code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : int ): _a = [[1, 2, 4], [1, 2, 3, 4]] _a = DisjunctiveConstraint(_A ) self.assertTrue(isinstance(dc.token_ids , _A ) ) with self.assertRaises(_A ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(_A ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def UpperCamelCase__ ( self : Dict ): _a = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(_A ): DisjunctiveConstraint(_A ) # fails here def UpperCamelCase__ ( self : Optional[int] ): _a = [[1, 2, 3], [1, 2, 4]] _a = DisjunctiveConstraint(_A ) _a = dc.update(1 ) _a = stepped is True and completed is False and reset is False self.assertTrue(_A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _a = dc.update(2 ) _a = stepped is True and completed is False and reset is False self.assertTrue(_A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _a = dc.update(3 ) _a = stepped is True and completed is True and reset is False self.assertTrue(_A ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def UpperCamelCase__ ( self : Any ): _a = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] _a = DisjunctiveConstraint(_A ) _a = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _a = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _a = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) _a = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() _a = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) _a = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) _a = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
692
"""simple docstring""" import math def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return math.pow(SCREAMING_SNAKE_CASE , 2 ) - a def UpperCamelCase (SCREAMING_SNAKE_CASE ): return 2 * x def UpperCamelCase (SCREAMING_SNAKE_CASE ): UpperCamelCase : Union[str, Any] = 2.0 while start <= a: UpperCamelCase : Optional[Any] = math.pow(SCREAMING_SNAKE_CASE , 2 ) return start def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 9999 , SCREAMING_SNAKE_CASE = 0.00_00_00_00_00_00_01 ): if a < 0: raise ValueError("""math domain error""" ) UpperCamelCase : Optional[Any] = get_initial_point(SCREAMING_SNAKE_CASE ) for _ in range(SCREAMING_SNAKE_CASE ): UpperCamelCase : List[str] = value UpperCamelCase : Tuple = value - fx(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) / fx_derivative(SCREAMING_SNAKE_CASE ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
102
0
def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' if index == r: for j in range(__UpperCAmelCase ): print(data[j] , end=''' ''' ) print(''' ''' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location UpperCAmelCase_ = arr[i] combination_util(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , index + 1 , __UpperCAmelCase , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = [0] * r # Print all combination using temporary array 'data[]' combination_util(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , 0 , __UpperCAmelCase , 0 ) if __name__ == "__main__": # Driver code to check the function above UpperCamelCase_ = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
561
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ = get_tests_dir("fixtures/test_sentencepiece_with_bytefallback.model") @require_sentencepiece @require_tokenizers class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : Tuple =GPTSwaTokenizer UpperCamelCase__ : Optional[int] =False UpperCamelCase__ : Dict =True UpperCamelCase__ : Union[str, Any] =False def __a ( self :Optional[Any]) -> str: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = GPTSwaTokenizer(_lowercase , eos_token='''<unk>''' , bos_token='''<unk>''' , pad_token='''<unk>''') tokenizer.save_pretrained(self.tmpdirname) def __a ( self :Optional[Any] , _lowercase :Optional[int]) -> Union[str, Any]: UpperCAmelCase_ = '''This is a test''' UpperCAmelCase_ = '''This is a test''' return input_text, output_text def __a ( self :Dict) -> Tuple: UpperCAmelCase_ = '''<s>''' UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase) , _lowercase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase) , _lowercase) def __a ( self :int) -> Optional[int]: UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<unk>''') self.assertEqual(vocab_keys[1] , '''<s>''') self.assertEqual(vocab_keys[-1] , '''j''') self.assertEqual(len(_lowercase) , 2000) def __a ( self :List[str]) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 2000) def __a ( self :Tuple) -> Union[str, Any]: UpperCAmelCase_ = GPTSwaTokenizer(_lowercase) UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase) , [465, 287, 265, 631, 842]) UpperCAmelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') # fmt: off self.assertListEqual( _lowercase , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.'''] , ) # fmt: on UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_lowercase) self.assertListEqual( _lowercase , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_lowercase) # fmt: off self.assertListEqual( _lowercase , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.''']) # fmt: on def __a ( self :Union[str, Any]) -> List[str]: UpperCAmelCase_ = GPTSwaTokenizer(_lowercase) UpperCAmelCase_ = ['''This is a test''', '''I was born in 92000, and this is falsé.'''] UpperCAmelCase_ = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(_lowercase , _lowercase): self.assertListEqual(tokenizer.encode_fast(_lowercase) , _lowercase) # Test that decode_fast returns the input text for text, token_ids in zip(_lowercase , _lowercase): self.assertEqual(tokenizer.decode_fast(_lowercase) , _lowercase) @slow def __a ( self :int) -> List[str]: UpperCAmelCase_ = [ '''<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')''', '''Hey there, how are you doing this fine day?''', '''This is a text with a trailing spaces followed by a dot .''', '''Häj sväjs lillebrör! =)''', '''Det är inget fel på Mr. Cool''', ] # fmt: off UpperCAmelCase_ = {'''input_ids''': [[63423, 5, 6811, 14954, 282, 816, 3821, 63466, 63425, 63462, 18, 63978, 678, 301, 1320, 63423, 63455, 63458, 18, 63982, 4246, 3940, 1901, 47789, 5547, 18994], [19630, 1100, 63446, 1342, 633, 544, 4488, 593, 5102, 2416, 63495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 58593, 22413, 9106, 546, 268, 33213, 63979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [55130, 63450, 924, 63449, 2249, 4062, 1558, 318, 63504, 21498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 63443, 26801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='''AI-Sweden/gpt-sw3-126m''' , sequences=_lowercase , )
561
1
def a__ ( A_ ): '''simple docstring''' if not isinstance(A_, A_ ): raise ValueError("""Input must be an integer""" ) if input_num <= 0: raise ValueError("""Input must be positive""" ) return sum( divisor for divisor in range(1, input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
529
import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py __lowerCAmelCase : Dict = 'src/transformers' __lowerCAmelCase : List[Any] = 'docs/source/en' __lowerCAmelCase : str = '.' def a__ ( A_, A_, A_ ): '''simple docstring''' with open(A_, """r""", encoding="""utf-8""", newline="""\n""" ) as f: __magic_name__ = f.readlines() # Find the start prompt. __magic_name__ = 0 while not lines[start_index].startswith(A_ ): start_index += 1 start_index += 1 __magic_name__ = start_index while not lines[end_index].startswith(A_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | __lowerCAmelCase : str = 'Model|Encoder|Decoder|ForConditionalGeneration' # Regexes that match TF/Flax/PT model names. __lowerCAmelCase : List[str] = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') __lowerCAmelCase : Any = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __lowerCAmelCase : Optional[int] = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # This is to make sure the transformers module imported is the one in the repo. __lowerCAmelCase : Union[str, Any] = direct_transformers_import(TRANSFORMERS_PATH) def a__ ( A_ ): '''simple docstring''' __magic_name__ = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""", A_ ) return [m.group(0 ) for m in matches] def a__ ( A_, A_ ): '''simple docstring''' __magic_name__ = 2 if text == """✅""" or text == """❌""" else len(A_ ) __magic_name__ = (width - text_length) // 2 __magic_name__ = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def a__ ( ): '''simple docstring''' __magic_name__ = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __magic_name__ = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } __magic_name__ = {name: config.replace("""Config""", """""" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. __magic_name__ = collections.defaultdict(A_ ) __magic_name__ = collections.defaultdict(A_ ) __magic_name__ = collections.defaultdict(A_ ) __magic_name__ = collections.defaultdict(A_ ) __magic_name__ = collections.defaultdict(A_ ) # Let's lookup through all transformers object (once). for attr_name in dir(A_ ): __magic_name__ = None if attr_name.endswith("""Tokenizer""" ): __magic_name__ = slow_tokenizers __magic_name__ = attr_name[:-9] elif attr_name.endswith("""TokenizerFast""" ): __magic_name__ = fast_tokenizers __magic_name__ = attr_name[:-13] elif _re_tf_models.match(A_ ) is not None: __magic_name__ = tf_models __magic_name__ = _re_tf_models.match(A_ ).groups()[0] elif _re_flax_models.match(A_ ) is not None: __magic_name__ = flax_models __magic_name__ = _re_flax_models.match(A_ ).groups()[0] elif _re_pt_models.match(A_ ) is not None: __magic_name__ = pt_models __magic_name__ = _re_pt_models.match(A_ ).groups()[0] if lookup_dict is not None: while len(A_ ) > 0: if attr_name in model_name_to_prefix.values(): __magic_name__ = True break # Try again after removing the last word in the name __magic_name__ = """""".join(camel_case_split(A_ )[:-1] ) # Let's build that table! __magic_name__ = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) __magic_name__ = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). __magic_name__ = [len(A_ ) + 2 for c in columns] __magic_name__ = max([len(A_ ) for name in model_names] ) + 2 # Build the table per se __magic_name__ = """|""" + """|""".join([_center_text(A_, A_ ) for c, w in zip(A_, A_ )] ) + """|\n""" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n" __magic_name__ = {True: """✅""", False: """❌"""} for name in model_names: __magic_name__ = model_name_to_prefix[name] __magic_name__ = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(A_, A_ ) for l, w in zip(A_, A_ )] ) + "|\n" return table def a__ ( A_=False ): '''simple docstring''' __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = _find_text_in_file( filename=os.path.join(A_, """index.md""" ), start_prompt="""<!--This table is updated automatically from the auto modules""", end_prompt="""<!-- End table-->""", ) __magic_name__ = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(A_, """index.md""" ), """w""", encoding="""utf-8""", newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( """The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" ) if __name__ == "__main__": __lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') __lowerCAmelCase : Optional[Any] = parser.parse_args() check_model_table(args.fix_and_overwrite)
529
1
'''simple docstring''' import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": __lowerCamelCase : Optional[int] = "%20".join(argv[1:]) if len(argv) > 1 else quote(str(input("Search: "))) print("Googling.....") __lowerCamelCase : Optional[Any] = f"https://www.google.com/search?q={query}&num=100" __lowerCamelCase : Optional[int] = requests.get( url, headers={"User-Agent": str(UserAgent().random)}, ) try: __lowerCamelCase : Dict = ( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "yuRUbf"}) .find("a") .get("href") ) except AttributeError: __lowerCamelCase : Optional[Any] = parse_qs( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "kCrYT"}) .find("a") .get("href") )["url"][0] webbrowser.open(link)
459
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class UpperCAmelCase : UpperCAmelCase : int UpperCAmelCase : Node | None = None UpperCAmelCase : Node | None = None def UpperCAmelCase_ ( ): """simple docstring""" lowercase = Node(1 ) lowercase = Node(2 ) lowercase = Node(3 ) lowercase = Node(4 ) lowercase = Node(5 ) return tree def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" lowercase = [] if root is None: return output lowercase = deque([root] ) while process_queue: lowercase = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" lowercase = [] def populate_output(lowerCAmelCase_ , lowerCAmelCase_ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(lowerCAmelCase_ , lowerCAmelCase_ ) return output def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" lowercase = [] def populate_output(lowerCAmelCase_ , lowerCAmelCase_ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(lowerCAmelCase_ , lowerCAmelCase_ ) return output def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" if root is None: return [] lowercase = [] lowercase = 0 lowercase = height(lowerCAmelCase_ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(lowerCAmelCase_ , lowerCAmelCase_ ) ) lowercase = 1 else: output.append(get_nodes_from_right_to_left(lowerCAmelCase_ , lowerCAmelCase_ ) ) lowercase = 0 return output def UpperCAmelCase_ ( ): # Main function for testing. """simple docstring""" lowercase = make_tree() print(f'In-order Traversal: {inorder(lowerCAmelCase_ )}' ) print(f'Pre-order Traversal: {preorder(lowerCAmelCase_ )}' ) print(f'Post-order Traversal: {postorder(lowerCAmelCase_ )}' , "\n" ) print(f'Height of Tree: {height(lowerCAmelCase_ )}' , "\n" ) print("Complete Level Order Traversal: " ) print(level_order(lowerCAmelCase_ ) , "\n" ) print("Level-wise order Traversal: " ) for level in range(1 , height(lowerCAmelCase_ ) + 1 ): print(f'Level {level}:' , get_nodes_from_left_to_right(lowerCAmelCase_ , level=lowerCAmelCase_ ) ) print("\nZigZag order Traversal: " ) print(zigzag(lowerCAmelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
459
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _UpperCamelCase = { 'configuration_layoutlmv3': [ 'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv3Config', 'LayoutLMv3OnnxConfig', ], 'processing_layoutlmv3': ['LayoutLMv3Processor'], 'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['LayoutLMv3TokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ 'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv3ForQuestionAnswering', 'LayoutLMv3ForSequenceClassification', 'LayoutLMv3ForTokenClassification', 'LayoutLMv3Model', 'LayoutLMv3PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ 'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLayoutLMv3ForQuestionAnswering', 'TFLayoutLMv3ForSequenceClassification', 'TFLayoutLMv3ForTokenClassification', 'TFLayoutLMv3Model', 'TFLayoutLMv3PreTrainedModel', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['LayoutLMv3FeatureExtractor'] _UpperCamelCase = ['LayoutLMv3ImageProcessor'] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
459
'''simple docstring''' import argparse from collections import defaultdict import yaml _UpperCamelCase = 'docs/source/en/_toctree.yml' def a_ ( _lowerCAmelCase ) -> Any: __lowerCamelCase : Optional[int] = defaultdict(_lowerCAmelCase ) __lowerCamelCase : Optional[Any] = [] __lowerCamelCase : Union[str, Any] = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']} ) else: new_doc_list.append(_lowerCAmelCase ) __lowerCamelCase : Dict = new_doc_list __lowerCamelCase : Optional[Any] = [key for key, value in counts.items() if value > 1] __lowerCamelCase : int = [] for duplicate_key in duplicates: __lowerCamelCase : int = list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key} ) if len(_lowerCAmelCase ) > 1: raise ValueError( F'{duplicate_key} is present several times in the documentation table of content at ' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1] ) __lowerCamelCase : Dict = sorted(_lowerCAmelCase ,key=lambda _lowerCAmelCase : s["title"].lower() ) # "overview" gets special treatment and is always first if len(_lowerCAmelCase ) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.' ) overview_doc.extend(_lowerCAmelCase ) # Sort return overview_doc def a_ ( _lowerCAmelCase=False ) -> Optional[Any]: with open(_lowerCAmelCase ,encoding='utf-8' ) as f: __lowerCamelCase : str = yaml.safe_load(f.read() ) # Get to the API doc __lowerCamelCase : Union[str, Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 __lowerCamelCase : List[str] = content[api_idx]['sections'] # Then to the model doc __lowerCamelCase : List[Any] = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 __lowerCamelCase : List[Any] = api_doc[scheduler_idx]['sections'] __lowerCamelCase : Optional[Any] = clean_doc_toc(_lowerCAmelCase ) __lowerCamelCase : str = False if new_scheduler_doc != scheduler_doc: __lowerCamelCase : int = True if overwrite: __lowerCamelCase : Any = new_scheduler_doc if diff: if overwrite: __lowerCamelCase : Tuple = api_doc with open(_lowerCAmelCase ,'w' ,encoding='utf-8' ) as f: f.write(yaml.dump(_lowerCAmelCase ,allow_unicode=_lowerCAmelCase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) def a_ ( _lowerCAmelCase=False ) -> List[Any]: with open(_lowerCAmelCase ,encoding='utf-8' ) as f: __lowerCamelCase : List[str] = yaml.safe_load(f.read() ) # Get to the API doc __lowerCamelCase : List[Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 __lowerCamelCase : Optional[Any] = content[api_idx]['sections'] # Then to the model doc __lowerCamelCase : List[Any] = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 __lowerCamelCase : int = False __lowerCamelCase : str = api_doc[pipeline_idx]['sections'] __lowerCamelCase : Optional[Any] = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: __lowerCamelCase : str = pipeline_doc['section'] __lowerCamelCase : Optional[Any] = clean_doc_toc(_lowerCAmelCase ) if overwrite: __lowerCamelCase : Union[str, Any] = new_sub_pipeline_doc new_pipeline_docs.append(_lowerCAmelCase ) # sort overall pipeline doc __lowerCamelCase : int = clean_doc_toc(_lowerCAmelCase ) if new_pipeline_docs != pipeline_docs: __lowerCamelCase : Tuple = True if overwrite: __lowerCamelCase : int = new_pipeline_docs if diff: if overwrite: __lowerCamelCase : Tuple = api_doc with open(_lowerCAmelCase ,'w' ,encoding='utf-8' ) as f: f.write(yaml.dump(_lowerCAmelCase ,allow_unicode=_lowerCAmelCase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') _UpperCamelCase = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
459
1
'''simple docstring''' def UpperCAmelCase_ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def UpperCAmelCase_ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if curr_ind == len(lowercase__ ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(lowercase__ ) ): if valid_connection(lowercase__ , lowercase__ , lowercase__ , lowercase__ ): # Insert current vertex into path as next transition a_ =next_ver # Validate created path if util_hamilton_cycle(lowercase__ , lowercase__ , curr_ind + 1 ): return True # Backtrack a_ =-1 return False def UpperCAmelCase_ ( lowercase__ , lowercase__ = 0 ): '''simple docstring''' a_ =[-1] * (len(lowercase__ ) + 1) # initialize start and end of path with starting index a_ =a_ =start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(lowercase__ , lowercase__ , 1 ) else []
41
'''simple docstring''' from __future__ import annotations def UpperCAmelCase_ ( lowercase__ ): '''simple docstring''' a_ =str(lowercase__ ) return len(lowercase__ ) == 9 and set(lowercase__ ) == set("123456789" ) def UpperCAmelCase_ ( ): '''simple docstring''' for base_num in range(9_9_9_9 , 4_9_9_9 , -1 ): a_ =1_0_0_0_0_2 * base_num if is_9_pandigital(lowercase__ ): return candidate for base_num in range(3_3_3 , 9_9 , -1 ): a_ =1_0_0_2_0_0_3 * base_num if is_9_pandigital(lowercase__ ): return candidate return None if __name__ == "__main__": print(F"""{solution() = }""")
41
1
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Tuple = F'''{sampling_rate}''' __SCREAMING_SNAKE_CASE : str = '''1''' __SCREAMING_SNAKE_CASE : Optional[int] = '''f32le''' __SCREAMING_SNAKE_CASE : Optional[int] = [ '''ffmpeg''', '''-i''', '''pipe:0''', '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] try: with subprocess.Popen(lowercase__ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: __SCREAMING_SNAKE_CASE : List[Any] = ffmpeg_process.communicate(lowercase__ ) except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to load audio files from filename''' ) from error __SCREAMING_SNAKE_CASE : Union[str, Any] = output_stream[0] __SCREAMING_SNAKE_CASE : Any = np.frombuffer(lowercase__ , np.floataa ) if audio.shape[0] == 0: raise ValueError('''Malformed soundfile''' ) return audio def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ = "f32le" , ): __SCREAMING_SNAKE_CASE : Tuple = F'''{sampling_rate}''' __SCREAMING_SNAKE_CASE : Optional[int] = '''1''' if format_for_conversion == "s16le": __SCREAMING_SNAKE_CASE : Optional[Any] = 2 elif format_for_conversion == "f32le": __SCREAMING_SNAKE_CASE : List[str] = 4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) __SCREAMING_SNAKE_CASE : str = platform.system() if system == "Linux": __SCREAMING_SNAKE_CASE : Union[str, Any] = '''alsa''' __SCREAMING_SNAKE_CASE : Optional[Any] = '''default''' elif system == "Darwin": __SCREAMING_SNAKE_CASE : str = '''avfoundation''' __SCREAMING_SNAKE_CASE : Optional[Any] = ''':0''' elif system == "Windows": __SCREAMING_SNAKE_CASE : Union[str, Any] = '''dshow''' __SCREAMING_SNAKE_CASE : Any = '''default''' __SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''ffmpeg''', '''-f''', format_, '''-i''', input_, '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-fflags''', '''nobuffer''', '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] __SCREAMING_SNAKE_CASE : int = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample __SCREAMING_SNAKE_CASE : int = _ffmpeg_stream(lowercase__ , lowercase__ ) for item in iterator: yield item def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = "f32le" , ): if stream_chunk_s is not None: __SCREAMING_SNAKE_CASE : List[str] = stream_chunk_s else: __SCREAMING_SNAKE_CASE : List[str] = chunk_length_s __SCREAMING_SNAKE_CASE : Optional[int] = ffmpeg_microphone(lowercase__ , lowercase__ , format_for_conversion=lowercase__ ) if format_for_conversion == "s16le": __SCREAMING_SNAKE_CASE : Optional[Any] = np.intaa __SCREAMING_SNAKE_CASE : int = 2 elif format_for_conversion == "f32le": __SCREAMING_SNAKE_CASE : Optional[Any] = np.floataa __SCREAMING_SNAKE_CASE : List[Any] = 4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: __SCREAMING_SNAKE_CASE : Any = chunk_length_s / 6 __SCREAMING_SNAKE_CASE : List[str] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(lowercase__ , (int, float) ): __SCREAMING_SNAKE_CASE : int = [stride_length_s, stride_length_s] __SCREAMING_SNAKE_CASE : Optional[Any] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample __SCREAMING_SNAKE_CASE : List[str] = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample __SCREAMING_SNAKE_CASE : int = datetime.datetime.now() __SCREAMING_SNAKE_CASE : int = datetime.timedelta(seconds=lowercase__ ) for item in chunk_bytes_iter(lowercase__ , lowercase__ , stride=(stride_left, stride_right) , stream=lowercase__ ): # Put everything back in numpy scale __SCREAMING_SNAKE_CASE : int = np.frombuffer(item['''raw'''] , dtype=lowercase__ ) __SCREAMING_SNAKE_CASE : List[str] = ( item['''stride'''][0] // size_of_sample, item['''stride'''][1] // size_of_sample, ) __SCREAMING_SNAKE_CASE : int = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ = False ): __SCREAMING_SNAKE_CASE : str = b'''''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = stride if stride_left + stride_right >= chunk_len: raise ValueError( F'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = 0 for raw in iterator: acc += raw if stream and len(lowercase__ ) < chunk_len: __SCREAMING_SNAKE_CASE : int = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(lowercase__ ) >= chunk_len: # We are flushing the accumulator __SCREAMING_SNAKE_CASE : str = (_stride_left, stride_right) __SCREAMING_SNAKE_CASE : int = {'''raw''': acc[:chunk_len], '''stride''': stride} if stream: __SCREAMING_SNAKE_CASE : Tuple = False yield item __SCREAMING_SNAKE_CASE : Any = stride_left __SCREAMING_SNAKE_CASE : List[Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(lowercase__ ) > stride_left: __SCREAMING_SNAKE_CASE : int = {'''raw''': acc, '''stride''': (_stride_left, 0)} if stream: __SCREAMING_SNAKE_CASE : int = False yield item def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[str] = 2**24 # 16Mo try: with subprocess.Popen(lowercase__ , stdout=subprocess.PIPE , bufsize=lowercase__ ) as ffmpeg_process: while True: __SCREAMING_SNAKE_CASE : Tuple = ffmpeg_process.stdout.read(lowercase__ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to stream audio files from filename''' ) from error
696
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Dict =logging.get_logger(__name__) __lowerCAmelCase : List[Any] ={ 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = '''switch_transformers''' SCREAMING_SNAKE_CASE__ : Optional[int] = ['''past_key_values'''] SCREAMING_SNAKE_CASE__ : str = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self :Optional[int] , lowerCAmelCase__ :Union[str, Any]=32_128 , lowerCAmelCase__ :int=768 , lowerCAmelCase__ :Optional[Any]=64 , lowerCAmelCase__ :List[str]=2_048 , lowerCAmelCase__ :Optional[int]=64 , lowerCAmelCase__ :Union[str, Any]=12 , lowerCAmelCase__ :Optional[Any]=3 , lowerCAmelCase__ :Tuple=12 , lowerCAmelCase__ :Optional[int]=3 , lowerCAmelCase__ :Optional[int]=12 , lowerCAmelCase__ :Optional[Any]=8 , lowerCAmelCase__ :Tuple=False , lowerCAmelCase__ :List[Any]=0.01 , lowerCAmelCase__ :Any="float32" , lowerCAmelCase__ :int=False , lowerCAmelCase__ :int=32 , lowerCAmelCase__ :Optional[Any]=128 , lowerCAmelCase__ :Optional[Any]=0.1 , lowerCAmelCase__ :str=1E-6 , lowerCAmelCase__ :Tuple=0.001 , lowerCAmelCase__ :List[Any]=0.001 , lowerCAmelCase__ :Union[str, Any]=1.0 , lowerCAmelCase__ :Tuple="relu" , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :Optional[int]=False , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :List[Any]=0 , lowerCAmelCase__ :Union[str, Any]=1 , **lowerCAmelCase__ :List[str] , ) -> Tuple: __SCREAMING_SNAKE_CASE : Any = vocab_size __SCREAMING_SNAKE_CASE : Union[str, Any] = d_model __SCREAMING_SNAKE_CASE : Optional[int] = d_kv __SCREAMING_SNAKE_CASE : Tuple = d_ff __SCREAMING_SNAKE_CASE : Tuple = num_sparse_encoder_layers __SCREAMING_SNAKE_CASE : List[Any] = num_layers __SCREAMING_SNAKE_CASE : Union[str, Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __SCREAMING_SNAKE_CASE : Optional[Any] = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: __SCREAMING_SNAKE_CASE : List[Any] = self.num_layers // self.num_sparse_encoder_layers else: __SCREAMING_SNAKE_CASE : Tuple = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_decoder_layers // self.num_sparse_decoder_layers else: __SCREAMING_SNAKE_CASE : Dict = self.num_decoder_layers # HACK: this will create 0 sparse layers __SCREAMING_SNAKE_CASE : List[Any] = num_heads __SCREAMING_SNAKE_CASE : List[Any] = num_experts __SCREAMING_SNAKE_CASE : Tuple = expert_capacity __SCREAMING_SNAKE_CASE : List[Any] = router_bias __SCREAMING_SNAKE_CASE : Optional[Any] = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) __SCREAMING_SNAKE_CASE : List[Any] = router_dtype __SCREAMING_SNAKE_CASE : Optional[Any] = router_ignore_padding_tokens __SCREAMING_SNAKE_CASE : int = relative_attention_num_buckets __SCREAMING_SNAKE_CASE : Any = relative_attention_max_distance __SCREAMING_SNAKE_CASE : Union[str, Any] = dropout_rate __SCREAMING_SNAKE_CASE : Dict = layer_norm_epsilon __SCREAMING_SNAKE_CASE : int = initializer_factor __SCREAMING_SNAKE_CASE : List[str] = feed_forward_proj __SCREAMING_SNAKE_CASE : Any = use_cache __SCREAMING_SNAKE_CASE : Union[str, Any] = add_router_probs __SCREAMING_SNAKE_CASE : int = router_z_loss_coef __SCREAMING_SNAKE_CASE : List[str] = router_aux_loss_coef __SCREAMING_SNAKE_CASE : Dict = self.feed_forward_proj.split('''-''' ) __SCREAMING_SNAKE_CASE : Optional[int] = act_info[-1] __SCREAMING_SNAKE_CASE : Optional[Any] = act_info[0] == '''gated''' if len(lowerCAmelCase__ ) > 1 and act_info[0] != "gated" or len(lowerCAmelCase__ ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __SCREAMING_SNAKE_CASE : List[Any] = '''gelu_new''' super().__init__( pad_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ , )
696
1
'''simple docstring''' import unittest from knapsack import knapsack as k class _UpperCamelCase ( unittest.TestCase ): def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = 0 __SCREAMING_SNAKE_CASE : Union[str, Any] = [0] __SCREAMING_SNAKE_CASE : List[str] = [0] __SCREAMING_SNAKE_CASE : str = len(lowerCAmelCase__ ) self.assertEqual(k.knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , 0 ) __SCREAMING_SNAKE_CASE : Tuple = [6_0] __SCREAMING_SNAKE_CASE : List[str] = [1_0] __SCREAMING_SNAKE_CASE : str = len(lowerCAmelCase__ ) self.assertEqual(k.knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , 0 ) def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = 3 __SCREAMING_SNAKE_CASE : List[Any] = [1, 2, 3] __SCREAMING_SNAKE_CASE : Optional[Any] = [3, 2, 1] __SCREAMING_SNAKE_CASE : str = len(lowerCAmelCase__ ) self.assertEqual(k.knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , 5 ) def UpperCamelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = 5_0 __SCREAMING_SNAKE_CASE : Tuple = [6_0, 1_0_0, 1_2_0] __SCREAMING_SNAKE_CASE : Optional[Any] = [1_0, 2_0, 3_0] __SCREAMING_SNAKE_CASE : str = len(lowerCAmelCase__ ) self.assertEqual(k.knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , 2_2_0 ) if __name__ == "__main__": unittest.main()
715
'''simple docstring''' def lowerCAmelCase_ ( _lowerCamelCase: int ): if number > 0: raise ValueError("""input must be a negative integer""" ) __SCREAMING_SNAKE_CASE : str = len(bin(_lowerCamelCase )[3:] ) __SCREAMING_SNAKE_CASE : Any = bin(abs(_lowerCamelCase ) - (1 << binary_number_length) )[3:] __SCREAMING_SNAKE_CASE : Optional[int] = ( ( """1""" + """0""" * (binary_number_length - len(_lowerCamelCase )) + twos_complement_number ) if number < 0 else """0""" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
178
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available snake_case_ : List[str] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys snake_case_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
595
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ : List[str] = logging.get_logger(__name__) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Union[str, Any]: UpperCamelCase_: Tuple = b.T UpperCamelCase_: Tuple = np.sum(np.square(UpperCAmelCase__ ) , axis=1 ) UpperCamelCase_: Optional[Any] = np.sum(np.square(UpperCAmelCase__ ) , axis=0 ) UpperCamelCase_: Optional[int] = np.matmul(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: List[Any] = aa[:, None] - 2 * ab + ba[None, :] return d def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]: UpperCamelCase_: List[str] = x.reshape(-1 , 3 ) UpperCamelCase_: Union[str, Any] = squared_euclidean_distance(UpperCAmelCase__ , UpperCAmelCase__ ) return np.argmin(UpperCAmelCase__ , axis=1 ) class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Any =['''pixel_values'''] def __init__( self , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = True , _lowerCamelCase = True , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase ) UpperCamelCase_: List[str] = size if size is not None else {'height': 2_5_6, 'width': 2_5_6} UpperCamelCase_: str = get_size_dict(_lowerCamelCase ) UpperCamelCase_: Any = np.array(_lowerCamelCase ) if clusters is not None else None UpperCamelCase_: Optional[int] = do_resize UpperCamelCase_: List[Any] = size UpperCamelCase_: Optional[int] = resample UpperCamelCase_: str = do_normalize UpperCamelCase_: str = do_color_quantize def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = None , **_lowerCamelCase , ): UpperCamelCase_: Any = get_size_dict(_lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( _lowerCamelCase , size=(size['height'], size['width']) , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase = None , ): UpperCamelCase_: Optional[Any] = rescale(image=_lowerCamelCase , scale=1 / 1_2_7.5 , data_format=_lowerCamelCase ) UpperCamelCase_: Optional[Any] = image - 1 return image def _a ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ): UpperCamelCase_: Optional[Any] = do_resize if do_resize is not None else self.do_resize UpperCamelCase_: Tuple = size if size is not None else self.size UpperCamelCase_: Union[str, Any] = get_size_dict(_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = resample if resample is not None else self.resample UpperCamelCase_: Any = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_: str = do_color_quantize if do_color_quantize is not None else self.do_color_quantize UpperCamelCase_: Dict = clusters if clusters is not None else self.clusters UpperCamelCase_: Dict = np.array(_lowerCamelCase ) UpperCamelCase_: Optional[int] = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_color_quantize and clusters is None: raise ValueError('Clusters must be specified if do_color_quantize is True.' ) # All transformations expect numpy arrays. UpperCamelCase_: Union[str, Any] = [to_numpy_array(_lowerCamelCase ) for image in images] if do_resize: UpperCamelCase_: Union[str, Any] = [self.resize(image=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase ) for image in images] if do_normalize: UpperCamelCase_: Optional[Any] = [self.normalize(image=_lowerCamelCase ) for image in images] if do_color_quantize: UpperCamelCase_: Any = [to_channel_dimension_format(_lowerCamelCase , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) UpperCamelCase_: Optional[Any] = np.array(_lowerCamelCase ) UpperCamelCase_: Optional[Any] = color_quantize(_lowerCamelCase , _lowerCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) UpperCamelCase_: Dict = images.shape[0] UpperCamelCase_: Any = images.reshape(_lowerCamelCase , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. UpperCamelCase_: List[Any] = list(_lowerCamelCase ) else: UpperCamelCase_: int = [to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase ) for image in images] UpperCamelCase_: str = {'input_ids': images} return BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase )
57
0
def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" _a : Dict = [] _a : List[Any] = 1 while len(__a ) < 1E6: constant.append(str(__a ) ) i += 1 _a : List[str] = ''''''.join(__a ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9_999] ) * int(constant[99_999] ) * int(constant[999_999] ) ) if __name__ == "__main__": print(solution())
578
def __UpperCAmelCase ( __a : int = 2_000_000 ) -> int: """simple docstring""" _a : List[str] = [0 for i in range(n + 1 )] _a : Tuple = 1 _a : Tuple = 1 for i in range(2 ,int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i ,n + 1 ,__a ): _a : List[str] = 1 _a : List[Any] = 0 for i in range(__a ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f'''{solution() = }''')
578
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class UpperCAmelCase_ : def __init__( self : Any , A : Any , ): _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : Union[str, Any] = 1_3 _UpperCAmelCase : Union[str, Any] = 7 _UpperCAmelCase : List[Any] = True _UpperCAmelCase : int = True _UpperCAmelCase : List[str] = True _UpperCAmelCase : Tuple = 9_9 _UpperCAmelCase : Any = 3_2 _UpperCAmelCase : Optional[Any] = 2 _UpperCAmelCase : Union[str, Any] = 4 _UpperCAmelCase : Dict = 3_7 _UpperCAmelCase : Optional[Any] = "gelu" _UpperCAmelCase : List[str] = 0.1 _UpperCAmelCase : int = 0.1 _UpperCAmelCase : List[str] = 5_1_2 _UpperCAmelCase : Tuple = 1_6 _UpperCAmelCase : Any = 2 _UpperCAmelCase : Optional[int] = 0.02 _UpperCAmelCase : Optional[Any] = 3 _UpperCAmelCase : List[Any] = 4 _UpperCAmelCase : Optional[int] = None def snake_case_ ( self : Any ): _UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : List[Any] = None if self.use_input_mask: _UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : int = None _UpperCAmelCase : Tuple = None _UpperCAmelCase : Dict = None if self.use_labels: _UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase : Union[str, Any] = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self : Any ): ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : Any = self.prepare_config_and_inputs() _UpperCAmelCase : Optional[Any] = True _UpperCAmelCase : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def snake_case_ ( self : Tuple , A : List[Any] , A : Optional[Any] , A : Optional[Any] , A : Optional[int] , A : Dict , A : List[Any] ): _UpperCAmelCase : List[str] = TFEsmModel(config=A ) _UpperCAmelCase : int = {"input_ids": input_ids, "attention_mask": input_mask} _UpperCAmelCase : Optional[int] = model(A ) _UpperCAmelCase : Any = [input_ids, input_mask] _UpperCAmelCase : List[Any] = model(A ) _UpperCAmelCase : List[Any] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self : Dict , A : List[Any] , A : Optional[Any] , A : List[str] , A : str , A : List[str] , A : str , A : Optional[Any] , A : Tuple , ): _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : str = TFEsmModel(config=A ) _UpperCAmelCase : Any = { "input_ids": input_ids, "attention_mask": input_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, } _UpperCAmelCase : Dict = model(A ) _UpperCAmelCase : int = [input_ids, input_mask] _UpperCAmelCase : Any = model(A , encoder_hidden_states=A ) # Also check the case where encoder outputs are not passed _UpperCAmelCase : Any = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self : List[Any] , A : Optional[Any] , A : Dict , A : Dict , A : int , A : Dict , A : Union[str, Any] ): _UpperCAmelCase : Optional[Any] = TFEsmForMaskedLM(config=A ) _UpperCAmelCase : Union[str, Any] = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self : Tuple , A : List[Any] , A : Optional[Any] , A : List[str] , A : List[Any] , A : Any , A : Union[str, Any] ): _UpperCAmelCase : List[Any] = self.num_labels _UpperCAmelCase : Optional[int] = TFEsmForTokenClassification(config=A ) _UpperCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask} _UpperCAmelCase : Tuple = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case_ ( self : str ): _UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : int = config_and_inputs _UpperCAmelCase : int = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) __SCREAMING_SNAKE_CASE : Any = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE : int = False __SCREAMING_SNAKE_CASE : Optional[int] = False def snake_case_ ( self : Dict ): _UpperCAmelCase : List[str] = TFEsmModelTester(self ) _UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , hidden_size=3_7 ) def snake_case_ ( self : Tuple ): self.config_tester.run_common_tests() def snake_case_ ( self : Optional[int] ): _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def snake_case_ ( self : str ): _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*A ) def snake_case_ ( self : List[str] ): _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A ) def snake_case_ ( self : Union[str, Any] ): _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) @slow def snake_case_ ( self : Optional[int] ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : List[Any] = TFEsmModel.from_pretrained(A ) self.assertIsNotNone(A ) @unittest.skip("Protein models do not support embedding resizing." ) def snake_case_ ( self : Tuple ): pass @unittest.skip("Protein models do not support embedding resizing." ) def snake_case_ ( self : int ): pass def snake_case_ ( self : str ): _UpperCAmelCase , _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Dict = model_class(A ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _UpperCAmelCase : Dict = model.get_bias() assert isinstance(A , A ) for k, v in name.items(): assert isinstance(A , tf.Variable ) else: _UpperCAmelCase : List[str] = model.get_output_embeddings() assert x is None _UpperCAmelCase : List[Any] = model.get_bias() assert name is None @require_tf class UpperCAmelCase_ ( unittest.TestCase ): @slow def snake_case_ ( self : Optional[Any] ): _UpperCAmelCase : Union[str, Any] = TFEsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" ) _UpperCAmelCase : Tuple = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase : str = model(A )[0] _UpperCAmelCase : Dict = [1, 6, 3_3] self.assertEqual(list(output.numpy().shape ) , A ) # compare the actual values for a slice. _UpperCAmelCase : Union[str, Any] = tf.constant( [ [ [8.921_518, -10.589_814, -6.4_671_307], [-6.3_967_156, -13.911_377, -1.1_211_915], [-7.781_247, -13.951_557, -3.740_592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def snake_case_ ( self : Tuple ): _UpperCAmelCase : List[Any] = TFEsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" ) _UpperCAmelCase : Tuple = tf.constant([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] ) _UpperCAmelCase : Optional[Any] = model(A )[0] # compare the actual values for a slice. _UpperCAmelCase : Any = tf.constant( [ [ [0.14_443_092, 0.54_125_327, 0.3_247_739], [0.30_340_484, 0.00_526_676, 0.31_077_722], [0.32_278_043, -0.24_987_096, 0.3_414_628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
289
"""simple docstring""" import collections import importlib.util import os import re from pathlib import Path _lowerCAmelCase : Dict = "src/transformers" # Matches is_xxx_available() _lowerCAmelCase : List[Any] = re.compile(r"is\_([a-z_]*)_available()") # Catches a one-line _import_struct = {xxx} _lowerCAmelCase : Tuple = re.compile(r"^_import_structure\s+=\s+\{([^\}]+)\}") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _lowerCAmelCase : Optional[int] = re.compile(r"\s+\"\S*\":\s+\[([^\]]*)\]") # Catches a line if not is_foo_available _lowerCAmelCase : Tuple = re.compile(r"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)") # Catches a line _import_struct["bla"].append("foo") _lowerCAmelCase : List[str] = re.compile(r"^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _lowerCAmelCase : Tuple = re.compile(r"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]") # Catches a line with an object between quotes and a comma: "MyModel", _lowerCAmelCase : Dict = re.compile("^\s+\"([^\"]+)\",") # Catches a line with objects between brackets only: ["foo", "bar"], _lowerCAmelCase : Any = re.compile("^\s+\[([^\]]+)\]") # Catches a line with from foo import bar, bla, boo _lowerCAmelCase : Optional[int] = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") # Catches a line with try: _lowerCAmelCase : List[str] = re.compile(r"^\s*try:") # Catches a line with else: _lowerCAmelCase : Optional[int] = re.compile(r"^\s*else:") def __snake_case ( SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> int: '''simple docstring''' if _re_test_backend.search(SCREAMING_SNAKE_CASE__ ) is None: return None _UpperCAmelCase : str = [b[0] for b in _re_backend.findall(SCREAMING_SNAKE_CASE__ )] backends.sort() return "_and_".join(SCREAMING_SNAKE_CASE__ ) def __snake_case ( SCREAMING_SNAKE_CASE__ : Any ) -> Dict: '''simple docstring''' with open(SCREAMING_SNAKE_CASE__ , "r" , encoding="utf-8" , newline="\n" ) as f: _UpperCAmelCase : int = f.readlines() _UpperCAmelCase : Optional[Any] = 0 while line_index < len(SCREAMING_SNAKE_CASE__ ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(SCREAMING_SNAKE_CASE__ ): return None # First grab the objects without a specific backend in _import_structure _UpperCAmelCase : List[Any] = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: _UpperCAmelCase : List[Any] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE__ ): _UpperCAmelCase : Tuple = _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE__ ).groups()[0] _UpperCAmelCase : int = re.findall("\[([^\]]+)\]" , SCREAMING_SNAKE_CASE__ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue _UpperCAmelCase : Optional[int] = _re_import_struct_key_value.search(SCREAMING_SNAKE_CASE__ ) if single_line_import_search is not None: _UpperCAmelCase : Dict = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(SCREAMING_SNAKE_CASE__ ) > 0] objects.extend(SCREAMING_SNAKE_CASE__ ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 _UpperCAmelCase : Optional[int] = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. _UpperCAmelCase : Optional[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _UpperCAmelCase : Dict = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _UpperCAmelCase : Union[str, Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): _UpperCAmelCase : Union[str, Any] = lines[line_index] if _re_import_struct_add_one.search(SCREAMING_SNAKE_CASE__ ) is not None: objects.append(_re_import_struct_add_one.search(SCREAMING_SNAKE_CASE__ ).groups()[0] ) elif _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE__ ) is not None: _UpperCAmelCase : int = _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE__ ).groups()[0].split(", " ) _UpperCAmelCase : Dict = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE__ ) > 0] objects.extend(SCREAMING_SNAKE_CASE__ ) elif _re_between_brackets.search(SCREAMING_SNAKE_CASE__ ) is not None: _UpperCAmelCase : str = _re_between_brackets.search(SCREAMING_SNAKE_CASE__ ).groups()[0].split(", " ) _UpperCAmelCase : List[Any] = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE__ ) > 0] objects.extend(SCREAMING_SNAKE_CASE__ ) elif _re_quote_object.search(SCREAMING_SNAKE_CASE__ ) is not None: objects.append(_re_quote_object.search(SCREAMING_SNAKE_CASE__ ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 12 + "\"" ): objects.append(line[13:-3] ) line_index += 1 _UpperCAmelCase : Optional[Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _UpperCAmelCase : int = [] while ( line_index < len(SCREAMING_SNAKE_CASE__ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): _UpperCAmelCase : List[Any] = lines[line_index] _UpperCAmelCase : Optional[Any] = _re_import.search(SCREAMING_SNAKE_CASE__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 _UpperCAmelCase : Union[str, Any] = {"none": objects} # Let's continue with backend-specific objects while line_index < len(SCREAMING_SNAKE_CASE__ ): # If the line is an if is_backend_available, we grab all objects associated. _UpperCAmelCase : Any = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _UpperCAmelCase : List[str] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _UpperCAmelCase : List[str] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): _UpperCAmelCase : Any = lines[line_index] _UpperCAmelCase : Optional[int] = _re_import.search(SCREAMING_SNAKE_CASE__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 12 ): objects.append(line[12:-2] ) line_index += 1 _UpperCAmelCase : Union[str, Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __snake_case ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: '''simple docstring''' def find_duplicates(SCREAMING_SNAKE_CASE__ : int ): return [k for k, v in collections.Counter(SCREAMING_SNAKE_CASE__ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _UpperCAmelCase : Any = [] for key in import_dict_objects.keys(): _UpperCAmelCase : Dict = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'Duplicate _import_structure definitions for: {duplicate_imports}' ) _UpperCAmelCase : Tuple = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _UpperCAmelCase : List[Any] = "base imports" if key == "none" else f'{key} backend' errors.append(f'Differences for {name}:' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f' {a} in TYPE_HINT but not in _import_structure.' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f' {a} in _import_structure but not in TYPE_HINT.' ) return errors def __snake_case ( ) -> Dict: '''simple docstring''' _UpperCAmelCase : Tuple = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE__ ): if "__init__.py" in files: _UpperCAmelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ , "__init__.py" ) _UpperCAmelCase : Union[str, Any] = parse_init(SCREAMING_SNAKE_CASE__ ) if objects is not None: _UpperCAmelCase : int = analyze_results(*SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: _UpperCAmelCase : Dict = f'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}' failures.append("\n".join(SCREAMING_SNAKE_CASE__ ) ) if len(SCREAMING_SNAKE_CASE__ ) > 0: raise ValueError("\n\n".join(SCREAMING_SNAKE_CASE__ ) ) def __snake_case ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Dict = [] for path, directories, files in os.walk(SCREAMING_SNAKE_CASE__ ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(SCREAMING_SNAKE_CASE__ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(SCREAMING_SNAKE_CASE__ ) / folder).glob("*.py" ) ) ) == 0: continue _UpperCAmelCase : List[Any] = str((Path(SCREAMING_SNAKE_CASE__ ) / folder).relative_to(SCREAMING_SNAKE_CASE__ ) ) _UpperCAmelCase : Optional[int] = short_path.replace(os.path.sep , "." ) submodules.append(SCREAMING_SNAKE_CASE__ ) for fname in files: if fname == "__init__.py": continue _UpperCAmelCase : Tuple = str((Path(SCREAMING_SNAKE_CASE__ ) / fname).relative_to(SCREAMING_SNAKE_CASE__ ) ) _UpperCAmelCase : Dict = short_path.replace(".py" , "" ).replace(os.path.sep , "." ) if len(submodule.split("." ) ) == 1: submodules.append(SCREAMING_SNAKE_CASE__ ) return submodules _lowerCAmelCase : Any = [ "convert_pytorch_checkpoint_to_tf2", "modeling_flax_pytorch_utils", ] def __snake_case ( ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[str] = importlib.util.spec_from_file_location( "transformers" , os.path.join(SCREAMING_SNAKE_CASE__ , "__init__.py" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) _UpperCAmelCase : Optional[int] = spec.loader.load_module() _UpperCAmelCase : str = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(SCREAMING_SNAKE_CASE__ ) > 0: _UpperCAmelCase : Optional[Any] = "\n".join(f'- {module}' for module in module_not_registered ) raise ValueError( "The following submodules are not properly registered in the main init of Transformers:\n" f'{list_of_modules}\n' "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
289
1
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests snake_case_ : Tuple =open # noqa: we just need to have a builtin inside this module to test it properly
703
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image snake_case_ : Any =['''text''', '''image''', '''audio'''] def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' __A = [] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): inputs.append(create_inputs(lowerCAmelCase__ ) ) else: raise ValueError(F"""Invalid type requested: {input_type}""" ) return inputs def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' __A = [] for output in outputs: if isinstance(lowerCAmelCase__ , (str, AgentText) ): output_types.append("text" ) elif isinstance(lowerCAmelCase__ , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(lowerCAmelCase__ , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(F"""Invalid output: {output}""" ) return output_types @is_tool_test class a__ : def _lowerCamelCase ( self ) -> Dict: self.assertTrue(hasattr(self.tool , "inputs" ) ) self.assertTrue(hasattr(self.tool , "outputs" ) ) __A = self.tool.inputs for _input in inputs: if isinstance(_input , lowercase__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) __A = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def _lowerCamelCase ( self ) -> int: __A = create_inputs(self.tool.inputs ) __A = self.tool(*lowercase__ ) # There is a single output if len(self.tool.outputs ) == 1: __A = [outputs] self.assertListEqual(output_types(lowercase__ ) , self.tool.outputs ) def _lowerCamelCase ( self ) -> Optional[Any]: self.assertTrue(hasattr(self.tool , "description" ) ) self.assertTrue(hasattr(self.tool , "default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def _lowerCamelCase ( self ) -> Optional[int]: __A = create_inputs(self.tool.inputs ) __A = self.tool(*lowercase__ ) if not isinstance(lowercase__ , lowercase__ ): __A = [outputs] self.assertEqual(len(lowercase__ ) , len(self.tool.outputs ) ) for output, output_type in zip(lowercase__ , self.tool.outputs ): __A = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowercase__ , lowercase__ ) ) def _lowerCamelCase ( self ) -> Any: __A = create_inputs(self.tool.inputs ) __A = [] for _input, input_type in zip(lowercase__ , self.tool.inputs ): if isinstance(lowercase__ , lowercase__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error __A = self.tool(*lowercase__ ) if not isinstance(lowercase__ , lowercase__ ): __A = [outputs] self.assertEqual(len(lowercase__ ) , len(self.tool.outputs ) )
205
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { """bigcode/gpt_bigcode-santacoder""": """https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json""", } class a__ ( __magic_name__ ): lowercase_ = "gpt_bigcode" lowercase_ = ["past_key_values"] lowercase_ = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Dict , UpperCamelCase_ : Tuple=50257 , UpperCamelCase_ : Union[str, Any]=1024 , UpperCamelCase_ : Any=768 , UpperCamelCase_ : Union[str, Any]=12 , UpperCamelCase_ : Optional[int]=12 , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Any="gelu_pytorch_tanh" , UpperCamelCase_ : Optional[int]=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : Dict=1e-5 , UpperCamelCase_ : Dict=0.02 , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : Optional[int]=50256 , UpperCamelCase_ : Optional[int]=50256 , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Union[str, Any]=True , **UpperCamelCase_ : List[Any] , ): """simple docstring""" __UpperCAmelCase : List[str] = vocab_size __UpperCAmelCase : Union[str, Any] = n_positions __UpperCAmelCase : int = n_embd __UpperCAmelCase : Tuple = n_layer __UpperCAmelCase : str = n_head __UpperCAmelCase : List[Any] = n_inner __UpperCAmelCase : int = activation_function __UpperCAmelCase : Optional[int] = resid_pdrop __UpperCAmelCase : Union[str, Any] = embd_pdrop __UpperCAmelCase : Union[str, Any] = attn_pdrop __UpperCAmelCase : List[Any] = layer_norm_epsilon __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : Optional[Any] = scale_attn_weights __UpperCAmelCase : int = use_cache __UpperCAmelCase : int = attention_softmax_in_fpaa __UpperCAmelCase : Optional[Any] = scale_attention_softmax_in_fpaa __UpperCAmelCase : Union[str, Any] = multi_query __UpperCAmelCase : str = bos_token_id __UpperCAmelCase : Union[str, Any] = eos_token_id super().__init__(bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_)
77
"""simple docstring""" import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class lowerCAmelCase ( ctypes.Structure ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def lowercase () -> Optional[int]: if os.name == "nt": SCREAMING_SNAKE_CASE = CursorInfo() SCREAMING_SNAKE_CASE = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(SCREAMING_SNAKE_CASE_ , ctypes.byref(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE = False ctypes.windll.kernelaa.SetConsoleCursorInfo(SCREAMING_SNAKE_CASE_ , ctypes.byref(SCREAMING_SNAKE_CASE_ ) ) elif os.name == "posix": sys.stdout.write('\033[?25l' ) sys.stdout.flush() def lowercase () -> int: if os.name == "nt": SCREAMING_SNAKE_CASE = CursorInfo() SCREAMING_SNAKE_CASE = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(SCREAMING_SNAKE_CASE_ , ctypes.byref(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE = True ctypes.windll.kernelaa.SetConsoleCursorInfo(SCREAMING_SNAKE_CASE_ , ctypes.byref(SCREAMING_SNAKE_CASE_ ) ) elif os.name == "posix": sys.stdout.write('\033[?25h' ) sys.stdout.flush() @contextmanager def lowercase () -> Dict: try: hide_cursor() yield finally: show_cursor()
247
0
'''simple docstring''' import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def snake_case__ ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case__ ( self : List[Any] ): __magic_name__ , __magic_name__ = FlaxStableDiffusionPipeline.from_pretrained( '''stabilityai/stable-diffusion-2''' , revision='''bf16''' , dtype=jnp.bfloataa , ) __magic_name__ = '''A painting of a squirrel eating a burger''' __magic_name__ = jax.device_count() __magic_name__ = num_samples * [prompt] __magic_name__ = sd_pipe.prepare_inputs(a__ ) __magic_name__ = replicate(a__ ) __magic_name__ = shard(a__ ) __magic_name__ = jax.random.PRNGKey(0 ) __magic_name__ = jax.random.split(a__ , jax.device_count() ) __magic_name__ = sd_pipe(a__ , a__ , a__ , num_inference_steps=25 , jit=a__ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __magic_name__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __magic_name__ = images[0, 253:256, 253:256, -1] __magic_name__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __magic_name__ = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def snake_case__ ( self : Tuple ): __magic_name__ = '''stabilityai/stable-diffusion-2''' __magic_name__ , __magic_name__ = FlaxDPMSolverMultistepScheduler.from_pretrained(a__ , subfolder='''scheduler''' ) __magic_name__ , __magic_name__ = FlaxStableDiffusionPipeline.from_pretrained( a__ , scheduler=a__ , revision='''bf16''' , dtype=jnp.bfloataa , ) __magic_name__ = scheduler_params __magic_name__ = '''A painting of a squirrel eating a burger''' __magic_name__ = jax.device_count() __magic_name__ = num_samples * [prompt] __magic_name__ = sd_pipe.prepare_inputs(a__ ) __magic_name__ = replicate(a__ ) __magic_name__ = shard(a__ ) __magic_name__ = jax.random.PRNGKey(0 ) __magic_name__ = jax.random.split(a__ , jax.device_count() ) __magic_name__ = sd_pipe(a__ , a__ , a__ , num_inference_steps=25 , jit=a__ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __magic_name__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __magic_name__ = images[0, 253:256, 253:256, -1] __magic_name__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __magic_name__ = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
245
'''simple docstring''' from collections.abc import Callable def UpperCamelCase ( a , a , a ) -> float: '''simple docstring''' __magic_name__ = a __magic_name__ = b if function(a ) == 0: # one of the a or b is a root for the function return a elif function(a ) == 0: return b elif ( function(a ) * function(a ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: __magic_name__ = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(a ) == 0: return mid elif function(a ) * function(a ) < 0: __magic_name__ = mid else: __magic_name__ = mid __magic_name__ = start + (end - start) / 2.0 return mid def UpperCamelCase ( a ) -> float: '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
245
1
from __future__ import annotations import math def A__ ( __A : int ) ->bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__ ( __A : int ) ->list[int]: __A =str(__A ) __A =[n] for i in range(1 , len(__A ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def A__ ( __A : int ) ->bool: if len(str(__A ) ) > 3: if not is_prime(int(str(__A )[-3:] ) ) or not is_prime(int(str(__A )[:3] ) ): return False return True def A__ ( __A : int = 11 ) ->list[int]: __A =[] __A =13 while len(__A ) != count: if validate(__A ): __A =list_truncated_nums(__A ) if all(is_prime(__A ) for i in list_nums ): list_truncated_primes.append(__A ) num += 2 return list_truncated_primes def A__ ( ) ->int: return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F"""{sum(compute_truncated_primes(11)) = }""")
184
def A__ ( __A : str , __A : str ) ->str: if not (isinstance(__A , __A ) and isinstance(__A , __A )): raise ValueError('''longest_common_substring() takes two strings for inputs''' ) __A =len(__A ) __A =len(__A ) __A =[[0] * (texta_length + 1) for _ in range(texta_length + 1 )] __A =0 __A =0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: __A =1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: __A =i __A =dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
184
1
"""simple docstring""" def UpperCamelCase_ ( lowerCamelCase : Any ) -> List[str]: """simple docstring""" __magic_name__ : Union[str, Any] = len(lowerCamelCase ) __magic_name__ : Dict = sum(lowerCamelCase ) __magic_name__ : List[Any] = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __magic_name__ : int = True for i in range(1 , s + 1 ): __magic_name__ : Any = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __magic_name__ : str = dp[i][j - 1] if arr[i - 1] <= j: __magic_name__ : int = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __magic_name__ : Tuple = s - 2 * j break return diff
147
"""simple docstring""" from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar A = TypeVar("""T""") A = TypeVar("""U""") class _UpperCamelCase ( Generic[T, U] ): """simple docstring""" def __init__( self : Any , snake_case : T | None , snake_case : U | None ) -> Tuple: '''simple docstring''' __magic_name__ : Optional[Any] = key __magic_name__ : str = val __magic_name__ : DoubleLinkedListNode[T, U] | None = None __magic_name__ : DoubleLinkedListNode[T, U] | None = None def __repr__( self : str ) -> str: '''simple docstring''' return ( f"""Node: key: {self.key}, val: {self.val}, """ f"""has next: {bool(self.next )}, has prev: {bool(self.prev )}""" ) class _UpperCamelCase ( Generic[T, U] ): """simple docstring""" def __init__( self : str ) -> None: '''simple docstring''' __magic_name__ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(snake_case , snake_case ) __magic_name__ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(snake_case , snake_case ) __magic_name__ , __magic_name__ : Tuple = self.rear, self.head def __repr__( self : str ) -> str: '''simple docstring''' __magic_name__ : List[str] = ['''DoubleLinkedList'''] __magic_name__ : Optional[Any] = self.head while node.next is not None: rep.append(str(snake_case ) ) __magic_name__ : Any = node.next rep.append(str(self.rear ) ) return ",\n ".join(snake_case ) def _UpperCAmelCase ( self : List[str] , snake_case : DoubleLinkedListNode[T, U] ) -> None: '''simple docstring''' __magic_name__ : Tuple = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None __magic_name__ : Dict = node __magic_name__ : Optional[int] = previous __magic_name__ : Tuple = node __magic_name__ : Optional[int] = self.rear def _UpperCAmelCase ( self : str , snake_case : DoubleLinkedListNode[T, U] ) -> DoubleLinkedListNode[T, U] | None: '''simple docstring''' if node.prev is None or node.next is None: return None __magic_name__ : str = node.next __magic_name__ : Dict = node.prev __magic_name__ : Any = None __magic_name__ : Dict = None return node class _UpperCamelCase ( Generic[T, U] ): """simple docstring""" snake_case_ = {} def __init__( self : Dict , snake_case : int ) -> Optional[Any]: '''simple docstring''' __magic_name__ : DoubleLinkedList[T, U] = DoubleLinkedList() __magic_name__ : str = capacity __magic_name__ : Tuple = 0 __magic_name__ : Optional[Any] = 0 __magic_name__ : List[str] = 0 __magic_name__ : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self : Tuple ) -> str: '''simple docstring''' return ( f"""CacheInfo(hits={self.hits}, misses={self.miss}, """ f"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self : List[str] , snake_case : T ) -> bool: '''simple docstring''' return key in self.cache def _UpperCAmelCase ( self : Optional[int] , snake_case : T ) -> U | None: '''simple docstring''' if key in self.cache: self.hits += 1 __magic_name__ : DoubleLinkedListNode[T, U] = self.cache[key] __magic_name__ : Optional[Any] = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(snake_case ) return node.val self.miss += 1 return None def _UpperCAmelCase ( self : str , snake_case : T , snake_case : U ) -> None: '''simple docstring''' if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity __magic_name__ : Optional[Any] = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(snake_case ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 __magic_name__ : List[str] = DoubleLinkedListNode(snake_case , snake_case ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value __magic_name__ : Dict = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list __magic_name__ : Any = value self.list.add(snake_case ) @classmethod def _UpperCAmelCase ( cls : Tuple , snake_case : int = 128 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: '''simple docstring''' def cache_decorator_inner(snake_case : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*snake_case : T ) -> U: if func not in cls.decorator_function_to_instance_map: __magic_name__ : Any = LRUCache(snake_case ) __magic_name__ : Optional[Any] = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: __magic_name__ : Any = func(*snake_case ) cls.decorator_function_to_instance_map[func].put(args[0] , snake_case ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(snake_case , '''cache_info''' , snake_case ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
147
1
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : Optional[Any]=2_81_23 ) -> str: '''simple docstring''' UpperCAmelCase_ = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i UpperCAmelCase_ = set() UpperCAmelCase_ = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(snake_case_ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
78
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : str ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = (3_2, 3_2) SCREAMING_SNAKE_CASE = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(snake_case__ ) return image @property def UpperCamelCase ( self : int ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(3_2, 3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=7 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , attention_head_dim=8 , use_linear_projection=snake_case__ , only_cross_attention=(True, True, False) , num_class_embeds=1_0_0 , ) return model @property def UpperCamelCase ( self : Tuple ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def UpperCamelCase ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , ) return CLIPTextModel(snake_case__ ) def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.dummy_cond_unet_upscale SCREAMING_SNAKE_CASE = DDPMScheduler() SCREAMING_SNAKE_CASE = DDIMScheduler(prediction_type='v_prediction' ) SCREAMING_SNAKE_CASE = self.dummy_vae SCREAMING_SNAKE_CASE = self.dummy_text_encoder SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(snake_case__ ) ).convert('RGB' ).resize((6_4, 6_4) ) # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE = StableDiffusionUpscalePipeline( unet=snake_case__ , low_res_scheduler=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , max_noise_level=3_5_0 , ) SCREAMING_SNAKE_CASE = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(0 ) SCREAMING_SNAKE_CASE = sd_pipe( [prompt] , image=snake_case__ , generator=snake_case__ , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type='np' , ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(0 ) SCREAMING_SNAKE_CASE = sd_pipe( [prompt] , image=snake_case__ , generator=snake_case__ , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type='np' , return_dict=snake_case__ , )[0] SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) SCREAMING_SNAKE_CASE = np.array([0.3_113, 0.3_910, 0.4_272, 0.4_859, 0.5_061, 0.4_652, 0.5_362, 0.5_715, 0.5_661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.dummy_cond_unet_upscale SCREAMING_SNAKE_CASE = DDPMScheduler() SCREAMING_SNAKE_CASE = DDIMScheduler(prediction_type='v_prediction' ) SCREAMING_SNAKE_CASE = self.dummy_vae SCREAMING_SNAKE_CASE = self.dummy_text_encoder SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(snake_case__ ) ).convert('RGB' ).resize((6_4, 6_4) ) # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE = StableDiffusionUpscalePipeline( unet=snake_case__ , low_res_scheduler=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , max_noise_level=3_5_0 , ) SCREAMING_SNAKE_CASE = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type='np' , ) SCREAMING_SNAKE_CASE = output.images assert image.shape[0] == 2 SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(0 ) SCREAMING_SNAKE_CASE = sd_pipe( [prompt] , image=snake_case__ , generator=snake_case__ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type='np' , ) SCREAMING_SNAKE_CASE = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.dummy_cond_unet_upscale SCREAMING_SNAKE_CASE = DDPMScheduler() SCREAMING_SNAKE_CASE = DDIMScheduler(prediction_type='v_prediction' ) SCREAMING_SNAKE_CASE = self.dummy_vae SCREAMING_SNAKE_CASE = self.dummy_text_encoder SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(snake_case__ ) ).convert('RGB' ).resize((6_4, 6_4) ) # put models in fp16, except vae as it overflows in fp16 SCREAMING_SNAKE_CASE = unet.half() SCREAMING_SNAKE_CASE = text_encoder.half() # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE = StableDiffusionUpscalePipeline( unet=snake_case__ , low_res_scheduler=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , max_noise_level=3_5_0 , ) SCREAMING_SNAKE_CASE = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = sd_pipe( [prompt] , image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type='np' , ).images SCREAMING_SNAKE_CASE = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : List[str] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) SCREAMING_SNAKE_CASE = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat.npy' ) SCREAMING_SNAKE_CASE = 'stabilityai/stable-diffusion-x4-upscaler' SCREAMING_SNAKE_CASE = StableDiffusionUpscalePipeline.from_pretrained(snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE = 'a cat sitting on a park bench' SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe( prompt=snake_case__ , image=snake_case__ , generator=snake_case__ , output_type='np' , ) SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 1E-3 def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) SCREAMING_SNAKE_CASE = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat_fp16.npy' ) SCREAMING_SNAKE_CASE = 'stabilityai/stable-diffusion-x4-upscaler' SCREAMING_SNAKE_CASE = StableDiffusionUpscalePipeline.from_pretrained( snake_case__ , torch_dtype=torch.floataa , ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE = 'a cat sitting on a park bench' SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe( prompt=snake_case__ , image=snake_case__ , generator=snake_case__ , output_type='np' , ) SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5E-1 def UpperCamelCase ( self : Tuple ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) SCREAMING_SNAKE_CASE = 'stabilityai/stable-diffusion-x4-upscaler' SCREAMING_SNAKE_CASE = StableDiffusionUpscalePipeline.from_pretrained( snake_case__ , torch_dtype=torch.floataa , ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE = 'a cat sitting on a park bench' SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe( prompt=snake_case__ , image=snake_case__ , generator=snake_case__ , num_inference_steps=5 , output_type='np' , ) SCREAMING_SNAKE_CASE = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 1_0**9
