code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowercase ( __snake_case , unittest.TestCase ): UpperCamelCase = ConsistencyModelPipeline UpperCamelCase = UNCONDITIONAL_IMAGE_GENERATION_PARAMS UpperCamelCase = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt UpperCamelCase = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) @property def _lowercase ( self : str ) -> Any: """simple docstring""" UpperCAmelCase = UNetaDModel.from_pretrained( """diffusers/consistency-models-test""" , subfolder="""test_unet""" , ) return unet @property def _lowercase ( self : Optional[int] ) -> Dict: """simple docstring""" UpperCAmelCase = UNetaDModel.from_pretrained( """diffusers/consistency-models-test""" , subfolder="""test_unet_class_cond""" , ) return unet def _lowercase ( self : List[str] , __lowerCamelCase : Any=False ) -> Optional[Any]: """simple docstring""" if class_cond: UpperCAmelCase = self.dummy_cond_unet else: UpperCAmelCase = self.dummy_uncond_unet # Default to CM multistep sampler UpperCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCAmelCase = { """unet""": unet, """scheduler""": scheduler, } return components def _lowercase ( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : str=0 ) -> Optional[int]: """simple docstring""" if str(__lowerCamelCase ).startswith("""mps""" ): UpperCAmelCase = torch.manual_seed(__lowerCamelCase ) else: UpperCAmelCase = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) UpperCAmelCase = { """batch_size""": 1, """num_inference_steps""": None, """timesteps""": [2_2, 0], """generator""": generator, """output_type""": """np""", } return inputs def _lowercase ( self : int ) -> Dict: """simple docstring""" UpperCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = ConsistencyModelPipeline(**__lowerCamelCase ) UpperCAmelCase = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCAmelCase = self.get_dummy_inputs(__lowerCamelCase ) UpperCAmelCase = pipe(**__lowerCamelCase ).images assert image.shape == (1, 3_2, 3_2, 3) UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = np.array([0.3_572, 0.6_273, 0.4_031, 0.3_961, 0.4_321, 0.5_730, 0.5_266, 0.4_780, 0.5_004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowercase ( self : Optional[int] ) -> Any: """simple docstring""" UpperCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.get_dummy_components(class_cond=__lowerCamelCase ) UpperCAmelCase = ConsistencyModelPipeline(**__lowerCamelCase ) UpperCAmelCase = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCAmelCase = self.get_dummy_inputs(__lowerCamelCase ) UpperCAmelCase = 0 UpperCAmelCase = pipe(**__lowerCamelCase ).images assert image.shape == (1, 3_2, 3_2, 3) UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = np.array([0.3_572, 0.6_273, 0.4_031, 0.3_961, 0.4_321, 0.5_730, 0.5_266, 0.4_780, 0.5_004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowercase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = ConsistencyModelPipeline(**__lowerCamelCase ) UpperCAmelCase = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCAmelCase = self.get_dummy_inputs(__lowerCamelCase ) UpperCAmelCase = 1 UpperCAmelCase = None UpperCAmelCase = pipe(**__lowerCamelCase ).images assert image.shape == (1, 3_2, 3_2, 3) UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = np.array([0.5_004, 0.5_004, 0.4_994, 0.5_008, 0.4_976, 0.5_018, 0.4_990, 0.4_982, 0.4_987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowercase ( self : int ) -> Any: """simple docstring""" UpperCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.get_dummy_components(class_cond=__lowerCamelCase ) UpperCAmelCase = ConsistencyModelPipeline(**__lowerCamelCase ) UpperCAmelCase = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCAmelCase = self.get_dummy_inputs(__lowerCamelCase ) UpperCAmelCase = 1 UpperCAmelCase = None UpperCAmelCase = 0 UpperCAmelCase = pipe(**__lowerCamelCase ).images assert image.shape == (1, 3_2, 3_2, 3) UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = np.array([0.5_004, 0.5_004, 0.4_994, 0.5_008, 0.4_976, 0.5_018, 0.4_990, 0.4_982, 0.4_987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): def _lowercase ( self : Any ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : Dict , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : str=False , __lowerCamelCase : Any="cpu" , __lowerCamelCase : List[Any]=torch.floataa , __lowerCamelCase : Tuple=(1, 3, 6_4, 6_4) ) -> Optional[int]: """simple docstring""" UpperCAmelCase = torch.manual_seed(__lowerCamelCase ) UpperCAmelCase = { """num_inference_steps""": None, """timesteps""": [2_2, 0], """class_labels""": 0, """generator""": generator, """output_type""": """np""", } if get_fixed_latents: UpperCAmelCase = self.get_fixed_latents(seed=__lowerCamelCase , device=__lowerCamelCase , dtype=__lowerCamelCase , shape=__lowerCamelCase ) UpperCAmelCase = latents return inputs def _lowercase ( self : Dict , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : Any="cpu" , __lowerCamelCase : Union[str, Any]=torch.floataa , __lowerCamelCase : Tuple=(1, 3, 6_4, 6_4) ) -> List[str]: """simple docstring""" if type(__lowerCamelCase ) == str: UpperCAmelCase = torch.device(__lowerCamelCase ) UpperCAmelCase = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) UpperCAmelCase = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=__lowerCamelCase , dtype=__lowerCamelCase ) return latents def _lowercase ( self : List[Any] ) -> List[str]: """simple docstring""" UpperCAmelCase = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) UpperCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCAmelCase = ConsistencyModelPipeline(unet=__lowerCamelCase , scheduler=__lowerCamelCase ) pipe.to(torch_device=__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCAmelCase = self.get_inputs() UpperCAmelCase = pipe(**__lowerCamelCase ).images assert image.shape == (1, 6_4, 6_4, 3) UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = np.array([0.0_888, 0.0_881, 0.0_666, 0.0_479, 0.0_292, 0.0_195, 0.0_201, 0.0_163, 0.0_254] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _lowercase ( self : Optional[Any] ) -> Tuple: """simple docstring""" UpperCAmelCase = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) UpperCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCAmelCase = ConsistencyModelPipeline(unet=__lowerCamelCase , scheduler=__lowerCamelCase ) pipe.to(torch_device=__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCAmelCase = self.get_inputs() UpperCAmelCase = 1 UpperCAmelCase = None UpperCAmelCase = pipe(**__lowerCamelCase ).images assert image.shape == (1, 6_4, 6_4, 3) UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = np.array([0.0_340, 0.0_152, 0.0_063, 0.0_267, 0.0_221, 0.0_107, 0.0_416, 0.0_186, 0.0_217] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def _lowercase ( self : Optional[int] ) -> Tuple: """simple docstring""" UpperCAmelCase = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) UpperCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCAmelCase = ConsistencyModelPipeline(unet=__lowerCamelCase , scheduler=__lowerCamelCase ) pipe.to(torch_device=__lowerCamelCase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCAmelCase = self.get_inputs(get_fixed_latents=__lowerCamelCase , device=__lowerCamelCase ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__lowerCamelCase , enable_math=__lowerCamelCase , enable_mem_efficient=__lowerCamelCase ): UpperCAmelCase = pipe(**__lowerCamelCase ).images assert image.shape == (1, 6_4, 6_4, 3) UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = np.array([0.1_875, 0.1_428, 0.1_289, 0.2_151, 0.2_092, 0.1_477, 0.1_877, 0.1_641, 0.1_353] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def _lowercase ( self : List[Any] ) -> Tuple: """simple docstring""" UpperCAmelCase = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) UpperCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCAmelCase = ConsistencyModelPipeline(unet=__lowerCamelCase , scheduler=__lowerCamelCase ) pipe.to(torch_device=__lowerCamelCase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCAmelCase = self.get_inputs(get_fixed_latents=__lowerCamelCase , device=__lowerCamelCase ) UpperCAmelCase = 1 UpperCAmelCase = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__lowerCamelCase , enable_math=__lowerCamelCase , enable_mem_efficient=__lowerCamelCase ): UpperCAmelCase = pipe(**__lowerCamelCase ).images assert image.shape == (1, 6_4, 6_4, 3) UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = np.array([0.1_663, 0.1_948, 0.2_275, 0.1_680, 0.1_204, 0.1_245, 0.1_858, 0.1_338, 0.2_095] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
377
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm __a = re.compile("""[^A-Za-z_0-9]""") # parameters used in DuplicationIndex __a = 10 __a = 256 def _UpperCamelCase ( lowerCAmelCase_ ) ->Optional[MinHash]: if len(lowerCAmelCase_ ) < MIN_NUM_TOKENS: return None UpperCAmelCase = MinHash(num_perm=lowerCAmelCase_ ) for token in set(lowerCAmelCase_ ): min_hash.update(token.encode() ) return min_hash def _UpperCamelCase ( lowerCAmelCase_ ) ->Set[str]: return {t for t in NON_ALPHA.split(lowerCAmelCase_ ) if len(t.strip() ) > 0} class __lowercase : def __init__( self : List[str] , *, __lowerCamelCase : float = 0.85 , ) -> Any: """simple docstring""" UpperCAmelCase = duplication_jaccard_threshold UpperCAmelCase = NUM_PERM UpperCAmelCase = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) UpperCAmelCase = defaultdict(__lowerCamelCase ) def _lowercase ( self : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : MinHash ) -> None: """simple docstring""" UpperCAmelCase = self._index.query(__lowerCamelCase ) if code_key in self._index.keys: print(F"""Duplicate key {code_key}""" ) return self._index.insert(__lowerCamelCase , __lowerCamelCase ) if len(__lowerCamelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__lowerCamelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(__lowerCamelCase ) def _lowercase ( self : Union[str, Any] ) -> List[List[Dict]]: """simple docstring""" UpperCAmelCase = [] for base, duplicates in self._duplicate_clusters.items(): UpperCAmelCase = [base] + list(__lowerCamelCase ) # reformat the cluster to be a list of dict UpperCAmelCase = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(__lowerCamelCase ) return duplicate_clusters def _lowercase ( self : Tuple , __lowerCamelCase : Optional[int] ) -> None: """simple docstring""" UpperCAmelCase = self.get_duplicate_clusters() with open(__lowerCamelCase , """w""" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) def _UpperCamelCase ( lowerCAmelCase_ ) ->Tuple: UpperCAmelCase , UpperCAmelCase = element UpperCAmelCase = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _UpperCamelCase ( lowerCAmelCase_ ) ->int: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(lowerCAmelCase_ , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) ->Any: UpperCAmelCase = DuplicationIndex(duplication_jaccard_threshold=lowerCAmelCase_ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowerCAmelCase_ ) ) , max_queue_size=1_0_0 ) ): di.add(lowerCAmelCase_ , lowerCAmelCase_ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) ->float: UpperCAmelCase = get_tokens(lowerCAmelCase_ ) UpperCAmelCase = get_tokens(lowerCAmelCase_ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) __a = None def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) ->Dict: UpperCAmelCase = [] for elementa in cluster: UpperCAmelCase = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: UpperCAmelCase = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(lowerCAmelCase_ , lowerCAmelCase_ ) >= jaccard_threshold: elementa["copies"] += 1 break else: UpperCAmelCase = 1 extremes.append(lowerCAmelCase_ ) return extremes def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ->Optional[int]: global _shared_dataset UpperCAmelCase = dataset UpperCAmelCase = [] UpperCAmelCase = partial(_find_cluster_extremes_shared , jaccard_threshold=lowerCAmelCase_ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowerCAmelCase_ , lowerCAmelCase_ , ) , total=len(lowerCAmelCase_ ) , ): extremes_list.append(lowerCAmelCase_ ) return extremes_list def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ = 0.85 ) ->Tuple[Type[Dataset], List[List[Dict]]]: UpperCAmelCase = make_duplicate_clusters(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} UpperCAmelCase = {} UpperCAmelCase = find_extremes(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for extremes in extremes_clusters: for element in extremes: UpperCAmelCase = element UpperCAmelCase = duplicate_indices - set(extreme_dict.keys() ) UpperCAmelCase = dataset.filter(lambda lowerCAmelCase_ , lowerCAmelCase_ : idx not in remove_indices , with_indices=lowerCAmelCase_ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: UpperCAmelCase = element["""base_index"""] in extreme_dict if element["is_extreme"]: UpperCAmelCase = extreme_dict[element["""base_index"""]]["""copies"""] print(F"""Original dataset size: {len(lowerCAmelCase_ )}""" ) print(F"""Number of duplicate clusters: {len(lowerCAmelCase_ )}""" ) print(F"""Files in duplicate cluster: {len(lowerCAmelCase_ )}""" ) print(F"""Unique files in duplicate cluster: {len(lowerCAmelCase_ )}""" ) print(F"""Filtered dataset size: {len(lowerCAmelCase_ )}""" ) return ds_filter, duplicate_clusters
377
1
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class snake_case : """simple docstring""" _lowerCamelCase = 42 _lowerCamelCase = 42 class snake_case : """simple docstring""" def __init__( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = [[] for _ in range(_lowerCAmelCase )] lowerCamelCase_ = size def __getitem__( self , UpperCamelCase ): """simple docstring""" return iter(self._graph[vertex] ) @property def snake_case ( self ): """simple docstring""" return self._size def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1." ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size)." ) self._graph[from_vertex].append(Edge(_lowerCAmelCase , _lowerCAmelCase ) ) def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = deque([start_vertex] ) lowerCamelCase_ = [None] * self.size lowerCamelCase_ = 0 while queue: lowerCamelCase_ = queue.popleft() lowerCamelCase_ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowerCamelCase_ = current_distance + edge.weight lowerCamelCase_ = distances[edge.destination_vertex] if ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and new_distance >= dest_vertex_distance ): continue lowerCamelCase_ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex." ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
709
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType a_ : Optional[int] = logging.get_logger(__name__) a_ : Optional[int] = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off a_ : List[str] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] a_ : Tuple = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = "whisper" _lowerCamelCase = ["past_key_values"] _lowerCamelCase = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , UpperCamelCase=5_1865 , UpperCamelCase=80 , UpperCamelCase=6 , UpperCamelCase=4 , UpperCamelCase=6 , UpperCamelCase=4 , UpperCamelCase=1536 , UpperCamelCase=1536 , UpperCamelCase=0.0 , UpperCamelCase=0.0 , UpperCamelCase=5_0257 , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase="gelu" , UpperCamelCase=256 , UpperCamelCase=0.0 , UpperCamelCase=0.0 , UpperCamelCase=0.0 , UpperCamelCase=0.02 , UpperCamelCase=False , UpperCamelCase=1500 , UpperCamelCase=448 , UpperCamelCase=5_0256 , UpperCamelCase=5_0256 , UpperCamelCase=5_0256 , UpperCamelCase=None , UpperCamelCase=[220, 5_0256] , UpperCamelCase=False , UpperCamelCase=256 , UpperCamelCase=False , UpperCamelCase=0.05 , UpperCamelCase=10 , UpperCamelCase=2 , UpperCamelCase=0.0 , UpperCamelCase=10 , UpperCamelCase=0 , UpperCamelCase=7 , **UpperCamelCase , ): """simple docstring""" lowerCamelCase_ = vocab_size lowerCamelCase_ = num_mel_bins lowerCamelCase_ = d_model lowerCamelCase_ = encoder_layers lowerCamelCase_ = encoder_attention_heads lowerCamelCase_ = decoder_layers lowerCamelCase_ = decoder_attention_heads lowerCamelCase_ = decoder_ffn_dim lowerCamelCase_ = encoder_ffn_dim lowerCamelCase_ = dropout lowerCamelCase_ = attention_dropout lowerCamelCase_ = activation_dropout lowerCamelCase_ = activation_function lowerCamelCase_ = init_std lowerCamelCase_ = encoder_layerdrop lowerCamelCase_ = decoder_layerdrop lowerCamelCase_ = use_cache lowerCamelCase_ = encoder_layers lowerCamelCase_ = scale_embedding # scale factor will be sqrt(d_model) if True lowerCamelCase_ = max_source_positions lowerCamelCase_ = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. lowerCamelCase_ = classifier_proj_size lowerCamelCase_ = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase_ = apply_spec_augment lowerCamelCase_ = mask_time_prob lowerCamelCase_ = mask_time_length lowerCamelCase_ = mask_time_min_masks lowerCamelCase_ = mask_feature_prob lowerCamelCase_ = mask_feature_length lowerCamelCase_ = mask_feature_min_masks lowerCamelCase_ = median_filter_width super().__init__( pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , is_encoder_decoder=UpperCamelCase , decoder_start_token_id=UpperCamelCase , suppress_tokens=UpperCamelCase , begin_suppress_tokens=UpperCamelCase , **UpperCamelCase , ) class snake_case ( lowercase ): """simple docstring""" @property def snake_case ( self ): """simple docstring""" lowerCamelCase_ = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ] ) if self.use_past: lowerCamelCase_ = {0: "batch"} else: lowerCamelCase_ = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(UpperCamelCase , direction="inputs" ) return common_inputs def snake_case ( self , UpperCamelCase , UpperCamelCase = -1 , UpperCamelCase = -1 , UpperCamelCase = False , UpperCamelCase = None , UpperCamelCase = 2_2050 , UpperCamelCase = 5.0 , UpperCamelCase = 220 , ): """simple docstring""" lowerCamelCase_ = OrderedDict() lowerCamelCase_ = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=UpperCamelCase , framework=UpperCamelCase , sampling_rate=UpperCamelCase , time_duration=UpperCamelCase , frequency=UpperCamelCase , ) lowerCamelCase_ = encoder_inputs["input_features"].shape[2] lowerCamelCase_ = encoder_sequence_length // 2 if self.use_past else seq_length lowerCamelCase_ = super().generate_dummy_inputs( preprocessor.tokenizer , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = encoder_inputs.pop("input_features" ) lowerCamelCase_ = decoder_inputs.pop("decoder_input_ids" ) if "past_key_values" in decoder_inputs: lowerCamelCase_ = decoder_inputs.pop("past_key_values" ) return dummy_inputs @property def snake_case ( self ): """simple docstring""" return 1e-3
445
0
'''simple docstring''' from typing import Dict from .base import GenericTensor, Pipeline class a_ ( UpperCAmelCase__ ): def lowercase__ ( self : List[str] , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : int=None , **__lowerCAmelCase : Optional[int] ): if tokenize_kwargs is None: __snake_case = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) __snake_case = truncation __snake_case = tokenize_kwargs __snake_case = {} if return_tensors is not None: __snake_case = return_tensors return preprocess_params, {}, postprocess_params def lowercase__ ( self : Any , __lowerCAmelCase : Any , **__lowerCAmelCase : Dict ): __snake_case = self.framework __snake_case = self.tokenizer(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) return model_inputs def lowercase__ ( self : Optional[int] , __lowerCAmelCase : Tuple ): __snake_case = self.model(**__lowerCAmelCase ) return model_outputs def lowercase__ ( self : List[str] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any]=False ): # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : List[str] , *__lowerCAmelCase : Union[str, Any] , **__lowerCAmelCase : Optional[int] ): return super().__call__(*__lowerCAmelCase , **__lowerCAmelCase )
356
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class a_ ( unittest.TestCase ): def lowercase__ ( self : Optional[Any] ): __snake_case = 'ylacombe/bark-small' __snake_case = tempfile.mkdtemp() __snake_case = 'en_speaker_1' __snake_case = 'This is a test string' __snake_case = 'speaker_embeddings_path.json' __snake_case = 'speaker_embeddings' def lowercase__ ( self : int , **__lowerCAmelCase : str ): return AutoTokenizer.from_pretrained(self.checkpoint , **__lowerCAmelCase ) def lowercase__ ( self : List[Any] ): shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : Dict ): __snake_case = self.get_tokenizer() __snake_case = BarkProcessor(tokenizer=__lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) __snake_case = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowercase__ ( self : int ): __snake_case = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __snake_case = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __snake_case = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowercase__ ( self : str ): __snake_case = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __snake_case = 3_5 __snake_case = 2 __snake_case = 8 __snake_case = { 'semantic_prompt': np.ones(__lowerCAmelCase ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __snake_case = processor(text=self.input_string , voice_preset=__lowerCAmelCase ) __snake_case = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__lowerCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file __snake_case = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(__lowerCAmelCase , **__lowerCAmelCase ) __snake_case = processor(text=self.input_string , voice_preset=__lowerCAmelCase ) __snake_case = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__lowerCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub __snake_case = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowercase__ ( self : int ): __snake_case = self.get_tokenizer() __snake_case = BarkProcessor(tokenizer=__lowerCAmelCase ) __snake_case = processor(text=self.input_string ) __snake_case = tokenizer( self.input_string , padding='max_length' , max_length=2_5_6 , add_special_tokens=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
356
1
import os from pathlib import Path def SCREAMING_SNAKE_CASE_ ( ): from torch.utils.cpp_extension import load UpperCamelCase__ : str = Path(_SCREAMING_SNAKE_CASE ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' UpperCamelCase__ : int = [ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , _SCREAMING_SNAKE_CASE , with_cuda=_SCREAMING_SNAKE_CASE , extra_include_paths=[str(_SCREAMING_SNAKE_CASE )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
702
from __future__ import annotations from collections.abc import Callable def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 1_0_0 , ): UpperCamelCase__ : Union[str, Any] = x_start UpperCamelCase__ : List[Any] = fnc(UpperCamelCase__ ) UpperCamelCase__ : Any = 0.0 for _ in range(UpperCamelCase__ ): # Approximates small segments of curve as linear and solve # for trapezoidal area UpperCamelCase__ : str = (x_end - x_start) / steps + xa UpperCamelCase__ : Dict = fnc(UpperCamelCase__ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step UpperCamelCase__ : Tuple = xa UpperCamelCase__ : Union[str, Any] = fxa return area if __name__ == "__main__": def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): return x**3 + x**2 print("f(x) = x^3 + x^2") print("The area between the curve, x = -5, x = 5 and the x axis is:") lowerCamelCase =1_0 while i <= 1_0_0_0_0_0: print(F'''with {i} steps: {trapezoidal_area(f, -5, 5, i)}''') i *= 1_0
462
0
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class lowerCamelCase : '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase=1_3 , _UpperCamelCase=7 , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=3_3 , _UpperCamelCase=3_2 , _UpperCamelCase=5 , _UpperCamelCase=4 , _UpperCamelCase=3_7 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=5_1_2 , _UpperCamelCase=1_6 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=3 , _UpperCamelCase=4 , _UpperCamelCase=None , ) -> Optional[Any]: UpperCAmelCase_ : Union[str, Any] = parent UpperCAmelCase_ : List[str] = batch_size UpperCAmelCase_ : Any = seq_length UpperCAmelCase_ : str = is_training UpperCAmelCase_ : Optional[Any] = use_input_mask UpperCAmelCase_ : Union[str, Any] = use_token_type_ids UpperCAmelCase_ : List[Any] = use_labels UpperCAmelCase_ : Optional[int] = vocab_size UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : Any = hidden_act UpperCAmelCase_ : List[Any] = hidden_dropout_prob UpperCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase_ : Dict = max_position_embeddings UpperCAmelCase_ : List[Any] = type_vocab_size UpperCAmelCase_ : int = type_sequence_label_size UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Any = num_labels UpperCAmelCase_ : Any = num_choices UpperCAmelCase_ : Union[str, Any] = scope def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Optional[Any] = None if self.use_input_mask: UpperCAmelCase_ : int = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Optional[int] = None if self.use_labels: UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : Dict = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self ) -> Dict: return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict: UpperCAmelCase_ : Dict = EsmModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() UpperCAmelCase_ : int = model(_UpperCamelCase , attention_mask=_UpperCamelCase ) UpperCAmelCase_ : List[str] = model(_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> str: UpperCAmelCase_ : Tuple = EsmForMaskedLM(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = self.num_labels UpperCAmelCase_ : Union[str, Any] = EsmForTokenClassification(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() UpperCAmelCase_ : int = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Optional[int] = config_and_inputs UpperCAmelCase_ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase (_snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' _snake_case : Union[str, Any] = False _snake_case : List[str] = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) _snake_case : List[str] = () _snake_case : Optional[int] = ( { '''feature-extraction''': EsmModel, '''fill-mask''': EsmForMaskedLM, '''text-classification''': EsmForSequenceClassification, '''token-classification''': EsmForTokenClassification, '''zero-shot''': EsmForSequenceClassification, } if is_torch_available() else {} ) _snake_case : List[str] = True def __UpperCAmelCase ( self ) -> str: UpperCAmelCase_ : Optional[int] = EsmModelTester(self ) UpperCAmelCase_ : Tuple = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=3_7 ) def __UpperCAmelCase ( self ) -> str: self.config_tester.run_common_tests() def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def __UpperCAmelCase ( self ) -> str: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ : str = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase ) @slow def __UpperCAmelCase ( self ) -> Optional[Any]: for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Union[str, Any] = EsmModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()[0] UpperCAmelCase_ : Optional[Any] = EsmEmbeddings(config=_UpperCamelCase ) UpperCAmelCase_ : str = torch.as_tensor([[1_2, 3_1, 1_3, model.padding_idx]] ) UpperCAmelCase_ : Tuple = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) UpperCAmelCase_ : Union[str, Any] = create_position_ids_from_input_ids(_UpperCamelCase , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(_UpperCamelCase , _UpperCamelCase ) ) ) def __UpperCAmelCase ( self ) -> Any: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] UpperCAmelCase_ : Union[str, Any] = EsmEmbeddings(config=_UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = torch.empty(2 , 4 , 3_0 ) UpperCAmelCase_ : str = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] UpperCAmelCase_ : Any = torch.as_tensor([expected_single_positions, expected_single_positions] ) UpperCAmelCase_ : Any = embeddings.create_position_ids_from_inputs_embeds(_UpperCamelCase ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(_UpperCamelCase , _UpperCamelCase ) ) ) @unittest.skip('Esm does not support embedding resizing' ) def __UpperCAmelCase ( self ) -> Optional[Any]: pass @unittest.skip('Esm does not support embedding resizing' ) def __UpperCAmelCase ( self ) -> Union[str, Any]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __UpperCAmelCase ( self ) -> Dict: pass @require_torch class lowerCamelCase (_snake_case ): '''simple docstring''' @slow def __UpperCAmelCase ( self ) -> Optional[Any]: with torch.no_grad(): UpperCAmelCase_ : Dict = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() UpperCAmelCase_ : int = torch.tensor([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase_ : Dict = model(_UpperCamelCase )[0] UpperCAmelCase_ : Tuple = 3_3 UpperCAmelCase_ : int = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , _UpperCamelCase ) UpperCAmelCase_ : int = torch.tensor( [[[8.92_15, -10.58_98, -6.46_71], [-6.39_67, -13.91_14, -1.12_12], [-7.78_12, -13.95_16, -3.74_06]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1E-4 ) ) @slow def __UpperCAmelCase ( self ) -> str: with torch.no_grad(): UpperCAmelCase_ : Any = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() UpperCAmelCase_ : Dict = torch.tensor([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] ) UpperCAmelCase_ : List[str] = model(_UpperCamelCase )[0] # compare the actual values for a slice. UpperCAmelCase_ : str = torch.tensor( [[[0.14_44, 0.54_13, 0.32_48], [0.30_34, 0.00_53, 0.31_08], [0.32_28, -0.24_99, 0.34_15]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1E-4 ) )
406
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = R'\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n' class lowerCamelCase (_snake_case ): '''simple docstring''' @add_start_docstrings(_UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) -> bool: raise NotImplementedError('StoppingCriteria needs to be subclassed' ) class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase = None ) -> int: UpperCAmelCase_ : Union[str, Any] = max_length UpperCAmelCase_ : List[Any] = max_position_embeddings @add_start_docstrings(_UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) -> bool: UpperCAmelCase_ : Union[str, Any] = input_ids.shape[-1] UpperCAmelCase_ : List[Any] = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( 'This is a friendly reminder - the current text generation call will exceed the model\'s predefined ' f"maximum length ({self.max_position_embeddings}). Depending on the model, you may observe " 'exceptions, performance degradation, or nothing at all.' ) return is_done class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: warnings.warn( 'The class `MaxNewTokensCriteria` is deprecated. ' f"Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` " 'with `max_length = start_length + max_new_tokens` instead.' , _UpperCamelCase , ) UpperCAmelCase_ : Optional[int] = start_length UpperCAmelCase_ : Union[str, Any] = max_new_tokens UpperCAmelCase_ : List[Any] = start_length + max_new_tokens @add_start_docstrings(_UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) -> bool: return input_ids.shape[-1] >= self.max_length class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase = None ) -> Optional[Any]: UpperCAmelCase_ : List[str] = max_time UpperCAmelCase_ : str = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(_UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) -> bool: return time.time() - self.initial_timestamp > self.max_time class lowerCamelCase (_snake_case ): '''simple docstring''' @add_start_docstrings(_UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) -> bool: return any(criteria(_UpperCamelCase , _UpperCamelCase ) for criteria in self ) @property def __UpperCAmelCase ( self ) -> Optional[int]: for stopping_criterium in self: if isinstance(_UpperCamelCase , _UpperCamelCase ): return stopping_criterium.max_length elif isinstance(_UpperCamelCase , _UpperCamelCase ): return stopping_criterium.max_length return None def lowercase__ ( __snake_case : StoppingCriteriaList , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : List[str] = stopping_criteria.max_length UpperCAmelCase_ : Optional[Any] = deepcopy(__snake_case ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn('You set different `max_length` for stopping criteria and `max_length` parameter' , __snake_case ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=__snake_case ) ) return new_stopping_criteria
406
1
