not supported by TimmBackbone. Please use out_indices instead." ) UpperCamelCase__ = getattr(snake_case , "use_pretrained_backbone" , snake_case ) if pretrained is None: raise ValueError("use_pretrained_backbone is not set in the config. Please set it to True or False." ) # We just take the final layer by default. This matches the default for the transformers models. UpperCamelCase__ = config.out_indices if getattr(snake_case , "out_indices" , snake_case ) is not None else (-1,) UpperCamelCase__ = timm.create_model( config.backbone , pretrained=snake_case , features_only=config.features_only , in_chans=config.num_channels , out_indices=snake_case , **snake_case , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. UpperCamelCase__ = self._backbone.return_layers UpperCamelCase__ = {layer["module"]: str(snake_case ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(snake_case ) @classmethod def snake_case__ ( cls , snake_case , *snake_case , **snake_case ): '''simple docstring''' requires_backends(cls , ["vision", "timm"] ) from ...models.timm_backbone import TimmBackboneConfig UpperCamelCase__ = kwargs.pop("config" , TimmBackboneConfig() ) UpperCamelCase__ = kwargs.pop("use_timm_backbone" , snake_case ) if not use_timm: raise ValueError("use_timm_backbone must be True for timm backbones" ) UpperCamelCase__ = kwargs.pop("num_channels" , config.num_channels ) UpperCamelCase__ = kwargs.pop("features_only" , config.features_only ) UpperCamelCase__ = kwargs.pop("use_pretrained_backbone" , config.use_pretrained_backbone ) UpperCamelCase__ = kwargs.pop("out_indices" , config.out_indices ) UpperCamelCase__ = TimmBackboneConfig( backbone=snake_case , num_channels=snake_case , features_only=snake_case , use_pretrained_backbone=snake_case , out_indices=snake_case , ) return super()._from_config(snake_case , **snake_case ) def snake_case__ ( self , snake_case ): '''simple docstring''' pass def snake_case__ ( self , snake_case , snake_case=None , snake_case=None , snake_case=None , **snake_case ): '''simple docstring''' UpperCamelCase__ = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase__ = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("Cannot output attentions for timm backbones at the moment" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone UpperCamelCase__ = self._all_layers UpperCamelCase__ = self._backbone(snake_case , **snake_case ) UpperCamelCase__ = self._return_layers UpperCamelCase__ = tuple(hidden_states[i] for i in self.out_indices ) else: UpperCamelCase__ = self._backbone(snake_case , **snake_case ) UpperCamelCase__ = None UpperCamelCase__ = tuple(snake_case ) UpperCamelCase__ = tuple(snake_case ) if hidden_states is not None else None if not return_dict: UpperCamelCase__ = (feature_maps,) if output_hidden_states: UpperCamelCase__ = output + (hidden_states,) return output return BackboneOutput(feature_maps=snake_case , hidden_states=snake_case , attentions=snake_case )
185
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class lowerCamelCase__ ( UpperCAmelCase ): """simple docstring""" _UpperCamelCase : Any = 'ibert' def __init__( self , snake_case=30522 , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=2 , snake_case=0.02 , snake_case=1E-1_2 , snake_case=1 , snake_case=0 , snake_case=2 , snake_case="absolute" , snake_case=False , snake_case="none" , **snake_case , ): '''simple docstring''' super().__init__(pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , **snake_case ) UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = position_embedding_type UpperCamelCase__ = quant_mode UpperCamelCase__ = force_dequant class lowerCamelCase__ ( UpperCAmelCase ): """simple docstring""" @property def snake_case__ ( self ): '''simple docstring''' if self.task == "multiple-choice": UpperCamelCase__ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCamelCase__ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
185
1
"""simple docstring""" import warnings from ..trainer import Trainer from ..utils import logging lowerCamelCase__ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __init__( self : int , __a : Optional[Any]=None , **__a : Tuple ) -> Tuple: warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead." , __a , ) super().__init__(args=__a , **__a )
624
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any , __a : Any , __a : Optional[Any]=7 , __a : Tuple=3 , __a : int=18 , __a : Optional[Any]=30 , __a : Optional[Any]=400 , __a : List[str]=True , __a : Any=32 , __a : Tuple=True , ) -> List[str]: _UpperCamelCase : List[str] = parent _UpperCamelCase : int = batch_size _UpperCamelCase : List[str] = num_channels _UpperCamelCase : Union[str, Any] = image_size _UpperCamelCase : Optional[Any] = min_resolution _UpperCamelCase : Union[str, Any] = max_resolution _UpperCamelCase : Optional[Any] = do_resize _UpperCamelCase : str = size_divisor _UpperCamelCase : Optional[Any] = do_rescale def __SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = GLPNImageProcessor if is_vision_available() else None def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: _UpperCamelCase : Optional[Any] = GLPNImageProcessingTester(self ) @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def __SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: _UpperCamelCase : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , "do_resize" ) ) self.assertTrue(hasattr(__a , "size_divisor" ) ) self.assertTrue(hasattr(__a , "resample" ) ) self.assertTrue(hasattr(__a , "do_rescale" ) ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: pass def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: # Initialize image_processing _UpperCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) _UpperCamelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: # Initialize image_processing _UpperCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCamelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a ) for image in image_inputs: self.assertIsInstance(__a , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) _UpperCamelCase : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: # Initialize image_processing _UpperCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a ) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) _UpperCamelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