439
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
708
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> Dict: if "cls_token" in name: a__ : Union[str, Any] = name.replace("cls_token" , "vit.embeddings.cls_token" ) if "mask_token" in name: a__ : Optional[Any] = name.replace("mask_token" , "decoder.mask_token" ) if "decoder_pos_embed" in name: a__ : List[Any] = name.replace("decoder_pos_embed" , "decoder.decoder_pos_embed" ) if "pos_embed" in name and "decoder" not in name: a__ : Dict = name.replace("pos_embed" , "vit.embeddings.position_embeddings" ) if "patch_embed.proj" in name: a__ : Optional[Any] = name.replace("patch_embed.proj" , "vit.embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: a__ : Optional[int] = name.replace("patch_embed.norm" , "vit.embeddings.norm" ) if "decoder_blocks" in name: a__ : Dict = name.replace("decoder_blocks" , "decoder.decoder_layers" ) if "blocks" in name: a__ : Any = name.replace("blocks" , "vit.encoder.layer" ) if "attn.proj" in name: a__ : Union[str, Any] = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: a__ : int = name.replace("attn" , "attention.self" ) if "norm1" in name: a__ : List[Any] = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: a__ : Union[str, Any] = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: a__ : Optional[int] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: a__ : int = name.replace("mlp.fc2" , "output.dense" ) if "decoder_embed" in name: a__ : Union[str, Any] = name.replace("decoder_embed" , "decoder.decoder_embed" ) if "decoder_norm" in name: a__ : List[Any] = name.replace("decoder_norm" , "decoder.decoder_norm" ) if "decoder_pred" in name: a__ : Tuple = name.replace("decoder_pred" , "decoder.decoder_pred" ) if "norm.weight" in name and "decoder" not in name: a__ : Dict = name.replace("norm.weight" , "vit.layernorm.weight" ) if "norm.bias" in name and "decoder" not in name: a__ : List[str] = name.replace("norm.bias" , "vit.layernorm.bias" ) return name def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase ) -> Any: for key in orig_state_dict.copy().keys(): a__ : Optional[Any] = orig_state_dict.pop(__UpperCamelCase ) if "qkv" in key: a__ : List[str] = key.split("." ) a__ : Optional[Any] = int(key_split[1] ) if "decoder_blocks" in key: a__ : List[str] = config.decoder_hidden_size a__ : Tuple = "decoder.decoder_layers." if "weight" in key: a__ : List[str] = val[:dim, :] a__ : str = val[dim : dim * 2, :] a__ : Optional[Any] = val[-dim:, :] elif "bias" in key: a__ : Dict = val[:dim] a__ : Dict = val[dim : dim * 2] a__ : List[Any] = val[-dim:] else: a__ : Tuple = config.hidden_size a__ : Any = "vit.encoder.layer." if "weight" in key: a__ : str = val[:dim, :] a__ : Optional[int] = val[dim : dim * 2, :] a__ : str = val[-dim:, :] elif "bias" in key: a__ : Any = val[:dim] a__ : Dict = val[dim : dim * 2] a__ : Tuple = val[-dim:] else: a__ : List[str] = val return orig_state_dict def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: a__ : Dict = ViTMAEConfig() if "large" in checkpoint_url: a__ : Optional[Any] = 10_24 a__ : Optional[int] = 40_96 a__ : Optional[Any] = 24 a__ : str = 16 elif "huge" in checkpoint_url: a__ : Dict = 14 a__ : Union[str, Any] = 12_80 a__ : str = 51_20 a__ : Dict = 32 a__ : Optional[Any] = 16 a__ : str = ViTMAEForPreTraining(__UpperCamelCase ) a__ : Tuple = torch.hub.load_state_dict_from_url(__UpperCamelCase , map_location="cpu" )["model"] a__ : Dict = ViTMAEImageProcessor(size=config.image_size ) a__ : str = convert_state_dict(__UpperCamelCase , __UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) model.eval() a__ : Optional[Any] = "https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg" a__ : List[str] = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) a__ : List[Any] = ViTMAEImageProcessor(size=config.image_size ) a__ : Dict = image_processor(images=__UpperCamelCase , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) a__ : List[Any] = model(**__UpperCamelCase ) a__ : Optional[int] = outputs.logits if "large" in checkpoint_url: a__ : Tuple = torch.tensor( [[-0.7_3_0_9, -0.7_1_2_8, -1.0_1_6_9], [-1.0_1_6_1, -0.9_0_5_8, -1.1_8_7_8], [-1.0_4_7_8, -0.9_4_1_1, -1.1_9_1_1]] ) elif "huge" in checkpoint_url: a__ : Optional[int] = torch.tensor( [[-1.1_5_9_9, -0.9_1_9_9, -1.2_2_2_1], [-1.1_9_5_2, -0.9_2_6_9, -1.2_3_0_7], [-1.2_1_4_3, -0.9_3_3_7, -1.2_2_6_2]] ) else: a__ : Union[str, Any] = torch.tensor( [[-0.9_1_9_2, -0.8_4_8_1, -1.1_2_5_9], [-1.1_3_4_9, -1.0_0_3_4, -1.2_5_9_9], [-1.1_7_5_7, -1.0_4_2_9, -1.2_7_2_6]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , __UpperCamelCase , atol=1e-4 ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCamelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowerCamelCase = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
207
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ :Union[str, Any] = logging.get_logger(__name__) def __lowercase (_lowercase, _lowercase=False ) -> List[str]: """simple docstring""" __lowerCamelCase : Tuple = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowerCamelCase : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __lowercase (_lowercase, _lowercase, _lowercase=False ) -> List[Any]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: __lowerCamelCase : List[str] = """""" else: __lowerCamelCase : Optional[Any] = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCamelCase : Tuple = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) __lowerCamelCase : List[Any] = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict __lowerCamelCase : Optional[Any] = in_proj_weight[ : config.hidden_size, : ] __lowerCamelCase : List[Any] = in_proj_bias[: config.hidden_size] __lowerCamelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCamelCase : Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCamelCase : List[Any] = in_proj_weight[ -config.hidden_size :, : ] __lowerCamelCase : Any = in_proj_bias[-config.hidden_size :] def __lowercase (_lowercase ) -> Tuple: """simple docstring""" __lowerCamelCase : int = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(_lowercase, _lowercase ) def __lowercase (_lowercase, _lowercase, _lowercase ) -> int: """simple docstring""" __lowerCamelCase : Union[str, Any] = dct.pop(_lowercase ) __lowerCamelCase : Dict = val def __lowercase () -> List[str]: """simple docstring""" __lowerCamelCase : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCamelCase : Any = Image.open(requests.get(_lowercase, stream=_lowercase ).raw ) return im @torch.no_grad() def __lowercase (_lowercase, _lowercase ) -> Union[str, Any]: """simple docstring""" __lowerCamelCase : str = ViTConfig() __lowerCamelCase : Optional[int] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": __lowerCamelCase : List[str] = True __lowerCamelCase : Any = int(vit_name[-12:-10] ) __lowerCamelCase : int = int(vit_name[-9:-6] ) else: __lowerCamelCase : Optional[Any] = 1_000 __lowerCamelCase : Optional[Any] = """huggingface/label-files""" __lowerCamelCase : int = """imagenet-1k-id2label.json""" __lowerCamelCase : str = json.load(open(hf_hub_download(_lowercase, _lowercase, repo_type="""dataset""" ), """r""" ) ) __lowerCamelCase : Dict = {int(_lowercase ): v for k, v in idalabel.items()} __lowerCamelCase : List[str] = idalabel __lowerCamelCase : str = {v: k for k, v in idalabel.items()} __lowerCamelCase : Tuple = int(vit_name[-6:-4] ) __lowerCamelCase : Tuple = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("""tiny""" ): __lowerCamelCase : Union[str, Any] = 192 __lowerCamelCase : List[Any] = 768 __lowerCamelCase : List[Any] = 12 __lowerCamelCase : Optional[Any] = 3 elif vit_name[9:].startswith("""small""" ): __lowerCamelCase : Any = 384 __lowerCamelCase : Union[str, Any] = 1_536 __lowerCamelCase : Union[str, Any] = 12 __lowerCamelCase : List[str] = 6 else: pass else: if vit_name[4:].startswith("""small""" ): __lowerCamelCase : Optional[int] = 768 __lowerCamelCase : Union[str, Any] = 2_304 __lowerCamelCase : Any = 8 __lowerCamelCase : Union[str, Any] = 8 elif vit_name[4:].startswith("""base""" ): pass elif vit_name[4:].startswith("""large""" ): __lowerCamelCase : Union[str, Any] = 1_024 __lowerCamelCase : Any = 4_096 __lowerCamelCase : List[str] = 24 __lowerCamelCase : int = 16 elif vit_name[4:].startswith("""huge""" ): __lowerCamelCase : str = 1_280 __lowerCamelCase : List[str] = 5_120 __lowerCamelCase : Optional[Any] = 32 __lowerCamelCase : Any = 16 # load original model from timm __lowerCamelCase : Union[str, Any] = timm.create_model(_lowercase, pretrained=_lowercase ) timm_model.eval() # load state_dict of original model, remove and rename some keys __lowerCamelCase : Any = timm_model.state_dict() if base_model: remove_classification_head_(_lowercase ) __lowerCamelCase : Dict = create_rename_keys(_lowercase, _lowercase ) for src, dest in rename_keys: rename_key(_lowercase, _lowercase, _lowercase ) read_in_q_k_v(_lowercase, _lowercase, _lowercase ) # load HuggingFace model if vit_name[-5:] == "in21k": __lowerCamelCase : Tuple = ViTModel(_lowercase ).eval() else: __lowerCamelCase : int = ViTForImageClassification(_lowercase ).eval() model.load_state_dict(_lowercase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: __lowerCamelCase : Any = DeiTImageProcessor(size=config.image_size ) else: __lowerCamelCase : str = ViTImageProcessor(size=config.image_size ) __lowerCamelCase : int = image_processor(images=prepare_img(), return_tensors="""pt""" ) __lowerCamelCase : int = encoding["""pixel_values"""] __lowerCamelCase : List[str] = model(_lowercase ) if base_model: __lowerCamelCase : int = timm_model.forward_features(_lowercase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowercase, outputs.pooler_output, atol=1e-3 ) else: __lowerCamelCase : Any = timm_model(_lowercase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowercase, outputs.logits, atol=1e-3 ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(f"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowercase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": UpperCAmelCase__ :Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_patch16_224""", type=str, help="""Name of the ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) UpperCAmelCase__ :Any = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
150
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def __lowercase (_lowercase, _lowercase, _lowercase, _lowercase, _lowercase = None, _lowercase = None, _lowercase = None, ) -> Optional[Any]: """simple docstring""" if config_name_or_path is None: __lowerCamelCase : str = """facebook/rag-token-base""" if model_type == """rag_token""" else """facebook/rag-sequence-base""" if generator_tokenizer_name_or_path is None: __lowerCamelCase : str = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: __lowerCamelCase : Tuple = question_encoder_name_or_path __lowerCamelCase : Tuple = RagTokenForGeneration if model_type == """rag_token""" else RagSequenceForGeneration # Save model. __lowerCamelCase : List[str] = RagConfig.from_pretrained(_lowercase ) __lowerCamelCase : str = AutoConfig.from_pretrained(_lowercase ) __lowerCamelCase : Optional[int] = AutoConfig.from_pretrained(_lowercase ) __lowerCamelCase : Optional[int] = gen_config __lowerCamelCase : str = question_encoder_config __lowerCamelCase : List[str] = model_class.from_pretrained_question_encoder_generator( _lowercase, _lowercase, config=_lowercase ) rag_model.save_pretrained(_lowercase ) # Sanity check. model_class.from_pretrained(_lowercase ) # Save tokenizers. __lowerCamelCase : Tuple = AutoTokenizer.from_pretrained(_lowercase ) gen_tokenizer.save_pretrained(dest_dir / """generator_tokenizer/""" ) __lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(_lowercase ) question_encoder_tokenizer.save_pretrained(dest_dir / """question_encoder_tokenizer/""" ) if __name__ == "__main__": UpperCAmelCase__ :Optional[int] = argparse.ArgumentParser() parser.add_argument( """--model_type""", choices=["""rag_sequence""", """rag_token"""], required=True, type=str, help="""RAG model type: rag_sequence, rag_token""", ) parser.add_argument("""--dest""", type=str, required=True, help="""Path to the output checkpoint directory.""") parser.add_argument("""--generator_name_or_path""", type=str, required=True, help="""Generator model identifier""") parser.add_argument( """--question_encoder_name_or_path""", type=str, required=True, help="""Question encoder model identifier""" ) parser.add_argument( """--generator_tokenizer_name_or_path""", type=str, help="""Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``""", ) parser.add_argument( """--question_encoder_tokenizer_name_or_path""", type=str, help="""Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``""", ) parser.add_argument( """--config_name_or_path""", type=str, help=( """Identifier of the model config to use, if not provided, resolves to a base config for a given""" """ ``model_type``""" ), ) UpperCAmelCase__ :str = parser.parse_args() UpperCAmelCase__ :Optional[int] = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
150
1
def UpperCAmelCase_ ( __UpperCamelCase, __UpperCamelCase, __UpperCamelCase ): SCREAMING_SNAKE_CASE__ =(num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def UpperCAmelCase_ ( ): print(sum_of_series(1, 1, 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
588
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) def UpperCAmelCase_ ( __UpperCamelCase, __UpperCamelCase ): SCREAMING_SNAKE_CASE__ =nn.functional.normalize(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ =nn.functional.normalize(__UpperCamelCase ) return torch.mm(__UpperCamelCase, normalized_text_embeds.t() ) class __a ( __lowerCamelCase ): """simple docstring""" _A : Optional[Any] = CLIPConfig _A : Dict = ["CLIPEncoderLayer"] def __init__( self : Tuple ,_UpperCamelCase : CLIPConfig ) -> Union[str, Any]: '''simple docstring''' super().__init__(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =CLIPVisionModel(config.vision_config ) SCREAMING_SNAKE_CASE__ =nn.Linear(config.vision_config.hidden_size ,config.projection_dim ,bias=_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =nn.Parameter(torch.ones(1_7 ,config.projection_dim ) ,requires_grad=_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =nn.Parameter(torch.ones(3 ,config.projection_dim ) ,requires_grad=_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =nn.Parameter(torch.ones(1_7 ) ,requires_grad=_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =nn.Parameter(torch.ones(3 ) ,requires_grad=_UpperCamelCase ) @torch.no_grad() def __A ( self : Dict ,_UpperCamelCase : Optional[int] ,_UpperCamelCase : Dict ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ =self.vision_model(_UpperCamelCase )[1] # pooled_output SCREAMING_SNAKE_CASE__ =self.visual_projection(_UpperCamelCase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 SCREAMING_SNAKE_CASE__ =cosine_distance(_UpperCamelCase ,self.special_care_embeds ).cpu().float().numpy() SCREAMING_SNAKE_CASE__ =cosine_distance(_UpperCamelCase ,self.concept_embeds ).cpu().float().numpy() SCREAMING_SNAKE_CASE__ =[] SCREAMING_SNAKE_CASE__ =image_embeds.shape[0] for i in range(_UpperCamelCase ): SCREAMING_SNAKE_CASE__ ={"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images SCREAMING_SNAKE_CASE__ =0.0 for concept_idx in range(len(special_cos_dist[0] ) ): SCREAMING_SNAKE_CASE__ =special_cos_dist[i][concept_idx] SCREAMING_SNAKE_CASE__ =self.special_care_embeds_weights[concept_idx].item() SCREAMING_SNAKE_CASE__ =round(concept_cos - concept_threshold + adjustment ,3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) SCREAMING_SNAKE_CASE__ =0.01 for concept_idx in range(len(cos_dist[0] ) ): SCREAMING_SNAKE_CASE__ =cos_dist[i][concept_idx] SCREAMING_SNAKE_CASE__ =self.concept_embeds_weights[concept_idx].item() SCREAMING_SNAKE_CASE__ =round(concept_cos - concept_threshold + adjustment ,3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_UpperCamelCase ) result.append(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =[len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def __A ( self : str ,_UpperCamelCase : torch.FloatTensor ,_UpperCamelCase : torch.FloatTensor ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =self.vision_model(_UpperCamelCase )[1] # pooled_output SCREAMING_SNAKE_CASE__ =self.visual_projection(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =cosine_distance(_UpperCamelCase ,self.special_care_embeds ) SCREAMING_SNAKE_CASE__ =cosine_distance(_UpperCamelCase ,self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images SCREAMING_SNAKE_CASE__ =0.0 SCREAMING_SNAKE_CASE__ =special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) SCREAMING_SNAKE_CASE__ =torch.any(special_scores > 0 ,dim=1 ) SCREAMING_SNAKE_CASE__ =special_care * 0.01 SCREAMING_SNAKE_CASE__ =special_adjustment.unsqueeze(1 ).expand(-1 ,cos_dist.shape[1] ) SCREAMING_SNAKE_CASE__ =(cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) SCREAMING_SNAKE_CASE__ =torch.any(concept_scores > 0 ,dim=1 ) return images, has_nsfw_concepts
588
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A = '▁' __A = {'vocab_file': 'spiece.model'} __A = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } __A = { 'google/pegasus-xsum': 5_1_2, } __A = logging.get_logger(__name__) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :List[Any] = VOCAB_FILES_NAMES _UpperCAmelCase :Any = VOCAB_FILES_NAMES _UpperCAmelCase :List[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :Dict = ['''input_ids''', '''attention_mask'''] def __init__( self , _UpperCAmelCase , _UpperCAmelCase="<pad>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<mask_2>" , _UpperCAmelCase="<mask_1>" , _UpperCAmelCase=None , _UpperCAmelCase=103 , _UpperCAmelCase = None , **_UpperCAmelCase , ): lowercase__: str = offset if additional_special_tokens is not None: if not isinstance(A__ , A__ ): raise TypeError( F"""additional_special_tokens should be of type {type(A__ )}, but is""" F""" {type(A__ )}""" ) lowercase__: Optional[int] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(A__ ) , self.offset - 1 ) ] if len(set(A__ ) ) != len(A__ ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) lowercase__: List[str] = additional_special_tokens_extended else: lowercase__: Optional[int] = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )] lowercase__: Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=A__ , unk_token=A__ , mask_token=A__ , pad_token=A__ , mask_token_sent=A__ , offset=A__ , additional_special_tokens=A__ , sp_model_kwargs=self.sp_model_kwargs , **A__ , ) lowercase__: Any = mask_token_sent lowercase__: int = vocab_file lowercase__: List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A__ ) # add special tokens to encoder dict lowercase__: Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) lowercase__: Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def _snake_case ( self ): return len(self.sp_model ) + self.offset def _snake_case ( self ): lowercase__: Tuple = {self.convert_ids_to_tokens(A__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): lowercase__: Any = self.__dict__.copy() lowercase__: Union[str, Any] = None return state def __setstate__( self , _UpperCAmelCase ): lowercase__: Union[str, Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase__: List[str] = {} lowercase__: Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self , _UpperCAmelCase ): return self.sp_model.encode(A__ , out_type=A__ ) def _snake_case ( self , _UpperCAmelCase ): if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] lowercase__: str = self.sp_model.piece_to_id(A__ ) return sp_id + self.offset def _snake_case ( self , _UpperCAmelCase ): if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: lowercase__: List[Any] = self.sp_model.IdToPiece(index - self.offset ) return token def _snake_case ( self , _UpperCAmelCase ): lowercase__: int = [] lowercase__: Optional[Any] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A__ ) + token lowercase__: Dict = [] else: current_sub_tokens.append(A__ ) out_string += self.sp_model.decode(A__ ) return out_string.strip() def _snake_case ( self , _UpperCAmelCase=False ): return 1 def _snake_case ( self , _UpperCAmelCase ): lowercase__: List[str] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ): if already_has_special_tokens: return self._special_token_mask(A__ ) elif token_ids_a is None: return self._special_token_mask(A__ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if not os.path.isdir(A__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__: Any = os.path.join( A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A__ ) elif not os.path.isfile(self.vocab_file ): with open(A__ , '''wb''' ) as fi: lowercase__: str = self.sp_model.serialized_model_proto() fi.write(A__ ) return (out_vocab_file,)
586
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int A_ : Any = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class _a (datasets.BuilderConfig ): '''simple docstring''' UpperCAmelCase__: Optional[datasets.Features] = None def UpperCamelCase (lowercase_: "pyspark.sql.DataFrame" , lowercase_: List[int] , ) -> Dict: import pyspark def generate_fn(): A__ : List[str] = df.select("""*""" , pyspark.sql.functions.spark_partition_id().alias("""part_id""" ) ) for partition_id in partition_order: A__ : List[Any] = df_with_partition_id.select("""*""" ).where(f"""part_id = {partition_id}""" ).drop("""part_id""" ) A__ : Optional[int] = partition_df.collect() A__ : Any = 0 for row in rows: yield f"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class _a (_BaseExamplesIterable ): '''simple docstring''' def __init__( self , A__ , A__=None , ): A__ : List[str] = df A__ : Optional[int] = partition_order or range(self.df.rdd.getNumPartitions() ) A__ : Tuple = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self ): yield from self.generate_examples_fn() def __A ( self , A__ ): A__ : str = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(A__ ) return SparkExamplesIterable(self.df , partition_order=A__ ) def __A ( self , A__ , A__ ): A__ : Optional[int] = self.split_shard_indices_by_worker(A__ , A__ ) return SparkExamplesIterable(self.df , partition_order=A__ ) @property def __A ( self ): return len(self.partition_order ) class _a (datasets.DatasetBuilder ): '''simple docstring''' UpperCAmelCase__: Union[str, Any] = SparkConfig def __init__( self , A__ , A__ = None , A__ = None , **A__ , ): import pyspark A__ : Dict = pyspark.sql.SparkSession.builder.getOrCreate() A__ : int = df A__ : Any = working_dir super().__init__( cache_dir=A__ , config_name=str(self.df.semanticHash() ) , **A__ , ) def __A ( self ): # Returns the path of the created file. def create_cache_and_write_probe(A__ ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=A__ ) A__ : List[str] = os.path.join(self._cache_dir , """fs_test""" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(A__ , """a""" ) return [probe_file] if self._spark.conf.get("""spark.master""" , """""" ).startswith("""local""" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: A__ : int = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(A__ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( """When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir""" ) def __A ( self ): return datasets.DatasetInfo(features=self.config.features ) def __A ( self , A__ ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def __A ( self , A__ ): import pyspark def get_arrow_batch_size(A__ ): for batch in it: yield pa.RecordBatch.from_pydict({"""batch_bytes""": [batch.nbytes]} ) A__ : Dict = self.df.count() A__ : List[Any] = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. A__ : Union[str, Any] = ( self.df.limit(A__ ) .repartition(1 ) .mapInArrow(A__ , """batch_bytes: long""" ) .agg(pyspark.sql.functions.sum("""batch_bytes""" ).alias("""sample_bytes""" ) ) .collect()[0] .sample_bytes / sample_num_rows ) A__ : str = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. A__ : Dict = min(A__ , int(approx_total_size / max_shard_size ) ) A__ : int = self.df.repartition(A__ ) def __A ( self , A__ , A__ , A__ , ): import pyspark A__ : Optional[int] = ParquetWriter if file_format == """parquet""" else ArrowWriter A__ : Any = os.path.join(self._working_dir , os.path.basename(A__ ) ) if self._working_dir else fpath A__ : Union[str, Any] = file_format == """parquet""" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. A__ : str = self.config.features A__ : Union[str, Any] = self._writer_batch_size A__ : Tuple = self._fs.storage_options def write_arrow(A__ ): # Within the same SparkContext, no two task attempts will share the same attempt ID. A__ : str = pyspark.TaskContext().taskAttemptId() A__ : str = next(A__ , A__ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) A__ : List[Any] = 0 A__ : Optional[Any] = writer_class( features=A__ , path=working_fpath.replace("""SSSSS""" , F"""{shard_id:05d}""" ).replace("""TTTTT""" , F"""{task_id:05d}""" ) , writer_batch_size=A__ , storage_options=A__ , embed_local_files=A__ , ) A__ : Tuple = pa.Table.from_batches([first_batch] ) writer.write_table(A__ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: A__ , A__ : Union[str, Any] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) shard_id += 1 A__ : Tuple = writer_class( features=writer._features , path=working_fpath.replace("""SSSSS""" , F"""{shard_id:05d}""" ).replace("""TTTTT""" , F"""{task_id:05d}""" ) , writer_batch_size=A__ , storage_options=A__ , embed_local_files=A__ , ) A__ : Optional[int] = pa.Table.from_batches([batch] ) writer.write_table(A__ ) if writer._num_bytes > 0: A__ , A__ : Any = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(A__ ) ): A__ : Optional[Any] = os.path.join(os.path.dirname(A__ ) , os.path.basename(A__ ) ) shutil.move(A__ , A__ ) A__ : Tuple = ( self.df.mapInArrow(A__ , """task_id: long, num_examples: long, num_bytes: long""" ) .groupBy("""task_id""" ) .agg( pyspark.sql.functions.sum("""num_examples""" ).alias("""total_num_examples""" ) , pyspark.sql.functions.sum("""num_bytes""" ).alias("""total_num_bytes""" ) , pyspark.sql.functions.count("""num_bytes""" ).alias("""num_shards""" ) , pyspark.sql.functions.collect_list("""num_examples""" ).alias("""shard_lengths""" ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def __A ( self , A__ , A__ = "arrow" , A__ = None , A__ = None , **A__ , ): self._validate_cache_dir() A__ : Union[str, Any] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(A__ ) A__ : Any = not is_remote_filesystem(self._fs ) A__ : Optional[int] = os.path.join if is_local else posixpath.join A__ : Dict = """-TTTTT-SSSSS-of-NNNNN""" A__ : Any = F"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" A__ : Any = path_join(self._output_dir , A__ ) A__ : Tuple = 0 A__ : str = 0 A__ : List[Any] = 0 A__ : List[Any] = [] A__ : Optional[Any] = [] for task_id, content in self._prepare_split_single(A__ , A__ , A__ ): ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : List[Any] = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(A__ ) A__ : Optional[int] = total_num_examples A__ : Union[str, Any] = total_num_bytes # should rename everything at the end logger.debug(F"""Renaming {total_shards} shards.""" ) if total_shards > 1: A__ : int = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. A__ : Dict = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( A__ , A__ , A__ , ): rename( A__ , fpath.replace("""SSSSS""" , F"""{shard_id:05d}""" ).replace("""TTTTT""" , F"""{task_id:05d}""" ) , fpath.replace("""TTTTT-SSSSS""" , F"""{global_shard_id:05d}""" ).replace("""NNNNN""" , F"""{total_shards:05d}""" ) , ) A__ : List[Any] = [] A__ : Union[str, Any] = 0 for i in range(len(A__ ) ): A__ , A__ : Optional[int] = task_id_and_num_shards[i] for shard_id in range(A__ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(A__ , len(A__ ) ).map(lambda A__ : _rename_shard(*A__ ) ).collect() else: # don't use any pattern A__ : List[Any] = 0 A__ : List[str] = task_id_and_num_shards[0][0] self._rename( fpath.replace("""SSSSS""" , F"""{shard_id:05d}""" ).replace("""TTTTT""" , F"""{task_id:05d}""" ) , fpath.replace(A__ , """""" ) , ) def __A ( self , A__ , ): return SparkExamplesIterable(self.df )
456
0
def A ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple ) -> int: '''simple docstring''' while a != 0: _UpperCAmelCase , _UpperCAmelCase = b % a, a return b def A ( _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] ) -> int: '''simple docstring''' if gcd(__lowerCAmelCase , __lowerCAmelCase ) != 1: _UpperCAmelCase = F"mod inverse of {a!r} and {m!r} does not exist" raise ValueError(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1, 0, a _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 0, 1, m while va != 0: _UpperCAmelCase = ua // va _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
712
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCAmelCase__ = None UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCAmelCase__ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCAmelCase__ = "▁" # Segments (not really needed) UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 UpperCAmelCase__ = 2 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = '''left''' UpperCamelCase = XLNetTokenizer def __init__( self : Any , A : Union[str, Any]=None , A : str=None , A : Tuple=False , A : Tuple=True , A : Any=False , A : List[str]="<s>" , A : List[str]="</s>" , A : Optional[int]="<unk>" , A : Tuple="<sep>" , A : str="<pad>" , A : Dict="<cls>" , A : Dict="<mask>" , A : Optional[Any]=["<eop>", "<eod>"] , **A : Optional[Any] , ) -> str: """simple docstring""" _UpperCAmelCase = AddedToken(A , lstrip=A , rstrip=A) if isinstance(A , A) else mask_token super().__init__( vocab_file=A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , additional_special_tokens=A , **A , ) _UpperCAmelCase = 3 _UpperCAmelCase = do_lower_case _UpperCAmelCase = remove_space _UpperCAmelCase = keep_accents _UpperCAmelCase = vocab_file _UpperCAmelCase = False if not self.vocab_file else True def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self : Tuple , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _lowerCamelCase ( self : List[str] , A : str , A : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(A): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _UpperCAmelCase = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(A): copyfile(self.vocab_file , A) return (out_vocab_file,)
639
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : Optional[int] = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[Any] = "T5Config" def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): A_ = jnp.zeros_like(__UpperCamelCase ) A_ = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) A_ = shifted_input_ids.at[:, 0].set(__UpperCamelCase ) A_ = jnp.where(shifted_input_ids == -1_00 , __UpperCamelCase , __UpperCamelCase ) return shifted_input_ids class __lowercase ( A ): __magic_name__ : str = '''mt5''' __magic_name__ : str = MTaConfig class __lowercase ( A ): __magic_name__ : List[str] = '''mt5''' __magic_name__ : Optional[Any] = MTaConfig class __lowercase ( A ): __magic_name__ : Any = '''mt5''' __magic_name__ : List[str] = MTaConfig
141
0
'''simple docstring''' import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py SCREAMING_SNAKE_CASE__ = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. SCREAMING_SNAKE_CASE__ = direct_transformers_import(PATH_TO_TRANSFORMERS) SCREAMING_SNAKE_CASE__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING SCREAMING_SNAKE_CASE__ = { # used to compute the property `self.chunk_length` "EncodecConfig": ["overlap"], # used as `self.bert_model = BertModel(config, ...)` "DPRConfig": True, # not used in modeling files, but it's an important information "FSMTConfig": ["langs"], # used internally in the configuration class file "GPTNeoConfig": ["attention_types"], # used internally in the configuration class file "EsmConfig": ["is_folding_model"], # used during training (despite we don't have training script for these models yet) "Mask2FormerConfig": ["ignore_value"], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) "OneFormerConfig": ["ignore_value", "norm"], # used during preprocessing and collation, see `collating_graphormer.py` "GraphormerConfig": ["spatial_pos_max"], # used internally in the configuration class file "T5Config": ["feed_forward_proj"], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally "MT5Config": ["feed_forward_proj", "tokenizer_class"], "UMT5Config": ["feed_forward_proj", "tokenizer_class"], # used internally in the configuration class file "LongT5Config": ["feed_forward_proj"], # used internally in the configuration class file "SwitchTransformersConfig": ["feed_forward_proj"], # having default values other than `1e-5` - we can't fix them without breaking "BioGptConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "GLPNConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "SegformerConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "CvtConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "PerceiverConfig": ["layer_norm_eps"], # used internally to calculate the feature size "InformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "AutoformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate `mlp_dim` "SamVisionConfig": ["mlp_ratio"], # For (head) training, but so far not implemented "ClapAudioConfig": ["num_classes"], # Not used, but providing useful information to users "SpeechT5HifiGanConfig": ["sampling_rate"], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { "CLIPSegConfig": True, "DeformableDetrConfig": True, "DetaConfig": True, "DinatConfig": True, "DonutSwinConfig": True, "EfficientFormerConfig": True, "FSMTConfig": True, "JukeboxConfig": True, "LayoutLMv2Config": True, "MaskFormerSwinConfig": True, "MT5Config": True, "NatConfig": True, "OneFormerConfig": True, "PerceiverConfig": True, "RagConfig": True, "SpeechT5Config": True, "SwinConfig": True, "Swin2SRConfig": True, "Swinv2Config": True, "SwitchTransformersConfig": True, "TableTransformerConfig": True, "TapasConfig": True, "TransfoXLConfig": True, "UniSpeechConfig": True, "UniSpeechSatConfig": True, "WavLMConfig": True, "WhisperConfig": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) "JukeboxPriorConfig": True, # TODO: @Younes (for `is_decoder`) "Pix2StructTextConfig": True, } ) def lowerCamelCase ( _snake_case : Dict ,_snake_case : List[str] ,_snake_case : Union[str, Any] ,_snake_case : Optional[int] ): '''simple docstring''' lowercase__ = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f'''config.{attribute}''' in modeling_source or f'''getattr(config, "{attribute}"''' in modeling_source or f'''getattr(self.config, "{attribute}"''' in modeling_source ): lowercase__ = True # Deal with multi-line cases elif ( re.search( Rf'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"''' ,_snake_case ,) is not None ): lowercase__ = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: lowercase__ = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files lowercase__ = [ "bos_index", "eos_index", "pad_index", "unk_index", "mask_index", "image_size", "use_cache", "out_features", "out_indices", ] lowercase__ = ["encoder_no_repeat_ngram_size"] # Special cases to be allowed lowercase__ = True if not attribute_used: lowercase__ = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: lowercase__ = True elif attribute in ["tie_word_embeddings"] and default_value is False: lowercase__ = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: lowercase__ = True elif attribute.endswith("_token_id" ): lowercase__ = True # configuration class specific cases if not case_allowed: lowercase__ = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ ,[] ) lowercase__ = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def lowerCamelCase ( _snake_case : Dict ): '''simple docstring''' lowercase__ = dict(inspect.signature(config_class.__init__ ).parameters ) lowercase__ = [x for x in list(signature.keys() ) if x not in ["self", "kwargs"]] lowercase__ = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass lowercase__ = {} if len(config_class.attribute_map ) > 0: lowercase__ = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files lowercase__ = inspect.getsourcefile(_snake_case ) lowercase__ = os.path.dirname(_snake_case ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. lowercase__ = [os.path.join(_snake_case ,_snake_case ) for fn in os.listdir(_snake_case ) if fn.startswith("modeling_" )] # Get the source code strings lowercase__ = [] for path in modeling_paths: if os.path.isfile(_snake_case ): with open(_snake_case ) as fp: modeling_sources.append(fp.read() ) lowercase__ = [] for config_param, default_value in zip(_snake_case ,_snake_case ): # `attributes` here is all the variant names for `config_param` lowercase__ = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(_snake_case ,_snake_case ,_snake_case ,_snake_case ): unused_attributes.append(attributes[0] ) return sorted(_snake_case ) def lowerCamelCase ( ): '''simple docstring''' lowercase__ = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) lowercase__ = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) ,lambda _snake_case : inspect.isclass(_snake_case ) and issubclass(_snake_case ,_snake_case ) and inspect.getmodule(_snake_case ) == inspect.getmodule(_config_class ) ,) ] for config_class in config_classes_in_module: lowercase__ = check_config_attributes_being_used(_snake_case ) if len(_snake_case ) > 0: lowercase__ = unused_attributes if len(_snake_case ) > 0: lowercase__ = "The following configuration classes contain unused attributes in the corresponding modeling files:\n" for name, attributes in configs_with_unused_attributes.items(): error += f'''{name}: {attributes}\n''' raise ValueError(_snake_case ) if __name__ == "__main__": check_config_attributes()
716
'''simple docstring''' import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case : def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_=13 ,UpperCAmelCase_=32 ,UpperCAmelCase_=2 ,UpperCAmelCase_=3 ,UpperCAmelCase_=16 ,UpperCAmelCase_=[32, 64, 128] ,UpperCAmelCase_=[1, 2, 1] ,UpperCAmelCase_=[2, 2, 4] ,UpperCAmelCase_=2 ,UpperCAmelCase_=2.0 ,UpperCAmelCase_=True ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=False ,UpperCAmelCase_=True ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-5 ,UpperCAmelCase_=True ,UpperCAmelCase_=None ,UpperCAmelCase_=True ,UpperCAmelCase_=10 ,UpperCAmelCase_=8 ,UpperCAmelCase_=["stage1", "stage2"] ,UpperCAmelCase_=[1, 2] ,) -> Dict: lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = embed_dim lowercase__ = hidden_sizes lowercase__ = depths lowercase__ = num_heads lowercase__ = window_size lowercase__ = mlp_ratio lowercase__ = qkv_bias lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = drop_path_rate lowercase__ = hidden_act lowercase__ = use_absolute_embeddings lowercase__ = patch_norm lowercase__ = layer_norm_eps lowercase__ = initializer_range lowercase__ = is_training lowercase__ = scope lowercase__ = use_labels lowercase__ = type_sequence_label_size lowercase__ = encoder_stride lowercase__ = out_features lowercase__ = out_indices def _a ( self ) -> int: lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase__ = self.get_config() return config, pixel_values, labels def _a ( self ) -> Any: return FocalNetConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,out_features=self.out_features ,out_indices=self.out_indices ,) def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) -> str: lowercase__ = FocalNetModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowercase__ = model(UpperCAmelCase_ ) lowercase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) -> Dict: lowercase__ = FocalNetBackbone(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowercase__ = model(UpperCAmelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowercase__ = None lowercase__ = FocalNetBackbone(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowercase__ = model(UpperCAmelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) -> Dict: lowercase__ = FocalNetForMaskedImageModeling(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowercase__ = model(UpperCAmelCase_ ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase__ = 1 lowercase__ = FocalNetForMaskedImageModeling(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) -> Optional[Any]: lowercase__ = self.type_sequence_label_size lowercase__ = FocalNetForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowercase__ = model(UpperCAmelCase_ ,labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase__ = 1 lowercase__ = FocalNetForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _a ( self ) -> List[str]: lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case (UpperCamelCase , UpperCamelCase , unittest.TestCase ): lowerCAmelCase__ :List[str] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase__ :str = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase__ :str = False lowerCAmelCase__ :List[Any] = False lowerCAmelCase__ :Dict = False lowerCAmelCase__ :List[Any] = False lowerCAmelCase__ :Union[str, Any] = False def _a ( self ) -> Any: lowercase__ = FocalNetModelTester(self ) lowercase__ = ConfigTester(self ,config_class=UpperCAmelCase_ ,embed_dim=37 ,has_text_modality=UpperCAmelCase_ ) def _a ( self ) -> Optional[int]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self ) -> List[Any]: return def _a ( self ) -> Tuple: lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def _a ( self ) -> Union[str, Any]: lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase_ ) def _a ( self ) -> str: lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase_ ) def _a ( self ) -> Dict: lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def _a ( self ) -> str: pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def _a ( self ) -> Optional[int]: pass def _a ( self ) -> int: lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowercase__ = model_class(UpperCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ ,nn.Linear ) ) def _a ( self ) -> Union[str, Any]: lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowercase__ = model_class(UpperCAmelCase_ ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["pixel_values"] self.assertListEqual(arg_names[:1] ,UpperCAmelCase_ ) def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) -> List[Any]: lowercase__ = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(UpperCAmelCase_ ,UpperCAmelCase_ ) ) lowercase__ = outputs.hidden_states lowercase__ = getattr( self.model_tester ,"expected_num_hidden_layers" ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCAmelCase_ ) ,UpperCAmelCase_ ) # FocalNet has a different seq_length lowercase__ = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) lowercase__ = outputs.reshaped_hidden_states self.assertEqual(len(UpperCAmelCase_ ) ,UpperCAmelCase_ ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = reshaped_hidden_states[0].shape lowercase__ = ( reshaped_hidden_states[0].view(UpperCAmelCase_ ,UpperCAmelCase_ ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def _a ( self ) -> str: lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowercase__ = True self.check_hidden_states_output(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True self.check_hidden_states_output(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) def _a ( self ) -> int: lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = 3 lowercase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase__ = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowercase__ = True self.check_hidden_states_output(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True self.check_hidden_states_output(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,(padded_height, padded_width) ) @slow def _a ( self ) -> Dict: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = FocalNetModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def _a ( self ) -> List[Any]: lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = _config_zero_init(UpperCAmelCase_ ) for model_class in self.all_model_classes: lowercase__ = model_class(config=UpperCAmelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() ,[0.0, 1.0] ,msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' ,) @require_vision @require_torch class snake_case (unittest.TestCase ): @cached_property def _a ( self ) -> Optional[int]: # TODO update organization return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def _a ( self ) -> List[str]: lowercase__ = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(UpperCAmelCase_ ) lowercase__ = self.default_image_processor lowercase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) lowercase__ = image_processor(images=UpperCAmelCase_ ,return_tensors="pt" ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): lowercase__ = model(**UpperCAmelCase_ ) # verify the logits lowercase__ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape ,UpperCAmelCase_ ) lowercase__ = torch.tensor([0.21_66, -0.43_68, 0.21_91] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,UpperCAmelCase_ ,atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() ,281 ) @require_torch class snake_case (UpperCamelCase , unittest.TestCase ): lowerCAmelCase__ :Tuple = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase__ :int = FocalNetConfig lowerCAmelCase__ :List[Any] = False def _a ( self ) -> Optional[int]: lowercase__ = FocalNetModelTester(self )
539
0
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> int: '''simple docstring''' lowerCAmelCase_ = 1_0 def _lowercase ( self ) -> Any: '''simple docstring''' lowerCAmelCase_ = [1, 2, 3, 4] lowerCAmelCase_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(lowercase_ , self.block_size , 0 ) , lowercase_ ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] lowerCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(lowercase_ , self.block_size , 0 ) , lowercase_ ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0, 1_1, 1_2, 1_3] lowerCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(lowercase_ , self.block_size , 0 ) , lowercase_ ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' lowerCAmelCase_ , lowerCAmelCase_ = process_story(lowercase_ ) self.assertEqual(lowercase_ , [] ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = '' lowerCAmelCase_ , lowerCAmelCase_ = process_story(lowercase_ ) self.assertEqual(lowercase_ , [] ) self.assertEqual(lowercase_ , [] ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) lowerCAmelCase_ , lowerCAmelCase_ = process_story(lowercase_ ) lowerCAmelCase_ = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(lowercase_ , lowercase_ ) lowerCAmelCase_ = ['It was the best of times.'] self.assertEqual(lowercase_ , lowercase_ ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = torch.tensor([1, 2, 3, 4] ) lowerCAmelCase_ = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(lowercase_ , 0 ).numpy() , expected.numpy() ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = torch.tensor([1, 2, 3, 4, 2_3, 2_3, 2_3] ) lowerCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowercase_ , 2_3 ).numpy() , expected.numpy() ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) lowerCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowercase_ , 1 ).numpy() , expected.numpy() ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = 1_0_1 lowerCAmelCase_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_0_1, 5, 6], [1, 1_0_1, 3, 4, 1_0_1, 6]] ) lowerCAmelCase_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) lowerCAmelCase_ = compute_token_type_ids(lowercase_ , lowercase_ ) np.testing.assert_array_equal(lowercase_ , lowercase_ )
318
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a_ ( unittest.TestCase ): '''simple docstring''' @property def _lowercase ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def _lowercase ( self ) -> int: '''simple docstring''' lowerCAmelCase_ = self.dummy_uncond_unet lowerCAmelCase_ = ScoreSdeVeScheduler() lowerCAmelCase_ = ScoreSdeVePipeline(unet=lowercase_ , scheduler=lowercase_ ) sde_ve.to(lowercase_ ) sde_ve.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=lowercase_ ).images lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=lowercase_ , return_dict=lowercase_ )[ 0 ] lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowerCAmelCase_ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = 'google/ncsnpp-church-256' lowerCAmelCase_ = UNetaDModel.from_pretrained(lowercase_ ) lowerCAmelCase_ = ScoreSdeVeScheduler.from_pretrained(lowercase_ ) lowerCAmelCase_ = ScoreSdeVePipeline(unet=lowercase_ , scheduler=lowercase_ ) sde_ve.to(lowercase_ ) sde_ve.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = sde_ve(num_inference_steps=1_0 , output_type='numpy' , generator=lowercase_ ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) lowerCAmelCase_ = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
318
1
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def __lowerCamelCase ( snake_case__ ,snake_case__=7 ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = None if token is not None: _SCREAMING_SNAKE_CASE = {"""Accept""": """application/vnd.github+json""", """Authorization""": F'Bearer {token}'} # The id of a workflow (not of a workflow run) _SCREAMING_SNAKE_CASE = """636036""" _SCREAMING_SNAKE_CASE = F'https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F'?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}' _SCREAMING_SNAKE_CASE = requests.get(snake_case__ ,headers=snake_case__ ).json() return result["workflow_runs"] def __lowerCamelCase ( snake_case__ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = get_daily_ci_runs(snake_case__ ) _SCREAMING_SNAKE_CASE = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": _SCREAMING_SNAKE_CASE = workflow_run["""id"""] break return workflow_run_id def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = get_last_daily_ci_runs(snake_case__ ) if workflow_run_id is not None: _SCREAMING_SNAKE_CASE = get_artifacts_links(worflow_run_id=snake_case__ ,token=snake_case__ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: _SCREAMING_SNAKE_CASE = artifacts_links[artifact_name] download_artifact( artifact_name=snake_case__ ,artifact_url=snake_case__ ,output_dir=snake_case__ ,token=snake_case__ ) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> str: """simple docstring""" get_last_daily_ci_artifacts(snake_case__ ,snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = {} for artifact_name in artifact_names: _SCREAMING_SNAKE_CASE = os.path.join(snake_case__ ,F'{artifact_name}.zip' ) if os.path.isfile(snake_case__ ): _SCREAMING_SNAKE_CASE = {} with zipfile.ZipFile(snake_case__ ) as z: for filename in z.namelist(): if not os.path.isdir(snake_case__ ): # read the file with z.open(snake_case__ ) as f: _SCREAMING_SNAKE_CASE = f.read().decode("""UTF-8""" ) return results
702
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : Union[str, Any] = KandinskyInpaintPipeline __snake_case : Dict = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] __snake_case : Optional[Any] = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] __snake_case : int = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __snake_case : Optional[int] = False @property def UpperCamelCase ( self: Dict ): '''simple docstring''' return 32 @property def UpperCamelCase ( self: int ): '''simple docstring''' return 32 @property def UpperCamelCase ( self: Tuple ): '''simple docstring''' return self.time_input_dim @property def UpperCamelCase ( self: Dict ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase ( self: str ): '''simple docstring''' return 100 @property def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def UpperCamelCase ( self: Any ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_005 , ) _SCREAMING_SNAKE_CASE = MultilingualCLIP(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = text_encoder.eval() return text_encoder @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _SCREAMING_SNAKE_CASE = UNetaDConditionModel(**UpperCAmelCase_ ) return model @property def UpperCamelCase ( self: List[str] ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = VQModel(**self.dummy_movq_kwargs ) return model def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.dummy_text_encoder _SCREAMING_SNAKE_CASE = self.dummy_tokenizer _SCREAMING_SNAKE_CASE = self.dummy_unet _SCREAMING_SNAKE_CASE = self.dummy_movq _SCREAMING_SNAKE_CASE = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def UpperCamelCase ( self: int , UpperCAmelCase_: Any , UpperCAmelCase_: str=0 ): '''simple docstring''' _SCREAMING_SNAKE_CASE = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(UpperCAmelCase_ ) # create init_image _SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 )[0] _SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(UpperCAmelCase_ ) ).convert("""RGB""" ).resize((256, 256) ) # create mask _SCREAMING_SNAKE_CASE = np.ones((64, 64) , dtype=np.floataa ) _SCREAMING_SNAKE_CASE = 0 if str(UpperCAmelCase_ ).startswith("""mps""" ): _SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase_ ) else: _SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """cpu""" _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = self.pipeline_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = output.images _SCREAMING_SNAKE_CASE = pipe( **self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0] _SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] print(F'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) _SCREAMING_SNAKE_CASE = np.array( [0.8_32_69_19, 0.73_79_04_67, 0.20_91_85_81, 0.9_30_96_12, 0.5_51_17_91, 0.43_71_33_28, 0.5_51_33_21, 0.49_92_29_34, 0.59_49_77_86] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def UpperCamelCase ( self: str ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) _SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _SCREAMING_SNAKE_CASE = np.ones((768, 768) , dtype=np.floataa ) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = """a hat""" _SCREAMING_SNAKE_CASE = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) _SCREAMING_SNAKE_CASE = pipeline.to(UpperCAmelCase_ ) pipeline.set_progress_bar_config(disable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = pipe_prior( UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _SCREAMING_SNAKE_CASE = pipeline( UpperCAmelCase_ , image=UpperCAmelCase_ , mask_image=UpperCAmelCase_ , image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , ) _SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
569
0
"""simple docstring""" class UpperCAmelCase_ : """simple docstring""" def __init__( self : str , a_ : Tuple )-> List[str]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = val UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Optional[Any] = None def a ( self : int , a_ : Union[str, Any] )-> Tuple: """simple docstring""" if self.val: if val < self.val: if self.left is None: UpperCAmelCase_ : Optional[Any] = Node(a_ ) else: self.left.insert(a_ ) elif val > self.val: if self.right is None: UpperCAmelCase_ : Optional[Any] = Node(a_ ) else: self.right.insert(a_ ) else: UpperCAmelCase_ : List[Any] = val def A_ ( lowercase , lowercase ) -> Dict: """simple docstring""" if root: inorder(root.left , lowercase ) res.append(root.val ) inorder(root.right , lowercase ) def A_ ( lowercase ) -> Tuple: """simple docstring""" if len(lowercase ) == 0: return arr UpperCAmelCase_ : int = Node(arr[0] ) for i in range(1 , len(lowercase ) ): root.insert(arr[i] ) # Traverse BST in order. UpperCAmelCase_ : List[str] = [] inorder(lowercase , lowercase ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
470
"""simple docstring""" def A_ ( lowercase ) -> None: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = generate_pascal_triangle(lowercase ) for row_idx in range(lowercase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=""" """ ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=""" """ ) else: print(triangle[row_idx][col_idx] , end="""""" ) print() def A_ ( lowercase ) -> list[list[int]]: """simple docstring""" if not isinstance(lowercase , lowercase ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) UpperCAmelCase_ : list[list[int]] = [] for current_row_idx in range(lowercase ): UpperCAmelCase_ : Optional[Any] = populate_current_row(lowercase , lowercase ) triangle.append(lowercase ) return triangle def A_ ( lowercase , lowercase ) -> list[int]: """simple docstring""" UpperCAmelCase_ : List[Any] = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 UpperCAmelCase_ ,UpperCAmelCase_ : List[Any] = 1, 1 for current_col_idx in range(1 , lowercase ): calculate_current_element( lowercase , lowercase , lowercase , lowercase ) return current_row def A_ ( lowercase , lowercase , lowercase , lowercase , ) -> None: """simple docstring""" UpperCAmelCase_ : str = triangle[current_row_idx - 1][current_col_idx - 1] UpperCAmelCase_ : int = triangle[current_row_idx - 1][current_col_idx] UpperCAmelCase_ : Any = above_to_left_elt + above_to_right_elt def A_ ( lowercase ) -> list[list[int]]: """simple docstring""" if not isinstance(lowercase , lowercase ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) UpperCAmelCase_ : list[list[int]] = [[1]] for row_index in range(1 , lowercase ): UpperCAmelCase_ : Any = [0] + result[-1] + [0] UpperCAmelCase_ : Union[str, Any] = row_index + 1 # Calculate the number of distinct elements in a row UpperCAmelCase_ : Dict = sum(divmod(lowercase , 2 ) ) UpperCAmelCase_ : List[str] = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] UpperCAmelCase_ : Union[str, Any] = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() UpperCAmelCase_ : int = row_first_half + row_second_half result.append(lowercase ) return result def A_ ( ) -> None: """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowercase , lowercase ) -> None: UpperCAmelCase_ : int = f'''{func.__name__}({value})''' UpperCAmelCase_ : int = timeit(f'''__main__.{call}''' , setup="""import __main__""" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f'''{call:38} -- {timing:.4f} seconds''' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowercase , lowercase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
470
1
"""simple docstring""" import argparse import os import torch from transformers.utils import WEIGHTS_NAME A = ["""small""", """medium""", """large"""] A = """lm_head.decoder.weight""" A = """lm_head.weight""" def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> str: """simple docstring""" __UpperCAmelCase : Dict = torch.load(UpperCamelCase ) __UpperCAmelCase : Optional[Any] = d.pop(UpperCamelCase ) os.makedirs(UpperCamelCase , exist_ok=UpperCamelCase ) torch.save(UpperCamelCase , os.path.join(UpperCamelCase , UpperCamelCase ) ) if __name__ == "__main__": A = argparse.ArgumentParser() parser.add_argument("""--dialogpt_path""", default=""".""", type=str) A = parser.parse_args() for MODEL in DIALOGPT_MODELS: A = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') A = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
487
"""simple docstring""" def _UpperCamelCase ( UpperCamelCase , UpperCamelCase = False ) -> bool: """simple docstring""" if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3170_4406_4679_8873_8596_1981 and not allow_probable: raise ValueError( "Warning: upper bound of deterministic test is exceeded. " "Pass allow_probable=True to allow probabilistic test. " "A return value of True indicates a probable prime." ) # array bounds provided by analysis __UpperCAmelCase : List[str] = [ 2047, 137_3653, 2532_6001, 32_1503_1751, 2_1523_0289_8747, 3_4747_4966_0383, 341_5500_7172_8321, 1, 382_5123_0565_4641_3051, 1, 1, 3186_6585_7834_0311_5116_7461, 3_3170_4406_4679_8873_8596_1981, ] __UpperCAmelCase : Tuple = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(UpperCamelCase , 1 ): if n < _p: # then we have our last prime to check __UpperCAmelCase : Tuple = primes[:idx] break __UpperCAmelCase , __UpperCAmelCase : List[str] = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: __UpperCAmelCase : Optional[int] = False for r in range(UpperCamelCase ): __UpperCAmelCase : Dict = pow(UpperCamelCase , d * 2**r , UpperCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): __UpperCAmelCase : Optional[int] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def _UpperCamelCase ( ) -> None: """simple docstring""" assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(83_8201 ) assert miller_rabin(83_8207 ) # 1_373_653 assert not miller_rabin(1731_6001 ) assert miller_rabin(1731_6017 ) # 25_326_001 assert not miller_rabin(30_7838_6641 ) assert miller_rabin(30_7838_6653 ) # 3_215_031_751 assert not miller_rabin(1_7130_4557_4801 ) assert miller_rabin(1_7130_4557_4819 ) # 2_152_302_898_747 assert not miller_rabin(2_7797_9972_8307 ) assert miller_rabin(2_7797_9972_8327 ) # 3_474_749_660_383 assert not miller_rabin(113_8500_2390_9441 ) assert miller_rabin(113_8500_2390_9527 ) # 341_550_071_728_321 assert not miller_rabin(127_5041_0188_4880_4351 ) assert miller_rabin(127_5041_0188_4880_4391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(796_6646_4458_5077_8779_1867 ) assert miller_rabin(796_6646_4458_5077_8779_1951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5528_4067_7446_6478_9766_0333 ) assert miller_rabin(5528_4067_7446_6478_9766_0359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
487
1
'''simple docstring''' # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def UpperCamelCase ( lowercase_ : Tuple , lowercase_ : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : Dict ) -> Optional[Any]: '''simple docstring''' lowercase ={ '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] lowercase ={ '''wmt16-en-de-dist-12-1''': [2_8.3, 2_7.5_2], '''wmt16-en-de-dist-6-1''': [2_7.4, 2_7.1_1], '''wmt16-en-de-12-1''': [2_6.9, 2_5.7_5], } lowercase =f'{src_lang}-{tgt_lang}' lowercase =f'\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "allenai/{model_name}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n' model_card_dir.mkdir(parents=lowercase_ , exist_ok=lowercase_ ) lowercase =os.path.join(lowercase_ , '''README.md''' ) print(f'Generating {path}' ) with open(lowercase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(lowercase_ ) # make sure we are under the root of the project _UpperCAmelCase : Optional[Any] = Path(__file__).resolve().parent.parent.parent _UpperCAmelCase : Tuple = repo_dir / '''model_cards''' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: _UpperCAmelCase : str = model_cards_dir / '''allenai''' / model_name write_model_card(model_card_dir, src_lang='''en''', tgt_lang='''de''', model_name=model_name)
72
'''simple docstring''' from __future__ import annotations import time import numpy as np _UpperCAmelCase : int = [8, 5, 9, 7] _UpperCAmelCase : List[str] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] _UpperCAmelCase : Union[str, Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class __magic_name__ : def __init__( self , snake_case_ , snake_case_ , snake_case_ , ): lowercase =claim_vector lowercase =allocated_resources_table lowercase =maximum_claim_table def _A( self ): return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def _A( self ): return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def _A( self ): return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(snake_case_ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def _A( self ): return {self.__need().index(snake_case_ ): i for i in self.__need()} def _A( self , **snake_case_ ): lowercase =self.__need() lowercase =self.__allocated_resources_table lowercase =self.__available_resources() lowercase =self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('''_''' * 50 + '''\n''' ) while need_list: lowercase =False for each_need in need_list: lowercase =True for index, need in enumerate(snake_case_ ): if need > available_resources[index]: lowercase =False break if execution: lowercase =True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: lowercase =original_need_index print(f'Process {process_number + 1} is executing.' ) # remove the process run from stack need_list.remove(snake_case_ ) # update available/freed resources stack lowercase =np.array(snake_case_ ) + np.array( alloc_resources_table[process_number] ) print( '''Updated available resource stack for processes: ''' + ''' '''.join([str(snake_case_ ) for x in available_resources] ) ) break if safe: print('''The process is in a safe state.\n''' ) else: print('''System in unsafe state. Aborting...\n''' ) break def _A( self ): print(''' ''' * 9 + '''Allocated Resource Table''' ) for item in self.__allocated_resources_table: print( f'P{self.__allocated_resources_table.index(snake_case_ ) + 1}' + ''' '''.join(f'{it:>8}' for it in item ) + '''\n''' ) print(''' ''' * 9 + '''System Resource Table''' ) for item in self.__maximum_claim_table: print( f'P{self.__maximum_claim_table.index(snake_case_ ) + 1}' + ''' '''.join(f'{it:>8}' for it in item ) + '''\n''' ) print( '''Current Usage by Active Processes: ''' + ''' '''.join(str(snake_case_ ) for x in self.__claim_vector ) ) print( '''Initial Available Resources: ''' + ''' '''.join(str(snake_case_ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
72
1
"""simple docstring""" import math class lowerCAmelCase_ : '''simple docstring''' def __init__( self , snake_case_=0 ) -> List[Any]: # a graph with Node 0,1,...,N-1 __lowerCAmelCase = n __lowerCAmelCase = [ [math.inf for j in range(0 , lowerCamelCase_ )] for i in range(0 , lowerCamelCase_ ) ] # adjacency matrix for weight __lowerCAmelCase = [ [math.inf for j in range(0 , lowerCamelCase_ )] for i in range(0 , lowerCamelCase_ ) ] # dp[i][j] stores minimum distance from i to j def A__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: __lowerCAmelCase = w def A__ ( self ) -> Union[str, Any]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __lowerCAmelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def A__ ( self , snake_case_ , snake_case_ ) -> Optional[Any]: return self.dp[u][v] if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
718
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
573
0
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def snake_case ( A__ ): return getitem, k def snake_case ( A__ ,A__ ): return setitem, k, v def snake_case ( A__ ): return delitem, k def snake_case ( A__ ,A__ ,*A__ ): try: return fun(A__ ,*A__ ), None except Exception as e: return None, e lowerCamelCase_ = ( _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), ) lowerCamelCase_ = [ _set('''key_a''', '''val_a'''), _set('''key_a''', '''val_b'''), ] lowerCamelCase_ = [ _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), _del('''key_a'''), _del('''key_b'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), ] lowerCamelCase_ = [ _get('''key_a'''), _del('''key_a'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), _del('''key_a'''), _get('''key_a'''), ] lowerCamelCase_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] lowerCamelCase_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('''key_a''', '''val_b'''), ] @pytest.mark.parametrize( "operations" ,( pytest.param(_add_items ,id="add items" ), pytest.param(_overwrite_items ,id="overwrite items" ), pytest.param(_delete_items ,id="delete items" ), pytest.param(_access_absent_items ,id="access absent items" ), pytest.param(_add_with_resize_up ,id="add with resize up" ), pytest.param(_add_with_resize_down ,id="add with resize down" ), ) ,) def snake_case ( A__ ): UpperCAmelCase_ : List[Any] = HashMap(initial_block_size=4 ) UpperCAmelCase_ : List[Any] = {} for _, (fun, *args) in enumerate(A__ ): UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = _run_operation(A__ ,A__ ,*A__ ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = _run_operation(A__ ,A__ ,*A__ ) assert my_res == py_res assert str(A__ ) == str(A__ ) assert set(A__ ) == set(A__ ) assert len(A__ ) == len(A__ ) assert set(my.items() ) == set(py.items() ) def snake_case ( ): def is_public(A__ ) -> bool: return not name.startswith("_" ) UpperCAmelCase_ : int = {name for name in dir({} ) if is_public(A__ )} UpperCAmelCase_ : Any = {name for name in dir(HashMap() ) if is_public(A__ )} assert dict_public_names > hash_public_names
95
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = 42 _UpperCAmelCase = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.26.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version(""">=""", """0.0.12""") ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = 42 _UpperCAmelCase = 42 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