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin A_ = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right A_ = 250_004 A_ = 250_020 @require_sentencepiece @require_tokenizers class UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = MBartTokenizer SCREAMING_SNAKE_CASE_ = MBartTokenizerFast SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True def UpperCamelCase( self ) -> Any: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ = MBartTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = MBartTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.tokenize('This is a test' ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCamelCase_ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCamelCase_ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowerCamelCase_ = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def UpperCamelCase( self ) -> int: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCamelCase_ = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) lowerCamelCase_ = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way lowerCamelCase_ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=True lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way lowerCamelCase_ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=False lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCamelCase_ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = 'facebook/mbart-large-en-ro' SCREAMING_SNAKE_CASE_ = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] SCREAMING_SNAKE_CASE_ = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] SCREAMING_SNAKE_CASE_ = [82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2, EN_CODE] @classmethod def UpperCamelCase( cls ) -> List[str]: '''simple docstring''' lowerCamelCase_ = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) lowerCamelCase_ = 1 return cls def UpperCamelCase( self ) -> Dict: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 250020 ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' self.assertIn(SCREAMING_SNAKE_CASE_ , self.tokenizer.all_special_ids ) lowerCamelCase_ = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] lowerCamelCase_ = self.tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotIn(self.tokenizer.eos_token , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = 10 lowerCamelCase_ = self.tokenizer(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [250026, 250001] ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = MBartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , SCREAMING_SNAKE_CASE_ ) @require_torch def UpperCamelCase( self ) -> str: '''simple docstring''' lowerCamelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) lowerCamelCase_ = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) lowerCamelCase_ = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) lowerCamelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = self.tokenizer(self.src_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=3 , return_tensors='pt' ) lowerCamelCase_ = self.tokenizer( text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=10 , return_tensors='pt' ) lowerCamelCase_ = targets['input_ids'] lowerCamelCase_ = shift_tokens_right(SCREAMING_SNAKE_CASE_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , { # A, test, EOS, en_XX 'input_ids': [[62, 3034, 2, 250004]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 250001, } , )
716
'''simple docstring''' import os from collections import deque import torch from torch.utils.data import Dataset class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE_="" , SCREAMING_SNAKE_CASE_="train" ) -> List[Any]: '''simple docstring''' assert os.path.isdir(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = [] lowerCamelCase_ = os.listdir(SCREAMING_SNAKE_CASE_ ) for story_filename in story_filenames_list: if "summary" in story_filename: continue lowerCamelCase_ = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not os.path.isfile(SCREAMING_SNAKE_CASE_ ): continue self.documents.append(SCREAMING_SNAKE_CASE_ ) def __len__( self ) -> List[str]: '''simple docstring''' return len(self.documents ) def __getitem__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = self.documents[idx] lowerCamelCase_ = document_path.split('/' )[-1] with open(SCREAMING_SNAKE_CASE_ , encoding='utf-8' ) as source: lowerCamelCase_ = source.read() lowerCamelCase_ ,lowerCamelCase_ = process_story(SCREAMING_SNAKE_CASE_ ) return document_name, story_lines, summary_lines def _UpperCamelCase ( __UpperCamelCase ) -> Union[str, Any]: lowerCamelCase_ = list(filter(lambda __UpperCamelCase : len(__UpperCamelCase ) != 0 ,[line.strip() for line in raw_story.split('\n' )] ) ) # for some unknown reason some lines miss a period, add it lowerCamelCase_ = [_add_missing_period(__UpperCamelCase ) for line in nonempty_lines] # gather article lines lowerCamelCase_ = [] lowerCamelCase_ = deque(__UpperCamelCase ) while True: try: lowerCamelCase_ = lines.popleft() if element.startswith('@highlight' ): break story_lines.append(__UpperCamelCase ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines lowerCamelCase_ = list(filter(lambda __UpperCamelCase : not t.startswith('@highlight' ) ,__UpperCamelCase ) ) return story_lines, summary_lines def _UpperCamelCase ( __UpperCamelCase ) -> Optional[int]: lowerCamelCase_ = ['.', '!', '?', '...', '\'', '`', '"', '\u2019', '\u2019', ')'] if line.startswith('@highlight' ): return line if line[-1] in END_TOKENS: return line return line + "." def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]: if len(__UpperCamelCase ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(__UpperCamelCase )) ) return sequence def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> List[Any]: lowerCamelCase_ = torch.ones_like(__UpperCamelCase ) lowerCamelCase_ = sequence == pad_token_id lowerCamelCase_ = 0 return mask def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: lowerCamelCase_ = [tokenizer.encode(__UpperCamelCase ) for line in story_lines] lowerCamelCase_ = [token for sentence in story_lines_token_ids for token in sentence] lowerCamelCase_ = [tokenizer.encode(__UpperCamelCase ) for line in summary_lines] lowerCamelCase_ = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> Optional[int]: lowerCamelCase_ = [] for sequence in batch: lowerCamelCase_ = -1 lowerCamelCase_ = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(__UpperCamelCase ) return torch.tensor(__UpperCamelCase )
384
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : List[str] = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE: List[str] = 'roberta-prelayernorm' def __init__( self , lowerCamelCase__=50_265 , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3_072 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=2 , lowerCamelCase__=0.0_2 , lowerCamelCase__=1E-12 , lowerCamelCase__=1 , lowerCamelCase__=0 , lowerCamelCase__=2 , lowerCamelCase__="absolute" , lowerCamelCase__=True , lowerCamelCase__=None , **lowerCamelCase__ , ): super().__init__(pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) lowerCAmelCase_: Any = vocab_size lowerCAmelCase_: Union[str, Any] = hidden_size lowerCAmelCase_: Tuple = num_hidden_layers lowerCAmelCase_: List[str] = num_attention_heads lowerCAmelCase_: str = hidden_act lowerCAmelCase_: int = intermediate_size lowerCAmelCase_: Dict = hidden_dropout_prob lowerCAmelCase_: str = attention_probs_dropout_prob lowerCAmelCase_: Union[str, Any] = max_position_embeddings lowerCAmelCase_: Any = type_vocab_size lowerCAmelCase_: Optional[Any] = initializer_range lowerCAmelCase_: Optional[Any] = layer_norm_eps lowerCAmelCase_: List[Any] = position_embedding_type lowerCAmelCase_: List[Any] = use_cache lowerCAmelCase_: Optional[int] = classifier_dropout class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' @property def _a ( self ): if self.task == "multiple-choice": lowerCAmelCase_: List[str] = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCAmelCase_: Optional[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
613
def snake_case__ ( lowercase ): lowerCAmelCase_: Union[str, Any] = [1] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_: int = 0, 0, 0 lowerCAmelCase_: Union[str, Any] = ugly_nums[ia] * 2 lowerCAmelCase_: str = ugly_nums[ia] * 3 lowerCAmelCase_: Dict = ugly_nums[ia] * 5 for _ in range(1 , lowercase ): lowerCAmelCase_: Any = min(lowercase , lowercase , lowercase ) ugly_nums.append(lowercase ) if next_num == next_a: ia += 1 lowerCAmelCase_: str = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 lowerCAmelCase_: Optional[int] = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 lowerCAmelCase_: int = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(2_0_0) = }''')
613
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''asapp/sew-tiny-100k''': '''https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json''', # See all SEW models at https://huggingface.co/models?filter=sew } class __a ( __a ): """simple docstring""" _A : Tuple = '''sew''' def __init__( self : Optional[Any] ,_UpperCamelCase : Dict=3_2 ,_UpperCamelCase : Optional[Any]=7_6_8 ,_UpperCamelCase : Union[str, Any]=1_2 ,_UpperCamelCase : List[str]=1_2 ,_UpperCamelCase : List[Any]=3_0_7_2 ,_UpperCamelCase : Union[str, Any]=2 ,_UpperCamelCase : Union[str, Any]="gelu" ,_UpperCamelCase : Optional[int]=0.1 ,_UpperCamelCase : Tuple=0.1 ,_UpperCamelCase : Optional[Any]=0.1 ,_UpperCamelCase : List[str]=0.0 ,_UpperCamelCase : Union[str, Any]=0.1 ,_UpperCamelCase : Dict=0.1 ,_UpperCamelCase : int=0.02 ,_UpperCamelCase : Any=1e-5 ,_UpperCamelCase : Optional[Any]="group" ,_UpperCamelCase : Optional[Any]="gelu" ,_UpperCamelCase : Dict=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) ,_UpperCamelCase : Tuple=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) ,_UpperCamelCase : Dict=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) ,_UpperCamelCase : str=False ,_UpperCamelCase : Optional[Any]=1_2_8 ,_UpperCamelCase : Optional[Any]=1_6 ,_UpperCamelCase : Any=True ,_UpperCamelCase : int=0.05 ,_UpperCamelCase : int=1_0 ,_UpperCamelCase : Optional[Any]=2 ,_UpperCamelCase : Optional[int]=0.0 ,_UpperCamelCase : Union[str, Any]=1_0 ,_UpperCamelCase : Dict=0 ,_UpperCamelCase : List[Any]="mean" ,_UpperCamelCase : Tuple=False ,_UpperCamelCase : Tuple=False ,_UpperCamelCase : str=2_5_6 ,_UpperCamelCase : Optional[Any]=0 ,_UpperCamelCase : List[str]=1 ,_UpperCamelCase : int=2 ,**_UpperCamelCase : Any ,) -> str: '''simple docstring''' super().__init__(**snake_case__ ,pad_token_id=snake_case__ ,bos_token_id=snake_case__ ,eos_token_id=snake_case__ ) SCREAMING_SNAKE_CASE__ =hidden_size SCREAMING_SNAKE_CASE__ =feat_extract_norm SCREAMING_SNAKE_CASE__ =feat_extract_activation SCREAMING_SNAKE_CASE__ =list(snake_case__ ) SCREAMING_SNAKE_CASE__ =list(snake_case__ ) SCREAMING_SNAKE_CASE__ =list(snake_case__ ) SCREAMING_SNAKE_CASE__ =conv_bias SCREAMING_SNAKE_CASE__ =num_conv_pos_embeddings SCREAMING_SNAKE_CASE__ =num_conv_pos_embedding_groups SCREAMING_SNAKE_CASE__ =len(self.conv_dim ) SCREAMING_SNAKE_CASE__ =num_hidden_layers SCREAMING_SNAKE_CASE__ =intermediate_size SCREAMING_SNAKE_CASE__ =squeeze_factor SCREAMING_SNAKE_CASE__ =hidden_act SCREAMING_SNAKE_CASE__ =num_attention_heads SCREAMING_SNAKE_CASE__ =hidden_dropout SCREAMING_SNAKE_CASE__ =attention_dropout SCREAMING_SNAKE_CASE__ =activation_dropout SCREAMING_SNAKE_CASE__ =feat_proj_dropout SCREAMING_SNAKE_CASE__ =final_dropout SCREAMING_SNAKE_CASE__ =layerdrop SCREAMING_SNAKE_CASE__ =layer_norm_eps SCREAMING_SNAKE_CASE__ =initializer_range SCREAMING_SNAKE_CASE__ =vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE__ =apply_spec_augment SCREAMING_SNAKE_CASE__ =mask_time_prob SCREAMING_SNAKE_CASE__ =mask_time_length SCREAMING_SNAKE_CASE__ =mask_time_min_masks SCREAMING_SNAKE_CASE__ =mask_feature_prob SCREAMING_SNAKE_CASE__ =mask_feature_length SCREAMING_SNAKE_CASE__ =mask_feature_min_masks # ctc loss SCREAMING_SNAKE_CASE__ =ctc_loss_reduction SCREAMING_SNAKE_CASE__ =ctc_zero_infinity # sequence classification SCREAMING_SNAKE_CASE__ =use_weighted_layer_sum SCREAMING_SNAKE_CASE__ =classifier_proj_size @property def __A ( self : Union[str, Any] ) -> Dict: '''simple docstring''' return functools.reduce(operator.mul ,self.conv_stride ,1 )
706
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } lowerCamelCase_ = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def UpperCAmelCase_ ( __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase ): for attribute in key.split(""".""" ): SCREAMING_SNAKE_CASE__ =getattr(__UpperCamelCase, __UpperCamelCase ) if weight_type is not None: SCREAMING_SNAKE_CASE__ =getattr(__UpperCamelCase, __UpperCamelCase ).shape else: SCREAMING_SNAKE_CASE__ =hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": SCREAMING_SNAKE_CASE__ =value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE__ =value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE__ =value elif weight_type == "bias": SCREAMING_SNAKE_CASE__ =value else: SCREAMING_SNAKE_CASE__ =value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def UpperCAmelCase_ ( __UpperCamelCase, __UpperCamelCase ): SCREAMING_SNAKE_CASE__ =[] SCREAMING_SNAKE_CASE__ =fairseq_model.state_dict() SCREAMING_SNAKE_CASE__ =hf_model.feature_extractor SCREAMING_SNAKE_CASE__ =hf_model.adapter for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE__ =False if "conv_layers" in name: load_conv_layer( __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, hf_model.config.feat_extract_norm == """group""", ) SCREAMING_SNAKE_CASE__ =True elif any(x in name for x in ["""adaptor""", """w2v_encoder.proj.""", """w2v_proj_ln."""] ): load_adapter(__UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase ) SCREAMING_SNAKE_CASE__ =True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: SCREAMING_SNAKE_CASE__ =True if "*" in mapped_key: SCREAMING_SNAKE_CASE__ =name.split(__UpperCamelCase )[0].split(""".""" )[-2] SCREAMING_SNAKE_CASE__ =mapped_key.replace("""*""", __UpperCamelCase ) if "weight_g" in name: SCREAMING_SNAKE_CASE__ ="""weight_g""" elif "weight_v" in name: SCREAMING_SNAKE_CASE__ ="""weight_v""" elif "bias" in name: SCREAMING_SNAKE_CASE__ ="""bias""" elif "weight" in name: SCREAMING_SNAKE_CASE__ ="""weight""" else: SCREAMING_SNAKE_CASE__ =None set_recursively(__UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase ) continue if not is_used: unused_weights.append(__UpperCamelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def UpperCAmelCase_ ( __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase ): SCREAMING_SNAKE_CASE__ =full_name.split("""conv_layers.""" )[-1] SCREAMING_SNAKE_CASE__ =name.split(""".""" ) SCREAMING_SNAKE_CASE__ =int(items[0] ) SCREAMING_SNAKE_CASE__ =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) SCREAMING_SNAKE_CASE__ =value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) SCREAMING_SNAKE_CASE__ =value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) SCREAMING_SNAKE_CASE__ =value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) SCREAMING_SNAKE_CASE__ =value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__UpperCamelCase ) def UpperCAmelCase_ ( __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase ): SCREAMING_SNAKE_CASE__ =full_name.split("""adaptor.""" )[-1] SCREAMING_SNAKE_CASE__ =name.split(""".""" ) if items[1].isdigit(): SCREAMING_SNAKE_CASE__ =int(items[1] ) else: SCREAMING_SNAKE_CASE__ =None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.""" SCREAMING_SNAKE_CASE__ =value logger.info(f"""Adapter proj layer norm bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.""" SCREAMING_SNAKE_CASE__ =value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.""" SCREAMING_SNAKE_CASE__ =value logger.info(f"""Adapter proj layer bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.""" SCREAMING_SNAKE_CASE__ =value logger.info(f"""Adapter proj layer weight was initialized from {full_name}.""" ) elif isinstance(__UpperCamelCase, __UpperCamelCase ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.""" SCREAMING_SNAKE_CASE__ =value logger.info(f"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.""" SCREAMING_SNAKE_CASE__ =value logger.info(f"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) else: unused_weights.append(__UpperCamelCase ) def UpperCAmelCase_ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =emb.weight.shape SCREAMING_SNAKE_CASE__ =nn.Linear(__UpperCamelCase, __UpperCamelCase, bias=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ =emb.weight.data return lin_layer @torch.no_grad() def UpperCAmelCase_ ( __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, ): SCREAMING_SNAKE_CASE__ =WavaVecaConfig.from_pretrained( __UpperCamelCase, add_adapter=__UpperCamelCase, adapter_stride=__UpperCamelCase, adapter_kernel_size=__UpperCamelCase, use_auth_token=__UpperCamelCase, output_hidden_size=__UpperCamelCase, ) SCREAMING_SNAKE_CASE__ =MBartConfig.from_pretrained(__UpperCamelCase ) # load model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={ """config_yaml""": config_yaml_path, """data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path, """load_pretrained_decoder_from""": None, }, ) SCREAMING_SNAKE_CASE__ =model[0].eval() # load feature extractor SCREAMING_SNAKE_CASE__ =WavaVecaFeatureExtractor.from_pretrained(__UpperCamelCase, use_auth_token=__UpperCamelCase ) # set weights for wav2vec2 encoder SCREAMING_SNAKE_CASE__ =WavaVecaModel(__UpperCamelCase ) recursively_load_weights_wavaveca(model.encoder, __UpperCamelCase ) # load decoder weights SCREAMING_SNAKE_CASE__ =MBartForCausalLM(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict(), strict=__UpperCamelCase ) logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) SCREAMING_SNAKE_CASE__ =SpeechEncoderDecoderModel(encoder=__UpperCamelCase, decoder=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ =False SCREAMING_SNAKE_CASE__ =MBartaaTokenizer(__UpperCamelCase ) tokenizer.save_pretrained(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ =hf_wavavec.config.to_dict() SCREAMING_SNAKE_CASE__ =tokenizer.pad_token_id SCREAMING_SNAKE_CASE__ =tokenizer.bos_token_id SCREAMING_SNAKE_CASE__ =tokenizer.eos_token_id SCREAMING_SNAKE_CASE__ ="""mbart50""" SCREAMING_SNAKE_CASE__ ="""wav2vec2""" SCREAMING_SNAKE_CASE__ =tokenizer.eos_token_id SCREAMING_SNAKE_CASE__ =250_004 SCREAMING_SNAKE_CASE__ =tokenizer.eos_token_id SCREAMING_SNAKE_CASE__ =SpeechEncoderDecoderConfig.from_dict(__UpperCamelCase ) hf_wavavec.save_pretrained(__UpperCamelCase ) feature_extractor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=1024, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=250004, type=int, help="`decoder_start_token_id` of model config") lowerCamelCase_ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
588
0
from __future__ import annotations from typing import Any class snake_case_ : def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0 ): SCREAMING_SNAKE_CASE_ : Optional[Any] = row, column SCREAMING_SNAKE_CASE_ : Dict = [[default_value for c in range(UpperCamelCase_ )] for r in range(UpperCamelCase_ )] def __str__( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = F'Matrix consist of {self.row} rows and {self.column} columns\n' # Make string identifier SCREAMING_SNAKE_CASE_ : List[str] = 0 for row_vector in self.array: for obj in row_vector: SCREAMING_SNAKE_CASE_ : int = max(UpperCamelCase_ , len(str(UpperCamelCase_ ) ) ) SCREAMING_SNAKE_CASE_ : int = F'%{max_element_length}s' # Make string and return def single_line(__lowerCAmelCase ) -> str: nonlocal string_format_identifier SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''[''' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(UpperCamelCase_ ) for row_vector in self.array ) return s def __repr__( self ): return str(self ) def __A ( self , __lowerCAmelCase ): if not (isinstance(UpperCamelCase_ , (list, tuple) ) and len(UpperCamelCase_ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , __lowerCAmelCase ): assert self.validate_indicies(UpperCamelCase_ ) return self.array[loc[0]][loc[1]] def __setitem__( self , __lowerCAmelCase , __lowerCAmelCase ): assert self.validate_indicies(UpperCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = value def __add__( self , __lowerCAmelCase ): assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) assert self.row == another.row and self.column == another.column # Add SCREAMING_SNAKE_CASE_ : Tuple = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE_ : str = self[r, c] + another[r, c] return result def __neg__( self ): SCREAMING_SNAKE_CASE_ : str = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE_ : str = -self[r, c] return result def __sub__( self , __lowerCAmelCase ): return self + (-another) def __mul__( self , __lowerCAmelCase ): if isinstance(UpperCamelCase_ , (int, float) ): # Scalar multiplication SCREAMING_SNAKE_CASE_ : Any = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE_ : Optional[int] = self[r, c] * another return result elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): # Matrix multiplication assert self.column == another.row SCREAMING_SNAKE_CASE_ : Any = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: SCREAMING_SNAKE_CASE_ : int = F'Unsupported type given for another ({type(UpperCamelCase_ )})' raise TypeError(UpperCamelCase_ ) def __A ( self ): SCREAMING_SNAKE_CASE_ : str = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE_ : Optional[int] = self[r, c] return result def __A ( self , __lowerCAmelCase , __lowerCAmelCase ): assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(UpperCamelCase_ , UpperCamelCase_ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate SCREAMING_SNAKE_CASE_ : Tuple = v.transpose() SCREAMING_SNAKE_CASE_ : List[str] = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def __SCREAMING_SNAKE_CASE ( ) -> None: SCREAMING_SNAKE_CASE_ : Any = Matrix(3 , 3 , 0 ) for i in range(3 ): SCREAMING_SNAKE_CASE_ : List[str] = 1 print(f'a^(-1) is {ainv}' ) # u, v SCREAMING_SNAKE_CASE_ : Tuple = Matrix(3 , 1 , 0 ) SCREAMING_SNAKE_CASE_ : List[Any] = 1, 2, -3 SCREAMING_SNAKE_CASE_ : int = Matrix(3 , 1 , 0 ) SCREAMING_SNAKE_CASE_ : Dict = 4, -2, 5 print(f'u is {u}' ) print(f'v is {v}' ) print(f'uv^T is {u * v.transpose()}' ) # Sherman Morrison print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(_a , _a )}' ) def __SCREAMING_SNAKE_CASE ( ) -> None: import doctest doctest.testmod() testa()
345
from __future__ import annotations def UpperCamelCase ( _a , _a = None , _a = None ) -> None: '''simple docstring''' if start is None: lowercase_ :Optional[int] = 0 if end is None: lowercase_ :Any = len(_a ) - 1 if start >= end: return lowercase_ :Dict = (start + end) // 2 slowsort(_a , _a , _a ) slowsort(_a , mid + 1 , _a ) if sequence[end] < sequence[mid]: lowercase_ , lowercase_ :Any = sequence[mid], sequence[end] slowsort(_a , _a , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
257
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { "configuration_bigbird_pegasus": [ "BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP", "BigBirdPegasusConfig", "BigBirdPegasusOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST", "BigBirdPegasusForCausalLM", "BigBirdPegasusForConditionalGeneration", "BigBirdPegasusForQuestionAnswering", "BigBirdPegasusForSequenceClassification", "BigBirdPegasusModel", "BigBirdPegasusPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
719
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__ ( __lowercase ): UpperCamelCase_ : Dict = ["image_processor", "tokenizer"] UpperCamelCase_ : Union[str, Any] = "ViltImageProcessor" UpperCamelCase_ : List[str] = ("BertTokenizer", "BertTokenizerFast") def __init__( self , a=None , a=None , **a ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , a , ) _UpperCamelCase = kwargs.pop("""feature_extractor""" ) _UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(a , a ) _UpperCamelCase = self.image_processor def __call__( self , a , a = None , a = True , a = False , a = None , a = None , a = 0 , a = None , a = None , a = None , a = False , a = False , a = False , a = False , a = True , a = None , **a , ) -> BatchEncoding: '''simple docstring''' _UpperCamelCase = self.tokenizer( text=a , add_special_tokens=a , padding=a , truncation=a , max_length=a , stride=a , pad_to_multiple_of=a , return_token_type_ids=a , return_attention_mask=a , return_overflowing_tokens=a , return_special_tokens_mask=a , return_offsets_mapping=a , return_length=a , verbose=a , return_tensors=a , **a , ) # add pixel_values + pixel_mask _UpperCamelCase = self.image_processor(a , return_tensors=a ) encoding.update(a ) return encoding def A_ ( self , *a , **a ) -> Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*a , **a ) def A_ ( self , *a , **a ) -> int: '''simple docstring''' return self.tokenizer.decode(*a , **a ) @property def A_ ( self ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.tokenizer.model_input_names _UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A_ ( self ) -> Tuple: '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , a , ) return self.image_processor_class @property def A_ ( self ) -> Dict: '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , a , ) return self.image_processor
202
0
'''simple docstring''' import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=10_24 ) -> str: lowerCamelCase_ ,lowerCamelCase_ = [], [] lowerCamelCase_ = list(zip(__UpperCamelCase ,__UpperCamelCase ) ) lowerCamelCase_ ,lowerCamelCase_ = sorted_examples[0] def is_too_big(__UpperCamelCase ): return tok(__UpperCamelCase ,return_tensors='pt' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): lowerCamelCase_ = new_src + ' ' + src lowerCamelCase_ = new_tgt + ' ' + tgt if is_too_big(__UpperCamelCase ) or is_too_big(__UpperCamelCase ): # cant fit, finalize example finished_src.append(__UpperCamelCase ) finished_tgt.append(__UpperCamelCase ) lowerCamelCase_ ,lowerCamelCase_ = src, tgt else: # can fit, keep adding lowerCamelCase_ ,lowerCamelCase_ = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(__UpperCamelCase ) finished_tgt.append(__UpperCamelCase ) return finished_src, finished_tgt def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> List[Any]: lowerCamelCase_ = Path(__UpperCamelCase ) save_path.mkdir(exist_ok=__UpperCamelCase ) for split in ["train"]: lowerCamelCase_ ,lowerCamelCase_ = data_dir / f'''{split}.source''', data_dir / f'''{split}.target''' lowerCamelCase_ = [x.rstrip() for x in Path(__UpperCamelCase ).open().readlines()] lowerCamelCase_ = [x.rstrip() for x in Path(__UpperCamelCase ).open().readlines()] lowerCamelCase_ ,lowerCamelCase_ = pack_examples(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) print(f'''packed {split} split from {len(__UpperCamelCase )} examples -> {len(__UpperCamelCase )}.''' ) Path(save_path / f'''{split}.source''' ).open('w' ).write('\n'.join(__UpperCamelCase ) ) Path(save_path / f'''{split}.target''' ).open('w' ).write('\n'.join(__UpperCamelCase ) ) for split in ["val", "test"]: lowerCamelCase_ ,lowerCamelCase_ = data_dir / f'''{split}.source''', data_dir / f'''{split}.target''' shutil.copyfile(__UpperCamelCase ,save_path / f'''{split}.source''' ) shutil.copyfile(__UpperCamelCase ,save_path / f'''{split}.target''' ) def _UpperCamelCase ( ) -> List[str]: lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('--tok_name' ,type=__UpperCamelCase ,help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('--max_seq_len' ,type=__UpperCamelCase ,default=1_28 ) parser.add_argument('--data_dir' ,type=__UpperCamelCase ) parser.add_argument('--save_path' ,type=__UpperCamelCase ) lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(__UpperCamelCase ,Path(args.data_dir ) ,args.max_seq_len ,args.save_path ) if __name__ == "__main__": packer_cli()
42
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler A_ = 16 A_ = 32 def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase = 16 ,__UpperCamelCase = "bert-base-cased" ) -> List[Any]: lowerCamelCase_ = AutoTokenizer.from_pretrained(__UpperCamelCase ) lowerCamelCase_ = load_dataset('glue' ,'mrpc' ) def tokenize_function(__UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase_ = tokenizer(examples['sentence1'] ,examples['sentence2'] ,truncation=__UpperCamelCase ,max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCamelCase_ = datasets.map( __UpperCamelCase ,batched=__UpperCamelCase ,remove_columns=['idx', 'sentence1', 'sentence2'] ,load_from_cache_file=__UpperCamelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase_ = tokenized_datasets.rename_column('label' ,'labels' ) def collate_fn(__UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCamelCase ,padding='max_length' ,max_length=1_28 ,return_tensors='pt' ) return tokenizer.pad(__UpperCamelCase ,padding='longest' ,return_tensors='pt' ) # Instantiate dataloaders. lowerCamelCase_ = DataLoader( tokenized_datasets['train'] ,shuffle=__UpperCamelCase ,collate_fn=__UpperCamelCase ,batch_size=__UpperCamelCase ) lowerCamelCase_ = DataLoader( tokenized_datasets['validation'] ,shuffle=__UpperCamelCase ,collate_fn=__UpperCamelCase ,batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]: model.eval() lowerCamelCase_ = 0 for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase_ = model(**__UpperCamelCase ) lowerCamelCase_ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowerCamelCase_ ,lowerCamelCase_ = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__UpperCamelCase ) - 1: lowerCamelCase_ = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowerCamelCase_ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__UpperCamelCase ,references=__UpperCamelCase ,) lowerCamelCase_ = metric.compute() return eval_metric["accuracy"] def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> List[str]: # Initialize accelerator lowerCamelCase_ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase_ = config['lr'] lowerCamelCase_ = int(config['num_epochs'] ) lowerCamelCase_ = int(config['seed'] ) lowerCamelCase_ = int(config['batch_size'] ) lowerCamelCase_ = args.model_name_or_path set_seed(__UpperCamelCase ) lowerCamelCase_ ,lowerCamelCase_ = get_dataloaders(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase_ = AutoModelForSequenceClassification.from_pretrained(__UpperCamelCase ,return_dict=__UpperCamelCase ) # Instantiate optimizer lowerCamelCase_ = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCamelCase_ = optimizer_cls(params=model.parameters() ,lr=__UpperCamelCase ) if accelerator.state.deepspeed_plugin is not None: lowerCamelCase_ = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: lowerCamelCase_ = 1 lowerCamelCase_ = (len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCamelCase_ = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase ,num_warmup_steps=0 ,num_training_steps=__UpperCamelCase ,) else: lowerCamelCase_ = DummyScheduler(__UpperCamelCase ,total_num_steps=__UpperCamelCase ,warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = accelerator.prepare( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # We need to keep track of how many total steps we have iterated over lowerCamelCase_ = 0 # We also need to keep track of the stating epoch so files are named properly lowerCamelCase_ = 0 lowerCamelCase_ = evaluate.load('glue' ,'mrpc' ) lowerCamelCase_ = num_epochs if args.partial_train_epoch is not None: lowerCamelCase_ = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) lowerCamelCase_ = args.resume_from_checkpoint.split('epoch_' )[1] lowerCamelCase_ = '' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break lowerCamelCase_ = int(__UpperCamelCase ) + 1 lowerCamelCase_ = evaluation_loop(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) accelerator.print('resumed checkpoint performance:' ,__UpperCamelCase ) accelerator.print('resumed checkpoint\'s scheduler\'s lr:' ,lr_scheduler.get_lr()[0] ) accelerator.print('resumed optimizers\'s lr:' ,optimizer.param_groups[0]['lr'] ) with open(os.path.join(args.output_dir ,f'''state_{starting_epoch-1}.json''' ) ,'r' ) as f: lowerCamelCase_ = json.load(__UpperCamelCase ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model lowerCamelCase_ = {} for epoch in range(__UpperCamelCase ,__UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): lowerCamelCase_ = model(**__UpperCamelCase ) lowerCamelCase_ = outputs.loss lowerCamelCase_ = loss / gradient_accumulation_steps accelerator.backward(__UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 lowerCamelCase_ = f'''epoch_{epoch}''' lowerCamelCase_ = os.path.join(args.output_dir ,__UpperCamelCase ) accelerator.save_state(__UpperCamelCase ) lowerCamelCase_ = evaluation_loop(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) lowerCamelCase_ = accuracy lowerCamelCase_ = lr_scheduler.get_lr()[0] lowerCamelCase_ = optimizer.param_groups[0]['lr'] lowerCamelCase_ = epoch lowerCamelCase_ = overall_step accelerator.print(f'''epoch {epoch}:''' ,__UpperCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir ,f'''state_{epoch}.json''' ) ,'w' ) as f: json.dump(__UpperCamelCase ,__UpperCamelCase ) def _UpperCamelCase ( ) -> str: lowerCamelCase_ = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' ,type=__UpperCamelCase ,default='bert-base-cased' ,help='Path to pretrained model or model identifier from huggingface.co/models.' ,required=__UpperCamelCase ,) parser.add_argument( '--output_dir' ,type=__UpperCamelCase ,default='.' ,help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' ,) parser.add_argument( '--resume_from_checkpoint' ,type=__UpperCamelCase ,default=__UpperCamelCase ,help='If the training should continue from a checkpoint folder.' ,) parser.add_argument( '--partial_train_epoch' ,type=__UpperCamelCase ,default=__UpperCamelCase ,help='If passed, the training will stop after this number of epochs.' ,) parser.add_argument( '--num_epochs' ,type=__UpperCamelCase ,default=2 ,help='Number of train epochs.' ,) lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(__UpperCamelCase ,__UpperCamelCase ) if __name__ == "__main__": main()
42
1