624
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ = { '''configuration_longformer''': [ '''LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongformerConfig''', '''LongformerOnnxConfig''', ], '''tokenization_longformer''': ['''LongformerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = ['''LongformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongformerForMaskedLM''', '''LongformerForMultipleChoice''', '''LongformerForQuestionAnswering''', '''LongformerForSequenceClassification''', '''LongformerForTokenClassification''', '''LongformerModel''', '''LongformerPreTrainedModel''', '''LongformerSelfAttention''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLongformerForMaskedLM''', '''TFLongformerForMultipleChoice''', '''TFLongformerForQuestionAnswering''', '''TFLongformerForSequenceClassification''', '''TFLongformerForTokenClassification''', '''TFLongformerModel''', '''TFLongformerPreTrainedModel''', '''TFLongformerSelfAttention''', ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
713
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed a__ = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F"{bindir}/../../examples/pytorch/translation"): from run_translation import main # noqa set_seed(42) a__ = '''sshleifer/student_marian_en_ro_6_1''' a__ = '''sshleifer/tiny-mbart''' @require_torch class __magic_name__( __lowerCAmelCase ): def __lowerCAmelCase( self : Optional[Any] , __UpperCamelCase : Any=False , __UpperCamelCase : int=None , __UpperCamelCase : Dict=True , __UpperCamelCase : List[str]=True , __UpperCamelCase : List[str]=True , __UpperCamelCase : str=True , ): '''simple docstring''' snake_case__ = self.run_trainer( eval_steps=1 , max_len=1_2 , model_name=__UpperCamelCase , num_train_epochs=1 , distributed=__UpperCamelCase , extra_args_str=__UpperCamelCase , predict_with_generate=__UpperCamelCase , do_train=__UpperCamelCase , do_eval=__UpperCamelCase , do_predict=__UpperCamelCase , ) snake_case__ = TrainerState.load_from_json(os.path.join(__UpperCamelCase , """trainer_state.json""" ) ).log_history if not do_eval: return snake_case__ = [log for log in logs if """eval_loss""" in log.keys()] snake_case__ = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats snake_case__ = eval_metrics[-1] assert isinstance(last_step_stats["""eval_bleu"""] , __UpperCamelCase ) assert not math.isnan(float(last_step_stats["""eval_loss"""] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def __lowerCAmelCase( self : Optional[Any] ): '''simple docstring''' self.run_seqaseq_quick() @require_torch_multi_gpu def __lowerCAmelCase( self : Optional[Any] ): '''simple docstring''' self.run_seqaseq_quick(distributed=__UpperCamelCase ) @require_torch_multi_gpu def __lowerCAmelCase( self : Optional[Any] ): '''simple docstring''' self.run_seqaseq_quick(distributed=__UpperCamelCase ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def __lowerCAmelCase( self : List[str] ): '''simple docstring''' self.run_seqaseq_quick(distributed=__UpperCamelCase , extra_args_str="""--sharded_ddp simple""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def __lowerCAmelCase( self : Optional[int] ): '''simple docstring''' self.run_seqaseq_quick(distributed=__UpperCamelCase , extra_args_str="""--sharded_ddp simple --fp16""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def __lowerCAmelCase( self : Union[str, Any] ): '''simple docstring''' self.run_seqaseq_quick(distributed=__UpperCamelCase , extra_args_str="""--sharded_ddp zero_dp_2""" , predict_with_generate=__UpperCamelCase ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def __lowerCAmelCase( self : Optional[Any] ): '''simple docstring''' self.run_seqaseq_quick( distributed=__UpperCamelCase , extra_args_str="""--sharded_ddp zero_dp_2 --fp16""" , predict_with_generate=__UpperCamelCase ) @require_apex @require_torch_gpu def __lowerCAmelCase( self : Optional[int] ): '''simple docstring''' self.run_seqaseq_quick(distributed=__UpperCamelCase , extra_args_str="""--fp16 --fp16_backend=apex""" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=__UpperCamelCase , extra_args_str="""--fp16 --fp16_backend=apex""" ) @parameterized.expand(["""base""", """low""", """high""", """mixed"""] ) @require_torch_multi_gpu def __lowerCAmelCase( self : Optional[Any] , __UpperCamelCase : str ): '''simple docstring''' snake_case__ = { # test with the default log_level - should be info and thus log info once """base""": {"""extra_args_str""": """""", """n_matches""": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes """low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica """high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1}, # test with high log_level and log_level_replica - should be quiet on all processes """mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0}, } snake_case__ = experiments[experiment_id] snake_case__ = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False} snake_case__ = """Running training""" with CaptureStderr() as cl: self.run_seqaseq_quick(**__UpperCamelCase , extra_args_str=data["""extra_args_str"""] ) snake_case__ = len(re.findall(__UpperCamelCase , cl.err ) ) self.assertEqual(__UpperCamelCase , data["""n_matches"""] ) @slow def __lowerCAmelCase( self : Optional[Any] ): '''simple docstring''' snake_case__ = self.run_trainer( eval_steps=2 , max_len=1_2_8 , model_name=__UpperCamelCase , learning_rate=3E-4 , num_train_epochs=1_0 , distributed=__UpperCamelCase , ) # Check metrics snake_case__ = TrainerState.load_from_json(os.path.join(__UpperCamelCase , """trainer_state.json""" ) ).log_history snake_case__ = [log for log in logs if """eval_loss""" in log.keys()] snake_case__ = eval_metrics[0] snake_case__ = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["""eval_bleu"""] , __UpperCamelCase ) # test if do_predict saves generations and metrics snake_case__ = os.listdir(__UpperCamelCase ) snake_case__ = {os.path.basename(__UpperCamelCase ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def __lowerCAmelCase( self : Union[str, Any] ): '''simple docstring''' from transformers.training_args import OptimizerNames def train_and_return_metrics(__UpperCamelCase : str ) -> Tuple[int, float]: snake_case__ = """--skip_memory_metrics 0""" snake_case__ = self.run_trainer( max_len=1_2_8 , model_name=__UpperCamelCase , learning_rate=3E-4 , num_train_epochs=1 , optim=__UpperCamelCase , distributed=__UpperCamelCase , extra_args_str=__UpperCamelCase , do_eval=__UpperCamelCase , do_predict=__UpperCamelCase , n_gpus_to_use=1 , ) # Check metrics snake_case__ = TrainerState.load_from_json(Path(__UpperCamelCase , """trainer_state.json""" ) ).log_history snake_case__ = int(logs[0]["""train_mem_gpu_peaked_delta"""] / 2**2_0 ) snake_case__ = int(logs[0]["""train_mem_gpu_alloc_delta"""] / 2**2_0 ) snake_case__ = logs[0]["""train_loss"""] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss snake_case__ , snake_case__ , snake_case__ = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) snake_case__ , snake_case__ , snake_case__ = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) snake_case__ = gpu_alloc_mem_orig - gpu_alloc_mem_bnb snake_case__ = gpu_peak_mem_orig + gpu_alloc_mem_orig snake_case__ = gpu_peak_mem_bnb + gpu_alloc_mem_bnb snake_case__ = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings snake_case__ = 1_2_0 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( __UpperCamelCase , __UpperCamelCase , """should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got""" f""" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and""" f""" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB""" , ) self.assertGreater( __UpperCamelCase , __UpperCamelCase , """should use ~150MB less total gpu memory with BNB, compared to without it for this model but got""" f""" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and""" f""" gpu_total_mem_bnb={gpu_total_mem_bnb}MB""" , ) self.assertEqual( __UpperCamelCase , __UpperCamelCase , f"""loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}""" ) def __lowerCAmelCase( self : str , __UpperCamelCase : int , __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : float = 3E-3 , __UpperCamelCase : str = "adafactor" , __UpperCamelCase : bool = False , __UpperCamelCase : str = None , __UpperCamelCase : int = 0 , __UpperCamelCase : bool = True , __UpperCamelCase : bool = True , __UpperCamelCase : bool = True , __UpperCamelCase : bool = True , __UpperCamelCase : int = None , ): '''simple docstring''' snake_case__ = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro""" snake_case__ = self.get_auto_remove_tmp_dir() snake_case__ = f""" --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(__UpperCamelCase )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(__UpperCamelCase )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX """.split() snake_case__ = f""" --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(__UpperCamelCase )} """.split() snake_case__ = """ --do_predict """.split() snake_case__ = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f"""--optim {optim}""".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: snake_case__ = get_gpu_count() snake_case__ = get_torch_dist_unique_port() snake_case__ = f""" -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py """.split() snake_case__ = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(__UpperCamelCase , env=self.get_env() ) else: snake_case__ = ["""run_translation.py"""] + args with patch.object(__UpperCamelCase , """argv""" , __UpperCamelCase ): main() return output_dir
566
0
"""simple docstring""" from string import ascii_uppercase _A = {char: i for i, char in enumerate(ascii_uppercase)} _A = dict(enumerate(ascii_uppercase)) def a__ ( lowerCAmelCase , lowerCAmelCase ) -> str: UpperCAmelCase__ : int = len(lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = 0 while True: if x == i: UpperCAmelCase__ : Union[str, Any] = 0 if len(lowerCAmelCase ) == len(lowerCAmelCase ): break key += key[i] i += 1 return key def a__ ( lowerCAmelCase , lowerCAmelCase ) -> str: UpperCAmelCase__ : int = """""" UpperCAmelCase__ : List[Any] = 0 for letter in message: if letter == " ": cipher_text += " " else: UpperCAmelCase__ : List[str] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def a__ ( lowerCAmelCase , lowerCAmelCase ) -> str: UpperCAmelCase__ : Dict = """""" UpperCAmelCase__ : Optional[int] = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: UpperCAmelCase__ : Any = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def a__ ( ) -> None: UpperCAmelCase__ : Optional[int] = """THE GERMAN ATTACK""" UpperCAmelCase__ : Any = """SECRET""" UpperCAmelCase__ : Optional[Any] = generate_key(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ : int = cipher_text(lowerCAmelCase , lowerCAmelCase ) print(F"""Encrypted Text = {s}""" ) print(F"""Original Text = {original_text(lowerCAmelCase , lowerCAmelCase )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