328
0
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case : def __init__( self : Optional[int] , A : Optional[Any] , A : Tuple=1_3 , A : Optional[int]=7 , A : Tuple=True , A : Any=True , A : Union[str, Any]=True , A : Any=True , A : List[Any]=9_9 , A : Optional[int]=1_6 , A : Tuple=3_6 , A : str=6 , A : Tuple=6 , A : Optional[Any]=6 , A : Any=3_7 , A : int="gelu" , A : Optional[int]=0.1 , A : Dict=0.1 , A : Union[str, Any]=5_1_2 , A : int=1_6 , A : int=2 , A : Tuple=0.02 , A : Optional[Any]=3 , A : str=4 , A : Tuple=None , ): '''simple docstring''' a : int = parent a : List[str] = batch_size a : List[str] = seq_length a : int = is_training a : int = use_input_mask a : List[str] = use_token_type_ids a : int = use_labels a : int = vocab_size a : Any = embedding_size a : Any = hidden_size a : Any = num_hidden_layers a : List[Any] = num_hidden_groups a : Optional[int] = num_attention_heads a : str = intermediate_size a : str = hidden_act a : Dict = hidden_dropout_prob a : List[str] = attention_probs_dropout_prob a : int = max_position_embeddings a : Optional[int] = type_vocab_size a : int = type_sequence_label_size a : Tuple = initializer_range a : str = num_labels a : Union[str, Any] = num_choices a : Dict = scope def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' a : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a : int = None if self.use_input_mask: a : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) a : Union[str, Any] = None if self.use_token_type_ids: a : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a : List[str] = None a : Dict = None a : Dict = None if self.use_labels: a : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a : int = ids_tensor([self.batch_size] , self.num_choices ) a : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowerCamelCase__ ( self : Optional[int] , A : Tuple , A : Optional[Any] , A : Optional[int] , A : Dict , A : List[str] , A : Optional[Any] , A : str ): '''simple docstring''' a : Dict = AlbertModel(config=A ) model.to(A ) model.eval() a : List[str] = model(A , attention_mask=A , token_type_ids=A ) a : str = model(A , token_type_ids=A ) a : int = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase__ ( self : List[Any] , A : int , A : Any , A : List[str] , A : List[str] , A : Optional[int] , A : Tuple , A : Optional[int] ): '''simple docstring''' a : int = AlbertForPreTraining(config=A ) model.to(A ) model.eval() a : Dict = model( A , attention_mask=A , token_type_ids=A , labels=A , sentence_order_label=A , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def lowerCamelCase__ ( self : int , A : Tuple , A : Any , A : Dict , A : Optional[int] , A : Dict , A : int , A : str ): '''simple docstring''' a : Optional[int] = AlbertForMaskedLM(config=A ) model.to(A ) model.eval() a : Optional[Any] = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self : int , A : Union[str, Any] , A : int , A : Dict , A : Tuple , A : str , A : List[Any] , A : str ): '''simple docstring''' a : Optional[int] = AlbertForQuestionAnswering(config=A ) model.to(A ) model.eval() a : List[str] = model( A , attention_mask=A , token_type_ids=A , start_positions=A , end_positions=A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self : Tuple , A : List[Any] , A : List[str] , A : List[str] , A : Any , A : List[Any] , A : Dict , A : str ): '''simple docstring''' a : Optional[int] = self.num_labels a : Optional[Any] = AlbertForSequenceClassification(A ) model.to(A ) model.eval() a : str = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : Optional[Any] , A : List[Any] , A : Optional[int] , A : List[Any] , A : str , A : Dict , A : Optional[Any] , A : Any ): '''simple docstring''' a : Optional[int] = self.num_labels a : str = AlbertForTokenClassification(config=A ) model.to(A ) model.eval() a : List[str] = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self : Dict , A : Optional[int] , A : int , A : int , A : List[Any] , A : List[str] , A : Optional[Any] , A : str ): '''simple docstring''' a : List[str] = self.num_choices a : str = AlbertForMultipleChoice(config=A ) model.to(A ) model.eval() a : List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a : str = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a : str = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a : Union[str, Any] = model( A , attention_mask=A , token_type_ids=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ ( self : str ): '''simple docstring''' a : Tuple = self.prepare_config_and_inputs() ( ( a ), ( a ), ( a ), ( a ), ( a ), ( a ), ( a ), ) : Dict = config_and_inputs a : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class snake_case ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): __magic_name__ = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) __magic_name__ = ( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) __magic_name__ = True def lowerCamelCase__ ( self : Union[str, Any] , A : List[str] , A : Tuple , A : Tuple=False ): '''simple docstring''' a : List[Any] = super()._prepare_for_class(A , A , return_labels=A ) if return_labels: if model_class in get_values(A ): a : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=A ) a : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A ) return inputs_dict def lowerCamelCase__ ( self : Any ): '''simple docstring''' a : int = AlbertModelTester(self ) a : List[Any] = ConfigTester(self , config_class=A , hidden_size=3_7 ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def lowerCamelCase__ ( self : int ): '''simple docstring''' a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*A ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A ) def lowerCamelCase__ ( self : int ): '''simple docstring''' a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) def lowerCamelCase__ ( self : int ): '''simple docstring''' a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def lowerCamelCase__ ( self : int ): '''simple docstring''' a : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a : Optional[Any] = type self.model_tester.create_and_check_model(*A ) @slow def lowerCamelCase__ ( self : Any ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Tuple = AlbertModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_torch class snake_case ( unittest.TestCase ): @slow def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' a : List[Any] = AlbertModel.from_pretrained('albert-base-v2' ) a : Union[str, Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) a : str = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): a : Optional[Any] = model(A , attention_mask=A )[0] a : List[Any] = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , A ) a : int = torch.tensor( [[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , A , atol=1E-4 ) )
118
"""simple docstring""" import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) _UpperCamelCase : List[str] = logging.getLogger() def snake_case (A_ :Path , A_ :list ): '''simple docstring''' a : Optional[int] = '\n'.join(A_ ) Path(A_ ).open('w' ).writelines(A_ ) _UpperCamelCase : Optional[Any] = 'patrickvonplaten/t5-tiny-random' _UpperCamelCase : str = 'sshleifer/bart-tiny-random' _UpperCamelCase : Any = 'sshleifer/tiny-mbart' _UpperCamelCase : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class snake_case ( UpperCAmelCase ): def lowerCamelCase__ ( self : List[Any] , A : Optional[Any] ): '''simple docstring''' a : Dict = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' a : List[str] = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() a : Optional[Any] = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(A , A ) a : Tuple = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) a : List[Any] = 'translation_en_to_de' if model == T5_TINY else 'summarization' a : List[Any] = F''' run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 '''.split() with patch.object(A , 'argv' , A ): run_generate() assert Path(A ).exists() # os.remove(Path(output_file_name)) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' self.run_eval_tester(A ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def lowerCamelCase__ ( self : Union[str, Any] , A : List[Any] ): '''simple docstring''' self.run_eval_tester(A ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def lowerCamelCase__ ( self : Optional[Any] , A : List[Any] ): '''simple docstring''' a : Dict = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' a : int = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() a : Optional[Any] = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist großartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } a : int = Path(self.get_auto_remove_tmp_dir() ) a : int = str(tmp_dir / 'scores.json' ) a : Optional[int] = str(tmp_dir / 'val.target' ) _dump_articles(A , text['en'] ) _dump_articles(A , text['de'] ) a : List[str] = 'translation_en_to_de' if model == T5_TINY else 'summarization' a : Any = F''' run_eval_search.py {model} {str(A )} {str(A )} --score_path {score_path} --reference_path {reference_path} --task {task} '''.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(A , 'argv' , A ): with CaptureStdout() as cs: run_search() a : Tuple = [' num_beams | length_penalty', model, 'Best score args'] a : List[str] = ['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(A ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(A ).exists() os.remove(Path(A ) )
118
1
from ... import PretrainedConfig lowerCamelCase : List[str] = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class A( __lowercase ): '''simple docstring''' UpperCamelCase = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP UpperCamelCase = '''nezha''' def __init__( self : List[Any] , A_ : str=21128 , A_ : Tuple=768 , A_ : int=12 , A_ : List[str]=12 , A_ : List[str]=3072 , A_ : Tuple="gelu" , A_ : List[Any]=0.1 , A_ : Dict=0.1 , A_ : int=512 , A_ : List[str]=64 , A_ : Optional[Any]=2 , A_ : List[str]=0.02 , A_ : Dict=1E-12 , A_ : Any=0.1 , A_ : str=0 , A_ : List[Any]=2 , A_ : Tuple=3 , A_ : Union[str, Any]=True , **A_ : List[str] , ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_act lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = max_relative_position lowerCamelCase_ = type_vocab_size lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = classifier_dropout lowerCamelCase_ = use_cache
70
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __UpperCamelCase = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class _A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] , __magic_name__ : Path , __magic_name__ : Union[str, None] = None , __magic_name__ : Union[List[str], None] = None , __magic_name__ : Union[str, List[str], None] = None , __magic_name__ : bool = True , ) -> Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = [file for file in os.listdir(__magic_name__ ) if os.path.isfile(os.path.join(__magic_name__ , __magic_name__ ) )] if identifier is not None: __snake_case : List[Any] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__magic_name__ , __magic_name__ ): for n_ in n_identifier: __snake_case : Optional[int] = [file for file in files if n_ not in file] else: __snake_case : Tuple = [file for file in files if n_identifier not in file] __snake_case : Dict = ignore_files or [] ignore_files.append("""__init__.py""" ) __snake_case : List[str] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , __magic_name__ ) if only_modules: __snake_case : List[Any] = file.split(""".""" )[0] try: __snake_case : List[Any] = getattr(__magic_name__ , __magic_name__ ) __snake_case : Union[str, Any] = doctest.DocTestSuite(__magic_name__ ) __snake_case : Dict = unittest.TextTestRunner().run(__magic_name__ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'''{module_identifier} is not a module.''' ) else: __snake_case : Tuple = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : List[Any] = Path("""src/transformers""" ) __snake_case : List[Any] = """modeling""" __snake_case : Union[str, Any] = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(__magic_name__ , identifier=__magic_name__ , ignore_files=__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __snake_case : Union[str, Any] = Path("""src/transformers""" ) __snake_case : Any = """tokenization""" self.analyze_directory(__magic_name__ , identifier=__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __snake_case : List[Any] = Path("""src/transformers""" ) __snake_case : List[str] = """configuration""" self.analyze_directory(__magic_name__ , identifier=__magic_name__ ) def lowercase__ ( self : Dict ) -> Dict: """simple docstring""" __snake_case : Tuple = Path("""src/transformers""" ) __snake_case : int = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(__magic_name__ , n_identifier=__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __snake_case : int = Path("""docs/source""" ) __snake_case : Optional[int] = ["""favicon.ico"""] self.analyze_directory(__magic_name__ , ignore_files=__magic_name__ , only_modules=__magic_name__ )
26
0
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig lowerCAmelCase__ = logging.get_logger(__name__) # General docstring lowerCAmelCase__ = "ResNetConfig" # Base docstring lowerCAmelCase__ = "microsoft/resnet-50" lowerCAmelCase__ = [1, 2_0_4_8, 7, 7] # Image classification docstring lowerCAmelCase__ = "microsoft/resnet-50" lowerCAmelCase__ = "tiger cat" lowerCAmelCase__ = [ "microsoft/resnet-50", # See all resnet models at https://huggingface.co/models?filter=resnet ] class _a ( nn.Module ): """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 3 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = "relu" ): super().__init__() _lowercase =nn.Convad( lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=lowerCAmelCase_ , stride=lowerCAmelCase_ , padding=kernel_size // 2 , bias=lowerCAmelCase_ ) _lowercase =nn.BatchNormad(lowerCAmelCase_ ) _lowercase =ACTaFN[activation] if activation is not None else nn.Identity() def __lowerCAmelCase ( self , lowerCAmelCase_ ): _lowercase =self.convolution(lowerCAmelCase_ ) _lowercase =self.normalization(lowerCAmelCase_ ) _lowercase =self.activation(lowerCAmelCase_ ) return hidden_state class _a ( nn.Module ): """simple docstring""" def __init__( self , lowerCAmelCase_ ): super().__init__() _lowercase =ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _lowercase =nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _lowercase =config.num_channels def __lowerCAmelCase ( self , lowerCAmelCase_ ): _lowercase =pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) _lowercase =self.embedder(lowerCAmelCase_ ) _lowercase =self.pooler(lowerCAmelCase_ ) return embedding class _a ( nn.Module ): """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 2 ): super().__init__() _lowercase =nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=1 , stride=lowerCAmelCase_ , bias=lowerCAmelCase_ ) _lowercase =nn.BatchNormad(lowerCAmelCase_ ) def __lowerCAmelCase ( self , lowerCAmelCase_ ): _lowercase =self.convolution(lowerCAmelCase_ ) _lowercase =self.normalization(lowerCAmelCase_ ) return hidden_state class _a ( nn.Module ): """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 1 , lowerCAmelCase_ = "relu" ): super().__init__() _lowercase =in_channels != out_channels or stride != 1 _lowercase =( ResNetShortCut(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ ) if should_apply_shortcut else nn.Identity() ) _lowercase =nn.Sequential( ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ ) , ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , activation=lowerCAmelCase_ ) , ) _lowercase =ACTaFN[activation] def __lowerCAmelCase ( self , lowerCAmelCase_ ): _lowercase =hidden_state _lowercase =self.layer(lowerCAmelCase_ ) _lowercase =self.shortcut(lowerCAmelCase_ ) hidden_state += residual _lowercase =self.activation(lowerCAmelCase_ ) return hidden_state class _a ( nn.Module ): """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 1 , lowerCAmelCase_ = "relu" , lowerCAmelCase_ = 4 ): super().__init__() _lowercase =in_channels != out_channels or stride != 1 _lowercase =out_channels // reduction _lowercase =( ResNetShortCut(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ ) if should_apply_shortcut else nn.Identity() ) _lowercase =nn.Sequential( ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=1 ) , ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ ) , ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=1 , activation=lowerCAmelCase_ ) , ) _lowercase =ACTaFN[activation] def __lowerCAmelCase ( self , lowerCAmelCase_ ): _lowercase =hidden_state _lowercase =self.layer(lowerCAmelCase_ ) _lowercase =self.shortcut(lowerCAmelCase_ ) hidden_state += residual _lowercase =self.activation(lowerCAmelCase_ ) return hidden_state class _a ( nn.Module ): """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 2 , ): super().__init__() _lowercase =ResNetBottleNeckLayer if config.layer_type == "bottleneck" else ResNetBasicLayer _lowercase =nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ , activation=config.hidden_act ) , *[layer(lowerCAmelCase_ , lowerCAmelCase_ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def __lowerCAmelCase ( self , lowerCAmelCase_ ): _lowercase =input for layer in self.layers: _lowercase =layer(lowerCAmelCase_ ) return hidden_state class _a ( nn.Module ): """simple docstring""" def __init__( self , lowerCAmelCase_ ): super().__init__() _lowercase =nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowerCAmelCase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _lowercase =zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowerCAmelCase_ , config.depths[1:] ): self.stages.append(ResNetStage(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , depth=lowerCAmelCase_ ) ) def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = False , lowerCAmelCase_ = True ): _lowercase =() if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _lowercase =hidden_states + (hidden_state,) _lowercase =stage_module(lowerCAmelCase_ ) if output_hidden_states: _lowercase =hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowerCAmelCase_ , hidden_states=lowerCAmelCase_ , ) class _a ( lowerCamelCase_ ): """simple docstring""" __SCREAMING_SNAKE_CASE = ResNetConfig __SCREAMING_SNAKE_CASE = 'resnet' __SCREAMING_SNAKE_CASE = 'pixel_values' __SCREAMING_SNAKE_CASE = True def __lowerCAmelCase ( self , lowerCAmelCase_ ): if isinstance(lowerCAmelCase_ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="fan_out" , nonlinearity="relu" ) elif isinstance(lowerCAmelCase_ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=False ): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _lowercase =value lowerCAmelCase__ = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" lowerCAmelCase__ = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( 'The bare ResNet model outputting raw features without any specific head on top.' , lowerCamelCase_ , ) class _a ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCAmelCase_ ): super().__init__(lowerCAmelCase_ ) _lowercase =config _lowercase =ResNetEmbeddings(lowerCAmelCase_ ) _lowercase =ResNetEncoder(lowerCAmelCase_ ) _lowercase =nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ): _lowercase =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowercase =return_dict if return_dict is not None else self.config.use_return_dict _lowercase =self.embedder(lowerCAmelCase_ ) _lowercase =self.encoder( lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) _lowercase =encoder_outputs[0] _lowercase =self.pooler(lowerCAmelCase_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase_ , pooler_output=lowerCAmelCase_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , lowerCamelCase_ , ) class _a ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCAmelCase_ ): super().__init__(lowerCAmelCase_ ) _lowercase =config.num_labels _lowercase =ResNetModel(lowerCAmelCase_ ) # classification head _lowercase =nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __lowerCAmelCase ( self , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , ): _lowercase =return_dict if return_dict is not None else self.config.use_return_dict _lowercase =self.resnet(lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) _lowercase =outputs.pooler_output if return_dict else outputs[1] _lowercase =self.classifier(lowerCAmelCase_ ) _lowercase =None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _lowercase ="regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _lowercase ="single_label_classification" else: _lowercase ="multi_label_classification" if self.config.problem_type == "regression": _lowercase =MSELoss() if self.num_labels == 1: _lowercase =loss_fct(logits.squeeze() , labels.squeeze() ) else: _lowercase =loss_fct(lowerCAmelCase_ , lowerCAmelCase_ ) elif self.config.problem_type == "single_label_classification": _lowercase =CrossEntropyLoss() _lowercase =loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _lowercase =BCEWithLogitsLoss() _lowercase =loss_fct(lowerCAmelCase_ , lowerCAmelCase_ ) if not return_dict: _lowercase =(logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase_ , logits=lowerCAmelCase_ , hidden_states=outputs.hidden_states ) @add_start_docstrings( '\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ' , lowerCamelCase_ , ) class _a ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCAmelCase_ ): super().__init__(lowerCAmelCase_ ) super()._init_backbone(lowerCAmelCase_ ) _lowercase =[config.embedding_size] + config.hidden_sizes _lowercase =ResNetEmbeddings(lowerCAmelCase_ ) _lowercase =ResNetEncoder(lowerCAmelCase_ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @replace_return_docstrings(output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC ) def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ): _lowercase =return_dict if return_dict is not None else self.config.use_return_dict _lowercase =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowercase =self.embedder(lowerCAmelCase_ ) _lowercase =self.encoder(lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) _lowercase =outputs.hidden_states _lowercase =() for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _lowercase =(feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowerCAmelCase_ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowerCAmelCase_ , )
594
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(">=", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType lowerCAmelCase__ = get_logger(__name__) def __lowerCamelCase ( __a : Dict , __a : Any , __a : Optional[int] , __a : Dict , __a : str=0 ) -> str: os.makedirs(__a , exist_ok=__a ) with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): _lowercase =model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: _lowercase =f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin''' _lowercase =os.path.join(__a , __a ) if accelerator.process_index == 0: logger.info(f'''Saving model to {output_model_file}''' ) torch.save(__a , __a ) logger.info(f'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: _lowercase =( f'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) _lowercase =os.path.join(__a , __a ) logger.info(f'''Saving model to {output_model_file}''' ) torch.save(__a , __a ) logger.info(f'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: _lowercase =os.path.join(__a , f'''{MODEL_NAME}_{model_index}''' ) os.makedirs(__a , exist_ok=__a ) logger.info(f'''Saving model to {ckpt_dir}''' ) _lowercase ={"model": state_dict} dist_cp.save_state_dict( state_dict=__a , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , ) logger.info(f'''Model saved to {ckpt_dir}''' ) def __lowerCamelCase ( __a : Union[str, Any] , __a : Tuple , __a : str , __a : Optional[int] , __a : List[Any]=0 ) -> Optional[Any]: accelerator.wait_for_everyone() with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(__a ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return _lowercase =f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin''' _lowercase =os.path.join(__a , __a ) logger.info(f'''Loading model from {input_model_file}''' ) _lowercase =torch.load(__a ) logger.info(f'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: _lowercase =( f'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) _lowercase =os.path.join(__a , __a ) logger.info(f'''Loading model from {input_model_file}''' ) _lowercase =torch.load(__a ) logger.info(f'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: _lowercase =( os.path.join(__a , f'''{MODEL_NAME}_{model_index}''' ) if f'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(f'''Loading model from {ckpt_dir}''' ) _lowercase ={"model": model.state_dict()} dist_cp.load_state_dict( state_dict=__a , storage_reader=dist_cp.FileSystemReader(__a ) , planner=DefaultLoadPlanner() , ) _lowercase =state_dict["model"] logger.info(f'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(__a ) def __lowerCamelCase ( __a : Tuple , __a : int , __a : List[Any] , __a : Optional[int] , __a : List[Any] , __a : Any=0 ) -> str: os.makedirs(__a , exist_ok=__a ) with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): _lowercase =FSDP.optim_state_dict(__a , __a ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: _lowercase =( f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) _lowercase =os.path.join(__a , __a ) logger.info(f'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(__a , __a ) logger.info(f'''Optimizer state saved in {output_optimizer_file}''' ) else: _lowercase =os.path.join(__a , f'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(__a , exist_ok=__a ) logger.info(f'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , ) logger.info(f'''Optimizer state saved in {ckpt_dir}''' ) def __lowerCamelCase ( __a : str , __a : Any , __a : Any , __a : Any , __a : str , __a : List[Any]=0 ) -> Optional[Any]: accelerator.wait_for_everyone() with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: _lowercase =None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: _lowercase =( f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) _lowercase =os.path.join(__a , __a ) logger.info(f'''Loading Optimizer state from {input_optimizer_file}''' ) _lowercase =torch.load(__a ) logger.info(f'''Optimizer state loaded from {input_optimizer_file}''' ) else: _lowercase =( os.path.join(__a , f'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if f'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(f'''Loading Optimizer from {ckpt_dir}''' ) _lowercase =load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(__a ) , ) _lowercase =optim_state["optimizer"] logger.info(f'''Optimizer loaded from {ckpt_dir}''' ) _lowercase =FSDP.optim_state_dict_to_load(__a , __a , __a ) optimizer.load_state_dict(__a )
594
1
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union snake_case = TypeVar('''T''') snake_case = Union[List[T], Tuple[T, ...]] snake_case = Union[T, List[T], Dict[str, T]] snake_case = Union[str, bytes, os.PathLike]
309
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" __A = "" __A = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) __A = None # compression type in fsspec. ex: "gzip" __A = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : List[str] , __lowerCAmelCase : str = "" , __lowerCAmelCase : Optional[str] = None , __lowerCAmelCase : Optional[dict] = None , **__lowerCAmelCase : Optional[int] ): """simple docstring""" super().__init__(self , **__lowerCAmelCase ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode _lowerCAmelCase = fsspec.open( __lowerCAmelCase , mode='rb' , protocol=__lowerCAmelCase , compression=self.compression , client_kwargs={ 'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459 'trust_env': True, # Enable reading proxy env variables. **(target_options or {}).pop('client_kwargs' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) _lowerCAmelCase = os.path.basename(self.file.path.split('::' )[0] ) _lowerCAmelCase = ( self.compressed_name[: self.compressed_name.rindex('.' )] if '.' in self.compressed_name else self.compressed_name ) _lowerCAmelCase = None @classmethod def a ( cls : int , __lowerCAmelCase : Optional[int] ): """simple docstring""" return super()._strip_protocol(__lowerCAmelCase ).lstrip('/' ) def a ( self : Union[str, Any] ): """simple docstring""" if self.dir_cache is None: _lowerCAmelCase = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name} _lowerCAmelCase = {f['name']: f} def a ( self : Optional[Any] , __lowerCAmelCase : str ): """simple docstring""" return self.file.open().read() def a ( self : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : str = "rb" , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Dict=True , __lowerCAmelCase : Tuple=None , **__lowerCAmelCase : Dict , ): """simple docstring""" _lowerCAmelCase = self._strip_protocol(__lowerCAmelCase ) if mode != "rb": raise ValueError(F"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'" ) return self.file.open() class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" __A = "bz2" __A = "bz2" __A = ".bz2" class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" __A = "gzip" __A = "gzip" __A = ".gz" class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" __A = "lz4" __A = "lz4" __A = ".lz4" class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" __A = "xz" __A = "xz" __A = ".xz" class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" __A = "zstd" __A = "zstd" __A = ".zst" def __init__( self : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : str = "rb" , __lowerCAmelCase : Optional[str] = None , __lowerCAmelCase : Optional[dict] = None , __lowerCAmelCase : int = DEFAULT_BLOCK_SIZE , **__lowerCAmelCase : Optional[int] , ): """simple docstring""" super().__init__( fo=__lowerCAmelCase , mode=__lowerCAmelCase , target_protocol=__lowerCAmelCase , target_options=__lowerCAmelCase , block_size=__lowerCAmelCase , **__lowerCAmelCase , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 _lowerCAmelCase = self.file.__enter__ class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Dict , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCAmelCase = file_ def __enter__( self : List[Any] ): """simple docstring""" self._file.__enter__() return self def __exit__( self : List[str] , *__lowerCAmelCase : int , **__lowerCAmelCase : Optional[int] ): """simple docstring""" self._file.__exit__(*__lowerCAmelCase , **__lowerCAmelCase ) def __iter__( self : Any ): """simple docstring""" return iter(self._file ) def a ( self : int ): """simple docstring""" return next(self._file ) def __getattr__( self : Tuple , __lowerCAmelCase : Dict ): """simple docstring""" return getattr(self._file , __lowerCAmelCase ) def fixed_enter(*__lowerCAmelCase : List[str] , **__lowerCAmelCase : int ): return WrappedFile(_enter(*__lowerCAmelCase , **__lowerCAmelCase ) ) _lowerCAmelCase = fixed_enter
309
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/config.json''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/config.json''', '''funnel-transformer/medium-base''': '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json''', '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/config.json''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json''', '''funnel-transformer/xlarge-base''': '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json''', } class A__ ( __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : Any ="funnel" lowerCamelCase__ : Any ={ "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self , lowerCamelCase=30522 , lowerCamelCase=[4, 4, 4] , lowerCamelCase=None , lowerCamelCase=2 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=64 , lowerCamelCase=3072 , lowerCamelCase="gelu_new" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=0.1 , lowerCamelCase=None , lowerCamelCase=1e-9 , lowerCamelCase="mean" , lowerCamelCase="relative_shift" , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , **lowerCamelCase , ) -> Optional[Any]: """simple docstring""" __magic_name__ : Any = vocab_size __magic_name__ : str = block_sizes __magic_name__ : Tuple = [1] * len(lowerCamelCase ) if block_repeats is None else block_repeats assert len(lowerCamelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." __magic_name__ : List[str] = num_decoder_layers __magic_name__ : Any = d_model __magic_name__ : Optional[int] = n_head __magic_name__ : Union[str, Any] = d_head __magic_name__ : Union[str, Any] = d_inner __magic_name__ : Dict = hidden_act __magic_name__ : Optional[int] = hidden_dropout __magic_name__ : Union[str, Any] = attention_dropout __magic_name__ : int = activation_dropout __magic_name__ : int = initializer_range __magic_name__ : Any = initializer_std __magic_name__ : List[Any] = layer_norm_eps assert pooling_type in [ "mean", "max", ], F'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.''' __magic_name__ : str = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.''' __magic_name__ : Any = attention_type __magic_name__ : Optional[int] = separate_cls __magic_name__ : List[Any] = truncate_seq __magic_name__ : int = pool_q_only super().__init__(**lowerCamelCase ) @property def lowercase ( self ) -> Any: """simple docstring""" return sum(self.block_sizes ) @num_hidden_layers.setter def lowercase ( self , lowerCamelCase ) -> Optional[int]: """simple docstring""" raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' ) @property def lowercase ( self ) -> List[str]: """simple docstring""" return len(self.block_sizes ) @num_blocks.setter def lowercase ( self , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
336
from __future__ import annotations class A__ : def __init__( self , lowerCamelCase ) -> None: """simple docstring""" __magic_name__ : List[str] = data __magic_name__ : Node | None = None __magic_name__ : Node | None = None def lowerCAmelCase ( UpperCAmelCase ) ->None: # In Order traversal of the tree """simple docstring""" if tree: display(tree.left ) print(tree.data ) display(tree.right ) def lowerCAmelCase ( UpperCAmelCase ) ->int: """simple docstring""" return 1 + max(depth_of_tree(tree.left ), depth_of_tree(tree.right ) ) if tree else 0 def lowerCAmelCase ( UpperCAmelCase ) ->bool: """simple docstring""" if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def lowerCAmelCase ( ) ->None: # Main function for testing. """simple docstring""" __magic_name__ : Tuple = Node(1 ) __magic_name__ : Union[str, Any] = Node(2 ) __magic_name__ : Tuple = Node(3 ) __magic_name__ : List[str] = Node(4 ) __magic_name__ : str = Node(5 ) __magic_name__ : List[Any] = Node(6 ) __magic_name__ : Optional[int] = Node(7 ) __magic_name__ : str = Node(8 ) __magic_name__ : str = Node(9 ) print(is_full_binary_tree(UpperCAmelCase ) ) print(depth_of_tree(UpperCAmelCase ) ) print('''Tree is: ''' ) display(UpperCAmelCase ) if __name__ == "__main__": main()
336
1
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class snake_case_ : def __init__( self :str ,__snake_case :Tuple ,__snake_case :str=13 ,__snake_case :int=30 ,__snake_case :str=2 ,__snake_case :str=3 ,__snake_case :Optional[int]=True ,__snake_case :int=True ,__snake_case :Dict=32 ,__snake_case :Optional[int]=5 ,__snake_case :Optional[int]=4 ,__snake_case :Tuple=37 ,__snake_case :Optional[int]="gelu" ,__snake_case :str=0.1 ,__snake_case :Tuple=0.1 ,__snake_case :List[str]=10 ,__snake_case :Union[str, Any]=0.02 ,__snake_case :str=3 ,__snake_case :Tuple=None ,__snake_case :int=2 ,) -> List[Any]: a__ = parent a__ = batch_size a__ = image_size a__ = patch_size a__ = num_channels a__ = is_training a__ = use_labels a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = type_sequence_label_size a__ = initializer_range a__ = scope a__ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) a__ = (image_size // patch_size) ** 2 a__ = num_patches + 2 def lowerCamelCase__( self :Optional[int] ) -> List[str]: a__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = self.get_config() return config, pixel_values, labels def lowerCamelCase__( self :List[Any] ) -> Dict: return DeiTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__snake_case ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def lowerCamelCase__( self :Optional[int] ,__snake_case :Any ,__snake_case :Tuple ,__snake_case :Optional[int] ) -> Any: a__ = DeiTModel(config=__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__( self :Tuple ,__snake_case :List[Any] ,__snake_case :str ,__snake_case :List[str] ) -> List[Any]: a__ = DeiTForMaskedImageModeling(config=__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images a__ = 1 a__ = DeiTForMaskedImageModeling(__snake_case ) model.to(__snake_case ) model.eval() a__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a__ = model(__snake_case ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def lowerCamelCase__( self :int ,__snake_case :Any ,__snake_case :Tuple ,__snake_case :int ) -> Union[str, Any]: a__ = self.type_sequence_label_size a__ = DeiTForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() a__ = model(__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images a__ = 1 a__ = DeiTForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() a__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a__ = model(__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase__( self :Union[str, Any] ) -> List[str]: a__ = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ) = config_and_inputs a__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : int = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) UpperCAmelCase__ : Optional[int] = ( { '''feature-extraction''': DeiTModel, '''image-classification''': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : str = False def lowerCamelCase__( self :int ) -> Optional[Any]: a__ = DeiTModelTester(self ) a__ = ConfigTester(self ,config_class=__snake_case ,has_text_modality=__snake_case ,hidden_size=37 ) def lowerCamelCase__( self :int ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def lowerCamelCase__( self :List[Any] ) -> Optional[Any]: pass def lowerCamelCase__( self :Tuple ) -> int: a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) a__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case ,nn.Linear ) ) def lowerCamelCase__( self :Tuple ) -> Optional[int]: a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(__snake_case ) a__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ = [*signature.parameters.keys()] a__ = ['pixel_values'] self.assertListEqual(arg_names[:1] ,__snake_case ) def lowerCamelCase__( self :Union[str, Any] ) -> str: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def lowerCamelCase__( self :List[Any] ) -> Optional[int]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__snake_case ) def lowerCamelCase__( self :str ) -> int: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) def lowerCamelCase__( self :List[Any] ,__snake_case :Dict ,__snake_case :List[str] ,__snake_case :List[str]=False ) -> List[Any]: a__ = super()._prepare_for_class(__snake_case ,__snake_case ,return_labels=__snake_case ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowerCamelCase__( self :Optional[int] ) -> Dict: if not self.model_tester.is_training: return a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() a__ = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__snake_case ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue a__ = model_class(__snake_case ) model.to(__snake_case ) model.train() a__ = self._prepare_for_class(__snake_case ,__snake_case ,return_labels=__snake_case ) a__ = model(**__snake_case ).loss loss.backward() def lowerCamelCase__( self :str ) -> Optional[int]: a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return a__ = False a__ = True for model_class in self.all_model_classes: if model_class in get_values(__snake_case ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue a__ = model_class(__snake_case ) model.gradient_checkpointing_enable() model.to(__snake_case ) model.train() a__ = self._prepare_for_class(__snake_case ,__snake_case ,return_labels=__snake_case ) a__ = model(**__snake_case ).loss loss.backward() def lowerCamelCase__( self :Dict ) -> Optional[int]: a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() a__ = [ {'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float}, {'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long}, {'title': 'regression', 'num_labels': 1, 'dtype': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__snake_case ), *get_values(__snake_case ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'Testing {model_class} with {problem_type["title"]}' ): a__ = problem_type['title'] a__ = problem_type['num_labels'] a__ = model_class(__snake_case ) model.to(__snake_case ) model.train() a__ = self._prepare_for_class(__snake_case ,__snake_case ,return_labels=__snake_case ) if problem_type["num_labels"] > 1: a__ = inputs['labels'].unsqueeze(1 ).repeat(1 ,problem_type['num_labels'] ) a__ = inputs['labels'].to(problem_type['dtype'] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__snake_case ) as warning_list: a__ = model(**__snake_case ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'Something is going wrong in the regression problem: intercepted {w.message}' ) loss.backward() @slow def lowerCamelCase__( self :Tuple ) -> int: for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = DeiTModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def __lowercase ( ): a__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class snake_case_ (unittest.TestCase ): @cached_property def lowerCamelCase__( self :List[Any] ) -> List[Any]: return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def lowerCamelCase__( self :str ) -> int: a__ = DeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ).to( __snake_case ) a__ = self.default_image_processor a__ = prepare_img() a__ = image_processor(images=__snake_case ,return_tensors='pt' ).to(__snake_case ) # forward pass with torch.no_grad(): a__ = model(**__snake_case ) # verify the logits a__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape ,__snake_case ) a__ = torch.tensor([-1.02_66, 0.19_12, -1.28_61] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,__snake_case ,atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def lowerCamelCase__( self :Optional[int] ) -> Any: a__ = DeiTModel.from_pretrained( 'facebook/deit-base-distilled-patch16-224' ,torch_dtype=torch.floataa ,device_map='auto' ) a__ = self.default_image_processor a__ = prepare_img() a__ = image_processor(images=__snake_case ,return_tensors='pt' ) a__ = inputs.pixel_values.to(__snake_case ) # forward pass to make sure inference works in fp16 with torch.no_grad(): a__ = model(__snake_case )
335
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) snake_case : Optional[Any] = { '''configuration_roberta_prelayernorm''': [ '''ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaPreLayerNormConfig''', '''RobertaPreLayerNormOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : List[Any] = [ '''ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaPreLayerNormForCausalLM''', '''RobertaPreLayerNormForMaskedLM''', '''RobertaPreLayerNormForMultipleChoice''', '''RobertaPreLayerNormForQuestionAnswering''', '''RobertaPreLayerNormForSequenceClassification''', '''RobertaPreLayerNormForTokenClassification''', '''RobertaPreLayerNormModel''', '''RobertaPreLayerNormPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : str = [ '''TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaPreLayerNormForCausalLM''', '''TFRobertaPreLayerNormForMaskedLM''', '''TFRobertaPreLayerNormForMultipleChoice''', '''TFRobertaPreLayerNormForQuestionAnswering''', '''TFRobertaPreLayerNormForSequenceClassification''', '''TFRobertaPreLayerNormForTokenClassification''', '''TFRobertaPreLayerNormMainLayer''', '''TFRobertaPreLayerNormModel''', '''TFRobertaPreLayerNormPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Any = [ '''FlaxRobertaPreLayerNormForCausalLM''', '''FlaxRobertaPreLayerNormForMaskedLM''', '''FlaxRobertaPreLayerNormForMultipleChoice''', '''FlaxRobertaPreLayerNormForQuestionAnswering''', '''FlaxRobertaPreLayerNormForSequenceClassification''', '''FlaxRobertaPreLayerNormForTokenClassification''', '''FlaxRobertaPreLayerNormModel''', '''FlaxRobertaPreLayerNormPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys snake_case : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
335
1
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
492
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """realm""" def __init__( self , lowercase=30522 , lowercase=768 , lowercase=128 , lowercase=12 , lowercase=12 , lowercase=8 , lowercase=3072 , lowercase="gelu_new" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=2 , lowercase=0.02 , lowercase=1E-12 , lowercase=256 , lowercase=10 , lowercase=1E-3 , lowercase=5 , lowercase=320 , lowercase=13353718 , lowercase=5000 , lowercase=1 , lowercase=0 , lowercase=2 , **lowercase , ): super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) # Common config _lowerCamelCase : str = vocab_size _lowerCamelCase : Dict = max_position_embeddings _lowerCamelCase : int = hidden_size _lowerCamelCase : Optional[Any] = retriever_proj_size _lowerCamelCase : Dict = num_hidden_layers _lowerCamelCase : Any = num_attention_heads _lowerCamelCase : int = num_candidates _lowerCamelCase : List[Any] = intermediate_size _lowerCamelCase : int = hidden_act _lowerCamelCase : Union[str, Any] = hidden_dropout_prob _lowerCamelCase : Dict = attention_probs_dropout_prob _lowerCamelCase : Union[str, Any] = initializer_range _lowerCamelCase : List[Any] = type_vocab_size _lowerCamelCase : int = layer_norm_eps # Reader config _lowerCamelCase : Tuple = span_hidden_size _lowerCamelCase : int = max_span_width _lowerCamelCase : Tuple = reader_layer_norm_eps _lowerCamelCase : Union[str, Any] = reader_beam_size _lowerCamelCase : Union[str, Any] = reader_seq_len # Retrieval config _lowerCamelCase : Optional[Any] = num_block_records _lowerCamelCase : str = searcher_beam_size
492
1
'''simple docstring''' UpperCAmelCase_ : str = { 'a': 'AAAAA', 'b': 'AAAAB', 'c': 'AAABA', 'd': 'AAABB', 'e': 'AABAA', 'f': 'AABAB', 'g': 'AABBA', 'h': 'AABBB', 'i': 'ABAAA', 'j': 'BBBAA', 'k': 'ABAAB', 'l': 'ABABA', 'm': 'ABABB', 'n': 'ABBAA', 'o': 'ABBAB', 'p': 'ABBBA', 'q': 'ABBBB', 'r': 'BAAAA', 's': 'BAAAB', 't': 'BAABA', 'u': 'BAABB', 'v': 'BBBAB', 'w': 'BABAA', 'x': 'BABAB', 'y': 'BABBA', 'z': 'BABBB', ' ': ' ', } UpperCAmelCase_ : str = {value: key for key, value in encode_dict.items()} def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Union[str, Any] = """""" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("""encode() accepts only letters of the alphabet and spaces""" ) return encoded def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" if set(SCREAMING_SNAKE_CASE__ ) - {"A", "B", " "} != set(): raise Exception("""decode() accepts only 'A', 'B' and spaces""" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = """""" for word in coded.split(): while len(SCREAMING_SNAKE_CASE__ ) != 0: decoded += decode_dict[word[:5]] _SCREAMING_SNAKE_CASE : List[str] = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
533
import os from collections.abc import Iterator def _SCREAMING_SNAKE_CASE ( snake_case = "." ) -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(snake_case ): _UpperCAmelCase = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(snake_case )[1] in (".py", ".ipynb"): yield os.path.join(snake_case , snake_case ).lstrip("""./""" ) def _SCREAMING_SNAKE_CASE ( snake_case ) -> Union[str, Any]: return f"{i * ' '}*" if i else "\n##" def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> str: _UpperCAmelCase = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(snake_case ) or old_parts[i] != new_part) and new_part: print(f"{md_prefix(snake_case )} {new_part.replace('_' , ' ' ).title()}" ) return new_path def _SCREAMING_SNAKE_CASE ( snake_case = "." ) -> None: _UpperCAmelCase = """""" for filepath in sorted(good_file_paths(snake_case ) ): _UpperCAmelCase , _UpperCAmelCase = os.path.split(snake_case ) if filepath != old_path: _UpperCAmelCase = print_path(snake_case , snake_case ) _UpperCAmelCase = (filepath.count(os.sep ) + 1) if filepath else 0 _UpperCAmelCase = f"{filepath}/{filename}".replace(""" """ , """%20""" ) _UpperCAmelCase = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(f"{md_prefix(snake_case )} [{filename}]({url})" ) if __name__ == "__main__": print_directory_md(".")
518
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer a = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast a = TaTokenizerFast a = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5Model", "MT5PreTrainedModel", "MT5Stack", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys a = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
718
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class __a ( unittest.TestCase ): def __init__( self : List[Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : List[str]=7 ,lowerCamelCase : List[str]=3 ,lowerCamelCase : List[str]=18 ,lowerCamelCase : Any=30 ,lowerCamelCase : Optional[Any]=400 ,lowerCamelCase : Optional[Any]=True ,lowerCamelCase : Optional[Any]=None ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : int=None ,lowerCamelCase : str=True ,lowerCamelCase : Dict=[0.48_145_466, 0.4_578_275, 0.40_821_073] ,lowerCamelCase : List[str]=[0.26_862_954, 0.26_130_258, 0.27_577_711] ,lowerCamelCase : Tuple=True ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = size if size is not None else {"""height""": 224, """width""": 224} __SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = min_resolution __SCREAMING_SNAKE_CASE = max_resolution __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = do_center_crop __SCREAMING_SNAKE_CASE = crop_size __SCREAMING_SNAKE_CASE = do_normalize __SCREAMING_SNAKE_CASE = image_mean __SCREAMING_SNAKE_CASE = image_std __SCREAMING_SNAKE_CASE = do_convert_rgb def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def UpperCAmelCase__ ( self : int ,lowerCamelCase : Union[str, Any]=False ,lowerCamelCase : str=False ,lowerCamelCase : str=False ): '''simple docstring''' assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: __SCREAMING_SNAKE_CASE = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 ,size=(self.num_channels, self.max_resolution, self.max_resolution) ,dtype=np.uinta ) ) else: __SCREAMING_SNAKE_CASE = [] for i in range(self.batch_size ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = np.random.choice(np.arange(self.min_resolution ,self.max_resolution ) ,2 ) image_inputs.append(np.random.randint(255 ,size=(self.num_channels, width, height) ,dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension __SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(lowerCamelCase ,0 ,-1 ) ) for x in image_inputs] if torchify: __SCREAMING_SNAKE_CASE = [torch.from_numpy(lowerCamelCase ) for x in image_inputs] return image_inputs @require_torch @require_vision class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : int = ChineseCLIPImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ChineseCLIPImageProcessingTester(self ,do_center_crop=lowerCamelCase ) @property def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""size""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_convert_rgb""" ) ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""height""": 224, """width""": 224} ) self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} ) __SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' pass def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ,numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,np.ndarray ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCAmelCase__ ( self : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ,torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,torch.Tensor ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) @require_torch @require_vision class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : Optional[int] = ChineseCLIPImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ChineseCLIPImageProcessingTester(self ,num_channels=4 ,do_center_crop=lowerCamelCase ) __SCREAMING_SNAKE_CASE = 3 @property def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""size""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_convert_rgb""" ) ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,)
13
0
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Optional[int] , UpperCAmelCase_ : NestedDataStructureLike[PathLike] , UpperCAmelCase_ : Optional[NamedSplit] = None , UpperCAmelCase_ : Optional[Features] = None , UpperCAmelCase_ : str = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[int] = None , **UpperCAmelCase_ : Optional[Any] , ) ->Any: '''simple docstring''' super().__init__( UpperCAmelCase_ , split=UpperCAmelCase_ , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ , streaming=UpperCAmelCase_ , num_proc=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase__: Tuple =path_or_paths if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else {self.split: path_or_paths} lowerCamelCase__: Optional[int] =Text( cache_dir=UpperCAmelCase_ , data_files=UpperCAmelCase_ , features=UpperCAmelCase_ , **UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Tuple: '''simple docstring''' if self.streaming: lowerCamelCase__: int =self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: lowerCamelCase__: Optional[int] =None lowerCamelCase__: Optional[Any] =None lowerCamelCase__: List[str] =None lowerCamelCase__: str =None self.builder.download_and_prepare( download_config=UpperCAmelCase_ , download_mode=UpperCAmelCase_ , verification_mode=UpperCAmelCase_ , base_path=UpperCAmelCase_ , num_proc=self.num_proc , ) lowerCamelCase__: Any =self.builder.as_dataset( split=self.split , verification_mode=UpperCAmelCase_ , in_memory=self.keep_in_memory) return dataset
59
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Any = logging.get_logger(__name__) __lowerCamelCase : Optional[int] = { "studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json", "studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json", } class a ( UpperCamelCase_ ): __lowercase = """luke""" def __init__( self , __UpperCamelCase=5_02_67 , __UpperCamelCase=50_00_00 , __UpperCamelCase=7_68 , __UpperCamelCase=2_56 , __UpperCamelCase=12 , __UpperCamelCase=12 , __UpperCamelCase=30_72 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=5_12 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=1E-12 , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=1 , __UpperCamelCase=0 , __UpperCamelCase=2 , **__UpperCamelCase , )-> Dict: '''simple docstring''' super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) A__ : List[str] =vocab_size A__ : Any =entity_vocab_size A__ : List[Any] =hidden_size A__ : Union[str, Any] =entity_emb_size A__ : Dict =num_hidden_layers A__ : List[Any] =num_attention_heads A__ : List[str] =hidden_act A__ : Dict =intermediate_size A__ : Any =hidden_dropout_prob A__ : Dict =attention_probs_dropout_prob A__ : Optional[int] =max_position_embeddings A__ : int =type_vocab_size A__ : Optional[Any] =initializer_range A__ : Optional[int] =layer_norm_eps A__ : str =use_entity_aware_attention A__ : str =classifier_dropout
416
0
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def _UpperCamelCase ( UpperCamelCase__ ): # A local function to see if a dot lands in the circle. def is_in_circle(UpperCamelCase__ , UpperCamelCase__ ) -> bool: UpperCAmelCase__ : List[str] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle UpperCAmelCase__ : Optional[Any] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(UpperCamelCase__ ) ) # The ratio of the area for circle to square is pi/4. UpperCAmelCase__ : int = proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 0.0 , UpperCamelCase__ = 1.0 , ): return mean( function_to_integrate(uniform(UpperCamelCase__ , UpperCamelCase__ ) ) for _ in range(UpperCamelCase__ ) ) * (max_value - min_value) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ = 0.0 , UpperCamelCase__ = 1.0 ): def identity_function(UpperCamelCase__ ) -> float: return x UpperCAmelCase__ : List[str] = area_under_curve_estimator( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase__ : Optional[int] = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print("""******************""" ) def _UpperCamelCase ( UpperCamelCase__ ): def function_to_integrate(UpperCamelCase__ ) -> float: return sqrt(4.0 - x * x ) UpperCAmelCase__ : Dict = area_under_curve_estimator( UpperCamelCase__ , UpperCamelCase__ , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
113
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def _UpperCamelCase ( UpperCamelCase__ ): # A local function to see if a dot lands in the circle. def is_in_circle(UpperCamelCase__ , UpperCamelCase__ ) -> bool: UpperCAmelCase__ : List[str] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle UpperCAmelCase__ : Optional[Any] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(UpperCamelCase__ ) ) # The ratio of the area for circle to square is pi/4. UpperCAmelCase__ : int = proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 0.0 , UpperCamelCase__ = 1.0 , ): return mean( function_to_integrate(uniform(UpperCamelCase__ , UpperCamelCase__ ) ) for _ in range(UpperCamelCase__ ) ) * (max_value - min_value) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ = 0.0 , UpperCamelCase__ = 1.0 ): def identity_function(UpperCamelCase__ ) -> float: return x UpperCAmelCase__ : List[str] = area_under_curve_estimator( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase__ : Optional[int] = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print("""******************""" ) def _UpperCamelCase ( UpperCamelCase__ ): def function_to_integrate(UpperCamelCase__ ) -> float: return sqrt(4.0 - x * x ) UpperCAmelCase__ : Dict = area_under_curve_estimator( UpperCamelCase__ , UpperCamelCase__ , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
113
1
"""simple docstring""" import torch def A ( ): """simple docstring""" if torch.cuda.is_available(): snake_case_ :List[str] = torch.cuda.device_count() else: snake_case_ :str = 0 print(F'''Successfully ran on {num_gpus} GPUs''' ) if __name__ == "__main__": main()
584
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCAmelCase : Optional[int] = {'vocab_file': 'sentencepiece.model'} __UpperCAmelCase : Dict = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } __UpperCAmelCase : str = { 'google/rembert': 2_56, } class __lowerCAmelCase (__UpperCamelCase ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , a , a=False , a=True , a=True , a="[CLS]" , a="[SEP]" , a="[UNK]" , a="[SEP]" , a="[PAD]" , a="[CLS]" , a="[MASK]" , **a , ): """simple docstring""" super().__init__( do_lower_case=a , remove_space=a , keep_accents=a , bos_token=a , eos_token=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , **a , ) snake_case_ :Dict = do_lower_case snake_case_ :Tuple = remove_space snake_case_ :List[Any] = keep_accents snake_case_ :Union[str, Any] = vocab_file snake_case_ :Optional[Any] = spm.SentencePieceProcessor() self.sp_model.Load(a ) @property def _a ( self ): """simple docstring""" return len(self.sp_model ) def _a ( self ): """simple docstring""" snake_case_ :List[Any] = {self.convert_ids_to_tokens(a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" snake_case_ :Tuple = self.__dict__.copy() snake_case_ :List[Any] = None return state def __setstate__( self , a ): """simple docstring""" snake_case_ :List[Any] = d snake_case_ :Dict = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def _a ( self , a , a=False ): """simple docstring""" snake_case_ :str = self.sp_model.EncodeAsPieces(a ) return pieces def _a ( self , a ): """simple docstring""" return self.sp_model.PieceToId(a ) def _a ( self , a ): """simple docstring""" return self.sp_model.IdToPiece(a ) def _a ( self , a ): """simple docstring""" snake_case_ :int = self.sp_model.decode_pieces(a ) return out_string def _a ( self , a , a = None ): """simple docstring""" snake_case_ :List[Any] = [self.sep_token_id] snake_case_ :List[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _a ( self , a , a = None , a = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(a )) + [1] + ([0] * len(a )) + [1] return [1] + ([0] * len(a )) + [1] def _a ( self , a , a = None ): """simple docstring""" snake_case_ :Any = [self.sep_token_id] snake_case_ :Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self , a , a = None ): """simple docstring""" if not os.path.isdir(a ): logger.error("Vocabulary path ({}) should be a directory".format(a ) ) return snake_case_ :str = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ): copyfile(self.vocab_file , a ) return (out_vocab_file,)
584
1
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase_ : Optional[int] = """ Examples: ```py >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\") >>> pipe_prior.to(\"cuda\") >>> prompt = \"red cat, 4k photo\" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> zero_image_emb = out.negative_image_embeds >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\") >>> pipe.to(\"cuda\") >>> image = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=50, ... ).images >>> image[0].save(\"cat.png\") ``` """ def __A ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase=8 ) -> Dict: '''simple docstring''' _UpperCamelCase : Any = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _UpperCamelCase : List[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Dict , lowercase__ : UNetaDConditionModel , lowercase__ : DDPMScheduler , lowercase__ : VQModel , ) ->Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules( unet=lowercase__ , scheduler=lowercase__ , movq=lowercase__ , ) _UpperCamelCase : Tuple = 2 ** (len(self.movq.config.block_out_channels ) - 1) def snake_case__ ( self : List[Any] , lowercase__ : int , lowercase__ : Dict , lowercase__ : Union[str, Any] , lowercase__ : str , lowercase__ : str , lowercase__ : Any ) ->Dict: '''simple docstring''' if latents is None: _UpperCamelCase : Dict = randn_tensor(lowercase__ , generator=lowercase__ , device=lowercase__ , dtype=lowercase__ ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) _UpperCamelCase : int = latents.to(lowercase__ ) _UpperCamelCase : List[Any] = latents * scheduler.init_noise_sigma return latents def snake_case__ ( self : int , lowercase__ : Tuple=0 ) ->Tuple: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _UpperCamelCase : Optional[Any] = torch.device(f'''cuda:{gpu_id}''' ) _UpperCamelCase : str = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase__ , lowercase__ ) def snake_case__ ( self : Optional[Any] , lowercase__ : int=0 ) ->List[str]: '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) _UpperCamelCase : Optional[Any] = torch.device(f'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=lowercase__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _UpperCamelCase : List[str] = None for cpu_offloaded_model in [self.unet, self.movq]: _UpperCamelCase , _UpperCamelCase : Union[str, Any] = cpu_offload_with_hook(lowercase__ , lowercase__ , prev_module_hook=lowercase__ ) # We'll offload the last model manually. _UpperCamelCase : Optional[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def snake_case__ ( self : Union[str, Any] ) ->Any: '''simple docstring''' if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase__ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase__ ) def __call__( self : int , lowercase__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowercase__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowercase__ : int = 512 , lowercase__ : int = 512 , lowercase__ : int = 100 , lowercase__ : float = 4.0 , lowercase__ : int = 1 , lowercase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase__ : Optional[torch.FloatTensor] = None , lowercase__ : Optional[str] = "pil" , lowercase__ : bool = True , ) ->List[Any]: '''simple docstring''' _UpperCamelCase : List[str] = self._execution_device _UpperCamelCase : List[Any] = guidance_scale > 1.0 if isinstance(lowercase__ , lowercase__ ): _UpperCamelCase : Tuple = torch.cat(lowercase__ , dim=0 ) _UpperCamelCase : Tuple = image_embeds.shape[0] * num_images_per_prompt if isinstance(lowercase__ , lowercase__ ): _UpperCamelCase : List[Any] = torch.cat(lowercase__ , dim=0 ) if do_classifier_free_guidance: _UpperCamelCase : Tuple = image_embeds.repeat_interleave(lowercase__ , dim=0 ) _UpperCamelCase : Tuple = negative_image_embeds.repeat_interleave(lowercase__ , dim=0 ) _UpperCamelCase : List[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase__ ) self.scheduler.set_timesteps(lowercase__ , device=lowercase__ ) _UpperCamelCase : str = self.scheduler.timesteps _UpperCamelCase : int = self.unet.config.in_channels _UpperCamelCase , _UpperCamelCase : List[Any] = downscale_height_and_width(lowercase__ , lowercase__ , self.movq_scale_factor ) # create initial latent _UpperCamelCase : Any = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase__ , lowercase__ , lowercase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase__ ) ): # expand the latents if we are doing classifier free guidance _UpperCamelCase : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _UpperCamelCase : Dict = {"image_embeds": image_embeds} _UpperCamelCase : str = self.unet( sample=lowercase__ , timestep=lowercase__ , encoder_hidden_states=lowercase__ , added_cond_kwargs=lowercase__ , return_dict=lowercase__ , )[0] if do_classifier_free_guidance: _UpperCamelCase , _UpperCamelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) _UpperCamelCase , _UpperCamelCase : Tuple = noise_pred.chunk(2 ) _UpperCamelCase , _UpperCamelCase : Optional[Any] = variance_pred.chunk(2 ) _UpperCamelCase : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _UpperCamelCase : int = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _UpperCamelCase , _UpperCamelCase : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _UpperCamelCase : List[Any] = self.scheduler.step( lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ , )[0] # post-processing _UpperCamelCase : List[str] = self.movq.decode(lowercase__ , force_not_quantize=lowercase__ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: _UpperCamelCase : str = image * 0.5 + 0.5 _UpperCamelCase : Any = image.clamp(0 , 1 ) _UpperCamelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _UpperCamelCase : List[str] = self.numpy_to_pil(lowercase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase__ )
204
'''simple docstring''' import requests from bsa import BeautifulSoup def __A ( UpperCAmelCase ,UpperCAmelCase ) -> str: '''simple docstring''' _UpperCamelCase : Dict = BeautifulSoup(requests.get(UpperCAmelCase ,params=UpperCAmelCase ).content ,"html.parser" ) _UpperCamelCase : Union[str, Any] = soup.find("div" ,attrs={"class": "gs_ri"} ) _UpperCamelCase : Optional[Any] = div.find("div" ,attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": lowerCAmelCase_ : Optional[int] = { """title""": ( """Precisely geometry controlled microsupercapacitors for ultrahigh areal """ """capacitance, volumetric capacitance, and energy density""" ), """journal""": """Chem. Mater.""", """volume""": 30, """pages""": """3979-3990""", """year""": 2018, """hl""": """en""", } print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
204
1
"""simple docstring""" class __lowerCamelCase : def __init__(self ): '''simple docstring''' _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = {} def A__ (self , lowerCamelCase ): '''simple docstring''' if vertex not in self.adjacency: _lowerCAmelCase = {} self.num_vertices += 1 def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' self.add_vertex(lowerCamelCase ) self.add_vertex(lowerCamelCase ) if head == tail: return _lowerCAmelCase = weight _lowerCAmelCase = weight def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = edge edges.remove((tail, head, weight) ) for i in range(len(lowerCamelCase ) ): _lowerCAmelCase = list(edges[i] ) edges.sort(key=lambda lowerCamelCase : e[2] ) for i in range(len(lowerCamelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _lowerCAmelCase = edges[i][2] + 1 for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = edge _lowerCAmelCase = weight _lowerCAmelCase = weight def __str__(self ): '''simple docstring''' _lowerCAmelCase = """""" for tail in self.adjacency: for head in self.adjacency[tail]: _lowerCAmelCase = self.adjacency[head][tail] string += f"""{head} -> {tail} == {weight}\n""" return string.rstrip("""\n""" ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def A__ (self ): '''simple docstring''' return self.adjacency.keys() @staticmethod def A__ (lowerCamelCase=None , lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase = Graph() if vertices is None: _lowerCAmelCase = [] if edges is None: _lowerCAmelCase = [] for vertex in vertices: g.add_vertex(lowerCamelCase ) for edge in edges: g.add_edge(*lowerCamelCase ) return g class __lowerCamelCase : def __init__(self ): '''simple docstring''' _lowerCAmelCase = {} _lowerCAmelCase = {} def __len__(self ): '''simple docstring''' return len(self.parent ) def A__ (self , lowerCamelCase ): '''simple docstring''' if item in self.parent: return self.find(lowerCamelCase ) _lowerCAmelCase = item _lowerCAmelCase = 0 return item def A__ (self , lowerCamelCase ): '''simple docstring''' if item not in self.parent: return self.make_set(lowerCamelCase ) if item != self.parent[item]: _lowerCAmelCase = self.find(self.parent[item] ) return self.parent[item] def A__ (self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.find(lowerCamelCase ) _lowerCAmelCase = self.find(lowerCamelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _lowerCAmelCase = roota return roota if self.rank[roota] < self.rank[roota]: _lowerCAmelCase = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _lowerCAmelCase = roota return roota return None @staticmethod def A__ (lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = graph.num_vertices _lowerCAmelCase = Graph.UnionFind() _lowerCAmelCase = [] while num_components > 1: _lowerCAmelCase = {} for vertex in graph.get_vertices(): _lowerCAmelCase = -1 _lowerCAmelCase = graph.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = edge edges.remove((tail, head, weight) ) for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = edge _lowerCAmelCase = union_find.find(lowerCamelCase ) _lowerCAmelCase = union_find.find(lowerCamelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = cheap_edge[vertex] if union_find.find(lowerCamelCase ) != union_find.find(lowerCamelCase ): union_find.union(lowerCamelCase , lowerCamelCase ) mst_edges.append(cheap_edge[vertex] ) _lowerCAmelCase = num_components - 1 _lowerCAmelCase = Graph.build(edges=lowerCamelCase ) return mst