def a(lowercase__ , lowercase__ ): '''simple docstring''' snake_case_ = '' for i in table: res += inp[i - 1] return res def a(lowercase__ ): '''simple docstring''' return data[1:] + data[0] def a(lowercase__ , lowercase__ ): '''simple docstring''' snake_case_ = '' for i in range(len(lowercase__ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def a(lowercase__ , lowercase__ ): '''simple docstring''' snake_case_ = int('0b' + data[0] + data[-1] , 2 ) snake_case_ = int('0b' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def a(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' snake_case_ = message[:4] snake_case_ = message[4:] snake_case_ = apply_table(lowercase__ , lowercase__ ) snake_case_ = xor(lowercase__ , lowercase__ ) snake_case_ = apply_sbox(lowercase__ , temp[:4] ) # noqa: E741 snake_case_ = apply_sbox(lowercase__ , temp[4:] ) snake_case_ = '0' * (2 - len(lowercase__ )) + l # noqa: E741 snake_case_ = '0' * (2 - len(lowercase__ )) + r snake_case_ = apply_table(l + r , lowercase__ ) snake_case_ = xor(lowercase__ , lowercase__ ) return temp + right if __name__ == "__main__": A = input('Enter 10 bit key: ') A = input('Enter 8 bit message: ') A = [6, 3, 7, 4, 8, 5, 10, 9] A = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] A = [2, 4, 3, 1] A = [2, 6, 3, 1, 4, 8, 5, 7] A = [4, 1, 3, 5, 7, 2, 8, 6] A = [4, 1, 2, 3, 2, 3, 4, 1] A = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] A = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation A = apply_table(key, paa_table) A = temp[:5] A = temp[5:] A = left_shift(left) A = left_shift(right) A = apply_table(left + right, pa_table) A = left_shift(left) A = left_shift(right) A = left_shift(left) A = left_shift(right) A = apply_table(left + right, pa_table) # encryption A = apply_table(message, IP) A = function(expansion, sa, sa, keya, temp) A = temp[4:] + temp[:4] A = function(expansion, sa, sa, keya, temp) A = apply_table(temp, IP_inv) print('Cipher text is:', CT) # decryption A = apply_table(CT, IP) A = function(expansion, sa, sa, keya, temp) A = temp[4:] + temp[:4] A = function(expansion, sa, sa, keya, temp) A = apply_table(temp, IP_inv) print('Plain text after decypting is:', PT)
710
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available A = { 'configuration_audio_spectrogram_transformer': [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ASTConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ASTForAudioClassification', 'ASTModel', 'ASTPreTrainedModel', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['ASTFeatureExtractor'] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
46
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a = logging.get_logger(__name__) def _snake_case ( _snake_case : List[Any] , _snake_case : Dict=False , _snake_case : Optional[int]=False , _snake_case : str=False ) -> Optional[Any]: '''simple docstring''' _A = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''transformer.blocks.{i}.norm1.weight''', F'''vilt.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.norm1.bias''', F'''vilt.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''transformer.blocks.{i}.attn.proj.weight''', F'''vilt.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''transformer.blocks.{i}.attn.proj.bias''', F'''vilt.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''transformer.blocks.{i}.norm2.weight''', F'''vilt.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.norm2.bias''', F'''vilt.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (F'''transformer.blocks.{i}.mlp.fc1.weight''', F'''vilt.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc1.bias''', F'''vilt.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc2.weight''', F'''vilt.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc2.bias''', F'''vilt.encoder.layer.{i}.output.dense.bias''') ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def _snake_case ( _snake_case : int , _snake_case : int ) -> Any: '''simple docstring''' for i in range(config.num_hidden_layers ): _A = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _A = state_dict.pop(F'''transformer.blocks.{i}.attn.qkv.weight''' ) _A = state_dict.pop(F'''transformer.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _A = in_proj_weight[ : config.hidden_size, : ] _A = in_proj_bias[: config.hidden_size] _A = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _A = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _A = in_proj_weight[ -config.hidden_size :, : ] _A = in_proj_bias[-config.hidden_size :] def _snake_case ( _snake_case : Tuple ) -> str: '''simple docstring''' _A = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def _snake_case ( _snake_case : Dict , _snake_case : str , _snake_case : Tuple ) -> str: '''simple docstring''' _A = dct.pop(_snake_case ) _A = val @torch.no_grad() def _snake_case ( _snake_case : List[str] , _snake_case : Dict ) -> List[str]: '''simple docstring''' _A = ViltConfig(image_size=3_84 , patch_size=32 , tie_word_embeddings=_snake_case ) _A = False _A = False _A = False _A = False if "vqa" in checkpoint_url: _A = True _A = 31_29 _A = 'huggingface/label-files' _A = 'vqa2-id2label.json' _A = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='dataset' ) , 'r' ) ) _A = {int(_snake_case ): v for k, v in idalabel.items()} _A = idalabel _A = {v: k for k, v in idalabel.items()} _A = ViltForQuestionAnswering(_snake_case ) elif "nlvr" in checkpoint_url: _A = True _A = 2 _A = {0: 'False', 1: 'True'} _A = {v: k for k, v in config.idalabel.items()} _A = 3 _A = ViltForImagesAndTextClassification(_snake_case ) elif "irtr" in checkpoint_url: _A = True _A = ViltForImageAndTextRetrieval(_snake_case ) elif "mlm_itm" in checkpoint_url: _A = True _A = ViltForMaskedLM(_snake_case ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys _A = torch.hub.load_state_dict_from_url(_snake_case , map_location='cpu' )['state_dict'] _A = create_rename_keys(_snake_case , _snake_case , _snake_case , _snake_case ) for src, dest in rename_keys: rename_key(_snake_case , _snake_case , _snake_case ) read_in_q_k_v(_snake_case , _snake_case ) if mlm_model or irtr_model: _A = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) # load state dict into HuggingFace model model.eval() if mlm_model: _A , _A = model.load_state_dict(_snake_case , strict=_snake_case ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(_snake_case ) # Define processor _A = ViltImageProcessor(size=3_84 ) _A = BertTokenizer.from_pretrained('bert-base-uncased' ) _A = ViltProcessor(_snake_case , _snake_case ) # Forward pass on example inputs (image + text) if nlvr_model: _A = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=_snake_case ).raw ) _A = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=_snake_case ).raw ) _A = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) _A = processor(_snake_case , _snake_case , return_tensors='pt' ) _A = processor(_snake_case , _snake_case , return_tensors='pt' ) _A = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: _A = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=_snake_case ).raw ) if mlm_model: _A = 'a bunch of [MASK] laying on a [MASK].' else: _A = 'How many cats are there?' _A = processor(_snake_case , _snake_case , return_tensors='pt' ) _A = model(**_snake_case ) # Verify outputs if mlm_model: _A = torch.Size([1, 11, 3_05_22] ) _A = torch.tensor([-12.5061, -12.5123, -12.5174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _snake_case , atol=1E-4 ) # verify masked token prediction equals "cats" _A = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: _A = torch.Size([1, 31_29] ) _A = torch.tensor([-15.9495, -18.1472, -10.3041] ) assert torch.allclose(outputs.logits[0, :3] , _snake_case , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _snake_case , atol=1E-4 ) # verify vqa prediction equals "2" _A = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: _A = torch.Size([1, 2] ) _A = torch.tensor([-2.8721, 2.1291] ) assert torch.allclose(outputs.logits[0, :3] , _snake_case , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(F'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) processor.save_pretrained(_snake_case ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) a = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
7
"""simple docstring""" class lowercase_ : '''simple docstring''' def __init__( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ): _A = None _A = None _A = graph self._normalize_graph(_UpperCAmelCase , _UpperCAmelCase ) _A = len(_UpperCAmelCase ) _A = None def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ): if sources is int: _A = [sources] if sinks is int: _A = [sinks] if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) == 0: return _A = sources[0] _A = sinks[0] # make fake vertex if there are more # than one source or sink if len(_UpperCAmelCase ) > 1 or len(_UpperCAmelCase ) > 1: _A = 0 for i in sources: max_input_flow += sum(self.graph[i] ) _A = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: _A = max_input_flow _A = 0 _A = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: _A = max_input_flow _A = size - 1 def lowerCAmelCase_ ( self : Optional[Any] ): if self.maximum_flow_algorithm is None: raise Exception('You need to set maximum flow algorithm before.' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Union[str, Any] ): _A = algorithm(self ) class lowercase_ : '''simple docstring''' def __init__( self : List[Any] , _UpperCAmelCase : Union[str, Any] ): _A = flow_network _A = flow_network.verticesCount _A = flow_network.sourceIndex _A = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that _A = flow_network.graph _A = False def lowerCAmelCase_ ( self : Optional[Any] ): if not self.executed: self._algorithm() _A = True def lowerCAmelCase_ ( self : int ): pass class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : int , _UpperCAmelCase : Any ): super().__init__(_UpperCAmelCase ) # use this to save your result _A = -1 def lowerCAmelCase_ ( self : Optional[Any] ): if not self.executed: raise Exception('You should execute algorithm before using its result!' ) return self.maximum_flow class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : List[Any] ): super().__init__(_UpperCAmelCase ) _A = [[0] * self.verticies_count for i in range(self.verticies_count )] _A = [0] * self.verticies_count _A = [0] * self.verticies_count def lowerCAmelCase_ ( self : Dict ): _A = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule _A = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list _A = 0 while i < len(_UpperCAmelCase ): _A = vertices_list[i] _A = self.heights[vertex_index] self.process_vertex(_UpperCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(_UpperCAmelCase ) ) _A = 0 else: i += 1 _A = sum(self.preflow[self.source_index] ) def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Any ): while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(_UpperCAmelCase , _UpperCAmelCase ) self.relabel(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple ): _A = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : int ): _A = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): _A = self.heights[to_index] if min_height is not None: _A = min_height + 1 if __name__ == "__main__": a = [0] a = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] a = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network a = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate a = flow_network.find_maximum_flow() print(F'''maximum flow is {maximum_flow}''')
7
1
'''simple docstring''' def A__ ( __lowerCAmelCase : list ): lowerCamelCase__ = len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = collection[i] lowerCamelCase__ = 0 lowerCamelCase__ = i - 1 while low <= high: lowerCamelCase__ = (low + high) // 2 if val < collection[mid]: lowerCamelCase__ = mid - 1 else: lowerCamelCase__ = mid + 1 for j in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , -1 ): lowerCamelCase__ = collection[j - 1] lowerCamelCase__ = val return collection if __name__ == "__main__": UpperCamelCase : str = input('Enter numbers separated by a comma:\n').strip() UpperCamelCase : int = [int(item) for item in user_input.split(',')] print(binary_insertion_sort(unsorted))
703
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase : int = logging.get_logger(__name__) UpperCamelCase : Optional[int] = {'vocab_file': 'sentencepiece.bpe.model'} UpperCamelCase : Dict = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', } } UpperCamelCase : List[Any] = { 'camembert-base': 5_12, } UpperCamelCase : List[str] = '▁' class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = VOCAB_FILES_NAMES _UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase = ['input_ids', 'attention_mask'] def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase="<s>" ,_lowerCAmelCase="</s>" ,_lowerCAmelCase="</s>" ,_lowerCAmelCase="<s>" ,_lowerCAmelCase="<unk>" ,_lowerCAmelCase="<pad>" ,_lowerCAmelCase="<mask>" ,_lowerCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] ,_lowerCAmelCase = None ,**_lowerCAmelCase ,): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ = AddedToken(_lowerCAmelCase ,lstrip=_lowerCAmelCase ,rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else mask_token lowerCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase ,eos_token=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,sep_token=_lowerCAmelCase ,cls_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,mask_token=_lowerCAmelCase ,additional_special_tokens=_lowerCAmelCase ,sp_model_kwargs=self.sp_model_kwargs ,**_lowerCAmelCase ,) lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCAmelCase ) ) lowerCamelCase__ = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> lowerCamelCase__ = {"""<s>NOTUSED""": 0, """<pad>""": 1, """</s>NOTUSED""": 2, """<unk>""": 3} lowerCamelCase__ = len(self.fairseq_tokens_to_ids ) lowerCamelCase__ = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) lowerCamelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] lowerCamelCase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase ,token_ids_a=_lowerCAmelCase ,already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1] def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase_ ( self ): return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def UpperCamelCase_ ( self ): lowerCamelCase__ = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase_ ( self ,_lowerCAmelCase ): return self.sp_model.encode(_lowerCAmelCase ,out_type=_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(_lowerCAmelCase ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): lowerCamelCase__ = [] lowerCamelCase__ = """""" lowerCamelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowerCAmelCase ) + token lowerCamelCase__ = True lowerCamelCase__ = [] else: current_sub_tokens.append(_lowerCAmelCase ) lowerCamelCase__ = False out_string += self.sp_model.decode(_lowerCAmelCase ) return out_string.strip() def __getstate__( self ): lowerCamelCase__ = self.__dict__.copy() lowerCamelCase__ = None return state def __setstate__( self ,_lowerCAmelCase ): lowerCamelCase__ = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): lowerCamelCase__ = {} lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase__ = os.path.join( _lowerCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase ,"""wb""" ) as fi: lowerCamelCase__ = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
9
0
from __future__ import annotations import math from collections.abc import Callable def UpperCamelCase ( __lowerCamelCase : Callable[[int | float], int | float] , __lowerCamelCase : int | float , __lowerCamelCase : int | float , __lowerCamelCase : int = 100 , ): snake_case : Union[str, Any] = x_start snake_case : Optional[int] = fnc(__lowerCamelCase ) snake_case : Dict = 0.0 for _ in range(__lowerCamelCase ): # Approximates curve as a sequence of linear lines and sums their length snake_case : Optional[int] = (x_end - x_start) / steps + xa snake_case : Optional[int] = fnc(__lowerCamelCase ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step snake_case : Optional[Any] = xa snake_case : Optional[int] = fxa return length if __name__ == "__main__": def UpperCamelCase ( __lowerCamelCase : List[Any] ): return math.sin(10 * x ) print("""f(x) = sin(10 * x)""") print("""The length of the curve from x = -10 to x = 10 is:""") __lowerCamelCase = 10 while i <= 10_00_00: print(F'With {i} steps: {line_length(f, -10, 10, i)}') i *= 10
204
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = [ ("""bert.bert""", """visual_bert"""), ("""bert.cls""", """cls"""), ("""bert.classifier""", """cls"""), ("""token_type_embeddings_visual""", """visual_token_type_embeddings"""), ("""position_embeddings_visual""", """visual_position_embeddings"""), ("""projection""", """visual_projection"""), ] __lowerCamelCase = [ """nlvr2_coco_pre_trained.th""", """nlvr2_fine_tuned.th""", """nlvr2_pre_trained.th""", """vcr_coco_pre_train.th""", """vcr_fine_tune.th""", """vcr_pre_train.th""", """vqa_coco_pre_trained.th""", """vqa_fine_tuned.th""", """vqa_pre_trained.th""", ] def UpperCamelCase ( __lowerCamelCase : int ): snake_case : List[Any] = torch.load(__lowerCamelCase , map_location="cpu" ) return sd def UpperCamelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any]=rename_keys_prefix ): snake_case : Optional[Any] = OrderedDict() snake_case : Optional[int] = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue snake_case : Any = key for name_pair in rename_keys_prefix: snake_case : List[Any] = new_key.replace(name_pair[0] , name_pair[1] ) snake_case : List[str] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately snake_case : int = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def UpperCamelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] ): assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), f"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: snake_case : Optional[Any] = "pretraining" if "vcr" in checkpoint_path: snake_case : Optional[int] = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: snake_case : int = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: snake_case : Dict = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: snake_case : Tuple = {"visual_embedding_dim": 1024} else: raise NotImplementedError(f"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: snake_case : Optional[Any] = {"visual_embedding_dim": 512} snake_case : List[str] = "multichoice" elif "vqa_advanced" in checkpoint_path: snake_case : Dict = {"visual_embedding_dim": 2048} snake_case : Tuple = "vqa_advanced" elif "vqa" in checkpoint_path: snake_case : Optional[Any] = {"visual_embedding_dim": 2048, "num_labels": 3129} snake_case : Tuple = "vqa" elif "nlvr" in checkpoint_path: snake_case : str = { "visual_embedding_dim": 1024, "num_labels": 2, } snake_case : str = "nlvr" snake_case : int = VisualBertConfig(**__lowerCamelCase ) # Load State Dict snake_case : Any = load_state_dict(__lowerCamelCase ) snake_case : List[Any] = get_new_dict(__lowerCamelCase , __lowerCamelCase ) if model_type == "pretraining": snake_case : str = VisualBertForPreTraining(__lowerCamelCase ) elif model_type == "vqa": snake_case : Any = VisualBertForQuestionAnswering(__lowerCamelCase ) elif model_type == "nlvr": snake_case : Optional[Any] = VisualBertForVisualReasoning(__lowerCamelCase ) elif model_type == "multichoice": snake_case : Optional[int] = VisualBertForMultipleChoice(__lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) # Save Checkpoints Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("""orig_checkpoint_path""", type=str, help="""A path to .th on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", type=str, help="""Path to the output PyTorch model.""") __lowerCamelCase = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
204
1
from statistics import mean import numpy as np def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = 0 # Number of processes finished UpperCAmelCase_ : Dict = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. UpperCAmelCase_ : Optional[Any] = [0] * no_of_process # List to include calculation results UpperCAmelCase_ : Dict = [0] * no_of_process # Sort by arrival time. UpperCAmelCase_ : Dict = [burst_time[i] for i in np.argsort(_lowercase )] UpperCAmelCase_ : int = [process_name[i] for i in np.argsort(_lowercase )] arrival_time.sort() while no_of_process > finished_process_count: UpperCAmelCase_ : Optional[int] = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: UpperCAmelCase_ : int = arrival_time[i] UpperCAmelCase_ : int = 0 # Index showing the location of the process being performed UpperCAmelCase_ : List[str] = 0 # Saves the current response ratio. UpperCAmelCase_ : Any = 0 for i in range(0 , _lowercase ): if finished_process[i] == 0 and arrival_time[i] <= current_time: UpperCAmelCase_ : List[Any] = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: UpperCAmelCase_ : str = temp UpperCAmelCase_ : Any = i # Calculate the turn around time UpperCAmelCase_ : str = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. UpperCAmelCase_ : Dict = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Any = [0] * no_of_process for i in range(0 , _lowercase ): UpperCAmelCase_ : str = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": __a = 5 __a = ['A', 'B', 'C', 'D', 'E'] __a = [1, 2, 3, 4, 5] __a = [1, 2, 3, 4, 5] __a = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) __a = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('Process name \tArrival time \tBurst time \tTurn around time \tWaiting time') for i in range(0, no_of_process): print( F"""{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t""" F"""{turn_around_time[i]}\t\t\t{waiting_time[i]}""" ) print(F"""average waiting time : {mean(waiting_time):.5f}""") print(F"""average turn around time : {mean(turn_around_time):.5f}""")
300
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __a = logging.get_logger(__name__) if is_vision_available(): import PIL class __a( _a ): """simple docstring""" lowerCAmelCase = ['''pixel_values'''] def __init__( self ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = 1 / 255 ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = True ,**_SCREAMING_SNAKE_CASE ,) -> None: super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = size if size is not None else {'''shortest_edge''': 224} UpperCAmelCase_ : List[Any] = get_size_dict(_SCREAMING_SNAKE_CASE ,default_to_square=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase_ : List[str] = get_size_dict(_SCREAMING_SNAKE_CASE ,default_to_square=_SCREAMING_SNAKE_CASE ,param_name='''crop_size''' ) UpperCAmelCase_ : List[Any] = do_resize UpperCAmelCase_ : List[Any] = size UpperCAmelCase_ : Optional[Any] = resample UpperCAmelCase_ : List[str] = do_center_crop UpperCAmelCase_ : str = crop_size UpperCAmelCase_ : List[str] = do_rescale UpperCAmelCase_ : Any = rescale_factor UpperCAmelCase_ : Tuple = do_normalize UpperCAmelCase_ : Optional[int] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase_ : Dict = image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase_ : List[str] = do_convert_rgb def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> np.ndarray: UpperCAmelCase_ : List[Any] = get_size_dict(_SCREAMING_SNAKE_CASE ,default_to_square=_SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) UpperCAmelCase_ : Tuple = get_resize_output_image_size(_SCREAMING_SNAKE_CASE ,size=size['''shortest_edge'''] ,default_to_square=_SCREAMING_SNAKE_CASE ) return resize(_SCREAMING_SNAKE_CASE ,size=_SCREAMING_SNAKE_CASE ,resample=_SCREAMING_SNAKE_CASE ,data_format=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> np.ndarray: UpperCAmelCase_ : Any = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_SCREAMING_SNAKE_CASE ,size=(size['''height'''], size['''width''']) ,data_format=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> Any: return rescale(_SCREAMING_SNAKE_CASE ,scale=_SCREAMING_SNAKE_CASE ,data_format=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> np.ndarray: return normalize(_SCREAMING_SNAKE_CASE ,mean=_SCREAMING_SNAKE_CASE ,std=_SCREAMING_SNAKE_CASE ,data_format=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = ChannelDimension.FIRST ,**_SCREAMING_SNAKE_CASE ,) -> PIL.Image.Image: UpperCAmelCase_ : List[Any] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : Optional[int] = size if size is not None else self.size UpperCAmelCase_ : Optional[Any] = get_size_dict(_SCREAMING_SNAKE_CASE ,param_name='''size''' ,default_to_square=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = resample if resample is not None else self.resample UpperCAmelCase_ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ : List[str] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ : Any = get_size_dict(_SCREAMING_SNAKE_CASE ,param_name='''crop_size''' ,default_to_square=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ : int = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ : List[str] = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ : int = image_std if image_std is not None else self.image_std UpperCAmelCase_ : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase_ : Dict = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase_ : List[Any] = [convert_to_rgb(_SCREAMING_SNAKE_CASE ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase_ : Any = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if do_resize: UpperCAmelCase_ : List[str] = [self.resize(image=_SCREAMING_SNAKE_CASE ,size=_SCREAMING_SNAKE_CASE ,resample=_SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: UpperCAmelCase_ : str = [self.center_crop(image=_SCREAMING_SNAKE_CASE ,size=_SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: UpperCAmelCase_ : int = [self.rescale(image=_SCREAMING_SNAKE_CASE ,scale=_SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: UpperCAmelCase_ : str = [self.normalize(image=_SCREAMING_SNAKE_CASE ,mean=_SCREAMING_SNAKE_CASE ,std=_SCREAMING_SNAKE_CASE ) for image in images] UpperCAmelCase_ : List[str] = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) for image in images] UpperCAmelCase_ : int = {'''pixel_values''': images} return BatchFeature(data=_SCREAMING_SNAKE_CASE ,tensor_type=_SCREAMING_SNAKE_CASE )
300
1
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : str = os.path.abspath(a__ ) logger.info(f"Converting TensorFlow checkpoint from {tf_path}" ) # Load weights from TF model __UpperCAmelCase : List[Any] = tf.train.list_variables(a__ ) __UpperCAmelCase : Any = [] __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : Dict = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") __UpperCAmelCase : List[Any] = full_name.split('''/''' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f"Skipping non-model layer {full_name}" ) continue if "optimizer" in full_name: logger.info(f"Skipping optimization layer {full_name}" ) continue if name[0] == "model": # ignore initial 'model' __UpperCAmelCase : List[str] = name[1:] # figure out how many levels deep the name is __UpperCAmelCase : str = 0 for _name in name: if _name.startswith('''layer_with_weights''' ): depth += 1 else: break layer_depth.append(a__ ) # read data __UpperCAmelCase : str = tf.train.load_variable(a__ , a__ ) names.append('''/'''.join(a__ ) ) arrays.append(a__ ) logger.info(f"Read a total of {len(a__ ):,} layers" ) # Sanity check if len(set(a__ ) ) != 1: raise ValueError(f"Found layer names with different depths (layer depth {list(set(a__ ) )})" ) __UpperCAmelCase : Union[str, Any] = list(set(a__ ) )[0] if layer_depth != 1: raise ValueError( '''The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP''' ''' heads.''' ) # convert layers logger.info('''Converting weights...''' ) for full_name, array in zip(a__ , a__ ): __UpperCAmelCase : str = full_name.split('''/''' ) __UpperCAmelCase : Optional[Any] = model __UpperCAmelCase : Optional[Any] = [] for i, m_name in enumerate(a__ ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('''layer_with_weights''' ): __UpperCAmelCase : Tuple = int(m_name.split('''-''' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['''embeddings''', '''LayerNorm'''] ) __UpperCAmelCase : Tuple = getattr(a__ , '''embeddings''' ) __UpperCAmelCase : List[str] = getattr(a__ , '''LayerNorm''' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['''encoder''', '''layer''', str(layer_num - 4 )] ) __UpperCAmelCase : Optional[Any] = getattr(a__ , '''encoder''' ) __UpperCAmelCase : Optional[int] = getattr(a__ , '''layer''' ) __UpperCAmelCase : Dict = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['''pooler''', '''dense'''] ) __UpperCAmelCase : str = getattr(a__ , '''pooler''' ) __UpperCAmelCase : Dict = getattr(a__ , '''dense''' ) elif m_name == "embeddings": trace.append('''embeddings''' ) __UpperCAmelCase : Union[str, Any] = getattr(a__ , '''embeddings''' ) if layer_num == 0: trace.append('''word_embeddings''' ) __UpperCAmelCase : Dict = getattr(a__ , '''word_embeddings''' ) elif layer_num == 1: trace.append('''position_embeddings''' ) __UpperCAmelCase : List[Any] = getattr(a__ , '''position_embeddings''' ) elif layer_num == 2: trace.append('''token_type_embeddings''' ) __UpperCAmelCase : Optional[Any] = getattr(a__ , '''token_type_embeddings''' ) else: raise ValueError(f"Unknown embedding layer with name {full_name}" ) trace.append('''weight''' ) __UpperCAmelCase : List[Any] = getattr(a__ , '''weight''' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['''attention''', '''self'''] ) __UpperCAmelCase : List[str] = getattr(a__ , '''attention''' ) __UpperCAmelCase : List[Any] = getattr(a__ , '''self''' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['''attention''', '''output''', '''LayerNorm'''] ) __UpperCAmelCase : Dict = getattr(a__ , '''attention''' ) __UpperCAmelCase : List[Any] = getattr(a__ , '''output''' ) __UpperCAmelCase : Tuple = getattr(a__ , '''LayerNorm''' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['''attention''', '''output''', '''dense'''] ) __UpperCAmelCase : int = getattr(a__ , '''attention''' ) __UpperCAmelCase : str = getattr(a__ , '''output''' ) __UpperCAmelCase : Union[str, Any] = getattr(a__ , '''dense''' ) elif m_name == "_output_dense": # output dense trace.extend(['''output''', '''dense'''] ) __UpperCAmelCase : Optional[Any] = getattr(a__ , '''output''' ) __UpperCAmelCase : str = getattr(a__ , '''dense''' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['''output''', '''LayerNorm'''] ) __UpperCAmelCase : int = getattr(a__ , '''output''' ) __UpperCAmelCase : Optional[Any] = getattr(a__ , '''LayerNorm''' ) elif m_name == "_key_dense": # attention key trace.append('''key''' ) __UpperCAmelCase : Tuple = getattr(a__ , '''key''' ) elif m_name == "_query_dense": # attention query trace.append('''query''' ) __UpperCAmelCase : Optional[int] = getattr(a__ , '''query''' ) elif m_name == "_value_dense": # attention value trace.append('''value''' ) __UpperCAmelCase : Optional[Any] = getattr(a__ , '''value''' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['''intermediate''', '''dense'''] ) __UpperCAmelCase : List[Any] = getattr(a__ , '''intermediate''' ) __UpperCAmelCase : List[str] = getattr(a__ , '''dense''' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('''output''' ) __UpperCAmelCase : Optional[int] = getattr(a__ , '''output''' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('''bias''' ) __UpperCAmelCase : List[str] = getattr(a__ , '''bias''' ) elif m_name in ["kernel", "gamma"]: trace.append('''weight''' ) __UpperCAmelCase : Tuple = getattr(a__ , '''weight''' ) else: logger.warning(f"Ignored {m_name}" ) # for certain layers reshape is necessary __UpperCAmelCase : Optional[Any] = '.'.join(a__ ) if re.match(r'''(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)''' , a__ ) or re.match( r'''(\S+)\.attention\.output\.dense\.weight''' , a__ ): __UpperCAmelCase : Optional[int] = array.reshape(pointer.data.shape ) if "kernel" in full_name: __UpperCAmelCase : Optional[Any] = array.transpose() if pointer.shape == array.shape: __UpperCAmelCase : Tuple = torch.from_numpy(a__ ) else: raise ValueError( f"Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:" f" {array.shape}" ) logger.info(f"Successfully set variable {full_name} to PyTorch layer {trace}" ) return model def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' logger.info(f"Loading model based on config from {config_path}..." ) __UpperCAmelCase : Union[str, Any] = BertConfig.from_json_file(a__ ) __UpperCAmelCase : Optional[int] = BertModel(a__ ) # Load weights from checkpoint logger.info(f"Loading weights from checkpoint {tf_checkpoint_path}..." ) load_tfa_weights_in_bert(a__ , a__ , a__ ) # Save pytorch-model logger.info(f"Saving PyTorch model to {pytorch_dump_path}..." ) torch.save(model.state_dict() , a__ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow 2.x checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model (must include filename).""", ) lowerCAmelCase = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
462