182
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _A = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["""BartphoTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
182
1
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging __a = """\ """ __a = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ __a = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): def _lowercase ( self : List[str] ) -> Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , ) def _lowercase ( self : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : Tuple , __lowerCamelCase : int = 1_6 , __lowerCamelCase : bool = True , __lowerCamelCase : str=None ) -> Tuple: """simple docstring""" if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": UpperCAmelCase = """cuda""" else: UpperCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu""" UpperCAmelCase = AutoModelForCausalLM.from_pretrained(__lowerCamelCase ) UpperCAmelCase = model.to(__lowerCamelCase ) UpperCAmelCase = AutoTokenizer.from_pretrained(__lowerCamelCase ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: UpperCAmelCase = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(__lowerCamelCase ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" UpperCAmelCase = model.config.max_length - 1 else: UpperCAmelCase = model.config.max_length UpperCAmelCase = tokenizer( __lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors="""pt""" , return_attention_mask=__lowerCamelCase , ).to(__lowerCamelCase ) UpperCAmelCase = encodings["""input_ids"""] UpperCAmelCase = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." UpperCAmelCase = [] UpperCAmelCase = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0 , len(__lowerCamelCase ) , __lowerCamelCase ) ): UpperCAmelCase = min(start_index + batch_size , len(__lowerCamelCase ) ) UpperCAmelCase = encoded_texts[start_index:end_index] UpperCAmelCase = attn_masks[start_index:end_index] if add_start_token: UpperCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__lowerCamelCase ) UpperCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) UpperCAmelCase = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(__lowerCamelCase ), attn_mask] , dim=1 ) UpperCAmelCase = encoded_batch with torch.no_grad(): UpperCAmelCase = model(__lowerCamelCase , attention_mask=__lowerCamelCase ).logits UpperCAmelCase = out_logits[..., :-1, :].contiguous() UpperCAmelCase = labels[..., 1:].contiguous() UpperCAmelCase = attn_mask[..., 1:].contiguous() UpperCAmelCase = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , __lowerCamelCase ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(__lowerCamelCase )}
703
import numpy class __lowercase : def __init__( self : Union[str, Any] , __lowerCamelCase : numpy.ndarray , __lowerCamelCase : numpy.ndarray ) -> None: """simple docstring""" UpperCAmelCase = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. UpperCAmelCase = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. UpperCAmelCase = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. UpperCAmelCase = numpy.random.rand(3 , 1 ) # Real output values provided. UpperCAmelCase = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. UpperCAmelCase = numpy.zeros(output_array.shape ) def _lowercase ( self : List[str] ) -> numpy.ndarray: """simple docstring""" UpperCAmelCase = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. UpperCAmelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. UpperCAmelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def _lowercase ( self : Optional[Any] ) -> None: """simple docstring""" UpperCAmelCase = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) UpperCAmelCase = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) UpperCAmelCase = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def _lowercase ( self : Any , __lowerCamelCase : numpy.ndarray , __lowerCamelCase : int , __lowerCamelCase : bool ) -> None: """simple docstring""" for iteration in range(1 , iterations + 1 ): UpperCAmelCase = self.feedforward() self.back_propagation() if give_loss: UpperCAmelCase = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"""Iteration {iteration} Loss: {loss}""" ) def _lowercase ( self : List[str] , __lowerCamelCase : numpy.ndarray ) -> int: """simple docstring""" UpperCAmelCase = input_arr UpperCAmelCase = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) UpperCAmelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) UpperCAmelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _UpperCamelCase ( lowerCAmelCase_ ) ->numpy.ndarray: return 1 / (1 + numpy.exp(-value )) def _UpperCamelCase ( lowerCAmelCase_ ) ->numpy.ndarray: return (value) * (1 - (value)) def _UpperCamelCase ( ) ->int: UpperCAmelCase = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. UpperCAmelCase = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. UpperCAmelCase = TwoHiddenLayerNeuralNetwork( input_array=lowerCAmelCase_ , output_array=lowerCAmelCase_ ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=lowerCAmelCase_ , iterations=1_0 , give_loss=lowerCAmelCase_ ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
627
0
"""simple docstring""" import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py UpperCamelCase__ = '.' if __name__ == "__main__": UpperCamelCase__ = os.path.join(REPO_PATH, 'utils/documentation_tests.txt') UpperCamelCase__ = [] UpperCamelCase__ = [] with open(doctest_file_path) as fp: for line in fp: UpperCamelCase__ = line.strip() UpperCamelCase__ = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: UpperCamelCase__ = '\n'.join(non_existent_paths) raise ValueError(f'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError('Files in `utils/documentation_tests.txt` are not in alphabetical order.')