156
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : str = {} class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'llama' __UpperCamelCase = ['past_key_values'] def __init__(self , lowerCamelCase=32_000 , lowerCamelCase=4_096 , lowerCamelCase=11_008 , lowerCamelCase=32 , lowerCamelCase=32 , lowerCamelCase=None , lowerCamelCase="silu" , lowerCamelCase=2_048 , lowerCamelCase=0.02 , lowerCamelCase=1e-6 , lowerCamelCase=True , lowerCamelCase=0 , lowerCamelCase=1 , lowerCamelCase=2 , lowerCamelCase=1 , lowerCamelCase=False , lowerCamelCase=None , **lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase = vocab_size _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = hidden_size _lowerCAmelCase = intermediate_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads # for backward compatibility if num_key_value_heads is None: _lowerCAmelCase = num_attention_heads _lowerCAmelCase = num_key_value_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = initializer_range _lowerCAmelCase = rms_norm_eps _lowerCAmelCase = pretraining_tp _lowerCAmelCase = use_cache _lowerCAmelCase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , tie_word_embeddings=lowerCamelCase , **lowerCamelCase , ) def A__ (self ): '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowerCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f"""got {self.rope_scaling}""" ) _lowerCAmelCase = self.rope_scaling.get("""type""" , lowerCamelCase ) _lowerCAmelCase = self.rope_scaling.get("""factor""" , lowerCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowerCamelCase , lowerCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
156
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class __magic_name__ (unittest.TestCase ): '''simple docstring''' def __init__( self:Optional[Any] , _a:List[Any] , _a:Any=7 , _a:str=3 , _a:Tuple=10 , _a:str=18 , _a:List[str]=30 , _a:Tuple=4_00 , _a:str=True , _a:List[str]=None , _a:List[str]=True , _a:Optional[Any]=[0.5, 0.5, 0.5] , _a:List[str]=[0.5, 0.5, 0.5] , _a:int=None , ): snake_case__ = size if size is not None else {'''shortest_edge''': 18} snake_case__ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} snake_case__ = parent snake_case__ = batch_size snake_case__ = num_channels snake_case__ = num_frames snake_case__ = image_size snake_case__ = min_resolution snake_case__ = max_resolution snake_case__ = do_resize snake_case__ = size snake_case__ = do_normalize snake_case__ = image_mean snake_case__ = image_std snake_case__ = crop_size def SCREAMING_SNAKE_CASE__ ( self:Dict ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __magic_name__ (snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Union[str, Any] = VivitImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = VivitImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , '''image_mean''' ) ) self.assertTrue(hasattr(_a , '''image_std''' ) ) self.assertTrue(hasattr(_a , '''do_normalize''' ) ) self.assertTrue(hasattr(_a , '''do_resize''' ) ) self.assertTrue(hasattr(_a , '''do_center_crop''' ) ) self.assertTrue(hasattr(_a , '''size''' ) ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) snake_case__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): # Initialize image_processing snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos snake_case__ = prepare_video_inputs(self.image_processor_tester , equal_resolution=_a ) for video in video_inputs: self.assertIsInstance(_a , _a ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input snake_case__ = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched snake_case__ = image_processing(_a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # Initialize image_processing snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ = prepare_video_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for video in video_inputs: self.assertIsInstance(_a , _a ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input snake_case__ = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched snake_case__ = image_processing(_a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): # Initialize image_processing snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ = prepare_video_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for video in video_inputs: self.assertIsInstance(_a , _a ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input snake_case__ = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched snake_case__ = image_processing(_a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
208
from __future__ import annotations from collections.abc import Sequence from typing import Literal def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> str | Literal[False]: snake_case__ = list(__lowerCAmelCase ) snake_case__ = list(__lowerCAmelCase ) snake_case__ = 0 for i in range(len(__lowerCAmelCase ) ): if lista[i] != lista[i]: count += 1 snake_case__ = '''_''' if count > 1: return False else: return "".join(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> list[str]: snake_case__ = [] while True: snake_case__ = ['''$'''] * len(__lowerCAmelCase ) snake_case__ = [] for i in range(len(__lowerCAmelCase ) ): for j in range(i + 1 , len(__lowerCAmelCase ) ): snake_case__ = compare_string(binary[i] , binary[j] ) if k is False: snake_case__ = '''*''' snake_case__ = '''*''' temp.append('''X''' ) for i in range(len(__lowerCAmelCase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(__lowerCAmelCase ) == 0: return pi snake_case__ = list(set(__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> list[str]: snake_case__ = [] for minterm in minterms: snake_case__ = '''''' for _ in range(__lowerCAmelCase ): snake_case__ = str(minterm % 2 ) + string minterm //= 2 temp.append(__lowerCAmelCase ) return temp def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> bool: snake_case__ = list(__lowerCAmelCase ) snake_case__ = list(__lowerCAmelCase ) snake_case__ = 0 for i in range(len(__lowerCAmelCase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> list[str]: snake_case__ = [] snake_case__ = [0] * len(__lowerCAmelCase ) for i in range(len(chart[0] ) ): snake_case__ = 0 snake_case__ = -1 for j in range(len(__lowerCAmelCase ) ): if chart[j][i] == 1: count += 1 snake_case__ = j if count == 1: snake_case__ = 1 for i in range(len(__lowerCAmelCase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(__lowerCAmelCase ) ): snake_case__ = 0 temp.append(prime_implicants[i] ) while True: snake_case__ = 0 snake_case__ = -1 snake_case__ = 0 for i in range(len(__lowerCAmelCase ) ): snake_case__ = chart[i].count(1 ) if count_n > max_n: snake_case__ = count_n snake_case__ = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(__lowerCAmelCase ) ): snake_case__ = 0 def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> list[list[int]]: snake_case__ = [[0 for x in range(len(__lowerCAmelCase ) )] for x in range(len(__lowerCAmelCase ) )] for i in range(len(__lowerCAmelCase ) ): snake_case__ = prime_implicants[i].count('''_''' ) for j in range(len(__lowerCAmelCase ) ): if is_for_table(prime_implicants[i] , binary[j] , __lowerCAmelCase ): snake_case__ = 1 return chart def SCREAMING_SNAKE_CASE ( ) -> None: snake_case__ = int(input('''Enter the no. of variables\n''' ) ) snake_case__ = [ float(__lowerCAmelCase ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] snake_case__ = decimal_to_binary(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ = check(__lowerCAmelCase ) print('''Prime Implicants are:''' ) print(__lowerCAmelCase ) snake_case__ = prime_implicant_chart(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ = selection(__lowerCAmelCase , __lowerCAmelCase ) print('''Essential Prime Implicants are:''' ) print(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
208
1
'''simple docstring''' import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCAmelCase = get_tests_dir('fixtures/dummy-config.json') class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: a_ : Union[str, Any] = 0 def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec('''transformers.models.auto''' ) ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: a_ : List[Any] = AutoConfig.from_pretrained('''bert-base-uncased''' ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: a_ : Optional[int] = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: a_ : List[str] = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: a_ : Any = AutoConfig.for_model('''roberta''' ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. a_ : List[Any] = os.path.join(UpperCamelCase_ , '''fake-roberta''' ) os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , '''config.json''' ) , '''w''' ) as f: f.write(json.dumps({} ) ) a_ : int = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertEqual(type(UpperCamelCase_ ) , UpperCamelCase_ ) def SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: try: AutoConfig.register('''custom''' , UpperCamelCase_ ) # Wrong model type will raise an error with self.assertRaises(UpperCamelCase_ ): AutoConfig.register('''model''' , UpperCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): AutoConfig.register('''bert''' , UpperCamelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API a_ : List[str] = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCamelCase_ ) a_ : str = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: with self.assertRaisesRegex( UpperCamelCase_ , '''bert-base is not a local folder and is not a valid model identifier''' ): a_ : Any = AutoConfig.from_pretrained('''bert-base''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: with self.assertRaisesRegex( UpperCamelCase_ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): a_ : Union[str, Any] = AutoConfig.from_pretrained(UpperCamelCase_ , revision='''aaaaaa''' ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: with self.assertRaisesRegex( UpperCamelCase_ , '''hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.''' , ): a_ : Optional[Any] = AutoConfig.from_pretrained('''hf-internal-testing/no-config-test-repo''' ) def SCREAMING_SNAKE_CASE ( self : str ) -> Dict: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase_ ): a_ : int = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase_ ): a_ : int = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=UpperCamelCase_ ) a_ : Optional[Any] = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=UpperCamelCase_ ) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''' ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCamelCase_ ) a_ : List[str] = AutoConfig.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ ) self.assertEqual(reloaded_config.__class__.__name__ , '''NewModelConfig''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: class SCREAMING_SNAKE_CASE ( lowercase__ ): snake_case__ = """new-model""" try: AutoConfig.register('''new-model''' , UpperCamelCase_ ) # If remote code is not set, the default is to use local a_ : Optional[int] = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ) self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''' ) # If remote code is disabled, we load the local one. a_ : str = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=UpperCamelCase_ ) self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''' ) # If remote is enabled, we load from the Hub a_ : Tuple = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=UpperCamelCase_ ) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''' ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
466
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def UpperCamelCase ( _a , _a , _a=0 ) -> str: '''simple docstring''' if name is None: lowercase_ :Optional[int] = None else: lowercase_ :Any = '''.''' * max(0 , spaces - 2 ) + '''# {:''' + str(5_0 - spaces ) + '''s}''' lowercase_ :List[Any] = fmt.format(_a ) # Print and recurse (if needed). if isinstance(_a , _a ): if msg is not None: print(_a ) for k in val.keys(): recursive_print(_a , val[k] , spaces + 2 ) elif isinstance(_a , torch.Tensor ): print(_a , ''':''' , val.size() ) else: print(_a , ''':''' , _a ) def UpperCamelCase ( _a , _a , _a , _a , _a ) -> Optional[Any]: '''simple docstring''' lowercase_ :List[str] = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] lowercase_ :Union[str, Any] = (num_heads, hidden_size, num_splits) + input_shape[1:] lowercase_ :int = param.view(*_a ) lowercase_ :Any = param.transpose(0 , 2 ) lowercase_ :Optional[Any] = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] lowercase_ :Optional[int] = (num_heads, num_splits, hidden_size) + input_shape[1:] lowercase_ :Union[str, Any] = param.view(*_a ) lowercase_ :Tuple = param.transpose(0 , 1 ).contiguous() lowercase_ :Dict = param.view(*_a ) return param def UpperCamelCase ( _a , _a , _a ) -> Optional[int]: '''simple docstring''' lowercase_ :Any = {} # old versions did not store training args lowercase_ :Optional[Any] = input_state_dict.get('''args''' , _a ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) lowercase_ :Any = ds_args.padded_vocab_size lowercase_ :int = ds_args.max_position_embeddings lowercase_ :Union[str, Any] = ds_args.hidden_size lowercase_ :Optional[Any] = ds_args.num_layers lowercase_ :int = ds_args.num_attention_heads lowercase_ :List[Any] = ds_args.ffn_hidden_size # pprint(config) # The number of heads. lowercase_ :Optional[Any] = config.n_head # The hidden_size per head. lowercase_ :Dict = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): lowercase_ :int = input_state_dict['''checkpoint_version'''] else: lowercase_ :Any = 0.0 # The model. lowercase_ :Union[str, Any] = input_state_dict['''model'''] # The language model. lowercase_ :str = model['''language_model'''] # The embeddings. lowercase_ :Any = lm['''embedding'''] # The word embeddings. lowercase_ :List[Any] = embeddings['''word_embeddings''']['''weight'''] # Truncate the embedding table to vocab_size rows. lowercase_ :int = word_embeddings[: config.vocab_size, :] lowercase_ :List[str] = word_embeddings # The position embeddings. lowercase_ :Dict = embeddings['''position_embeddings''']['''weight'''] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] lowercase_ :Union[str, Any] = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f"pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match" ) # Store the position embeddings. lowercase_ :Optional[Any] = pos_embeddings # The transformer. lowercase_ :Tuple = lm['''transformer'''] if '''transformer''' in lm.keys() else lm['''encoder'''] # The regex to extract layer names. lowercase_ :Any = re.compile(R'''layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)''' ) # The simple map of names for "automated" rules. lowercase_ :int = { '''attention.dense''': '''.attn.c_proj.''', '''self_attention.dense''': '''.attn.c_proj.''', '''mlp.dense_h_to_4h''': '''.mlp.c_fc.''', '''mlp.dense_4h_to_h''': '''.mlp.c_proj.''', } # Extract the layers. for key, val in transformer.items(): # Match the name. lowercase_ :Union[str, Any] = layer_re.match(_a ) # Stop if that's not a layer if m is None: break # The index of the layer. lowercase_ :Union[str, Any] = int(m.group(1 ) ) # The name of the operation. lowercase_ :Union[str, Any] = m.group(2 ) # Is it a weight or a bias? lowercase_ :List[Any] = m.group(3 ) # The name of the layer. lowercase_ :Dict = f"transformer.h.{layer_idx}" # For layernorm(s), simply store the layer norm. if op_name.endswith('''layernorm''' ): lowercase_ :Optional[int] = '''ln_1''' if op_name.startswith('''input''' ) else '''ln_2''' lowercase_ :Optional[int] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. lowercase_ :str = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , _a , _a ) lowercase_ :str = causal_mask # Insert a "dummy" tensor for masked_bias. lowercase_ :Union[str, Any] = torch.tensor(-1E4 , dtype=torch.floataa ) lowercase_ :Optional[Any] = masked_bias lowercase_ :List[str] = fix_query_key_value_ordering(_a , _a , 3 , _a , _a ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. lowercase_ :Dict = out_val.transpose(0 , 1 ).contiguous() # Store. lowercase_ :List[str] = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": lowercase_ :Optional[Any] = fix_query_key_value_ordering(_a , _a , 3 , _a , _a ) # Store. No change of shape. lowercase_ :List[str] = out_val # Transpose the weights. elif weight_or_bias == "weight": lowercase_ :Optional[int] = megatron_to_transformers[op_name] lowercase_ :Tuple = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": lowercase_ :Union[str, Any] = megatron_to_transformers[op_name] lowercase_ :List[Any] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. lowercase_ :str = transformer['''final_layernorm.weight'''] lowercase_ :str = transformer['''final_layernorm.bias'''] # For LM head, transformers' wants the matrix to weight embeddings. lowercase_ :List[str] = word_embeddings # It should be done! return output_state_dict def UpperCamelCase ( ) -> Tuple: '''simple docstring''' lowercase_ :Dict = argparse.ArgumentParser() parser.add_argument('''--print-checkpoint-structure''' , action='''store_true''' ) parser.add_argument( '''path_to_checkpoint''' , type=_a , help='''Path to the checkpoint file (.zip archive or direct .pt file)''' , ) parser.add_argument( '''--config_file''' , default='''''' , type=_a , help='''An optional config json file describing the pre-trained model.''' , ) lowercase_ :List[Any] = parser.parse_args() # Extract the basename. lowercase_ :Any = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f"Extracting PyTorch state dictionary from {args.path_to_checkpoint}" ) if args.path_to_checkpoint.endswith('''.zip''' ): with zipfile.ZipFile(args.path_to_checkpoint , '''r''' ) as checkpoint: with checkpoint.open('''release/mp_rank_00/model_optim_rng.pt''' ) as pytorch_dict: lowercase_ :List[Any] = torch.load(_a , map_location='''cpu''' ) else: lowercase_ :Tuple = torch.load(args.path_to_checkpoint , map_location='''cpu''' ) lowercase_ :Union[str, Any] = input_state_dict.get('''args''' , _a ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: lowercase_ :Tuple = '''gelu_fast''' elif ds_args.openai_gelu: lowercase_ :Dict = '''gelu_new''' else: lowercase_ :Optional[Any] = '''gelu''' else: # in the very early days this used to be "gelu_new" lowercase_ :Union[str, Any] = '''gelu_new''' # Spell out all parameters in case the defaults change. lowercase_ :List[str] = GPTaConfig( vocab_size=5_0_2_5_7 , n_positions=1_0_2_4 , n_embd=1_0_2_4 , n_layer=2_4 , n_head=1_6 , n_inner=4_0_9_6 , activation_function=_a , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type='''cls_index''' , summary_use_proj=_a , summary_activation=_a , summary_proj_to_labels=_a , summary_first_dropout=0.1 , scale_attn_weights=_a , use_cache=_a , bos_token_id=5_0_2_5_6 , eos_token_id=5_0_2_5_6 , ) else: lowercase_ :Union[str, Any] = GPTaConfig.from_json_file(args.config_file ) lowercase_ :List[Any] = ['''GPT2LMHeadModel'''] # Convert. print('''Converting''' ) lowercase_ :Optional[Any] = convert_megatron_checkpoint(_a , _a , _a ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(_a , _a ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: lowercase_ :List[Any] = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": lowercase_ :Any = '''gpt2''' elif tokenizer_type == "PretrainedFromHF": lowercase_ :Dict = ds_args.tokenizer_name_or_path else: raise ValueError(f"Unrecognized tokenizer_type {tokenizer_type}" ) else: lowercase_ :Optional[int] = '''gpt2''' lowercase_ :List[Any] = AutoTokenizer.from_pretrained(_a ) lowercase_ :Tuple = type(_a ).__name__ lowercase_ :Dict = tokenizer_class # Store the config to file. print('''Saving config''' ) config.save_pretrained(_a ) # Save tokenizer based on args print(f"Adding {tokenizer_class} tokenizer files" ) tokenizer.save_pretrained(_a ) # Store the state_dict to file. lowercase_ :Union[str, Any] = os.path.join(_a , '''pytorch_model.bin''' ) print(f"Saving checkpoint to \"{output_checkpoint_file}\"" ) torch.save(_a , _a ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
257
0
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib _lowerCamelCase : int = threading.Lock() _lowerCamelCase : Optional[logging.Handler] = None _lowerCamelCase : Dict = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } _lowerCamelCase : Any = logging.WARNING _lowerCamelCase : Any = True def A__ ( ) ->Any: __A =os.getenv('''TRANSFORMERS_VERBOSITY''' , __A ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F'''Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ''' F'''has to be one of: { ', '.join(log_levels.keys() ) }''' ) return _default_log_level def A__ ( ) ->str: return __name__.split('''.''' )[0] def A__ ( ) ->logging.Logger: return logging.getLogger(_get_library_name() ) def A__ ( ) ->None: global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return __A =logging.StreamHandler() # Set sys.stderr as stream. __A =sys.stderr.flush # Apply our default configuration to the library root logger. __A =_get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) __A =False def A__ ( ) ->None: global _default_handler with _lock: if not _default_handler: return __A =_get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) __A =None def A__ ( ) ->int: return log_levels def A__ ( __A : Optional[str] = None ) ->logging.Logger: if name is None: __A =_get_library_name() _configure_library_root_logger() return logging.getLogger(__A ) def A__ ( ) ->int: _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def A__ ( __A : int ) ->None: _configure_library_root_logger() _get_library_root_logger().setLevel(__A ) def A__ ( ) ->Dict: return set_verbosity(__A ) def A__ ( ) ->Optional[Any]: return set_verbosity(__A ) def A__ ( ) ->Optional[int]: return set_verbosity(__A ) def A__ ( ) ->Optional[Any]: return set_verbosity(__A ) def A__ ( ) ->None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def A__ ( ) ->None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def A__ ( __A : logging.Handler ) ->None: _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(__A ) def A__ ( __A : logging.Handler ) ->None: _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(__A ) def A__ ( ) ->None: _configure_library_root_logger() __A =False def A__ ( ) ->None: _configure_library_root_logger() __A =True def A__ ( ) ->None: __A =_get_library_root_logger().handlers for handler in handlers: __A =logging.Formatter('''[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s''' ) handler.setFormatter(__A ) def A__ ( ) ->None: __A =_get_library_root_logger().handlers for handler in handlers: handler.setFormatter(__A ) def A__ ( self : Any , *__A : Tuple , **__A : Optional[int] ) ->List[Any]: __A =os.getenv('''TRANSFORMERS_NO_ADVISORY_WARNINGS''' , __A ) if no_advisory_warnings: return self.warning(*__A , **__A ) _lowerCamelCase : Optional[int] = warning_advice @functools.lru_cache(__A ) def A__ ( self : Tuple , *__A : Any , **__A : int ) ->Union[str, Any]: self.warning(*__A , **__A ) _lowerCamelCase : List[str] = warning_once class lowerCAmelCase__ : '''simple docstring''' def __init__( self , *lowercase__ , **lowercase__ ): # pylint: disable=unused-argument '''simple docstring''' __A =args[0] if args else None def __iter__( self ): '''simple docstring''' return iter(self._iterator ) def __getattr__( self , lowercase__ ): '''simple docstring''' def empty_fn(*lowercase__ , **lowercase__ ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ): '''simple docstring''' return self def __exit__( self , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' return class lowerCAmelCase__ : '''simple docstring''' def __call__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm(*lowercase__ , **lowercase__ ) else: return EmptyTqdm(*lowercase__ , **lowercase__ ) def __UpperCamelCase ( self , *lowercase__ , **lowercase__ ): '''simple docstring''' __A =None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*lowercase__ , **lowercase__ ) def __UpperCamelCase ( self ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() _lowerCamelCase : Dict = _tqdm_cls() def A__ ( ) ->bool: global _tqdm_active return bool(_tqdm_active ) def A__ ( ) ->List[str]: global _tqdm_active __A =True hf_hub_utils.enable_progress_bars() def A__ ( ) ->Union[str, Any]: global _tqdm_active __A =False hf_hub_utils.disable_progress_bars()
516
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowercase_ = ViTImageProcessor if is_vision_available() else None @property def __UpperCamelCase ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self ): '''simple docstring''' __A =(3, 3_2, 1_2_8) __A =tempfile.mkdtemp() # fmt: off __A =['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on __A =dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) __A =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase__ ) + '''\n''' ) __A ={ '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 3_2, '''width''': 1_2_8}, } __A =os.path.join(self.tmpdirname , lowercase__ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(lowercase__ , lowercase__ ) def __UpperCamelCase ( self , **lowercase__ ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def __UpperCamelCase ( self , **lowercase__ ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowercase__ ) def __UpperCamelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self ): '''simple docstring''' __A =np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta ) __A =Image.fromarray(np.moveaxis(lowercase__ , 0 , -1 ) ) return image_input def __UpperCamelCase ( self ): '''simple docstring''' __A =self.get_tokenizer() __A =self.get_image_processor() __A =MgpstrProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) processor.save_pretrained(self.tmpdirname ) __A =MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase__ ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , lowercase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase__ ) def __UpperCamelCase ( self ): '''simple docstring''' __A =self.get_tokenizer() __A =self.get_image_processor() __A =MgpstrProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) processor.save_pretrained(self.tmpdirname ) __A =self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __A =self.get_image_processor(do_normalize=lowercase__ , padding_value=1.0 ) __A =MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=lowercase__ , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , lowercase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase__ ) def __UpperCamelCase ( self ): '''simple docstring''' __A =self.get_image_processor() __A =self.get_tokenizer() __A =MgpstrProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) __A =self.prepare_image_inputs() __A =image_processor(lowercase__ , return_tensors='''np''' ) __A =processor(images=lowercase__ , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __UpperCamelCase ( self ): '''simple docstring''' __A =self.get_image_processor() __A =self.get_tokenizer() __A =MgpstrProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) __A ='''test''' __A =processor(text=lowercase__ ) __A =tokenizer(lowercase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase ( self ): '''simple docstring''' __A =self.get_image_processor() __A =self.get_tokenizer() __A =MgpstrProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) __A ='''test''' __A =self.prepare_image_inputs() __A =processor(text=lowercase__ , images=lowercase__ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(lowercase__ ): processor() def __UpperCamelCase ( self ): '''simple docstring''' __A =self.get_image_processor() __A =self.get_tokenizer() __A =MgpstrProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) __A =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __A =processor.char_decode(lowercase__ ) __A =tokenizer.batch_decode(lowercase__ ) __A =[seq.replace(''' ''' , '''''' ) for seq in decoded_tok] self.assertListEqual(lowercase__ , lowercase__ ) def __UpperCamelCase ( self ): '''simple docstring''' __A =self.get_image_processor() __A =self.get_tokenizer() __A =MgpstrProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) __A =None __A =self.prepare_image_inputs() __A =processor(text=lowercase__ , images=lowercase__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def __UpperCamelCase ( self ): '''simple docstring''' __A =self.get_image_processor() __A =self.get_tokenizer() __A =MgpstrProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) __A =torch.randn(1 , 2_7 , 3_8 ) __A =torch.randn(1 , 2_7 , 5_0_2_5_7 ) __A =torch.randn(1 , 2_7 , 3_0_5_2_2 ) __A =processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
516
1
import argparse import os import re a__: Any = 'src/transformers/models/auto' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict a__: List[str] = re.compile(r'[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict') # re pattern that matches identifiers in mappings a__: int = re.compile(r'\s*\(\s*"(\S[^"]+)"') def UpperCamelCase__( UpperCamelCase__ : List[str] , UpperCamelCase__ : bool = False )->str: with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' ) as f: A__ = f.read() A__ = content.split('''\n''' ) A__ = [] A__ = 0 while line_idx < len(UpperCamelCase__ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: A__ = len(re.search(r'''^(\s*)\S''' , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(''' ''' * indent + '''(''' ): new_lines.append(lines[line_idx] ) line_idx += 1 A__ = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": A__ = line_idx while not lines[line_idx].startswith(''' ''' * indent + ''')''' ): line_idx += 1 blocks.append('''\n'''.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers A__ = sorted(UpperCamelCase__ , key=lambda UpperCamelCase__ : _re_identifier.search(UpperCamelCase__ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(UpperCamelCase__ ) ) elif "\n".join(UpperCamelCase__ ) != content: return True def UpperCamelCase__( UpperCamelCase__ : bool = False )->List[Any]: A__ = [os.path.join(UpperCamelCase__ , UpperCamelCase__ ) for f in os.listdir(UpperCamelCase__ ) if f.endswith('''.py''' )] A__ = [sort_auto_mapping(UpperCamelCase__ , overwrite=UpperCamelCase__ ) for fname in fnames] if not overwrite and any(UpperCamelCase__ ): A__ = [f for f, d in zip(UpperCamelCase__ , UpperCamelCase__ ) if d] raise ValueError( f"The following files have auto mappings that need sorting: {', '.join(UpperCamelCase__ )}. Run `make style` to fix" ''' this.''' ) if __name__ == "__main__": a__: int = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') a__: int = parser.parse_args() sort_all_auto_mappings(not args.check_only)
190
import math def UpperCamelCase__( UpperCamelCase__ : int )->list: A__ = [True] * n A__ = False A__ = False A__ = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): A__ = i * 2 while index < n: A__ = False A__ = index + i A__ = [2] for i in range(3 , UpperCamelCase__ , 2 ): if is_prime[i]: primes.append(UpperCamelCase__ ) return primes def UpperCamelCase__( UpperCamelCase__ : int = 99_99_66_66_33_33 )->int: A__ = math.floor(math.sqrt(UpperCamelCase__ ) ) + 1_00 A__ = prime_sieve(UpperCamelCase__ ) A__ = 0 A__ = 0 A__ = primes[prime_index] while (last_prime**2) <= limit: A__ = primes[prime_index + 1] A__ = last_prime**2 A__ = next_prime**2 # Get numbers divisible by lps(current) A__ = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) A__ = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps A__ = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair A__ = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
190
1
from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=lowerCAmelCase): _a = ['''torch''', '''scipy'''] def __init__( self: List[str] , *_lowerCAmelCase: Tuple , **_lowerCAmelCase: str ): requires_backends(self , ["torch", "scipy"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls: Tuple , *_lowerCAmelCase: List[str] , **_lowerCAmelCase: List[Any] ): requires_backends(cls , ["torch", "scipy"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls: List[str] , *_lowerCAmelCase: Optional[int] , **_lowerCAmelCase: str ): requires_backends(cls , ["torch", "scipy"] )
453
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset _UpperCAmelCase : List[str] = random.Random() def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase=1.0, lowerCamelCase=None, lowerCamelCase=None ): if rng is None: lowercase :Union[str, Any] = global_rng lowercase :Any = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __lowerCAmelCase ( unittest.TestCase): def __init__( self: Optional[Any] , _lowerCAmelCase: Tuple , _lowerCAmelCase: Union[str, Any]=7 , _lowerCAmelCase: str=4_00 , _lowerCAmelCase: List[str]=20_00 , _lowerCAmelCase: Dict=20_48 , _lowerCAmelCase: Any=1_28 , _lowerCAmelCase: Any=1 , _lowerCAmelCase: List[Any]=5_12 , _lowerCAmelCase: Optional[int]=30 , _lowerCAmelCase: List[Any]=4_41_00 , ): lowercase :Any = parent lowercase :Any = batch_size lowercase :Optional[int] = min_seq_length lowercase :Optional[Any] = max_seq_length lowercase :Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowercase :List[str] = spectrogram_length lowercase :int = feature_size lowercase :Union[str, Any] = num_audio_channels lowercase :Optional[int] = hop_length lowercase :str = chunk_length lowercase :List[str] = sampling_rate def SCREAMING_SNAKE_CASE ( self: str ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def SCREAMING_SNAKE_CASE ( self: int , _lowerCAmelCase: int=False , _lowerCAmelCase: int=False ): def _flatten(_lowerCAmelCase: Optional[Any] ): return list(itertools.chain(*_lowerCAmelCase ) ) if equal_length: lowercase :Any = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowercase :Tuple = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowercase :Optional[int] = [np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowerCAmelCase ( lowerCAmelCase , unittest.TestCase): _a = TvltFeatureExtractor def SCREAMING_SNAKE_CASE ( self: Tuple ): lowercase :Dict = TvltFeatureExtractionTester(self ) def SCREAMING_SNAKE_CASE ( self: str ): lowercase :List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_lowerCAmelCase , "spectrogram_length" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "feature_size" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "num_audio_channels" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "hop_length" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "chunk_length" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "sampling_rate" ) ) def SCREAMING_SNAKE_CASE ( self: str ): lowercase :Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase :Tuple = feat_extract_first.save_pretrained(_lowerCAmelCase )[0] check_json_file_has_correct_format(_lowerCAmelCase ) lowercase :Tuple = self.feature_extraction_class.from_pretrained(_lowerCAmelCase ) lowercase :Optional[Any] = feat_extract_first.to_dict() lowercase :List[str] = feat_extract_second.to_dict() lowercase :Any = dict_first.pop("mel_filters" ) lowercase :Any = dict_second.pop("mel_filters" ) self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Tuple ): lowercase :Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase :Any = os.path.join(_lowerCAmelCase , "feat_extract.json" ) feat_extract_first.to_json_file(_lowerCAmelCase ) lowercase :List[Any] = self.feature_extraction_class.from_json_file(_lowerCAmelCase ) lowercase :Tuple = feat_extract_first.to_dict() lowercase :int = feat_extract_second.to_dict() lowercase :Tuple = dict_first.pop("mel_filters" ) lowercase :Tuple = dict_second.pop("mel_filters" ) self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: int ): # Initialize feature_extractor lowercase :int = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 lowercase :List[Any] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowercase :Union[str, Any] = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test not batched input lowercase :Any = feature_extractor(np_speech_inputs[0] , return_tensors="np" , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched lowercase :Optional[int] = feature_extractor(_lowerCAmelCase , return_tensors="np" , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking lowercase :Dict = feature_extractor( _lowerCAmelCase , return_tensors="np" , sampling_rate=4_41_00 , mask_audio=_lowerCAmelCase ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. lowercase :Optional[int] = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] lowercase :Union[str, Any] = np.asarray(_lowerCAmelCase ) lowercase :Dict = feature_extractor(_lowerCAmelCase , return_tensors="np" , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def SCREAMING_SNAKE_CASE ( self: Optional[int] , _lowerCAmelCase: Optional[Any] ): lowercase :str = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech lowercase :Any = ds.sort("id" ).select(range(_lowerCAmelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def SCREAMING_SNAKE_CASE ( self: Dict ): lowercase :Optional[int] = self._load_datasamples(1 ) lowercase :Union[str, Any] = TvltFeatureExtractor() lowercase :str = feature_extractor(_lowerCAmelCase , return_tensors="pt" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_92, 1_28) ) lowercase :Optional[int] = torch.tensor([[-0.30_32, -0.27_08], [-0.44_34, -0.40_07]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _lowerCAmelCase , atol=1e-4 ) )
453
1
'''simple docstring''' from collections.abc import Callable import numpy as np def __lowercase ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> np.array: '''simple docstring''' _A = int(np.ceil((x_end - xa) / step_size ) ) _A = np.zeros((n + 1,) ) _A = ya _A = xa for k in range(__lowercase ): _A = y[k] + step_size * ode_func(__lowercase , y[k] ) _A = y[k] + ( (step_size / 2) * (ode_func(__lowercase , y[k] ) + ode_func(x + step_size , __lowercase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
330
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any]=13 , __UpperCAmelCase : Union[str, Any]=7 , __UpperCAmelCase : Dict=True , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Any=True , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[Any]=99 , __UpperCAmelCase : Tuple=32 , __UpperCAmelCase : List[str]=5 , __UpperCAmelCase : str=4 , __UpperCAmelCase : int=37 , __UpperCAmelCase : Tuple="gelu" , __UpperCAmelCase : str=0.1 , __UpperCAmelCase : List[str]=0.1 , __UpperCAmelCase : str=128 , __UpperCAmelCase : Optional[int]=32 , __UpperCAmelCase : int=16 , __UpperCAmelCase : Dict=2 , __UpperCAmelCase : Dict=0.02 , __UpperCAmelCase : List[str]=3 , __UpperCAmelCase : Dict=4 , __UpperCAmelCase : List[str]=None , ): '''simple docstring''' _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_mask _A = use_token_type_ids _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = type_sequence_label_size _A = initializer_range _A = num_labels _A = num_choices _A = scope def lowerCAmelCase ( self : int ): '''simple docstring''' _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None if self.use_token_type_ids: _A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : int ): '''simple docstring''' return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) = self.prepare_config_and_inputs() _A = True _A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _A = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCAmelCase ( self : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Any ): '''simple docstring''' _A = NezhaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _A = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) _A = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) _A = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Any , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , ): '''simple docstring''' _A = True _A = NezhaModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _A = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) _A = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) _A = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict ): '''simple docstring''' _A = NezhaForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _A = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Any , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str] ): '''simple docstring''' _A = NezhaForNextSentencePrediction(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _A = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] ): '''simple docstring''' _A = NezhaForPreTraining(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _A = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , next_sentence_label=__UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Dict ): '''simple docstring''' _A = NezhaForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _A = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Any ): '''simple docstring''' _A = self.num_labels _A = NezhaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _A = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : int , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Any ): '''simple docstring''' _A = self.num_labels _A = NezhaForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _A = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Dict , __UpperCAmelCase : List[str] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : str , __UpperCAmelCase : Any , __UpperCAmelCase : str ): '''simple docstring''' _A = self.num_choices _A = NezhaForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) = config_and_inputs _A = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" snake_case = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) snake_case = ( { '''feature-extraction''': NezhaModel, '''fill-mask''': NezhaForMaskedLM, '''question-answering''': NezhaForQuestionAnswering, '''text-classification''': NezhaForSequenceClassification, '''token-classification''': NezhaForTokenClassification, '''zero-shot''': NezhaForSequenceClassification, } if is_torch_available() else {} ) snake_case = True def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Any , __UpperCAmelCase : int=False ): '''simple docstring''' _A = super()._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) if return_labels: if model_class in get_values(__UpperCAmelCase ): _A = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__UpperCAmelCase ) _A = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase ) return inputs_dict def lowerCAmelCase ( self : str ): '''simple docstring''' _A = NezhaModelTester(self ) _A = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase ( self : Any ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__UpperCAmelCase ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() _A = None self.model_tester.create_and_check_model_as_decoder( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*__UpperCAmelCase ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__UpperCAmelCase ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def lowerCAmelCase ( self : int ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @slow def lowerCAmelCase ( self : Dict ): '''simple docstring''' for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = NezhaModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @slow @require_torch_gpu def lowerCAmelCase ( self : Dict ): '''simple docstring''' _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return _A = True _A = model_class(config=__UpperCAmelCase ) _A = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) _A = torch.jit.trace( __UpperCAmelCase , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__UpperCAmelCase , os.path.join(__UpperCAmelCase , "bert.pt" ) ) _A = torch.jit.load(os.path.join(__UpperCAmelCase , "bert.pt" ) , map_location=__UpperCAmelCase ) loaded(inputs_dict["input_ids"].to(__UpperCAmelCase ) , inputs_dict["attention_mask"].to(__UpperCAmelCase ) ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = NezhaModel.from_pretrained("sijunhe/nezha-cn-base" ) _A = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _A = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _A = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0] _A = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , __UpperCAmelCase ) _A = torch.tensor([[[0.0685, 0.2441, 0.1102], [0.0600, 0.1906, 0.1349], [0.0221, 0.0819, 0.0586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __UpperCAmelCase , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : List[str] ): '''simple docstring''' _A = NezhaForMaskedLM.from_pretrained("sijunhe/nezha-cn-base" ) _A = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _A = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _A = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0] _A = torch.Size((1, 6, 21128) ) self.assertEqual(output.shape , __UpperCAmelCase ) _A = torch.tensor( [[-2.7939, -1.7902, -2.2189], [-2.8585, -1.8908, -2.3723], [-2.6499, -1.7750, -2.2558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __UpperCAmelCase , atol=1E-4 ) )
330
1
'''simple docstring''' import qiskit def lowercase_ ( lowercase__ , lowercase__ ) ->qiskit.result.counts.Counts: _snake_case: Tuple = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _snake_case: List[Any] = qiskit.QuantumCircuit(lowercase__ , lowercase__ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _snake_case: List[str] = qiskit.execute(lowercase__ , lowercase__ , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowercase__ ) if __name__ == "__main__": A : str = single_qubit_measure(2, 2) print(F'Total count for various states are: {counts}')
703
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class lowerCamelCase ( __UpperCAmelCase ): _SCREAMING_SNAKE_CASE = "Speech2TextFeatureExtractor" _SCREAMING_SNAKE_CASE = "Speech2TextTokenizer" def __init__( self : List[str] , __snake_case : Union[str, Any] , __snake_case : List[str] ): '''simple docstring''' super().__init__(__snake_case , __snake_case ) _snake_case: Optional[int] = self.feature_extractor _snake_case: Dict = False def __call__( self : Optional[int] , *__snake_case : Optional[Any] , **__snake_case : Union[str, Any] ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*__snake_case , **__snake_case ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) _snake_case: int = kwargs.pop('raw_speech' ) else: _snake_case: Tuple = kwargs.pop('audio' , __snake_case ) _snake_case: Optional[Any] = kwargs.pop('sampling_rate' , __snake_case ) _snake_case: Optional[Any] = kwargs.pop('text' , __snake_case ) if len(__snake_case ) > 0: _snake_case: Optional[Any] = args[0] _snake_case: Union[str, Any] = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: _snake_case: List[Any] = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case ) if text is not None: _snake_case: Tuple = self.tokenizer(__snake_case , **__snake_case ) if text is None: return inputs elif audio is None: return encodings else: _snake_case: List[Any] = encodings['input_ids'] return inputs def SCREAMING_SNAKE_CASE_ ( self : Dict , *__snake_case : Optional[int] , **__snake_case : str ): '''simple docstring''' return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Dict , *__snake_case : List[str] , **__snake_case : Tuple ): '''simple docstring''' return self.tokenizer.decode(*__snake_case , **__snake_case ) @contextmanager def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) _snake_case: Any = True _snake_case: str = self.tokenizer yield _snake_case: Union[str, Any] = self.feature_extractor _snake_case: Tuple = False
273
0
"""simple docstring""" # # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def __lowerCamelCase ( *UpperCamelCase__ ): """simple docstring""" with open(UpperCamelCase__ , "r" ) as fh: fcntl.flock(UpperCamelCase__ , fcntl.LOCK_EX ) try: print(*UpperCamelCase__ ) finally: fcntl.flock(UpperCamelCase__ , fcntl.LOCK_UN ) __magic_name__ = int(os.environ['''LOCAL_RANK''']) torch.cuda.set_device(local_rank) __magic_name__ = torch.device('''cuda''', local_rank) __magic_name__ = socket.gethostname() __magic_name__ = f'''[{hostname}-{local_rank}]''' try: # test distributed dist.init_process_group('''nccl''') dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __magic_name__ = dist.get_rank() __magic_name__ = dist.get_world_size() printflock(f'''{gpu} is OK (global rank: {rank}/{world_size})''') dist.barrier() if rank == 0: printflock(f'''pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}''') except Exception: printflock(f'''{gpu} is broken''') raise
657
"""simple docstring""" from ..utils import DummyObject, requires_backends class _lowerCAmelCase ( metaclass=lowerCamelCase ): lowercase_ : Dict = ['''torch''', '''torchsde'''] def __init__( self , *a_ , **a_ ) -> Optional[int]: requires_backends(self , ["torch", "torchsde"] ) @classmethod def _a ( cls , *a_ , **a_ ) -> Optional[Any]: requires_backends(cls , ["torch", "torchsde"] ) @classmethod def _a ( cls , *a_ , **a_ ) -> List[Any]: requires_backends(cls , ["torch", "torchsde"] )
657
1
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion" ) lowerCAmelCase__ : int = None lowerCAmelCase__ : int = { "7B": 1_10_08, "13B": 1_38_24, "30B": 1_79_20, "65B": 2_20_16, "70B": 2_86_72, } lowerCAmelCase__ : List[str] = { "7B": 1, "7Bf": 1, "13B": 2, "13Bf": 2, "30B": 4, "65B": 8, "70B": 8, "70Bf": 8, } def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase=1, _UpperCAmelCase=256 ): return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def __UpperCamelCase ( _UpperCAmelCase ): with open(_UpperCAmelCase, "r" ) as f: return json.load(_UpperCAmelCase ) def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase ): with open(_UpperCAmelCase, "w" ) as f: json.dump(_UpperCAmelCase, _UpperCAmelCase ) def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=True ): os.makedirs(_UpperCAmelCase, exist_ok=_UpperCAmelCase ) __UpperCAmelCase : Dict = os.path.join(_UpperCAmelCase, "tmp" ) os.makedirs(_UpperCAmelCase, exist_ok=_UpperCAmelCase ) __UpperCAmelCase : Any = read_json(os.path.join(_UpperCAmelCase, "params.json" ) ) __UpperCAmelCase : str = NUM_SHARDS[model_size] __UpperCAmelCase : Union[str, Any] = params["n_layers"] __UpperCAmelCase : Tuple = params["n_heads"] __UpperCAmelCase : Optional[int] = n_heads // num_shards __UpperCAmelCase : Any = params["dim"] __UpperCAmelCase : Dict = dim // n_heads __UpperCAmelCase : Dict = 10_000.0 __UpperCAmelCase : List[str] = 1.0 / (base ** (torch.arange(0, _UpperCAmelCase, 2 ).float() / dims_per_head)) if "n_kv_heads" in params: __UpperCAmelCase : Optional[int] = params["n_kv_heads"] # for GQA / MQA __UpperCAmelCase : Optional[Any] = n_heads_per_shard // num_key_value_heads __UpperCAmelCase : Optional[int] = dim // num_key_value_heads else: # compatibility with other checkpoints __UpperCAmelCase : Dict = n_heads __UpperCAmelCase : str = n_heads_per_shard __UpperCAmelCase : Tuple = dim # permute for sliced rotary def permute(_UpperCAmelCase, _UpperCAmelCase=n_heads, _UpperCAmelCase=dim, _UpperCAmelCase=dim ): return w.view(_UpperCAmelCase, dima // n_heads // 2, 2, _UpperCAmelCase ).transpose(1, 2 ).reshape(_UpperCAmelCase, _UpperCAmelCase ) print(F"Fetching all parameters from the checkpoint at {input_base_path}." ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) __UpperCAmelCase : List[str] = torch.load(os.path.join(_UpperCAmelCase, "consolidated.00.pth" ), map_location="cpu" ) else: # Sharded __UpperCAmelCase : Any = [ torch.load(os.path.join(_UpperCAmelCase, F"consolidated.{i:02d}.pth" ), map_location="cpu" ) for i in range(_UpperCAmelCase ) ] __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : Union[str, Any] = {"weight_map": {}} for layer_i in range(_UpperCAmelCase ): __UpperCAmelCase : List[Any] = F"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin" if model_size == "7B": # Unsharded __UpperCAmelCase : str = { F"model.layers.{layer_i}.self_attn.q_proj.weight": permute( loaded[F"layers.{layer_i}.attention.wq.weight"] ), F"model.layers.{layer_i}.self_attn.k_proj.weight": permute( loaded[F"layers.{layer_i}.attention.wk.weight"] ), F"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[F"layers.{layer_i}.attention.wv.weight"], F"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[F"layers.{layer_i}.attention.wo.weight"], F"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[F"layers.{layer_i}.feed_forward.w1.weight"], F"model.layers.{layer_i}.mlp.down_proj.weight": loaded[F"layers.{layer_i}.feed_forward.w2.weight"], F"model.layers.{layer_i}.mlp.up_proj.weight": loaded[F"layers.{layer_i}.feed_forward.w3.weight"], F"model.layers.{layer_i}.input_layernorm.weight": loaded[F"layers.{layer_i}.attention_norm.weight"], F"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[F"layers.{layer_i}.ffn_norm.weight"], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. __UpperCAmelCase : str = { F"model.layers.{layer_i}.input_layernorm.weight": loaded[0][ F"layers.{layer_i}.attention_norm.weight" ].clone(), F"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][ F"layers.{layer_i}.ffn_norm.weight" ].clone(), } __UpperCAmelCase : List[Any] = permute( torch.cat( [ loaded[i][F"layers.{layer_i}.attention.wq.weight"].view(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) for i in range(_UpperCAmelCase ) ], dim=0, ).reshape(_UpperCAmelCase, _UpperCAmelCase ) ) __UpperCAmelCase : List[Any] = permute( torch.cat( [ loaded[i][F"layers.{layer_i}.attention.wk.weight"].view( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) for i in range(_UpperCAmelCase ) ], dim=0, ).reshape(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ) __UpperCAmelCase : List[Any] = torch.cat( [ loaded[i][F"layers.{layer_i}.attention.wv.weight"].view( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) for i in range(_UpperCAmelCase ) ], dim=0, ).reshape(_UpperCAmelCase, _UpperCAmelCase ) __UpperCAmelCase : Tuple = torch.cat( [loaded[i][F"layers.{layer_i}.attention.wo.weight"] for i in range(_UpperCAmelCase )], dim=1 ) __UpperCAmelCase : Optional[int] = torch.cat( [loaded[i][F"layers.{layer_i}.feed_forward.w1.weight"] for i in range(_UpperCAmelCase )], dim=0 ) __UpperCAmelCase : int = torch.cat( [loaded[i][F"layers.{layer_i}.feed_forward.w2.weight"] for i in range(_UpperCAmelCase )], dim=1 ) __UpperCAmelCase : Tuple = torch.cat( [loaded[i][F"layers.{layer_i}.feed_forward.w3.weight"] for i in range(_UpperCAmelCase )], dim=0 ) __UpperCAmelCase : str = inv_freq for k, v in state_dict.items(): __UpperCAmelCase : Dict = filename param_count += v.numel() torch.save(_UpperCAmelCase, os.path.join(_UpperCAmelCase, _UpperCAmelCase ) ) __UpperCAmelCase : Optional[Any] = F"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin" if model_size == "7B": # Unsharded __UpperCAmelCase : Any = { "model.embed_tokens.weight": loaded["tok_embeddings.weight"], "model.norm.weight": loaded["norm.weight"], "lm_head.weight": loaded["output.weight"], } else: __UpperCAmelCase : Any = { "model.norm.weight": loaded[0]["norm.weight"], "model.embed_tokens.weight": torch.cat( [loaded[i]["tok_embeddings.weight"] for i in range(_UpperCAmelCase )], dim=1 ), "lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(_UpperCAmelCase )], dim=0 ), } for k, v in state_dict.items(): __UpperCAmelCase : Optional[Any] = filename param_count += v.numel() torch.save(_UpperCAmelCase, os.path.join(_UpperCAmelCase, _UpperCAmelCase ) ) # Write configs __UpperCAmelCase : str = {"total_size": param_count * 2} write_json(_UpperCAmelCase, os.path.join(_UpperCAmelCase, "pytorch_model.bin.index.json" ) ) __UpperCAmelCase : Dict = params["ffn_dim_multiplier"] if "ffn_dim_multiplier" in params else 1 __UpperCAmelCase : Dict = params["multiple_of"] if "multiple_of" in params else 256 __UpperCAmelCase : int = LlamaConfig( hidden_size=_UpperCAmelCase, intermediate_size=compute_intermediate_size(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ), num_attention_heads=params["n_heads"], num_hidden_layers=params["n_layers"], rms_norm_eps=params["norm_eps"], num_key_value_heads=_UpperCAmelCase, ) config.save_pretrained(_UpperCAmelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("Loading the checkpoint in a Llama model." ) __UpperCAmelCase : Union[str, Any] = LlamaForCausalLM.from_pretrained(_UpperCAmelCase, torch_dtype=torch.floataa, low_cpu_mem_usage=_UpperCAmelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print("Saving in the Transformers format." ) model.save_pretrained(_UpperCAmelCase, safe_serialization=_UpperCAmelCase ) shutil.rmtree(_UpperCAmelCase ) def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase ): # Initialize the tokenizer based on the `spm` model __UpperCAmelCase : Any = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(F"Saving a {tokenizer_class.__name__} to {tokenizer_path}." ) __UpperCAmelCase : Union[str, Any] = tokenizer_class(_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) def __UpperCamelCase ( ): __UpperCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( "--input_dir", help="Location of LLaMA weights, which contains tokenizer.model and model folders", ) parser.add_argument( "--model_size", choices=["7B", "7Bf", "13B", "13Bf", "30B", "65B", "70B", "70Bf", "tokenizer_only"], ) parser.add_argument( "--output_dir", help="Location to write HF model and tokenizer", ) parser.add_argument("--safe_serialization", type=_UpperCAmelCase, help="Whether or not to save using `safetensors`." ) __UpperCAmelCase : Dict = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir, input_base_path=os.path.join(args.input_dir, args.model_size ), model_size=args.model_size, safe_serialization=args.safe_serialization, ) __UpperCAmelCase : int = os.path.join(args.input_dir, "tokenizer.model" ) write_tokenizer(args.output_dir, _UpperCAmelCase ) if __name__ == "__main__": main()
329
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase__ : List[Any] = logging.get_logger(__name__) @add_end_docstrings(snake_case__ ) class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" def __init__( self : List[Any] , **UpperCAmelCase_ : List[str] ): """simple docstring""" super().__init__(**UpperCAmelCase_ ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : List[str] , UpperCAmelCase_ : Union[str, List[str], "Image", List["Image"]] , **UpperCAmelCase_ : List[str] ): """simple docstring""" return super().__call__(UpperCAmelCase_ , **UpperCAmelCase_ ) def lowerCamelCase_ ( self : List[str] , **UpperCAmelCase_ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase : Any = {} if "candidate_labels" in kwargs: __UpperCAmelCase : int = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: __UpperCAmelCase : Optional[Any] = kwargs["hypothesis_template"] return preprocess_params, {}, {} def lowerCamelCase_ ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Dict="This is a photo of {}." ): """simple docstring""" __UpperCAmelCase : int = load_image(UpperCAmelCase_ ) __UpperCAmelCase : Optional[int] = self.image_processor(images=[image] , return_tensors=self.framework ) __UpperCAmelCase : Optional[int] = candidate_labels __UpperCAmelCase : Dict = [hypothesis_template.format(UpperCAmelCase_ ) for x in candidate_labels] __UpperCAmelCase : Any = self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework , padding=UpperCAmelCase_ ) __UpperCAmelCase : Optional[int] = [text_inputs] return inputs def lowerCamelCase_ ( self : List[Any] , UpperCAmelCase_ : Tuple ): """simple docstring""" __UpperCAmelCase : Any = model_inputs.pop("candidate_labels" ) __UpperCAmelCase : str = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , UpperCAmelCase_ ): __UpperCAmelCase : Union[str, Any] = text_inputs[0] else: # Batching case. __UpperCAmelCase : Any = text_inputs[0][0] __UpperCAmelCase : int = self.model(**UpperCAmelCase_ , **UpperCAmelCase_ ) __UpperCAmelCase : Optional[Any] = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase_ : Optional[Any] ): """simple docstring""" __UpperCAmelCase : Optional[Any] = model_outputs.pop("candidate_labels" ) __UpperCAmelCase : Optional[int] = model_outputs["logits"][0] if self.framework == "pt": __UpperCAmelCase : Dict = logits.softmax(dim=-1 ).squeeze(-1 ) __UpperCAmelCase : Tuple = probs.tolist() if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): __UpperCAmelCase : List[Any] = [scores] elif self.framework == "tf": __UpperCAmelCase : Optional[int] = stable_softmax(UpperCAmelCase_ , axis=-1 ) __UpperCAmelCase : Tuple = probs.numpy().tolist() else: raise ValueError(f"Unsupported framework: {self.framework}" ) __UpperCAmelCase : Optional[int] = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(UpperCAmelCase_ , UpperCAmelCase_ ) , key=lambda UpperCAmelCase_ : -x[0] ) ] return result
329
1
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): snake_case_ = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right snake_case_ = 128022 snake_case_ = 128028 @require_sentencepiece class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : Tuple = MaMaaaTokenizer A_ : int = False A_ : Tuple = False A_ : List[Any] = True def a (self : Any ): """simple docstring""" super().setUp() __snake_case = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] __snake_case = dict(zip(a__ , range(len(a__ ) ) ) ) __snake_case = Path(self.tmpdirname ) save_json(a__ , save_dir / VOCAB_FILES_NAMES['''vocab_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(a__ , save_dir / VOCAB_FILES_NAMES['''spm_file'''] ) __snake_case = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def a (self : Union[str, Any] , **a__ : Tuple ): """simple docstring""" return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **a__ ) def a (self : List[Any] , a__ : Any ): """simple docstring""" return ( "This is a test", "This is a test", ) def a (self : Tuple ): """simple docstring""" __snake_case = '''</s>''' __snake_case = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ ) def a (self : List[Any] ): """simple docstring""" __snake_case = self.get_tokenizer() __snake_case = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''</s>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''<s>''' ) self.assertEqual(len(a__ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip('''Skip this test while all models are still to be uploaded.''' ) def a (self : Union[str, Any] ): """simple docstring""" pass def a (self : List[str] ): """simple docstring""" __snake_case = self.get_tokenizer() __snake_case = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(a__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a__ ) , [2, 3, 4, 5, 6] , ) __snake_case = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(a__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) __snake_case = tokenizer.convert_tokens_to_string(a__ ) self.assertEqual(a__ , '''This is a test''' ) @slow def a (self : Optional[Any] ): """simple docstring""" __snake_case = {'''input_ids''': [[12_8022, 11_0108, 397, 11, 3_8272, 2247, 12_4811, 285, 1_8105, 1586, 207, 7, 3_9534, 4428, 397, 1019, 1_8105, 1586, 207, 7, 4_1337, 1_6786, 241, 7, 2_0214, 17, 12_5690, 1_0398, 7, 4_4378, 5_8069, 6_8342, 7798, 7343, 11, 299, 3_3310, 4, 158, 3_7350, 9_4077, 4569, 299, 3_3310, 90, 4, 5_2840, 290, 4, 3_1270, 112, 299, 682, 4, 5_2840, 3_9953, 1_4079, 193, 5_2519, 9_0894, 1_7894, 12_0697, 11, 4_0445, 551, 17, 1019, 5_2519, 9_0894, 1_7756, 963, 11, 4_0445, 480, 17, 9792, 1120, 5173, 1393, 6240, 1_6786, 241, 12_0996, 28, 1245, 1393, 11_8240, 1_1123, 1019, 9_3612, 2691, 1_0618, 9_8058, 12_0409, 1928, 279, 4, 4_0683, 367, 178, 207, 1019, 103, 10_3121, 506, 6_5296, 5, 2], [12_8022, 2_1217, 367, 117, 12_5450, 128, 719, 7, 7308, 40, 9_3612, 1_2669, 1116, 1_6704, 71, 1_7785, 3699, 1_5592, 35, 144, 9584, 241, 1_1943, 713, 950, 799, 2247, 8_8427, 150, 149, 11_8813, 12_0706, 1019, 10_6906, 8_1518, 28, 1224, 2_2799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [12_8022, 1658, 12_3311, 5155, 5578, 4722, 279, 1_4947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a__ , model_name='''facebook/m2m100_418M''' , revision='''c168bae485c864188cf9aa0e4108b0b6934dc91e''' , ) @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): A_ : Optional[Any] = 'facebook/m2m100_418M' A_ : int = [ 'In my opinion, there are two levels of response from the French government.', 'NSA Affair Emphasizes Complete Lack of Debate on Intelligence', ] A_ : Union[str, Any] = [ 'Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.', 'L\'affaire NSA souligne l\'absence totale de débat sur le renseignement', ] # fmt: off A_ : Union[str, Any] = [EN_CODE, 593, 1_949, 115_781, 4, 71_586, 4_234, 60_633, 126_233, 432, 123_808, 15_592, 1_197, 117_132, 120_618, 5, 2] @classmethod def a (cls : Union[str, Any] ): """simple docstring""" __snake_case = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en''' , tgt_lang='''fr''' ) __snake_case = 1 return cls def a (self : int ): """simple docstring""" self.assertEqual(self.tokenizer.get_lang_id('''ar''' ) , 12_8006 ) self.assertEqual(self.tokenizer.get_lang_id('''en''' ) , 12_8022 ) self.assertEqual(self.tokenizer.get_lang_id('''ro''' ) , 12_8076 ) self.assertEqual(self.tokenizer.get_lang_id('''mr''' ) , 12_8063 ) def a (self : int ): """simple docstring""" __snake_case = self.tokenizer.get_vocab() self.assertEqual(len(a__ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab['''<unk>'''] , 3 ) self.assertIn(self.tokenizer.get_lang_token('''en''' ) , a__ ) def a (self : Optional[Any] ): """simple docstring""" __snake_case = '''en''' __snake_case = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , a__ ) def a (self : Optional[Any] ): """simple docstring""" self.assertIn(a__ , self.tokenizer.all_special_ids ) # fmt: off __snake_case = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 1_4028, 136, 3286, 9706, 6, 9_0797, 6, 14_4012, 162, 8_8128, 3_0061, 5, 2] # fmt: on __snake_case = self.tokenizer.decode(a__ , skip_special_tokens=a__ ) __snake_case = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=a__ ) self.assertEqual(a__ , a__ ) self.assertNotIn(self.tokenizer.eos_token , a__ ) def a (self : Union[str, Any] ): """simple docstring""" __snake_case = tempfile.mkdtemp() __snake_case = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(a__ ) __snake_case = MaMaaaTokenizer.from_pretrained(a__ ) self.assertDictEqual(new_tok.lang_token_to_id , a__ ) @require_torch def a (self : Tuple ): """simple docstring""" __snake_case = '''en''' __snake_case = '''fr''' __snake_case = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=a__ , return_tensors='''pt''' ) __snake_case = shift_tokens_right( batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: __snake_case = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def a (self : List[str] ): """simple docstring""" __snake_case = '''mr''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) __snake_case = '''zh''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def a (self : Any ): """simple docstring""" __snake_case = '''mr''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) __snake_case = '''zh''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def a (self : Dict ): """simple docstring""" __snake_case = self.tokenizer._build_translation_inputs('''A test''' , return_tensors='''pt''' , src_lang='''en''' , tgt_lang='''ar''' ) self.assertEqual( nested_simplify(a__ ) , { # en_XX, A, test, EOS '''input_ids''': [[12_8022, 58, 4183, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 12_8006, } , )
592
import math def lowerCamelCase__ ( snake_case_ : int ) -> bool: __snake_case = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(snake_case_ ) def lowerCamelCase__ ( snake_case_ : float = 1 / 1_2345 ) -> int: __snake_case = 0 __snake_case = 0 __snake_case = 3 while True: __snake_case = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(snake_case_ ): __snake_case = int(snake_case_ ) total_partitions += 1 if check_partition_perfect(snake_case_ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(snake_case_ ) integer += 1 if __name__ == "__main__": print(F'{solution() = }')
592
1