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') __SCREAMING_SNAKE_CASE = logging.getLogger(__name__) @dataclass class __UpperCamelCase : lowercase_ : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) lowercase_ : Optional[str] = field( default=UpperCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowercase_ : Optional[str] = field( default=UpperCamelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) lowercase_ : Optional[str] = field( default=UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) lowercase_ : bool = field( default=UpperCamelCase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) lowercase_ : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) lowercase_ : bool = field( default=UpperCamelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class __UpperCamelCase : lowercase_ : Optional[str] = field(default=UpperCamelCase , metadata={"""help""": """The input training data file (a text file)."""} ) lowercase_ : Optional[str] = field( default=UpperCamelCase , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) lowercase_ : bool = field( default=UpperCamelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) lowercase_ : Optional[int] = field( default=UpperCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) lowercase_ : Optional[int] = field( default=UpperCamelCase , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) lowercase_ : bool = field( default=UpperCamelCase , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) lowercase_ : Optional[int] = field( default=UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) lowercase_ : Optional[int] = field( default=UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def UpperCAmelCase__ ( self : Tuple ) -> List[Any]: if self.train_file is not None: lowerCAmelCase :int = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: lowerCAmelCase :int = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __UpperCamelCase : lowercase_ : PreTrainedTokenizerBase lowercase_ : Union[bool, str, PaddingStrategy] = True lowercase_ : Optional[int] = None lowercase_ : Optional[int] = None def __call__( self : List[Any] , UpperCAmelCase : Union[str, Any] ) -> Optional[int]: lowerCAmelCase :Dict = 'label' if 'label' in features[0].keys() else 'labels' lowerCAmelCase :Any = [feature.pop(UpperCAmelCase ) for feature in features] lowerCAmelCase :int = len(UpperCAmelCase ) lowerCAmelCase :int = len(features[0]['input_ids'] ) lowerCAmelCase :Optional[Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(UpperCAmelCase )] for feature in features ] lowerCAmelCase :Optional[Any] = list(chain(*UpperCAmelCase ) ) lowerCAmelCase :Any = self.tokenizer.pad( UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) # Un-flatten lowerCAmelCase :Optional[int] = {k: v.view(UpperCAmelCase , UpperCAmelCase , -1 ) for k, v in batch.items()} # Add back labels lowerCAmelCase :List[Any] = torch.tensor(UpperCAmelCase , dtype=torch.intaa ) return batch def UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase :Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase , lowerCAmelCase , lowerCAmelCase :Dict = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase :Optional[int] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , a__ , a__ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCAmelCase :str = training_args.get_process_log_level() logger.setLevel(a__ ) datasets.utils.logging.set_verbosity(a__ ) transformers.utils.logging.set_verbosity(a__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCAmelCase :Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase :Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: lowerCAmelCase :Union[str, Any] = {} if data_args.train_file is not None: lowerCAmelCase :Optional[Any] = data_args.train_file if data_args.validation_file is not None: lowerCAmelCase :str = data_args.validation_file lowerCAmelCase :List[str] = data_args.train_file.split('.' )[-1] lowerCAmelCase :Optional[int] = load_dataset( a__ , data_files=a__ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. lowerCAmelCase :Dict = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase :Union[str, Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase :Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase :List[str] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=a__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. lowerCAmelCase :Any = [F"""ending{i}""" for i in range(4 )] lowerCAmelCase :str = 'sent1' lowerCAmelCase :Optional[int] = 'sent2' if data_args.max_seq_length is None: lowerCAmelCase :Union[str, Any] = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) lowerCAmelCase :Tuple = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) lowerCAmelCase :str = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(a__ ): lowerCAmelCase :int = [[context] * 4 for context in examples[context_name]] lowerCAmelCase :List[str] = examples[question_header_name] lowerCAmelCase :Tuple = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(a__ ) ] # Flatten out lowerCAmelCase :Any = list(chain(*a__ ) ) lowerCAmelCase :Dict = list(chain(*a__ ) ) # Tokenize lowerCAmelCase :str = tokenizer( a__ , a__ , truncation=a__ , max_length=a__ , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(a__ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) lowerCAmelCase :Optional[int] = raw_datasets['train'] if data_args.max_train_samples is not None: lowerCAmelCase :int = min(len(a__ ) , data_args.max_train_samples ) lowerCAmelCase :int = train_dataset.select(range(a__ ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): lowerCAmelCase :Dict = train_dataset.map( a__ , batched=a__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) lowerCAmelCase :Tuple = raw_datasets['validation'] if data_args.max_eval_samples is not None: lowerCAmelCase :Any = min(len(a__ ) , data_args.max_eval_samples ) lowerCAmelCase :str = eval_dataset.select(range(a__ ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): lowerCAmelCase :List[str] = eval_dataset.map( a__ , batched=a__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator lowerCAmelCase :List[str] = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=a__ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(a__ ): lowerCAmelCase , lowerCAmelCase :List[str] = eval_predictions lowerCAmelCase :Tuple = np.argmax(a__ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer lowerCAmelCase :List[str] = Trainer( model=a__ , args=a__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=a__ , data_collator=a__ , compute_metrics=a__ , ) # Training if training_args.do_train: lowerCAmelCase :Optional[Any] = None if training_args.resume_from_checkpoint is not None: lowerCAmelCase :Tuple = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCAmelCase :Union[str, Any] = last_checkpoint lowerCAmelCase :Optional[int] = trainer.train(resume_from_checkpoint=a__ ) trainer.save_model() # Saves the tokenizer too for easy upload lowerCAmelCase :Tuple = train_result.metrics lowerCAmelCase :Union[str, Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(a__ ) ) lowerCAmelCase :List[Any] = min(a__ , len(a__ ) ) trainer.log_metrics('train' , a__ ) trainer.save_metrics('train' , a__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) lowerCAmelCase :Dict = trainer.evaluate() lowerCAmelCase :Any = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a__ ) lowerCAmelCase :Tuple = min(a__ , len(a__ ) ) trainer.log_metrics('eval' , a__ ) trainer.save_metrics('eval' , a__ ) lowerCAmelCase :List[str] = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**a__ ) else: trainer.create_model_card(**a__ ) def UpperCAmelCase ( a__ ): '''simple docstring''' main() if __name__ == "__main__": main()
553
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase : int = logging.get_logger(__name__) UpperCamelCase : List[str] = { """sail/poolformer_s12""": """https://huggingface.co/sail/poolformer_s12/resolve/main/config.json""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class UpperCamelCase ( _snake_case ): """simple docstring""" A : int = 'poolformer' def __init__( self : Any , UpperCAmelCase_ : str=3 , UpperCAmelCase_ : str=1_6 , UpperCAmelCase_ : Dict=1_6 , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : List[str]=4.0 , UpperCAmelCase_ : List[Any]=[2, 2, 6, 2] , UpperCAmelCase_ : Union[str, Any]=[6_4, 1_2_8, 3_2_0, 5_1_2] , UpperCAmelCase_ : int=[7, 3, 3, 3] , UpperCAmelCase_ : List[str]=[4, 2, 2, 2] , UpperCAmelCase_ : Any=[2, 1, 1, 1] , UpperCAmelCase_ : List[str]=4 , UpperCAmelCase_ : Tuple=0.0 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Dict=1e-5 , UpperCAmelCase_ : Dict=0.02 , **UpperCAmelCase_ : Tuple , ): """simple docstring""" __lowerCamelCase : Any = num_channels __lowerCamelCase : str = patch_size __lowerCamelCase : Union[str, Any] = stride __lowerCamelCase : Any = padding __lowerCamelCase : int = pool_size __lowerCamelCase : Dict = hidden_sizes __lowerCamelCase : Optional[Any] = mlp_ratio __lowerCamelCase : List[Any] = depths __lowerCamelCase : str = patch_sizes __lowerCamelCase : List[str] = strides __lowerCamelCase : Tuple = num_encoder_blocks __lowerCamelCase : Tuple = drop_path_rate __lowerCamelCase : str = hidden_act __lowerCamelCase : Any = use_layer_scale __lowerCamelCase : str = layer_scale_init_value __lowerCamelCase : int = initializer_range super().__init__(**UpperCAmelCase_) class UpperCamelCase ( _snake_case ): """simple docstring""" A : List[str] = version.parse("1.11" ) @property def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" return 2e-3
713
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCamelCase : Optional[int] = { """configuration_longt5""": ["""LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongT5Config""", """LongT5OnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[Any] = [ """LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """LongT5EncoderModel""", """LongT5ForConditionalGeneration""", """LongT5Model""", """LongT5PreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Any = [ """FlaxLongT5ForConditionalGeneration""", """FlaxLongT5Model""", """FlaxLongT5PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys UpperCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
610
0
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , snake_case_=13 , snake_case_=30 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=10 , snake_case_=0.02 , snake_case_=3 , snake_case_=0.6 , snake_case_=None , ): _A = parent _A = batch_size _A = image_size _A = patch_size _A = num_channels _A = is_training _A = use_labels _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = type_sequence_label_size _A = initializer_range _A = mask_ratio _A = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _A = (image_size // patch_size) ** 2 _A = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCAmelCase__ ( self ): _A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self ): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ ): _A = ViTMAEModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ ): _A = ViTMAEForPreTraining(snake_case_ ) model.to(snake_case_ ) model.eval() _A = model(snake_case_ ) _A = (self.image_size // self.patch_size) ** 2 _A = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _A = 1 _A = ViTMAEForPreTraining(snake_case_ ) model.to(snake_case_ ) model.eval() _A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _A = model(snake_case_ ) _A = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() _A, _A, _A = config_and_inputs _A = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () __magic_name__ = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False def lowerCAmelCase__ ( self ): _A = ViTMAEModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): _A, _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(snake_case_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , nn.Linear ) ) def lowerCAmelCase__ ( self ): _A, _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(snake_case_ ) _A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case_ ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ ): # make masks reproducible np.random.seed(2 ) _A = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) _A = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _A = torch.from_numpy(snake_case_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _A = pt_noise super().check_pt_tf_models(snake_case_ , snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): _A, _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _A = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) _A = outputs[0].cpu().numpy() _A = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ ) _A = model_class.from_pretrained(snake_case_ ) model.to(snake_case_ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _A = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) # Make sure we don't have nans _A = after_outputs[0].cpu().numpy() _A = 0 _A = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case_ , 1E-5 ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def lowerCAmelCase__ ( self ): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def lowerCAmelCase__ ( self ): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def lowerCAmelCase__ ( self ): pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def lowerCAmelCase__ ( self ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCAmelCase__ ( self ): pass @slow def lowerCAmelCase__ ( self ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = ViTMAEModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def __lowerCAmelCase( ) -> Any: """simple docstring""" _A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase__ ( self ): return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) _A = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ).to(snake_case_ ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(images=snake_case_ , return_tensors='pt' ).to(snake_case_ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _A = ViTMAEConfig() _A = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _A = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): _A = model(**snake_case_ , noise=torch.from_numpy(snake_case_ ).to(device=snake_case_ ) ) # verify the logits _A = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , snake_case_ ) _A = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(snake_case_ ) , atol=1E-4 ) )
27
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm _a: List[str] = logging.get_logger(__name__) @dataclass class __UpperCamelCase ( lowercase ): SCREAMING_SNAKE_CASE__ = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self : Optional[int] , **lowerCAmelCase : List[str] ): '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: UpperCAmelCase_ = deprecated_arg[3:] setattr(self , lowerCAmelCase , not kwargs.pop(lowerCAmelCase ) ) logger.warning( F"{deprecated_arg} is depreciated. Please use --no_{positive_arg} or" F" {positive_arg}={kwargs[positive_arg]}" ) UpperCAmelCase_ = kwargs.pop("torchscript" , self.torchscript ) UpperCAmelCase_ = kwargs.pop("torch_xla_tpu_print_metrics" , self.torch_xla_tpu_print_metrics ) UpperCAmelCase_ = kwargs.pop("fp16_opt_level" , self.fpaa_opt_level ) super().__init__(**lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = field(default=lowercase , metadata={'help': 'Trace the models using torchscript'} ) SCREAMING_SNAKE_CASE__ = field(default=lowercase , metadata={'help': 'Print Xla/PyTorch tpu metrics'} ) SCREAMING_SNAKE_CASE__ = field( default='O1' , metadata={ 'help': ( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ' 'See details at https://nvidia.github.io/apex/amp.html' ) } , ) @cached_property def __A ( self : Union[str, Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) logger.info("PyTorch: setting up devices" ) if not self.cuda: UpperCAmelCase_ = torch.device("cpu" ) UpperCAmelCase_ = 0 elif is_torch_tpu_available(): UpperCAmelCase_ = xm.xla_device() UpperCAmelCase_ = 0 else: UpperCAmelCase_ = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) UpperCAmelCase_ = torch.cuda.device_count() return device, n_gpu @property def __A ( self : int ): '''simple docstring''' return is_torch_tpu_available() and self.tpu @property def __A ( self : List[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def __A ( self : Tuple ): '''simple docstring''' requires_backends(self , ["torch"] ) return self._setup_devices[0] @property def __A ( self : List[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) return self._setup_devices[1] @property def __A ( self : Union[str, Any] ): '''simple docstring''' return self.n_gpu > 0
162
0
import re def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE__ = re.compile(r"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" ) if match := re.search(__UpperCamelCase , __UpperCamelCase ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('''+918827897895'''))
379
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class __snake_case : def __a ( self : str , _lowercase : str , _lowercase : Dict , _lowercase : List[Any] ): """simple docstring""" return None class __snake_case : def __a ( self : List[str] , _lowercase : List[str] , _lowercase : str , _lowercase : List[Any] , _lowercase : str ): """simple docstring""" return None class __snake_case ( unittest.TestCase ): lowerCAmelCase_ = [ # (model_name, model_kwargs) ("bert-base-cased", {}), ("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def __a ( self : List[Any] ): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(_lowercase , """tf""" , 12 , **_lowercase ) @require_torch @slow def __a ( self : Optional[Any] ): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(_lowercase , """pt""" , 12 , **_lowercase ) @require_torch @slow def __a ( self : Dict ): """simple docstring""" from transformers import BertModel SCREAMING_SNAKE_CASE__ = ["""[UNK]""", """[SEP]""", """[CLS]""", """[PAD]""", """[MASK]""", """some""", """other""", """words"""] with NamedTemporaryFile(mode="""w+t""" ) as vocab_file: vocab_file.write("""\n""".join(_lowercase ) ) vocab_file.flush() SCREAMING_SNAKE_CASE__ = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: SCREAMING_SNAKE_CASE__ = BertModel(BertConfig(vocab_size=len(_lowercase ) ) ) model.save_pretrained(_lowercase ) self._test_export(_lowercase , """pt""" , 12 , _lowercase ) @require_tf @slow def __a ( self : Dict ): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE__ = self._test_export(_lowercase , """tf""" , 12 , **_lowercase ) SCREAMING_SNAKE_CASE__ = quantize(Path(_lowercase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(_lowercase ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) @require_torch @slow def __a ( self : Any ): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE__ = self._test_export(_lowercase , """pt""" , 12 , **_lowercase ) SCREAMING_SNAKE_CASE__ = quantize(_lowercase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(_lowercase ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) def __a ( self : Union[str, Any] , _lowercase : List[str] , _lowercase : Tuple , _lowercase : Optional[Any] , _lowercase : str=None , **_lowercase : List[str] ): """simple docstring""" try: # Compute path with TemporaryDirectory() as tempdir: SCREAMING_SNAKE_CASE__ = Path(_lowercase ).joinpath("""model.onnx""" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , **_lowercase ) return path except Exception as e: self.fail(_lowercase ) @require_torch @require_tokenizers @slow def __a ( self : List[str] ): """simple docstring""" from transformers import BertModel SCREAMING_SNAKE_CASE__ = BertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) SCREAMING_SNAKE_CASE__ = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(_lowercase , _lowercase , """pt""" ) @require_tf @require_tokenizers @slow def __a ( self : Dict ): """simple docstring""" from transformers import TFBertModel SCREAMING_SNAKE_CASE__ = TFBertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) SCREAMING_SNAKE_CASE__ = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(_lowercase , _lowercase , """tf""" ) def __a ( self : List[Any] , _lowercase : List[Any] , _lowercase : Optional[int] , _lowercase : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = FeatureExtractionPipeline(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ = ["""input_ids""", """token_type_ids""", """attention_mask""", """output_0""", """output_1"""] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = infer_shapes(_lowercase , _lowercase ) # Assert all variables are present self.assertEqual(len(_lowercase ) , len(_lowercase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , _lowercase ) self.assertSequenceEqual(variable_names[3:] , _lowercase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: """batch""", 1: """sequence"""} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["""output_0"""] , {0: """batch""", 1: """sequence"""} ) self.assertDictEqual(shapes["""output_1"""] , {0: """batch"""} ) def __a ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""input_ids""", """attention_mask""", """token_type_ids"""] SCREAMING_SNAKE_CASE__ = {"""input_ids""": [1, 2, 3, 4], """attention_mask""": [0, 0, 0, 0], """token_type_ids""": [1, 1, 1, 1]} SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = ensure_valid_input(FuncContiguousArgs() , _lowercase , _lowercase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(_lowercase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(_lowercase ) , set(_lowercase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(_lowercase , (tokens["""input_ids"""], tokens["""token_type_ids"""], tokens["""attention_mask"""]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = ensure_valid_input(FuncNonContiguousArgs() , _lowercase , _lowercase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(_lowercase ) , 1 ) self.assertEqual(len(_lowercase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["""input_ids"""] ) self.assertEqual(ordered_input_names[0] , """input_ids""" ) def __a ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = generate_identified_filename(Path("""/home/something/my_fake_model.onnx""" ) , """-test""" ) self.assertEqual("""/home/something/my_fake_model-test.onnx""" , generated.as_posix() )
379
1
"""simple docstring""" _lowerCAmelCase : List[Any] = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } def SCREAMING_SNAKE_CASE__ ( snake_case : dict , snake_case : Union[str, Any] , snake_case : str )-> Any: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = set() # keep track of all the paths to be checked UpperCAmelCase__ : str = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue UpperCAmelCase__ : List[str] = queue.pop(0 ) # get the last node from the path UpperCAmelCase__ : List[str] = path[-1] if node not in explored: UpperCAmelCase__ : Any = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: UpperCAmelCase__ : int = list(UpperCAmelCase__ ) new_path.append(UpperCAmelCase__ ) queue.append(UpperCAmelCase__ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(UpperCAmelCase__ ) # in case there's no path between the 2 nodes return [] def SCREAMING_SNAKE_CASE__ ( snake_case : dict , snake_case : Optional[Any] , snake_case : Union[str, Any] )-> Tuple: '''simple docstring''' if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 UpperCAmelCase__ : Dict = [start] UpperCAmelCase__ : Optional[int] = set(UpperCAmelCase__ ) # Keep tab on distances from `start` node. UpperCAmelCase__ : Dict = {start: 0, target: -1} while queue: UpperCAmelCase__ : Optional[int] = queue.pop(0 ) if node == target: UpperCAmelCase__ : Optional[Any] = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(UpperCAmelCase__ ) queue.append(UpperCAmelCase__ ) UpperCAmelCase__ : Dict = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, """G""", """D""")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, """G""", """D""")) # returns 4
438
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case : def __init__( self, A, A=13, A=32, A=2, A=3, A=16, A=[1, 2, 1], A=[2, 2, 4], A=2, A=2.0, A=True, A=0.0, A=0.0, A=0.1, A="gelu", A=False, A=True, A=0.02, A=1e-5, A=True, A=None, A=True, A=10, A=8, ): """simple docstring""" lowerCamelCase : int = parent lowerCamelCase : Optional[Any] = batch_size lowerCamelCase : List[Any] = image_size lowerCamelCase : List[Any] = patch_size lowerCamelCase : List[Any] = num_channels lowerCamelCase : Tuple = embed_dim lowerCamelCase : Dict = depths lowerCamelCase : Optional[Any] = num_heads lowerCamelCase : Tuple = window_size lowerCamelCase : str = mlp_ratio lowerCamelCase : List[str] = qkv_bias lowerCamelCase : Optional[Any] = hidden_dropout_prob lowerCamelCase : Any = attention_probs_dropout_prob lowerCamelCase : Dict = drop_path_rate lowerCamelCase : Dict = hidden_act lowerCamelCase : Optional[int] = use_absolute_embeddings lowerCamelCase : Dict = patch_norm lowerCamelCase : Union[str, Any] = layer_norm_eps lowerCamelCase : Optional[int] = initializer_range lowerCamelCase : Tuple = is_training lowerCamelCase : Optional[int] = scope lowerCamelCase : Any = use_labels lowerCamelCase : List[str] = type_sequence_label_size lowerCamelCase : Optional[Any] = encoder_stride def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase : Union[str, Any] = None if self.use_labels: lowerCamelCase : str = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self ): """simple docstring""" return SwinvaConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, embed_dim=self.embed_dim, depths=self.depths, num_heads=self.num_heads, window_size=self.window_size, mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, drop_path_rate=self.drop_path_rate, hidden_act=self.hidden_act, use_absolute_embeddings=self.use_absolute_embeddings, path_norm=self.patch_norm, layer_norm_eps=self.layer_norm_eps, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def UpperCAmelCase_ ( self, A, A, A ): """simple docstring""" lowerCamelCase : int = SwinvaModel(config=A ) model.to(A ) model.eval() lowerCamelCase : str = model(A ) lowerCamelCase : List[str] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCamelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase_ ( self, A, A, A ): """simple docstring""" lowerCamelCase : Tuple = SwinvaForMaskedImageModeling(config=A ) model.to(A ) model.eval() lowerCamelCase : Tuple = model(A ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase : int = 1 lowerCamelCase : List[str] = SwinvaForMaskedImageModeling(A ) model.to(A ) model.eval() lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase : List[Any] = model(A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase_ ( self, A, A, A ): """simple docstring""" lowerCamelCase : List[str] = self.type_sequence_label_size lowerCamelCase : int = SwinvaForImageClassification(A ) model.to(A ) model.eval() lowerCamelCase : List[str] = model(A, labels=A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : str = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase : Optional[int] = config_and_inputs lowerCamelCase : Dict = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __snake_case ( a__ , a__ , unittest.TestCase): _lowerCAmelCase = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _lowerCAmelCase = ( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = SwinvaModelTester(self ) lowerCamelCase : Union[str, Any] = ConfigTester(self, config_class=A, embed_dim=37 ) def UpperCAmelCase_ ( self ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' ) def UpperCAmelCase_ ( self ): """simple docstring""" pass @unittest.skip(reason='Swinv2 does not use inputs_embeds' ) def UpperCAmelCase_ ( self ): """simple docstring""" pass def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : Any = model_class(A ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) lowerCamelCase : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A, nn.Linear ) ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : List[Any] = model_class(A ) lowerCamelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase : Dict = [*signature.parameters.keys()] lowerCamelCase : Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1], A ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase : int = True for model_class in self.all_model_classes: lowerCamelCase : Optional[int] = True lowerCamelCase : List[Any] = False lowerCamelCase : str = True lowerCamelCase : Union[str, Any] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): lowerCamelCase : Tuple = model(**self._prepare_for_class(A, A ) ) lowerCamelCase : Tuple = outputs.attentions lowerCamelCase : Union[str, Any] = len(self.model_tester.depths ) self.assertEqual(len(A ), A ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase : List[str] = True lowerCamelCase : int = config.window_size**2 lowerCamelCase : str = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): lowerCamelCase : Any = model(**self._prepare_for_class(A, A ) ) lowerCamelCase : str = outputs.attentions self.assertEqual(len(A ), A ) self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_heads[0], window_size_squared, window_size_squared], ) lowerCamelCase : Optional[Any] = len(A ) # Check attention is always last and order is fine lowerCamelCase : List[str] = True lowerCamelCase : Any = True lowerCamelCase : Tuple = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): lowerCamelCase : Optional[Any] = model(**self._prepare_for_class(A, A ) ) if hasattr(self.model_tester, 'num_hidden_states_types' ): lowerCamelCase : Optional[int] = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states lowerCamelCase : Tuple = 2 self.assertEqual(out_len + added_hidden_states, len(A ) ) lowerCamelCase : int = outputs.attentions self.assertEqual(len(A ), A ) self.assertListEqual( list(self_attentions[0].shape[-3:] ), [self.model_tester.num_heads[0], window_size_squared, window_size_squared], ) def UpperCAmelCase_ ( self, A, A, A, A ): """simple docstring""" lowerCamelCase : int = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): lowerCamelCase : Optional[int] = model(**self._prepare_for_class(A, A ) ) lowerCamelCase : Dict = outputs.hidden_states lowerCamelCase : List[Any] = getattr( self.model_tester, 'expected_num_hidden_layers', len(self.model_tester.depths ) + 1 ) self.assertEqual(len(A ), A ) # Swinv2 has a different seq_length lowerCamelCase : Any = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [num_patches, self.model_tester.embed_dim], ) lowerCamelCase : List[Any] = outputs.reshaped_hidden_states self.assertEqual(len(A ), A ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase : Tuple = reshaped_hidden_states[0].shape lowerCamelCase : Union[str, Any] = ( reshaped_hidden_states[0].view(A, A, height * width ).permute(0, 2, 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ), [num_patches, self.model_tester.embed_dim], ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase : int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowerCamelCase : str = True self.check_hidden_states_output(A, A, A, A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase : Dict = True self.check_hidden_states_output(A, A, A, A ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase : List[Any] = 3 lowerCamelCase : List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCamelCase : str = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase : Union[str, Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCamelCase : Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowerCamelCase : Tuple = True self.check_hidden_states_output(A, A, A, (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase : List[str] = True self.check_hidden_states_output(A, A, A, (padded_height, padded_width) ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def UpperCAmelCase_ ( self ): """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase : Any = SwinvaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase : Tuple = _config_zero_init(A ) for model_class in self.all_model_classes: lowerCamelCase : Any = model_class(config=A ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=F'''Parameter {name} of model {model_class} seems not properly initialized''', ) @require_vision @require_torch class __snake_case ( unittest.TestCase): @cached_property def UpperCAmelCase_ ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Tuple = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to( A ) lowerCamelCase : Union[str, Any] = self.default_image_processor lowerCamelCase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCamelCase : Any = image_processor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): lowerCamelCase : Any = model(**A ) # verify the logits lowerCamelCase : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape, A ) lowerCamelCase : List[Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3], A, atol=1e-4 ) )
320
0