110
"""simple docstring""" from typing import Any class a : def __init__( self , UpperCamelCase_ ): UpperCAmelCase__ : Optional[Any] = data UpperCAmelCase__ : List[str] = None def __repr__( self ): return F'''Node({self.data})''' class a : def __init__( self ): UpperCAmelCase__ : Any = None def __iter__( self ): UpperCAmelCase__ : List[str] = self.head while node: yield node.data UpperCAmelCase__ : Optional[int] = node.next def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join([str(UpperCamelCase_ ) for item in self] ) def __getitem__( self , UpperCamelCase_ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , UpperCamelCase_ , UpperCamelCase_ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) UpperCAmelCase__ : List[str] = self.head for _ in range(UpperCamelCase_ ): UpperCAmelCase__ : Optional[Any] = current.next UpperCAmelCase__ : List[str] = data def __snake_case ( self , UpperCamelCase_ ): self.insert_nth(len(self ) , UpperCamelCase_ ) def __snake_case ( self , UpperCamelCase_ ): self.insert_nth(0 , UpperCamelCase_ ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) UpperCAmelCase__ : str = Node(UpperCamelCase_ ) if self.head is None: UpperCAmelCase__ : Tuple = new_node elif index == 0: UpperCAmelCase__ : Optional[int] = self.head # link new_node to head UpperCAmelCase__ : Any = new_node else: UpperCAmelCase__ : Dict = self.head for _ in range(index - 1 ): UpperCAmelCase__ : Tuple = temp.next UpperCAmelCase__ : int = temp.next UpperCAmelCase__ : Tuple = new_node def __snake_case ( self ): # print every node data print(self ) def __snake_case ( self ): return self.delete_nth(0 ) def __snake_case ( self ): # delete from tail return self.delete_nth(len(self ) - 1 ) def __snake_case ( self , UpperCamelCase_ = 0 ): if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) UpperCAmelCase__ : Union[str, Any] = self.head # default first node if index == 0: UpperCAmelCase__ : Dict = self.head.next else: UpperCAmelCase__ : List[Any] = self.head for _ in range(index - 1 ): UpperCAmelCase__ : Any = temp.next UpperCAmelCase__ : Dict = temp.next UpperCAmelCase__ : Tuple = temp.next.next return delete_node.data def __snake_case ( self ): return self.head is None def __snake_case ( self ): UpperCAmelCase__ : Optional[Any] = None UpperCAmelCase__ : str = self.head while current: # Store the current node's next node. UpperCAmelCase__ : Any = current.next # Make the current node's next point backwards UpperCAmelCase__ : Optional[int] = prev # Make the previous node be the current node UpperCAmelCase__ : List[Any] = current # Make the current node the next node (to progress iteration) UpperCAmelCase__ : int = next_node # Return prev in order to put the head at the end UpperCAmelCase__ : str = prev def lowerCamelCase ( ): UpperCAmelCase__ : Dict = LinkedList() assert linked_list.is_empty() is True assert str(_snake_case ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_snake_case ) == i linked_list.insert_nth(_snake_case ,i + 1 ) assert str(_snake_case ) == "->".join(str(_snake_case ) for i in range(1 ,11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_snake_case ) == "->".join(str(_snake_case ) for i in range(0 ,12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_snake_case ) == 9 assert str(_snake_case ) == "->".join(str(_snake_case ) for i in range(1 ,10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 ,9 ) ) is True for i in range(0 ,9 ): UpperCAmelCase__ : Any = -i assert all(linked_list[i] == -i for i in range(0 ,9 ) ) is True linked_list.reverse() assert str(_snake_case ) == "->".join(str(_snake_case ) for i in range(-8 ,1 ) ) def lowerCamelCase ( ): UpperCAmelCase__ : int = [ -9, 100, Node(77345112 ), 'dlrow olleH', 7, 5555, 0, -192.55555, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] UpperCAmelCase__ : Dict = LinkedList() for i in test_input: linked_list.insert_tail(_snake_case ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_snake_case ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head UpperCAmelCase__ : Any = linked_list.delete_head() assert result == -9 assert ( str(_snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail UpperCAmelCase__ : Union[str, Any] = linked_list.delete_tail() assert result == 12.2 assert ( str(_snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list UpperCAmelCase__ : Dict = linked_list.delete_nth(10 ) assert result is None assert ( str(_snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_snake_case ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_snake_case ) assert ( str(_snake_case ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_snake_case ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def lowerCamelCase ( ): from doctest import testmod testmod() UpperCAmelCase__ : Optional[Any] = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_snake_case ) print('\nReading/changing Node data using indexing:' ) print(F'''Element at Position 1: {linked_list[1]}''' ) UpperCAmelCase__ : List[Any] = input('Enter New Value: ' ).strip() print('New list:' ) print(_snake_case ) print(F'''length of linked_list is : {len(_snake_case )}''' ) if __name__ == "__main__": main()
110