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class snake_case__ ( UpperCamelCase): def __init__( self : Optional[Any] , _A : List[Any]=0.01 , _A : Dict=10_00 ) -> List[str]: UpperCAmelCase_ : int = p_stop UpperCAmelCase_ : Any = max_length def __iter__( self : List[Any] ) -> Any: UpperCAmelCase_ : str = 0 UpperCAmelCase_ : int = False while not stop and count < self.max_length: yield count count += 1 UpperCAmelCase_ : Dict = random.random() < self.p_stop class snake_case__ ( unittest.TestCase): def A ( self : List[Any] , _A : Optional[Any] , _A : Optional[Any] , _A : List[Any]=False , _A : Optional[Any]=True ) -> int: UpperCAmelCase_ : Optional[Any] = [ BatchSamplerShard(_A , 2 , _A , split_batches=_A , even_batches=_A ) for i in range(2 ) ] UpperCAmelCase_ : Any = [list(_A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(_A ) for shard in batch_sampler_shards] , [len(_A ) for e in expected] ) self.assertListEqual(_A , _A ) def A ( self : int ) -> List[str]: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase_ : List[str] = BatchSampler(range(24 ) , batch_size=3 , drop_last=_A ) UpperCAmelCase_ : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(_A , _A ) UpperCAmelCase_ : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=_A ) # Expected shouldn't change self.check_batch_sampler_shards(_A , _A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase_ : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=_A ) UpperCAmelCase_ : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(_A , _A ) UpperCAmelCase_ : Optional[int] = BatchSampler(range(21 ) , batch_size=3 , drop_last=_A ) UpperCAmelCase_ : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase_ : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=_A ) UpperCAmelCase_ : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(_A , _A ) UpperCAmelCase_ : str = BatchSampler(range(22 ) , batch_size=3 , drop_last=_A ) UpperCAmelCase_ : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase_ : List[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=_A ) UpperCAmelCase_ : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(_A , _A ) UpperCAmelCase_ : int = BatchSampler(range(20 ) , batch_size=3 , drop_last=_A ) UpperCAmelCase_ : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A ) # Check the shards when the dataset is very small. UpperCAmelCase_ : Union[str, Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=_A ) UpperCAmelCase_ : int = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(_A , _A ) UpperCAmelCase_ : Optional[Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=_A ) UpperCAmelCase_ : Dict = [[], []] self.check_batch_sampler_shards(_A , _A ) def A ( self : Any ) -> int: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase_ : Union[str, Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=_A ) UpperCAmelCase_ : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A ) UpperCAmelCase_ : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=_A ) # Expected shouldn't change self.check_batch_sampler_shards(_A , _A , split_batches=_A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase_ : Tuple = BatchSampler(range(22 ) , batch_size=4 , drop_last=_A ) UpperCAmelCase_ : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A ) UpperCAmelCase_ : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=_A ) UpperCAmelCase_ : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase_ : Optional[Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=_A ) UpperCAmelCase_ : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A ) UpperCAmelCase_ : Optional[int] = BatchSampler(range(21 ) , batch_size=4 , drop_last=_A ) UpperCAmelCase_ : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A ) # Check the shards when the dataset is very small. UpperCAmelCase_ : Tuple = BatchSampler(range(2 ) , batch_size=4 , drop_last=_A ) UpperCAmelCase_ : str = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(_A , _A , split_batches=_A ) UpperCAmelCase_ : Union[str, Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=_A ) UpperCAmelCase_ : str = [[], []] self.check_batch_sampler_shards(_A , _A , split_batches=_A ) def A ( self : Dict ) -> List[str]: # Check the shards when the dataset is a round multiple of total batch size. UpperCAmelCase_ : List[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=_A ) UpperCAmelCase_ : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) UpperCAmelCase_ : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=_A ) # Expected shouldn't change self.check_batch_sampler_shards(_A , _A , even_batches=_A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCAmelCase_ : Any = BatchSampler(range(21 ) , batch_size=3 , drop_last=_A ) UpperCAmelCase_ : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) UpperCAmelCase_ : Any = BatchSampler(range(21 ) , batch_size=3 , drop_last=_A ) UpperCAmelCase_ : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCAmelCase_ : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=_A ) UpperCAmelCase_ : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) UpperCAmelCase_ : Union[str, Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=_A ) UpperCAmelCase_ : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCAmelCase_ : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=_A ) UpperCAmelCase_ : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) UpperCAmelCase_ : str = BatchSampler(range(20 ) , batch_size=3 , drop_last=_A ) UpperCAmelCase_ : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) # Check the shards when the dataset is very small. UpperCAmelCase_ : Optional[int] = BatchSampler(range(2 ) , batch_size=3 , drop_last=_A ) UpperCAmelCase_ : Any = [[[0, 1]], []] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) UpperCAmelCase_ : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=_A ) UpperCAmelCase_ : Dict = [[], []] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) def A ( self : str ) -> Dict: # Check the shards when the dataset is a round multiple of batch size. UpperCAmelCase_ : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=_A ) UpperCAmelCase_ : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) UpperCAmelCase_ : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=_A ) # Expected shouldn't change self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) # Check the shards when the dataset is not a round multiple of batch size. UpperCAmelCase_ : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=_A ) UpperCAmelCase_ : Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) UpperCAmelCase_ : Any = BatchSampler(range(22 ) , batch_size=4 , drop_last=_A ) UpperCAmelCase_ : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCAmelCase_ : Union[str, Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=_A ) UpperCAmelCase_ : str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) UpperCAmelCase_ : List[str] = BatchSampler(range(21 ) , batch_size=4 , drop_last=_A ) UpperCAmelCase_ : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) # Check the shards when the dataset is very small. UpperCAmelCase_ : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=_A ) UpperCAmelCase_ : Optional[int] = [[[0, 1]], []] self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) UpperCAmelCase_ : Optional[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=_A ) UpperCAmelCase_ : Optional[int] = [[], []] self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) def A ( self : Union[str, Any] ) -> Dict: UpperCAmelCase_ : int = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] UpperCAmelCase_ : Union[str, Any] = [BatchSamplerShard(_A , 2 , _A , even_batches=_A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def A ( self : Tuple , _A : Any , _A : Optional[Any] , _A : Optional[int] , _A : List[Any]=False , _A : Optional[Any]=2 , _A : int=False ) -> int: random.seed(_A ) UpperCAmelCase_ : str = list(_A ) UpperCAmelCase_ : Optional[Any] = [ IterableDatasetShard( _A , batch_size=_A , drop_last=_A , num_processes=_A , process_index=_A , split_batches=_A , ) for i in range(_A ) ] UpperCAmelCase_ : List[str] = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(_A ) iterable_dataset_lists.append(list(_A ) ) UpperCAmelCase_ : int = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size UpperCAmelCase_ : Optional[Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(_A ) , len(_A ) ) self.assertTrue(len(_A ) % shard_batch_size == 0 ) UpperCAmelCase_ : Optional[int] = [] for idx in range(0 , len(_A ) , _A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(_A ) < len(_A ): reference += reference self.assertListEqual(_A , reference[: len(_A )] ) def A ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase_ : Tuple = 42 UpperCAmelCase_ : List[str] = RandomIterableDataset() self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) # Edge case with a very small dataset UpperCAmelCase_ : Any = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) def A ( self : List[str] ) -> Optional[Any]: UpperCAmelCase_ : Optional[Any] = BatchSampler(range(16 ) , batch_size=4 , drop_last=_A ) UpperCAmelCase_ : List[str] = SkipBatchSampler(_A , 2 ) self.assertListEqual(list(_A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def A ( self : int ) -> List[str]: UpperCAmelCase_ : int = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def A ( self : str ) -> Dict: UpperCAmelCase_ : Any = DataLoader(list(range(16 ) ) , batch_size=4 ) UpperCAmelCase_ : str = skip_first_batches(_A , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def A ( self : int ) -> List[Any]: UpperCAmelCase_ : str = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(_A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def A ( self : Union[str, Any] ) -> str: Accelerator() UpperCAmelCase_ : Dict = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(_A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
216
'''simple docstring''' from collections import deque def __UpperCAmelCase ( A : int ) -> Optional[Any]: UpperCAmelCase_ : Tuple = len(A ) UpperCAmelCase_ : Dict = deque() UpperCAmelCase_ : Optional[Any] = [False for _ in range(A )] UpperCAmelCase_ : str = [-1 for _ in range(A )] UpperCAmelCase_ : Union[str, Any] = index_of[:] def strong_connect(A : Union[str, Any] , A : Optional[Any] , A : List[Any] ): UpperCAmelCase_ : Union[str, Any] = index # the number when this node is seen UpperCAmelCase_ : List[Any] = index # lowest rank node reachable from here index += 1 stack.append(A ) UpperCAmelCase_ : Optional[int] = True for w in g[v]: if index_of[w] == -1: UpperCAmelCase_ : str = strong_connect(A , A , A ) UpperCAmelCase_ : List[Any] = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: UpperCAmelCase_ : Any = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: UpperCAmelCase_ : str = [] UpperCAmelCase_ : Tuple = stack.pop() UpperCAmelCase_ : Dict = False component.append(A ) while w != v: UpperCAmelCase_ : Optional[int] = stack.pop() UpperCAmelCase_ : str = False component.append(A ) components.append(A ) return index UpperCAmelCase_ : str = [] for v in range(A ): if index_of[v] == -1: strong_connect(A , 0 , A ) return components def __UpperCAmelCase ( A : List[Any] , A : str ) -> List[str]: UpperCAmelCase_ : List[Any] = [[] for _ in range(A )] for u, v in edges: g[u].append(A ) return g if __name__ == "__main__": # Test _UpperCamelCase : int = 7 _UpperCamelCase : List[str] = [0, 0, 1, 2, 3, 3, 4, 4, 6] _UpperCamelCase : Optional[Any] = [1, 3, 2, 0, 1, 4, 5, 6, 5] _UpperCamelCase : Union[str, Any] = [(u, v) for u, v in zip(source, target)] _UpperCamelCase : Optional[Any] = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
216
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy snake_case = logging.get_logger(__name__) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : str , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : float , **__lowerCamelCase : str ): """simple docstring""" _snake_case = feature_size _snake_case = sampling_rate _snake_case = padding_value _snake_case = kwargs.pop('''padding_side''' , '''right''' ) _snake_case = kwargs.pop('''return_attention_mask''' , __lowerCamelCase ) super().__init__(**__lowerCamelCase ) def __UpperCAmelCase ( self : Dict , __lowerCamelCase : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , __lowerCamelCase : Union[bool, str, PaddingStrategy] = True , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , ): """simple docstring""" # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(__lowerCamelCase , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): _snake_case = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( '''You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`''' f""" to this method that includes {self.model_input_names[0]}, but you provided""" f""" {list(processed_features.keys() )}""" ) _snake_case = processed_features[self.model_input_names[0]] _snake_case = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(__lowerCamelCase ) == 0: if return_attention_mask: _snake_case = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch _snake_case = required_input[0] if isinstance(__lowerCamelCase , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. _snake_case = 0 while len(required_input[index] ) == 0: index += 1 if index < len(__lowerCamelCase ): _snake_case = required_input[index][0] if return_tensors is None: if is_tf_tensor(__lowerCamelCase ): _snake_case = '''tf''' elif is_torch_tensor(__lowerCamelCase ): _snake_case = '''pt''' elif isinstance(__lowerCamelCase , (int, float, list, tuple, np.ndarray) ): _snake_case = '''np''' else: raise ValueError( f"""type of {first_element} unknown: {type(__lowerCamelCase )}. """ '''Should be one of a python, numpy, pytorch or tensorflow object.''' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): _snake_case = to_numpy(__lowerCamelCase ) else: _snake_case = [to_numpy(__lowerCamelCase ) for v in value] # Convert padding_strategy in PaddingStrategy _snake_case = self._get_padding_strategies(padding=__lowerCamelCase , max_length=__lowerCamelCase ) _snake_case = processed_features[self.model_input_names[0]] _snake_case = len(__lowerCamelCase ) if not all(len(__lowerCamelCase ) == batch_size for v in processed_features.values() ): raise ValueError('''Some items in the output dictionary have a different batch size than others.''' ) _snake_case = [] for i in range(__lowerCamelCase ): _snake_case = {k: v[i] for k, v in processed_features.items()} # truncation _snake_case = self._truncate( __lowerCamelCase , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , truncation=__lowerCamelCase , ) truncated_inputs.append(__lowerCamelCase ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length _snake_case = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) _snake_case = PaddingStrategy.MAX_LENGTH _snake_case = {} for i in range(__lowerCamelCase ): # padding _snake_case = self._pad( truncated_inputs[i] , max_length=__lowerCamelCase , padding_strategy=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) for key, value in outputs.items(): if key not in batch_outputs: _snake_case = [] if value.dtype is np.dtype(np.floataa ): _snake_case = value.astype(np.floataa ) batch_outputs[key].append(__lowerCamelCase ) return BatchFeature(__lowerCamelCase , tensor_type=__lowerCamelCase ) def __UpperCAmelCase ( self : int , __lowerCamelCase : Union[Dict[str, np.ndarray], BatchFeature] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , ): """simple docstring""" _snake_case = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: _snake_case = len(__lowerCamelCase ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _snake_case = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _snake_case = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__lowerCamelCase ) < max_length if return_attention_mask and "attention_mask" not in processed_features: _snake_case = np.ones(len(__lowerCamelCase ) , dtype=np.intaa ) if needs_to_be_padded: _snake_case = max_length - len(__lowerCamelCase ) if self.padding_side == "right": if return_attention_mask: _snake_case = np.pad( processed_features['''attention_mask'''] , (0, difference) ) _snake_case = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) _snake_case = np.pad( __lowerCamelCase , __lowerCamelCase , '''constant''' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: _snake_case = np.pad( processed_features['''attention_mask'''] , (difference, 0) ) _snake_case = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) _snake_case = np.pad( __lowerCamelCase , __lowerCamelCase , '''constant''' , constant_values=self.padding_value ) else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return processed_features def __UpperCAmelCase ( self : Any , __lowerCamelCase : Union[Dict[str, np.ndarray], BatchFeature] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , ): """simple docstring""" if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('''When setting ``truncation=True``, make sure that ``max_length`` is defined.''' ) _snake_case = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _snake_case = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _snake_case = len(__lowerCamelCase ) > max_length if needs_to_be_truncated: _snake_case = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: _snake_case = processed_features['''attention_mask'''][:max_length] return processed_features def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : str=False , __lowerCamelCase : Any=None ): """simple docstring""" # Get padding strategy if padding is not False: if padding is True: _snake_case = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(__lowerCamelCase , __lowerCamelCase ): _snake_case = PaddingStrategy(__lowerCamelCase ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): _snake_case = padding else: _snake_case = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( '''Asking to pad but the feature_extractor does not have a padding value. Please select a value to use''' ''' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.''' ) return padding_strategy
103
import torch from torch import nn class A__ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int]=1 , _SCREAMING_SNAKE_CASE : List[str]=False ): """simple docstring""" super().__init__() UpperCamelCase = n_token UpperCamelCase = d_embed UpperCamelCase = d_proj UpperCamelCase = cutoffs + [n_token] UpperCamelCase = [0] + self.cutoffs UpperCamelCase = div_val UpperCamelCase = self.cutoffs[0] UpperCamelCase = len(self.cutoffs ) - 1 UpperCamelCase = self.shortlist_size + self.n_clusters if self.n_clusters > 0: UpperCamelCase = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) UpperCamelCase = nn.Parameter(torch.zeros(self.n_clusters ) ) UpperCamelCase = nn.ModuleList() UpperCamelCase = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) ) else: self.out_projs.append(_SCREAMING_SNAKE_CASE ) self.out_layers.append(nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) else: for i in range(len(self.cutoffs ) ): UpperCamelCase , UpperCamelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) ) self.out_layers.append(nn.Linear(_SCREAMING_SNAKE_CASE , r_idx - l_idx ) ) UpperCamelCase = keep_order def _SCREAMING_SNAKE_CASE ( self : Dict , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" if proj is None: UpperCamelCase = nn.functional.linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: UpperCamelCase = nn.functional.linear(_SCREAMING_SNAKE_CASE , proj.t().contiguous() ) UpperCamelCase = nn.functional.linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def _SCREAMING_SNAKE_CASE ( self : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[Any]=None , _SCREAMING_SNAKE_CASE : Dict=False ): """simple docstring""" if labels is not None: # Shift so that tokens < n predict n UpperCamelCase = hidden[..., :-1, :].contiguous() UpperCamelCase = labels[..., 1:].contiguous() UpperCamelCase = hidden.view(-1 , hidden.size(-1 ) ) UpperCamelCase = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('Input and labels should have the same size in the batch dimension.' ) else: UpperCamelCase = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: UpperCamelCase = self._compute_logit(_SCREAMING_SNAKE_CASE , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: UpperCamelCase = labels != -100 UpperCamelCase = torch.zeros_like(_SCREAMING_SNAKE_CASE , dtype=hidden.dtype , device=hidden.device ) UpperCamelCase = ( -nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: UpperCamelCase = nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=-1 ) else: # construct weights and biases UpperCamelCase , UpperCamelCase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCamelCase , UpperCamelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase = self.out_layers[0].weight[l_idx:r_idx] UpperCamelCase = self.out_layers[0].bias[l_idx:r_idx] else: UpperCamelCase = self.out_layers[i].weight UpperCamelCase = self.out_layers[i].bias if i == 0: UpperCamelCase = torch.cat([weight_i, self.cluster_weight] , dim=0 ) UpperCamelCase = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(_SCREAMING_SNAKE_CASE ) biases.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase , UpperCamelCase , UpperCamelCase = weights[0], biases[0], self.out_projs[0] UpperCamelCase = self._compute_logit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=1 ) if labels is None: UpperCamelCase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: UpperCamelCase = torch.zeros_like(_SCREAMING_SNAKE_CASE , dtype=hidden.dtype , device=hidden.device ) UpperCamelCase = 0 UpperCamelCase = [0] + self.cutoffs for i in range(len(_SCREAMING_SNAKE_CASE ) - 1 ): UpperCamelCase , UpperCamelCase = cutoff_values[i], cutoff_values[i + 1] if labels is not None: UpperCamelCase = (labels >= l_idx) & (labels < r_idx) UpperCamelCase = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue UpperCamelCase = labels.index_select(0 , _SCREAMING_SNAKE_CASE ) - l_idx UpperCamelCase = head_logprob.index_select(0 , _SCREAMING_SNAKE_CASE ) UpperCamelCase = hidden.index_select(0 , _SCREAMING_SNAKE_CASE ) else: UpperCamelCase = hidden if i == 0: if labels is not None: UpperCamelCase = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: UpperCamelCase = head_logprob[:, : self.cutoffs[0]] else: UpperCamelCase , UpperCamelCase , UpperCamelCase = weights[i], biases[i], self.out_projs[i] UpperCamelCase = self._compute_logit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=1 ) UpperCamelCase = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: UpperCamelCase = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: UpperCamelCase = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i UpperCamelCase = logprob_i if labels is not None: if (hasattr(self , 'keep_order' ) and self.keep_order) or keep_order: out.index_copy_(0 , _SCREAMING_SNAKE_CASE , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def _SCREAMING_SNAKE_CASE ( self : int , _SCREAMING_SNAKE_CASE : str ): """simple docstring""" if self.n_clusters == 0: UpperCamelCase = self._compute_logit(_SCREAMING_SNAKE_CASE , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=-1 ) else: # construct weights and biases UpperCamelCase , UpperCamelCase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCamelCase , UpperCamelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase = self.out_layers[0].weight[l_idx:r_idx] UpperCamelCase = self.out_layers[0].bias[l_idx:r_idx] else: UpperCamelCase = self.out_layers[i].weight UpperCamelCase = self.out_layers[i].bias if i == 0: UpperCamelCase = torch.cat([weight_i, self.cluster_weight] , dim=0 ) UpperCamelCase = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(_SCREAMING_SNAKE_CASE ) biases.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase , UpperCamelCase , UpperCamelCase = weights[0], biases[0], self.out_projs[0] UpperCamelCase = self._compute_logit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) UpperCamelCase = nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=1 ) UpperCamelCase = [0] + self.cutoffs for i in range(len(_SCREAMING_SNAKE_CASE ) - 1 ): UpperCamelCase , UpperCamelCase = cutoff_values[i], cutoff_values[i + 1] if i == 0: UpperCamelCase = head_logprob[:, : self.cutoffs[0]] else: UpperCamelCase , UpperCamelCase , UpperCamelCase = weights[i], biases[i], self.out_projs[i] UpperCamelCase = self._compute_logit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=1 ) UpperCamelCase = head_logprob[:, -i] + tail_logprob_i UpperCamelCase = logprob_i return out
280
0
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _A : Dict =logging.get_logger(__name__) class _lowercase ( _lowercase ): a = ["""input_features""", """is_longer"""] def __init__( self: Dict , UpperCamelCase__: Optional[Any]=64 , UpperCamelCase__: Dict=48_000 , UpperCamelCase__: Any=480 , UpperCamelCase__: str=10 , UpperCamelCase__: Union[str, Any]=1_024 , UpperCamelCase__: Optional[Any]=0.0 , UpperCamelCase__: List[str]=False , UpperCamelCase__: float = 0 , UpperCamelCase__: float = 14_000 , UpperCamelCase__: int = None , UpperCamelCase__: str = "fusion" , UpperCamelCase__: str = "repeatpad" , **UpperCamelCase__: Any , ): super().__init__( feature_size=UpperCamelCase__ , sampling_rate=UpperCamelCase__ , padding_value=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) lowerCamelCase__ : Union[str, Any] = top_db lowerCamelCase__ : Tuple = truncation lowerCamelCase__ : Any = padding lowerCamelCase__ : str = fft_window_size lowerCamelCase__ : Dict = (fft_window_size >> 1) + 1 lowerCamelCase__ : str = hop_length lowerCamelCase__ : List[str] = max_length_s lowerCamelCase__ : Any = max_length_s * sampling_rate lowerCamelCase__ : Optional[int] = sampling_rate lowerCamelCase__ : Tuple = frequency_min lowerCamelCase__ : Tuple = frequency_max lowerCamelCase__ : Tuple = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase__ , min_frequency=UpperCamelCase__ , max_frequency=UpperCamelCase__ , sampling_rate=UpperCamelCase__ , norm=UpperCamelCase__ , mel_scale="""htk""" , ) lowerCamelCase__ : int = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase__ , min_frequency=UpperCamelCase__ , max_frequency=UpperCamelCase__ , sampling_rate=UpperCamelCase__ , norm="""slaney""" , mel_scale="""slaney""" , ) def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : Union[str, Any] = copy.deepcopy(self.__dict__ ) lowerCamelCase__ : Dict = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: np.array , UpperCamelCase__: Optional[np.array] = None ): lowerCamelCase__ : List[str] = spectrogram( UpperCamelCase__ , window_function(self.fft_window_size , """hann""" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=UpperCamelCase__ , log_mel="""dB""" , ) return log_mel_spectrogram.T def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase__: Tuple , UpperCamelCase__: str , UpperCamelCase__: Dict ): lowerCamelCase__ : str = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowerCamelCase__ : Dict = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowerCamelCase__ : List[str] = [0] # randomly choose index for each part lowerCamelCase__ : List[Any] = np.random.choice(ranges[0] ) lowerCamelCase__ : List[str] = np.random.choice(ranges[1] ) lowerCamelCase__ : Union[str, Any] = np.random.choice(ranges[2] ) lowerCamelCase__ : List[Any] = mel[idx_front : idx_front + chunk_frames, :] lowerCamelCase__ : Dict = mel[idx_middle : idx_middle + chunk_frames, :] lowerCamelCase__ : List[str] = mel[idx_back : idx_back + chunk_frames, :] lowerCamelCase__ : Tuple = torch.tensor(mel[None, None, :] ) lowerCamelCase__ : Optional[Any] = torch.nn.functional.interpolate( UpperCamelCase__ , size=[chunk_frames, 64] , mode="""bilinear""" , align_corners=UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = mel_shrink[0][0].numpy() lowerCamelCase__ : Any = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def lowerCamelCase_ ( self: List[Any] , UpperCamelCase__: np.array , UpperCamelCase__: Tuple , UpperCamelCase__: str , UpperCamelCase__: Any ): if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowerCamelCase__ : Optional[Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowerCamelCase__ : Optional[int] = len(UpperCamelCase__ ) - max_length lowerCamelCase__ : Any = np.random.randint(0 , overflow + 1 ) lowerCamelCase__ : Tuple = waveform[idx : idx + max_length] lowerCamelCase__ : List[str] = self._np_extract_fbank_features(UpperCamelCase__ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowerCamelCase__ : Tuple = self._np_extract_fbank_features(UpperCamelCase__ , self.mel_filters ) lowerCamelCase__ : Any = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowerCamelCase__ : Dict = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowerCamelCase__ : Tuple = np.stack([mel, mel, mel, mel] , axis=0 ) lowerCamelCase__ : Dict = False else: lowerCamelCase__ : str = self._random_mel_fusion(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: lowerCamelCase__ : Optional[int] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowerCamelCase__ : Union[str, Any] = int(max_length / len(UpperCamelCase__ ) ) lowerCamelCase__ : Dict = np.stack(np.tile(UpperCamelCase__ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowerCamelCase__ : Dict = int(max_length / len(UpperCamelCase__ ) ) lowerCamelCase__ : int = np.stack(np.tile(UpperCamelCase__ , UpperCamelCase__ ) ) lowerCamelCase__ : str = np.pad(UpperCamelCase__ , (0, max_length - waveform.shape[0]) , mode="""constant""" , constant_values=0 ) if truncation == "fusion": lowerCamelCase__ : Union[str, Any] = self._np_extract_fbank_features(UpperCamelCase__ , self.mel_filters ) lowerCamelCase__ : Dict = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: lowerCamelCase__ : Optional[int] = self._np_extract_fbank_features(UpperCamelCase__ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self: Dict , UpperCamelCase__: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase__: str = None , UpperCamelCase__: Optional[str] = None , UpperCamelCase__: Optional[int] = None , UpperCamelCase__: Optional[int] = None , UpperCamelCase__: Optional[Union[str, TensorType]] = None , **UpperCamelCase__: Dict , ): lowerCamelCase__ : List[Any] = truncation if truncation is not None else self.truncation lowerCamelCase__ : Optional[Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) lowerCamelCase__ : str = isinstance(UpperCamelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) lowerCamelCase__ : List[Any] = is_batched_numpy or ( isinstance(UpperCamelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase__ : Dict = [np.asarray(UpperCamelCase__ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase__ , np.ndarray ): lowerCamelCase__ : Optional[Any] = np.asarray(UpperCamelCase__ , dtype=np.floataa ) elif isinstance(UpperCamelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase__ : int = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase__ : int = [np.asarray(UpperCamelCase__ )] # convert to mel spectrogram, truncate and pad if needed. lowerCamelCase__ : str = [ self._get_input_mel(UpperCamelCase__ , max_length if max_length else self.nb_max_samples , UpperCamelCase__ , UpperCamelCase__ ) for waveform in raw_speech ] lowerCamelCase__ : str = [] lowerCamelCase__ : int = [] for mel, longer in padded_inputs: input_mel.append(UpperCamelCase__ ) is_longer.append(UpperCamelCase__ ) if truncation == "fusion" and sum(UpperCamelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowerCamelCase__ : Optional[Any] = np.random.randint(0 , len(UpperCamelCase__ ) ) lowerCamelCase__ : Optional[int] = True if isinstance(input_mel[0] , UpperCamelCase__ ): lowerCamelCase__ : int = [np.asarray(UpperCamelCase__ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowerCamelCase__ : Optional[Any] = [[longer] for longer in is_longer] lowerCamelCase__ : Any = {"""input_features""": input_mel, """is_longer""": is_longer} lowerCamelCase__ : Union[str, Any] = BatchFeature(UpperCamelCase__ ) if return_tensors is not None: lowerCamelCase__ : str = input_features.convert_to_tensors(UpperCamelCase__ ) return input_features
631
'''simple docstring''' import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow _A : Union[str, Any] =False class _lowercase ( unittest.TestCase ): def lowerCamelCase_ ( self: Dict , UpperCamelCase__: str=32 ): set_seed(0 ) lowerCamelCase__ : Optional[int] = UNetaDModel(sample_size=UpperCamelCase__ , in_channels=3 , out_channels=3 ) lowerCamelCase__ : List[Any] = torch.optim.SGD(model.parameters() , lr=0.0_001 ) return model, optimizer @slow def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Optional[Any] = """cpu""" # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable lowerCamelCase__ : List[Any] = DDPMScheduler( num_train_timesteps=1_000 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule="""linear""" , clip_sample=UpperCamelCase__ , ) lowerCamelCase__ : Any = DDIMScheduler( num_train_timesteps=1_000 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule="""linear""" , clip_sample=UpperCamelCase__ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) lowerCamelCase__ : str = [torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(UpperCamelCase__ ) for _ in range(4 )] lowerCamelCase__ : Tuple = [torch.randn((4, 3, 32, 32) ).to(UpperCamelCase__ ) for _ in range(4 )] lowerCamelCase__ : Tuple = [torch.randint(0 , 1_000 , (4,) ).long().to(UpperCamelCase__ ) for _ in range(4 )] # train with a DDPM scheduler lowerCamelCase__ , lowerCamelCase__ : Any = self.get_model_optimizer(resolution=32 ) model.train().to(UpperCamelCase__ ) for i in range(4 ): optimizer.zero_grad() lowerCamelCase__ : str = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCamelCase__ : str = model(UpperCamelCase__ , timesteps[i] ).sample lowerCamelCase__ : Tuple = torch.nn.functional.mse_loss(UpperCamelCase__ , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.get_model_optimizer(resolution=32 ) model.train().to(UpperCamelCase__ ) for i in range(4 ): optimizer.zero_grad() lowerCamelCase__ : Optional[Any] = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCamelCase__ : Dict = model(UpperCamelCase__ , timesteps[i] ).sample lowerCamelCase__ : Union[str, Any] = torch.nn.functional.mse_loss(UpperCamelCase__ , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) ) self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) )
631
1
"""simple docstring""" import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Tuple = GPTSwaTokenizer lowerCAmelCase : Tuple = False lowerCAmelCase : Tuple = True lowerCAmelCase : int = False def UpperCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ : Optional[Any] = GPTSwaTokenizer(_snake_case ,eos_token='''<unk>''' ,bos_token='''<unk>''' ,pad_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self : str ,_snake_case : List[str] ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = '''This is a test''' lowercase__ : Dict = '''This is a test''' return input_text, output_text def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Union[str, Any] = '''<s>''' lowercase__ : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case ) ,_snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case ) ,_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'''<unk>''' ) self.assertEqual(vocab_keys[1] ,'''<s>''' ) self.assertEqual(vocab_keys[-1] ,'''j''' ) self.assertEqual(len(_snake_case ) ,2_000 ) def UpperCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size ,2_000 ) def UpperCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ : str = GPTSwaTokenizer(_snake_case ) lowercase__ : List[str] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_snake_case ,['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) ,[465, 287, 265, 631, 842] ) lowercase__ : List[Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) # fmt: off self.assertListEqual( _snake_case ,['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.'''] ,) # fmt: on lowercase__ : Dict = tokenizer.convert_tokens_to_ids(_snake_case ) self.assertListEqual( _snake_case ,[262, 272, 1_525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] ,) lowercase__ : Union[str, Any] = tokenizer.convert_ids_to_tokens(_snake_case ) # fmt: off self.assertListEqual( _snake_case ,['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.'''] ) # fmt: on def UpperCAmelCase ( self : Any ) -> str: """simple docstring""" lowercase__ : int = GPTSwaTokenizer(_snake_case ) lowercase__ : str = ['''This is a test''', '''I was born in 92000, and this is falsé.'''] lowercase__ : Optional[Any] = [ [465, 287, 265, 631, 842], [262, 272, 1_525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(_snake_case ,_snake_case ): self.assertListEqual(tokenizer.encode_fast(_snake_case ) ,_snake_case ) # Test that decode_fast returns the input text for text, token_ids in zip(_snake_case ,_snake_case ): self.assertEqual(tokenizer.decode_fast(_snake_case ) ,_snake_case ) @slow def UpperCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" lowercase__ : str = [ '''<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')''', '''Hey there, how are you doing this fine day?''', '''This is a text with a trailing spaces followed by a dot .''', '''Häj sväjs lillebrör! =)''', '''Det är inget fel på Mr. Cool''', ] # fmt: off lowercase__ : List[Any] = {'''input_ids''': [[63_423, 5, 6_811, 14_954, 282, 816, 3_821, 63_466, 63_425, 63_462, 18, 63_978, 678, 301, 1_320, 63_423, 63_455, 63_458, 18, 63_982, 4_246, 3_940, 1_901, 47_789, 5_547, 18_994], [19_630, 1_100, 63_446, 1_342, 633, 544, 4_488, 593, 5_102, 2_416, 63_495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_652, 428, 268, 1_936, 515, 268, 58_593, 22_413, 9_106, 546, 268, 33_213, 63_979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [55_130, 63_450, 924, 63_449, 2_249, 4_062, 1_558, 318, 63_504, 21_498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2_827, 2_559, 332, 6_575, 63_443, 26_801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case ,model_name='''AI-Sweden/gpt-sw3-126m''' ,sequences=_snake_case ,)
560
"""simple docstring""" import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 lowerCAmelCase_ = data_utils.TransfoXLTokenizer lowerCAmelCase_ = data_utils.TransfoXLCorpus lowerCAmelCase_ = data_utils lowerCAmelCase_ = data_utils def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(__lowerCamelCase , '''rb''' ) as fp: lowercase__ : Dict = pickle.load(__lowerCamelCase , encoding='''latin1''' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) lowercase__ : int = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''pretrained_vocab_file'''] print(f"""Save vocabulary to {pytorch_vocab_dump_path}""" ) lowercase__ : List[Any] = corpus.vocab.__dict__ torch.save(__lowerCamelCase , __lowerCamelCase ) lowercase__ : int = corpus.__dict__ corpus_dict_no_vocab.pop('''vocab''' , __lowerCamelCase ) lowercase__ : List[str] = pytorch_dump_folder_path + '''/''' + CORPUS_NAME print(f"""Save dataset to {pytorch_dataset_dump_path}""" ) torch.save(__lowerCamelCase , __lowerCamelCase ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model lowercase__ : Tuple = os.path.abspath(__lowerCamelCase ) lowercase__ : List[Any] = os.path.abspath(__lowerCamelCase ) print(f"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""" ) # Initialise PyTorch model if transfo_xl_config_file == "": lowercase__ : Tuple = TransfoXLConfig() else: lowercase__ : List[str] = TransfoXLConfig.from_json_file(__lowerCamelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) lowercase__ : Union[str, Any] = TransfoXLLMHeadModel(__lowerCamelCase ) lowercase__ : List[Any] = load_tf_weights_in_transfo_xl(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model lowercase__ : Optional[int] = os.path.join(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Dict = os.path.join(__lowerCamelCase , __lowerCamelCase ) print(f"""Save PyTorch model to {os.path.abspath(__lowerCamelCase )}""" ) torch.save(model.state_dict() , __lowerCamelCase ) print(f"""Save configuration file to {os.path.abspath(__lowerCamelCase )}""" ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) lowerCAmelCase_ = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
560
1
'''simple docstring''' # limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase ) -> Optional[int]: '''simple docstring''' super().__init__() self.register_modules(unet=lowerCamelCase , scheduler=lowerCamelCase ) @torch.no_grad() def __call__( self , lowerCamelCase = 1 , lowerCamelCase = None , lowerCamelCase = 50 , lowerCamelCase = "pil" , lowerCamelCase = True , **lowerCamelCase , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' UpperCamelCase : Dict = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=lowerCamelCase , ) UpperCamelCase : Optional[int] = image.to(self.device ) # set step values self.scheduler.set_timesteps(lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output UpperCamelCase : Dict = self.unet(lowerCamelCase , lowerCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCamelCase : Any = self.scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ).prev_sample UpperCamelCase : str = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase : List[Any] = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=lowerCamelCase ), "This is a local test"
435
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="session") def A__ ( ): '''simple docstring''' UpperCamelCase : Union[str, Any] = 10 UpperCamelCase : Optional[Any] = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"])), "answers": datasets.Sequence( { "text": datasets.Value("string"), "answer_start": datasets.Value("int32"), }), "id": datasets.Value("int64"), }) UpperCamelCase : Union[str, Any] = datasets.Dataset.from_dict( { "tokens": [["foo"] * 5] * n, "labels": [[1] * 5] * n, "answers": [{"answer_start": [97], "text": ["1976"]}] * 10, "id": list(range(A)), } , features=A , ) return dataset @pytest.fixture(scope="session") def A__ ( A : Optional[int] , A : Optional[Any]): '''simple docstring''' UpperCamelCase : int = str(tmp_path_factory.mktemp("data") / "file.arrow") dataset.map(cache_file_name=A) return filename # FILE_CONTENT + files lowerCAmelCase_ = '\\n Text data.\n Second line of data.' @pytest.fixture(scope="session") def A__ ( A : Union[str, Any]): '''simple docstring''' UpperCamelCase : Any = tmp_path_factory.mktemp("data") / "file.txt" UpperCamelCase : List[str] = FILE_CONTENT with open(A , "w") as f: f.write(A) return filename @pytest.fixture(scope="session") def A__ ( A : Union[str, Any]): '''simple docstring''' import bza UpperCamelCase : Optional[Any] = tmp_path_factory.mktemp("data") / "file.txt.bz2" UpperCamelCase : Optional[int] = bytes(A , "utf-8") with bza.open(A , "wb") as f: f.write(A) return path @pytest.fixture(scope="session") def A__ ( A : Dict): '''simple docstring''' import gzip UpperCamelCase : Dict = str(tmp_path_factory.mktemp("data") / "file.txt.gz") UpperCamelCase : List[str] = bytes(A , "utf-8") with gzip.open(A , "wb") as f: f.write(A) return path @pytest.fixture(scope="session") def A__ ( A : str): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame UpperCamelCase : str = tmp_path_factory.mktemp("data") / "file.txt.lz4" UpperCamelCase : Dict = bytes(A , "utf-8") with lza.frame.open(A , "wb") as f: f.write(A) return path @pytest.fixture(scope="session") def A__ ( A : Optional[int] , A : Tuple): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr UpperCamelCase : Any = tmp_path_factory.mktemp("data") / "file.txt.7z" with pyazr.SevenZipFile(A , "w") as archive: archive.write(A , arcname=os.path.basename(A)) return path @pytest.fixture(scope="session") def A__ ( A : List[str] , A : Dict): '''simple docstring''' import tarfile UpperCamelCase : Optional[Any] = tmp_path_factory.mktemp("data") / "file.txt.tar" with tarfile.TarFile(A , "w") as f: f.add(A , arcname=os.path.basename(A)) return path @pytest.fixture(scope="session") def A__ ( A : Any): '''simple docstring''' import lzma UpperCamelCase : int = tmp_path_factory.mktemp("data") / "file.txt.xz" UpperCamelCase : Union[str, Any] = bytes(A , "utf-8") with lzma.open(A , "wb") as f: f.write(A) return path @pytest.fixture(scope="session") def A__ ( A : Tuple , A : List[Any]): '''simple docstring''' import zipfile UpperCamelCase : Any = tmp_path_factory.mktemp("data") / "file.txt.zip" with zipfile.ZipFile(A , "w") as f: f.write(A , arcname=os.path.basename(A)) return path @pytest.fixture(scope="session") def A__ ( A : Optional[Any]): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd UpperCamelCase : List[str] = tmp_path_factory.mktemp("data") / "file.txt.zst" UpperCamelCase : List[str] = bytes(A , "utf-8") with zstd.open(A , "wb") as f: f.write(A) return path @pytest.fixture(scope="session") def A__ ( A : List[Any]): '''simple docstring''' UpperCamelCase : List[str] = tmp_path_factory.mktemp("data") / "file.xml" UpperCamelCase : Any = textwrap.dedent( "\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>") with open(A , "w") as f: f.write(A) return filename lowerCAmelCase_ = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] lowerCAmelCase_ = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] lowerCAmelCase_ = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } lowerCAmelCase_ = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] lowerCAmelCase_ = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope="session") def A__ ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope="session") def A__ ( A : List[Any]): '''simple docstring''' UpperCamelCase : Dict = datasets.Dataset.from_dict(A) UpperCamelCase : Tuple = str(tmp_path_factory.mktemp("data") / "dataset.arrow") dataset.map(cache_file_name=A) return path @pytest.fixture(scope="session") def A__ ( A : Dict): '''simple docstring''' UpperCamelCase : str = str(tmp_path_factory.mktemp("data") / "dataset.sqlite") with contextlib.closing(sqlitea.connect(A)) as con: UpperCamelCase : str = con.cursor() cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)") for item in DATA: cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)" , tuple(item.values())) con.commit() return path @pytest.fixture(scope="session") def A__ ( A : List[Any]): '''simple docstring''' UpperCamelCase : Optional[Any] = str(tmp_path_factory.mktemp("data") / "dataset.csv") with open(A , "w" , newline="") as f: UpperCamelCase : Any = csv.DictWriter(A , fieldnames=["col_1", "col_2", "col_3"]) writer.writeheader() for item in DATA: writer.writerow(A) return path @pytest.fixture(scope="session") def A__ ( A : Optional[int]): '''simple docstring''' UpperCamelCase : Optional[Any] = str(tmp_path_factory.mktemp("data") / "dataset2.csv") with open(A , "w" , newline="") as f: UpperCamelCase : Dict = csv.DictWriter(A , fieldnames=["col_1", "col_2", "col_3"]) writer.writeheader() for item in DATA: writer.writerow(A) return path @pytest.fixture(scope="session") def A__ ( A : Dict , A : Any): '''simple docstring''' import bza UpperCamelCase : Any = tmp_path_factory.mktemp("data") / "dataset.csv.bz2" with open(A , "rb") as f: UpperCamelCase : List[str] = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(A , "wb") as f: f.write(A) return path @pytest.fixture(scope="session") def A__ ( A : Union[str, Any] , A : int , A : List[Any]): '''simple docstring''' UpperCamelCase : Any = tmp_path_factory.mktemp("data") / "dataset.csv.zip" with zipfile.ZipFile(A , "w") as f: f.write(A , arcname=os.path.basename(A)) f.write(A , arcname=os.path.basename(A)) return path @pytest.fixture(scope="session") def A__ ( A : Optional[int] , A : Optional[Any] , A : Tuple): '''simple docstring''' UpperCamelCase : Tuple = tmp_path_factory.mktemp("data") / "dataset.csv.zip" with zipfile.ZipFile(A , "w") as f: f.write(A , arcname=os.path.basename(csv_path.replace(".csv" , ".CSV"))) f.write(A , arcname=os.path.basename(csva_path.replace(".csv" , ".CSV"))) return path @pytest.fixture(scope="session") def A__ ( A : str , A : int , A : int): '''simple docstring''' UpperCamelCase : int = tmp_path_factory.mktemp("data") / "dataset_with_dir.csv.zip" with zipfile.ZipFile(A , "w") as f: f.write(A , arcname=os.path.join("main_dir" , os.path.basename(A))) f.write(A , arcname=os.path.join("main_dir" , os.path.basename(A))) return path @pytest.fixture(scope="session") def A__ ( A : Union[str, Any]): '''simple docstring''' UpperCamelCase : Optional[Any] = str(tmp_path_factory.mktemp("data") / "dataset.parquet") UpperCamelCase : Union[str, Any] = pa.schema( { "col_1": pa.string(), "col_2": pa.intaa(), "col_3": pa.floataa(), }) with open(A , "wb") as f: UpperCamelCase : Optional[int] = pq.ParquetWriter(A , schema=A) UpperCamelCase : Optional[int] = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(A))] for k in DATA[0]} , schema=A) writer.write_table(A) writer.close() return path @pytest.fixture(scope="session") def A__ ( A : List[str]): '''simple docstring''' UpperCamelCase : Dict = str(tmp_path_factory.mktemp("data") / "dataset.json") UpperCamelCase : Any = {"data": DATA} with open(A , "w") as f: json.dump(A , A) return path @pytest.fixture(scope="session") def A__ ( A : Any): '''simple docstring''' UpperCamelCase : Optional[Any] = str(tmp_path_factory.mktemp("data") / "dataset.json") UpperCamelCase : int = {"data": DATA_DICT_OF_LISTS} with open(A , "w") as f: json.dump(A , A) return path @pytest.fixture(scope="session") def A__ ( A : Union[str, Any]): '''simple docstring''' UpperCamelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data") / "dataset.jsonl") with open(A , "w") as f: for item in DATA: f.write(json.dumps(A) + "\n") return path @pytest.fixture(scope="session") def A__ ( A : Optional[int]): '''simple docstring''' UpperCamelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data") / "dataset2.jsonl") with open(A , "w") as f: for item in DATA: f.write(json.dumps(A) + "\n") return path @pytest.fixture(scope="session") def A__ ( A : Union[str, Any]): '''simple docstring''' UpperCamelCase : Dict = str(tmp_path_factory.mktemp("data") / "dataset_312.jsonl") with open(A , "w") as f: for item in DATA_312: f.write(json.dumps(A) + "\n") return path @pytest.fixture(scope="session") def A__ ( A : Optional[int]): '''simple docstring''' UpperCamelCase : str = str(tmp_path_factory.mktemp("data") / "dataset-str.jsonl") with open(A , "w") as f: for item in DATA_STR: f.write(json.dumps(A) + "\n") return path @pytest.fixture(scope="session") def A__ ( A : Optional[Any] , A : Optional[Any]): '''simple docstring''' import gzip UpperCamelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data") / "dataset.txt.gz") with open(A , "rb") as orig_file: with gzip.open(A , "wb") as zipped_file: zipped_file.writelines(A) return path @pytest.fixture(scope="session") def A__ ( A : Tuple , A : Optional[int]): '''simple docstring''' import gzip UpperCamelCase : Optional[int] = str(tmp_path_factory.mktemp("data") / "dataset.jsonl.gz") with open(A , "rb") as orig_file: with gzip.open(A , "wb") as zipped_file: zipped_file.writelines(A) return path @pytest.fixture(scope="session") def A__ ( A : Optional[int] , A : List[str] , A : int): '''simple docstring''' UpperCamelCase : Union[str, Any] = tmp_path_factory.mktemp("data") / "dataset.jsonl.zip" with zipfile.ZipFile(A , "w") as f: f.write(A , arcname=os.path.basename(A)) f.write(A , arcname=os.path.basename(A)) return path @pytest.fixture(scope="session") def A__ ( A : Optional[Any] , A : Tuple , A : List[str] , A : List[Any]): '''simple docstring''' UpperCamelCase : Tuple = tmp_path_factory.mktemp("data") / "dataset_nested.jsonl.zip" with zipfile.ZipFile(A , "w") as f: f.write(A , arcname=os.path.join("nested" , os.path.basename(A))) return path @pytest.fixture(scope="session") def A__ ( A : List[str] , A : Any , A : Dict): '''simple docstring''' UpperCamelCase : Any = tmp_path_factory.mktemp("data") / "dataset_with_dir.jsonl.zip" with zipfile.ZipFile(A , "w") as f: f.write(A , arcname=os.path.join("main_dir" , os.path.basename(A))) f.write(A , arcname=os.path.join("main_dir" , os.path.basename(A))) return path @pytest.fixture(scope="session") def A__ ( A : Optional[int] , A : str , A : str): '''simple docstring''' UpperCamelCase : Any = tmp_path_factory.mktemp("data") / "dataset.jsonl.tar" with tarfile.TarFile(A , "w") as f: f.add(A , arcname=os.path.basename(A)) f.add(A , arcname=os.path.basename(A)) return path @pytest.fixture(scope="session") def A__ ( A : List[str] , A : int , A : Dict , A : Any): '''simple docstring''' UpperCamelCase : List[str] = tmp_path_factory.mktemp("data") / "dataset_nested.jsonl.tar" with tarfile.TarFile(A , "w") as f: f.add(A , arcname=os.path.join("nested" , os.path.basename(A))) return path @pytest.fixture(scope="session") def A__ ( A : Optional[int]): '''simple docstring''' UpperCamelCase : Union[str, Any] = ["0", "1", "2", "3"] UpperCamelCase : Tuple = str(tmp_path_factory.mktemp("data") / "dataset.txt") with open(A , "w") as f: for item in data: f.write(item + "\n") return path @pytest.fixture(scope="session") def A__ ( A : str): '''simple docstring''' UpperCamelCase : Optional[int] = ["0", "1", "2", "3"] UpperCamelCase : List[str] = str(tmp_path_factory.mktemp("data") / "dataset2.txt") with open(A , "w") as f: for item in data: f.write(item + "\n") return path @pytest.fixture(scope="session") def A__ ( A : Dict): '''simple docstring''' UpperCamelCase : List[Any] = ["0", "1", "2", "3"] UpperCamelCase : Any = tmp_path_factory.mktemp("data") / "dataset.abc" with open(A , "w") as f: for item in data: f.write(item + "\n") return path @pytest.fixture(scope="session") def A__ ( A : Tuple , A : Optional[Any] , A : Any): '''simple docstring''' UpperCamelCase : List[Any] = tmp_path_factory.mktemp("data") / "dataset.text.zip" with zipfile.ZipFile(A , "w") as f: f.write(A , arcname=os.path.basename(A)) f.write(A , arcname=os.path.basename(A)) return path @pytest.fixture(scope="session") def A__ ( A : Dict , A : Tuple , A : str): '''simple docstring''' UpperCamelCase : Optional[Any] = tmp_path_factory.mktemp("data") / "dataset_with_dir.text.zip" with zipfile.ZipFile(A , "w") as f: f.write(A , arcname=os.path.join("main_dir" , os.path.basename(A))) f.write(A , arcname=os.path.join("main_dir" , os.path.basename(A))) return path @pytest.fixture(scope="session") def A__ ( A : Dict , A : Any , A : Optional[Any]): '''simple docstring''' UpperCamelCase : Dict = tmp_path_factory.mktemp("data") / "dataset.ext.zip" with zipfile.ZipFile(A , "w") as f: f.write(A , arcname=os.path.basename("unsupported.ext")) f.write(A , arcname=os.path.basename("unsupported_2.ext")) return path @pytest.fixture(scope="session") def A__ ( A : str): '''simple docstring''' UpperCamelCase : List[Any] = "\n".join(["First", "Second\u2029with Unicode new line", "Third"]) UpperCamelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data") / "dataset_with_unicode_new_lines.txt") with open(A , "w" , encoding="utf-8") as f: f.write(A) return path @pytest.fixture(scope="session") def A__ ( ): '''simple docstring''' return os.path.join("tests" , "features" , "data" , "test_image_rgb.jpg") @pytest.fixture(scope="session") def A__ ( ): '''simple docstring''' return os.path.join("tests" , "features" , "data" , "test_audio_44100.wav") @pytest.fixture(scope="session") def A__ ( A : List[str] , A : Optional[Any]): '''simple docstring''' UpperCamelCase : List[str] = tmp_path_factory.mktemp("data") / "dataset.img.zip" with zipfile.ZipFile(A , "w") as f: f.write(A , arcname=os.path.basename(A)) f.write(A , arcname=os.path.basename(A).replace(".jpg" , "2.jpg")) return path @pytest.fixture(scope="session") def A__ ( A : Dict): '''simple docstring''' UpperCamelCase : Optional[int] = tmp_path_factory.mktemp("data_dir") (data_dir / "subdir").mkdir() with open(data_dir / "subdir" / "train.txt" , "w") as f: f.write("foo\n" * 10) with open(data_dir / "subdir" / "test.txt" , "w") as f: f.write("bar\n" * 10) # hidden file with open(data_dir / "subdir" / ".test.txt" , "w") as f: f.write("bar\n" * 10) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / ".subdir" / "train.txt" , "w") as f: f.write("foo\n" * 10) with open(data_dir / ".subdir" / "test.txt" , "w") as f: f.write("bar\n" * 10) return data_dir
435
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : torch.FloatTensor class lowercase ( a_ , a_ ): """simple docstring""" @register_to_config def __init__( self : int , lowerCamelCase_ : int = 3 , lowerCamelCase_ : int = 3 , lowerCamelCase_ : Tuple[str] = ("DownEncoderBlock2D",) , lowerCamelCase_ : Tuple[str] = ("UpDecoderBlock2D",) , lowerCamelCase_ : Tuple[int] = (64,) , lowerCamelCase_ : int = 1 , lowerCamelCase_ : str = "silu" , lowerCamelCase_ : int = 3 , lowerCamelCase_ : int = 32 , lowerCamelCase_ : int = 2_56 , lowerCamelCase_ : int = 32 , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : float = 0.1_8215 , lowerCamelCase_ : str = "group" , ): '''simple docstring''' super().__init__() # pass init params to Encoder _snake_case : str = Encoder( in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , down_block_types=lowerCamelCase_ , block_out_channels=lowerCamelCase_ , layers_per_block=lowerCamelCase_ , act_fn=lowerCamelCase_ , norm_num_groups=lowerCamelCase_ , double_z=lowerCamelCase_ , ) _snake_case : List[Any] = vq_embed_dim if vq_embed_dim is not None else latent_channels _snake_case : Optional[int] = nn.Convad(lowerCamelCase_ , lowerCamelCase_ , 1 ) _snake_case : int = VectorQuantizer(lowerCamelCase_ , lowerCamelCase_ , beta=0.25 , remap=lowerCamelCase_ , sane_index_shape=lowerCamelCase_ ) _snake_case : Union[str, Any] = nn.Convad(lowerCamelCase_ , lowerCamelCase_ , 1 ) # pass init params to Decoder _snake_case : List[Any] = Decoder( in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , up_block_types=lowerCamelCase_ , block_out_channels=lowerCamelCase_ , layers_per_block=lowerCamelCase_ , act_fn=lowerCamelCase_ , norm_num_groups=lowerCamelCase_ , norm_type=lowerCamelCase_ , ) @apply_forward_hook def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : bool = True ): '''simple docstring''' _snake_case : Any = self.encoder(lowerCamelCase_ ) _snake_case : List[Any] = self.quant_conv(lowerCamelCase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowerCamelCase_ ) @apply_forward_hook def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = True ): '''simple docstring''' if not force_not_quantize: _snake_case , _snake_case , _snake_case : Optional[Any] = self.quantize(lowerCamelCase_ ) else: _snake_case : Tuple = h _snake_case : List[Any] = self.post_quant_conv(lowerCamelCase_ ) _snake_case : List[Any] = self.decoder(lowerCamelCase_ , quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCamelCase_ ) def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : bool = True ): '''simple docstring''' _snake_case : Any = sample _snake_case : Dict = self.encode(lowerCamelCase_ ).latents _snake_case : List[str] = self.decode(lowerCamelCase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowerCamelCase_ )
304
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer lowercase_ : Union[str, Any] = logging.get_logger(__name__) lowercase_ : Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowercase_ : Union[str, Any] = { '''vocab_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json''' }, '''merges_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt''' }, } lowercase_ : List[str] = {'''allegro/herbert-base-cased''': 514} lowercase_ : Union[str, Any] = {} class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Tuple = VOCAB_FILES_NAMES _UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Any = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Union[str, Any] = HerbertTokenizer def __init__( self : int , lowerCamelCase_ : int=None , lowerCamelCase_ : Any=None , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Dict="<s>" , lowerCamelCase_ : str="<unk>" , lowerCamelCase_ : Dict="<pad>" , lowerCamelCase_ : Dict="<mask>" , lowerCamelCase_ : Optional[Any]="</s>" , **lowerCamelCase_ : List[Any] , ): '''simple docstring''' super().__init__( lowerCamelCase_ , lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , cls_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , **lowerCamelCase_ , ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): '''simple docstring''' _snake_case : List[Any] = [self.cls_token_id] _snake_case : str = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None , lowerCamelCase_ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1] + ([0] * len(lowerCamelCase_ )) + [1] def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): '''simple docstring''' _snake_case : List[str] = [self.sep_token_id] _snake_case : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCAmelCase ( self : Any , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ): '''simple docstring''' _snake_case : Union[str, Any] = self._tokenizer.model.save(lowerCamelCase_ , name=lowerCamelCase_ ) return tuple(lowerCamelCase_ )
304
1
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal lowerCAmelCase_ : List[str] = logging.get_logger(__name__) lowerCAmelCase_ : Dict = TypeVar("DatasetType", Dataset, IterableDataset) def _lowerCamelCase (__lowerCamelCase : Optional[Any] , __lowerCamelCase : str = None , __lowerCamelCase : Tuple = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : int = None , __lowerCamelCase : str = "first_exhausted" , ) -> str: from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("Unable to interleave an empty list of datasets." ) for i, dataset in enumerate(__lowerCamelCase ): if not isinstance(__lowerCamelCase , (Dataset, IterableDataset) ): if isinstance(__lowerCamelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' "is an empty dataset dictionary." ) raise ValueError( f'''Dataset at position {i} has at least one split: {list(__lowerCamelCase )}\n''' f'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(__lowerCamelCase ) )}\']''' ) raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__lowerCamelCase ).__name__}.''' ) if i == 0: a__ , a__ = ( (Dataset, IterableDataset) if isinstance(__lowerCamelCase , __lowerCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError( f'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f'''{stopping_strategy} is not supported. Please enter a valid stopping_strategy.''' ) if dataset_type is Dataset: return _interleave_map_style_datasets( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , info=__lowerCamelCase , split=__lowerCamelCase , stopping_strategy=__lowerCamelCase ) else: return _interleave_iterable_datasets( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , info=__lowerCamelCase , split=__lowerCamelCase , stopping_strategy=__lowerCamelCase ) def _lowerCamelCase (__lowerCamelCase : Optional[Any] , __lowerCamelCase : Any = None , __lowerCamelCase : int = None , __lowerCamelCase : List[Any] = 0 , ) -> str: if not dsets: raise ValueError("Unable to concatenate an empty list of datasets." ) for i, dataset in enumerate(__lowerCamelCase ): if not isinstance(__lowerCamelCase , (Dataset, IterableDataset) ): if isinstance(__lowerCamelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' "is an empty dataset dictionary." ) raise ValueError( f'''Dataset at position {i} has at least one split: {list(__lowerCamelCase )}\n''' f'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(__lowerCamelCase ) )}\']''' ) raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__lowerCamelCase ).__name__}.''' ) if i == 0: a__ , a__ = ( (Dataset, IterableDataset) if isinstance(__lowerCamelCase , __lowerCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError( f'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(__lowerCamelCase , info=__lowerCamelCase , split=__lowerCamelCase , axis=__lowerCamelCase ) else: return _concatenate_iterable_datasets(__lowerCamelCase , info=__lowerCamelCase , split=__lowerCamelCase , axis=__lowerCamelCase )
717
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def _lowerCamelCase (__lowerCamelCase : Any ) -> Optional[int]: a__ = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase (__lowerCamelCase : int ) -> List[Any]: a__ , a__ = emb.weight.shape a__ = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) a__ = emb.weight.data return lin_layer def _lowerCamelCase (__lowerCamelCase : List[Any] ) -> Any: a__ = torch.load(__lowerCamelCase , map_location="cpu" ) a__ = mam_aaa["args"] or mam_aaa["cfg"]["model"] a__ = mam_aaa["model"] remove_ignore_keys_(__lowerCamelCase ) a__ = state_dict["encoder.embed_tokens.weight"].shape[0] a__ = MaMaaaConfig( vocab_size=__lowerCamelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , ) a__ = state_dict["decoder.embed_tokens.weight"] a__ = MaMaaaForConditionalGeneration(__lowerCamelCase ) model.model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) a__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") lowerCAmelCase_ : Tuple = parser.parse_args() lowerCAmelCase_ : int = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
289
0
from string import ascii_lowercase, ascii_uppercase def lowerCAmelCase__ ( a__: str ) -> str: '''simple docstring''' if not sentence: return "" _UpperCAmelCase = dict(zip(a__ , a__ ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
618
from typing import Any def lowerCAmelCase__ ( a__: list , a__: list , a__: dict , a__: dict , a__: dict , ) -> list: '''simple docstring''' _validation( a__ , a__ , a__ , a__ , a__ , ) # Creates data structures and fill initial step _UpperCAmelCase = {} _UpperCAmelCase = {} for state in states_space: _UpperCAmelCase = observations_space[0] _UpperCAmelCase = ( initial_probabilities[state] * emission_probabilities[state][observation] ) _UpperCAmelCase = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(a__ ) ): _UpperCAmelCase = observations_space[o] _UpperCAmelCase = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function _UpperCAmelCase = '' _UpperCAmelCase = -1 for k_state in states_space: _UpperCAmelCase = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: _UpperCAmelCase = probability _UpperCAmelCase = k_state # Update probabilities and pointers dicts _UpperCAmelCase = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) _UpperCAmelCase = arg_max # The final observation _UpperCAmelCase = observations_space[len(a__ ) - 1] # argmax for given final observation _UpperCAmelCase = '' _UpperCAmelCase = -1 for k_state in states_space: _UpperCAmelCase = probabilities[(k_state, final_observation)] if probability > max_probability: _UpperCAmelCase = probability _UpperCAmelCase = k_state _UpperCAmelCase = arg_max # Process pointers backwards _UpperCAmelCase = last_state _UpperCAmelCase = [] for o in range(len(a__ ) - 1 , -1 , -1 ): result.append(a__ ) _UpperCAmelCase = pointers[previous, observations_space[o]] result.reverse() return result def lowerCAmelCase__ ( a__: Any , a__: Any , a__: Any , a__: Any , a__: Any , ) -> None: '''simple docstring''' _validate_not_empty( a__ , a__ , a__ , a__ , a__ , ) _validate_lists(a__ , a__ ) _validate_dicts( a__ , a__ , a__ ) def lowerCAmelCase__ ( a__: Any , a__: Any , a__: Any , a__: Any , a__: Any , ) -> None: '''simple docstring''' if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('There\'s an empty parameter' ) def lowerCAmelCase__ ( a__: Any , a__: Any ) -> None: '''simple docstring''' _validate_list(a__ , 'observations_space' ) _validate_list(a__ , 'states_space' ) def lowerCAmelCase__ ( a__: Any , a__: str ) -> None: '''simple docstring''' if not isinstance(_object , a__ ): _UpperCAmelCase = F'''{var_name} must be a list''' raise ValueError(a__ ) else: for x in _object: if not isinstance(a__ , a__ ): _UpperCAmelCase = F'''{var_name} must be a list of strings''' raise ValueError(a__ ) def lowerCAmelCase__ ( a__: Any , a__: Any , a__: Any , ) -> None: '''simple docstring''' _validate_dict(a__ , 'initial_probabilities' , a__ ) _validate_nested_dict(a__ , 'transition_probabilities' ) _validate_nested_dict(a__ , 'emission_probabilities' ) def lowerCAmelCase__ ( a__: Any , a__: str ) -> None: '''simple docstring''' _validate_dict(_object , a__ , a__ ) for x in _object.values(): _validate_dict(a__ , a__ , a__ , a__ ) def lowerCAmelCase__ ( a__: Any , a__: str , a__: type , a__: bool = False ) -> None: '''simple docstring''' if not isinstance(_object , a__ ): _UpperCAmelCase = F'''{var_name} must be a dict''' raise ValueError(a__ ) if not all(isinstance(a__ , a__ ) for x in _object ): _UpperCAmelCase = F'''{var_name} all keys must be strings''' raise ValueError(a__ ) if not all(isinstance(a__ , a__ ) for x in _object.values() ): _UpperCAmelCase = 'nested dictionary ' if nested else '' _UpperCAmelCase = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(a__ ) if __name__ == "__main__": from doctest import testmod testmod()
618
1