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType A : Tuple = logging.get_logger(__name__) class UpperCamelCase( _a ): '''simple docstring''' snake_case_ : str = """vision-encoder-decoder""" snake_case_ : Union[str, Any] = True def __init__( self : Optional[Any] , **SCREAMING_SNAKE_CASE : str ) -> Dict: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f'''A configuraton of type {self.model_type} cannot be instantiated because ''' f'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) __snake_case = kwargs.pop("encoder" ) __snake_case = encoder_config.pop("model_type" ) __snake_case = kwargs.pop("decoder" ) __snake_case = decoder_config.pop("model_type" ) __snake_case = AutoConfig.for_model(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) __snake_case = AutoConfig.for_model(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) __snake_case = True @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Tuple , SCREAMING_SNAKE_CASE : PretrainedConfig , SCREAMING_SNAKE_CASE : PretrainedConfig , **SCREAMING_SNAKE_CASE : int ) -> PretrainedConfig: '''simple docstring''' logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) __snake_case = True __snake_case = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : Any ) -> str: '''simple docstring''' __snake_case = copy.deepcopy(self.__dict__ ) __snake_case = self.encoder.to_dict() __snake_case = self.decoder.to_dict() __snake_case = self.__class__.model_type return output class UpperCamelCase( _a ): '''simple docstring''' snake_case_ : str = version.parse("""1.11""" ) @property def SCREAMING_SNAKE_CASE_ ( self : int ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> float: '''simple docstring''' return 1e-4 @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict({"last_hidden_state": {0: "batch", 1: "encoder_sequence"}} ) class UpperCamelCase( _a ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE_ ( self : str ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' __snake_case = OrderedDict() __snake_case = {0: "batch", 1: "past_decoder_sequence + sequence"} __snake_case = {0: "batch", 1: "past_decoder_sequence + sequence"} __snake_case = {0: "batch", 1: "encoder_sequence"} return common_inputs def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE : "PreTrainedTokenizerBase" , SCREAMING_SNAKE_CASE : int = -1 , SCREAMING_SNAKE_CASE : int = -1 , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : Optional["TensorType"] = None , ) -> Mapping[str, Any]: '''simple docstring''' import torch __snake_case = OrderedDict() __snake_case = super().generate_dummy_inputs( SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , seq_length=SCREAMING_SNAKE_CASE , is_pair=SCREAMING_SNAKE_CASE , framework=SCREAMING_SNAKE_CASE ) __snake_case , __snake_case = dummy_input["input_ids"].shape __snake_case = (batch, encoder_sequence, self._config.encoder_hidden_size) __snake_case = dummy_input.pop("input_ids" ) __snake_case = dummy_input.pop("attention_mask" ) __snake_case = torch.zeros(SCREAMING_SNAKE_CASE ) return common_inputs class UpperCamelCase( _a ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> None: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE : PretrainedConfig ) -> OnnxConfig: '''simple docstring''' return VisionEncoderDecoderEncoderOnnxConfig(SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE : PretrainedConfig , SCREAMING_SNAKE_CASE : PretrainedConfig , SCREAMING_SNAKE_CASE : str = "default" ) -> OnnxConfig: '''simple docstring''' __snake_case = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
709
import os from typing import Dict, List, Tuple, TypeVar, Union A : List[Any] = TypeVar('T') A : Dict = Union[List[T], Tuple[T, ...]] A : Any = Union[T, List[T], Dict[str, T]] A : Optional[int] = Union[str, bytes, os.PathLike]
473
0
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : Dict ) -> bool: '''simple docstring''' UpperCAmelCase_ = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def lowerCAmelCase_ ( snake_case_ : List[Any] = 50_00 ) -> int: '''simple docstring''' UpperCAmelCase_ = [(i * (3 * i - 1)) // 2 for i in range(1 , __UpperCamelCase )] for i, pentagonal_i in enumerate(__UpperCamelCase ): for j in range(__UpperCamelCase , len(__UpperCamelCase ) ): UpperCAmelCase_ = pentagonal_nums[j] UpperCAmelCase_ = pentagonal_i + pentagonal_j UpperCAmelCase_ = pentagonal_j - pentagonal_i if is_pentagonal(__UpperCamelCase ) and is_pentagonal(__UpperCamelCase ): return b return -1 if __name__ == "__main__": print(f"{solution() = }")
78
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class a_ ( unittest.TestCase ): lowercase = ViTImageProcessor if is_vision_available() else None @property def A__ ( self ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = (3, 32, 128) UpperCamelCase = tempfile.mkdtemp() # fmt: off UpperCamelCase = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on UpperCamelCase = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) + """\n""" ) UpperCamelCase = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } UpperCamelCase = os.path.join(self.tmpdirname , _SCREAMING_SNAKE_CASE ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def A__ ( self , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def A__ ( self , **_SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) UpperCamelCase = Image.fromarray(np.moveaxis(_SCREAMING_SNAKE_CASE , 0 , -1 ) ) return image_input def A__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_image_processor() UpperCamelCase = MgpstrProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_SCREAMING_SNAKE_CASE ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> str: """simple docstring""" UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_image_processor() UpperCamelCase = MgpstrProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCamelCase = self.get_image_processor(do_normalize=_SCREAMING_SNAKE_CASE , padding_value=1.0 ) UpperCamelCase = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = MgpstrProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = image_processor(_SCREAMING_SNAKE_CASE , return_tensors="""np""" ) UpperCamelCase = processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = MgpstrProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) UpperCamelCase = """test""" UpperCamelCase = processor(text=_SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer(_SCREAMING_SNAKE_CASE ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A__ ( self ) -> str: """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = MgpstrProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) UpperCamelCase = """test""" UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = processor(text=_SCREAMING_SNAKE_CASE , images=_SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] ) # test if it raises when no input is passed with pytest.raises(_SCREAMING_SNAKE_CASE ): processor() def A__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = MgpstrProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) UpperCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase = processor.char_decode(_SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE ) UpperCamelCase = [seq.replace(""" """ , """""" ) for seq in decoded_tok] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = MgpstrProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) UpperCamelCase = None UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = processor(text=_SCREAMING_SNAKE_CASE , images=_SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def A__ ( self ) -> Any: """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = MgpstrProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) UpperCamelCase = torch.randn(1 , 27 , 38 ) UpperCamelCase = torch.randn(1 , 27 , 50257 ) UpperCamelCase = torch.randn(1 , 27 , 30522 ) UpperCamelCase = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
301
0
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase ) ->int: """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 a_ = 1 a_ = 1 while repunit: a_ = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCamelCase ( UpperCAmelCase = 1_000_000 ) ->int: """simple docstring""" a_ = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(UpperCAmelCase ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"""{solution() = }""")
707
"""simple docstring""" import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->List[Any]: a_ = "| <pad> <unk> <s> </s> a b c d e f g h i j k".split() a_ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase)))) a_ = { "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", } a_ = { "feature_size": 1, "padding_value": 0.0, "sampling_rate": 1_60_00, "return_attention_mask": False, "do_normalize": True, } a_ = tempfile.mkdtemp() a_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) a_ = os.path.join(self.tmpdirname , __UpperCAmelCase) with open(self.vocab_file , "w" , encoding="utf-8") as fp: fp.write(json.dumps(__UpperCAmelCase) + "\n") with open(self.feature_extraction_file , "w" , encoding="utf-8") as fp: fp.write(json.dumps(__UpperCAmelCase) + "\n") # load decoder from hub a_ = "hf-internal-testing/ngram-beam-search-decoder" def UpperCAmelCase__ ( self , **__UpperCAmelCase) ->Optional[Any]: a_ = self.add_kwargs_tokens_map.copy() kwargs.update(__UpperCAmelCase) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase) def UpperCAmelCase__ ( self , **__UpperCAmelCase) ->int: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__UpperCAmelCase) def UpperCAmelCase__ ( self , **__UpperCAmelCase) ->Optional[int]: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[Any]: shutil.rmtree(self.tmpdirname) def UpperCAmelCase__ ( self) ->Optional[Any]: a_ = self.get_tokenizer() a_ = self.get_feature_extractor() a_ = self.get_decoder() a_ = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase) processor.save_pretrained(self.tmpdirname) a_ = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string()) self.assertIsInstance(processor.feature_extractor , __UpperCAmelCase) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->Dict: a_ = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder()) processor.save_pretrained(self.tmpdirname) # make sure that error is thrown when decoder alphabet doesn't match a_ = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3) # decoder self.assertEqual(processor.language_model.alpha , 5.0) self.assertEqual(processor.language_model.beta , 3.0) self.assertEqual(processor.language_model.score_boundary , -7.0) self.assertEqual(processor.language_model.unk_score_offset , 3) def UpperCAmelCase__ ( self) ->Any: a_ = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["xx"]) with self.assertRaisesRegex(__UpperCAmelCase , "include"): WavaVecaProcessorWithLM( tokenizer=__UpperCAmelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder()) def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = self.get_feature_extractor() a_ = self.get_tokenizer() a_ = self.get_decoder() a_ = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase) a_ = floats_list((3, 10_00)) a_ = feature_extractor(__UpperCAmelCase , return_tensors="np") a_ = processor(__UpperCAmelCase , return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def UpperCAmelCase__ ( self) ->Tuple: a_ = self.get_feature_extractor() a_ = self.get_tokenizer() a_ = self.get_decoder() a_ = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase) a_ = "This is a test string" a_ = processor(text=__UpperCAmelCase) a_ = tokenizer(__UpperCAmelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def UpperCAmelCase__ ( self , __UpperCAmelCase=(2, 10, 16) , __UpperCAmelCase=77) ->Any: np.random.seed(__UpperCAmelCase) return np.random.rand(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->str: a_ = self.get_feature_extractor() a_ = self.get_tokenizer() a_ = self.get_decoder() a_ = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase) a_ = self._get_dummy_logits(shape=(10, 16) , seed=13) a_ = processor.decode(__UpperCAmelCase) a_ = decoder.decode_beams(__UpperCAmelCase)[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text) self.assertEqual("</s> <s> </s>" , decoded_processor.text) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score) @parameterized.expand([[None], ["fork"], ["spawn"]]) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Optional[int]: a_ = self.get_feature_extractor() a_ = self.get_tokenizer() a_ = self.get_decoder() a_ = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase) a_ = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: a_ = processor.batch_decode(__UpperCAmelCase) else: with get_context(__UpperCAmelCase).Pool() as pool: a_ = processor.batch_decode(__UpperCAmelCase , __UpperCAmelCase) a_ = list(__UpperCAmelCase) with get_context("fork").Pool() as p: a_ = decoder.decode_beams_batch(__UpperCAmelCase , __UpperCAmelCase) a_ , a_ , a_ = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0]) logit_scores_decoder.append(beams[0][-2]) lm_scores_decoder.append(beams[0][-1]) self.assertListEqual(__UpperCAmelCase , decoded_processor.text) self.assertListEqual(["<s> <s> </s>", "<s> <s> <s>"] , decoded_processor.text) self.assertListEqual(__UpperCAmelCase , decoded_processor.logit_score) self.assertListEqual(__UpperCAmelCase , decoded_processor.lm_score) def UpperCAmelCase__ ( self) ->Optional[int]: a_ = self.get_feature_extractor() a_ = self.get_tokenizer() a_ = self.get_decoder() a_ = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase) a_ = self._get_dummy_logits() a_ = 15 a_ = -20.0 a_ = -4.0 a_ = processor.batch_decode( __UpperCAmelCase , beam_width=__UpperCAmelCase , beam_prune_logp=__UpperCAmelCase , token_min_logp=__UpperCAmelCase , ) a_ = decoded_processor_out.text a_ = list(__UpperCAmelCase) with get_context("fork").Pool() as pool: a_ = decoder.decode_beams_batch( __UpperCAmelCase , __UpperCAmelCase , beam_width=__UpperCAmelCase , beam_prune_logp=__UpperCAmelCase , token_min_logp=__UpperCAmelCase , ) a_ = [d[0][0] for d in decoded_decoder_out] a_ = [d[0][2] for d in decoded_decoder_out] a_ = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase) self.assertListEqual(["</s> <s> <s>", "<s> <s> <s>"] , __UpperCAmelCase) self.assertTrue(np.array_equal(__UpperCAmelCase , decoded_processor_out.logit_score)) self.assertTrue(np.allclose([-20.054, -18.447] , __UpperCAmelCase , atol=1E-3)) self.assertTrue(np.array_equal(__UpperCAmelCase , decoded_processor_out.lm_score)) self.assertTrue(np.allclose([-15.554, -13.9_474] , __UpperCAmelCase , atol=1E-3)) def UpperCAmelCase__ ( self) ->Tuple: a_ = self.get_feature_extractor() a_ = self.get_tokenizer() a_ = self.get_decoder() a_ = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase) a_ = self._get_dummy_logits() a_ = 2.0 a_ = 5.0 a_ = -20.0 a_ = True a_ = processor.batch_decode( __UpperCAmelCase , alpha=__UpperCAmelCase , beta=__UpperCAmelCase , unk_score_offset=__UpperCAmelCase , lm_score_boundary=__UpperCAmelCase , ) a_ = decoded_processor_out.text a_ = list(__UpperCAmelCase) decoder.reset_params( alpha=__UpperCAmelCase , beta=__UpperCAmelCase , unk_score_offset=__UpperCAmelCase , lm_score_boundary=__UpperCAmelCase , ) with get_context("fork").Pool() as pool: a_ = decoder.decode_beams_batch( __UpperCAmelCase , __UpperCAmelCase , ) a_ = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase) self.assertListEqual(["<s> </s> <s> </s> </s>", "</s> </s> <s> </s> </s>"] , __UpperCAmelCase) a_ = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0) self.assertEqual(lm_model.beta , 5.0) self.assertEqual(lm_model.unk_score_offset , -20.0) self.assertEqual(lm_model.score_boundary , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: a_ = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm") a_ = processor.decoder.model_container[processor.decoder._model_key] a_ = Path(language_model._kenlm_model.path.decode("utf-8")).parent.parent.absolute() a_ = os.listdir(__UpperCAmelCase) a_ = ["alphabet.json", "language_model"] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->Tuple: a_ = snapshot_download("hf-internal-testing/processor_with_lm") a_ = WavaVecaProcessorWithLM.from_pretrained(__UpperCAmelCase) a_ = processor.decoder.model_container[processor.decoder._model_key] a_ = Path(language_model._kenlm_model.path.decode("utf-8")).parent.parent.absolute() a_ = os.listdir(__UpperCAmelCase) a_ = os.listdir(__UpperCAmelCase) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->Any: a_ = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm") a_ = AutoProcessor.from_pretrained("hf-internal-testing/processor_with_lm") a_ = floats_list((3, 10_00)) a_ = processor_wavaveca(__UpperCAmelCase , return_tensors="np") a_ = processor_auto(__UpperCAmelCase , return_tensors="np") for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2) a_ = self._get_dummy_logits() a_ = processor_wavaveca.batch_decode(__UpperCAmelCase) a_ = processor_auto.batch_decode(__UpperCAmelCase) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text) def UpperCAmelCase__ ( self) ->str: a_ = self.get_feature_extractor() a_ = self.get_tokenizer() a_ = self.get_decoder() a_ = WavaVecaProcessorWithLM(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , decoder=__UpperCAmelCase) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , ) @staticmethod def UpperCAmelCase__ ( __UpperCAmelCase , __UpperCAmelCase) ->Optional[int]: a_ = [d[key] for d in offsets] return retrieved_list def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm") a_ = self._get_dummy_logits()[0] a_ = processor.decode(__UpperCAmelCase , output_word_offsets=__UpperCAmelCase) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys()) , 4) self.assertTrue("text" in outputs) self.assertTrue("word_offsets" in outputs) self.assertTrue(isinstance(__UpperCAmelCase , __UpperCAmelCase)) self.assertEqual(" ".join(self.get_from_offsets(outputs["word_offsets"] , "word")) , outputs.text) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "word") , ["<s>", "<s>", "</s>"]) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "start_offset") , [0, 2, 4]) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "end_offset") , [1, 3, 5]) def UpperCAmelCase__ ( self) ->List[str]: a_ = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm") a_ = self._get_dummy_logits() a_ = processor.batch_decode(__UpperCAmelCase , output_word_offsets=__UpperCAmelCase) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys()) , 4) self.assertTrue("text" in outputs) self.assertTrue("word_offsets" in outputs) self.assertTrue(isinstance(__UpperCAmelCase , __UpperCAmelCase)) self.assertListEqual( [" ".join(self.get_from_offsets(__UpperCAmelCase , "word")) for o in outputs["word_offsets"]] , outputs.text) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "word") , ["<s>", "<s>", "</s>"]) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "start_offset") , [0, 2, 4]) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "end_offset") , [1, 3, 5]) @slow @require_torch @require_torchaudio def UpperCAmelCase__ ( self) ->List[Any]: import torch a_ = load_dataset("common_voice" , "en" , split="train" , streaming=__UpperCAmelCase) a_ = ds.cast_column("audio" , datasets.Audio(sampling_rate=1_60_00)) a_ = iter(__UpperCAmelCase) a_ = next(__UpperCAmelCase) a_ = AutoProcessor.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm") a_ = WavaVecaForCTC.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm") # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train a_ = processor(sample["audio"]["array"] , return_tensors="pt").input_values with torch.no_grad(): a_ = model(__UpperCAmelCase).logits.cpu().numpy() a_ = processor.decode(logits[0] , output_word_offsets=__UpperCAmelCase) a_ = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate a_ = [ { "start_time": d["start_offset"] * time_offset, "end_time": d["end_offset"] * time_offset, "word": d["word"], } for d in output["word_offsets"] ] a_ = "WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL" # output words self.assertEqual(" ".join(self.get_from_offsets(__UpperCAmelCase , "word")) , __UpperCAmelCase) self.assertEqual(" ".join(self.get_from_offsets(__UpperCAmelCase , "word")) , output.text) # output times a_ = torch.tensor(self.get_from_offsets(__UpperCAmelCase , "start_time")) a_ = torch.tensor(self.get_from_offsets(__UpperCAmelCase , "end_time")) # fmt: off a_ = torch.tensor([1.4_199, 1.6_599, 2.2_599, 3.0, 3.24, 3.5_999, 3.7_999, 4.0_999, 4.26, 4.94, 5.28, 5.6_599, 5.78, 5.94, 6.32, 6.5_399, 6.6_599]) a_ = torch.tensor([1.5_399, 1.8_999, 2.9, 3.16, 3.5_399, 3.72, 4.0_199, 4.1_799, 4.76, 5.1_599, 5.5_599, 5.6_999, 5.86, 6.1_999, 6.38, 6.6_199, 6.94]) # fmt: on self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=0.01)) self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=0.01))
210
0
def _lowerCAmelCase ( __lowerCAmelCase ) -> float: """simple docstring""" if not nums: # Makes sure that the list is not empty raise ValueError('''List is empty''' ) snake_case__ : Any = sum(__lowerCAmelCase ) / len(__lowerCAmelCase ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
252
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer A__ = logging.get_logger(__name__) A__ = {'''vocab_file''': '''vocab.txt'''} A__ = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } A__ = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } A__ = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class a ( __lowerCamelCase ): __lowerCAmelCase : List[str] = VOCAB_FILES_NAMES __lowerCAmelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : List[str] = PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Optional[Any] = ConvBertTokenizer def __init__( self :Any ,__lowercase :Optional[int]=None ,__lowercase :str=None ,__lowercase :Union[str, Any]=True ,__lowercase :Dict="[UNK]" ,__lowercase :List[Any]="[SEP]" ,__lowercase :int="[PAD]" ,__lowercase :Union[str, Any]="[CLS]" ,__lowercase :List[str]="[MASK]" ,__lowercase :List[Any]=True ,__lowercase :List[str]=None ,**__lowercase :List[str] ,): super().__init__( __lowercase ,tokenizer_file=__lowercase ,do_lower_case=__lowercase ,unk_token=__lowercase ,sep_token=__lowercase ,pad_token=__lowercase ,cls_token=__lowercase ,mask_token=__lowercase ,tokenize_chinese_chars=__lowercase ,strip_accents=__lowercase ,**__lowercase ,) snake_case__ : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' ,__lowercase ) != do_lower_case or normalizer_state.get('''strip_accents''' ,__lowercase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' ,__lowercase ) != tokenize_chinese_chars ): snake_case__ : Union[str, Any] = getattr(__lowercase ,normalizer_state.pop('''type''' ) ) snake_case__ : int = do_lower_case snake_case__ : Union[str, Any] = strip_accents snake_case__ : List[str] = tokenize_chinese_chars snake_case__ : Tuple = normalizer_class(**__lowercase ) snake_case__ : Any = do_lower_case def __lowerCamelCase ( self :int ,__lowercase :Union[str, Any] ,__lowercase :List[Any]=None ): snake_case__ : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self :List[Any] ,__lowercase :List[int] ,__lowercase :Optional[List[int]] = None ): snake_case__ : str = [self.sep_token_id] snake_case__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self :Optional[Any] ,__lowercase :str ,__lowercase :Optional[str] = None ): snake_case__ : Optional[int] = self._tokenizer.model.save(__lowercase ,name=__lowercase ) return tuple(__lowercase )
252
1
from __future__ import annotations from collections.abc import Generator def lowerCAmelCase ( ): """simple docstring""" UpperCAmelCase__ = {} UpperCAmelCase__ = 2 while True: UpperCAmelCase__ = factor_map.pop(_lowerCAmelCase , _lowerCAmelCase ) if factor: UpperCAmelCase__ = factor + prime while x in factor_map: x += factor UpperCAmelCase__ = factor else: UpperCAmelCase__ = prime yield prime prime += 1 def lowerCAmelCase ( _lowerCAmelCase : float = 1E10 ): """simple docstring""" UpperCAmelCase__ = sieve() UpperCAmelCase__ = 1 while True: UpperCAmelCase__ = next(_lowerCAmelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(_lowerCAmelCase ) n += 2 if __name__ == "__main__": print(solution())
710
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = (IPNDMScheduler,) UpperCAmelCase_ = (("""num_inference_steps""", 50),) def UpperCAmelCase_ ( self :List[str] , **lowerCamelCase :List[Any] ) -> List[str]: UpperCAmelCase__ = {"num_train_timesteps": 1000} config.update(**lowerCamelCase ) return config def UpperCAmelCase_ ( self :str , lowerCamelCase :Union[str, Any]=0 , **lowerCamelCase :str ) -> str: UpperCAmelCase__ = dict(self.forward_default_kwargs ) UpperCAmelCase__ = kwargs.pop("num_inference_steps" , lowerCamelCase ) UpperCAmelCase__ = self.dummy_sample UpperCAmelCase__ = 0.1 * sample UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase__ = self.get_scheduler_config(**lowerCamelCase ) UpperCAmelCase__ = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals UpperCAmelCase__ = dummy_past_residuals[:] if time_step is None: UpperCAmelCase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase ) UpperCAmelCase__ = scheduler_class.from_pretrained(lowerCamelCase ) new_scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals UpperCAmelCase__ = dummy_past_residuals[:] UpperCAmelCase__ = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample UpperCAmelCase__ = new_scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" UpperCAmelCase__ = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample UpperCAmelCase__ = new_scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase_ ( self :Tuple ) -> Tuple: pass def UpperCAmelCase_ ( self :List[str] , lowerCamelCase :List[str]=0 , **lowerCamelCase :List[str] ) -> Optional[int]: UpperCAmelCase__ = dict(self.forward_default_kwargs ) UpperCAmelCase__ = kwargs.pop("num_inference_steps" , lowerCamelCase ) UpperCAmelCase__ = self.dummy_sample UpperCAmelCase__ = 0.1 * sample UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase__ = self.get_scheduler_config() UpperCAmelCase__ = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase__ = dummy_past_residuals[:] if time_step is None: UpperCAmelCase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase ) UpperCAmelCase__ = scheduler_class.from_pretrained(lowerCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase__ = dummy_past_residuals[:] UpperCAmelCase__ = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample UpperCAmelCase__ = new_scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" UpperCAmelCase__ = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample UpperCAmelCase__ = new_scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase_ ( self :int , **lowerCamelCase :Any ) -> int: UpperCAmelCase__ = self.scheduler_classes[0] UpperCAmelCase__ = self.get_scheduler_config(**lowerCamelCase ) UpperCAmelCase__ = scheduler_class(**lowerCamelCase ) UpperCAmelCase__ = 10 UpperCAmelCase__ = self.dummy_model() UpperCAmelCase__ = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase__ = model(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ).prev_sample for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase__ = model(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ).prev_sample return sample def UpperCAmelCase_ ( self :Dict ) -> Optional[Any]: UpperCAmelCase__ = dict(self.forward_default_kwargs ) UpperCAmelCase__ = kwargs.pop("num_inference_steps" , lowerCamelCase ) for scheduler_class in self.scheduler_classes: UpperCAmelCase__ = self.get_scheduler_config() UpperCAmelCase__ = scheduler_class(**lowerCamelCase ) UpperCAmelCase__ = self.dummy_sample UpperCAmelCase__ = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCamelCase , "set_timesteps" ): scheduler.set_timesteps(lowerCamelCase ) elif num_inference_steps is not None and not hasattr(lowerCamelCase , "set_timesteps" ): UpperCAmelCase__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase__ = dummy_past_residuals[:] UpperCAmelCase__ = scheduler.timesteps[5] UpperCAmelCase__ = scheduler.timesteps[6] UpperCAmelCase__ = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample UpperCAmelCase__ = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCAmelCase__ = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample UpperCAmelCase__ = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase_ ( self :List[str] ) -> Tuple: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=lowerCamelCase , time_step=lowerCamelCase ) def UpperCAmelCase_ ( self :Tuple ) -> Optional[int]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowerCamelCase , time_step=lowerCamelCase ) def UpperCAmelCase_ ( self :Any ) -> Dict: UpperCAmelCase__ = self.full_loop() UpperCAmelCase__ = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 254_0529 ) < 10
364
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : Tuple = { """uw-madison/mra-base-512-4""": """https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json""", } class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''mra''' def __init__( self : Any , snake_case__ : List[str]=5_0_2_6_5 , snake_case__ : Any=7_6_8 , snake_case__ : Union[str, Any]=1_2 , snake_case__ : Optional[Any]=1_2 , snake_case__ : Tuple=3_0_7_2 , snake_case__ : str="gelu" , snake_case__ : Any=0.1 , snake_case__ : Tuple=0.1 , snake_case__ : Tuple=5_1_2 , snake_case__ : Union[str, Any]=1 , snake_case__ : List[Any]=0.02 , snake_case__ : str=1e-5 , snake_case__ : List[Any]="absolute" , snake_case__ : str=4 , snake_case__ : List[str]="full" , snake_case__ : Tuple=0 , snake_case__ : Any=0 , snake_case__ : Union[str, Any]=1 , snake_case__ : int=0 , snake_case__ : int=2 , **snake_case__ : List[Any] , ): '''simple docstring''' super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) UpperCAmelCase__ : List[Any] = vocab_size UpperCAmelCase__ : str = max_position_embeddings UpperCAmelCase__ : Any = hidden_size UpperCAmelCase__ : Union[str, Any] = num_hidden_layers UpperCAmelCase__ : str = num_attention_heads UpperCAmelCase__ : int = intermediate_size UpperCAmelCase__ : int = hidden_act UpperCAmelCase__ : List[str] = hidden_dropout_prob UpperCAmelCase__ : List[str] = attention_probs_dropout_prob UpperCAmelCase__ : Any = initializer_range UpperCAmelCase__ : Any = type_vocab_size UpperCAmelCase__ : Dict = layer_norm_eps UpperCAmelCase__ : Tuple = position_embedding_type UpperCAmelCase__ : List[str] = block_per_row UpperCAmelCase__ : Optional[Any] = approx_mode UpperCAmelCase__ : Any = initial_prior_first_n_blocks UpperCAmelCase__ : List[Any] = initial_prior_diagonal_n_blocks
438
0
"""simple docstring""" import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser lowerCAmelCase_ = logging.getLogger(__name__) torch.set_grad_enabled(False) lowerCAmelCase_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=100 , __SCREAMING_SNAKE_CASE=" " )-> List[str]: _SCREAMING_SNAKE_CASE : Optional[int] = text.split(__SCREAMING_SNAKE_CASE ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )] def lowerCamelCase_(__SCREAMING_SNAKE_CASE )-> dict: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Union[str, Any] = [], [] for title, text in zip(documents["""title"""] , documents["""text"""] ): if text is not None: for passage in split_text(__SCREAMING_SNAKE_CASE ): titles.append(title if title is not None else """""" ) texts.append(__SCREAMING_SNAKE_CASE ) return {"title": titles, "text": texts} def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> dict: _SCREAMING_SNAKE_CASE : str = ctx_tokenizer( documents["""title"""] , documents["""text"""] , truncation=__SCREAMING_SNAKE_CASE , padding="""longest""" , return_tensors="""pt""" )["""input_ids"""] _SCREAMING_SNAKE_CASE : List[str] = ctx_encoder(input_ids.to(device=__SCREAMING_SNAKE_CASE ) , return_dict=__SCREAMING_SNAKE_CASE ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , )-> Optional[int]: ###################################### logger.info("""Step 1 - Create the dataset""" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way _SCREAMING_SNAKE_CASE : List[Any] = load_dataset( """csv""" , data_files=[rag_example_args.csv_path] , split="""train""" , delimiter="""\t""" , column_names=["""title""", """text"""] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words _SCREAMING_SNAKE_CASE : int = dataset.map(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE , num_proc=processing_args.num_proc ) # And compute the embeddings _SCREAMING_SNAKE_CASE : Tuple = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Union[str, Any] = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) _SCREAMING_SNAKE_CASE : Dict = Features( {"""text""": Value("""string""" ), """title""": Value("""string""" ), """embeddings""": Sequence(Value("""float32""" ) )} ) # optional, save as float32 instead of float64 to save space _SCREAMING_SNAKE_CASE : Dict = dataset.map( partial(__SCREAMING_SNAKE_CASE , ctx_encoder=__SCREAMING_SNAKE_CASE , ctx_tokenizer=__SCREAMING_SNAKE_CASE ) , batched=__SCREAMING_SNAKE_CASE , batch_size=processing_args.batch_size , features=__SCREAMING_SNAKE_CASE , ) # And finally save your dataset _SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset""" ) dataset.save_to_disk(__SCREAMING_SNAKE_CASE ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("""Step 2 - Index the dataset""" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search _SCREAMING_SNAKE_CASE : Any = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("""embeddings""" , custom_index=__SCREAMING_SNAKE_CASE ) # And save the index _SCREAMING_SNAKE_CASE : List[str] = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset_hnsw_index.faiss""" ) dataset.get_index("""embeddings""" ).save(__SCREAMING_SNAKE_CASE ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class _snake_case : """simple docstring""" a = field( default=str(Path(__snake_case ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) a = field( default=__snake_case , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) a = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) a = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) a = field( default=str(Path(__snake_case ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class _snake_case : """simple docstring""" a = field( default=__snake_case , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) a = field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class _snake_case : """simple docstring""" a = field( default=7_68 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) a = field( default=1_28 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) lowerCAmelCase_ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: lowerCAmelCase_ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
635