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCamelCase_ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): lowercase = StableDiffusionPanoramaPipeline lowercase = TEXT_TO_IMAGE_PARAMS lowercase = TEXT_TO_IMAGE_BATCH_PARAMS lowercase = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase = TEXT_TO_IMAGE_IMAGE_PARAMS def snake_case__( self ) -> Union[str, Any]: torch.manual_seed(0 ) _a : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) _a : List[Any] = DDIMScheduler() torch.manual_seed(0 ) _a : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) _a : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) _a : int = CLIPTextModel(__UpperCamelCase ) _a : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _a : List[Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def snake_case__( self , lowercase , lowercase=0 ) -> Tuple: _a : int = torch.manual_seed(__UpperCamelCase ) _a : Optional[Any] = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, # Setting height and width to None to prevent OOMs on CPU. '''height''': None, '''width''': None, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def snake_case__( self ) -> Dict: _a : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator _a : str = self.get_dummy_components() _a : Tuple = StableDiffusionPanoramaPipeline(**__UpperCamelCase ) _a : List[str] = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) _a : str = self.get_dummy_inputs(__UpperCamelCase ) _a : List[Any] = sd_pipe(**__UpperCamelCase ).images _a : str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _a : List[str] = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__( self ) -> List[Any]: super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def snake_case__( self ) -> Tuple: super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25e-3 ) def snake_case__( self ) -> Optional[int]: _a : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator _a : Optional[int] = self.get_dummy_components() _a : List[Any] = StableDiffusionPanoramaPipeline(**__UpperCamelCase ) _a : List[str] = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) _a : Any = self.get_dummy_inputs(__UpperCamelCase ) _a : Optional[int] = '''french fries''' _a : str = sd_pipe(**__UpperCamelCase , negative_prompt=__UpperCamelCase ) _a : int = output.images _a : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _a : int = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__( self ) -> Union[str, Any]: _a : Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator _a : Tuple = self.get_dummy_components() _a : Optional[int] = StableDiffusionPanoramaPipeline(**__UpperCamelCase ) _a : Tuple = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) _a : Union[str, Any] = self.get_dummy_inputs(__UpperCamelCase ) _a : int = sd_pipe(**__UpperCamelCase , view_batch_size=2 ) _a : Dict = output.images _a : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _a : str = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__( self ) -> Union[str, Any]: _a : Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator _a : List[str] = self.get_dummy_components() _a : Optional[Any] = EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) _a : Union[str, Any] = StableDiffusionPanoramaPipeline(**__UpperCamelCase ) _a : Union[str, Any] = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) _a : Dict = self.get_dummy_inputs(__UpperCamelCase ) _a : Tuple = sd_pipe(**__UpperCamelCase ).images _a : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _a : Optional[Any] = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__( self ) -> Tuple: _a : Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator _a : Optional[int] = self.get_dummy_components() _a : Union[str, Any] = PNDMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , skip_prk_steps=__UpperCamelCase ) _a : Tuple = StableDiffusionPanoramaPipeline(**__UpperCamelCase ) _a : List[str] = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) _a : Optional[Any] = self.get_dummy_inputs(__UpperCamelCase ) _a : Any = sd_pipe(**__UpperCamelCase ).images _a : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _a : Optional[int] = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def snake_case__( self ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__( self , lowercase=0 ) -> Optional[int]: _a : Dict = torch.manual_seed(__UpperCamelCase ) _a : Dict = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def snake_case__( self ) -> List[Any]: _a : Union[str, Any] = '''stabilityai/stable-diffusion-2-base''' _a : int = DDIMScheduler.from_pretrained(__UpperCamelCase , subfolder='''scheduler''' ) _a : Tuple = StableDiffusionPanoramaPipeline.from_pretrained(__UpperCamelCase , scheduler=__UpperCamelCase , safety_checker=__UpperCamelCase ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() _a : Any = self.get_inputs() _a : List[str] = pipe(**__UpperCamelCase ).images _a : List[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2_048, 3) _a : Optional[Any] = np.array( [ 0.36968392, 0.27025372, 0.32446766, 0.28379387, 0.36363274, 0.30733347, 0.27100027, 0.27054125, 0.25536096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def snake_case__( self ) -> Union[str, Any]: _a : Dict = StableDiffusionPanoramaPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-base''' , safety_checker=__UpperCamelCase ) _a : List[str] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() _a : Optional[Any] = self.get_inputs() _a : Optional[int] = pipe(**__UpperCamelCase ).images _a : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2_048, 3) _a : int = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def snake_case__( self ) -> Optional[Any]: _a : Optional[Any] = 0 def callback_fn(lowercase , lowercase , lowercase ) -> None: _a : Any = True nonlocal number_of_steps number_of_steps += 1 if step == 1: _a : Optional[Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) _a : Any = latents[0, -3:, -3:, -1] _a : int = np.array( [ 0.18681869, 0.33907816, 0.5361276, 0.14432865, -0.02856611, -0.73941123, 0.23397987, 0.47322682, -0.37823164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: _a : Union[str, Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) _a : Dict = latents[0, -3:, -3:, -1] _a : Optional[Any] = np.array( [ 0.18539645, 0.33987248, 0.5378559, 0.14437142, -0.02455261, -0.7338317, 0.23990755, 0.47356272, -0.3786505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 _a : Union[str, Any] = False _a : Union[str, Any] = '''stabilityai/stable-diffusion-2-base''' _a : int = DDIMScheduler.from_pretrained(__UpperCamelCase , subfolder='''scheduler''' ) _a : Tuple = StableDiffusionPanoramaPipeline.from_pretrained(__UpperCamelCase , scheduler=__UpperCamelCase , safety_checker=__UpperCamelCase ) _a : Optional[int] = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() _a : str = self.get_inputs() pipe(**__UpperCamelCase , callback=__UpperCamelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def snake_case__( self ) -> Dict: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _a : List[str] = '''stabilityai/stable-diffusion-2-base''' _a : Dict = DDIMScheduler.from_pretrained(__UpperCamelCase , subfolder='''scheduler''' ) _a : Any = StableDiffusionPanoramaPipeline.from_pretrained(__UpperCamelCase , scheduler=__UpperCamelCase , safety_checker=__UpperCamelCase ) _a : Optional[Any] = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _a : Any = self.get_inputs() _a : Any = pipe(**__UpperCamelCase ) _a : int = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
707
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig __lowerCamelCase = logging.get_logger(__name__) # General docstring __lowerCamelCase = 'ResNetConfig' # Base docstring __lowerCamelCase = 'microsoft/resnet-50' __lowerCamelCase = [1, 2_048, 7, 7] # Image classification docstring __lowerCamelCase = 'microsoft/resnet-50' __lowerCamelCase = 'tiger cat' __lowerCamelCase = [ 'microsoft/resnet-50', # See all resnet models at https://huggingface.co/models?filter=resnet ] class UpperCamelCase_ ( nn.Module ): def __init__( self , lowercase , lowercase , lowercase = 3 , lowercase = 1 , lowercase = "relu" ) -> str: super().__init__() _a : str = nn.Convad( lowercase , lowercase , kernel_size=lowercase , stride=lowercase , padding=kernel_size // 2 , bias=lowercase ) _a : Optional[Any] = nn.BatchNormad(lowercase ) _a : int = ACTaFN[activation] if activation is not None else nn.Identity() def snake_case__( self , lowercase ) -> Tensor: _a : Union[str, Any] = self.convolution(lowercase ) _a : List[str] = self.normalization(lowercase ) _a : List[str] = self.activation(lowercase ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowercase ) -> Optional[int]: super().__init__() _a : int = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _a : Union[str, Any] = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _a : Union[str, Any] = config.num_channels def snake_case__( self , lowercase ) -> Tensor: _a : Any = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) _a : Any = self.embedder(lowercase ) _a : Optional[int] = self.pooler(lowercase ) return embedding class UpperCamelCase_ ( nn.Module ): def __init__( self , lowercase , lowercase , lowercase = 2 ) -> Dict: super().__init__() _a : str = nn.Convad(lowercase , lowercase , kernel_size=1 , stride=lowercase , bias=lowercase ) _a : Union[str, Any] = nn.BatchNormad(lowercase ) def snake_case__( self , lowercase ) -> Tensor: _a : Optional[int] = self.convolution(lowercase ) _a : Any = self.normalization(lowercase ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowercase , lowercase , lowercase = 1 , lowercase = "relu" ) -> List[str]: super().__init__() _a : List[str] = in_channels != out_channels or stride != 1 _a : List[Any] = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _a : List[str] = nn.Sequential( ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , activation=lowercase ) , ) _a : Dict = ACTaFN[activation] def snake_case__( self , lowercase ) -> Optional[int]: _a : List[Any] = hidden_state _a : Optional[Any] = self.layer(lowercase ) _a : int = self.shortcut(lowercase ) hidden_state += residual _a : Dict = self.activation(lowercase ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowercase , lowercase , lowercase = 1 , lowercase = "relu" , lowercase = 4 ) -> Dict: super().__init__() _a : Union[str, Any] = in_channels != out_channels or stride != 1 _a : Union[str, Any] = out_channels // reduction _a : List[str] = ( ResNetShortCut(lowercase , lowercase , stride=lowercase ) if should_apply_shortcut else nn.Identity() ) _a : Dict = nn.Sequential( ResNetConvLayer(lowercase , lowercase , kernel_size=1 ) , ResNetConvLayer(lowercase , lowercase , stride=lowercase ) , ResNetConvLayer(lowercase , lowercase , kernel_size=1 , activation=lowercase ) , ) _a : List[str] = ACTaFN[activation] def snake_case__( self , lowercase ) -> str: _a : List[str] = hidden_state _a : Optional[int] = self.layer(lowercase ) _a : Any = self.shortcut(lowercase ) hidden_state += residual _a : Union[str, Any] = self.activation(lowercase ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowercase , lowercase , lowercase , lowercase = 2 , lowercase = 2 , ) -> Optional[int]: super().