'''simple docstring''' from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class _lowercase : def __init__( self , _UpperCAmelCase , ): A : int = parent A : int = 13 A : int = 7 A : List[Any] = 30 A : Any = self.seq_length + self.mem_len A : List[Any] = 15 A : Union[str, Any] = True A : List[Any] = True A : Optional[Any] = 99 A : List[str] = [10, 50, 80] A : Dict = 32 A : Optional[int] = 32 A : List[Any] = 4 A : Dict = 8 A : str = 128 A : str = 2 A : int = 2 A : str = None A : Dict = 1 A : Optional[Any] = 0 A : Any = 3 A : Any = self.vocab_size - 1 A : Optional[Any] = 0.01 def snake_case ( self ): A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A : str = None if self.use_labels: A : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A : Optional[int] = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def snake_case ( self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): A : Tuple = TFTransfoXLModel(_UpperCAmelCase ) A, A : Any = model(_UpperCAmelCase ).to_tuple() A : Optional[int] = {'''input_ids''': input_ids_a, '''mems''': mems_a} A, A : List[str] = model(_UpperCAmelCase ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): A : Union[str, Any] = TFTransfoXLLMHeadModel(_UpperCAmelCase ) A, A : Union[str, Any] = model(_UpperCAmelCase ).to_tuple() A : Union[str, Any] = {'''input_ids''': input_ids_a, '''labels''': lm_labels} A, A : Any = model(_UpperCAmelCase ).to_tuple() A, A : Tuple = model([input_ids_a, mems_a] ).to_tuple() A : List[str] = {'''input_ids''': input_ids_a, '''mems''': mems_a, '''labels''': lm_labels} A, A : Dict = model(_UpperCAmelCase ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): A : Optional[int] = TFTransfoXLForSequenceClassification(_UpperCAmelCase ) A : List[str] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self ): A : str = self.prepare_config_and_inputs() ((A), (A), (A), (A)) : Dict = config_and_inputs A : Optional[int] = {'''input_ids''': input_ids_a} return config, inputs_dict @require_tf class _lowercase ( snake_case_ , snake_case_ , unittest.TestCase ): _UpperCamelCase = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) _UpperCamelCase = () if is_tf_available() else () _UpperCamelCase = ( { """feature-extraction""": TFTransfoXLModel, """text-classification""": TFTransfoXLForSequenceClassification, """text-generation""": TFTransfoXLLMHeadModel, """zero-shot""": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False def snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def snake_case ( self ): A : List[Any] = TFTransfoXLModelTester(self ) A : Optional[Any] = ConfigTester(self , config_class=_UpperCAmelCase , d_embed=37 ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): self.model_tester.set_seed() A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*_UpperCAmelCase ) def snake_case ( self ): self.model_tester.set_seed() A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*_UpperCAmelCase ) def snake_case ( self ): A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*_UpperCAmelCase ) def snake_case ( self ): A, A : int = self.model_tester.prepare_config_and_inputs_for_common() A : Dict = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: A : Union[str, Any] = model_class(_UpperCAmelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: A : int = model.get_output_embeddings() assert isinstance(_UpperCAmelCase , tf.keras.layers.Layer ) A : int = model.get_bias() assert name is None else: A : Dict = model.get_output_embeddings() assert x is None A : Dict = model.get_bias() assert name is None def snake_case ( self ): # TODO JP: Make TransfoXL XLA compliant pass @slow def snake_case ( self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A : Tuple = TFTransfoXLModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @unittest.skip(reason='''This model doesn\'t play well with fit() due to not returning a single loss.''' ) def snake_case ( self ): pass @require_tf class _lowercase ( unittest.TestCase ): @unittest.skip('''Skip test until #12651 is resolved.''' ) @slow def snake_case ( self ): A : Dict = TFTransfoXLLMHeadModel.from_pretrained('''transfo-xl-wt103''' ) # fmt: off A : List[Any] = tf.convert_to_tensor([[33,1_297,2,1,1_009,4,1_109,11_739,4_762,358,5,25,245,22,1_706,17,20_098,5,3_215,21,37,1_110,3,13,1_041,4,24,603,490,2,71_477,20_098,104_447,2,20_961,1,2_604,4,1,329,3,6_224,831,16_002,2,8,603,78_967,29_546,23,803,20,25,416,5,8,232,4,277,6,1_855,4_601,3,29_546,54,8,3_609,5,57_211,49,4,1,277,18,8,1_755,15_691,3,341,25,416,693,42_573,71,17,401,94,31,17_919,2,29_546,7_873,18,1,435,23,11_011,755,5,5_167,3,7_983,98,84,2,29_546,3_267,8,3_609,4,1,4_865,1_075,2,6_087,71,6,346,8,5_854,3,29_546,824,1_400,1_868,2,19,160,2,311,8,5_496,2,20_920,17,25,15_097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off A : List[str] = [33,1_297,2,1,1_009,4,1_109,11_739,4_762,358,5,25,245,22,1_706,17,20_098,5,3_215,21,37,1_110,3,13,1_041,4,24,603,490,2,71_477,20_098,104_447,2,20_961,1,2_604,4,1,329,3,6_224,831,16_002,2,8,603,78_967,29_546,23,803,20,25,416,5,8,232,4,277,6,1_855,4_601,3,29_546,54,8,3_609,5,57_211,49,4,1,277,18,8,1_755,15_691,3,341,25,416,693,42_573,71,17,401,94,31,17_919,2,29_546,7_873,18,1,435,23,11_011,755,5,5_167,3,7_983,98,84,2,29_546,3_267,8,3_609,4,1,4_865,1_075,2,6_087,71,6,346,8,5_854,3,29_546,824,1_400,1_868,2,19,160,2,311,8,5_496,2,20_920,17,25,15_097,3,24,24,0,33,1,1_857,2,1,1_009,4,1_109,11_739,4_762,358,5,25,245,28,1_110,3,13,1_041,4,24,603,490,2,71_477,20_098,104_447,2,20_961,1,2_604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> A : Union[str, Any] = model.generate(_UpperCAmelCase , max_length=200 , do_sample=_UpperCAmelCase ) self.assertListEqual(output_ids[0].numpy().tolist() , _UpperCAmelCase )
701
'''simple docstring''' import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin snake_case_ = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class _lowercase ( a , unittest.TestCase ): _UpperCamelCase = XLMProphetNetTokenizer _UpperCamelCase = False _UpperCamelCase = True def snake_case ( self ): super().setUp() # We have a SentencePiece fixture for testing A : Dict = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case ( self ): A : Union[str, Any] = '''[PAD]''' A : Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def snake_case ( self ): A : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_UpperCAmelCase ) , 1_012 ) def snake_case ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_012 ) def snake_case ( self ): A : Dict = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) A : int = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) A : Optional[Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) A : int = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) A : Union[str, Any] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def snake_case ( self ): return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def snake_case ( self ): A : Union[str, Any] = '''Hello World!''' A : Any = [35_389, 6_672, 49, 2] self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def snake_case ( self ): # fmt: off A : List[Any] = {'''input_ids''': [[11_073, 82_783, 18, 26, 82_783, 549, 51_540, 248, 17_209, 1_301, 217, 20, 215_186, 1_325, 147, 17_209, 1_301, 217, 20, 56_370, 53, 122_020, 20, 16_477, 27, 87_355, 4_548, 20, 4_728, 78_392, 17, 159_969, 18, 26, 24_491, 629, 15, 538, 22_704, 5_439, 15, 2_788, 24_491, 9_885, 15, 43_534, 605, 15, 814, 18_403, 33_200, 29, 15, 43_534, 24_458, 12_410, 111, 24_966, 83_669, 9_637, 144_068, 26, 850, 22_346, 27, 147, 24_966, 83_669, 83_490, 26, 39_113, 735, 27, 689, 656, 2_800, 1_339, 4_600, 53, 122_020, 115_785, 34, 816, 1_339, 46_887, 18, 147, 53_905, 1_951, 42_238, 41_170, 17_732, 834, 436, 15, 27_523, 98_733, 217, 147, 5_542, 4_981, 930, 17_347, 16, 2], [20_091, 629, 94, 82_786, 58, 490, 20, 1_528, 84, 53_905, 344, 80_592, 110_128, 18_822, 5_267, 1_306, 62, 152_537, 308, 7_997, 401, 124_427, 549, 35_442, 225, 109, 15_055, 25_748, 147, 7_119, 43_712, 34, 767, 135_366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63_784, 119_466, 17, 147_808, 88_214, 18, 656, 81, 32, 3_296, 10_280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
537
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A = { 'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'], 'tokenization_tapas': ['TapasTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TapasForMaskedLM', 'TapasForQuestionAnswering', 'TapasForSequenceClassification', 'TapasModel', 'TapasPreTrainedModel', 'load_tf_weights_in_tapas', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFTapasForMaskedLM', 'TFTapasForQuestionAnswering', 'TFTapasForSequenceClassification', 'TFTapasModel', 'TFTapasPreTrainedModel', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
449
"""simple docstring""" import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification A = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co A = 'main' # Default branch name A = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) A = 'aaaaaaa' # This commit does not exist, so we should 404. A = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes A = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" print("Welcome!" ) yield print("Bye!" ) @contextlib.contextmanager def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" print("Bonjour!" ) yield print("Au revoir!" ) class _a ( unittest.TestCase): def __lowercase ( self : Dict ) -> Optional[int]: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("transformers" ) is not None class _a ( unittest.TestCase): @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def __lowercase ( self : Union[str, Any] , _lowercase : Optional[int] ) -> Optional[Any]: with ContextManagers([] ): print("Transformers are awesome!" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , "Transformers are awesome!\n" ) @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def __lowercase ( self : Any , _lowercase : Any ) -> Dict: with ContextManagers([context_en()] ): print("Transformers are awesome!" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , "Welcome!\nTransformers are awesome!\nBye!\n" ) @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def __lowercase ( self : str , _lowercase : List[Any] ) -> Optional[int]: with ContextManagers([context_fr(), context_en()] ): print("Transformers are awesome!" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , "Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n" ) @require_torch def __lowercase ( self : Any ) -> Union[str, Any]: self.assertEqual(find_labels(_lowercase ) , ["labels"] ) self.assertEqual(find_labels(_lowercase ) , ["labels", "next_sentence_label"] ) self.assertEqual(find_labels(_lowercase ) , ["start_positions", "end_positions"] ) class _a ( SCREAMING_SNAKE_CASE__): pass self.assertEqual(find_labels(_lowercase ) , ["labels"] ) @require_tf def __lowercase ( self : Optional[Any] ) -> int: self.assertEqual(find_labels(_lowercase ) , ["labels"] ) self.assertEqual(find_labels(_lowercase ) , ["labels", "next_sentence_label"] ) self.assertEqual(find_labels(_lowercase ) , ["start_positions", "end_positions"] ) class _a ( SCREAMING_SNAKE_CASE__): pass self.assertEqual(find_labels(_lowercase ) , ["labels"] ) @require_flax def __lowercase ( self : Tuple ) -> List[Any]: # Flax models don't have labels self.assertEqual(find_labels(_lowercase ) , [] ) self.assertEqual(find_labels(_lowercase ) , [] ) self.assertEqual(find_labels(_lowercase ) , [] ) class _a ( SCREAMING_SNAKE_CASE__): pass self.assertEqual(find_labels(_lowercase ) , [] )
449
1
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : int = ['''image_processor''', '''tokenizer'''] __lowerCamelCase : Any = '''OwlViTImageProcessor''' __lowerCamelCase : str = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Any , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : Union[str, Any]=None , **__lowerCAmelCase : List[str] ) -> List[str]: """simple docstring""" A__ = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __lowerCAmelCase , ) A__ = kwargs.pop("""feature_extractor""" ) A__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__lowerCAmelCase , __lowerCAmelCase ) def __call__( self : List[Any] , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Any="max_length" , __lowerCAmelCase : Any="np" , **__lowerCAmelCase : Optional[Any] ) -> Tuple: """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(__lowerCAmelCase , __lowerCAmelCase ) or (isinstance(__lowerCAmelCase , __lowerCAmelCase ) and not isinstance(text[0] , __lowerCAmelCase )): A__ = [self.tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase )] elif isinstance(__lowerCAmelCase , __lowerCAmelCase ) and isinstance(text[0] , __lowerCAmelCase ): A__ = [] # Maximum number of queries across batch A__ = max([len(__lowerCAmelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__lowerCAmelCase ) != max_num_queries: A__ = t + [""" """] * (max_num_queries - len(__lowerCAmelCase )) A__ = self.tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) encodings.append(__lowerCAmelCase ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": A__ = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) A__ = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp A__ = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) A__ = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch A__ = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 ) A__ = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf A__ = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) A__ = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) A__ = BatchEncoding() A__ = input_ids A__ = attention_mask if query_images is not None: A__ = BatchEncoding() A__ = self.image_processor( __lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ).pixel_values A__ = query_pixel_values if images is not None: A__ = self.image_processor(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) if text is not None and images is not None: A__ = image_features.pixel_values return encoding elif query_images is not None and images is not None: A__ = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCAmelCase ) , tensor_type=__lowerCAmelCase ) def a_ ( self : str , *__lowerCAmelCase : Union[str, Any] , **__lowerCAmelCase : Optional[int] ) -> Any: """simple docstring""" return self.image_processor.post_process(*__lowerCAmelCase , **__lowerCAmelCase ) def a_ ( self : List[Any] , *__lowerCAmelCase : Optional[Any] , **__lowerCAmelCase : List[Any] ) -> List[str]: """simple docstring""" return self.image_processor.post_process_object_detection(*__lowerCAmelCase , **__lowerCAmelCase ) def a_ ( self : List[str] , *__lowerCAmelCase : Any , **__lowerCAmelCase : Dict ) -> Optional[int]: """simple docstring""" return self.image_processor.post_process_image_guided_detection(*__lowerCAmelCase , **__lowerCAmelCase ) def a_ ( self : str , *__lowerCAmelCase : Any , **__lowerCAmelCase : Union[str, Any] ) -> Dict: """simple docstring""" return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def a_ ( self : int , *__lowerCAmelCase : Optional[Any] , **__lowerCAmelCase : int ) -> int: """simple docstring""" return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @property def a_ ( self : List[str] ) -> List[Any]: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __lowerCAmelCase , ) return self.image_processor_class @property def a_ ( self : Any ) -> Any: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __lowerCAmelCase , ) return self.image_processor
247
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __lowerCamelCase ( __a :Dict ) -> List[Any]: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __lowerCamelCase ( __a :str ) -> int: """simple docstring""" A__ = create_tensor(__a ) A__ = gather(__a ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def __lowerCamelCase ( __a :Optional[Any] ) -> Optional[int]: """simple docstring""" A__ = [state.process_index] A__ = gather_object(__a ) assert len(__a ) == state.num_processes, F'{gathered_obj}, {len(__a )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), F'{gathered_obj} != {list(range(state.num_processes ) )}' def __lowerCamelCase ( __a :Optional[int] ) -> Dict: """simple docstring""" A__ = create_tensor(__a ) A__ = broadcast(__a ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def __lowerCamelCase ( __a :List[str] ) -> Tuple: """simple docstring""" if state.is_main_process: A__ = torch.arange(state.num_processes + 1 ).to(state.device ) else: A__ = torch.arange(state.num_processes ).to(state.device ) A__ = pad_across_processes(__a ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def __lowerCamelCase ( __a :Optional[int] ) -> Tuple: """simple docstring""" if state.num_processes != 2: return A__ = create_tensor(__a ) A__ = reduce(__a , """sum""" ) A__ = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__a , __a ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( __a :str ) -> List[str]: """simple docstring""" if state.num_processes != 2: return A__ = create_tensor(__a ) A__ = reduce(__a , """mean""" ) A__ = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__a , __a ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( __a :List[Any] ) -> Union[str, Any]: """simple docstring""" main() def __lowerCamelCase ( ) -> List[str]: """simple docstring""" A__ = PartialState() state.print(F'State: {state}' ) state.print("""testing gather""" ) test_gather(__a ) state.print("""testing gather_object""" ) test_gather_object(__a ) state.print("""testing broadcast""" ) test_broadcast(__a ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(__a ) state.print("""testing reduce_sum""" ) test_reduce_sum(__a ) state.print("""testing reduce_mean""" ) test_reduce_mean(__a ) if __name__ == "__main__": main()
247
1
from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowerCamelCase =logging.get_logger(__name__) class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ['''input_values''', '''padding_mask'''] def __init__( self , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = 2_4_0_0_0 , __SCREAMING_SNAKE_CASE = 0.0 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" super().__init__(feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = chunk_length_s UpperCamelCase__ : Any = overlap @property def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if padding and truncation: raise ValueError('''Both padding and truncation were set. Make sure you only set one.''' ) elif padding is None: # by default let's pad the inputs UpperCamelCase__ : Any = True UpperCamelCase__ : List[str] = bool( isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase__ : Union[str, Any] = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): UpperCamelCase__ : Any = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): UpperCamelCase__ : Union[str, Any] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase__ : int = [np.asarray(__SCREAMING_SNAKE_CASE ).T] # verify inputs are valid for idx, example in enumerate(__SCREAMING_SNAKE_CASE ): if example.ndim > 2: raise ValueError(F'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'''Expected stereo audio but example has {example.shape[-1]} channels''' ) UpperCamelCase__ : str = None UpperCamelCase__ : Optional[int] = BatchFeature({'''input_values''': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: UpperCamelCase__ : List[str] = min(array.shape[0] for array in raw_audio ) UpperCamelCase__ : str = int(np.floor(max_length / self.chunk_stride ) ) UpperCamelCase__ : int = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: UpperCamelCase__ : Any = max(array.shape[0] for array in raw_audio ) UpperCamelCase__ : List[Any] = int(np.ceil(max_length / self.chunk_stride ) ) UpperCamelCase__ : Optional[int] = (nb_step - 1) * self.chunk_stride + self.chunk_length UpperCamelCase__ : Union[str, Any] = '''max_length''' else: UpperCamelCase__ : List[Any] = input_values # normal padding on batch if padded_inputs is None: UpperCamelCase__ : Optional[int] = self.pad( __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , ) if padding: UpperCamelCase__ : str = padded_inputs.pop('''attention_mask''' ) UpperCamelCase__ : Optional[Any] = [] for example in padded_inputs.pop('''input_values''' ): if self.feature_size == 1: UpperCamelCase__ : Optional[Any] = example[..., None] input_values.append(example.T ) UpperCamelCase__ : List[Any] = input_values if return_tensors is not None: UpperCamelCase__ : Tuple = padded_inputs.convert_to_tensors(__SCREAMING_SNAKE_CASE ) return padded_inputs
285
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase ={ "configuration_luke": ["LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP", "LukeConfig"], "tokenization_luke": ["LukeTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase =[ "LUKE_PRETRAINED_MODEL_ARCHIVE_LIST", "LukeForEntityClassification", "LukeForEntityPairClassification", "LukeForEntitySpanClassification", "LukeForMultipleChoice", "LukeForQuestionAnswering", "LukeForSequenceClassification", "LukeForTokenClassification", "LukeForMaskedLM", "LukeModel", "LukePreTrainedModel", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
285
1
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: UpperCamelCase__ : Tuple = mf_knapsack(i - 1 , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) else: UpperCamelCase__ : Union[str, Any] = max( mf_knapsack(i - 1 , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) , mf_knapsack(i - 1 , lowerCamelCase_ , lowerCamelCase_ , j - wt[i - 1]) + val[i - 1] , ) UpperCamelCase__ : List[str] = val return f[i][j] def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[str]: UpperCamelCase__ : Any = [[0] * (w + 1) for _ in range(n + 1)] for i in range(1 , n + 1): for w_ in range(1 , w + 1): if wt[i - 1] <= w_: UpperCamelCase__ : Tuple = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_]) else: UpperCamelCase__ : str = dp[i - 1][w_] return dp[n][w_], dp def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Any: if not (isinstance(lowerCamelCase_ , (list, tuple)) and isinstance(lowerCamelCase_ , (list, tuple))): raise ValueError( 'Both the weights and values vectors must be either lists or tuples') UpperCamelCase__ : Tuple = len(lowerCamelCase_) if num_items != len(lowerCamelCase_): UpperCamelCase__ : Union[str, Any] = ( 'The number of weights must be the same as the number of values.\n' f'But got {num_items} weights and {len(lowerCamelCase_)} values' ) raise ValueError(lowerCamelCase_) for i in range(lowerCamelCase_): if not isinstance(wt[i] , lowerCamelCase_): UpperCamelCase__ : str = ( 'All weights must be integers but got weight of ' f'type {type(wt[i])} at index {i}' ) raise TypeError(lowerCamelCase_) UpperCamelCase__, UpperCamelCase__ : List[Any] = knapsack(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : set = set() _construct_solution(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) return optimal_val, example_optional_set def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Union[str, Any]: # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(lowerCamelCase_ , lowerCamelCase_ , i - 1 , lowerCamelCase_ , lowerCamelCase_) else: optimal_set.add(lowerCamelCase_) _construct_solution(lowerCamelCase_ , lowerCamelCase_ , i - 1 , j - wt[i - 1] , lowerCamelCase_) if __name__ == "__main__": lowerCAmelCase__ = [3, 2, 4, 4] lowerCAmelCase__ = [4, 3, 2, 3] lowerCAmelCase__ = 4 lowerCAmelCase__ = 6 lowerCAmelCase__ = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] lowerCAmelCase__ , lowerCAmelCase__ = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 lowerCAmelCase__ , lowerCAmelCase__ = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print('optimal_value = ', optimal_solution) print('An optimal subset corresponding to the optimal value', optimal_subset)
6
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> list[str]: return [sentence[i : i + ngram_size] for i in range(len(lowerCamelCase_) - ngram_size + 1)] if __name__ == "__main__": from doctest import testmod testmod()
6
1
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig A_ = logging.get_logger(__name__) class UpperCAmelCase : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: '''simple docstring''' lowerCamelCase_ = question_encoder lowerCamelCase_ = generator lowerCamelCase_ = self.question_encoder def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> List[str]: '''simple docstring''' if os.path.isfile(SCREAMING_SNAKE_CASE_ ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = os.path.join(SCREAMING_SNAKE_CASE_ , 'question_encoder_tokenizer' ) lowerCamelCase_ = os.path.join(SCREAMING_SNAKE_CASE_ , 'generator_tokenizer' ) self.question_encoder.save_pretrained(SCREAMING_SNAKE_CASE_ ) self.generator.save_pretrained(SCREAMING_SNAKE_CASE_ ) @classmethod def UpperCamelCase( cls , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Dict: '''simple docstring''' from ..auto.tokenization_auto import AutoTokenizer lowerCamelCase_ = kwargs.pop('config' , SCREAMING_SNAKE_CASE_ ) if config is None: lowerCamelCase_ = RagConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = AutoTokenizer.from_pretrained( SCREAMING_SNAKE_CASE_ , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) lowerCamelCase_ = AutoTokenizer.from_pretrained( SCREAMING_SNAKE_CASE_ , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ) def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: '''simple docstring''' return self.current_tokenizer(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Dict: '''simple docstring''' return self.generator.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Dict: '''simple docstring''' return self.generator.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.question_encoder def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = self.generator def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "longest" , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , **SCREAMING_SNAKE_CASE_ , ) -> BatchEncoding: '''simple docstring''' warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , SCREAMING_SNAKE_CASE_ , ) if max_length is None: lowerCamelCase_ = self.current_tokenizer.model_max_length lowerCamelCase_ = self( SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: lowerCamelCase_ = self.current_tokenizer.model_max_length lowerCamelCase_ = self( text_target=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowerCamelCase_ = labels['input_ids'] return model_inputs
42
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
5
0
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _lowerCAmelCase ( _snake_case ): """simple docstring""" @slow @require_torch def UpperCAmelCase_ ( self ) -> int: A_ : int = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) A_ : Optional[int] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) A_ : List[str] = bertabert.config.encoder.vocab_size A_ : List[str] = tokenizer.sep_token_id A_ : Dict = tokenizer.cls_token_id A_ : List[Any] = 128 A_ : List[Any] = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) A_ : List[str] = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) A_ : Optional[int] = train_dataset.select(range(32 ) ) A_ : Union[str, Any] = val_dataset.select(range(16 ) ) A_ : Optional[Any] = 4 def _map_to_encoder_decoder_inputs(_lowerCamelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] A_ : str = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=_lowerCamelCase , max_length=512 ) A_ : List[str] = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=_lowerCamelCase , max_length=128 ) A_ : int = inputs.input_ids A_ : int = inputs.attention_mask A_ : Optional[Any] = outputs.input_ids A_ : Optional[Any] = outputs.input_ids.copy() A_ : List[Any] = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] A_ : Optional[int] = outputs.attention_mask assert all(len(_lowerCamelCase ) == 512 for x in inputs.input_ids ) assert all(len(_lowerCamelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_lowerCamelCase ): A_ : List[Any] = pred.label_ids A_ : List[Any] = pred.predictions # all unnecessary tokens are removed A_ : Tuple = tokenizer.batch_decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) A_ : Union[str, Any] = tokenizer.batch_decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) A_ : Optional[Any] = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_lowerCamelCase ) )] ) / len(_lowerCamelCase ) return {"accuracy": accuracy} # map train dataset A_ : Optional[int] = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_lowerCamelCase , batch_size=_lowerCamelCase , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset A_ : Optional[Any] = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_lowerCamelCase , batch_size=_lowerCamelCase , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) A_ : Optional[int] = self.get_auto_remove_tmp_dir() A_ : Tuple = SeqaSeqTrainingArguments( output_dir=_lowerCamelCase , per_device_train_batch_size=_lowerCamelCase , per_device_eval_batch_size=_lowerCamelCase , predict_with_generate=_lowerCamelCase , evaluation_strategy="""steps""" , do_train=_lowerCamelCase , do_eval=_lowerCamelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer A_ : Optional[int] = SeqaSeqTrainer( model=_lowerCamelCase , args=_lowerCamelCase , compute_metrics=_compute_metrics , train_dataset=_lowerCamelCase , eval_dataset=_lowerCamelCase , tokenizer=_lowerCamelCase , ) # start training trainer.train()
713
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def UpperCAmelCase ( a_ , a_=1 ) -> str: """simple docstring""" if n_shave_prefix_segments >= 0: return ".".join(path.split(""".""" )[n_shave_prefix_segments:] ) else: return ".".join(path.split(""".""" )[:n_shave_prefix_segments] ) def UpperCAmelCase ( a_ , a_=0 ) -> Union[str, Any]: """simple docstring""" A_ : str = [] for old_item in old_list: A_ : List[str] = old_item.replace("""in_layers.0""" , """norm1""" ) A_ : Tuple = new_item.replace("""in_layers.2""" , """conv1""" ) A_ : List[Any] = new_item.replace("""out_layers.0""" , """norm2""" ) A_ : Dict = new_item.replace("""out_layers.3""" , """conv2""" ) A_ : int = new_item.replace("""emb_layers.1""" , """time_emb_proj""" ) A_ : Optional[int] = new_item.replace("""skip_connection""" , """conv_shortcut""" ) A_ : int = shave_segments(a_ , n_shave_prefix_segments=a_ ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def UpperCAmelCase ( a_ , a_=0 ) -> Union[str, Any]: """simple docstring""" A_ : Any = [] for old_item in old_list: A_ : Optional[int] = old_item A_ : Dict = new_item.replace("""norm.weight""" , """group_norm.weight""" ) A_ : Optional[int] = new_item.replace("""norm.bias""" , """group_norm.bias""" ) A_ : Union[str, Any] = new_item.replace("""proj_out.weight""" , """proj_attn.weight""" ) A_ : Optional[Any] = new_item.replace("""proj_out.bias""" , """proj_attn.bias""" ) A_ : Union[str, Any] = shave_segments(a_ , n_shave_prefix_segments=a_ ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def UpperCAmelCase ( a_ , a_ , a_ , a_=None , a_=None , a_=None ) -> Optional[Any]: """simple docstring""" assert isinstance(a_ , a_ ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): A_ : Optional[int] = old_checkpoint[path] A_ : Union[str, Any] = old_tensor.shape[0] // 3 A_ : Union[str, Any] = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) A_ : Any = old_tensor.shape[0] // config["""num_head_channels"""] // 3 A_ : Tuple = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) A_ , A_ , A_ : Tuple = old_tensor.split(channels // num_heads , dim=1 ) A_ : List[str] = query.reshape(a_ ) A_ : Union[str, Any] = key.reshape(a_ ) A_ : Optional[int] = value.reshape(a_ ) for path in paths: A_ : Optional[int] = path["""new"""] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here A_ : Union[str, Any] = new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" ) A_ : Any = new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" ) A_ : Tuple = new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" ) if additional_replacements is not None: for replacement in additional_replacements: A_ : Union[str, Any] = new_path.replace(replacement["""old"""] , replacement["""new"""] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: A_ : Tuple = old_checkpoint[path["""old"""]][:, :, 0] else: A_ : Optional[int] = old_checkpoint[path["""old"""]] def UpperCAmelCase ( a_ , a_ ) -> Optional[int]: """simple docstring""" A_ : Optional[Any] = {} A_ : Dict = checkpoint["""time_embed.0.weight"""] A_ : Dict = checkpoint["""time_embed.0.bias"""] A_ : Optional[Any] = checkpoint["""time_embed.2.weight"""] A_ : Tuple = checkpoint["""time_embed.2.bias"""] A_ : List[Any] = checkpoint["""input_blocks.0.0.weight"""] A_ : List[str] = checkpoint["""input_blocks.0.0.bias"""] A_ : Any = checkpoint["""out.0.weight"""] A_ : Any = checkpoint["""out.0.bias"""] A_ : Optional[int] = checkpoint["""out.2.weight"""] A_ : int = checkpoint["""out.2.bias"""] # Retrieves the keys for the input blocks only A_ : List[Any] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} ) A_ : Optional[int] = { layer_id: [key for key in checkpoint if F"input_blocks.{layer_id}" in key] for layer_id in range(a_ ) } # Retrieves the keys for the middle blocks only A_ : Optional[int] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} ) A_ : Optional[int] = { layer_id: [key for key in checkpoint if F"middle_block.{layer_id}" in key] for layer_id in range(a_ ) } # Retrieves the keys for the output blocks only A_ : str = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} ) A_ : Any = { layer_id: [key for key in checkpoint if F"output_blocks.{layer_id}" in key] for layer_id in range(a_ ) } for i in range(1 , a_ ): A_ : int = (i - 1) // (config["""num_res_blocks"""] + 1) A_ : Optional[int] = (i - 1) % (config["""num_res_blocks"""] + 1) A_ : Dict = [key for key in input_blocks[i] if F"input_blocks.{i}.0" in key] A_ : List[str] = [key for key in input_blocks[i] if F"input_blocks.{i}.1" in key] if F"input_blocks.{i}.0.op.weight" in checkpoint: A_ : List[Any] = checkpoint[ F"input_blocks.{i}.0.op.weight" ] A_ : Optional[Any] = checkpoint[ F"input_blocks.{i}.0.op.bias" ] continue A_ : Optional[Any] = renew_resnet_paths(a_ ) A_ : Dict = {"""old""": F"input_blocks.{i}.0", """new""": F"down_blocks.{block_id}.resnets.{layer_in_block_id}"} A_ : str = {"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""} assign_to_checkpoint( a_ , a_ , a_ , additional_replacements=[meta_path, resnet_op] , config=a_ ) if len(a_ ): A_ : Any = renew_attention_paths(a_ ) A_ : Any = { """old""": F"input_blocks.{i}.1", """new""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}", } A_ : List[Any] = { F"input_blocks.{i}.1.qkv.bias": { """key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", """query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", """value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"input_blocks.{i}.1.qkv.weight": { """key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", """query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", """value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( a_ , a_ , a_ , additional_replacements=[meta_path] , attention_paths_to_split=a_ , config=a_ , ) A_ : Tuple = middle_blocks[0] A_ : Optional[int] = middle_blocks[1] A_ : int = middle_blocks[2] A_ : int = renew_resnet_paths(a_ ) assign_to_checkpoint(a_ , a_ , a_ , config=a_ ) A_ : Tuple = renew_resnet_paths(a_ ) assign_to_checkpoint(a_ , a_ , a_ , config=a_ ) A_ : Optional[int] = renew_attention_paths(a_ ) A_ : Optional[int] = { """middle_block.1.qkv.bias""": { """key""": """mid_block.attentions.0.key.bias""", """query""": """mid_block.attentions.0.query.bias""", """value""": """mid_block.attentions.0.value.bias""", }, """middle_block.1.qkv.weight""": { """key""": """mid_block.attentions.0.key.weight""", """query""": """mid_block.attentions.0.query.weight""", """value""": """mid_block.attentions.0.value.weight""", }, } assign_to_checkpoint( a_ , a_ , a_ , attention_paths_to_split=a_ , config=a_ ) for i in range(a_ ): A_ : Union[str, Any] = i // (config["""num_res_blocks"""] + 1) A_ : Union[str, Any] = i % (config["""num_res_blocks"""] + 1) A_ : List[str] = [shave_segments(a_ , 2 ) for name in output_blocks[i]] A_ : Union[str, Any] = {} for layer in output_block_layers: A_ , A_ : List[str] = layer.split(""".""" )[0], shave_segments(a_ , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(a_ ) else: A_ : Optional[int] = [layer_name] if len(a_ ) > 1: A_ : List[str] = [key for key in output_blocks[i] if F"output_blocks.{i}.0" in key] A_ : List[Any] = [key for key in output_blocks[i] if F"output_blocks.{i}.1" in key] A_ : str = renew_resnet_paths(a_ ) A_ : Dict = renew_resnet_paths(a_ ) A_ : Tuple = {"""old""": F"output_blocks.{i}.0", """new""": F"up_blocks.{block_id}.resnets.{layer_in_block_id}"} assign_to_checkpoint(a_ , a_ , a_ , additional_replacements=[meta_path] , config=a_ ) if ["conv.weight", "conv.bias"] in output_block_list.values(): A_ : List[Any] = list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] ) A_ : Optional[Any] = checkpoint[ F"output_blocks.{i}.{index}.conv.weight" ] A_ : Any = checkpoint[ F"output_blocks.{i}.{index}.conv.bias" ] # Clear attentions as they have been attributed above. if len(a_ ) == 2: A_ : int = [] if len(a_ ): A_ : Union[str, Any] = renew_attention_paths(a_ ) A_ : Optional[int] = { """old""": F"output_blocks.{i}.1", """new""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}", } A_ : str = { F"output_blocks.{i}.1.qkv.bias": { """key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", """query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", """value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"output_blocks.{i}.1.qkv.weight": { """key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", """query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", """value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( a_ , a_ , a_ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=a_ , ) else: A_ : List[str] = renew_resnet_paths(a_ , n_shave_prefix_segments=1 ) for path in resnet_0_paths: A_ : List[str] = """.""".join(["""output_blocks""", str(a_ ), path["""old"""]] ) A_ : int = """.""".join(["""up_blocks""", str(a_ ), """resnets""", str(a_ ), path["""new"""]] ) A_ : Tuple = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": UpperCamelCase__ : str = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') UpperCamelCase__ : Tuple = parser.parse_args() UpperCamelCase__ : Union[str, Any] = torch.load(args.checkpoint_path) with open(args.config_file) as f: UpperCamelCase__ : Any = json.loads(f.read()) UpperCamelCase__ : Any = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] UpperCamelCase__ : List[str] = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: UpperCamelCase__ : Dict = DDPMScheduler.from_config('/'.join(args.checkpoint_path.split('/')[:-1])) UpperCamelCase__ : List[Any] = VQModel.from_pretrained('/'.join(args.checkpoint_path.split('/')[:-1])) UpperCamelCase__ : str = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
385
0
'''simple docstring''' from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ ( A ): '''simple docstring''' def UpperCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case__ , "embed_dim" ) ) self.parent.assertTrue(hasattr(snake_case__ , "num_heads" ) ) class UpperCAmelCase_ : '''simple docstring''' def __init__( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Dict=13 , snake_case__ : List[Any]=64 , snake_case__ : str=3 , snake_case__ : List[str]=[16, 48, 96] , snake_case__ : List[Any]=[1, 3, 6] , snake_case__ : Tuple=[1, 2, 10] , snake_case__ : Optional[int]=[7, 3, 3] , snake_case__ : int=[4, 2, 2] , snake_case__ : Dict=[2, 1, 1] , snake_case__ : List[Any]=[2, 2, 2] , snake_case__ : Optional[int]=[False, False, True] , snake_case__ : Tuple=[0.0, 0.0, 0.0] , snake_case__ : Optional[Any]=0.02 , snake_case__ : Optional[int]=1e-12 , snake_case__ : Optional[Any]=True , snake_case__ : Union[str, Any]=True , snake_case__ : Optional[int]=2 , ): '''simple docstring''' UpperCAmelCase__ : int = parent UpperCAmelCase__ : List[Any] = batch_size UpperCAmelCase__ : Union[str, Any] = image_size UpperCAmelCase__ : Tuple = patch_sizes UpperCAmelCase__ : List[str] = patch_stride UpperCAmelCase__ : Union[str, Any] = patch_padding UpperCAmelCase__ : Union[str, Any] = is_training UpperCAmelCase__ : Tuple = use_labels UpperCAmelCase__ : Dict = num_labels UpperCAmelCase__ : Optional[int] = num_channels UpperCAmelCase__ : Optional[int] = embed_dim UpperCAmelCase__ : Union[str, Any] = num_heads UpperCAmelCase__ : str = stride_kv UpperCAmelCase__ : Optional[Any] = depth UpperCAmelCase__ : Tuple = cls_token UpperCAmelCase__ : int = attention_drop_rate UpperCAmelCase__ : Union[str, Any] = initializer_range UpperCAmelCase__ : List[Any] = layer_norm_eps def UpperCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : str = None if self.use_labels: # create a random int32 tensor of given shape UpperCAmelCase__ : Any = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase__ : int = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self : Any ): '''simple docstring''' return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : List[str] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = TFCvtModel(config=snake_case__ ) UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , training=snake_case__ ) UpperCAmelCase__ : Optional[int] = (self.image_size, self.image_size) UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = image_size[0], image_size[1] for i in range(len(self.depth ) ): UpperCAmelCase__ : List[Any] = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) UpperCAmelCase__ : Any = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def UpperCamelCase ( self : Optional[Any] , snake_case__ : Any , snake_case__ : int , snake_case__ : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.num_labels UpperCAmelCase__ : List[str] = TFCvtForImageClassification(snake_case__ ) UpperCAmelCase__ : List[Any] = model(snake_case__ , labels=snake_case__ , training=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : int = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = config_and_inputs UpperCAmelCase__ : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase_ ( A , A , unittest.TestCase ): '''simple docstring''' lowercase_ : Dict = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () lowercase_ : Dict = ( {"feature-extraction": TFCvtModel, "image-classification": TFCvtForImageClassification} if is_tf_available() else {} ) lowercase_ : str = False lowercase_ : List[str] = False lowercase_ : Union[str, Any] = False lowercase_ : Tuple = False lowercase_ : int = False def UpperCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Tuple = TFCvtModelTester(self ) UpperCAmelCase__ : str = TFCvtConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def UpperCamelCase ( self : Tuple ): '''simple docstring''' self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="Cvt does not output attentions" ) def UpperCamelCase ( self : List[str] ): '''simple docstring''' pass @unittest.skip(reason="Cvt does not use inputs_embeds" ) def UpperCamelCase ( self : Any ): '''simple docstring''' pass @unittest.skip(reason="Cvt does not support input and output embeddings" ) def UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) def UpperCamelCase ( self : Tuple ): '''simple docstring''' super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def UpperCamelCase ( self : Dict ): '''simple docstring''' super().test_keras_fit() @unittest.skip(reason="Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8" ) def UpperCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : int = tf.keras.mixed_precision.Policy("mixed_float16" ) tf.keras.mixed_precision.set_global_policy(snake_case__ ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("float32" ) def UpperCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Optional[Any] = model_class(snake_case__ ) UpperCAmelCase__ : Dict = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Optional[int] = [*signature.parameters.keys()] UpperCAmelCase__ : str = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def UpperCamelCase ( self : int ): '''simple docstring''' def check_hidden_states_output(snake_case__ : str , snake_case__ : Tuple , snake_case__ : Dict ): UpperCAmelCase__ : Optional[int] = model_class(snake_case__ ) UpperCAmelCase__ : Dict = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) UpperCAmelCase__ : List[str] = outputs.hidden_states UpperCAmelCase__ : Optional[Any] = len(self.model_tester.depth ) self.assertEqual(len(snake_case__ ) , snake_case__ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : List[Any] = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ : Optional[Any] = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def UpperCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @slow def UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : List[Any] = TFCvtModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def snake_case_ ( ): UpperCAmelCase__ : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase ( self : Dict ): '''simple docstring''' return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def UpperCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[str] = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) UpperCAmelCase__ : Optional[Any] = self.default_image_processor UpperCAmelCase__ : Any = prepare_img() UpperCAmelCase__ : Optional[Any] = image_processor(images=snake_case__ , return_tensors="tf" ) # forward pass UpperCAmelCase__ : List[Any] = model(**snake_case__ ) # verify the logits UpperCAmelCase__ : str = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , snake_case__ ) UpperCAmelCase__ : Optional[int] = tf.constant([0.9285, 0.9015, -0.3150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , snake_case__ , atol=1e-4 ) )
199
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __a: Any = logging.get_logger(__name__) __a: Dict = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __a: int = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } __a: str = {'''facebook/blenderbot_small-90M''': 512} def _SCREAMING_SNAKE_CASE ( __snake_case ) -> List[str]: _UpperCAmelCase = set() _UpperCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCAmelCase = char _UpperCAmelCase = set(__snake_case ) return pairs class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : List[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Dict , lowerCamelCase : List[str]="__start__" , lowerCamelCase : List[Any]="__end__" , lowerCamelCase : Any="__unk__" , lowerCamelCase : Optional[Any]="__null__" , **lowerCamelCase : Optional[Any] , ) -> Tuple: """simple docstring""" super().__init__(unk_token=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , pad_token=lowerCamelCase , **lowerCamelCase ) with open(lowerCamelCase , encoding="""utf-8""" ) as vocab_handle: _UpperCAmelCase = json.load(lowerCamelCase ) _UpperCAmelCase = {v: k for k, v in self.encoder.items()} with open(lowerCamelCase , encoding="""utf-8""" ) as merges_handle: _UpperCAmelCase = merges_handle.read().split("""\n""" )[1:-1] _UpperCAmelCase = [tuple(merge.split() ) for merge in merges] _UpperCAmelCase = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) _UpperCAmelCase = {} @property def lowerCamelCase ( self : str ) -> int: """simple docstring""" return len(self.encoder ) def lowerCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase ( self : Optional[Any] , lowerCamelCase : str ) -> str: """simple docstring""" if token in self.cache: return self.cache[token] _UpperCAmelCase = re.sub("""([.,!?()])""" , r""" \1""" , lowerCamelCase ) _UpperCAmelCase = re.sub("""(')""" , r""" \1 """ , lowerCamelCase ) _UpperCAmelCase = re.sub(r"""\s{2,}""" , """ """ , lowerCamelCase ) if "\n" in token: _UpperCAmelCase = token.replace("""\n""" , """ __newln__""" ) _UpperCAmelCase = token.split(""" """ ) _UpperCAmelCase = [] for token in tokens: if not len(lowerCamelCase ): continue _UpperCAmelCase = token.lower() _UpperCAmelCase = tuple(lowerCamelCase ) _UpperCAmelCase = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) _UpperCAmelCase = get_pairs(lowerCamelCase ) if not pairs: words.append(lowerCamelCase ) continue while True: _UpperCAmelCase = min(lowerCamelCase , key=lambda lowerCamelCase : self.bpe_ranks.get(lowerCamelCase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break _UpperCAmelCase , _UpperCAmelCase = bigram _UpperCAmelCase = [] _UpperCAmelCase = 0 while i < len(lowerCamelCase ): try: _UpperCAmelCase = word.index(lowerCamelCase , lowerCamelCase ) new_word.extend(word[i:j] ) _UpperCAmelCase = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _UpperCAmelCase = tuple(lowerCamelCase ) _UpperCAmelCase = new_word if len(lowerCamelCase ) == 1: break else: _UpperCAmelCase = get_pairs(lowerCamelCase ) _UpperCAmelCase = """@@ """.join(lowerCamelCase ) _UpperCAmelCase = word[:-4] _UpperCAmelCase = word words.append(lowerCamelCase ) return " ".join(lowerCamelCase ) def lowerCamelCase ( self : Any , lowerCamelCase : str ) -> List[str]: """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = re.findall(r"""\S+\n?""" , lowerCamelCase ) for token in words: split_tokens.extend(list(self.bpe(lowerCamelCase ).split(""" """ ) ) ) return split_tokens def lowerCamelCase ( self : Tuple , lowerCamelCase : str ) -> int: """simple docstring""" _UpperCAmelCase = token.lower() return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) ) def lowerCamelCase ( self : List[str] , lowerCamelCase : int ) -> str: """simple docstring""" return self.decoder.get(lowerCamelCase , self.unk_token ) def lowerCamelCase ( self : Dict , lowerCamelCase : List[str] ) -> str: """simple docstring""" _UpperCAmelCase = """ """.join(lowerCamelCase ).replace("""@@ """ , """""" ).strip() return out_string def lowerCamelCase ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCAmelCase = os.path.join( lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _UpperCAmelCase = os.path.join( lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase , ensure_ascii=lowerCamelCase ) + """\n""" ) _UpperCAmelCase = 0 with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) _UpperCAmelCase = token_index writer.write(""" """.join(lowerCamelCase ) + """\n""" ) index += 1 return vocab_file, merge_file
108
0
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput a : str = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase ): @register_to_config def __init__( self : Any , a_ : bool , a_ : Optional[int] = None , a_ : Optional[int] = None ): """simple docstring""" super().__init__() __snake_case = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" __snake_case = torch.zeros(a_ , a_ ) else: __snake_case = None __snake_case = torch.nn.Parameter(a_ ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 def __init__( self : Tuple , a_ : VQModel , a_ : CLIPTextModel , a_ : CLIPTokenizer , a_ : TransformeraDModel , a_ : VQDiffusionScheduler , a_ : LearnedClassifierFreeSamplingEmbeddings , ): """simple docstring""" super().__init__() self.register_modules( vqvae=a_ , transformer=a_ , text_encoder=a_ , tokenizer=a_ , scheduler=a_ , learned_classifier_free_sampling_embeddings=a_ , ) def A ( self : Union[str, Any] , a_ : str , a_ : str , a_ : Dict ): """simple docstring""" __snake_case = len(a_ ) if isinstance(a_ , a_ ) else 1 # get prompt text embeddings __snake_case = self.tokenizer( a_ , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) __snake_case = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __snake_case = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) __snake_case = text_input_ids[:, : self.tokenizer.model_max_length] __snake_case = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 __snake_case = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=a_ ) # duplicate text embeddings for each generation per prompt __snake_case = prompt_embeds.repeat_interleave(a_ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: __snake_case = self.learned_classifier_free_sampling_embeddings.embeddings __snake_case = negative_prompt_embeds.unsqueeze(0 ).repeat(a_ , 1 , 1 ) else: __snake_case = [""] * batch_size __snake_case = text_input_ids.shape[-1] __snake_case = self.tokenizer( a_ , padding="max_length" , max_length=a_ , truncation=a_ , return_tensors="pt" , ) __snake_case = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings __snake_case = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=a_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case = negative_prompt_embeds.shape[1] __snake_case = negative_prompt_embeds.repeat(1 , a_ , 1 ) __snake_case = negative_prompt_embeds.view(batch_size * num_images_per_prompt , a_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : Tuple , a_ : Union[str, List[str]] , a_ : int = 100 , a_ : float = 5.0 , a_ : float = 1.0 , a_ : int = 1 , a_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , a_ : Optional[torch.FloatTensor] = None , a_ : Optional[str] = "pil" , a_ : bool = True , a_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , a_ : int = 1 , ): """simple docstring""" if isinstance(a_ , a_ ): __snake_case = 1 elif isinstance(a_ , a_ ): __snake_case = len(a_ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(a_ )}''' ) __snake_case = batch_size * num_images_per_prompt __snake_case = guidance_scale > 1.0 __snake_case = self._encode_prompt(a_ , a_ , a_ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(a_ , a_ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(a_ )}.''' ) # get the initial completely masked latents unless the user supplied it __snake_case = (batch_size, self.transformer.num_latent_pixels) if latents is None: __snake_case = self.transformer.num_vector_embeds - 1 __snake_case = torch.full(a_ , a_ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( "Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0," f''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) __snake_case = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(a_ , device=self.device ) __snake_case = self.scheduler.timesteps.to(self.device ) __snake_case = latents for i, t in enumerate(self.progress_bar(a_ ) ): # expand the sample if we are doing classifier free guidance __snake_case = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` __snake_case = self.transformer(a_ , encoder_hidden_states=a_ , timestep=a_ ).sample if do_classifier_free_guidance: __snake_case , __snake_case = model_output.chunk(2 ) __snake_case = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(a_ , dim=1 , keepdim=a_ ) __snake_case = self.truncate(a_ , a_ ) # remove `log(0)`'s (`-inf`s) __snake_case = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 __snake_case = self.scheduler.step(a_ , timestep=a_ , sample=a_ , generator=a_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(a_ , a_ , a_ ) __snake_case = self.vqvae.config.vq_embed_dim __snake_case = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) __snake_case = self.vqvae.quantize.get_codebook_entry(a_ , shape=a_ ) __snake_case = self.vqvae.decode(a_ , force_not_quantize=a_ ).sample __snake_case = (image / 2 + 0.5).clamp(0 , 1 ) __snake_case = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __snake_case = self.numpy_to_pil(a_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a_ ) def A ( self : Dict , a_ : torch.FloatTensor , a_ : float ): """simple docstring""" __snake_case , __snake_case = torch.sort(a_ , 1 , descending=a_ ) __snake_case = torch.exp(a_ ) __snake_case = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out __snake_case = torch.full_like(keep_mask[:, 0:1, :] , a_ ) __snake_case = torch.cat((all_true, keep_mask) , dim=1 ) __snake_case = keep_mask[:, :-1, :] __snake_case = keep_mask.gather(1 , indices.argsort(1 ) ) __snake_case = log_p_x_0.clone() __snake_case = -torch.inf # -inf = log(0) return rv
680
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a : Any = 6_378_137.0 a : List[Any] = 6_356_752.314_245 a : Dict = 6_378_137 def __UpperCAmelCase ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> float: __snake_case = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude __snake_case = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) __snake_case = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius __snake_case = haversine_distance(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values __snake_case = (b_lata + b_lata) / 2 __snake_case = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) __snake_case = (sin(_UpperCAmelCase ) ** 2) * (cos(_UpperCAmelCase ) ** 2) __snake_case = cos(sigma / 2 ) ** 2 __snake_case = (sigma - sin(_UpperCAmelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) __snake_case = (cos(_UpperCAmelCase ) ** 2) * (sin(_UpperCAmelCase ) ** 2) __snake_case = sin(sigma / 2 ) ** 2 __snake_case = (sigma + sin(_UpperCAmelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
680
1
import tensorflow as tf from ...tf_utils import shape_list class lowerCamelCase (tf.keras.layers.Layer ): """simple docstring""" def __init__( self : str, _UpperCAmelCase : List[Any], _UpperCAmelCase : List[str], _UpperCAmelCase : Optional[int], _UpperCAmelCase : List[Any], _UpperCAmelCase : List[Any]=1, _UpperCAmelCase : List[str]=False, **_UpperCAmelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" super().__init__(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = vocab_size SCREAMING_SNAKE_CASE__ : Dict = d_embed SCREAMING_SNAKE_CASE__ : Optional[int] = d_proj SCREAMING_SNAKE_CASE__ : List[Any] = cutoffs + [vocab_size] SCREAMING_SNAKE_CASE__ : int = [0] + self.cutoffs SCREAMING_SNAKE_CASE__ : Tuple = div_val SCREAMING_SNAKE_CASE__ : List[Any] = self.cutoffs[0] SCREAMING_SNAKE_CASE__ : int = len(self.cutoffs ) - 1 SCREAMING_SNAKE_CASE__ : Optional[Any] = self.shortlist_size + self.n_clusters SCREAMING_SNAKE_CASE__ : str = keep_order SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : List[Any] = [] def A_ ( self : Dict, _UpperCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" if self.n_clusters > 0: SCREAMING_SNAKE_CASE__ : str = self.add_weight( shape=(self.n_clusters, self.d_embed), initializer="zeros", trainable=_UpperCAmelCase, name="cluster_weight" ) SCREAMING_SNAKE_CASE__ : int = self.add_weight( shape=(self.n_clusters,), initializer="zeros", trainable=_UpperCAmelCase, name="cluster_bias" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: SCREAMING_SNAKE_CASE__ : List[str] = self.add_weight( shape=(self.d_embed, self.d_proj), initializer="zeros", trainable=_UpperCAmelCase, name=F'''out_projs_._{i}''', ) self.out_projs.append(_UpperCAmelCase ) else: self.out_projs.append(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = self.add_weight( shape=(self.vocab_size, self.d_embed), initializer="zeros", trainable=_UpperCAmelCase, name=F'''out_layers_._{i}_._weight''', ) SCREAMING_SNAKE_CASE__ : List[Any] = self.add_weight( shape=(self.vocab_size,), initializer="zeros", trainable=_UpperCAmelCase, name=F'''out_layers_._{i}_._bias''', ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : int = self.cutoff_ends[i], self.cutoff_ends[i + 1] SCREAMING_SNAKE_CASE__ : Dict = self.d_embed // (self.div_val**i) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.add_weight( shape=(d_emb_i, self.d_proj), initializer="zeros", trainable=_UpperCAmelCase, name=F'''out_projs_._{i}''' ) self.out_projs.append(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.add_weight( shape=(r_idx - l_idx, d_emb_i), initializer="zeros", trainable=_UpperCAmelCase, name=F'''out_layers_._{i}_._weight''', ) SCREAMING_SNAKE_CASE__ : Any = self.add_weight( shape=(r_idx - l_idx,), initializer="zeros", trainable=_UpperCAmelCase, name=F'''out_layers_._{i}_._bias''', ) self.out_layers.append((weight, bias) ) super().build(_UpperCAmelCase ) @staticmethod def A_ ( _UpperCAmelCase : int, _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : Any, _UpperCAmelCase : Optional[Any]=None ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = x if proj is not None: SCREAMING_SNAKE_CASE__ : Optional[int] = tf.einsum("ibd,ed->ibe", _UpperCAmelCase, _UpperCAmelCase ) return tf.einsum("ibd,nd->ibn", _UpperCAmelCase, _UpperCAmelCase ) + b @staticmethod def A_ ( _UpperCAmelCase : Dict, _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = shape_list(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = tf.range(lp_size[0], dtype=target.dtype ) SCREAMING_SNAKE_CASE__ : List[Any] = tf.stack([r, target], 1 ) return tf.gather_nd(_UpperCAmelCase, _UpperCAmelCase ) def A_ ( self : str, _UpperCAmelCase : Dict, _UpperCAmelCase : Any, _UpperCAmelCase : str=True, _UpperCAmelCase : Optional[int]=False ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = 0 if self.n_clusters == 0: SCREAMING_SNAKE_CASE__ : Dict = self._logit(_UpperCAmelCase, self.out_layers[0][0], self.out_layers[0][1], self.out_projs[0] ) if target is not None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=_UpperCAmelCase, logits=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : str = tf.nn.log_softmax(_UpperCAmelCase, axis=-1 ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] = shape_list(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = [] SCREAMING_SNAKE_CASE__ : Any = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: SCREAMING_SNAKE_CASE__ : int = (target >= l_idx) & (target < r_idx) SCREAMING_SNAKE_CASE__ : List[Any] = tf.where(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = tf.boolean_mask(_UpperCAmelCase, _UpperCAmelCase ) - l_idx if self.div_val == 1: SCREAMING_SNAKE_CASE__ : Dict = self.out_layers[0][0][l_idx:r_idx] SCREAMING_SNAKE_CASE__ : Optional[int] = self.out_layers[0][1][l_idx:r_idx] else: SCREAMING_SNAKE_CASE__ : Optional[int] = self.out_layers[i][0] SCREAMING_SNAKE_CASE__ : Dict = self.out_layers[i][1] if i == 0: SCREAMING_SNAKE_CASE__ : Union[str, Any] = tf.concat([cur_W, self.cluster_weight], 0 ) SCREAMING_SNAKE_CASE__ : str = tf.concat([cur_b, self.cluster_bias], 0 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self._logit(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, self.out_projs[0] ) SCREAMING_SNAKE_CASE__ : str = tf.nn.log_softmax(_UpperCAmelCase ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: SCREAMING_SNAKE_CASE__ : Tuple = tf.boolean_mask(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = self._gather_logprob(_UpperCAmelCase, _UpperCAmelCase ) else: SCREAMING_SNAKE_CASE__ : int = self._logit(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, self.out_projs[i] ) SCREAMING_SNAKE_CASE__ : Tuple = tf.nn.log_softmax(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = self.cutoffs[0] + i - 1 # No probability for the head cluster SCREAMING_SNAKE_CASE__ : Optional[int] = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(_UpperCAmelCase ) if target is not None: SCREAMING_SNAKE_CASE__ : List[Any] = tf.boolean_mask(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = tf.boolean_mask(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = self._gather_logprob(_UpperCAmelCase, _UpperCAmelCase ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(_UpperCAmelCase, -cur_logprob, shape_list(_UpperCAmelCase ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.concat(_UpperCAmelCase, axis=-1 ) if target is not None: if return_mean: SCREAMING_SNAKE_CASE__ : List[str] = tf.reduce_mean(_UpperCAmelCase ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(_UpperCAmelCase ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(_UpperCAmelCase, name=self.name, aggregation="mean" if return_mean else "" ) return out
663
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _lowerCamelCase : List[str] = 2_0_0 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _lowerCamelCase : Any = 5_0 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _lowerCamelCase : str = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_0_0_0)) def _a ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ) -> tuple[str, float]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = len([g for position, g in enumerate(SCREAMING_SNAKE_CASE__ ) if g == main_target[position]] ) return (item, float(SCREAMING_SNAKE_CASE__ )) def _a ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ) -> tuple[str, str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = random.randint(0 , len(SCREAMING_SNAKE_CASE__ ) - 1 ) SCREAMING_SNAKE_CASE__ : Tuple = parent_a[:random_slice] + parent_a[random_slice:] SCREAMING_SNAKE_CASE__ : str = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _a ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : list[str] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = list(SCREAMING_SNAKE_CASE__ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: SCREAMING_SNAKE_CASE__ : Tuple = random.choice(SCREAMING_SNAKE_CASE__ ) return "".join(SCREAMING_SNAKE_CASE__ ) def _a ( SCREAMING_SNAKE_CASE__ : tuple[str, float] , SCREAMING_SNAKE_CASE__ : list[tuple[str, float]] , SCREAMING_SNAKE_CASE__ : list[str] , ) -> list[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = [] # Generate more children proportionally to the fitness score. SCREAMING_SNAKE_CASE__ : List[str] = int(parent_a[1] * 1_00 ) + 1 SCREAMING_SNAKE_CASE__ : Tuple = 10 if child_n >= 10 else child_n for _ in range(SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = population_score[random.randint(0 , SCREAMING_SNAKE_CASE__ )][0] SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Optional[Any] = crossover(parent_a[0] , SCREAMING_SNAKE_CASE__ ) # Append new string to the population list. pop.append(mutate(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) pop.append(mutate(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) return pop def _a ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : list[str] , SCREAMING_SNAKE_CASE__ : bool = True ) -> tuple[int, int, str]: '''simple docstring''' if N_POPULATION < N_SELECTED: SCREAMING_SNAKE_CASE__ : str = f'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(SCREAMING_SNAKE_CASE__ ) # Verify that the target contains no genes besides the ones inside genes variable. SCREAMING_SNAKE_CASE__ : Optional[int] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: SCREAMING_SNAKE_CASE__ : Dict = f'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(SCREAMING_SNAKE_CASE__ ) # Generate random starting population. SCREAMING_SNAKE_CASE__ : List[Any] = [] for _ in range(SCREAMING_SNAKE_CASE__ ): population.append("".join([random.choice(SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) )] ) ) # Just some logs to know what the algorithms is doing. SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[Any] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(SCREAMING_SNAKE_CASE__ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. SCREAMING_SNAKE_CASE__ : int = [evaluate(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for item in population] # Check if there is a matching evolution. SCREAMING_SNAKE_CASE__ : List[str] = sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : x[1] , reverse=SCREAMING_SNAKE_CASE__ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f'''\nGeneration: {generation}''' f'''\nTotal Population:{total_population}''' f'''\nBest score: {population_score[0][1]}''' f'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. SCREAMING_SNAKE_CASE__ : str = population[: int(N_POPULATION / 3 )] population.clear() population.extend(SCREAMING_SNAKE_CASE__ ) # Normalize population score to be between 0 and 1. SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ (item, score / len(SCREAMING_SNAKE_CASE__ )) for item, score in population_score ] # This is selection for i in range(SCREAMING_SNAKE_CASE__ ): population.extend(select(population_score[int(SCREAMING_SNAKE_CASE__ )] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(SCREAMING_SNAKE_CASE__ ) > N_POPULATION: break if __name__ == "__main__": _lowerCamelCase : Dict = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) _lowerCamelCase : Tuple = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[str] = basic(target_str, genes_list) print( f"\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}" )
663
1
"""simple docstring""" import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = os.path.join(args.tf_model_dir , "parameters.json" ) UpperCAmelCase_ = json.loads(open(lowerCAmelCase__ ).read() ) if not params: raise ValueError( f"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith(".pt" ): UpperCAmelCase_ = args.output + ".pt" UpperCAmelCase_ = OrderedDict() with tf.device("/CPU:0" ): UpperCAmelCase_ = tf.train.load_checkpoint(args.tf_model_dir ) UpperCAmelCase_ = reader.get_variable_to_shape_map() for key_name in shapes.keys(): UpperCAmelCase_ = reader.get_tensor(lowerCAmelCase__ ).astype(np.floataa ) if key_name.endswith("/adam_m" ) or key_name.endswith("/adam_v" ): continue if key_name.startswith("pasts/" ): if key_name.startswith("pasts/mlp" ): UpperCAmelCase_ = int(key_name[9] ) elif key_name.startswith("pasts/out" ): UpperCAmelCase_ = 8 UpperCAmelCase_ = "model.sqout.%d.weight" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time UpperCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ ) elif key_name.startswith("model/moe" ): UpperCAmelCase_ = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/switch_gating/kernel" ): UpperCAmelCase_ = "model.blocks.%d.feed_forward.mlp.router.classifier.weight" % player UpperCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ ) elif key_name.endswith("/softmlp/kernel" ): UpperCAmelCase_ = "model.blocks.%d.feed_forward.soft_bypass_mlp.weight" % player UpperCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ ) elif key_name.endswith("/wo/kernel" ) or key_name.endswith("/wi/kernel" ): UpperCAmelCase_ = key_name[-9:-7] for i in range(16 ): UpperCAmelCase_ = "model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight" % (player, i, nlayer) UpperCAmelCase_ = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ ) elif key_name.startswith("model/mlp" ): UpperCAmelCase_ = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/p1/kernel" ): UpperCAmelCase_ = "model.blocks.%d.feed_forward.mlp.wi.weight" % player UpperCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ ) elif key_name.endswith("/p1/bias" ): UpperCAmelCase_ = "model.blocks.%d.feed_forward.mlp.wi.bias" % player UpperCAmelCase_ = vnp.copy() # same because it is one dimensional UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ ) elif key_name.endswith("/p2/kernel" ): UpperCAmelCase_ = "model.blocks.%d.feed_forward.mlp.wo.weight" % player UpperCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ ) elif key_name.endswith("/p2/bias" ): UpperCAmelCase_ = "model.blocks.%d.feed_forward.mlp.wo.bias" % player UpperCAmelCase_ = vnp.copy() # same because it is one dimensional UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ ) elif key_name.startswith("model/ln" ): UpperCAmelCase_ = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): UpperCAmelCase_ = "model.blocks.%d.feed_forward.norm.bias" % player UpperCAmelCase_ = vnp.copy() # same because it is one dimensional UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ ) elif key_name.endswith("/g" ): UpperCAmelCase_ = "model.blocks.%d.feed_forward.norm.weight" % player UpperCAmelCase_ = vnp.copy() # same because it is one dimensional UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ ) elif key_name.startswith("model/att" ): UpperCAmelCase_ = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/qkv/kernel" ): UpperCAmelCase_ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum UpperCAmelCase_ = state[:, 0, :, :] UpperCAmelCase_ = state[:, 1, :, :] UpperCAmelCase_ = state[:, 2, :, :] UpperCAmelCase_ = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ = "model.blocks.%d.self_attn.self_attn.q_proj.weight" % player UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ ) UpperCAmelCase_ = "model.blocks.%d.self_attn.self_attn.k_proj.weight" % player UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ ) UpperCAmelCase_ = "model.blocks.%d.self_attn.self_attn.v_proj.weight" % player UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ ) elif key_name.endswith("/o/kernel" ): UpperCAmelCase_ = "model.blocks.%d.self_attn.self_attn.out_proj.weight" % player UpperCAmelCase_ = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ ) elif key_name.startswith("model/an" ): UpperCAmelCase_ = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): UpperCAmelCase_ = "model.blocks.%d.self_attn.norm.bias" % player UpperCAmelCase_ = vnp.copy() # same because it is one dimensional UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ ) elif key_name.endswith("/g" ): UpperCAmelCase_ = "model.blocks.%d.self_attn.norm.weight" % player UpperCAmelCase_ = vnp.copy() # same because it is one dimensional UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ ) elif ( key_name.startswith("model/wte" ) or key_name.startswith("model/wpe" ) or key_name.startswith("model/ete" ) ): UpperCAmelCase_ = {"wte": "embed_tokens", "wpe": "position_embeddings", "ete": "extra_position_embeddings"}[ key_name[-3:] ] UpperCAmelCase_ = "model.%s.weight" % nlayer UpperCAmelCase_ = vnp.copy() # same in embedded UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ ) if key_name.startswith("model/wte" ): UpperCAmelCase_ = "lm_head.weight" UpperCAmelCase_ = vnp.copy() # same in embedded UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ ) elif key_name.startswith("model/wob" ): UpperCAmelCase_ = "final_logits_bias" UpperCAmelCase_ = vnp.copy() # same in embedded UpperCAmelCase_ = state.reshape((1, -1) ) UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ ) elif key_name == "model/dense/kernel": UpperCAmelCase_ = "model.last_project.weight" UpperCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ ) elif key_name == "model/dense_1/bias": UpperCAmelCase_ = "model.last_project.bias" UpperCAmelCase_ = vnp.copy() # same because it is one dimensional UpperCAmelCase_ = torch.tensor(lowerCAmelCase__ ) torch.save(lowerCAmelCase__ , args.output ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser( description="""model converter.""", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("""--tf_model_dir""", metavar="""PATH""", type=str, required=True, help="""import model""") parser.add_argument("""--output""", metavar="""PATH""", type=str, required=True, help="""output model""") lowerCamelCase = parser.parse_args() convert_tf_gptsan_to_pt(args)