"""simple docstring""" from decimal import Decimal, getcontext from math import ceil, factorial def lowerCamelCase_(__SCREAMING_SNAKE_CASE )-> str: if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) _SCREAMING_SNAKE_CASE : int = precision _SCREAMING_SNAKE_CASE : Dict = ceil(precision / 14 ) _SCREAMING_SNAKE_CASE : int = 426_880 * Decimal(10_005 ).sqrt() _SCREAMING_SNAKE_CASE : Union[str, Any] = 1 _SCREAMING_SNAKE_CASE : str = 13_591_409 _SCREAMING_SNAKE_CASE : Tuple = Decimal(__SCREAMING_SNAKE_CASE ) for k in range(1 , __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = factorial(6 * k ) // (factorial(3 * k ) * factorial(__SCREAMING_SNAKE_CASE ) ** 3) linear_term += 545_140_134 exponential_term *= -262_537_412_640_768_000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": lowerCAmelCase_ = 50 print(F"The first {n} digits of pi is: {pi(n)}")
635
1
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class _A : """simple docstring""" def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any]=2 , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=10 , __SCREAMING_SNAKE_CASE : List[Any]=3 , __SCREAMING_SNAKE_CASE : Any=32 * 8 , __SCREAMING_SNAKE_CASE : Union[str, Any]=32 * 8 , __SCREAMING_SNAKE_CASE : Any=4 , __SCREAMING_SNAKE_CASE : Dict=64 , ) -> Any: __UpperCAmelCase =parent __UpperCAmelCase =batch_size __UpperCAmelCase =is_training __UpperCAmelCase =use_auxiliary_loss __UpperCAmelCase =num_queries __UpperCAmelCase =num_channels __UpperCAmelCase =min_size __UpperCAmelCase =max_size __UpperCAmelCase =num_labels __UpperCAmelCase =hidden_dim __UpperCAmelCase =hidden_dim def _a ( self : Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase =floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =torch.ones([self.batch_size, self.min_size, self.max_size] , device=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__SCREAMING_SNAKE_CASE ) > 0.5 ).float() __UpperCAmelCase =(torch.rand((self.batch_size, self.num_labels) , device=__SCREAMING_SNAKE_CASE ) > 0.5).long() __UpperCAmelCase =self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _a ( self : Optional[int] ) -> str: __UpperCAmelCase =MaskaFormerConfig( hidden_size=self.hidden_dim , ) __UpperCAmelCase =self.num_queries __UpperCAmelCase =self.num_labels __UpperCAmelCase =[1, 1, 1, 1] __UpperCAmelCase =self.num_channels __UpperCAmelCase =64 __UpperCAmelCase =128 __UpperCAmelCase =self.hidden_dim __UpperCAmelCase =self.hidden_dim __UpperCAmelCase =self.hidden_dim return config def _a ( self : List[str] ) -> Any: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self.prepare_config_and_inputs() __UpperCAmelCase ={"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def _a ( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Dict: __UpperCAmelCase =output.encoder_hidden_states __UpperCAmelCase =output.pixel_decoder_hidden_states __UpperCAmelCase =output.transformer_decoder_hidden_states self.parent.assertTrue(len(__SCREAMING_SNAKE_CASE ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__SCREAMING_SNAKE_CASE ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__SCREAMING_SNAKE_CASE ) , config.decoder_layers ) def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[int]=False ) -> List[str]: with torch.no_grad(): __UpperCAmelCase =MaskaFormerModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __UpperCAmelCase =model(pixel_values=__SCREAMING_SNAKE_CASE , pixel_mask=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model(__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Any: __UpperCAmelCase =MaskaFormerForUniversalSegmentation(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() def comm_check_on_output(__SCREAMING_SNAKE_CASE : Any ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __UpperCAmelCase =model(pixel_values=__SCREAMING_SNAKE_CASE , pixel_mask=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model(__SCREAMING_SNAKE_CASE ) comm_check_on_output(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model( pixel_values=__SCREAMING_SNAKE_CASE , pixel_mask=__SCREAMING_SNAKE_CASE , mask_labels=__SCREAMING_SNAKE_CASE , class_labels=__SCREAMING_SNAKE_CASE ) comm_check_on_output(__SCREAMING_SNAKE_CASE ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _A ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : Any = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () lowerCamelCase : Optional[int] = {'feature-extraction': MaskaFormerModel} if is_torch_available() else {} lowerCamelCase : str = False lowerCamelCase : Any = False lowerCamelCase : int = False lowerCamelCase : List[str] = False def _a ( self : str ) -> str: __UpperCAmelCase =MaskaFormerModelTester(self ) __UpperCAmelCase =ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE ) def _a ( self : List[Any] ) -> Tuple: self.config_tester.run_common_tests() def _a ( self : Any ) -> Any: __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE ) def _a ( self : Optional[int] ) -> List[str]: __UpperCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__SCREAMING_SNAKE_CASE ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def _a ( self : Union[str, Any] ) -> List[str]: pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def _a ( self : str ) -> List[str]: pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def _a ( self : Any ) -> Any: pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def _a ( self : Union[str, Any] ) -> int: pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def _a ( self : List[Any] ) -> int: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a ( self : Union[str, Any] ) -> Tuple: pass def _a ( self : str ) -> Any: __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase =[*signature.parameters.keys()] __UpperCAmelCase =["""pixel_values"""] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) @slow def _a ( self : Dict ) -> str: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __UpperCAmelCase =MaskaFormerModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def _a ( self : Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase =(self.model_tester.min_size,) * 2 __UpperCAmelCase ={ """pixel_values""": torch.randn((2, 3, *size) , device=__SCREAMING_SNAKE_CASE ), """mask_labels""": torch.randn((2, 10, *size) , device=__SCREAMING_SNAKE_CASE ), """class_labels""": torch.zeros(2 , 10 , device=__SCREAMING_SNAKE_CASE ).long(), } __UpperCAmelCase =self.model_tester.get_config() __UpperCAmelCase =MaskaFormerForUniversalSegmentation(__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model(**__SCREAMING_SNAKE_CASE ) self.assertTrue(outputs.loss is not None ) def _a ( self : Any ) -> int: __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE ) def _a ( self : Optional[int] ) -> Union[str, Any]: __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model(**__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE ) self.assertTrue(outputs.attentions is not None ) def _a ( self : Optional[int] ) -> Optional[Any]: if not self.model_tester.is_training: return __UpperCAmelCase =self.all_model_classes[1] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs() __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.train() __UpperCAmelCase =model(__SCREAMING_SNAKE_CASE , mask_labels=__SCREAMING_SNAKE_CASE , class_labels=__SCREAMING_SNAKE_CASE ).loss loss.backward() def _a ( self : List[Any] ) -> List[str]: __UpperCAmelCase =self.all_model_classes[1] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs() __UpperCAmelCase =True __UpperCAmelCase =True __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE ) model.train() __UpperCAmelCase =model(__SCREAMING_SNAKE_CASE , mask_labels=__SCREAMING_SNAKE_CASE , class_labels=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __UpperCAmelCase =outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __UpperCAmelCase =outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __UpperCAmelCase =outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __A = 1E-4 def lowercase__ ( ) -> Optional[Any]: """simple docstring""" __UpperCAmelCase =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class _A ( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self : Optional[int] ) -> str: return "facebook/mask2former-swin-small-coco-instance" @cached_property def _a ( self : int ) -> List[str]: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _a ( self : Optional[Any] ) -> Any: __UpperCAmelCase =MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =self.default_image_processor __UpperCAmelCase =prepare_img() __UpperCAmelCase =image_processor(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__SCREAMING_SNAKE_CASE , (1, 3, 384, 384) ) with torch.no_grad(): __UpperCAmelCase =model(**__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =torch.tensor( [[-0.2_790, -1.0_717, -1.1_668], [-0.5_128, -0.3_128, -0.4_987], [-0.5_832, 0.1_971, -0.0_197]] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=__SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase =torch.tensor( [[0.8_973, 1.1_847, 1.1_776], [1.1_934, 1.5_040, 1.5_128], [1.1_153, 1.4_486, 1.4_951]] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=__SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase =torch.tensor( [[2.1_152, 1.7_000, -0.8_603], [1.5_808, 1.8_004, -0.9_353], [1.6_043, 1.7_495, -0.5_999]] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=__SCREAMING_SNAKE_CASE ) ) def _a ( self : Union[str, Any] ) -> Optional[Any]: __UpperCAmelCase =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__SCREAMING_SNAKE_CASE ).eval() __UpperCAmelCase =self.default_image_processor __UpperCAmelCase =prepare_img() __UpperCAmelCase =image_processor(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__SCREAMING_SNAKE_CASE , (1, 3, 384, 384) ) with torch.no_grad(): __UpperCAmelCase =model(**__SCREAMING_SNAKE_CASE ) # masks_queries_logits __UpperCAmelCase =outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __UpperCAmelCase =[ [-8.7_839, -9.0_056, -8.8_121], [-7.4_104, -7.0_313, -6.5_401], [-6.6_105, -6.3_427, -6.4_675], ] __UpperCAmelCase =torch.tensor(__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=__SCREAMING_SNAKE_CASE ) ) # class_queries_logits __UpperCAmelCase =outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __UpperCAmelCase =torch.tensor( [ [1.8_324, -8.0_835, -4.1_922], [0.8_450, -9.0_050, -3.6_053], [0.3_045, -7.7_293, -3.0_275], ] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=__SCREAMING_SNAKE_CASE ) ) def _a ( self : int ) -> int: __UpperCAmelCase =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__SCREAMING_SNAKE_CASE ).eval() __UpperCAmelCase =self.default_image_processor __UpperCAmelCase =image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="""pt""" , ) __UpperCAmelCase =inputs["""pixel_values"""].to(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =[el.to(__SCREAMING_SNAKE_CASE ) for el in inputs["""mask_labels"""]] __UpperCAmelCase =[el.to(__SCREAMING_SNAKE_CASE ) for el in inputs["""class_labels"""]] with torch.no_grad(): __UpperCAmelCase =model(**__SCREAMING_SNAKE_CASE ) self.assertTrue(outputs.loss is not None )
68
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: _UpperCamelCase = None _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} _UpperCamelCase = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } _UpperCamelCase = { 'camembert-base': 512, } _UpperCamelCase = '▁' class SCREAMING_SNAKE_CASE_ ( snake_case__ ): """simple docstring""" __snake_case : List[str] = VOCAB_FILES_NAMES __snake_case : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : List[str] = ["""input_ids""", """attention_mask"""] __snake_case : List[Any] = CamembertTokenizer def __init__( self :List[Any] , __lowercase :Optional[int]=None , __lowercase :str=None , __lowercase :Optional[Any]="<s>" , __lowercase :List[str]="</s>" , __lowercase :Tuple="</s>" , __lowercase :int="<s>" , __lowercase :Union[str, Any]="<unk>" , __lowercase :Optional[int]="<pad>" , __lowercase :Union[str, Any]="<mask>" , __lowercase :Tuple=["<s>NOTUSED", "</s>NOTUSED"] , **__lowercase :List[str] , ): # Mask token behave like a normal word, i.e. include the space before it __lowerCamelCase : Optional[int] =AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token super().__init__( __lowercase , tokenizer_file=__lowercase , bos_token=__lowercase , eos_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , unk_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , additional_special_tokens=__lowercase , **__lowercase , ) __lowerCamelCase : Any =vocab_file __lowerCamelCase : Union[str, Any] =False if not self.vocab_file else True def __lowercase ( self :List[str] , __lowercase :List[int] , __lowercase :Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCamelCase : Tuple =[self.cls_token_id] __lowerCamelCase : str =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowercase ( self :Tuple , __lowercase :List[int] , __lowercase :Optional[List[int]] = None ): __lowerCamelCase : Any =[self.sep_token_id] __lowerCamelCase : str =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowercase ( self :List[Any] , __lowercase :str , __lowercase :Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCamelCase : List[str] =os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ): copyfile(self.vocab_file , __lowercase ) return (out_vocab_file,)
179
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase = logging.get_logger(__name__) lowercase = { '''shi-labs/dinat-mini-in1k-224''': '''https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json''', # See all Dinat models at https://huggingface.co/models?filter=dinat } class A_ ( snake_case__ , snake_case__ ): UpperCAmelCase__ = '''dinat''' UpperCAmelCase__ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : List[Any] , __lowerCamelCase : str=4 , __lowerCamelCase : Dict=3 , __lowerCamelCase : Any=6_4 , __lowerCamelCase : Optional[int]=[3, 4, 6, 5] , __lowerCamelCase : int=[2, 4, 8, 1_6] , __lowerCamelCase : List[Any]=7 , __lowerCamelCase : str=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , __lowerCamelCase : Dict=3.0 , __lowerCamelCase : Tuple=True , __lowerCamelCase : Tuple=0.0 , __lowerCamelCase : int=0.0 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Tuple="gelu" , __lowerCamelCase : Any=0.02 , __lowerCamelCase : str=1e-5 , __lowerCamelCase : Tuple=0.0 , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : List[str]=None , **__lowerCamelCase : List[str] , ) -> List[str]: super().__init__(**_A ) __magic_name__ = patch_size __magic_name__ = num_channels __magic_name__ = embed_dim __magic_name__ = depths __magic_name__ = len(_A ) __magic_name__ = num_heads __magic_name__ = kernel_size __magic_name__ = dilations __magic_name__ = mlp_ratio __magic_name__ = qkv_bias __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = drop_path_rate __magic_name__ = hidden_act __magic_name__ = layer_norm_eps __magic_name__ = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __magic_name__ = int(embed_dim * 2 ** (len(_A ) - 1) ) __magic_name__ = layer_scale_init_value __magic_name__ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(_A ) + 1 )] __magic_name__ = get_aligned_output_features_output_indices( out_features=_A , out_indices=_A , stage_names=self.stage_names )
711
"""simple docstring""" from __future__ import annotations from random import choice def _lowerCAmelCase ( __lowerCamelCase:Optional[int] ): '''simple docstring''' return choice(__lowerCamelCase ) def _lowerCAmelCase ( __lowerCamelCase:list[int] , __lowerCamelCase:int ): '''simple docstring''' __magic_name__ = random_pivot(__lowerCamelCase ) # partition based on pivot # linear time __magic_name__ = [e for e in lst if e < pivot] __magic_name__ = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(__lowerCamelCase ) == k - 1: return pivot # pivot is in elements bigger than k elif len(__lowerCamelCase ) < k - 1: return kth_number(__lowerCamelCase , k - len(__lowerCamelCase ) - 1 ) # pivot is in elements smaller than k else: return kth_number(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
468
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a : """simple docstring""" def __init__( self : Tuple , __lowercase : Any , __lowercase : Union[str, Any]=3 , __lowercase : str=32 , __lowercase : List[str]=3 , __lowercase : Union[str, Any]=10 , __lowercase : int=[10, 20, 30, 40] , __lowercase : Any=[1, 1, 2, 1] , __lowercase : Union[str, Any]=True , __lowercase : Optional[Any]=True , __lowercase : str="relu" , __lowercase : int=3 , __lowercase : Any=None , ) -> Optional[int]: __UpperCAmelCase : Tuple = parent __UpperCAmelCase : Optional[Any] = batch_size __UpperCAmelCase : Union[str, Any] = image_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : str = embeddings_size __UpperCAmelCase : Union[str, Any] = hidden_sizes __UpperCAmelCase : str = depths __UpperCAmelCase : Any = is_training __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : str = hidden_act __UpperCAmelCase : Optional[int] = num_labels __UpperCAmelCase : Dict = scope __UpperCAmelCase : Any = len(__lowercase ) def UpperCAmelCase ( self : List[str] ) -> List[Any]: __UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Any = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase : List[Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : str ) -> Optional[int]: return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCAmelCase ( self : int , __lowercase : Dict , __lowercase : Union[str, Any] , __lowercase : Optional[Any] ) -> Optional[Any]: __UpperCAmelCase : Optional[int] = TFResNetModel(config=__lowercase ) __UpperCAmelCase : Any = model(__lowercase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase ( self : Any , __lowercase : Optional[int] , __lowercase : Optional[int] , __lowercase : Any ) -> List[Any]: __UpperCAmelCase : Optional[Any] = self.num_labels __UpperCAmelCase : List[Any] = TFResNetForImageClassification(__lowercase ) __UpperCAmelCase : Dict = model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : List[Any] ) -> str: __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = config_and_inputs __UpperCAmelCase : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class a ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" a : Tuple = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () a : Union[str, Any] = ( {'feature-extraction': TFResNetModel, 'image-classification': TFResNetForImageClassification} if is_tf_available() else {} ) a : List[str] = False a : List[Any] = False a : Tuple = False a : List[Any] = False a : Union[str, Any] = False def UpperCAmelCase ( self : List[Any] ) -> Optional[int]: __UpperCAmelCase : Union[str, Any] = TFResNetModelTester(self ) __UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase ) def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : List[Any] ) -> Tuple: return @unittest.skip(reason="""ResNet does not use inputs_embeds""" ) def UpperCAmelCase ( self : Tuple ) -> List[str]: pass @unittest.skip(reason="""ResNet does not support input and output embeddings""" ) def UpperCAmelCase ( self : List[str] ) -> Optional[int]: pass def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: __UpperCAmelCase , __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : str = model_class(__lowercase ) __UpperCAmelCase : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Optional[Any] = [*signature.parameters.keys()] __UpperCAmelCase : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowercase ) def UpperCAmelCase ( self : Tuple ) -> str: __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def UpperCAmelCase ( self : Any ) -> List[Any]: def check_hidden_states_output(__lowercase : List[Any] , __lowercase : List[Any] , __lowercase : Tuple ): __UpperCAmelCase : Optional[int] = model_class(__lowercase ) __UpperCAmelCase : str = model(**self._prepare_for_class(__lowercase , __lowercase ) ) __UpperCAmelCase : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase : Dict = self.model_tester.num_stages self.assertEqual(len(__lowercase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[str] = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: __UpperCAmelCase : Any = layer_type __UpperCAmelCase : Optional[Any] = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Tuple = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) @slow def UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Optional[int] = TFResNetModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def lowerCamelCase__ ( ): __UpperCAmelCase : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class a ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase ( self : Any ) -> int: return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: __UpperCAmelCase : Any = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __UpperCAmelCase : int = self.default_image_processor __UpperCAmelCase : Optional[Any] = prepare_img() __UpperCAmelCase : List[str] = image_processor(images=__lowercase , return_tensors="""tf""" ) # forward pass __UpperCAmelCase : Tuple = model(**__lowercase ) # verify the logits __UpperCAmelCase : Optional[int] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowercase ) __UpperCAmelCase : Union[str, Any] = tf.constant([-11.1_069, -9.7_877, -8.3_777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __lowercase , atol=1e-4 ) )
63
from manim import * class A__ ( UpperCamelCase__ ): def __UpperCamelCase ( self : Dict ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =Rectangle(height=0.5 , width=0.5 ) _SCREAMING_SNAKE_CASE =Rectangle(height=0.25 , width=0.25 ) _SCREAMING_SNAKE_CASE =Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _SCREAMING_SNAKE_CASE =[mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE =[mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE =VGroup(*_a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE =VGroup(*_a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE =VGroup(_a , _a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE =Text('''CPU''' , font_size=24 ) _SCREAMING_SNAKE_CASE =Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_a ) _SCREAMING_SNAKE_CASE =[mem.copy() for i in range(4 )] _SCREAMING_SNAKE_CASE =VGroup(*_a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE =Text('''GPU''' , font_size=24 ) _SCREAMING_SNAKE_CASE =Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) gpu.move_to([-1, -1, 0] ) self.add(_a ) _SCREAMING_SNAKE_CASE =[mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE =VGroup(*_a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE =Text('''Model''' , font_size=24 ) _SCREAMING_SNAKE_CASE =Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) model.move_to([3, -1.0, 0] ) self.add(_a ) _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =[] for i, rect in enumerate(_a ): rect.set_stroke(_a ) _SCREAMING_SNAKE_CASE =Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(_a , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_a ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=_a , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=_a , buff=0.0 ) self.add(_a ) model_cpu_arr.append(_a ) self.add(*_a , *_a , *_a ) _SCREAMING_SNAKE_CASE =[mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE =VGroup(*_a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE =Text('''Loaded Checkpoint''' , font_size=24 ) _SCREAMING_SNAKE_CASE =Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) checkpoint.move_to([3, 0.5, 0] ) self.add(_a ) _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =[] for i, rect in enumerate(_a ): _SCREAMING_SNAKE_CASE =fill.copy().set_fill(_a , opacity=0.7 ) target.move_to(_a ) ckpt_arr.append(_a ) _SCREAMING_SNAKE_CASE =target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(_a ) self.add(*_a , *_a ) _SCREAMING_SNAKE_CASE =Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _SCREAMING_SNAKE_CASE =MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_a , _a ) _SCREAMING_SNAKE_CASE =MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(_a , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_a ) _SCREAMING_SNAKE_CASE =MarkupText( f"Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device." , font_size=24 , ) step_a.move_to([2, 2, 0] ) _SCREAMING_SNAKE_CASE =[meta_mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE =[meta_mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE =VGroup(*_a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE =VGroup(*_a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE =VGroup(_a , _a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE =Text('''Disk''' , font_size=24 ) _SCREAMING_SNAKE_CASE =Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(_a , run_time=3 ) , Write(_a , run_time=1 ) , Create(_a , run_time=1 ) ) _SCREAMING_SNAKE_CASE =[] for i, rect in enumerate(_a ): _SCREAMING_SNAKE_CASE =rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(_a , run_time=1.5 ) ) self.play(*_a ) self.play(FadeOut(_a ) ) _SCREAMING_SNAKE_CASE =MarkupText(f"Then, the checkpoint is removed from memory\nthrough garbage collection." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_a , run_time=3 ) ) self.play( FadeOut(_a , _a , *_a , *_a ) , ) self.wait()
691
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase): '''simple docstring''' __a : Dict = StableDiffusionInpaintPipeline __a : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __a : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __a : Optional[Any] = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __a : Tuple = frozenset([]) def A__ ( self ) ->int: torch.manual_seed(0 ) UpperCAmelCase__ :Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=A , ) UpperCAmelCase__ :Optional[Any] = PNDMScheduler(skip_prk_steps=A ) torch.manual_seed(0 ) UpperCAmelCase__ :Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) UpperCAmelCase__ :Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=5_12 , ) UpperCAmelCase__ :Union[str, Any] = CLIPTextModel(A ) UpperCAmelCase__ :Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) UpperCAmelCase__ :Dict = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def A__ ( self , A , A=0 ) ->List[str]: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched UpperCAmelCase__ :Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) UpperCAmelCase__ :Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase__ :int = Image.fromarray(np.uinta(A ) ).convert('RGB' ).resize((64, 64) ) UpperCAmelCase__ :Tuple = Image.fromarray(np.uinta(image + 4 ) ).convert('RGB' ).resize((64, 64) ) if str(A ).startswith('mps' ): UpperCAmelCase__ :Optional[int] = torch.manual_seed(A ) else: UpperCAmelCase__ :Optional[int] = torch.Generator(device=A ).manual_seed(A ) UpperCAmelCase__ :List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def A__ ( self ) ->Optional[int]: UpperCAmelCase__ :Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ :Tuple = self.get_dummy_components() UpperCAmelCase__ :Any = StableDiffusionInpaintPipeline(**A ) UpperCAmelCase__ :int = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) UpperCAmelCase__ :List[str] = self.get_dummy_inputs(A ) UpperCAmelCase__ :List[str] = sd_pipe(**A ).images UpperCAmelCase__ :Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase__ :List[str] = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self ) ->Dict: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase): '''simple docstring''' def A__ ( self ) ->str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) ->Optional[Any]: UpperCAmelCase__ :Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) UpperCAmelCase__ :Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) UpperCAmelCase__ :List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy' ) UpperCAmelCase__ :Tuple = 'stabilityai/stable-diffusion-2-inpainting' UpperCAmelCase__ :Optional[int] = StableDiffusionInpaintPipeline.from_pretrained(A , safety_checker=A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() UpperCAmelCase__ :Optional[Any] = 'Face of a yellow cat, high resolution, sitting on a park bench' UpperCAmelCase__ :Dict = torch.manual_seed(0 ) UpperCAmelCase__ :Tuple = pipe( prompt=A , image=A , mask_image=A , generator=A , output_type='np' , ) UpperCAmelCase__ :List[str] = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 9e-3 def A__ ( self ) ->str: UpperCAmelCase__ :Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) UpperCAmelCase__ :int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) UpperCAmelCase__ :List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy' ) UpperCAmelCase__ :Dict = 'stabilityai/stable-diffusion-2-inpainting' UpperCAmelCase__ :Dict = StableDiffusionInpaintPipeline.from_pretrained( A , torch_dtype=torch.floataa , safety_checker=A , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() UpperCAmelCase__ :int = 'Face of a yellow cat, high resolution, sitting on a park bench' UpperCAmelCase__ :int = torch.manual_seed(0 ) UpperCAmelCase__ :int = pipe( prompt=A , image=A , mask_image=A , generator=A , output_type='np' , ) UpperCAmelCase__ :int = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5e-1 def A__ ( self ) ->Any: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase__ :Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) UpperCAmelCase__ :Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) UpperCAmelCase__ :List[str] = 'stabilityai/stable-diffusion-2-inpainting' UpperCAmelCase__ :str = PNDMScheduler.from_pretrained(A , subfolder='scheduler' ) UpperCAmelCase__ :str = StableDiffusionInpaintPipeline.from_pretrained( A , safety_checker=A , scheduler=A , torch_dtype=torch.floataa , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase__ :int = 'Face of a yellow cat, high resolution, sitting on a park bench' UpperCAmelCase__ :List[Any] = torch.manual_seed(0 ) UpperCAmelCase__ :Tuple = pipe( prompt=A , image=A , mask_image=A , generator=A , num_inference_steps=2 , output_type='np' , ) UpperCAmelCase__ :int = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
433
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class UpperCamelCase__ : '''simple docstring''' def __init__( self , A , A=99 , A=13 , A=16 , A=7 , A=True , A=True , A=True , A=False , A=True , A=2 , A=32 , A=4 , A=4 , A=30 , A=0 , A=1 , A=2 , A=None , ) ->Optional[Any]: UpperCAmelCase__ :str = parent UpperCAmelCase__ :int = batch_size UpperCAmelCase__ :Tuple = decoder_seq_length # For common tests UpperCAmelCase__ :Union[str, Any] = self.decoder_seq_length UpperCAmelCase__ :int = is_training UpperCAmelCase__ :List[Any] = use_attention_mask UpperCAmelCase__ :Tuple = use_labels UpperCAmelCase__ :Any = vocab_size UpperCAmelCase__ :Dict = d_model UpperCAmelCase__ :Union[str, Any] = d_model UpperCAmelCase__ :str = decoder_layers UpperCAmelCase__ :int = decoder_layers UpperCAmelCase__ :List[Any] = decoder_ffn_dim UpperCAmelCase__ :Any = decoder_attention_heads UpperCAmelCase__ :Any = decoder_attention_heads UpperCAmelCase__ :Optional[int] = eos_token_id UpperCAmelCase__ :Optional[int] = bos_token_id UpperCAmelCase__ :Union[str, Any] = pad_token_id UpperCAmelCase__ :Optional[int] = decoder_start_token_id UpperCAmelCase__ :Optional[Any] = use_cache UpperCAmelCase__ :Tuple = max_position_embeddings UpperCAmelCase__ :List[str] = None UpperCAmelCase__ :int = decoder_seq_length UpperCAmelCase__ :Optional[int] = 2 UpperCAmelCase__ :Optional[Any] = 1 def A__ ( self ) ->Tuple: UpperCAmelCase__ :List[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) UpperCAmelCase__ :str = None if self.use_attention_mask: UpperCAmelCase__ :Tuple = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) UpperCAmelCase__ :List[str] = None if self.use_labels: UpperCAmelCase__ :Optional[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) UpperCAmelCase__ :Optional[int] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def A__ ( self , A , A , A , A , ) ->Union[str, Any]: UpperCAmelCase__ :List[Any] = True UpperCAmelCase__ :Any = TrOCRDecoder(config=A ).to(A ).eval() UpperCAmelCase__ :Any = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass UpperCAmelCase__ :Optional[int] = model(A , use_cache=A ) UpperCAmelCase__ :Optional[int] = model(A ) UpperCAmelCase__ :Optional[Any] = model(A , use_cache=A ) self.parent.assertTrue(len(A ) == len(A ) ) self.parent.assertTrue(len(A ) == len(A ) + 1 ) UpperCAmelCase__ :int = outputs['past_key_values'] # create hypothetical next token and extent to next_input_ids UpperCAmelCase__ :Optional[Any] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and UpperCAmelCase__ :Any = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase__ :str = model(A )['last_hidden_state'] UpperCAmelCase__ :List[str] = model(A , past_key_values=A )['last_hidden_state'] # select random slice UpperCAmelCase__ :Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase__ :Tuple = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() UpperCAmelCase__ :Any = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(A , A , atol=1e-3 ) def A__ ( self ) ->Optional[int]: UpperCAmelCase__ :int = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ :List[Any] = config_and_inputs UpperCAmelCase__ :Optional[Any] = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_torch class UpperCamelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase): '''simple docstring''' __a : int = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () __a : Optional[int] = (TrOCRForCausalLM,) if is_torch_available() else () __a : List[Any] = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {} __a : Any = True __a : Union[str, Any] = False def A__ ( self ) ->str: UpperCAmelCase__ :Tuple = TrOCRStandaloneDecoderModelTester(self , is_training=A ) UpperCAmelCase__ :Tuple = ConfigTester(self , config_class=A ) def A__ ( self ) ->Optional[Any]: pass def A__ ( self ) ->Any: pass def A__ ( self ) ->Union[str, Any]: pass def A__ ( self ) ->Optional[int]: self.config_tester.run_common_tests() def A__ ( self ) ->Optional[Any]: UpperCAmelCase__ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*A ) def A__ ( self ) ->int: return @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def A__ ( self ) ->List[str]: pass