__init__() _a : List[str] = ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer _a : str = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowercase , lowercase , stride=lowercase , activation=config.hidden_act ) , *[layer(lowercase , lowercase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def snake_case__( self , lowercase ) -> Tensor: _a : Optional[int] = input for layer in self.layers: _a : Any = layer(lowercase ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowercase ) -> Any: super().__init__() _a : Tuple = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _a : str = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowercase , config.depths[1:] ): self.stages.append(ResNetStage(lowercase , lowercase , lowercase , depth=lowercase ) ) def snake_case__( self , lowercase , lowercase = False , lowercase = True ) -> BaseModelOutputWithNoAttention: _a : str = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _a : Dict = hidden_states + (hidden_state,) _a : List[str] = stage_module(lowercase ) if output_hidden_states: _a : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowercase , hidden_states=lowercase , ) class UpperCamelCase_ ( UpperCamelCase ): lowercase = ResNetConfig lowercase = '''resnet''' lowercase = '''pixel_values''' lowercase = True def snake_case__( self , lowercase ) -> Any: if isinstance(lowercase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(lowercase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def snake_case__( self , lowercase , lowercase=False ) -> int: if isinstance(lowercase , lowercase ): _a : List[str] = value __lowerCamelCase = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' __lowerCamelCase = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( '''The bare ResNet model outputting raw features without any specific head on top.''' , UpperCamelCase , ) class UpperCamelCase_ ( UpperCamelCase ): def __init__( self , lowercase ) -> int: super().__init__(lowercase ) _a : Any = config _a : Optional[int] = ResNetEmbeddings(lowercase ) _a : Any = ResNetEncoder(lowercase ) _a : Dict = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def snake_case__( self , lowercase , lowercase = None , lowercase = None ) -> BaseModelOutputWithPoolingAndNoAttention: _a : List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _a : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict _a : Optional[Any] = self.embedder(lowercase ) _a : Tuple = self.encoder( lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _a : str = encoder_outputs[0] _a : str = self.pooler(lowercase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase , pooler_output=lowercase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( ''' ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , UpperCamelCase , ) class UpperCamelCase_ ( UpperCamelCase ): def __init__( self , lowercase ) -> str: super().__init__(lowercase ) _a : str = config.num_labels _a : List[str] = ResNetModel(lowercase ) # classification head _a : Optional[int] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def snake_case__( self , lowercase = None , lowercase = None , lowercase = None , lowercase = None , ) -> ImageClassifierOutputWithNoAttention: _a : Dict = return_dict if return_dict is not None else self.config.use_return_dict _a : str = self.resnet(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _a : int = outputs.pooler_output if return_dict else outputs[1] _a : str = self.classifier(lowercase ) _a : Dict = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _a : Any = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _a : Optional[Any] = '''single_label_classification''' else: _a : Optional[Any] = '''multi_label_classification''' if self.config.problem_type == "regression": _a : Optional[Any] = MSELoss() if self.num_labels == 1: _a : Union[str, Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: _a : List[str] = loss_fct(lowercase , lowercase ) elif self.config.problem_type == "single_label_classification": _a : str = CrossEntropyLoss() _a : Any = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _a : List[Any] = BCEWithLogitsLoss() _a : List[Any] = loss_fct(lowercase , lowercase ) if not return_dict: _a : str = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states ) @add_start_docstrings( ''' ResNet backbone, to be used with frameworks like DETR and MaskFormer. ''' , UpperCamelCase , ) class UpperCamelCase_ ( UpperCamelCase , UpperCamelCase ): def __init__( self , lowercase ) -> str: super().__init__(lowercase ) super()._init_backbone(lowercase ) _a : Optional[int] = [config.embedding_size] + config.hidden_sizes _a : Any = ResNetEmbeddings(lowercase ) _a : List[str] = ResNetEncoder(lowercase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @replace_return_docstrings(output_type=lowercase , config_class=_CONFIG_FOR_DOC ) def snake_case__( self , lowercase , lowercase = None , lowercase = None ) -> BackboneOutput: _a : Tuple = return_dict if return_dict is not None else self.config.use_return_dict _a : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _a : List[Any] = self.embedder(lowercase ) _a : Tuple = self.encoder(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) _a : str = outputs.hidden_states _a : Tuple = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _a : Dict = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowercase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowercase , )
307
0