14
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(lowerCAmelCase__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix UpperCAmelCase_ = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creates a copy of the matrix with swapped positions of the elements UpperCAmelCase_ = [[0.0, 0.0], [0.0, 0.0]] UpperCAmelCase_ , UpperCAmelCase_ = matrix[1][1], matrix[0][0] UpperCAmelCase_ , UpperCAmelCase_ = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(lowerCAmelCase__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(lowerCAmelCase__ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule UpperCAmelCase_ = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creating cofactor matrix UpperCAmelCase_ = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] UpperCAmelCase_ = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) UpperCAmelCase_ = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) UpperCAmelCase_ = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) UpperCAmelCase_ = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) UpperCAmelCase_ = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) UpperCAmelCase_ = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) UpperCAmelCase_ = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) UpperCAmelCase_ = array(lowerCAmelCase__ ) for i in range(3 ): for j in range(3 ): UpperCAmelCase_ = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix UpperCAmelCase_ = array(lowerCAmelCase__ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(lowerCAmelCase__ ) # Calculate the inverse of the matrix return [[float(d(lowerCAmelCase__ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
14
1
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _a ( _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case , __snake_case : Dict = emb.weight.shape __snake_case : Optional[int] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) __snake_case : Union[str, Any] = emb.weight.data return lin_layer def _a ( _lowerCamelCase , _lowerCamelCase=None ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = {} for old_key in state_dict.keys(): __snake_case : Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: __snake_case : Tuple = key.replace("""moe_layer.experts.0""" , F'''ffn.experts.expert_{expert_idx}''' ) else: __snake_case : Optional[int] = key.replace("""moe_layer.experts.""" , """ffn.experts.expert_""" ) if "gate" in key: __snake_case : Dict = key.replace(""".moe_layer.gate.wg""" , """.ffn.router.classifier""" ) if "fc2" and "experts" not in key: __snake_case : Union[str, Any] = key.replace(""".fc2.""" , """.ffn.fc2.""" ) if "fc1" and "experts" not in key: __snake_case : Optional[int] = key.replace(""".fc1.""" , """.ffn.fc1.""" ) if ".encoder_attn." in key: __snake_case : Tuple = key.replace(""".encoder_attn.""" , """.cross_attention.""" ) if "encoder_attn_layer_norm" in key: __snake_case : Union[str, Any] = key.replace("""encoder_attn_layer_norm""" , """cross_attention_layer_norm""" ) if "final_layer_norm" in key: __snake_case : str = key.replace("""final_layer_norm""" , """ff_layer_norm""" ) __snake_case : str = state_dict[old_key] return new_dict def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = WEIGHTS_NAME ) -> Dict: """simple docstring""" __snake_case : Optional[int] = [] __snake_case : Dict = 0 os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) for expert in range(_lowerCamelCase ): __snake_case : Tuple = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(_lowerCamelCase ): __snake_case : Dict = torch.load(_lowerCamelCase )["""model"""] remove_ignore_keys_(_lowerCamelCase ) __snake_case : Optional[Any] = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) __snake_case : List[Any] = os.path.join( _lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) torch.save(_lowerCamelCase , _lowerCamelCase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_lowerCamelCase )[0]].dtype ) # Add the last block __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) ) __snake_case : str = torch.load(switch_checkpoint_path + """-shared.pt""" )["""model"""] remove_ignore_keys_(_lowerCamelCase ) __snake_case : Optional[Any] = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) __snake_case : List[str] = shared_weights["""decoder.embed_tokens.weight"""] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_lowerCamelCase ) == 1: __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) torch.save(_lowerCamelCase , _lowerCamelCase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_lowerCamelCase , _lowerCamelCase ) # Otherwise, let's build the index __snake_case : Tuple = {} for idx, shard in enumerate(_lowerCamelCase ): __snake_case : Any = weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-{len(_lowerCamelCase ):05d}.bin''' ) __snake_case : int = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) for key in shard: __snake_case : str = shard_file # Add the metadata __snake_case : Optional[Any] = {"""total_size""": total_size} __snake_case : int = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(_lowerCamelCase , _lowerCamelCase ) , """w""" , encoding="""utf-8""" ) as f: __snake_case : Union[str, Any] = json.dumps(_lowerCamelCase , indent=2 , sort_keys=_lowerCamelCase ) + """\n""" f.write(_lowerCamelCase ) return metadata, index if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) __UpperCamelCase = parser.parse_args() __UpperCamelCase , __UpperCamelCase = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) __UpperCamelCase = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) __UpperCamelCase = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
26
'''simple docstring''' def _a ( _lowerCamelCase = 100 ) -> int: """simple docstring""" __snake_case : Any = n * (n + 1) * (2 * n + 1) / 6 __snake_case : List[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f"""{solution() = }""")
26
1
import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class __magic_name__ : '''simple docstring''' def __init__( self : int , lowerCamelCase__ : Dict , lowerCamelCase__ : str=3 , lowerCamelCase__ : List[str]=7 , lowerCamelCase__ : str=True , lowerCamelCase__ : int=True , lowerCamelCase__ : Optional[Any]=False , lowerCamelCase__ : Optional[Any]=True , lowerCamelCase__ : Optional[int]=99 , lowerCamelCase__ : Any=32 , lowerCamelCase__ : str=5 , lowerCamelCase__ : List[Any]=4 , lowerCamelCase__ : List[Any]=37 , lowerCamelCase__ : List[str]="gelu" , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : List[str]=0.1 , lowerCamelCase__ : str=512 , lowerCamelCase__ : str=16 , lowerCamelCase__ : Dict=2 , lowerCamelCase__ : Any=0.02 , lowerCamelCase__ : Dict=3 , lowerCamelCase__ : str=4 , lowerCamelCase__ : str=None , ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : int = parent UpperCamelCase__ : Optional[int] = batch_size UpperCamelCase__ : List[Any] = seq_length UpperCamelCase__ : str = is_training UpperCamelCase__ : List[Any] = use_input_mask UpperCamelCase__ : str = use_token_type_ids UpperCamelCase__ : Any = use_labels UpperCamelCase__ : str = vocab_size UpperCamelCase__ : Optional[Any] = hidden_size UpperCamelCase__ : Dict = num_hidden_layers UpperCamelCase__ : int = num_attention_heads UpperCamelCase__ : Union[str, Any] = intermediate_size UpperCamelCase__ : Any = hidden_act UpperCamelCase__ : Union[str, Any] = hidden_dropout_prob UpperCamelCase__ : str = attention_probs_dropout_prob UpperCamelCase__ : Optional[int] = max_position_embeddings UpperCamelCase__ : Optional[int] = type_vocab_size UpperCamelCase__ : List[str] = type_sequence_label_size UpperCamelCase__ : List[str] = initializer_range UpperCamelCase__ : Any = num_labels UpperCamelCase__ : Tuple = num_choices UpperCamelCase__ : Dict = scope def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ : List[str] = None if self.use_input_mask: UpperCamelCase__ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ : Any = None UpperCamelCase__ : Any = None UpperCamelCase__ : Union[str, Any] = None UpperCamelCase__ : List[str] = None if self.use_labels: UpperCamelCase__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=__UpperCamelCase , ) def UpperCAmelCase__ ( self : Dict , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : int , lowerCamelCase__ : Tuple , lowerCamelCase__ : Dict , lowerCamelCase__ : Dict , lowerCamelCase__ : Tuple ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : Tuple = FalconModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase__ : List[Any] = model(__UpperCamelCase , attention_mask=__UpperCamelCase ) UpperCamelCase__ : Union[str, Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : List[str] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Dict , lowerCamelCase__ : List[Any] , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[Any] , ) -> List[str]: '''simple docstring''' UpperCamelCase__ : str = True UpperCamelCase__ : Any = FalconModel(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase__ : List[Any] = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , ) UpperCamelCase__ : str = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , ) UpperCamelCase__ : Dict = model(__UpperCamelCase , attention_mask=__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Any , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : int , ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : int = FalconForCausalLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase__ : List[str] = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : int , lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Union[str, Any] , ) -> Dict: '''simple docstring''' UpperCamelCase__ : Tuple = True UpperCamelCase__ : Any = True UpperCamelCase__ : Dict = FalconForCausalLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() # first forward pass UpperCamelCase__ : Any = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , use_cache=__UpperCamelCase , ) UpperCamelCase__ : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase__ : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase__ : int = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase__ : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase__ : Dict = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , output_hidden_states=__UpperCamelCase , )['''hidden_states'''][0] UpperCamelCase__ : Union[str, Any] = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase , output_hidden_states=__UpperCamelCase , )['''hidden_states'''][0] # select random slice UpperCamelCase__ : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ : Optional[int] = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase__ : List[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ) ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : Optional[int] = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) : List[Any] = config_and_inputs UpperCamelCase__ : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __magic_name__ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase): '''simple docstring''' A: Tuple = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) A: Dict = (FalconForCausalLM,) if is_torch_available() else () A: int = ( { "feature-extraction": FalconModel, "text-classification": FalconForSequenceClassification, "text-generation": FalconForCausalLM, "question-answering": FalconForQuestionAnswering, "token-classification": FalconForTokenClassification, "zero-shot": FalconForSequenceClassification, } if is_torch_available() else {} ) A: Union[str, Any] = False A: Union[str, Any] = False def UpperCAmelCase__ ( self : Optional[Any] ) -> int: '''simple docstring''' UpperCamelCase__ : Optional[int] = FalconModelTester(self ) UpperCamelCase__ : str = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 ) def UpperCAmelCase__ ( self : List[Any] ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Tuple ) -> Tuple: '''simple docstring''' UpperCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def UpperCAmelCase__ ( self : Tuple ) -> int: '''simple docstring''' UpperCamelCase__ , *UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: UpperCamelCase__ : Tuple = alibi self.model_tester.create_and_check_model(__UpperCamelCase , *__UpperCamelCase ) def UpperCAmelCase__ ( self : str ) -> Tuple: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ : Dict = 3 UpperCamelCase__ : Dict = input_dict['''input_ids'''] UpperCamelCase__ : Union[str, Any] = input_ids.ne(1 ).to(__UpperCamelCase ) UpperCamelCase__ : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase__ : Union[str, Any] = FalconForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase__ : Dict = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : Any ) -> List[str]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ : int = 3 UpperCamelCase__ : Tuple = '''single_label_classification''' UpperCamelCase__ : str = input_dict['''input_ids'''] UpperCamelCase__ : List[str] = input_ids.ne(1 ).to(__UpperCamelCase ) UpperCamelCase__ : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase__ : List[Any] = FalconForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase__ : Union[str, Any] = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : str ) -> List[Any]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ : int = input_dict['''input_ids'''] UpperCamelCase__ : str = FalconForCausalLM(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase__ : str = model(__UpperCamelCase , use_cache=__UpperCamelCase ) UpperCamelCase__ : Optional[Any] = input_ids.shape[0] UpperCamelCase__ : List[str] = model._convert_to_rw_cache(result.past_key_values ) UpperCamelCase__ : Optional[int] = model._convert_cache_to_standard_format(__UpperCamelCase , __UpperCamelCase ) for layer in range(len(__UpperCamelCase ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ : str = 3 UpperCamelCase__ : Dict = '''multi_label_classification''' UpperCamelCase__ : Union[str, Any] = input_dict['''input_ids'''] UpperCamelCase__ : Optional[Any] = input_ids.ne(1 ).to(__UpperCamelCase ) UpperCamelCase__ : int = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCamelCase__ : Tuple = FalconForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase__ : int = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : Dict ) -> Any: '''simple docstring''' for model_class in self.all_generative_model_classes: UpperCamelCase__ , UpperCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(__UpperCamelCase , '''use_cache''' ): return UpperCamelCase__ : Any = model_class(__UpperCamelCase ).to(__UpperCamelCase ) if "use_cache" not in inputs: UpperCamelCase__ : Any = True UpperCamelCase__ : List[Any] = model(**__UpperCamelCase ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return UpperCamelCase__ : int = ( getattr(__UpperCamelCase , '''decoder_layers''' , __UpperCamelCase ) or getattr(__UpperCamelCase , '''num_decoder_layers''' , __UpperCamelCase ) or config.num_hidden_layers ) UpperCamelCase__ : List[str] = getattr(__UpperCamelCase , '''num_kv_heads''' , config.num_attention_heads ) UpperCamelCase__ : Dict = getattr(__UpperCamelCase , '''d_model''' , config.hidden_size ) UpperCamelCase__ : Union[str, Any] = embed_dim // num_attention_heads UpperCamelCase__ : List[str] = outputs['''past_key_values'''] self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) UpperCamelCase__ , UpperCamelCase__ : List[Any] = inputs['''input_ids'''].shape for i in range(__UpperCamelCase ): if config.new_decoder_architecture: UpperCamelCase__ : List[str] = config.num_attention_heads elif config.multi_query: UpperCamelCase__ : Tuple = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class __magic_name__ ( unittest.TestCase): '''simple docstring''' @slow def UpperCAmelCase__ ( self : Optional[int] ) -> Any: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) UpperCamelCase__ : Optional[Any] = FalconForCausalLM.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) model.eval() model.to(__UpperCamelCase ) UpperCamelCase__ : Optional[int] = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__UpperCamelCase ) UpperCamelCase__ : int = ( '''My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.''' ) UpperCamelCase__ : int = model.generate(**__UpperCamelCase , do_sample=__UpperCamelCase , max_new_tokens=19 ) UpperCamelCase__ : Dict = tokenizer.batch_decode(__UpperCamelCase )[0] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) @slow def UpperCAmelCase__ ( self : Any ) -> Any: '''simple docstring''' for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: UpperCamelCase__ : Optional[Any] = AutoTokenizer.from_pretrained(__UpperCamelCase ) UpperCamelCase__ : Any = FalconForCausalLM.from_pretrained(__UpperCamelCase ) model.eval() model.to(__UpperCamelCase ) UpperCamelCase__ : str = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__UpperCamelCase ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**__UpperCamelCase , do_sample=__UpperCamelCase , max_new_tokens=4 ) model.generate(**__UpperCamelCase , do_sample=__UpperCamelCase , max_new_tokens=4 ) model.generate(**__UpperCamelCase , num_beams=2 , max_new_tokens=4 ) @slow def UpperCAmelCase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: UpperCamelCase__ : Any = AutoTokenizer.from_pretrained(__UpperCamelCase ) UpperCamelCase__ : List[str] = FalconForCausalLM.from_pretrained(__UpperCamelCase ) model.eval() model.to(device=__UpperCamelCase ) UpperCamelCase__ : int = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__UpperCamelCase ) # Test results are the same with and without cache UpperCamelCase__ : int = model.generate(**__UpperCamelCase , do_sample=__UpperCamelCase , max_new_tokens=20 , use_cache=__UpperCamelCase ) UpperCamelCase__ : List[Any] = model.generate(**__UpperCamelCase , do_sample=__UpperCamelCase , max_new_tokens=20 , use_cache=__UpperCamelCase ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
715
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __magic_name__ ( nn.Module): def __init__( self : Dict ) -> str: '''simple docstring''' super().__init__() UpperCamelCase__ : int = nn.Linear(3 , 4 ) UpperCamelCase__ : str = nn.BatchNormad(4 ) UpperCamelCase__ : List[str] = nn.Linear(4 , 5 ) def UpperCAmelCase__ ( self : int , lowerCamelCase__ : Dict ) -> Tuple: '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(lowerCamelCase__ ) ) ) class __magic_name__ ( __lowerCAmelCase): def UpperCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : Any , *lowerCamelCase__ : int , **lowerCamelCase__ : List[str] ) -> Any: '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class __magic_name__ ( __lowerCAmelCase): def UpperCAmelCase__ ( self : Any , lowerCamelCase__ : Any , lowerCamelCase__ : Any ) -> Any: '''simple docstring''' return output + 1 class __magic_name__ ( unittest.TestCase): def UpperCAmelCase__ ( self : Tuple ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Tuple = ModelForTest() UpperCamelCase__ : Union[str, Any] = ModelHook() add_hook_to_module(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(test_model._hf_hook , lowerCamelCase__ ) self.assertTrue(hasattr(lowerCamelCase__ , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(lowerCamelCase__ ) self.assertFalse(hasattr(lowerCamelCase__ , '''_hf_hook''' ) ) self.assertFalse(hasattr(lowerCamelCase__ , '''_old_forward''' ) ) def UpperCAmelCase__ ( self : Dict ) -> str: '''simple docstring''' UpperCamelCase__ : Dict = ModelForTest() UpperCamelCase__ : List[str] = ModelHook() add_hook_to_module(lowerCamelCase__ , lowerCamelCase__ ) add_hook_to_module(lowerCamelCase__ , lowerCamelCase__ , append=lowerCamelCase__ ) self.assertEqual(isinstance(test_model._hf_hook , lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(lowerCamelCase__ , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(lowerCamelCase__ ) self.assertFalse(hasattr(lowerCamelCase__ , '''_hf_hook''' ) ) self.assertFalse(hasattr(lowerCamelCase__ , '''_old_forward''' ) ) def UpperCAmelCase__ ( self : List[str] ) -> int: '''simple docstring''' UpperCamelCase__ : Optional[Any] = ModelForTest() UpperCamelCase__ : List[str] = torch.randn(2 , 3 ) UpperCamelCase__ : int = test_model(x + 1 ) UpperCamelCase__ : List[Any] = test_model(x + 2 ) UpperCamelCase__ : Optional[int] = PreForwardHook() add_hook_to_module(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : List[Any] = test_model(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain UpperCamelCase__ : Optional[Any] = PreForwardHook() add_hook_to_module(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : List[str] = test_model(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks UpperCamelCase__ : Tuple = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : Any = test_model(lowerCamelCase__ ) assert torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-5 ) def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ : Dict = ModelForTest() UpperCamelCase__ : str = torch.randn(2 , 3 ) UpperCamelCase__ : Any = test_model(lowerCamelCase__ ) UpperCamelCase__ : int = PostForwardHook() add_hook_to_module(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : Dict = test_model(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__ , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain UpperCamelCase__ : Dict = PostForwardHook() add_hook_to_module(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : int = test_model(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__ , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks UpperCamelCase__ : List[Any] = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : Tuple = test_model(lowerCamelCase__ ) assert torch.allclose(lowerCamelCase__ , output + 2 , atol=1E-5 ) def UpperCAmelCase__ ( self : List[Any] ) -> Dict: '''simple docstring''' UpperCamelCase__ : List[Any] = ModelForTest() UpperCamelCase__ : Tuple = torch.randn(2 , 3 ) UpperCamelCase__ : Tuple = test_model(lowerCamelCase__ ) UpperCamelCase__ : Union[str, Any] = PostForwardHook() add_hook_to_module(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : Any = test_model(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__ , output + 1 ) ) self.assertTrue(outputa.requires_grad ) UpperCamelCase__ : Optional[int] = True UpperCamelCase__ : Optional[int] = test_model(lowerCamelCase__ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def UpperCAmelCase__ ( self : Any ) -> Dict: '''simple docstring''' UpperCamelCase__ : int = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device UpperCamelCase__ : Tuple = torch.randn(2 , 3 ) UpperCamelCase__ : str = model(lowerCamelCase__ ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(lowerCamelCase__ , AlignDevicesHook(io_same_device=lowerCamelCase__ ) ) UpperCamelCase__ : Tuple = torch.randn(2 , 3 ).to(0 ) UpperCamelCase__ : Optional[int] = model(lowerCamelCase__ ) self.assertEqual(output.device , torch.device(0 ) ) def UpperCAmelCase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : Dict = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices UpperCamelCase__ : int = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True} add_hook_to_module(model.lineara , AlignDevicesHook(**lowerCamelCase__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**lowerCamelCase__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**lowerCamelCase__ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device UpperCamelCase__ : int = torch.device(hook_kwargs['''execution_device'''] ) self.assertEqual(model.batchnorm.running_mean.device , lowerCamelCase__ ) UpperCamelCase__ : Dict = torch.randn(2 , 3 ) UpperCamelCase__ : List[str] = model(lowerCamelCase__ ) self.assertEqual(output.device , lowerCamelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload UpperCamelCase__ : Optional[Any] = { '''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True, '''offload_buffers''': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**lowerCamelCase__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**lowerCamelCase__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**lowerCamelCase__ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) UpperCamelCase__ : List[Any] = torch.randn(2 , 3 ) UpperCamelCase__ : str = model(lowerCamelCase__ ) self.assertEqual(output.device , lowerCamelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def UpperCAmelCase__ ( self : str ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ : Optional[int] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices UpperCamelCase__ : Any = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook(lowerCamelCase__ , execution_device=lowerCamelCase__ , offload=lowerCamelCase__ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device UpperCamelCase__ : str = torch.device(lowerCamelCase__ ) self.assertEqual(model.batchnorm.running_mean.device , lowerCamelCase__ ) UpperCamelCase__ : int = torch.randn(2 , 3 ) UpperCamelCase__ : Tuple = model(lowerCamelCase__ ) self.assertEqual(output.device , lowerCamelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowerCamelCase__ ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook(lowerCamelCase__ , execution_device=lowerCamelCase__ , offload=lowerCamelCase__ , offload_buffers=lowerCamelCase__ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) UpperCamelCase__ : int = torch.randn(2 , 3 ) UpperCamelCase__ : str = model(lowerCamelCase__ ) self.assertEqual(output.device , lowerCamelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowerCamelCase__ ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def UpperCAmelCase__ ( self : int ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : List[str] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices UpperCamelCase__ : List[str] = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook( lowerCamelCase__ , execution_device=lowerCamelCase__ , offload=lowerCamelCase__ , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device UpperCamelCase__ : List[str] = torch.device(lowerCamelCase__ ) self.assertEqual(model.batchnorm.running_mean.device , lowerCamelCase__ ) UpperCamelCase__ : List[str] = torch.randn(2 , 3 ) UpperCamelCase__ : Any = model(lowerCamelCase__ ) self.assertEqual(output.device , lowerCamelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowerCamelCase__ ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook( lowerCamelCase__ , execution_device=lowerCamelCase__ , offload=lowerCamelCase__ , weights_map=model.state_dict() , offload_buffers=lowerCamelCase__ , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) UpperCamelCase__ : Union[str, Any] = torch.randn(2 , 3 ) UpperCamelCase__ : Optional[int] = model(lowerCamelCase__ ) self.assertEqual(output.device , lowerCamelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowerCamelCase__ ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
106
0
"""simple docstring""" import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('''.''') def UpperCAmelCase ( snake_case : Any ): _lowerCAmelCase:Dict = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ''' F'{test_file} instead.' ) _lowerCAmelCase:Union[str, Any] = components[-1] if not test_fn.endswith('''py''' ): raise ValueError(F'`test_file` should be a python file. Got {test_fn} instead.' ) if not test_fn.startswith('''test_modeling_''' ): raise ValueError( F'`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.' ) _lowerCAmelCase:int = components[:-1] + [test_fn.replace('''.py''' , '''''' )] _lowerCAmelCase:str = '''.'''.join(snake_case ) return test_module_path def UpperCAmelCase ( snake_case : Any ): _lowerCAmelCase:Union[str, Any] = get_module_path(snake_case ) _lowerCAmelCase:str = importlib.import_module(snake_case ) return test_module def UpperCAmelCase ( snake_case : List[str] ): _lowerCAmelCase:str = [] _lowerCAmelCase:List[Any] = get_test_module(snake_case ) for attr in dir(snake_case ): if attr.endswith('''ModelTester''' ): tester_classes.append(getattr(snake_case , snake_case ) ) # sort with class names return sorted(snake_case , key=lambda snake_case : x.__name__ ) def UpperCAmelCase ( snake_case : int ): _lowerCAmelCase:List[Any] = [] _lowerCAmelCase:Optional[Any] = get_test_module(snake_case ) for attr in dir(snake_case ): _lowerCAmelCase:List[Any] = getattr(snake_case , snake_case ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). _lowerCAmelCase:List[Any] = getattr(snake_case , '''all_model_classes''' , [] ) if len(snake_case ) > 0: test_classes.append(snake_case ) # sort with class names return sorted(snake_case , key=lambda snake_case : x.__name__ ) def UpperCAmelCase ( snake_case : Tuple ): _lowerCAmelCase:str = get_test_classes(snake_case ) _lowerCAmelCase:int = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(snake_case , key=lambda snake_case : x.__name__ ) def UpperCAmelCase ( snake_case : Any ): _lowerCAmelCase:Union[str, Any] = test_class() if hasattr(snake_case , '''setUp''' ): test.setUp() _lowerCAmelCase:List[Any] = None if hasattr(snake_case , '''model_tester''' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: _lowerCAmelCase:Union[str, Any] = test.model_tester.__class__ return model_tester def UpperCAmelCase ( snake_case : List[str] , snake_case : List[str] ): _lowerCAmelCase:List[Any] = get_test_classes(snake_case ) _lowerCAmelCase:Any = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(snake_case ) # sort with class names return sorted(snake_case , key=lambda snake_case : x.__name__ ) def UpperCAmelCase ( snake_case : List[Any] , snake_case : Optional[Any] ): _lowerCAmelCase:Optional[Any] = get_test_classes_for_model(snake_case , snake_case ) _lowerCAmelCase:Optional[int] = [] for test_class in test_classes: _lowerCAmelCase:str = get_model_tester_from_test_class(snake_case ) if tester_class is not None: tester_classes.append(snake_case ) # sort with class names return sorted(snake_case , key=lambda snake_case : x.__name__ ) def UpperCAmelCase ( snake_case : List[Any] ): _lowerCAmelCase:Union[str, Any] = get_test_classes(snake_case ) _lowerCAmelCase:Optional[int] = {test_class: get_model_tester_from_test_class(snake_case ) for test_class in test_classes} return test_tester_mapping def UpperCAmelCase ( snake_case : Any ): _lowerCAmelCase:str = get_model_classes(snake_case ) _lowerCAmelCase:str = { model_class: get_test_classes_for_model(snake_case , snake_case ) for model_class in model_classes } return model_test_mapping def UpperCAmelCase ( snake_case : int ): _lowerCAmelCase:List[Any] = get_model_classes(snake_case ) _lowerCAmelCase:Dict = { model_class: get_tester_classes_for_model(snake_case , snake_case ) for model_class in model_classes } return model_to_tester_mapping def UpperCAmelCase ( snake_case : Any ): if isinstance(snake_case , snake_case ): return o elif isinstance(snake_case , snake_case ): return o.__name__ elif isinstance(snake_case , (list, tuple) ): return [to_json(snake_case ) for x in o] elif isinstance(snake_case , snake_case ): return {to_json(snake_case ): to_json(snake_case ) for k, v in o.items()} else: return o
227
"""simple docstring""" import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets UpperCamelCase__ = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' UpperCamelCase__ = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' UpperCamelCase__ = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def __UpperCamelCase ( self : Dict) -> Tuple: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence'''), '''references''': datasets.Value('''string''' ,id='''sequence'''), }) ,codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] ,reference_urls=[ '''https://en.wikipedia.org/wiki/ROUGE_(metric)''', '''https://github.com/google-research/google-research/tree/master/rouge''', ] ,) def __UpperCamelCase ( self : Any ,a__ : List[str] ,a__ : Union[str, Any] ,a__ : Optional[int]=None ,a__ : int=True ,a__ : List[str]=False) -> Tuple: """simple docstring""" if rouge_types is None: _lowerCAmelCase:str = ['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum'''] _lowerCAmelCase:Dict = rouge_scorer.RougeScorer(rouge_types=a__ ,use_stemmer=a__) if use_aggregator: _lowerCAmelCase:Tuple = scoring.BootstrapAggregator() else: _lowerCAmelCase:Optional[int] = [] for ref, pred in zip(a__ ,a__): _lowerCAmelCase:Any = scorer.score(a__ ,a__) if use_aggregator: aggregator.add_scores(a__) else: scores.append(a__) if use_aggregator: _lowerCAmelCase:Optional[int] = aggregator.aggregate() else: _lowerCAmelCase:Optional[Any] = {} for key in scores[0]: _lowerCAmelCase:Tuple = [score[key] for score in scores] return result
227
1
"""simple docstring""" import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def lowercase (snake_case__ : int , snake_case__ : List[Any] , snake_case__ : Tuple ) -> int: '''simple docstring''' lowerCAmelCase = ("""dense.weight""", """attention.self.query""", """attention.self.key""", """attention.self.value""") lowerCAmelCase = ( ("""layer.""", """layer_"""), ("""word_embeddings.weight""", """word_embeddings"""), ("""position_embeddings.weight""", """position_embeddings"""), ("""token_type_embeddings.weight""", """token_type_embeddings"""), (""".""", """/"""), ("""LayerNorm/weight""", """LayerNorm/gamma"""), ("""LayerNorm/bias""", """LayerNorm/beta"""), ("""weight""", """kernel"""), ) if not os.path.isdir(snake_case__ ): os.makedirs(snake_case__ ) lowerCAmelCase = model.state_dict() def to_tf_var_name(snake_case__ : int ): for patt, repl in iter(snake_case__ ): lowerCAmelCase = name.replace(snake_case__ , snake_case__ ) return f'''bert/{name}''' def create_tf_var(snake_case__ : List[str] , snake_case__ : int , snake_case__ : List[Any] ): lowerCAmelCase = tf.dtypes.as_dtype(tensor.dtype ) lowerCAmelCase = tf.get_variable(dtype=snake_case__ , shape=tensor.shape , name=snake_case__ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(snake_case__ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: lowerCAmelCase = to_tf_var_name(snake_case__ ) lowerCAmelCase = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): lowerCAmelCase = torch_tensor.T lowerCAmelCase = create_tf_var(tensor=snake_case__ , name=snake_case__ , session=snake_case__ ) tf.keras.backend.set_value(snake_case__ , snake_case__ ) lowerCAmelCase = session.run(snake_case__ ) print(f'''Successfully created {tf_name}: {np.allclose(snake_case__ , snake_case__ )}''' ) lowerCAmelCase = tf.train.Saver(tf.trainable_variables() ) saver.save(snake_case__ , os.path.join(snake_case__ , model_name.replace("""-""" , """_""" ) + """.ckpt""" ) ) def lowercase (snake_case__ : Union[str, Any]=None ) -> List[str]: '''simple docstring''' lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--model_name""" , type=snake_case__ , required=snake_case__ , help="""model name e.g. bert-base-uncased""" ) parser.add_argument( """--cache_dir""" , type=snake_case__ , default=snake_case__ , required=snake_case__ , help="""Directory containing pytorch model""" ) parser.add_argument("""--pytorch_model_path""" , type=snake_case__ , required=snake_case__ , help="""/path/to/<pytorch-model-name>.bin""" ) parser.add_argument("""--tf_cache_dir""" , type=snake_case__ , required=snake_case__ , help="""Directory in which to save tensorflow model""" ) lowerCAmelCase = parser.parse_args(snake_case__ ) lowerCAmelCase = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=snake_case__ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
703
"""simple docstring""" from queue import PriorityQueue from typing import Any import numpy as np def lowercase (snake_case__ : dict , snake_case__ : str , snake_case__ : set , snake_case__ : set , snake_case__ : dict , snake_case__ : dict , snake_case__ : PriorityQueue , snake_case__ : dict , snake_case__ : float | int , ) -> float | int: '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue lowerCAmelCase = cst_fwd.get(snake_case__ , np.inf ) lowerCAmelCase = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) lowerCAmelCase = new_cost_f lowerCAmelCase = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: lowerCAmelCase = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowercase (snake_case__ : str , snake_case__ : str , snake_case__ : dict , snake_case__ : dict ) -> int: '''simple docstring''' lowerCAmelCase = -1 lowerCAmelCase = set() lowerCAmelCase = set() lowerCAmelCase = {source: 0} lowerCAmelCase = {destination: 0} lowerCAmelCase = {source: None} lowerCAmelCase = {destination: None} lowerCAmelCase = PriorityQueue() lowerCAmelCase = PriorityQueue() lowerCAmelCase = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): lowerCAmelCase , lowerCAmelCase = queue_forward.get() visited_forward.add(snake_case__ ) lowerCAmelCase , lowerCAmelCase = queue_backward.get() visited_backward.add(snake_case__ ) lowerCAmelCase = pass_and_relaxation( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) lowerCAmelCase = pass_and_relaxation( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: lowerCAmelCase = shortest_distance return shortest_path_distance a = { 'B': [['C', 1]], 'C': [['D', 1]], 'D': [['F', 1]], 'E': [['B', 1], ['G', 2]], 'F': [], 'G': [['F', 1]], } a = { 'B': [['E', 1]], 'C': [['B', 1]], 'D': [['C', 1]], 'F': [['D', 1], ['G', 1]], 'E': [[None, np.inf]], 'G': [['E', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
529
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _lowerCAmelCase = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = state_dict.pop(__lowercase ) _lowerCAmelCase : int = val def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: _lowerCAmelCase : List[Any] = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) _lowerCAmelCase : List[Any] = value else: _lowerCAmelCase : Optional[Any] = value return new_state_dict def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Tuple = '' if is_panoptic: _lowerCAmelCase : Union[str, Any] = 'conditional_detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _lowerCAmelCase : Optional[Any] = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) _lowerCAmelCase : str = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : Dict = in_proj_weight[:256, :] _lowerCAmelCase : int = in_proj_bias[:256] _lowerCAmelCase : Optional[Any] = in_proj_weight[256:512, :] _lowerCAmelCase : List[str] = in_proj_bias[256:512] _lowerCAmelCase : Tuple = in_proj_weight[-256:, :] _lowerCAmelCase : Any = in_proj_bias[-256:] def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCAmelCase : List[str] = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: _lowerCAmelCase : str = 'resnet101' if "dc5" in model_name: _lowerCAmelCase : int = True _lowerCAmelCase : List[Any] = 'panoptic' in model_name if is_panoptic: _lowerCAmelCase : Optional[Any] = 250 else: _lowerCAmelCase : Optional[Any] = 91 _lowerCAmelCase : List[str] = 'huggingface/label-files' _lowerCAmelCase : int = 'coco-detection-id2label.json' _lowerCAmelCase : List[str] = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='dataset' ) , 'r' ) ) _lowerCAmelCase : List[str] = {int(__lowercase ): v for k, v in idalabel.items()} _lowerCAmelCase : Union[str, Any] = idalabel _lowerCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} # load image processor _lowerCAmelCase : List[str] = 'coco_panoptic' if is_panoptic else 'coco_detection' _lowerCAmelCase : List[Any] = ConditionalDetrImageProcessor(format=__lowercase ) # prepare image _lowerCAmelCase : List[str] = prepare_img() _lowerCAmelCase : int = image_processor(images=__lowercase , return_tensors='pt' ) _lowerCAmelCase : Optional[Any] = encoding['pixel_values'] logger.info(f"""Converting model {model_name}...""" ) # load original model from torch hub _lowerCAmelCase : Optional[int] = torch.hub.load('DeppMeng/ConditionalDETR' , __lowercase , pretrained=__lowercase ).eval() _lowerCAmelCase : Optional[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: _lowerCAmelCase : List[str] = 'conditional_detr.' + src rename_key(__lowercase , __lowercase , __lowercase ) _lowerCAmelCase : int = rename_backbone_keys(__lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(__lowercase , is_panoptic=__lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _lowerCAmelCase : Any = 'conditional_detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('conditional_detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): _lowerCAmelCase : Any = state_dict.pop(__lowercase ) _lowerCAmelCase : List[str] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: _lowerCAmelCase : str = state_dict.pop(__lowercase ) _lowerCAmelCase : Optional[int] = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: _lowerCAmelCase : Tuple = state_dict.pop(__lowercase ) _lowerCAmelCase : Tuple = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): _lowerCAmelCase : Union[str, Any] = state_dict.pop(__lowercase ) _lowerCAmelCase : Optional[int] = val # finally, create HuggingFace model and load state dict _lowerCAmelCase : List[Any] = ConditionalDetrForSegmentation(__lowercase ) if is_panoptic else ConditionalDetrForObjectDetection(__lowercase ) model.load_state_dict(__lowercase ) model.eval() model.push_to_hub(repo_id=__lowercase , organization='DepuMeng' , commit_message='Add model' ) # verify our conversion _lowerCAmelCase : str = conditional_detr(__lowercase ) _lowerCAmelCase : str = model(__lowercase ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1e-4 ) # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(__lowercase ).mkdir(exist_ok=__lowercase ) model.save_pretrained(__lowercase ) image_processor.save_pretrained(__lowercase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _lowerCAmelCase = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
259
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def a_ ( ) -> Optional[int]: _snake_case , _snake_case = 9, 14 # noqa: F841 _snake_case = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _snake_case = defaultdict(__lowercase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _snake_case = mst(__lowercase ) _snake_case = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _snake_case = tuple(answer[:2] ) _snake_case = tuple(edge[::-1] ) assert edge in result or reverse in result
686
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: UpperCAmelCase = None UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } UpperCAmelCase = { "facebook/mbart-large-en-ro": 1_024, "facebook/mbart-large-cc25": 1_024, } # fmt: off UpperCAmelCase = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class a ( __magic_name__ ): _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = ['''input_ids''', '''attention_mask'''] _snake_case = MBartTokenizer _snake_case = [] _snake_case = [] def __init__( self : Optional[Any], SCREAMING_SNAKE_CASE_ : Tuple=None, SCREAMING_SNAKE_CASE_ : Optional[int]=None, SCREAMING_SNAKE_CASE_ : str="<s>", SCREAMING_SNAKE_CASE_ : Optional[int]="</s>", SCREAMING_SNAKE_CASE_ : Optional[int]="</s>", SCREAMING_SNAKE_CASE_ : str="<s>", SCREAMING_SNAKE_CASE_ : Any="<unk>", SCREAMING_SNAKE_CASE_ : Optional[Any]="<pad>", SCREAMING_SNAKE_CASE_ : Union[str, Any]="<mask>", SCREAMING_SNAKE_CASE_ : List[Any]=None, SCREAMING_SNAKE_CASE_ : Optional[Any]=None, SCREAMING_SNAKE_CASE_ : Optional[Any]=None, **SCREAMING_SNAKE_CASE_ : str, ): # Mask token behave like a normal word, i.e. include the space before it snake_case : str = AddedToken(SCREAMING_SNAKE_CASE_, lstrip=SCREAMING_SNAKE_CASE_, rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else mask_token super().__init__( vocab_file=SCREAMING_SNAKE_CASE_, tokenizer_file=SCREAMING_SNAKE_CASE_, bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, mask_token=SCREAMING_SNAKE_CASE_, src_lang=SCREAMING_SNAKE_CASE_, tgt_lang=SCREAMING_SNAKE_CASE_, additional_special_tokens=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) snake_case : Optional[Any] = vocab_file snake_case : Any = False if not self.vocab_file else True snake_case : List[str] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) snake_case : Any = { lang_code: self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } snake_case : Dict = src_lang if src_lang is not None else '''en_XX''' snake_case : str = self.convert_tokens_to_ids(self._src_lang ) snake_case : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __snake_case ( self : Tuple ): return self._src_lang @src_lang.setter def __snake_case ( self : str, SCREAMING_SNAKE_CASE_ : str ): snake_case : List[str] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __snake_case ( self : int, SCREAMING_SNAKE_CASE_ : List[int], SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __snake_case ( self : Dict, SCREAMING_SNAKE_CASE_ : List[int], SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ): snake_case : int = [self.sep_token_id] snake_case : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __snake_case ( self : Optional[Any], SCREAMING_SNAKE_CASE_ : Union[str, Any], SCREAMING_SNAKE_CASE_ : str, SCREAMING_SNAKE_CASE_ : Optional[str], SCREAMING_SNAKE_CASE_ : Optional[str], **SCREAMING_SNAKE_CASE_ : Tuple ): if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) snake_case : Dict = src_lang snake_case : str = self(SCREAMING_SNAKE_CASE_, add_special_tokens=SCREAMING_SNAKE_CASE_, return_tensors=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) snake_case : List[str] = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) snake_case : Union[str, Any] = tgt_lang_id return inputs def __snake_case ( self : int, SCREAMING_SNAKE_CASE_ : List[str], SCREAMING_SNAKE_CASE_ : str = "en_XX", SCREAMING_SNAKE_CASE_ : Optional[List[str]] = None, SCREAMING_SNAKE_CASE_ : str = "ro_RO", **SCREAMING_SNAKE_CASE_ : Dict, ): snake_case : List[str] = src_lang snake_case : int = tgt_lang return super().prepare_seqaseq_batch(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : Union[str, Any] ): return self.set_src_lang_special_tokens(self.src_lang ) def __snake_case ( self : Dict ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __snake_case ( self : Optional[Any], SCREAMING_SNAKE_CASE_ : List[Any] ): snake_case : int = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) snake_case : str = [] snake_case : Tuple = [self.eos_token_id, self.cur_lang_code] snake_case : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case : Optional[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case : List[str] = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str, pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens ) ), ) def __snake_case ( self : Tuple, SCREAMING_SNAKE_CASE_ : str ): snake_case : int = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) snake_case : Optional[int] = [] snake_case : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] snake_case : Any = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case : Optional[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case : Union[str, Any] = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str, pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens ) ), ) def __snake_case ( self : Tuple, SCREAMING_SNAKE_CASE_ : str, SCREAMING_SNAKE_CASE_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return snake_case : Any = os.path.join( SCREAMING_SNAKE_CASE_, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ): copyfile(self.vocab_file, SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
555
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor UpperCAmelCase = logging.get_logger(__name__) class a ( __magic_name__ ): def __init__( self : Union[str, Any], *SCREAMING_SNAKE_CASE_ : Tuple, **SCREAMING_SNAKE_CASE_ : Tuple ): warnings.warn( '''The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use LayoutLMv2ImageProcessor instead.''', SCREAMING_SNAKE_CASE_, ) super().__init__(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ )
555
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin SCREAMING_SNAKE_CASE__ = False @skip_mps class _UpperCamelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Dict = StableDiffusionAttendAndExcitePipeline __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : List[str] = TEXT_TO_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS.union({'''token_indices'''} ) __SCREAMING_SNAKE_CASE : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def __lowerCAmelCase ( cls : List[Any] ): '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(SCREAMING_SNAKE_CASE__ ) @classmethod def __lowerCAmelCase ( cls : Optional[int] ): '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) __a : Tuple = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=1 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=SCREAMING_SNAKE_CASE__ , ) __a : List[Any] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=SCREAMING_SNAKE_CASE__ , set_alpha_to_one=SCREAMING_SNAKE_CASE__ , ) torch.manual_seed(0 ) __a : str = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) __a : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , ) __a : Tuple = CLIPTextModel(SCREAMING_SNAKE_CASE__ ) __a : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __a : Any = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str=0 ): '''simple docstring''' if str(SCREAMING_SNAKE_CASE__ ).startswith('mps' ): __a : Tuple = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: __a : Union[str, Any] = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) __a : List[str] = { 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def __lowerCAmelCase ( self : Dict ): '''simple docstring''' __a : Tuple = 'cpu' __a : Optional[int] = self.get_dummy_components() __a : Union[str, Any] = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __a : int = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) __a : int = pipe(**SCREAMING_SNAKE_CASE__ ).images __a : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 6_4, 6_4, 3) ) __a : Optional[Any] = np.array( [0.63_905_364, 0.62_897_307, 0.48_599_017, 0.5_133_624, 0.5_550_048, 0.45_769_516, 0.50_326_973, 0.5_023_139, 0.45_384_496] ) __a : Any = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(SCREAMING_SNAKE_CASE__ , 1e-3 ) def __lowerCAmelCase ( self : int ): '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 ) def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __lowerCAmelCase ( self : Dict ): '''simple docstring''' self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4 ) def __lowerCAmelCase ( self : int ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self : str ): '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 ) def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' super().test_save_load_local(expected_max_difference=5e-4 ) def __lowerCAmelCase ( self : Dict ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=4e-4 ) @require_torch_gpu @slow class _UpperCamelCase( unittest.TestCase ): @classmethod def __lowerCAmelCase ( cls : str ): '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(SCREAMING_SNAKE_CASE__ ) @classmethod def __lowerCAmelCase ( cls : Tuple ): '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : int ): '''simple docstring''' __a : List[str] = torch.manual_seed(5_1 ) __a : Optional[int] = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , safety_checker=SCREAMING_SNAKE_CASE__ , torch_dtype=torch.floataa ) pipe.to('cuda' ) __a : List[str] = 'a painting of an elephant with glasses' __a : Any = [5, 7] __a : Tuple = pipe( prompt=SCREAMING_SNAKE_CASE__ , token_indices=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=5 , max_iter_to_alter=5 , output_type='numpy' , ).images[0] __a : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' ) assert np.abs((expected_image - image).max() ) < 5e-1
47
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
47
1
import pytest import datasets # Import fixture modules as plugins SCREAMING_SNAKE_CASE__ = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Tuple ) -> Optional[Any]: # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ['integration', 'unit'] ): continue item.add_marker(pytest.mark.unit ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: config.addinivalue_line('markers' , 'torchaudio_latest: mark test to run with torchaudio>=0.12' ) @pytest.fixture(autouse=SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Dict ) -> int: # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? __lowercase = tmp_path_factory.getbasetemp() / 'cache' __lowercase = test_hf_cache_home / 'datasets' __lowercase = test_hf_cache_home / 'metrics' __lowercase = test_hf_cache_home / 'modules' monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE' , str(SCREAMING_SNAKE_CASE ) ) monkeypatch.setattr('datasets.config.HF_METRICS_CACHE' , str(SCREAMING_SNAKE_CASE ) ) monkeypatch.setattr('datasets.config.HF_MODULES_CACHE' , str(SCREAMING_SNAKE_CASE ) ) __lowercase = test_hf_datasets_cache / 'downloads' monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH' , str(SCREAMING_SNAKE_CASE ) ) __lowercase = test_hf_datasets_cache / 'downloads' / 'extracted' monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(SCREAMING_SNAKE_CASE ) ) @pytest.fixture(autouse=SCREAMING_SNAKE_CASE , scope='session' ) def __SCREAMING_SNAKE_CASE ( ) -> str: datasets.disable_progress_bar() @pytest.fixture(autouse=SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple: # don't take tests into account when counting downloads monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS' , SCREAMING_SNAKE_CASE ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]: # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING' , SCREAMING_SNAKE_CASE )
688
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict ) -> Any: # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file __lowercase = TapasConfig.from_json_file(SCREAMING_SNAKE_CASE ) # set absolute/relative position embeddings parameter __lowercase = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WTQ": # run_task_main.py hparams __lowercase = 4 __lowercase = True # hparam_utils.py hparams __lowercase = 0.664_694 __lowercase = 0.207_951 __lowercase = 0.121_194 __lowercase = True __lowercase = True __lowercase = False __lowercase = 0.0_352_513 __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __lowercase = 4 __lowercase = False # hparam_utils.py hparams __lowercase = 36.4_519 __lowercase = 0.903_421 __lowercase = 222.088 __lowercase = True __lowercase = True __lowercase = True __lowercase = 0.763_141 __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "TABFACT": __lowercase = TapasForSequenceClassification(config=SCREAMING_SNAKE_CASE ) elif task == "MLM": __lowercase = TapasForMaskedLM(config=SCREAMING_SNAKE_CASE ) elif task == "INTERMEDIATE_PRETRAINING": __lowercase = TapasModel(config=SCREAMING_SNAKE_CASE ) else: raise ValueError(F"""Task {task} not supported.""" ) print(F"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model (weights and configuration) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) # Save tokenizer files print(F"""Save tokenizer files to {pytorch_dump_path}""" ) __lowercase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) print('Used relative position embeddings:' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA.""" ) parser.add_argument( """--reset_position_index_per_cell""", default=False, action="""store_true""", help="""Whether to use relative position embeddings or not. Defaults to True.""", ) parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--tapas_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained TAPAS model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
688
1
'''simple docstring''' import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class a__( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : List[str] = BertJapaneseTokenizer UpperCAmelCase_ : Dict = False UpperCAmelCase_ : int = True def a_ ( self): """simple docstring""" super().setUp() lowerCAmelCase = [ """[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは""", """世界""", """##世界""", """、""", """##、""", """。""", """##。""", ] lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens])) def a_ ( self , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = """こんにちは、世界。 \nこんばんは、世界。""" lowerCAmelCase = """こんにちは 、 世界 。 こんばんは 、 世界 。""" return input_text, output_text def a_ ( self , __lowerCAmelCase): """simple docstring""" lowerCAmelCase , lowerCAmelCase = self.get_input_output_texts(__lowerCAmelCase) lowerCAmelCase = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase) lowerCAmelCase = tokenizer.decode(__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase) return text, ids def a_ ( self): """simple docstring""" pass # TODO add if relevant def a_ ( self): """simple docstring""" pass # TODO add if relevant def a_ ( self): """simple docstring""" pass # TODO add if relevant def a_ ( self): """simple docstring""" lowerCAmelCase = self.tokenizer_class(self.vocab_file) lowerCAmelCase = tokenizer.tokenize("""こんにちは、世界。\nこんばんは、世界。""") self.assertListEqual(__lowerCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase) , [3, 12, 10, 14, 4, 9, 12, 10, 14]) def a_ ( self): """simple docstring""" lowerCAmelCase = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""mecab""") self.assertIsNotNone(__lowerCAmelCase) lowerCAmelCase = """こんにちは、世界。\nこんばんは、世界。""" lowerCAmelCase = tokenizer.tokenize(__lowerCAmelCase) self.assertListEqual(__lowerCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase) , [3, 12, 10, 14, 4, 9, 12, 10, 14]) lowerCAmelCase = os.path.join(self.tmpdirname , """tokenizer.bin""") with open(__lowerCAmelCase , """wb""") as handle: pickle.dump(__lowerCAmelCase , __lowerCAmelCase) with open(__lowerCAmelCase , """rb""") as handle: lowerCAmelCase = pickle.load(__lowerCAmelCase) lowerCAmelCase = tokenizer_new.tokenize(__lowerCAmelCase) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = MecabTokenizer(mecab_dic="""ipadic""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def a_ ( self): """simple docstring""" try: lowerCAmelCase = MecabTokenizer(mecab_dic="""unidic_lite""") except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def a_ ( self): """simple docstring""" try: lowerCAmelCase = MecabTokenizer(mecab_dic="""unidic""") except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def a_ ( self): """simple docstring""" lowerCAmelCase = MecabTokenizer(do_lower_case=__lowerCAmelCase , mecab_dic="""ipadic""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップルストア""", """で""", """iphone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def a_ ( self): """simple docstring""" try: lowerCAmelCase = MecabTokenizer( do_lower_case=__lowerCAmelCase , normalize_text=__lowerCAmelCase , mecab_option="""-d /usr/local/lib/mecab/dic/jumandic""") except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) def a_ ( self): """simple docstring""" lowerCAmelCase = MecabTokenizer(normalize_text=__lowerCAmelCase , mecab_dic="""ipadic""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """ """, """。"""] , ) @require_sudachi def a_ ( self): """simple docstring""" lowerCAmelCase = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""sudachi""") self.assertIsNotNone(__lowerCAmelCase) lowerCAmelCase = """こんにちは、世界。\nこんばんは、世界。""" lowerCAmelCase = tokenizer.tokenize(__lowerCAmelCase) self.assertListEqual(__lowerCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase) , [3, 12, 10, 14, 4, 9, 12, 10, 14]) lowerCAmelCase = os.path.join(self.tmpdirname , """tokenizer.bin""") with open(__lowerCAmelCase , """wb""") as handle: pickle.dump(__lowerCAmelCase , __lowerCAmelCase) with open(__lowerCAmelCase , """rb""") as handle: lowerCAmelCase = pickle.load(__lowerCAmelCase) lowerCAmelCase = tokenizer_new.tokenize(__lowerCAmelCase) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase) @require_sudachi def a_ ( self): """simple docstring""" lowerCAmelCase = SudachiTokenizer(sudachi_dict_type="""core""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def a_ ( self): """simple docstring""" lowerCAmelCase = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""A""") self.assertListEqual(tokenizer.tokenize("""外国人参政権""") , ["""外国""", """人""", """参政""", """権"""]) @require_sudachi def a_ ( self): """simple docstring""" lowerCAmelCase = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""B""") self.assertListEqual(tokenizer.tokenize("""外国人参政権""") , ["""外国人""", """参政権"""]) @require_sudachi def a_ ( self): """simple docstring""" lowerCAmelCase = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""C""") self.assertListEqual(tokenizer.tokenize("""外国人参政権""") , ["""外国人参政権"""]) @require_sudachi def a_ ( self): """simple docstring""" lowerCAmelCase = SudachiTokenizer(do_lower_case=__lowerCAmelCase , sudachi_dict_type="""core""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iphone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def a_ ( self): """simple docstring""" lowerCAmelCase = SudachiTokenizer(normalize_text=__lowerCAmelCase , sudachi_dict_type="""core""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """\u3000""", """。""", """ """, """ """] , ) @require_sudachi def a_ ( self): """simple docstring""" lowerCAmelCase = SudachiTokenizer(trim_whitespace=__lowerCAmelCase , sudachi_dict_type="""core""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) @require_jumanpp def a_ ( self): """simple docstring""" lowerCAmelCase = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""jumanpp""") self.assertIsNotNone(__lowerCAmelCase) lowerCAmelCase = """こんにちは、世界。\nこんばんは、世界。""" lowerCAmelCase = tokenizer.tokenize(__lowerCAmelCase) self.assertListEqual(__lowerCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase) , [3, 12, 10, 14, 4, 9, 12, 10, 14]) lowerCAmelCase = os.path.join(self.tmpdirname , """tokenizer.bin""") with open(__lowerCAmelCase , """wb""") as handle: pickle.dump(__lowerCAmelCase , __lowerCAmelCase) with open(__lowerCAmelCase , """rb""") as handle: lowerCAmelCase = pickle.load(__lowerCAmelCase) lowerCAmelCase = tokenizer_new.tokenize(__lowerCAmelCase) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase) @require_jumanpp def a_ ( self): """simple docstring""" lowerCAmelCase = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def a_ ( self): """simple docstring""" lowerCAmelCase = JumanppTokenizer(do_lower_case=__lowerCAmelCase) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップル""", """ストア""", """で""", """iphone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def a_ ( self): """simple docstring""" lowerCAmelCase = JumanppTokenizer(normalize_text=__lowerCAmelCase) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""ア""", """ッ""", """フ""", """゚""", """ル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def a_ ( self): """simple docstring""" lowerCAmelCase = JumanppTokenizer(trim_whitespace=__lowerCAmelCase) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """。"""] , ) @require_jumanpp def a_ ( self): """simple docstring""" lowerCAmelCase = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("""ありがとうございますm(_ _)m見つけるのが大変です。""") , ["""ありがとう""", """ございます""", """m(_ _)m""", """見つける""", """の""", """が""", """大変です""", """。"""] , ) def a_ ( self): """simple docstring""" lowerCAmelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは"""] lowerCAmelCase = {} for i, token in enumerate(__lowerCAmelCase): lowerCAmelCase = i lowerCAmelCase = WordpieceTokenizer(vocab=__lowerCAmelCase , unk_token="""[UNK]""") self.assertListEqual(tokenizer.tokenize("""""") , []) self.assertListEqual(tokenizer.tokenize("""こんにちは""") , ["""こんにちは"""]) self.assertListEqual(tokenizer.tokenize("""こんばんは""") , ["""こん""", """##ばんは"""]) self.assertListEqual(tokenizer.tokenize("""こんばんは こんばんにちは こんにちは""") , ["""こん""", """##ばんは""", """[UNK]""", """こんにちは"""]) def a_ ( self): """simple docstring""" lowerCAmelCase = BertJapaneseTokenizer.from_pretrained("""nlp-waseda/roberta-base-japanese-with-auto-jumanpp""") lowerCAmelCase = tokenizer.subword_tokenizer lowerCAmelCase = subword_tokenizer.tokenize("""国境 の 長い トンネル を 抜ける と 雪国 であった 。""") self.assertListEqual(__lowerCAmelCase , ["""▁国境""", """▁の""", """▁長い""", """▁トンネル""", """▁を""", """▁抜ける""", """▁と""", """▁雪""", """国""", """▁であった""", """▁。"""]) lowerCAmelCase = subword_tokenizer.tokenize("""こんばんは こんばん にち は こんにちは""") self.assertListEqual(__lowerCAmelCase , ["""▁こん""", """ばん""", """は""", """▁こん""", """ばん""", """▁に""", """ち""", """▁は""", """▁こんにちは"""]) def a_ ( self): """simple docstring""" lowerCAmelCase = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese""") lowerCAmelCase = tokenizer.encode("""ありがとう。""" , add_special_tokens=__lowerCAmelCase) lowerCAmelCase = tokenizer.encode("""どういたしまして。""" , add_special_tokens=__lowerCAmelCase) lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase) lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase , __lowerCAmelCase) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class a__( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : str = BertJapaneseTokenizer UpperCAmelCase_ : Dict = False def a_ ( self): """simple docstring""" super().setUp() lowerCAmelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens])) def a_ ( self , **__lowerCAmelCase): """simple docstring""" return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="""character""" , **__lowerCAmelCase) def a_ ( self , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = """こんにちは、世界。 \nこんばんは、世界。""" lowerCAmelCase = """こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。""" return input_text, output_text def a_ ( self): """simple docstring""" pass # TODO add if relevant def a_ ( self): """simple docstring""" pass # TODO add if relevant def a_ ( self): """simple docstring""" pass # TODO add if relevant def a_ ( self): """simple docstring""" lowerCAmelCase = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="""character""") lowerCAmelCase = tokenizer.tokenize("""こんにちは、世界。 \nこんばんは、世界。""") self.assertListEqual( __lowerCAmelCase , ["""こ""", """ん""", """に""", """ち""", """は""", """、""", """世""", """界""", """。""", """こ""", """ん""", """ば""", """ん""", """は""", """、""", """世""", """界""", """。"""]) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCAmelCase) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12]) def a_ ( self): """simple docstring""" lowerCAmelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] lowerCAmelCase = {} for i, token in enumerate(__lowerCAmelCase): lowerCAmelCase = i lowerCAmelCase = CharacterTokenizer(vocab=__lowerCAmelCase , unk_token="""[UNK]""") self.assertListEqual(tokenizer.tokenize("""""") , []) self.assertListEqual(tokenizer.tokenize("""こんにちは""") , ["""こ""", """ん""", """に""", """ち""", """は"""]) self.assertListEqual(tokenizer.tokenize("""こんにちほ""") , ["""こ""", """ん""", """に""", """ち""", """[UNK]"""]) def a_ ( self): """simple docstring""" lowerCAmelCase = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese-char""") lowerCAmelCase = tokenizer.encode("""ありがとう。""" , add_special_tokens=__lowerCAmelCase) lowerCAmelCase = tokenizer.encode("""どういたしまして。""" , add_special_tokens=__lowerCAmelCase) lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase) lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase , __lowerCAmelCase) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class a__( unittest.TestCase ): '''simple docstring''' def a_ ( self): """simple docstring""" lowerCAmelCase = """cl-tohoku/bert-base-japanese""" lowerCAmelCase = AutoTokenizer.from_pretrained(__lowerCAmelCase) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase) class a__( unittest.TestCase ): '''simple docstring''' def a_ ( self): """simple docstring""" lowerCAmelCase = """cl-tohoku/bert-base-japanese""" with self.assertLogs("""transformers""" , level="""WARNING""") as cm: BertTokenizer.from_pretrained(__lowerCAmelCase) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""")) lowerCAmelCase = """bert-base-cased""" with self.assertLogs("""transformers""" , level="""WARNING""") as cm: BertJapaneseTokenizer.from_pretrained(__lowerCAmelCase) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from."""))