433
1
'''simple docstring''' from __future__ import annotations def __UpperCamelCase( _A : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = [True] * limit UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : Dict = False UpperCAmelCase__ : List[str] = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): UpperCAmelCase__ : int = i * 2 while index < limit: UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Union[str, Any] = index + i UpperCAmelCase__ : List[str] = [2] for i in range(3 , UpperCamelCase_ , 2 ): if is_prime[i]: primes.append(UpperCamelCase_ ) return primes def __UpperCamelCase( _A : int = 1_00_00_00 ): '''simple docstring''' UpperCAmelCase__ : Dict = prime_sieve(UpperCamelCase_ ) UpperCAmelCase__ : Tuple = 0 UpperCAmelCase__ : str = 0 for i in range(len(UpperCamelCase_ ) ): for j in range(i + length , len(UpperCamelCase_ ) ): UpperCAmelCase__ : Tuple = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: UpperCAmelCase__ : int = j - i UpperCAmelCase__ : Optional[int] = sol return largest if __name__ == "__main__": print(f"""{solution() = }""")
614
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _lowerCAmelCase : Dict = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) _lowerCAmelCase : List[Any] = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) _lowerCAmelCase : Dict = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) _lowerCAmelCase : List[Any] = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) _lowerCAmelCase : List[Any] = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 1_4]), ('2H 5D 3C AS 5S', False, [1_4, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [1_4, 1_3, 1_2, 1_1, 1_0]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) _lowerCAmelCase : List[str] = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) _lowerCAmelCase : Optional[Any] = ( ('JH AH TH KH QH', 2_3), ('JH 9H TH KH QH', 2_2), ('JC KH JS JD JH', 2_1), ('KH KC 3S 3H 3D', 2_0), ('8C 9C 5C 3C TC', 1_9), ('JS QS 9H TS KH', 1_8), ('7C 7S KH 2H 7H', 1_7), ('3C KH 5D 5S KH', 1_6), ('QH 8H KD JH 8S', 1_5), ('2D 6D 9D TH 7D', 1_4), ) def a_ ( ) -> int: """simple docstring""" lowerCamelCase , lowerCamelCase = randrange(len(UpperCamelCase_ ) ), randrange(len(UpperCamelCase_ ) ) lowerCamelCase = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] lowerCamelCase , lowerCamelCase = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def a_ ( UpperCamelCase_ : int = 1_0_0 ) -> int: """simple docstring""" return (generate_random_hand() for _ in range(UpperCamelCase_ )) @pytest.mark.parametrize('hand, expected' , UpperCamelCase_ ) def a_ ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[int] ) -> Dict: """simple docstring""" assert PokerHand(UpperCamelCase_ )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , UpperCamelCase_ ) def a_ ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any] ) -> List[Any]: """simple docstring""" assert PokerHand(UpperCamelCase_ )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , UpperCamelCase_ ) def a_ ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Tuple ) -> Tuple: """simple docstring""" lowerCamelCase = PokerHand(UpperCamelCase_ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , UpperCamelCase_ ) def a_ ( UpperCamelCase_ : Any , UpperCamelCase_ : str ) -> str: """simple docstring""" assert PokerHand(UpperCamelCase_ )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , UpperCamelCase_ ) def a_ ( UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ) -> Union[str, Any]: """simple docstring""" assert PokerHand(UpperCamelCase_ )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , UpperCamelCase_ ) def a_ ( UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] ) -> Union[str, Any]: """simple docstring""" assert PokerHand(UpperCamelCase_ ).compare_with(PokerHand(UpperCamelCase_ ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def a_ ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[int] ) -> Optional[Any]: """simple docstring""" assert PokerHand(UpperCamelCase_ ).compare_with(PokerHand(UpperCamelCase_ ) ) == expected def a_ ( ) -> Tuple: """simple docstring""" lowerCamelCase = [PokerHand(UpperCamelCase_ ) for hand in SORTED_HANDS] lowerCamelCase = poker_hands.copy() shuffle(UpperCamelCase_ ) lowerCamelCase = chain(sorted(UpperCamelCase_ ) ) for index, hand in enumerate(UpperCamelCase_ ): assert hand == poker_hands[index] def a_ ( ) -> Tuple: """simple docstring""" lowerCamelCase = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=UpperCamelCase_ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def a_ ( ) -> int: """simple docstring""" lowerCamelCase = PokerHand('2C 4S AS 3D 5C' ) lowerCamelCase = True lowerCamelCase = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def a_ ( ) -> Optional[int]: """simple docstring""" lowerCamelCase = 0 lowerCamelCase = os.path.abspath(os.path.dirname(UpperCamelCase_ ) ) lowerCamelCase = os.path.join(UpperCamelCase_ , 'poker_hands.txt' ) with open(UpperCamelCase_ ) as file_hand: for line in file_hand: lowerCamelCase = line[:1_4].strip() lowerCamelCase = line[1_5:].strip() lowerCamelCase , lowerCamelCase = PokerHand(UpperCamelCase_ ), PokerHand(UpperCamelCase_ ) lowerCamelCase = player.compare_with(UpperCamelCase_ ) if output == "Win": answer += 1 assert answer == 3_7_6
246
0
from ....configuration_utils import PretrainedConfig from ....utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # TODO: upload to AWS SCREAMING_SNAKE_CASE__ = { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json""" ), } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = "retribert" def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=3_05_22 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : List[Any]=8 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=5_12 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=1e-1_2 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Optional[int]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = share_encoders __lowercase = projection_dim
688
from pathlib import Path import numpy as np from PIL import Image def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: __lowercase , __lowercase , __lowercase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: return (gray > 127) & (gray <= 255) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: __lowercase = np.zeros_like(SCREAMING_SNAKE_CASE ) __lowercase = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image __lowercase = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): __lowercase = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() __lowercase = int(summation > 0 ) return output if __name__ == "__main__": # read original image SCREAMING_SNAKE_CASE__ = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" SCREAMING_SNAKE_CASE__ = np.array(Image.open(lena_path)) # kernel to be applied SCREAMING_SNAKE_CASE__ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) SCREAMING_SNAKE_CASE__ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image SCREAMING_SNAKE_CASE__ = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
688
1
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
518
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP a = False try: a = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class _A : def __init__( self , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = [] ): _UpperCAmelCase = 0 _UpperCAmelCase = choices _UpperCAmelCase = prompt if sys.platform == "win32": _UpperCAmelCase = """*""" else: _UpperCAmelCase = """➔ """ def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = "" ): if sys.platform != "win32": writeColor(self.choices[index] , 32 , _SCREAMING_SNAKE_CASE ) else: forceWrite(self.choices[index] , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): if index == self.position: forceWrite(F" {self.arrow_char} " ) self.write_choice(_SCREAMING_SNAKE_CASE ) else: forceWrite(F" {self.choices[index]}" ) reset_cursor() def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 1 ): _UpperCAmelCase = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(_SCREAMING_SNAKE_CASE ) move_cursor(_SCREAMING_SNAKE_CASE , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["""up"""] ) def UpperCAmelCase ( self ): self.move_direction(Direction.UP ) @input.mark(KEYMAP["""down"""] ) def UpperCAmelCase ( self ): self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["""newline"""] ) def UpperCAmelCase ( self ): move_cursor(len(self.choices ) - self.position , """DOWN""" ) return self.position @input.mark(KEYMAP["""interrupt"""] ) def UpperCAmelCase ( self ): move_cursor(len(self.choices ) - self.position , """DOWN""" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(_SCREAMING_SNAKE_CASE )] for number in range(10 )] ) def UpperCAmelCase ( self ): _UpperCAmelCase = int(chr(self.current_selection ) ) _UpperCAmelCase = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , _SCREAMING_SNAKE_CASE ) else: return else: return def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE = 0 ): if self.prompt: linebreak() forceWrite(self.prompt , """\n""" ) if in_colab: forceWrite("""Please input a choice index (starting from 0), and press enter""" , """\n""" ) else: forceWrite("""Please select a choice using the arrow or number keys, and selecting with enter""" , """\n""" ) _UpperCAmelCase = default_choice for i in range(len(self.choices ) ): self.print_choice(_SCREAMING_SNAKE_CASE ) forceWrite("""\n""" ) move_cursor(len(self.choices ) - self.position , """UP""" ) with cursor.hide(): while True: if in_colab: try: _UpperCAmelCase = int(builtins.input() ) except ValueError: _UpperCAmelCase = default_choice else: _UpperCAmelCase = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , """UP""" ) clear_line() self.write_choice(_SCREAMING_SNAKE_CASE , """\n""" ) return choice
518
1
'''simple docstring''' import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class __snake_case : """simple docstring""" def __init__( self : str , lowerCamelCase : str = "cpu" , lowerCamelCase : str = "openai/clip-vit-large-patch14" ) -> None: lowerCAmelCase_ : int = device lowerCAmelCase_ : Optional[Any] = CLIPTokenizerFast.from_pretrained(__lowerCamelCase ) lowerCAmelCase_ : Optional[int] = [0.48_145_466, 0.4_578_275, 0.40_821_073] lowerCAmelCase_ : Tuple = [0.26_862_954, 0.26_130_258, 0.27_577_711] lowerCAmelCase_ : List[Any] = torchvision.transforms.Normalize(self.image_mean , self.image_std ) lowerCAmelCase_ : int = torchvision.transforms.Resize(2_24 ) lowerCAmelCase_ : Optional[int] = torchvision.transforms.CenterCrop(2_24 ) def __lowercase ( self : Union[str, Any] , lowerCamelCase : Optional[int] ) -> str: lowerCAmelCase_ : Tuple = self.resize(__lowerCamelCase ) lowerCAmelCase_ : Dict = self.center_crop(__lowerCamelCase ) lowerCAmelCase_ : Any = self.normalize(__lowerCamelCase ) return images def __call__( self : List[str] , lowerCamelCase : int=None , lowerCamelCase : int=None , **lowerCamelCase : Optional[int] ) -> Union[str, Any]: lowerCAmelCase_ : Any = self.tokenizer(text=__lowerCamelCase , **__lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = self.preprocess_img(__lowerCamelCase ) lowerCAmelCase_ : str = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class __snake_case ( nn.Module): """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase : List[str]=10 , lowerCamelCase : Tuple=0.01 , lowerCamelCase : Dict=None , lowerCamelCase : List[Any]=None , lowerCamelCase : str=None , lowerCamelCase : str=None , lowerCamelCase : List[str]=None , lowerCamelCase : int=None , lowerCamelCase : Dict=False , lowerCamelCase : Optional[Any]=True , lowerCamelCase : str="image" , lowerCamelCase : Optional[Any]=True , lowerCamelCase : List[str]=False , lowerCamelCase : str=False , lowerCamelCase : List[str]=False , ) -> None: super().__init__() lowerCAmelCase_ : Optional[Any] = None lowerCAmelCase_ : str = device if device else get_device() if vqgan: lowerCAmelCase_ : List[str] = vqgan else: lowerCAmelCase_ : Dict = load_vqgan(self.device , conf_path=__lowerCamelCase , ckpt_path=__lowerCamelCase ) self.vqgan.eval() if clip: lowerCAmelCase_ : Optional[Any] = clip else: lowerCAmelCase_ : Dict = CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""" ) self.clip.to(self.device ) lowerCAmelCase_ : Optional[Any] = ProcessorGradientFlow(device=self.device ) lowerCAmelCase_ : Dict = iterations lowerCAmelCase_ : Tuple = lr lowerCAmelCase_ : Tuple = log lowerCAmelCase_ : Optional[int] = make_grid lowerCAmelCase_ : str = return_val lowerCAmelCase_ : List[Any] = quantize lowerCAmelCase_ : str = self.vqgan.decoder.z_shape def __lowercase ( self : int , lowerCamelCase : Optional[Any]=None , lowerCamelCase : Dict=None , lowerCamelCase : int=5 , lowerCamelCase : str=True ) -> Union[str, Any]: lowerCAmelCase_ : Optional[Any] = [] if output_path is None: lowerCAmelCase_ : List[Any] = "./animation.gif" if input_path is None: lowerCAmelCase_ : str = self.save_path lowerCAmelCase_ : Optional[int] = sorted(glob(input_path + """/*""" ) ) if not len(__lowerCamelCase ): raise ValueError( """No images found in save path, aborting (did you pass save_intermediate=True to the generate""" """ function?)""" ) if len(__lowerCamelCase ) == 1: print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""" ) lowerCAmelCase_ : Union[str, Any] = total_duration / len(__lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = [frame_duration] * len(__lowerCamelCase ) if extend_frames: lowerCAmelCase_ : int = 1.5 lowerCAmelCase_ : int = 3 for file_name in paths: if file_name.endswith(""".png""" ): images.append(imageio.imread(__lowerCamelCase ) ) imageio.mimsave(__lowerCamelCase , __lowerCamelCase , duration=__lowerCamelCase ) print(F'gif saved to {output_path}' ) def __lowercase ( self : int , lowerCamelCase : List[str]=None , lowerCamelCase : Dict=None ) -> Union[str, Any]: if not (path or img): raise ValueError("""Input either path or tensor""" ) if img is not None: raise NotImplementedError lowerCAmelCase_ : List[str] = preprocess(Image.open(__lowerCamelCase ) , target_image_size=2_56 ).to(self.device ) lowerCAmelCase_ : str = preprocess_vqgan(__lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = self.vqgan.encode(__lowerCamelCase ) return z def __lowercase ( self : Dict , lowerCamelCase : Optional[Any] ) -> Union[str, Any]: lowerCAmelCase_ : int = self.latent.detach().requires_grad_() lowerCAmelCase_ : List[str] = base_latent + transform_vector if self.quantize: lowerCAmelCase_ : Union[str, Any] = self.vqgan.quantize(__lowerCamelCase ) else: lowerCAmelCase_ : str = trans_latent return self.vqgan.decode(__lowerCamelCase ) def __lowercase ( self : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : List[Any]=None ) -> Dict: lowerCAmelCase_ : Union[str, Any] = self.clip_preprocessor(text=__lowerCamelCase , images=__lowerCamelCase , return_tensors="""pt""" , padding=__lowerCamelCase ) lowerCAmelCase_ : int = self.clip(**__lowerCamelCase ) lowerCAmelCase_ : Optional[int] = clip_outputs.logits_per_image if weights is not None: lowerCAmelCase_ : Any = similarity_logits * weights return similarity_logits.sum() def __lowercase ( self : Union[str, Any] , lowerCamelCase : Any , lowerCamelCase : Optional[Any] , lowerCamelCase : Any ) -> str: lowerCAmelCase_ : Any = self._get_clip_similarity(pos_prompts["""prompts"""] , __lowerCamelCase , weights=(1 / pos_prompts["""weights"""]) ) if neg_prompts: lowerCAmelCase_ : List[Any] = self._get_clip_similarity(neg_prompts["""prompts"""] , __lowerCamelCase , weights=neg_prompts["""weights"""] ) else: lowerCAmelCase_ : Tuple = torch.tensor([1] , device=self.device ) lowerCAmelCase_ : List[Any] = -torch.log(__lowerCamelCase ) + torch.log(__lowerCamelCase ) return loss def __lowercase ( self : Any , lowerCamelCase : str , lowerCamelCase : Optional[int] , lowerCamelCase : Dict ) -> str: lowerCAmelCase_ : Any = torch.randn_like(self.latent , requires_grad=__lowerCamelCase , device=self.device ) lowerCAmelCase_ : Optional[int] = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() lowerCAmelCase_ : List[str] = self._add_vector(__lowerCamelCase ) lowerCAmelCase_ : List[Any] = loop_post_process(__lowerCamelCase ) lowerCAmelCase_ : Any = self._get_CLIP_loss(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) print("""CLIP loss""" , __lowerCamelCase ) if self.log: wandb.log({"""CLIP Loss""": clip_loss} ) clip_loss.backward(retain_graph=__lowerCamelCase ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def __lowercase ( self : Optional[Any] , lowerCamelCase : Any , lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] ) -> Optional[Any]: wandb.init(reinit=__lowerCamelCase , project="""face-editor""" ) wandb.config.update({"""Positive Prompts""": positive_prompts} ) wandb.config.update({"""Negative Prompts""": negative_prompts} ) wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations} ) if image_path: lowerCAmelCase_ : List[str] = Image.open(__lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = image.resize((2_56, 2_56) ) wandb.log("""Original Image""" , wandb.Image(__lowerCamelCase ) ) def __lowercase ( self : Optional[int] , lowerCamelCase : Optional[Any] ) -> List[Any]: if not prompts: return [] lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : int = [] if isinstance(__lowerCamelCase , __lowerCamelCase ): lowerCAmelCase_ : int = [prompt.strip() for prompt in prompts.split("""|""" )] for prompt in prompts: if isinstance(__lowerCamelCase , (tuple, list) ): lowerCAmelCase_ : List[Any] = prompt[0] lowerCAmelCase_ : Optional[Any] = float(prompt[1] ) elif ":" in prompt: lowerCAmelCase_ : Optional[Any] = prompt.split(""":""" ) lowerCAmelCase_ : Union[str, Any] = float(__lowerCamelCase ) else: lowerCAmelCase_ : Tuple = prompt lowerCAmelCase_ : Optional[int] = 1.0 processed_prompts.append(__lowerCamelCase ) weights.append(__lowerCamelCase ) return { "prompts": processed_prompts, "weights": torch.tensor(__lowerCamelCase , device=self.device ), } def __lowercase ( self : Tuple , lowerCamelCase : List[Any] , lowerCamelCase : List[Any]=None , lowerCamelCase : Optional[Any]=None , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : List[Any]=False , lowerCamelCase : int=True , lowerCamelCase : List[str]=True , lowerCamelCase : Optional[int]=None , ) -> Optional[int]: if image_path: lowerCAmelCase_ : str = self._get_latent(__lowerCamelCase ) else: lowerCAmelCase_ : List[Any] = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) assert pos_prompts, "You must provide at least one positive prompt." lowerCAmelCase_ : List[str] = self.process_prompts(__lowerCamelCase ) lowerCAmelCase_ : Dict = self.process_prompts(__lowerCamelCase ) if save_final and save_path is None: lowerCAmelCase_ : Any = os.path.join("""./outputs/""" , """_""".join(pos_prompts["""prompts"""] ) ) if not os.path.exists(__lowerCamelCase ): os.makedirs(__lowerCamelCase ) else: lowerCAmelCase_ : List[Any] = save_path + "_" + get_timestamp() os.makedirs(__lowerCamelCase ) lowerCAmelCase_ : Dict = save_path lowerCAmelCase_ : List[str] = self.vqgan.decode(self.latent )[0] if show_intermediate: print("""Original Image""" ) show_pil(custom_to_pil(__lowerCamelCase ) ) lowerCAmelCase_ : Union[str, Any] = loop_post_process(__lowerCamelCase ) for iter, transformed_img in enumerate(self._optimize_CLIP(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) ): if show_intermediate: show_pil(__lowerCamelCase ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}.png' ) ) if self.log: wandb.log({"""Image""": wandb.Image(__lowerCamelCase )} ) if show_final: show_pil(__lowerCamelCase ) if save_final: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}_final.png' ) )
717
'''simple docstring''' from itertools import count def UpperCamelCase_ ( A__ : int = 50 ): '''simple docstring''' lowerCAmelCase_ : Any = [1] * min_block_length for n in count(A__ ): fill_count_functions.append(1 ) for block_length in range(A__ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_00_00_00: break return n if __name__ == "__main__": print(F'''{solution() = }''')
398
0
'''simple docstring''' # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version UpperCAmelCase_ = get_logger(__name__) class lowerCAmelCase_ : '''simple docstring''' lowerCAmelCase_ : Any = """dummy_data""" lowerCAmelCase_ : List[str] = """datasets""" lowerCAmelCase_ : Dict = False def __init__( self : Any , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Union[Version, str] , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[List[Callable]] = None , ): """simple docstring""" UpperCAmelCase__ = 0 UpperCAmelCase__ = dataset_name UpperCAmelCase__ = cache_dir UpperCAmelCase__ = use_local_dummy_data UpperCAmelCase__ = config # download_callbacks take a single url as input UpperCAmelCase__ = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root UpperCAmelCase__ = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general UpperCAmelCase__ = str(_UpperCAmelCase ) # to be downloaded UpperCAmelCase__ = None UpperCAmelCase__ = None @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" if self._dummy_file is None: UpperCAmelCase__ = self.download_dummy_data() return self._dummy_file @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("""dummy""" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("""dummy""" , self.version_name ) @property def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" return os.path.join(self.dummy_data_folder , """dummy_data.zip""" ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) UpperCAmelCase__ = cached_path( _UpperCAmelCase , cache_dir=self.cache_dir , extract_compressed_file=_UpperCAmelCase , force_extract=_UpperCAmelCase ) return os.path.join(_UpperCAmelCase , self.dummy_file_name ) @property def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" if self._bucket_url is None: UpperCAmelCase__ = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) ) return self._bucket_url @property def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Any , *_UpperCAmelCase : List[Any] ): """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested UpperCAmelCase__ = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned UpperCAmelCase__ = self.dummy_file_name # special case when data_url is a dict if isinstance(_UpperCAmelCase , _UpperCAmelCase ): return self.create_dummy_data_dict(_UpperCAmelCase , _UpperCAmelCase ) elif isinstance(_UpperCAmelCase , (list, tuple) ): return self.create_dummy_data_list(_UpperCAmelCase , _UpperCAmelCase ) else: return self.create_dummy_data_single(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : str , *_UpperCAmelCase : Union[str, Any] ): """simple docstring""" return self.download_and_extract(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] ): """simple docstring""" return self.download_and_extract(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : int , *_UpperCAmelCase : Dict , **_UpperCAmelCase : Tuple ): """simple docstring""" return path def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" return {} def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] ): """simple docstring""" UpperCAmelCase__ = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): for single_url in single_urls: download_callback(_UpperCAmelCase ) else: UpperCAmelCase__ = single_urls download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase__ = [os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) for x in single_urls] else: UpperCAmelCase__ = single_urls UpperCAmelCase__ = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) UpperCAmelCase__ = value # make sure that values are unique if all(isinstance(_UpperCAmelCase , _UpperCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique UpperCAmelCase__ = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one UpperCAmelCase__ = all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , _UpperCAmelCase ) ) for url in data_url ) UpperCAmelCase__ = all( url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): UpperCAmelCase__ = [data_url[0]] * len(_UpperCAmelCase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus UpperCAmelCase__ = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) ) dummy_data_list.append(_UpperCAmelCase ) return dummy_data_list def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ): """simple docstring""" for download_callback in self.download_callbacks: download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus UpperCAmelCase__ = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) ) if os.path.exists(_UpperCAmelCase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : str ): """simple docstring""" def _iter_archive_members(_UpperCAmelCase : Dict ): # this preserves the order of the members inside the ZIP archive UpperCAmelCase__ = Path(self.dummy_file ).parent UpperCAmelCase__ = path.relative_to(_UpperCAmelCase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: UpperCAmelCase__ = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_UpperCAmelCase ) UpperCAmelCase__ = Path(_UpperCAmelCase ) UpperCAmelCase__ = _iter_archive_members(_UpperCAmelCase ) if self.use_local_dummy_data else path.rglob("""*""" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ): yield file_path.relative_to(_UpperCAmelCase ).as_posix(), file_path.open("""rb""" ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : Optional[int] ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase__ = [paths] for path in paths: if os.path.isfile(_UpperCAmelCase ): if os.path.basename(_UpperCAmelCase ).startswith((""".""", """__""") ): return yield path else: for dirpath, dirnames, filenames in os.walk(_UpperCAmelCase ): if os.path.basename(_UpperCAmelCase ).startswith((""".""", """__""") ): continue dirnames.sort() for filename in sorted(_UpperCAmelCase ): if filename.startswith((""".""", """__""") ): continue yield os.path.join(_UpperCAmelCase , _UpperCAmelCase )
603
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCAmelCase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
603
1
"""simple docstring""" import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder _a : int= "base_with_context" def __UpperCAmelCase ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' __snake_case : Optional[Any] = nn.Parameter(torch.FloatTensor(weights['token_embedder']['embedding'] ) ) __snake_case : Optional[int] = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=UpperCAmelCase_ ) for lyr_num, lyr in enumerate(model.encoders ): __snake_case : Union[str, Any] = weights[F"layers_{lyr_num}"] __snake_case : Any = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) __snake_case : Any = ly_weight['attention'] __snake_case : int = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) __snake_case : Any = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) __snake_case : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) __snake_case : Tuple = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) __snake_case : int = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) __snake_case : Any = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) __snake_case : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) __snake_case : Any = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) __snake_case : Dict = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def __UpperCAmelCase ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] ) -> Tuple: '''simple docstring''' __snake_case : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights['input_proj']['kernel'].T ) ) __snake_case : List[Any] = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=UpperCAmelCase_ ) for lyr_num, lyr in enumerate(model.encoders ): __snake_case : Union[str, Any] = weights[F"layers_{lyr_num}"] __snake_case : List[str] = ly_weight['attention'] __snake_case : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) __snake_case : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) __snake_case : Any = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) __snake_case : List[str] = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) __snake_case : List[str] = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) __snake_case : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) __snake_case : str = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) __snake_case : Tuple = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) __snake_case : str = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) __snake_case : List[str] = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def __UpperCAmelCase ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] ) -> Dict: '''simple docstring''' __snake_case : List[Any] = nn.Parameter(torch.FloatTensor(weights['time_emb_dense0']['kernel'].T ) ) __snake_case : str = nn.Parameter(torch.FloatTensor(weights['time_emb_dense1']['kernel'].T ) ) __snake_case : List[str] = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=UpperCAmelCase_ ) __snake_case : List[str] = nn.Parameter( torch.FloatTensor(weights['continuous_inputs_projection']['kernel'].T ) ) for lyr_num, lyr in enumerate(model.decoders ): __snake_case : List[Any] = weights[F"layers_{lyr_num}"] __snake_case : str = nn.Parameter( torch.FloatTensor(ly_weight['pre_self_attention_layer_norm']['scale'] ) ) __snake_case : Optional[int] = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_0']['DenseGeneral_0']['kernel'].T ) ) __snake_case : Optional[Any] = ly_weight['self_attention'] __snake_case : Any = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) __snake_case : Dict = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) __snake_case : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) __snake_case : Tuple = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) __snake_case : Optional[Any] = ly_weight['MultiHeadDotProductAttention_0'] __snake_case : Tuple = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) __snake_case : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) __snake_case : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) __snake_case : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) __snake_case : Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight['pre_cross_attention_layer_norm']['scale'] ) ) __snake_case : Dict = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) __snake_case : Dict = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_1']['DenseGeneral_0']['kernel'].T ) ) __snake_case : int = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) __snake_case : Tuple = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) __snake_case : Any = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) __snake_case : Optional[int] = nn.Parameter(torch.FloatTensor(weights['decoder_norm']['scale'] ) ) __snake_case : Dict = nn.Parameter(torch.FloatTensor(weights['spec_out_dense']['kernel'].T ) ) return model def __UpperCAmelCase ( UpperCAmelCase_ : Optional[Any] ) -> int: '''simple docstring''' __snake_case : Dict = checkpoints.load_tax_checkpoint(args.checkpoint_path ) __snake_case : List[str] = jnp.tree_util.tree_map(onp.array , UpperCAmelCase_ ) __snake_case : List[str] = [ 'from __gin__ import dynamic_registration', 'from music_spectrogram_diffusion.models.diffusion import diffusion_utils', 'diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0', 'diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()', ] __snake_case : List[str] = os.path.join(args.checkpoint_path , '..' , 'config.gin' ) __snake_case : Optional[Any] = inference.parse_training_gin_file(UpperCAmelCase_ , UpperCAmelCase_ ) __snake_case : int = inference.InferenceModel(args.checkpoint_path , UpperCAmelCase_ ) __snake_case : List[Any] = DDPMScheduler(beta_schedule='squaredcos_cap_v2' , variance_type='fixed_large' ) __snake_case : Optional[int] = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['inputs'] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) __snake_case : Optional[Any] = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['targets_context'] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) __snake_case : Dict = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['targets_context'] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) __snake_case : List[str] = load_notes_encoder(ta_checkpoint['target']['token_encoder'] , UpperCAmelCase_ ) __snake_case : Any = load_continuous_encoder(ta_checkpoint['target']['continuous_encoder'] , UpperCAmelCase_ ) __snake_case : Optional[Any] = load_decoder(ta_checkpoint['target']['decoder'] , UpperCAmelCase_ ) __snake_case : Optional[int] = OnnxRuntimeModel.from_pretrained('kashif/soundstream_mel_decoder' ) __snake_case : List[str] = SpectrogramDiffusionPipeline( notes_encoder=UpperCAmelCase_ , continuous_encoder=UpperCAmelCase_ , decoder=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , melgan=UpperCAmelCase_ , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": _a : str= argparse.ArgumentParser() parser.add_argument("--output_path", default=None, type=str, required=True, help="Path to the converted model.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument( "--checkpoint_path", default=f'''{MODEL}/checkpoint_500000''', type=str, required=False, help="Path to the original jax model checkpoint.", ) _a : str= parser.parse_args() main(args)