370
'''simple docstring''' from __future__ import annotations import math def snake_case__ ( _A: int ) -> list[int]: '''simple docstring''' if num <= 0: lowerCAmelCase = f"{num}: Invalid input, please enter a positive integer." raise ValueError(_A ) lowerCAmelCase = [True] * (num + 1) lowerCAmelCase = [] lowerCAmelCase = 2 lowerCAmelCase = int(math.sqrt(_A ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_A ) # Set multiples of start be False for i in range(start * start , num + 1 , _A ): if sieve[i] is True: lowerCAmelCase = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(_A ) return prime if __name__ == "__main__": print(prime_sieve(int(input('''Enter a positive integer: ''').strip())))
370
1
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): while b: lowercase__ , lowercase__ = b, a % b return a def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return a if b == 0 else euclidean_gcd_recursive(SCREAMING_SNAKE_CASE_ , a % b ) def __lowerCAmelCase ( ): print(f'''euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}''' ) print(f'''euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}''' ) print(f'''euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}''' ) print(f'''euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}''' ) print(f'''euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}''' ) print(f'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}''' ) print(f'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}''' ) print(f'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}''' ) print(f'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}''' ) print(f'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}''' ) if __name__ == "__main__": main()
714
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} lowercase_ = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } lowercase_ = { """allenai/led-base-16384""": 1_6384, } class _snake_case ( lowercase__): UpperCamelCase__ : int =VOCAB_FILES_NAMES UpperCamelCase__ : Any =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Dict =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : List[Any] =LEDTokenizer UpperCamelCase__ : Tuple =["""input_ids""", """attention_mask"""] def __init__( self : Optional[Any], __lowercase : Optional[Any]=None, __lowercase : Dict=None, __lowercase : Tuple=None, __lowercase : Union[str, Any]="replace", __lowercase : Tuple="<s>", __lowercase : Optional[Any]="</s>", __lowercase : Tuple="</s>", __lowercase : List[str]="<s>", __lowercase : Tuple="<unk>", __lowercase : Dict="<pad>", __lowercase : Dict="<mask>", __lowercase : Any=False, __lowercase : Any=True, **__lowercase : List[Any], ): super().__init__( __lowercase, __lowercase, tokenizer_file=__lowercase, errors=__lowercase, bos_token=__lowercase, eos_token=__lowercase, sep_token=__lowercase, cls_token=__lowercase, unk_token=__lowercase, pad_token=__lowercase, mask_token=__lowercase, add_prefix_space=__lowercase, trim_offsets=__lowercase, **__lowercase, ) lowercase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space", __lowercase ) != add_prefix_space: lowercase__ = getattr(__lowercase, pre_tok_state.pop("type" ) ) lowercase__ = add_prefix_space lowercase__ = pre_tok_class(**__lowercase ) lowercase__ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase__ = "post_processor" lowercase__ = getattr(self.backend_tokenizer, __lowercase, __lowercase ) if tokenizer_component_instance: lowercase__ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase__ = tuple(state["sep"] ) if "cls" in state: lowercase__ = tuple(state["cls"] ) lowercase__ = False if state.get("add_prefix_space", __lowercase ) != add_prefix_space: lowercase__ = add_prefix_space lowercase__ = True if state.get("trim_offsets", __lowercase ) != trim_offsets: lowercase__ = trim_offsets lowercase__ = True if changes_to_apply: lowercase__ = getattr(__lowercase, state.pop("type" ) ) lowercase__ = component_class(**__lowercase ) setattr(self.backend_tokenizer, __lowercase, __lowercase ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def A__ ( self : str ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def A__ ( self : Optional[int], __lowercase : Dict ): lowercase__ = AddedToken(__lowercase, lstrip=__lowercase, rstrip=__lowercase ) if isinstance(__lowercase, __lowercase ) else value lowercase__ = value def A__ ( self : Any, *__lowercase : List[Any], **__lowercase : Optional[Any] ): lowercase__ = kwargs.get("is_split_into_words", __lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__lowercase, **__lowercase ) def A__ ( self : int, *__lowercase : Union[str, Any], **__lowercase : List[str] ): lowercase__ = kwargs.get("is_split_into_words", __lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__lowercase, **__lowercase ) def A__ ( self : Optional[Any], __lowercase : str, __lowercase : Optional[str] = None ): lowercase__ = self._tokenizer.model.save(__lowercase, name=__lowercase ) return tuple(__lowercase ) def A__ ( self : List[str], __lowercase : int, __lowercase : Optional[int]=None ): lowercase__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A__ ( self : int, __lowercase : List[int], __lowercase : Optional[List[int]] = None ): lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self : Union[str, Any], __lowercase : Union[Dict[str, EncodedInput], BatchEncoding], __lowercase : Optional[int] = None, __lowercase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD, __lowercase : Optional[int] = None, __lowercase : Optional[bool] = None, ): lowercase__ = super()._pad( encoded_inputs=__lowercase, max_length=__lowercase, padding_strategy=__lowercase, pad_to_multiple_of=__lowercase, return_attention_mask=__lowercase, ) # Load from model defaults if return_attention_mask is None: lowercase__ = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase__ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase__ = len(encoded_inputs["global_attention_mask"] ) != len(__lowercase ) if needs_to_be_padded: lowercase__ = len(__lowercase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase__ = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": lowercase__ = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
37
0
from manim import * class SCREAMING_SNAKE_CASE (UpperCAmelCase ): def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Optional[int]: """simple docstring""" lowercase__ = Rectangle(height=0.5 , width=0.5 ) lowercase__ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowercase__ = [mem.copy() for i in range(6 )] lowercase__ = [mem.copy() for i in range(6 )] lowercase__ = VGroup(*a ).arrange(a , buff=0 ) lowercase__ = VGroup(*a ).arrange(a , buff=0 ) lowercase__ = VGroup(a , a ).arrange(a , buff=0 ) lowercase__ = Text('CPU' , font_size=24 ) lowercase__ = Group(a , a ).arrange(a , buff=0.5 , aligned_edge=a ) cpu.move_to([-2.5, -0.5, 0] ) self.add(a ) lowercase__ = [mem.copy() for i in range(4 )] lowercase__ = VGroup(*a ).arrange(a , buff=0 ) lowercase__ = Text('GPU' , font_size=24 ) lowercase__ = Group(a , a ).arrange(a , buff=0.5 , aligned_edge=a ) gpu.move_to([-1, -1, 0] ) self.add(a ) lowercase__ = [mem.copy() for i in range(6 )] lowercase__ = VGroup(*a ).arrange(a , buff=0 ) lowercase__ = Text('Model' , font_size=24 ) lowercase__ = Group(a , a ).arrange(a , buff=0.5 , aligned_edge=a ) model.move_to([3, -1.0, 0] ) self.add(a ) lowercase__ = [] for i, rect in enumerate(a ): rect.set_stroke(a ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) lowercase__ = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(a , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=a ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=a , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=a , buff=0.0 ) self.add(a ) cpu_targs.append(a ) lowercase__ = [mem.copy() for i in range(6 )] lowercase__ = VGroup(*a ).arrange(a , buff=0 ) lowercase__ = Text('Loaded Checkpoint' , font_size=24 ) lowercase__ = Group(a , a ).arrange(a , aligned_edge=a , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) lowercase__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowercase__ = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(a , a ) lowercase__ = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(a , DOWN * 2.4 , aligned_edge=key_text.get_left() ) lowercase__ = MarkupText( f"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(a ) , Write(a ) ) self.play(Write(a , run_time=1 ) , Create(a , run_time=1 ) ) lowercase__ = [] lowercase__ = [] for i, rect in enumerate(a ): lowercase__ = fill.copy().set_fill(a , opacity=0.7 ) target.move_to(a ) first_animations.append(GrowFromCenter(a , run_time=1 ) ) lowercase__ = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(a , run_time=1.5 ) ) self.play(*a ) self.play(*a ) self.wait()
235
import requests lowercase_ = """YOUR API KEY""" def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = giphy_api_key ) -> list: lowercase__ = '+'.join(query.split() ) lowercase__ = F"""https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}""" lowercase__ = requests.get(_SCREAMING_SNAKE_CASE ).json()['data'] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("""\n""".join(get_gifs("""space ship""")))
235
1
from ..utils import DummyObject, requires_backends class _a ( metaclass=UpperCamelCase__ ): _lowercase : Any = ['''note_seq'''] def __init__( self: List[str] , *UpperCamelCase_: Optional[int] , **UpperCamelCase_: Tuple ) -> List[Any]: """simple docstring""" requires_backends(self , ['''note_seq'''] ) @classmethod def lowerCamelCase_ ( cls: List[Any] , *UpperCamelCase_: int , **UpperCamelCase_: List[str] ) -> str: """simple docstring""" requires_backends(cls , ['''note_seq'''] ) @classmethod def lowerCamelCase_ ( cls: int , *UpperCamelCase_: Union[str, Any] , **UpperCamelCase_: str ) -> List[Any]: """simple docstring""" requires_backends(cls , ['''note_seq'''] )
429
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch lowerCAmelCase = logging.get_logger(__name__) class _a ( UpperCamelCase__ ): _lowercase : Optional[int] = ['''pixel_values'''] def __init__( self: Any , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[Dict[str, int]] = None , UpperCamelCase_: PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase_: bool = True , UpperCamelCase_: Dict[str, int] = None , UpperCamelCase_: bool = True , UpperCamelCase_: Union[int, float] = 1 / 255 , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[Union[float, List[float]]] = None , UpperCamelCase_: Optional[Union[float, List[float]]] = None , **UpperCamelCase_: Optional[int] , ) -> None: """simple docstring""" super().__init__(**UpperCamelCase_ ) lowercase__ = size if size is not None else {'''shortest_edge''': 256} lowercase__ = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) lowercase__ = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase__ = get_size_dict(UpperCamelCase_ , param_name='''crop_size''' ) lowercase__ = do_resize lowercase__ = size lowercase__ = resample lowercase__ = do_center_crop lowercase__ = crop_size lowercase__ = do_rescale lowercase__ = rescale_factor lowercase__ = do_normalize lowercase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: np.ndarray , UpperCamelCase_: Dict[str, int] , UpperCamelCase_: PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: Union[str, Any] , ) -> np.ndarray: """simple docstring""" lowercase__ = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) lowercase__ = get_resize_output_image_size(UpperCamelCase_ , size=size['''shortest_edge'''] , default_to_square=UpperCamelCase_ ) return resize(UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase_ ( self: int , UpperCamelCase_: np.ndarray , UpperCamelCase_: Dict[str, int] , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: Optional[int] , ) -> np.ndarray: """simple docstring""" lowercase__ = get_size_dict(UpperCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(UpperCamelCase_ , size=(size['''height'''], size['''width''']) , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: np.ndarray , UpperCamelCase_: float , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: Tuple ) -> np.ndarray: """simple docstring""" return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict , UpperCamelCase_: np.ndarray , UpperCamelCase_: Union[float, List[float]] , UpperCamelCase_: Union[float, List[float]] , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: Dict , ) -> np.ndarray: """simple docstring""" return normalize(UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: ImageInput , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Dict[str, int] = None , UpperCamelCase_: PILImageResampling = None , UpperCamelCase_: bool = None , UpperCamelCase_: Dict[str, int] = None , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[float] = None , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[Union[float, List[float]]] = None , UpperCamelCase_: Optional[Union[float, List[float]]] = None , UpperCamelCase_: Optional[Union[str, TensorType]] = None , UpperCamelCase_: Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase_: Tuple , ) -> Optional[int]: """simple docstring""" lowercase__ = do_resize if do_resize is not None else self.do_resize lowercase__ = size if size is not None else self.size lowercase__ = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) lowercase__ = resample if resample is not None else self.resample lowercase__ = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ = crop_size if crop_size is not None else self.crop_size lowercase__ = get_size_dict(UpperCamelCase_ , param_name='''crop_size''' ) lowercase__ = do_rescale if do_rescale is not None else self.do_rescale lowercase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ = do_normalize if do_normalize is not None else self.do_normalize lowercase__ = image_mean if image_mean is not None else self.image_mean lowercase__ = image_std if image_std is not None else self.image_std lowercase__ = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowercase__ = [to_numpy_array(UpperCamelCase_ ) for image in images] if do_resize: lowercase__ = [self.resize(image=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ ) for image in images] if do_center_crop: lowercase__ = [self.center_crop(image=UpperCamelCase_ , size=UpperCamelCase_ ) for image in images] if do_rescale: lowercase__ = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images] if do_normalize: lowercase__ = [self.normalize(image=UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ ) for image in images] lowercase__ = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images] lowercase__ = {'''pixel_values''': images} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ ) def lowerCamelCase_ ( self: Any , UpperCamelCase_: List[str] , UpperCamelCase_: List[Tuple] = None ) -> List[str]: """simple docstring""" lowercase__ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCamelCase_ ) != len(UpperCamelCase_ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(UpperCamelCase_ ): lowercase__ = target_sizes.numpy() lowercase__ = [] for idx in range(len(UpperCamelCase_ ) ): lowercase__ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=UpperCamelCase_ ) lowercase__ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCamelCase_ ) else: lowercase__ = logits.argmax(dim=1 ) lowercase__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
429
1
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class _lowerCAmelCase ( lowerCamelCase ): @staticmethod @abstractmethod def _a ( a_ ) -> str: raise NotImplementedError() @abstractmethod def _a ( self ) -> Tuple: raise NotImplementedError()
657
"""simple docstring""" import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class _lowerCAmelCase ( unittest.TestCase ): def _a ( self ) -> Optional[Any]: _UpperCAmelCase = ["a", "b", "c"] # Defaults to last layer if both are None _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices(a_ , a_ , a_ ) self.assertEqual(a_ , ["c"] ) self.assertEqual(a_ , [2] ) # Out indices set to match out features _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices(["a", "c"] , a_ , a_ ) self.assertEqual(a_ , ["a", "c"] ) self.assertEqual(a_ , [0, 2] ) # Out features set to match out indices _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices(a_ , [0, 2] , a_ ) self.assertEqual(a_ , ["a", "c"] ) self.assertEqual(a_ , [0, 2] ) # Out features selected from negative indices _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices(a_ , [-3, -1] , a_ ) self.assertEqual(a_ , ["a", "c"] ) self.assertEqual(a_ , [-3, -1] ) def _a ( self ) -> Optional[int]: # Stage names must be set with self.assertRaises(a_ ): verify_out_features_out_indices(["a", "b"] , (0, 1) , a_ ) # Out features must be a list with self.assertRaises(a_ ): verify_out_features_out_indices(("a", "b") , (0, 1) , ["a", "b"] ) # Out features must be a subset of stage names with self.assertRaises(a_ ): verify_out_features_out_indices(["a", "b"] , (0, 1) , ["a"] ) # Out indices must be a list or tuple with self.assertRaises(a_ ): verify_out_features_out_indices(a_ , 0 , ["a", "b"] ) # Out indices must be a subset of stage names with self.assertRaises(a_ ): verify_out_features_out_indices(a_ , (0, 1) , ["a"] ) # Out features and out indices must be the same length with self.assertRaises(a_ ): verify_out_features_out_indices(["a", "b"] , (0,) , ["a", "b", "c"] ) # Out features should match out indices with self.assertRaises(a_ ): verify_out_features_out_indices(["a", "b"] , (0, 2) , ["a", "b", "c"] ) # Out features and out indices should be in order with self.assertRaises(a_ ): verify_out_features_out_indices(["b", "a"] , (0, 1) , ["a", "b"] ) # Check passes with valid inputs verify_out_features_out_indices(["a", "b", "d"] , (0, 1, -1) , ["a", "b", "c", "d"] ) def _a ( self ) -> int: _UpperCAmelCase = BackboneMixin() _UpperCAmelCase = ["a", "b", "c"] _UpperCAmelCase = ["a", "c"] _UpperCAmelCase = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["a", "c"] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly _UpperCAmelCase = ["a", "b"] self.assertEqual(backbone.out_features , ["a", "b"] ) self.assertEqual(backbone.out_indices , [0, 1] ) _UpperCAmelCase = [-3, -1] self.assertEqual(backbone.out_features , ["a", "c"] ) self.assertEqual(backbone.out_indices , [-3, -1] )
657
1
from ... import PretrainedConfig UpperCamelCase__ ={ 'sijunhe/nezha-cn-base': 'https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json', } class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __snake_case = 'nezha' def __init__( self , __lowerCamelCase=2_1_1_2_8 , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_1_2 , __lowerCamelCase=6_4 , __lowerCamelCase=2 , __lowerCamelCase=0.02 , __lowerCamelCase=1E-12 , __lowerCamelCase=0.1 , __lowerCamelCase=0 , __lowerCamelCase=2 , __lowerCamelCase=3 , __lowerCamelCase=True , **__lowerCamelCase , ) -> Tuple: super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size _SCREAMING_SNAKE_CASE : Tuple = hidden_size _SCREAMING_SNAKE_CASE : int = num_hidden_layers _SCREAMING_SNAKE_CASE : int = num_attention_heads _SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act _SCREAMING_SNAKE_CASE : str = intermediate_size _SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob _SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings _SCREAMING_SNAKE_CASE : List[Any] = max_relative_position _SCREAMING_SNAKE_CASE : Union[str, Any] = type_vocab_size _SCREAMING_SNAKE_CASE : List[Any] = initializer_range _SCREAMING_SNAKE_CASE : str = layer_norm_eps _SCREAMING_SNAKE_CASE : Optional[int] = classifier_dropout _SCREAMING_SNAKE_CASE : int = use_cache
705
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ ={ 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ =[ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys UpperCamelCase__ =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
381
0
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class SCREAMING_SNAKE_CASE ( nn.Module ): snake_case__ = 42 snake_case__ = jnp.floataa def SCREAMING_SNAKE_CASE ( self : str ) -> Dict: a_ : List[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> List[Any]: a_ , a_ , a_ , a_ : Optional[Any] = hidden_states.shape a_ : Any = jax.image.resize( __SCREAMING_SNAKE_CASE , shape=(batch, height * 2, width * 2, channels) , method='''nearest''' , ) a_ : Any = self.conv(__SCREAMING_SNAKE_CASE ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): snake_case__ = 42 snake_case__ = jnp.floataa def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: a_ : Optional[int] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Union[str, Any]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) a_ : Union[str, Any] = self.conv(__SCREAMING_SNAKE_CASE ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): snake_case__ = 42 snake_case__ = None snake_case__ = 0.0 snake_case__ = None snake_case__ = jnp.floataa def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: a_ : Optional[int] = self.in_channels if self.out_channels is None else self.out_channels a_ : Tuple = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) a_ : Optional[Any] = nn.Conv( __SCREAMING_SNAKE_CASE , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) a_ : Optional[Any] = nn.Dense(__SCREAMING_SNAKE_CASE , dtype=self.dtype ) a_ : Tuple = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) a_ : Union[str, Any] = nn.Dropout(self.dropout_prob ) a_ : Optional[Any] = nn.Conv( __SCREAMING_SNAKE_CASE , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) a_ : int = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut a_ : Any = None if use_nin_shortcut: a_ : Optional[Any] = nn.Conv( __SCREAMING_SNAKE_CASE , kernel_size=(1, 1) , strides=(1, 1) , padding='''VALID''' , dtype=self.dtype , ) def __call__( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int=True ) -> str: a_ : Union[str, Any] = hidden_states a_ : int = self.norma(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = nn.swish(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = self.conva(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = self.time_emb_proj(nn.swish(__SCREAMING_SNAKE_CASE ) ) a_ : List[str] = jnp.expand_dims(jnp.expand_dims(__SCREAMING_SNAKE_CASE , 1 ) , 1 ) a_ : int = hidden_states + temb a_ : Tuple = self.norma(__SCREAMING_SNAKE_CASE ) a_ : List[str] = nn.swish(__SCREAMING_SNAKE_CASE ) a_ : Dict = self.dropout(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : List[Any] = self.conva(__SCREAMING_SNAKE_CASE ) if self.conv_shortcut is not None: a_ : int = self.conv_shortcut(__SCREAMING_SNAKE_CASE ) return hidden_states + residual
466
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = {'configuration_sew': ['SEW_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SEWConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'SEW_PRETRAINED_MODEL_ARCHIVE_LIST', 'SEWForCTC', 'SEWForSequenceClassification', 'SEWModel', 'SEWPreTrainedModel', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
466
1
"""simple docstring""" from math import ceil def lowercase (_snake_case ,_snake_case ) -> Any: '''simple docstring''' __UpperCamelCase = list(range(0 ,__snake_case ) ) __UpperCamelCase = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check __UpperCamelCase = [] for i in device_map_blocks: if device_map_blocks.count(__snake_case ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(__snake_case ) # Missing blocks __UpperCamelCase = [i for i in blocks if i not in device_map_blocks] __UpperCamelCase = [i for i in device_map_blocks if i not in blocks] if len(__snake_case ) != 0: raise ValueError( "Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device." " These attention blocks were specified more than once: " + str(__snake_case ) ) if len(__snake_case ) != 0: raise ValueError( "There are attention blocks for this model that are not specified in the device_map. Add these attention " "blocks to a device on the device_map: " + str(__snake_case ) ) if len(__snake_case ) != 0: raise ValueError( "The device_map contains more attention blocks than this model has. Remove these from the device_map:" + str(__snake_case ) ) def lowercase (_snake_case ,_snake_case ) -> str: '''simple docstring''' __UpperCamelCase = list(range(__snake_case ) ) __UpperCamelCase = int(ceil(n_layers / len(__snake_case ) ) ) __UpperCamelCase = [layers[i : i + n_blocks] for i in range(0 ,__snake_case ,__snake_case )] return dict(zip(__snake_case ,__snake_case ) )
707
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def A ( self : int )-> Union[str, Any]: __UpperCamelCase = tempfile.mkdtemp() # fmt: off __UpperCamelCase = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on __UpperCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) __UpperCamelCase = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] __UpperCamelCase = {"unk_token": "<unk>"} __UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(A_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(A_ ) ) __UpperCamelCase = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } __UpperCamelCase = os.path.join(self.tmpdirname , A_ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(A_ , A_ ) def A ( self : Dict , **A_ : List[str] )-> List[Any]: return CLIPTokenizer.from_pretrained(self.tmpdirname , **A_ ) def A ( self : Optional[int] , **A_ : Any )-> Tuple: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **A_ ) def A ( self : Any , **A_ : List[Any] )-> Optional[int]: return ViTImageProcessor.from_pretrained(self.tmpdirname , **A_ ) def A ( self : Tuple )-> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def A ( self : int )-> str: __UpperCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __UpperCamelCase = [Image.fromarray(np.moveaxis(A_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def A ( self : List[Any] )-> Optional[Any]: __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = self.get_rust_tokenizer() __UpperCamelCase = self.get_image_processor() __UpperCamelCase = CLIPSegProcessor(tokenizer=A_ , image_processor=A_ ) processor_slow.save_pretrained(self.tmpdirname ) __UpperCamelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=A_ ) __UpperCamelCase = CLIPSegProcessor(tokenizer=A_ , image_processor=A_ ) processor_fast.save_pretrained(self.tmpdirname ) __UpperCamelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A_ ) self.assertIsInstance(processor_fast.tokenizer , A_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A_ ) self.assertIsInstance(processor_fast.image_processor , A_ ) def A ( self : Dict )-> Dict: __UpperCamelCase = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) __UpperCamelCase = self.get_image_processor(do_normalize=A_ , padding_value=1.0 ) __UpperCamelCase = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=A_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A_ ) def A ( self : int )-> Any: __UpperCamelCase = self.get_image_processor() __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = CLIPSegProcessor(tokenizer=A_ , image_processor=A_ ) __UpperCamelCase = self.prepare_image_inputs() __UpperCamelCase = image_processor(A_ , return_tensors="np" ) __UpperCamelCase = processor(images=A_ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A ( self : int )-> Union[str, Any]: __UpperCamelCase = self.get_image_processor() __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = CLIPSegProcessor(tokenizer=A_ , image_processor=A_ ) __UpperCamelCase = "lower newer" __UpperCamelCase = processor(text=A_ ) __UpperCamelCase = tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A ( self : List[Any] )-> List[Any]: __UpperCamelCase = self.get_image_processor() __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = CLIPSegProcessor(tokenizer=A_ , image_processor=A_ ) __UpperCamelCase = "lower newer" __UpperCamelCase = self.prepare_image_inputs() __UpperCamelCase = processor(text=A_ , images=A_ ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def A ( self : Union[str, Any] )-> Union[str, Any]: __UpperCamelCase = self.get_image_processor() __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = CLIPSegProcessor(tokenizer=A_ , image_processor=A_ ) __UpperCamelCase = self.prepare_image_inputs() __UpperCamelCase = self.prepare_image_inputs() __UpperCamelCase = processor(images=A_ , visual_prompt=A_ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "conditional_pixel_values"] ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def A ( self : Optional[int] )-> int: __UpperCamelCase = self.get_image_processor() __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = CLIPSegProcessor(tokenizer=A_ , image_processor=A_ ) __UpperCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCamelCase = processor.batch_decode(A_ ) __UpperCamelCase = tokenizer.batch_decode(A_ ) self.assertListEqual(A_ , A_ )
228
0
lowerCAmelCase__ = { 0: '0', 1: '1', 2: '2', 3: '3', 4: '4', 5: '5', 6: '6', 7: '7', 8: '8', 9: '9', 10: 'a', 11: 'b', 12: 'c', 13: 'd', 14: 'e', 15: 'f', } def __lowercase ( _UpperCAmelCase ) -> str: '''simple docstring''' assert type(_UpperCAmelCase ) in (int, float) and decimal == int(_UpperCAmelCase ) __lowercase = int(_UpperCAmelCase ) __lowercase = "" __lowercase = False if decimal < 0: __lowercase = True decimal *= -1 while decimal > 0: __lowercase , __lowercase = divmod(_UpperCAmelCase , 16 ) __lowercase = values[remainder] + hexadecimal __lowercase = "0x" + hexadecimal if negative: __lowercase = "-" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
321
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'spiece.model'} lowerCAmelCase__ = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', } } # TODO(PVP) - this should be removed in Transformers v5 lowerCAmelCase__ = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } lowerCAmelCase__ = '▁' class snake_case ( __snake_case ): """simple docstring""" __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ["""input_ids""", """attention_mask"""] def __init__( self , lowerCAmelCase_ , lowerCAmelCase_="</s>" , lowerCAmelCase_="<unk>" , lowerCAmelCase_="<pad>" , lowerCAmelCase_=100 , lowerCAmelCase_=None , lowerCAmelCase_ = None , lowerCAmelCase_=True , **lowerCAmelCase_ , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __lowercase = [f'''<extra_id_{i}>''' for i in range(lowerCAmelCase_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens __lowercase = len(set(filter(lambda lowerCAmelCase_ : bool("extra_id" in str(lowerCAmelCase_ ) ) , lowerCAmelCase_ ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens" ) if legacy: logger.warning_once( f'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' " read the related pull request available at https://github.com/huggingface/transformers/pull/24565" ) __lowercase = legacy __lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , extra_ids=lowerCAmelCase_ , additional_special_tokens=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , legacy=lowerCAmelCase_ , **lowerCAmelCase_ , ) __lowercase = vocab_file __lowercase = extra_ids __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase_ ) @staticmethod def snake_case__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: __lowercase = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value." , lowerCAmelCase_ , ) return max_model_length @property def snake_case__ ( self ): return self.sp_model.get_piece_size() + self._extra_ids def snake_case__ ( self ): __lowercase = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(lowerCAmelCase_ )) + [1] return ([0] * len(lowerCAmelCase_ )) + [1] + ([0] * len(lowerCAmelCase_ )) + [1] def snake_case__ ( self ): return list( set(filter(lambda lowerCAmelCase_ : bool(re.search(r"<extra_id_\d+>" , lowerCAmelCase_ ) ) is not None , self.additional_special_tokens ) ) ) def snake_case__ ( self ): return [self._convert_token_to_id(lowerCAmelCase_ ) for token in self.get_sentinel_tokens()] def snake_case__ ( self , lowerCAmelCase_ ): if len(lowerCAmelCase_ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): __lowercase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): __lowercase = self._add_eos_if_not_present(lowerCAmelCase_ ) if token_ids_a is None: return token_ids_a else: __lowercase = self._add_eos_if_not_present(lowerCAmelCase_ ) return token_ids_a + token_ids_a def __getstate__( self ): __lowercase = self.__dict__.copy() __lowercase = None return state def __setstate__( self , lowerCAmelCase_ ): __lowercase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __lowercase = {} __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case__ ( self , lowerCAmelCase_ , **lowerCAmelCase_ ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: __lowercase = SPIECE_UNDERLINE + text.replace(lowerCAmelCase_ , " " ) return super().tokenize(lowerCAmelCase_ , **lowerCAmelCase_ ) def snake_case__ ( self , lowerCAmelCase_ , **lowerCAmelCase_ ): if not self.legacy: __lowercase = text.startswith(lowerCAmelCase_ ) if is_first: __lowercase = text[1:] __lowercase = self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ ) if not self.legacy and not is_first and not text.startswith(" " ) and tokens[0].startswith(lowerCAmelCase_ ): __lowercase = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def snake_case__ ( self , lowerCAmelCase_ ): if token.startswith("<extra_id_" ): __lowercase = re.match(r"<extra_id_(\d+)>" , lowerCAmelCase_ ) __lowercase = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(lowerCAmelCase_ ) def snake_case__ ( self , lowerCAmelCase_ ): if index < self.sp_model.get_piece_size(): __lowercase = self.sp_model.IdToPiece(lowerCAmelCase_ ) else: __lowercase = f'''<extra_id_{self.vocab_size - 1 - index}>''' return token def snake_case__ ( self , lowerCAmelCase_ ): __lowercase = [] __lowercase = "" __lowercase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase_ ) + token __lowercase = True __lowercase = [] else: current_sub_tokens.append(lowerCAmelCase_ ) __lowercase = False out_string += self.sp_model.decode(lowerCAmelCase_ ) return out_string.strip() def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): if not os.path.isdir(lowerCAmelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowercase = os.path.join( lowerCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase_ , "wb" ) as fi: __lowercase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase_ ) return (out_vocab_file,)
321
1
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __A = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict = 1_6000 ) -> str: """simple docstring""" __lowerCamelCase = int(round(sample_rate * max_length ) ) if len(lowercase_ ) <= sample_length: return wav __lowerCamelCase = randint(0 , len(lowercase_ ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class __lowerCAmelCase : """simple docstring""" snake_case_ = field(default=_UpperCamelCase , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) snake_case_ = field( default=_UpperCamelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) snake_case_ = field( default=_UpperCamelCase , metadata={'''help''': '''A file containing the training audio paths and labels.'''} ) snake_case_ = field( default=_UpperCamelCase , metadata={'''help''': '''A file containing the validation audio paths and labels.'''} ) snake_case_ = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) snake_case_ = field( default='''validation''' , metadata={ '''help''': ( '''The name of the training data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) snake_case_ = field( default='''audio''' , metadata={'''help''': '''The name of the dataset column containing the audio data. Defaults to \'audio\''''} , ) snake_case_ = field( default='''label''' , metadata={'''help''': '''The name of the dataset column containing the labels. Defaults to \'label\''''} ) snake_case_ = field( default=_UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) snake_case_ = field( default=_UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) snake_case_ = field( default=20 , metadata={'''help''': '''Audio clips will be randomly cut to this length during training if the value is set.'''} , ) @dataclass class __lowerCAmelCase : """simple docstring""" snake_case_ = field( default='''facebook/wav2vec2-base''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) snake_case_ = field( default=_UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) snake_case_ = field( default=_UpperCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from the Hub'''} ) snake_case_ = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) snake_case_ = field( default=_UpperCamelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} ) snake_case_ = field( default=_UpperCamelCase , metadata={'''help''': '''Whether to freeze the feature encoder layers of the model.'''} ) snake_case_ = field( default=_UpperCamelCase , metadata={'''help''': '''Whether to generate an attention mask in the feature extractor.'''} ) snake_case_ = field( default=_UpperCamelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) snake_case_ = field( default=_UpperCamelCase , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) snake_case_ = field( default=_UpperCamelCase , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( 'The argument `--freeze_feature_extractor` is deprecated and ' 'will be removed in a future version. Use `--freeze_feature_encoder`' 'instead. Setting `freeze_feature_encoder==True`.' , __a , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( 'The argument `--freeze_feature_extractor` is deprecated and ' 'should not be used in combination with `--freeze_feature_encoder`.' 'Only make use of `--freeze_feature_encoder`.' ) def lowerCamelCase_ ( ) -> Tuple: """simple docstring""" __lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCamelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_audio_classification' , lowercase_ , lowercase_ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __lowerCamelCase = training_args.get_process_log_level() logger.setLevel(lowercase_ ) transformers.utils.logging.set_verbosity(lowercase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} """ + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. __lowerCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to train from scratch.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset and prepare it for the audio classification task. __lowerCamelCase = DatasetDict() __lowerCamelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) __lowerCamelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. """ 'Make sure to set `--audio_column_name` to the correct audio column - one of ' F"""{', '.join(raw_datasets['train'].column_names )}.""" ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. """ 'Make sure to set `--label_column_name` to the correct text column - one of ' F"""{', '.join(raw_datasets['train'].column_names )}.""" ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy __lowerCamelCase = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. __lowerCamelCase = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) __lowerCamelCase = feature_extractor.model_input_names[0] def train_transforms(UpperCamelCase__ : Optional[Any] ): __lowerCamelCase = [] for audio in batch[data_args.audio_column_name]: __lowerCamelCase = random_subsample( audio['array'] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(lowercase_ ) __lowerCamelCase = feature_extractor(lowercase_ , sampling_rate=feature_extractor.sampling_rate ) __lowerCamelCase = {model_input_name: inputs.get(lowercase_ )} __lowerCamelCase = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(UpperCamelCase__ : List[Any] ): __lowerCamelCase = [audio["array"] for audio in batch[data_args.audio_column_name]] __lowerCamelCase = feature_extractor(lowercase_ , sampling_rate=feature_extractor.sampling_rate ) __lowerCamelCase = {model_input_name: inputs.get(lowercase_ )} __lowerCamelCase = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. __lowerCamelCase = raw_datasets["train"].features[data_args.label_column_name].names __lowerCamelCase = {}, {} for i, label in enumerate(lowercase_ ): __lowerCamelCase = str(lowercase_ ) __lowerCamelCase = label # Load the accuracy metric from the datasets package __lowerCamelCase = evaluate.load('accuracy' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(UpperCamelCase__ : Optional[int] ): __lowerCamelCase = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=lowercase_ , references=eval_pred.label_ids ) __lowerCamelCase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowercase_ ) , labelaid=lowercase_ , idalabel=lowercase_ , finetuning_task='audio-classification' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __lowerCamelCase = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowercase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: __lowerCamelCase = ( raw_datasets["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(lowercase_ , output_all_columns=lowercase_ ) if training_args.do_eval: if data_args.max_eval_samples is not None: __lowerCamelCase = ( raw_datasets["eval"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(lowercase_ , output_all_columns=lowercase_ ) # Initialize our trainer __lowerCamelCase = Trainer( model=lowercase_ , args=lowercase_ , train_dataset=raw_datasets['train'] if training_args.do_train else None , eval_dataset=raw_datasets['eval'] if training_args.do_eval else None , compute_metrics=lowercase_ , tokenizer=lowercase_ , ) # Training if training_args.do_train: __lowerCamelCase = None if training_args.resume_from_checkpoint is not None: __lowerCamelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowerCamelCase = last_checkpoint __lowerCamelCase = trainer.train(resume_from_checkpoint=lowercase_ ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __lowerCamelCase = trainer.evaluate() trainer.log_metrics('eval' , lowercase_ ) trainer.save_metrics('eval' , lowercase_ ) # Write model card and (optionally) push to hub __lowerCamelCase = { "finetuned_from": model_args.model_name_or_path, "tasks": "audio-classification", "dataset": data_args.dataset_name, "tags": ["audio-classification"], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase_ ) else: trainer.create_model_card(**lowercase_ ) if __name__ == "__main__": main()
707
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = ShapEImgaImgPipeline snake_case_ = ['''image'''] snake_case_ = ['''image'''] snake_case_ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] snake_case_ = False @property def lowercase_ ( self ) -> Dict: '''simple docstring''' return 32 @property def lowercase_ ( self ) -> Dict: '''simple docstring''' return 32 @property def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' return self.time_input_dim * 4 @property def lowercase_ ( self ) -> Any: '''simple docstring''' return 8 @property def lowercase_ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) __lowerCamelCase = CLIPVisionModel(lowerCamelCase__ ) return model @property def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = CLIPImageProcessor( crop_size=224 , do_center_crop=lowerCamelCase__ , do_normalize=lowerCamelCase__ , do_resize=lowerCamelCase__ , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor @property def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'embedding_proj_norm_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __lowerCamelCase = PriorTransformer(**lowerCamelCase__ ) return model @property def lowercase_ ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __lowerCamelCase = ShapERenderer(**lowerCamelCase__ ) return model def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = self.dummy_prior __lowerCamelCase = self.dummy_image_encoder __lowerCamelCase = self.dummy_image_processor __lowerCamelCase = self.dummy_renderer __lowerCamelCase = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=lowerCamelCase__ , clip_sample=lowerCamelCase__ , clip_sample_range=1.0 , ) __lowerCamelCase = { 'prior': prior, 'image_encoder': image_encoder, 'image_processor': image_processor, 'renderer': renderer, 'scheduler': scheduler, } return components def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=0 ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) if str(lowerCamelCase__ ).startswith('mps' ): __lowerCamelCase = torch.manual_seed(lowerCamelCase__ ) else: __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) __lowerCamelCase = { 'image': input_image, 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = 'cpu' __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**lowerCamelCase__ ) __lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = pipe(**self.get_dummy_inputs(lowerCamelCase__ ) ) __lowerCamelCase = output.images[0] __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowerCamelCase = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self ) -> List[Any]: '''simple docstring''' # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = torch_device == 'cpu' __lowerCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCamelCase__ , relax_max_difference=lowerCamelCase__ , ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**lowerCamelCase__ ) __lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 1 __lowerCamelCase = 2 __lowerCamelCase = self.get_dummy_inputs(lowerCamelCase__ ) for key in inputs.keys(): if key in self.batch_params: __lowerCamelCase = batch_size * [inputs[key]] __lowerCamelCase = pipe(**lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Any: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png' ) __lowerCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_img2img_out.npy' ) __lowerCamelCase = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img' ) __lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase = pipe( lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCamelCase__ , lowerCamelCase__ )
167
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class __snake_case ( a__): _lowerCAmelCase = '''cvt''' def __init__( self, A=3, A=[7, 3, 3], A=[4, 2, 2], A=[2, 1, 1], A=[64, 192, 384], A=[1, 3, 6], A=[1, 2, 10], A=[4.0, 4.0, 4.0], A=[0.0, 0.0, 0.0], A=[0.0, 0.0, 0.0], A=[0.0, 0.0, 0.1], A=[True, True, True], A=[False, False, True], A=["dw_bn", "dw_bn", "dw_bn"], A=[3, 3, 3], A=[1, 1, 1], A=[2, 2, 2], A=[1, 1, 1], A=[1, 1, 1], A=0.02, A=1e-12, **A, ): """simple docstring""" super().__init__(**A ) lowerCamelCase : Tuple = num_channels lowerCamelCase : Optional[Any] = patch_sizes lowerCamelCase : str = patch_stride lowerCamelCase : Any = patch_padding lowerCamelCase : List[Any] = embed_dim lowerCamelCase : Dict = num_heads lowerCamelCase : List[Any] = depth lowerCamelCase : Tuple = mlp_ratio lowerCamelCase : List[Any] = attention_drop_rate lowerCamelCase : Union[str, Any] = drop_rate lowerCamelCase : Union[str, Any] = drop_path_rate lowerCamelCase : int = qkv_bias lowerCamelCase : List[Any] = cls_token lowerCamelCase : Optional[int] = qkv_projection_method lowerCamelCase : List[Any] = kernel_qkv lowerCamelCase : int = padding_kv lowerCamelCase : str = stride_kv lowerCamelCase : Any = padding_q lowerCamelCase : List[str] = stride_q lowerCamelCase : List[str] = initializer_range lowerCamelCase : Optional[Any] = layer_norm_eps
320
'''simple docstring''' A = [ 'Audio', 'Array2D', 'Array3D', 'Array4D', 'Array5D', 'ClassLabel', 'Features', 'Sequence', 'Value', 'Image', 'Translation', 'TranslationVariableLanguages', ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
320
1
import numpy as np def snake_case_ (_a : np.ndarray ): return 1 / (1 + np.exp(-vector )) def snake_case_ (_a : np.ndarray ): return vector * sigmoid(_a ) if __name__ == "__main__": import doctest doctest.testmod()
701
'''simple docstring''' def snake_case_ (_a : list[list[int]] , _a : int , _a : int , _a : list[int] ): # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def snake_case_ (_a : list[list[int]] , _a : list[int] , _a : int ): # Base Case if curr_ind == len(_a ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(_a ) ): if valid_connection(_a , _a , _a , _a ): # Insert current vertex into path as next transition UpperCAmelCase = next_ver # Validate created path if util_hamilton_cycle(_a , _a , curr_ind + 1 ): return True # Backtrack UpperCAmelCase = -1 return False def snake_case_ (_a : list[list[int]] , _a : int = 0 ): UpperCAmelCase = [-1] * (len(_a ) + 1) # initialize start and end of path with starting index UpperCAmelCase = UpperCAmelCase = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(_a , _a , 1 ) else []
358
0
'''simple docstring''' def __snake_case ( SCREAMING_SNAKE_CASE_ : int ) -> Optional[int]: """simple docstring""" UpperCAmelCase = len(_A ) for i in range(length - 1 ): UpperCAmelCase = i for k in range(i + 1 , _A ): if collection[k] < collection[least]: UpperCAmelCase = k if least != i: UpperCAmelCase = (collection[i], collection[least]) return collection if __name__ == "__main__": a__ : Dict = input('Enter numbers separated by a comma:\n').strip() a__ : Optional[int] = [int(item) for item in user_input.split(',')] print(selection_sort(unsorted))
51
"""simple docstring""" import string from math import logaa def A ( _A, _A ): """simple docstring""" snake_case_ :Union[str, Any] = document.translate( str.maketrans("", "", string.punctuation ) ).replace("\n", "" ) snake_case_ :Tuple = document_without_punctuation.split(" " ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def A ( _A, _A ): """simple docstring""" snake_case_ :Dict = corpus.lower().translate( str.maketrans("", "", string.punctuation ) ) # strip all punctuation and replace it with '' snake_case_ :Any = corpus_without_punctuation.split("\n" ) snake_case_ :Dict = term.lower() return (len([doc for doc in docs if term in doc] ), len(_A )) def A ( _A, _A, _A=False ): """simple docstring""" if smoothing: if n == 0: raise ValueError("log10(0) is undefined." ) return round(1 + logaa(n / (1 + df) ), 3 ) if df == 0: raise ZeroDivisionError("df must be > 0" ) elif n == 0: raise ValueError("log10(0) is undefined." ) return round(logaa(n / df ), 3 ) def A ( _A, _A ): """simple docstring""" return round(tf * idf, 3 )
584
0
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class __lowerCAmelCase : def __init__(self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=3_2 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=1_6 , lowerCAmelCase__=[1, 2, 1] , lowerCAmelCase__=[2, 2, 4] , lowerCAmelCase__=2 , lowerCAmelCase__=2.0 , lowerCAmelCase__=True , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__="gelu" , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-5 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=1_0 , lowerCAmelCase__=8 , lowerCAmelCase__=["stage1", "stage2", "stage3"] , lowerCAmelCase__=[1, 2, 3] , ): _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : Union[str, Any] = batch_size _UpperCAmelCase : int = image_size _UpperCAmelCase : Dict = patch_size _UpperCAmelCase : Optional[Any] = num_channels _UpperCAmelCase : Tuple = embed_dim _UpperCAmelCase : Dict = depths _UpperCAmelCase : Any = num_heads _UpperCAmelCase : Union[str, Any] = window_size _UpperCAmelCase : List[str] = mlp_ratio _UpperCAmelCase : List[Any] = qkv_bias _UpperCAmelCase : Any = hidden_dropout_prob _UpperCAmelCase : Tuple = attention_probs_dropout_prob _UpperCAmelCase : int = drop_path_rate _UpperCAmelCase : Dict = hidden_act _UpperCAmelCase : Tuple = use_absolute_embeddings _UpperCAmelCase : int = patch_norm _UpperCAmelCase : List[Any] = layer_norm_eps _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Optional[Any] = is_training _UpperCAmelCase : List[str] = scope _UpperCAmelCase : Optional[Any] = use_labels _UpperCAmelCase : List[Any] = type_sequence_label_size _UpperCAmelCase : Optional[int] = encoder_stride _UpperCAmelCase : int = out_features _UpperCAmelCase : List[str] = out_indices def snake_case_ (self ): _UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : List[str] = None if self.use_labels: _UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def snake_case_ (self ): return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Tuple = MaskFormerSwinModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Optional[Any] = model(lowerCAmelCase__ ) _UpperCAmelCase : Dict = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _UpperCAmelCase : str = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : str = MaskFormerSwinBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : List[str] = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [1_3, 1_6, 1_6, 1_6] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4] ) # verify ValueError with self.parent.assertRaises(lowerCAmelCase__ ): _UpperCAmelCase : Union[str, Any] = ["""stem"""] _UpperCAmelCase : str = MaskFormerSwinBackbone(config=lowerCAmelCase__ ) def snake_case_ (self ): _UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() _UpperCAmelCase : List[str] = config_and_inputs _UpperCAmelCase : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __a , __a , unittest.TestCase ): snake_case : Tuple = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) snake_case : str = {"""feature-extraction""": MaskFormerSwinModel} if is_torch_available() else {} snake_case : int = False snake_case : Dict = False snake_case : Union[str, Any] = False snake_case : Tuple = False snake_case : List[Any] = False def snake_case_ (self ): _UpperCAmelCase : Dict = MaskFormerSwinModelTester(self ) _UpperCAmelCase : str = ConfigTester(self , config_class=lowerCAmelCase__ , embed_dim=3_7 ) @require_torch_multi_gpu @unittest.skip( reason=( """`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with""" """ `nn.DataParallel`""" ) ) def snake_case_ (self ): pass def snake_case_ (self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case_ (self ): return def snake_case_ (self ): _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def snake_case_ (self ): _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase__ ) @unittest.skip("""Swin does not use inputs_embeds""" ) def snake_case_ (self ): pass @unittest.skip("""Swin does not support feedforward chunking""" ) def snake_case_ (self ): pass def snake_case_ (self ): _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : List[Any] = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def snake_case_ (self ): _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : str = model_class(lowerCAmelCase__ ) _UpperCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : int = [*signature.parameters.keys()] _UpperCAmelCase : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) @unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" ) def snake_case_ (self ): pass @unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" ) def snake_case_ (self ): pass def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : List[str] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): _UpperCAmelCase : Union[str, Any] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCAmelCase : str = outputs.hidden_states _UpperCAmelCase : Dict = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # Swin has a different seq_length _UpperCAmelCase : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def snake_case_ (self ): _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _UpperCAmelCase : int = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase : Any = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case_ (self ): _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : List[Any] = 3 _UpperCAmelCase : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _UpperCAmelCase : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase : Any = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _UpperCAmelCase : Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _UpperCAmelCase : Any = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase : Tuple = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) @unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" ) def snake_case_ (self ): pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def snake_case_ (self ): pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def snake_case_ (self ): pass def snake_case_ (self ): _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(lowerCAmelCase__ ): _UpperCAmelCase : Dict = 0 return t def check_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__={} ): with torch.no_grad(): _UpperCAmelCase : List[Any] = model(**lowerCAmelCase__ , return_dict=lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCAmelCase : str = model(**lowerCAmelCase__ , return_dict=lowerCAmelCase__ , **lowerCAmelCase__ ).to_tuple() def recursive_check(lowerCAmelCase__ , lowerCAmelCase__ ): if isinstance(lowerCAmelCase__ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(lowerCAmelCase__ , lowerCAmelCase__ ): recursive_check(lowerCAmelCase__ , lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(lowerCAmelCase__ , lowerCAmelCase__ ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(lowerCAmelCase__ ) , set_nan_tensor_to_zero(lowerCAmelCase__ ) , atol=1e-5 ) , msg=( """Tuple and dict output are not equal. Difference:""" F" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:" F" {torch.isnan(lowerCAmelCase__ ).any()} and `inf`: {torch.isinf(lowerCAmelCase__ )}. Dict has" F" `nan`: {torch.isnan(lowerCAmelCase__ ).any()} and `inf`: {torch.isinf(lowerCAmelCase__ )}." ) , ) recursive_check(lowerCAmelCase__ , lowerCAmelCase__ ) for model_class in self.all_model_classes: _UpperCAmelCase : Dict = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : List[str] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Tuple = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) check_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) check_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Dict = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Dict = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) check_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , {"""output_hidden_states""": True} ) _UpperCAmelCase : Any = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) _UpperCAmelCase : str = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) check_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , {"""output_hidden_states""": True} ) @require_torch class __lowerCAmelCase ( unittest.TestCase , __a ): snake_case : Union[str, Any] = (MaskFormerSwinBackbone,) if is_torch_available() else () snake_case : Any = MaskFormerSwinConfig def snake_case_ (self ): _UpperCAmelCase : List[Any] = MaskFormerSwinModelTester(self ) def snake_case_ (self ): _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : Tuple = inputs_dict["""pixel_values"""].shape[0] for backbone_class in self.all_model_classes: _UpperCAmelCase : Optional[Any] = backbone_class(lowerCAmelCase__ ) backbone.to(lowerCAmelCase__ ) backbone.eval() _UpperCAmelCase : Union[str, Any] = backbone(**lowerCAmelCase__ ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , lowerCAmelCase__ ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True _UpperCAmelCase : str = backbone(**lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _UpperCAmelCase : int = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: _UpperCAmelCase : List[Any] = backbone(**lowerCAmelCase__ , output_attentions=lowerCAmelCase__ ) self.assertIsNotNone(outputs.attentions )
707
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase_ : Dict = logging.getLogger(__name__) def __A ( lowerCAmelCase_ , lowerCAmelCase_ ): return (preds == labels).mean() @dataclass class __lowerCAmelCase : snake_case : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) snake_case : Optional[str] = field( default=__a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) snake_case : Optional[str] = field( default=__a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) snake_case : Optional[str] = field( default=__a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __lowerCAmelCase : snake_case : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) snake_case : str = field(metadata={"""help""": """Should contain the data files for the task."""} ) snake_case : int = field( default=1_2_8 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) snake_case : bool = field( default=__a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def __A ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[str] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowerCAmelCase_ ) # Set seed set_seed(training_args.seed ) try: _UpperCAmelCase : Union[str, Any] = processors[data_args.task_name]() _UpperCAmelCase : int = processor.get_labels() _UpperCAmelCase : Optional[int] = len(lowerCAmelCase_ ) except KeyError: raise ValueError("""Task not found: %s""" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCAmelCase_ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) _UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCAmelCase : Optional[int] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , ) # Get datasets _UpperCAmelCase : int = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowerCAmelCase_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _UpperCAmelCase : Tuple = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowerCAmelCase_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(lowerCAmelCase_ ) -> Dict: _UpperCAmelCase : Optional[Any] = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(lowerCAmelCase_ , p.label_ids )} # Data collator _UpperCAmelCase : List[str] = DataCollatorWithPadding(lowerCAmelCase_ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _UpperCAmelCase : List[Any] = Trainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=lowerCAmelCase_ , eval_dataset=lowerCAmelCase_ , compute_metrics=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCAmelCase : Any = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _UpperCAmelCase : int = trainer.evaluate() _UpperCAmelCase : List[str] = os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_master(): with open(lowerCAmelCase_ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , lowerCAmelCase_ , lowerCAmelCase_ ) writer.write("""%s = %s\n""" % (key, value) ) results.update(lowerCAmelCase_ ) return results def __A ( lowerCAmelCase_ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
156
0
"""simple docstring""" import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType lowerCamelCase_ = False, False, False @dataclass class UpperCamelCase_ : __magic_name__ = None __magic_name__ = True __magic_name__ = True __magic_name__ = None # Automatically constructed __magic_name__ = "dict" __magic_name__ = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) __magic_name__ = field(default='''Audio''' , init=__UpperCAmelCase , repr=__UpperCAmelCase ) def __call__( self : Dict ) -> int: return self.pa_type def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : Union[str, bytes, dict] ) -> List[Any]: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install \'soundfile\'." ) from err if isinstance(__lowercase , __lowercase ): return {"bytes": None, "path": value} elif isinstance(__lowercase , __lowercase ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes UpperCAmelCase_ : Optional[int] = BytesIO() sf.write(__lowercase , value["array"] , value["sampling_rate"] , format="wav" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm" ): # "PCM" only has raw audio bytes if value.get("sampling_rate" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a \'sampling_rate\' in Audio object" ) if value.get("bytes" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) UpperCAmelCase_ : int = np.frombuffer(value["bytes"] , dtype=np.intaa ).astype(np.floataa ) / 32_767 else: UpperCAmelCase_ : int = np.memmap(value["path"] , dtype="h" , mode="r" ).astype(np.floataa ) / 32_767 UpperCAmelCase_ : Tuple = BytesIO(bytes() ) sf.write(__lowercase , __lowercase , value["sampling_rate"] , format="wav" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f"""An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.""" ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : dict , lowerCAmelCase_ : Optional[Dict[str, Union[str, bool, None]]] = None ) -> str: if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." ) UpperCAmelCase_ : Any = (value['''path'''], BytesIO(value["bytes"] )) if value['''bytes'''] is not None else (value['''path'''], None) if path is None and file is None: raise ValueError(f"""An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.""" ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install \'librosa\' and \'soundfile\'." ) from err UpperCAmelCase_ : Union[str, Any] = xsplitext(__lowercase )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) if file is None: UpperCAmelCase_ : Union[str, Any] = token_per_repo_id or {} UpperCAmelCase_ : Union[str, Any] = path.split("::" )[-1] try: UpperCAmelCase_ : Dict = string_to_dict(__lowercase , config.HUB_DATASETS_URL )['''repo_id'''] UpperCAmelCase_ : Tuple = token_per_repo_id[repo_id] except (ValueError, KeyError): UpperCAmelCase_ : Any = None with xopen(__lowercase , "rb" , use_auth_token=__lowercase ) as f: UpperCAmelCase_ : Optional[Any] = sf.read(__lowercase ) else: UpperCAmelCase_ : Optional[Any] = sf.read(__lowercase ) UpperCAmelCase_ : Union[str, Any] = array.T if self.mono: UpperCAmelCase_ : int = librosa.to_mono(__lowercase ) if self.sampling_rate and self.sampling_rate != sampling_rate: UpperCAmelCase_ : str = librosa.resample(__lowercase , orig_sr=__lowercase , target_sr=self.sampling_rate ) UpperCAmelCase_ : List[str] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def _SCREAMING_SNAKE_CASE ( self : str ) -> str: from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature." ) return { "bytes": Value("binary" ), "path": Value("string" ), } def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Union[pa.StringArray, pa.StructArray] ) -> Tuple: if pa.types.is_string(storage.type ): UpperCAmelCase_ : List[str] = pa.array([None] * len(__lowercase ) , type=pa.binary() ) UpperCAmelCase_ : str = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCAmelCase_ : Union[str, Any] = pa.array([None] * len(__lowercase ) , type=pa.string() ) UpperCAmelCase_ : Union[str, Any] = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ): UpperCAmelCase_ : Tuple = pa.array([Audio().encode_example(__lowercase ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: UpperCAmelCase_ : Union[str, Any] = storage.field("bytes" ) else: UpperCAmelCase_ : List[str] = pa.array([None] * len(__lowercase ) , type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: UpperCAmelCase_ : int = storage.field("path" ) else: UpperCAmelCase_ : str = pa.array([None] * len(__lowercase ) , type=pa.string() ) UpperCAmelCase_ : List[str] = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() ) return array_cast(__lowercase , self.pa_type ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : pa.StructArray ) -> Dict: @no_op_if_value_is_null def path_to_bytes(lowerCAmelCase_ : str ): with xopen(__lowercase , "rb" ) as f: UpperCAmelCase_ : Optional[Any] = f.read() return bytes_ UpperCAmelCase_ : List[Any] = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCAmelCase_ : Optional[Any] = pa.array( [os.path.basename(__lowercase ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , ) UpperCAmelCase_ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(__lowercase , self.pa_type )
95
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging lowercase__ :Tuple = logging.get_logger(__name__) lowercase__ :List[Any] = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class snake_case ( __UpperCAmelCase ): '''simple docstring''' _A : Optional[int] = 'mctct' def __init__( self : List[Any] , __lowercase : Optional[int]=8_065 , __lowercase : Union[str, Any]=1_536 , __lowercase : str=36 , __lowercase : Optional[int]=6_144 , __lowercase : Union[str, Any]=4 , __lowercase : str=384 , __lowercase : str=920 , __lowercase : List[str]=1e-5 , __lowercase : str=0.3 , __lowercase : Union[str, Any]="relu" , __lowercase : List[str]=0.0_2 , __lowercase : List[Any]=0.3 , __lowercase : Tuple=0.3 , __lowercase : int=1 , __lowercase : str=0 , __lowercase : Union[str, Any]=2 , __lowercase : Optional[Any]=1 , __lowercase : Any=0.3 , __lowercase : int=1 , __lowercase : Optional[Any]=(7,) , __lowercase : List[str]=(3,) , __lowercase : int=80 , __lowercase : Any=1 , __lowercase : Union[str, Any]=None , __lowercase : Optional[Any]="sum" , __lowercase : int=False , **__lowercase : Tuple , ): '''simple docstring''' super().__init__(**__lowercase , pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase ) __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : Optional[Any] = num_hidden_layers __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : Tuple = attention_head_dim __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : List[str] = layer_norm_eps __UpperCAmelCase : Optional[int] = layerdrop __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : List[str] = attention_probs_dropout_prob __UpperCAmelCase : Dict = pad_token_id __UpperCAmelCase : Union[str, Any] = bos_token_id __UpperCAmelCase : Optional[int] = eos_token_id __UpperCAmelCase : Optional[Any] = conv_glu_dim __UpperCAmelCase : List[str] = conv_dropout __UpperCAmelCase : str = num_conv_layers __UpperCAmelCase : int = input_feat_per_channel __UpperCAmelCase : Any = input_channels __UpperCAmelCase : int = conv_channels __UpperCAmelCase : List[Any] = ctc_loss_reduction __UpperCAmelCase : Union[str, Any] = ctc_zero_infinity # prevents config testing fail with exporting to json __UpperCAmelCase : str = list(__lowercase ) __UpperCAmelCase : Union[str, Any] = list(__lowercase ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ''' f'''but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ''' f'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
522
0
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) UpperCamelCase =[ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class A ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None ): UpperCamelCase_ : Optional[Any] = None UpperCamelCase_ : Any = os.path.abspath(os.path.join("""examples""" , """by_feature""" ) ) UpperCamelCase_ : Any = os.path.abspath("""examples""" ) for item in os.listdir(__lowerCAmelCase ): if item not in EXCLUDE_EXAMPLES: UpperCamelCase_ : Any = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) if os.path.isfile(__lowerCAmelCase ) and ".py" in item_path: with self.subTest( tested_script=__lowerCAmelCase , feature_script=__lowerCAmelCase , tested_section="""main()""" if parser_only else """training_function()""" , ): UpperCamelCase_ : Optional[Any] = compare_against_test( os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase_ : Any = """\n""".join(__lowerCAmelCase ) if special_strings is not None: for string in special_strings: UpperCamelCase_ : Optional[int] = diff.replace(__lowerCAmelCase , """""" ) self.assertEqual(__lowerCAmelCase , """""" ) def _UpperCAmelCase ( self ): self.one_complete_example("""complete_nlp_example.py""" , __lowerCAmelCase ) self.one_complete_example("""complete_nlp_example.py""" , __lowerCAmelCase ) def _UpperCAmelCase ( self ): UpperCamelCase_ : str = os.path.abspath(os.path.join("""examples""" , """cv_example.py""" ) ) UpperCamelCase_ : Tuple = [ """ """ * 16 + """{\n\n""", """ """ * 20 + """\"accuracy\": eval_metric[\"accuracy\"],\n\n""", """ """ * 20 + """\"f1\": eval_metric[\"f1\"],\n\n""", """ """ * 20 + """\"train_loss\": total_loss.item() / len(train_dataloader),\n\n""", """ """ * 20 + """\"epoch\": epoch,\n\n""", """ """ * 16 + """},\n\n""", """ """ * 16 + """step=epoch,\n""", """ """ * 12, """ """ * 8 + """for step, batch in enumerate(active_dataloader):\n""", ] self.one_complete_example("""complete_cv_example.py""" , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) self.one_complete_example("""complete_cv_example.py""" , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) @mock.patch.dict(os.environ, {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class A ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __a : Dict = False @classmethod def _UpperCAmelCase ( cls ): super().setUpClass() UpperCamelCase_ : List[Any] = tempfile.mkdtemp() UpperCamelCase_ : Dict = os.path.join(cls._tmpdir , """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) UpperCamelCase_ : List[str] = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def _UpperCAmelCase ( cls ): super().tearDownClass() shutil.rmtree(cls._tmpdir ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Optional[int] = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """epoch_0""" ) ) ) def _UpperCAmelCase ( self ): UpperCamelCase_ : List[Any] = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split() UpperCamelCase_ : Union[str, Any] = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """step_2""" ) ) ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Optional[int] = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n ".split() UpperCamelCase_ : Optional[Any] = run_command(self._launch_args + testargs , return_stdout=__lowerCAmelCase ) self.assertNotIn("""epoch 0:""" , __lowerCAmelCase ) self.assertIn("""epoch 1:""" , __lowerCAmelCase ) def _UpperCAmelCase ( self ): UpperCamelCase_ : List[Any] = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n ".split() UpperCamelCase_ : Optional[int] = run_command(self._launch_args + testargs , return_stdout=__lowerCAmelCase ) if torch.cuda.is_available(): UpperCamelCase_ : int = torch.cuda.device_count() else: UpperCamelCase_ : List[Any] = 1 if num_processes > 1: self.assertNotIn("""epoch 0:""" , __lowerCAmelCase ) self.assertIn("""epoch 1:""" , __lowerCAmelCase ) else: self.assertIn("""epoch 0:""" , __lowerCAmelCase ) self.assertIn("""epoch 1:""" , __lowerCAmelCase ) @slow def _UpperCAmelCase ( self ): UpperCamelCase_ : Optional[Any] = """ examples/by_feature/cross_validation.py --num_folds 2 """.split() with mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """0"""} ): UpperCamelCase_ : str = run_command(self._launch_args + testargs , return_stdout=__lowerCAmelCase ) UpperCamelCase_ : Any = re.findall("""({.+})""" , __lowerCAmelCase ) UpperCamelCase_ : List[str] = [r for r in results if """accuracy""" in r][-1] UpperCamelCase_ : str = ast.literal_eval(__lowerCAmelCase ) self.assertGreaterEqual(results["""accuracy"""] , 0.75 ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Optional[Any] = ["""examples/by_feature/multi_process_metrics.py"""] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def _UpperCAmelCase ( self ): with tempfile.TemporaryDirectory() as tmpdir: UpperCamelCase_ : Optional[int] = F"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__lowerCAmelCase , """tracking""" ) ) ) def _UpperCAmelCase ( self ): UpperCamelCase_ : int = ["""examples/by_feature/gradient_accumulation.py"""] run_command(self._launch_args + testargs ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Tuple = ["""examples/by_feature/local_sgd.py"""] run_command(self._launch_args + testargs )
713
'''simple docstring''' from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand UpperCamelCase =logging.get_logger(__name__) # pylint: disable=invalid-name def snake_case ( a_ : str ) -> int: """simple docstring""" if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(a_ ): return ext raise Exception( f"Unable to determine file format from file extension {path}. " f"Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}" ) def snake_case ( a_ : List[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ : Any = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) UpperCamelCase_ : List[Any] = try_infer_format_from_ext(args.input ) if args.format == """infer""" else args.format UpperCamelCase_ : Tuple = PipelineDataFormat.from_str( format=a_ , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(a_ , a_ ) class A ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase_ : Union[str, Any] = nlp UpperCamelCase_ : Optional[Any] = reader @staticmethod def _UpperCAmelCase ( __lowerCAmelCase ): UpperCamelCase_ : List[str] = parser.add_parser("""run""" , help="""Run a pipeline through the CLI""" ) run_parser.add_argument("""--task""" , choices=get_supported_tasks() , help="""Task to run""" ) run_parser.add_argument("""--input""" , type=__lowerCAmelCase , help="""Path to the file to use for inference""" ) run_parser.add_argument("""--output""" , type=__lowerCAmelCase , help="""Path to the file that will be used post to write results.""" ) run_parser.add_argument("""--model""" , type=__lowerCAmelCase , help="""Name or path to the model to instantiate.""" ) run_parser.add_argument("""--config""" , type=__lowerCAmelCase , help="""Name or path to the model's config to instantiate.""" ) run_parser.add_argument( """--tokenizer""" , type=__lowerCAmelCase , help="""Name of the tokenizer to use. (default: same as the model name)""" ) run_parser.add_argument( """--column""" , type=__lowerCAmelCase , help="""Name of the column to use as input. (For multi columns input as QA use column1,columns2)""" , ) run_parser.add_argument( """--format""" , type=__lowerCAmelCase , default="""infer""" , choices=PipelineDataFormat.SUPPORTED_FORMATS , help="""Input format to read from""" , ) run_parser.add_argument( """--device""" , type=__lowerCAmelCase , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , ) run_parser.add_argument("""--overwrite""" , action="""store_true""" , help="""Allow overwriting the output file.""" ) run_parser.set_defaults(func=__lowerCAmelCase ) def _UpperCAmelCase ( self ): UpperCamelCase_ , UpperCamelCase_ : str = self._nlp, [] for entry in self._reader: UpperCamelCase_ : List[Any] = nlp(**__lowerCAmelCase ) if self._reader.is_multi_columns else nlp(__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): outputs.append(__lowerCAmelCase ) else: outputs += output # Saving data if self._nlp.binary_output: UpperCamelCase_ : int = self._reader.save_binary(__lowerCAmelCase ) logger.warning(F"Current pipeline requires output to be in binary format, saving at {binary_path}" ) else: self._reader.save(__lowerCAmelCase )
543
0
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowercase : Union[str, Any] = logging.get_logger(__name__) lowercase : Dict = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = """codegen""" __lowercase = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowerCAmelCase_=5_04_00 , lowerCAmelCase_=20_48 , lowerCAmelCase_=20_48 , lowerCAmelCase_=40_96 , lowerCAmelCase_=28 , lowerCAmelCase_=16 , lowerCAmelCase_=64 , lowerCAmelCase_=None , lowerCAmelCase_="gelu_new" , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=1E-5 , lowerCAmelCase_=0.02 , lowerCAmelCase_=True , lowerCAmelCase_=5_02_56 , lowerCAmelCase_=5_02_56 , lowerCAmelCase_=False , **lowerCAmelCase_ , ): """simple docstring""" _snake_case = vocab_size _snake_case = n_ctx _snake_case = n_positions _snake_case = n_embd _snake_case = n_layer _snake_case = n_head _snake_case = n_inner _snake_case = rotary_dim _snake_case = activation_function _snake_case = resid_pdrop _snake_case = embd_pdrop _snake_case = attn_pdrop _snake_case = layer_norm_epsilon _snake_case = initializer_range _snake_case = use_cache _snake_case = bos_token_id _snake_case = eos_token_id super().__init__( bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , tie_word_embeddings=lowerCAmelCase_ , **lowerCAmelCase_ ) class __UpperCAmelCase ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ = "default" , lowerCAmelCase_ = None , lowerCAmelCase_ = False , ): """simple docstring""" super().__init__(lowerCAmelCase_ , task=lowerCAmelCase_ , patching_specs=lowerCAmelCase_ , use_past=lowerCAmelCase_ ) if not getattr(self._config , 'pad_token_id' , lowerCAmelCase_ ): # TODO: how to do that better? _snake_case = 0 @property def lowerCamelCase ( self ): """simple docstring""" _snake_case = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase_ , direction='inputs' ) _snake_case = {0: 'batch', 1: 'past_sequence + sequence'} else: _snake_case = {0: 'batch', 1: 'sequence'} return common_inputs @property def lowerCamelCase ( self ): """simple docstring""" return self._config.n_layer @property def lowerCamelCase ( self ): """simple docstring""" return self._config.n_head def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = -1 , lowerCAmelCase_ = -1 , lowerCAmelCase_ = False , lowerCAmelCase_ = None , ): """simple docstring""" _snake_case = super(lowerCAmelCase_ , self ).generate_dummy_inputs( lowerCAmelCase_ , batch_size=lowerCAmelCase_ , seq_length=lowerCAmelCase_ , is_pair=lowerCAmelCase_ , framework=lowerCAmelCase_ ) # We need to order the input in the way they appears in the forward() _snake_case = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _snake_case , _snake_case = common_inputs['input_ids'].shape # Not using the same length for past_key_values _snake_case = seqlen + 2 _snake_case = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _snake_case = [ (torch.zeros(lowerCAmelCase_ ), torch.zeros(lowerCAmelCase_ )) for _ in range(self.num_layers ) ] _snake_case = common_inputs['attention_mask'] if self.use_past: _snake_case = ordered_inputs['attention_mask'].dtype _snake_case = torch.cat( [ordered_inputs['attention_mask'], torch.ones(lowerCAmelCase_ , lowerCAmelCase_ , dtype=lowerCAmelCase_ )] , dim=1 ) return ordered_inputs @property def lowerCamelCase ( self ): """simple docstring""" return 13
495
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowercase : Dict = logging.get_logger(__name__) if is_vision_available(): import PIL class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = ["""pixel_values"""] def __init__( self , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = PILImageResampling.BICUBIC , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = True , lowerCAmelCase_ = 1 / 2_55 , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = True , **lowerCAmelCase_ , ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) _snake_case = size if size is not None else {'shortest_edge': 2_24} _snake_case = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) _snake_case = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} _snake_case = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ , param_name='crop_size' ) _snake_case = do_resize _snake_case = size _snake_case = resample _snake_case = do_center_crop _snake_case = crop_size _snake_case = do_rescale _snake_case = rescale_factor _snake_case = do_normalize _snake_case = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _snake_case = image_std if image_std is not None else OPENAI_CLIP_STD _snake_case = do_convert_rgb def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = PILImageResampling.BICUBIC , lowerCAmelCase_ = None , **lowerCAmelCase_ , ): """simple docstring""" _snake_case = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _snake_case = get_resize_output_image_size(lowerCAmelCase_ , size=size['shortest_edge'] , default_to_square=lowerCAmelCase_ ) return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ , ): """simple docstring""" _snake_case = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(lowerCAmelCase_ , size=(size['height'], size['width']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ , ): """simple docstring""" return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ , ): """simple docstring""" return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = ChannelDimension.FIRST , **lowerCAmelCase_ , ): """simple docstring""" _snake_case = do_resize if do_resize is not None else self.do_resize _snake_case = size if size is not None else self.size _snake_case = get_size_dict(lowerCAmelCase_ , param_name='size' , default_to_square=lowerCAmelCase_ ) _snake_case = resample if resample is not None else self.resample _snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop _snake_case = crop_size if crop_size is not None else self.crop_size _snake_case = get_size_dict(lowerCAmelCase_ , param_name='crop_size' , default_to_square=lowerCAmelCase_ ) _snake_case = do_rescale if do_rescale is not None else self.do_rescale _snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case = do_normalize if do_normalize is not None else self.do_normalize _snake_case = image_mean if image_mean is not None else self.image_mean _snake_case = image_std if image_std is not None else self.image_std _snake_case = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _snake_case = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _snake_case = [convert_to_rgb(lowerCAmelCase_ ) for image in images] # All transformations expect numpy arrays. _snake_case = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: _snake_case = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images] if do_center_crop: _snake_case = [self.center_crop(image=lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images] if do_rescale: _snake_case = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images] if do_normalize: _snake_case = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images] _snake_case = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] _snake_case = {'pixel_values': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
495
1
from scipy.stats import pearsonr import datasets lowerCamelCase : Optional[Any] = ''' Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. ''' lowerCamelCase : Optional[Any] = ''' Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results[\'pearsonr\'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) [\'p-value\', \'pearsonr\'] >>> print(round(results[\'pearsonr\'], 2)) -0.74 >>> print(round(results[\'p-value\'], 2)) 0.15 ''' lowerCamelCase : int = ''' @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase (datasets.Metric ): def __UpperCAmelCase ( self )-> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"] , ) def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False )-> Tuple: if return_pvalue: __lowerCAmelCase = pearsonr(__UpperCamelCase , __UpperCamelCase ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(__UpperCamelCase , __UpperCamelCase )[0] )}
290
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowerCamelCase : List[str] = '''Create a default config file for Accelerate with only a few flags set.''' def __lowerCAmelCase ( __snake_case="no" , __snake_case = default_json_config_file , __snake_case = False ): __lowerCAmelCase = Path(__snake_case ) path.parent.mkdir(parents=__snake_case , exist_ok=__snake_case ) if path.exists(): print( F"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False __lowerCAmelCase = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) __lowerCAmelCase = { "compute_environment": "LOCAL_MACHINE", "mixed_precision": mixed_precision, } if torch.cuda.is_available(): __lowerCAmelCase = torch.cuda.device_count() __lowerCAmelCase = num_gpus __lowerCAmelCase = False if num_gpus > 1: __lowerCAmelCase = "MULTI_GPU" else: __lowerCAmelCase = "NO" elif is_xpu_available() and use_xpu: __lowerCAmelCase = torch.xpu.device_count() __lowerCAmelCase = num_xpus __lowerCAmelCase = False if num_xpus > 1: __lowerCAmelCase = "MULTI_XPU" else: __lowerCAmelCase = "NO" elif is_npu_available(): __lowerCAmelCase = torch.npu.device_count() __lowerCAmelCase = num_npus __lowerCAmelCase = False if num_npus > 1: __lowerCAmelCase = "MULTI_NPU" else: __lowerCAmelCase = "NO" else: __lowerCAmelCase = 0 __lowerCAmelCase = True __lowerCAmelCase = 1 __lowerCAmelCase = "NO" __lowerCAmelCase = ClusterConfig(**__snake_case ) config.to_json_file(__snake_case ) return path def __lowerCAmelCase ( __snake_case , __snake_case ): __lowerCAmelCase = parser.add_parser("default" , parents=__snake_case , help=__snake_case , formatter_class=__snake_case ) parser.add_argument( "--config_file" , default=__snake_case , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , dest="save_location" , ) parser.add_argument( "--mixed_precision" , choices=["no", "fp16", "bf16"] , type=__snake_case , help="Whether or not to use mixed precision training. " "Choose between FP16 and BF16 (bfloat16) training. " "BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later." , default="no" , ) parser.set_defaults(func=__snake_case ) return parser def __lowerCAmelCase ( __snake_case ): __lowerCAmelCase = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"""accelerate configuration saved at {config_file}""" )
290
1