713
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCamelCase ( lowercase ): @staticmethod @abstractmethod def _lowercase (_A : ArgumentParser) -> Tuple: raise NotImplementedError() @abstractmethod def _lowercase (self : Any) -> Optional[Any]: raise NotImplementedError()
192
0
'''simple docstring''' from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Dict = logging.get_logger(__name__) a : Union[str, Any] = { '''google/efficientnet-b7''': '''https://huggingface.co/google/efficientnet-b7/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """efficientnet""" def __init__( self : Optional[int] , a_ : int = 3 , a_ : int = 600 , a_ : float = 2.0 , a_ : float = 3.1 , a_ : int = 8 , a_ : List[int] = [3, 3, 5, 3, 5, 5, 3] , a_ : List[int] = [32, 16, 24, 40, 80, 112, 192] , a_ : List[int] = [16, 24, 40, 80, 112, 192, 320] , a_ : List[int] = [] , a_ : List[int] = [1, 2, 2, 2, 1, 2, 1] , a_ : List[int] = [1, 2, 2, 3, 3, 4, 1] , a_ : List[int] = [1, 6, 6, 6, 6, 6, 6] , a_ : float = 0.25 , a_ : str = "swish" , a_ : int = 2_560 , a_ : str = "mean" , a_ : float = 0.02 , a_ : float = 0.001 , a_ : float = 0.99 , a_ : float = 0.5 , a_ : float = 0.2 , **a_ : Union[str, Any] , ): """simple docstring""" super().__init__(**a_ ) __snake_case = num_channels __snake_case = image_size __snake_case = width_coefficient __snake_case = depth_coefficient __snake_case = depth_divisor __snake_case = kernel_sizes __snake_case = in_channels __snake_case = out_channels __snake_case = depthwise_padding __snake_case = strides __snake_case = num_block_repeats __snake_case = expand_ratios __snake_case = squeeze_expansion_ratio __snake_case = hidden_act __snake_case = hidden_dim __snake_case = pooling_type __snake_case = initializer_range __snake_case = batch_norm_eps __snake_case = batch_norm_momentum __snake_case = dropout_rate __snake_case = drop_connect_rate __snake_case = sum(a_ ) * 4 class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = version.parse("""1.11""" ) @property def A ( self : str ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def A ( self : List[str] ): """simple docstring""" return 1e-5
69
from __future__ import annotations from statistics import mean def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]: snake_case__ = [0] * no_of_processes snake_case__ = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(__lowerCAmelCase ): snake_case__ = burst_time[i] snake_case__ = [] snake_case__ = 0 snake_case__ = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: snake_case__ = [] snake_case__ = -1 for i in range(__lowerCAmelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: snake_case__ = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: snake_case__ = i total_time += burst_time[target_process] completed += 1 snake_case__ = 0 snake_case__ = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]: snake_case__ = [0] * no_of_processes for i in range(__lowerCAmelCase ): snake_case__ = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") lowerCamelCase__ : Tuple = 4 lowerCamelCase__ : Union[str, Any] = [2, 5, 3, 7] lowerCamelCase__ : Optional[Any] = [0, 0, 0, 0] lowerCamelCase__ : Dict = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowerCamelCase__ : Union[str, Any] = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
33
0
"""simple docstring""" import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def _lowerCAmelCase ( __lowerCamelCase:Union[str, Any] , __lowerCamelCase:Optional[Any] ): '''simple docstring''' __magic_name__ = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg" __magic_name__ = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ).convert("RGB" ) __magic_name__ = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3) , (0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1) ), ] ) __magic_name__ = transform(__lowerCamelCase ).unsqueeze(0 ).to(__lowerCamelCase ) return image def _lowerCAmelCase ( __lowerCamelCase:Tuple ): '''simple docstring''' if "visual_encoder" in key: __magic_name__ = re.sub("visual_encoder*" , "vision_model.encoder" , __lowerCamelCase ) if "blocks" in key: __magic_name__ = re.sub(r"blocks" , "layers" , __lowerCamelCase ) if "attn" in key: __magic_name__ = re.sub(r"attn" , "self_attn" , __lowerCamelCase ) if "norm1" in key: __magic_name__ = re.sub(r"norm1" , "layer_norm1" , __lowerCamelCase ) if "norm2" in key: __magic_name__ = re.sub(r"norm2" , "layer_norm2" , __lowerCamelCase ) if "encoder.norm" in key: __magic_name__ = re.sub(r"encoder.norm" , "post_layernorm" , __lowerCamelCase ) if "encoder.patch_embed.proj" in key: __magic_name__ = re.sub(r"encoder.patch_embed.proj" , "embeddings.patch_embedding" , __lowerCamelCase ) if "encoder.pos_embed" in key: __magic_name__ = re.sub(r"encoder.pos_embed" , "embeddings.position_embedding" , __lowerCamelCase ) if "encoder.cls_token" in key: __magic_name__ = re.sub(r"encoder.cls_token" , "embeddings.class_embedding" , __lowerCamelCase ) if "self_attn" in key: __magic_name__ = re.sub(r"self_attn.proj" , "self_attn.projection" , __lowerCamelCase ) return key @torch.no_grad() def _lowerCAmelCase ( __lowerCamelCase:Optional[int] , __lowerCamelCase:Optional[Any]=None ): '''simple docstring''' if config_path is not None: __magic_name__ = BlipConfig.from_pretrained(__lowerCamelCase ) else: __magic_name__ = BlipConfig(projection_dim=5_1_2 , text_config={} , vision_config={} ) __magic_name__ = BlipForConditionalGeneration(__lowerCamelCase ).eval() __magic_name__ = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth" __magic_name__ = blip_decoder(pretrained=__lowerCamelCase , image_size=3_8_4 , vit="base" ) __magic_name__ = pt_model.eval() __magic_name__ = pt_model.state_dict() for key in modified_state_dict.copy(): __magic_name__ = modified_state_dict.pop(__lowerCamelCase ) __magic_name__ = rename_key(__lowerCamelCase ) __magic_name__ = value hf_model.load_state_dict(__lowerCamelCase ) __magic_name__ = 3_8_4 __magic_name__ = load_demo_image(image_size=__lowerCamelCase , device="cpu" ) __magic_name__ = BertTokenizer.from_pretrained("bert-base-uncased" ) __magic_name__ = tokenizer(["a picture of"] ).input_ids __magic_name__ = hf_model.generate(__lowerCamelCase , __lowerCamelCase ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 3_8_6_1, 1_9_9_7, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] __magic_name__ = hf_model.generate(__lowerCamelCase ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(__lowerCamelCase ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' __magic_name__ = ( "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth" ) __magic_name__ = blip_vqa(pretrained=__lowerCamelCase , image_size=__lowerCamelCase , vit="base" ) vqa_model.eval() __magic_name__ = vqa_model.state_dict() for key in modified_state_dict.copy(): __magic_name__ = modified_state_dict.pop(__lowerCamelCase ) __magic_name__ = rename_key(__lowerCamelCase ) __magic_name__ = value __magic_name__ = BlipForQuestionAnswering(__lowerCamelCase ) hf_vqa_model.load_state_dict(__lowerCamelCase ) __magic_name__ = ["How many dogs are in this image?"] __magic_name__ = tokenizer(__lowerCamelCase , return_tensors="pt" ).input_ids __magic_name__ = hf_vqa_model.generate(__lowerCamelCase , __lowerCamelCase ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + "_vqa" ) __magic_name__ = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth" __magic_name__ = blip_itm(pretrained=__lowerCamelCase , image_size=__lowerCamelCase , vit="base" ) itm_model.eval() __magic_name__ = itm_model.state_dict() for key in modified_state_dict.copy(): __magic_name__ = modified_state_dict.pop(__lowerCamelCase ) __magic_name__ = rename_key(__lowerCamelCase ) __magic_name__ = value __magic_name__ = BlipForImageTextRetrieval(__lowerCamelCase ) __magic_name__ = ["A picture of a woman with a dog sitting in a beach"] __magic_name__ = tokenizer( __lowerCamelCase , return_tensors="pt" , padding="max_length" , truncation=__lowerCamelCase , max_length=3_5 , ).input_ids hf_itm_model.load_state_dict(__lowerCamelCase ) hf_itm_model.eval() __magic_name__ = hf_itm_model(__lowerCamelCase , __lowerCamelCase , use_itm_head=__lowerCamelCase ) __magic_name__ = hf_itm_model(__lowerCamelCase , __lowerCamelCase , use_itm_head=__lowerCamelCase ) assert out[0].item() == 0.2_1_1_0_6_8_7_4_9_4_2_7_7_9_5_4 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5_6_9_8_8_4_5_3_8_6_5_0_5_1_2_7 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + "_itm" ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowercase = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
719
"""simple docstring""" from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A_ : def __init__( self : int , __lowerCamelCase : int , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : Any=3 , __lowerCamelCase : Any=4 , __lowerCamelCase : str=2 , __lowerCamelCase : int=7 , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Dict=True , __lowerCamelCase : Any=9_9 , __lowerCamelCase : int=3_6 , __lowerCamelCase : Dict=2 , __lowerCamelCase : int=4 , __lowerCamelCase : Dict=3_7 , __lowerCamelCase : str="gelu" , __lowerCamelCase : int=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : int=5_1_2 , __lowerCamelCase : Optional[Any]=1_6 , __lowerCamelCase : Any=2 , __lowerCamelCase : Union[str, Any]=0.02 , __lowerCamelCase : List[Any]=6 , __lowerCamelCase : Tuple=6 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : Any=4 , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Optional[int]=1_0_0_0 , ) -> int: __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = num_channels __magic_name__ = image_size __magic_name__ = patch_size __magic_name__ = is_training __magic_name__ = use_input_mask __magic_name__ = use_token_type_ids __magic_name__ = use_labels __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = type_vocab_size __magic_name__ = type_sequence_label_size __magic_name__ = initializer_range __magic_name__ = coordinate_size __magic_name__ = shape_size __magic_name__ = num_labels __magic_name__ = num_choices __magic_name__ = scope __magic_name__ = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __magic_name__ = text_seq_length __magic_name__ = (image_size // patch_size) ** 2 + 1 __magic_name__ = self.text_seq_length + self.image_seq_length def _snake_case ( self : Optional[Any] ) -> List[Any]: __magic_name__ = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __magic_name__ = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __magic_name__ = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __magic_name__ = bbox[i, j, 3] __magic_name__ = bbox[i, j, 1] __magic_name__ = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __magic_name__ = bbox[i, j, 2] __magic_name__ = bbox[i, j, 0] __magic_name__ = tmp_coordinate __magic_name__ = tf.constant(__lowerCamelCase ) __magic_name__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ = None if self.use_input_mask: __magic_name__ = random_attention_mask([self.batch_size, self.text_seq_length] ) __magic_name__ = None if self.use_token_type_ids: __magic_name__ = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __magic_name__ = None __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __magic_name__ = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _snake_case ( self : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : str ) -> Union[str, Any]: __magic_name__ = TFLayoutLMvaModel(config=__lowerCamelCase ) # text + image __magic_name__ = model(__lowerCamelCase , pixel_values=__lowerCamelCase , training=__lowerCamelCase ) __magic_name__ = model( __lowerCamelCase , bbox=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , training=__lowerCamelCase , ) __magic_name__ = model(__lowerCamelCase , bbox=__lowerCamelCase , pixel_values=__lowerCamelCase , training=__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __magic_name__ = model(__lowerCamelCase , training=__lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __magic_name__ = model({"pixel_values": pixel_values} , training=__lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _snake_case ( self : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Any ) -> List[str]: __magic_name__ = self.num_labels __magic_name__ = TFLayoutLMvaForSequenceClassification(config=__lowerCamelCase ) __magic_name__ = model( __lowerCamelCase , bbox=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , training=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : List[Any] ) -> Dict: __magic_name__ = self.num_labels __magic_name__ = TFLayoutLMvaForTokenClassification(config=__lowerCamelCase ) __magic_name__ = model( __lowerCamelCase , bbox=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , training=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] ) -> List[Any]: __magic_name__ = 2 __magic_name__ = TFLayoutLMvaForQuestionAnswering(config=__lowerCamelCase ) __magic_name__ = model( __lowerCamelCase , bbox=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , training=__lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self : Optional[int] ) -> str: __magic_name__ = self.prepare_config_and_inputs() ((__magic_name__) , (__magic_name__) , (__magic_name__) , (__magic_name__) , (__magic_name__) , (__magic_name__) , (__magic_name__) , (__magic_name__)) = config_and_inputs __magic_name__ = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class A_ ( snake_case_ , snake_case_ , unittest.TestCase ): UpperCAmelCase__ = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) UpperCAmelCase__ = ( {'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel} if is_tf_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def _snake_case ( self : str , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Any ) -> Union[str, Any]: return True def _snake_case ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int]=False ) -> dict: __magic_name__ = copy.deepcopy(__lowerCamelCase ) if model_class in get_values(__lowerCamelCase ): __magic_name__ = { k: tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(__lowerCamelCase , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__lowerCamelCase ): __magic_name__ = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__lowerCamelCase ): __magic_name__ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __magic_name__ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__lowerCamelCase ): __magic_name__ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__lowerCamelCase ): __magic_name__ = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def _snake_case ( self : List[str] ) -> str: __magic_name__ = TFLayoutLMvaModelTester(self ) __magic_name__ = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=3_7 ) def _snake_case ( self : List[Any] ) -> List[str]: self.config_tester.run_common_tests() def _snake_case ( self : int ) -> Tuple: __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = model_class(__lowerCamelCase ) if getattr(__lowerCamelCase , "hf_compute_loss" , __lowerCamelCase ): # The number of elements in the loss should be the same as the number of elements in the label __magic_name__ = self._prepare_for_class(inputs_dict.copy() , __lowerCamelCase , return_labels=__lowerCamelCase ) __magic_name__ = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__lowerCamelCase )[0] ] __magic_name__ = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __magic_name__ = self._prepare_for_class(inputs_dict.copy() , __lowerCamelCase , return_labels=__lowerCamelCase ) __magic_name__ = prepared_for_class.pop("input_ids" ) __magic_name__ = model(__lowerCamelCase , **__lowerCamelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __magic_name__ = self._prepare_for_class(inputs_dict.copy() , __lowerCamelCase , return_labels=__lowerCamelCase ) __magic_name__ = prepared_for_class.pop("input_ids" ) if "labels" in prepared_for_class: __magic_name__ = prepared_for_class["labels"].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __magic_name__ = -1_0_0 __magic_name__ = tf.convert_to_tensor(__lowerCamelCase ) __magic_name__ = model(__lowerCamelCase , **__lowerCamelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __magic_name__ = self._prepare_for_class(inputs_dict.copy() , __lowerCamelCase , return_labels=__lowerCamelCase ) __magic_name__ = model(__lowerCamelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __magic_name__ = self._prepare_for_class(inputs_dict.copy() , __lowerCamelCase , return_labels=__lowerCamelCase ) # Get keys that were added with the _prepare_for_class function __magic_name__ = prepared_for_class.keys() - inputs_dict.keys() __magic_name__ = inspect.signature(model.call ).parameters __magic_name__ = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __magic_name__ = {0: "input_ids"} for label_key in label_keys: __magic_name__ = signature_names.index(__lowerCamelCase ) __magic_name__ = label_key __magic_name__ = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __magic_name__ = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __magic_name__ = prepared_for_class[value] __magic_name__ = tuple(__lowerCamelCase ) # Send to model __magic_name__ = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def _snake_case ( self : Dict ) -> Dict: ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : List[str] ) -> int: ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __magic_name__ = type self.model_tester.create_and_check_model(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : Dict ) -> List[Any]: ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : Any ) -> List[str]: ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : Tuple ) -> Optional[int]: ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) @slow def _snake_case ( self : int ) -> Any: for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ = TFLayoutLMvaModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def _lowerCAmelCase ( ): '''simple docstring''' __magic_name__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf class A_ ( unittest.TestCase ): @cached_property def _snake_case ( self : List[Any] ) -> Dict: return LayoutLMvaImageProcessor(apply_ocr=__lowerCamelCase ) if is_vision_available() else None @slow def _snake_case ( self : Dict ) -> Dict: __magic_name__ = TFLayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ) __magic_name__ = self.default_image_processor __magic_name__ = prepare_img() __magic_name__ = image_processor(images=__lowerCamelCase , return_tensors="tf" ).pixel_values __magic_name__ = tf.constant([[1, 2]] ) __magic_name__ = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __magic_name__ = model(input_ids=__lowerCamelCase , bbox=__lowerCamelCase , pixel_values=__lowerCamelCase , training=__lowerCamelCase ) # verify the logits __magic_name__ = (1, 1_9_9, 7_6_8) self.assertEqual(outputs.last_hidden_state.shape , __lowerCamelCase ) __magic_name__ = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __lowerCamelCase , atol=1e-4 ) )
468
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
600
def __UpperCamelCase ( lowercase__ : int , lowercase__ : int , lowercase__ : int ) -> float: '''simple docstring''' lowerCAmelCase_ : Tuple = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def __UpperCamelCase ( ) -> str: '''simple docstring''' print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
600
1
'''simple docstring''' lowerCAmelCase_ = 0 # The first color of the flag. lowerCAmelCase_ = 1 # The second color of the flag. lowerCAmelCase_ = 2 # The third color of the flag. lowerCAmelCase_ = (red, white, blue) def lowerCAmelCase( a__ : list ): '''simple docstring''' if not sequence: return [] if len(a__ ) == 1: return list(a__ ) lowerCamelCase__ = 0 lowerCamelCase__ = len(a__ ) - 1 lowerCamelCase__ = 0 while mid <= high: if sequence[mid] == colors[0]: lowerCamelCase__ , lowerCamelCase__ = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: lowerCamelCase__ , lowerCamelCase__ = sequence[high], sequence[mid] high -= 1 else: lowerCamelCase__ = f"""The elements inside the sequence must contains only {colors} values""" raise ValueError(a__ ) return sequence if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase_ = input("Enter numbers separated by commas:\n").strip() lowerCAmelCase_ = [int(item.strip()) for item in user_input.split(",")] print(f'{dutch_national_flag_sort(unsorted)}')
702
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCAmelCase( a__ : Namespace ): '''simple docstring''' return TrainCommand(a__ ) class snake_case_ ( A__ ): """simple docstring""" @staticmethod def __UpperCAmelCase ( UpperCamelCase): lowerCamelCase__ = parser.add_parser("train" , help="CLI tool to train a model on a task.") train_parser.add_argument( "--train_data" , type=UpperCamelCase , required=UpperCamelCase , help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences." , ) train_parser.add_argument( "--column_label" , type=UpperCamelCase , default=0 , help="Column of the dataset csv file with example labels.") train_parser.add_argument( "--column_text" , type=UpperCamelCase , default=1 , help="Column of the dataset csv file with example texts.") train_parser.add_argument( "--column_id" , type=UpperCamelCase , default=2 , help="Column of the dataset csv file with example ids.") train_parser.add_argument( "--skip_first_row" , action="store_true" , help="Skip the first row of the csv file (headers).") train_parser.add_argument("--validation_data" , type=UpperCamelCase , default="" , help="path to validation dataset.") train_parser.add_argument( "--validation_split" , type=UpperCamelCase , default=0.1 , help="if validation dataset is not provided, fraction of train dataset to use as validation dataset." , ) train_parser.add_argument("--output" , type=UpperCamelCase , default="./" , help="path to saved the trained model.") train_parser.add_argument( "--task" , type=UpperCamelCase , default="text_classification" , help="Task to train the model on.") train_parser.add_argument( "--model" , type=UpperCamelCase , default="bert-base-uncased" , help="Model's name or path to stored model.") train_parser.add_argument("--train_batch_size" , type=UpperCamelCase , default=32 , help="Batch size for training.") train_parser.add_argument("--valid_batch_size" , type=UpperCamelCase , default=64 , help="Batch size for validation.") train_parser.add_argument("--learning_rate" , type=UpperCamelCase , default=3E-5 , help="Learning rate.") train_parser.add_argument("--adam_epsilon" , type=UpperCamelCase , default=1E-0_8 , help="Epsilon for Adam optimizer.") train_parser.set_defaults(func=UpperCamelCase) def __init__( self , UpperCamelCase): lowerCamelCase__ = logging.get_logger("transformers-cli/training") lowerCamelCase__ = "tf" if is_tf_available() else "torch" os.makedirs(args.output , exist_ok=UpperCamelCase) lowerCamelCase__ = args.output lowerCamelCase__ = args.column_label lowerCamelCase__ = args.column_text lowerCamelCase__ = args.column_id self.logger.info(f"""Loading {args.task} pipeline for {args.model}""") if args.task == "text_classification": lowerCamelCase__ = TextClassificationPipeline.from_pretrained(args.model) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"""Loading dataset from {args.train_data}""") lowerCamelCase__ = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) lowerCamelCase__ = None if args.validation_data: self.logger.info(f"""Loading validation dataset from {args.validation_data}""") lowerCamelCase__ = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) lowerCamelCase__ = args.validation_split lowerCamelCase__ = args.train_batch_size lowerCamelCase__ = args.valid_batch_size lowerCamelCase__ = args.learning_rate lowerCamelCase__ = args.adam_epsilon def __UpperCAmelCase ( self): if self.framework == "tf": return self.run_tf() return self.run_torch() def __UpperCAmelCase ( self): raise NotImplementedError def __UpperCAmelCase ( self): self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output)
426
0
from __future__ import annotations from functools import lru_cache from math import ceil lowerCAmelCase__ : int =100 lowerCAmelCase__ : List[Any] =set(range(3, NUM_PRIMES, 2)) primes.add(2) lowerCAmelCase__ : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_00 ) def __lowercase ( a__ ) -> set[int]: if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} __SCREAMING_SNAKE_CASE = set() __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def __lowercase ( a__ = 50_00 ) -> int | None: for number_to_partition in range(1 , a__ ): if len(partition(a__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F'''{solution() = }''')
148
import numpy as np def __lowercase ( a__ , a__ , a__ = 1E-12 , a__ = 1_00 , ) -> tuple[float, np.ndarray]: assert np.shape(a__ )[0] == np.shape(a__ )[1] # Ensure proper dimensionality. assert np.shape(a__ )[0] == np.shape(a__ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(a__ ) == np.iscomplexobj(a__ ) __SCREAMING_SNAKE_CASE = np.iscomplexobj(a__ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(a__ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 1E12 while not convergence: # Multiple matrix by the vector. __SCREAMING_SNAKE_CASE = np.dot(a__ , a__ ) # Normalize the resulting output vector. __SCREAMING_SNAKE_CASE = w / np.linalg.norm(a__ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __SCREAMING_SNAKE_CASE = vector.conj().T if is_complex else vector.T __SCREAMING_SNAKE_CASE = np.dot(a__ , np.dot(a__ , a__ ) ) # Check convergence. __SCREAMING_SNAKE_CASE = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = lambda_ if is_complex: __SCREAMING_SNAKE_CASE = np.real(lambda_ ) return lambda_, vector def __lowercase ( ) -> None: __SCREAMING_SNAKE_CASE = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) __SCREAMING_SNAKE_CASE = np.array([41, 4, 20] ) __SCREAMING_SNAKE_CASE = real_input_matrix.astype(np.complexaaa ) __SCREAMING_SNAKE_CASE = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __SCREAMING_SNAKE_CASE = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": __SCREAMING_SNAKE_CASE = real_input_matrix __SCREAMING_SNAKE_CASE = real_vector elif problem_type == "complex": __SCREAMING_SNAKE_CASE = complex_input_matrix __SCREAMING_SNAKE_CASE = complex_vector # Our implementation. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = power_iteration(a__ , a__ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = np.linalg.eigh(a__ ) # Last eigenvalue is the maximum one. __SCREAMING_SNAKE_CASE = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __SCREAMING_SNAKE_CASE = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(a__ ) - np.abs(a__ ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
148
1
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : Any ) -> Dict: '''simple docstring''' _A = len(SCREAMING_SNAKE_CASE_ ) // 2 # choose the middle 3 elements _A = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
715
"""simple docstring""" import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() a = 2 class lowercase_ : '''simple docstring''' def __init__( self : List[Any] , *, # begin keyword-only arguments _UpperCAmelCase : Optional[Any]="<s>" , _UpperCAmelCase : Optional[int]="<pad>" , _UpperCAmelCase : Dict="</s>" , _UpperCAmelCase : List[Any]="<unk>" , _UpperCAmelCase : List[str]=None , ): _A , _A , _A , _A = bos, unk, pad, eos _A = [] _A = [] _A = {} _A = self.add_symbol(_UpperCAmelCase ) _A = self.add_symbol(_UpperCAmelCase ) _A = self.add_symbol(_UpperCAmelCase ) _A = self.add_symbol(_UpperCAmelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(_UpperCAmelCase ) _A = len(self.symbols ) def __eq__( self : int , _UpperCAmelCase : Optional[Any] ): return self.indices == other.indices def __getitem__( self : List[str] , _UpperCAmelCase : str ): if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : int ): return len(self.symbols ) def __contains__( self : Union[str, Any] , _UpperCAmelCase : str ): return sym in self.indices @classmethod def lowerCAmelCase_ ( cls : str , _UpperCAmelCase : Tuple ): _A = cls() d.add_from_file(_UpperCAmelCase ) return d def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any=1 , _UpperCAmelCase : Tuple=False ): if word in self.indices and not overwrite: _A = self.indices[word] _A = self.count[idx] + n return idx else: _A = len(self.symbols ) _A = idx self.symbols.append(_UpperCAmelCase ) self.count.append(_UpperCAmelCase ) return idx def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Tuple ): return 0 def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Optional[int] ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): try: with open(_UpperCAmelCase , 'r' , encoding='utf-8' ) as fd: self.add_from_file(_UpperCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(_UpperCAmelCase ) ) return _A = f.readlines() _A = self._load_meta(_UpperCAmelCase ) for line in lines[indices_start_line:]: try: _A , _A = line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": _A = True _A , _A = line.rsplit(' ' , 1 ) else: _A = False _A = int(_UpperCAmelCase ) _A = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(_UpperCAmelCase ) ) self.add_symbol(_UpperCAmelCase , n=_UpperCAmelCase , overwrite=_UpperCAmelCase ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def _snake_case ( _snake_case : int ) -> Optional[Any]: '''simple docstring''' _A = dict((re.sub(R'@@$' , '' , _snake_case ), v) if k.endswith('@@' ) else (re.sub(R'$' , '</w>' , _snake_case ), v) for k, v in d.items() ) _A = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F'''{k}</w>'''] _A = d[k] # restore return da def _snake_case ( _snake_case : List[Any] , _snake_case : Tuple ) -> List[Any]: '''simple docstring''' if not os.path.exists(_snake_case ): raise ValueError(F'''path {biogpt_checkpoint_path} does not exist!''' ) os.makedirs(_snake_case , exist_ok=_snake_case ) print(F'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models _A = os.path.join(_snake_case , 'checkpoint.pt' ) if not os.path.isfile(_snake_case ): raise ValueError(F'''path to the file {checkpoint_file} does not exist!''' ) _A = torch.load(_snake_case , map_location='cpu' ) _A = chkpt['cfg']['model'] # dicts _A = os.path.join(_snake_case , 'dict.txt' ) if not os.path.isfile(_snake_case ): raise ValueError(F'''path to the file {dict_file} does not exist!''' ) _A = Dictionary.load(_snake_case ) _A = rewrite_dict_keys(src_dict.indices ) _A = len(_snake_case ) _A = os.path.join(_snake_case , VOCAB_FILES_NAMES['vocab_file'] ) print(F'''Generating {src_vocab_file} of {src_vocab_size} records''' ) with open(_snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_snake_case , ensure_ascii=_snake_case , indent=_snake_case ) ) # merges_file (bpecodes) _A = os.path.join(_snake_case , 'bpecodes' ) if not os.path.isfile(_snake_case ): raise ValueError(F'''path to the file {bpecodes_file} does not exist!''' ) _A = os.path.join(_snake_case , VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(_snake_case , _snake_case ) # model config _A = os.path.join(_snake_case , 'config.json' ) _A = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1E-12, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F'''Generating {biogpt_model_config_file}''' ) with open(_snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_snake_case , ensure_ascii=_snake_case , indent=_snake_case ) ) # tokenizer config _A = os.path.join(_snake_case , _snake_case ) _A = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 10_24, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F'''Generating {biogpt_tokenizer_config_file}''' ) with open(_snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_snake_case , ensure_ascii=_snake_case , indent=_snake_case ) ) # model _A = chkpt['model'] # remove unneeded keys _A = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(_snake_case , _snake_case ) _A = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): _A = model_state_dict.pop(_snake_case ) else: _A = model_state_dict.pop(_snake_case ) _A = BioGptConfig.from_pretrained(_snake_case ) _A = BioGptForCausalLM(_snake_case ) # check that it loads ok model_new.load_state_dict(_snake_case ) # save _A = os.path.join(_snake_case , _snake_case ) print(F'''Generating {pytorch_weights_dump_path}''' ) torch.save(_snake_case , _snake_case ) print('Conversion is done!' ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) a = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
505
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """facebook/nllb-moe-54B""": """https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json""", } class UpperCAmelCase_ ( _A ): """simple docstring""" snake_case = """nllb-moe""" snake_case = ["""past_key_values"""] snake_case = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , UpperCAmelCase_=12_81_12 , UpperCAmelCase_=10_24 , UpperCAmelCase_=12 , UpperCAmelCase_=40_96 , UpperCAmelCase_=16 , UpperCAmelCase_=12 , UpperCAmelCase_=40_96 , UpperCAmelCase_=16 , UpperCAmelCase_=0.05 , UpperCAmelCase_=0.05 , UpperCAmelCase_=True , UpperCAmelCase_=True , UpperCAmelCase_="relu" , UpperCAmelCase_=10_24 , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.02 , UpperCAmelCase_=2 , UpperCAmelCase_=True , UpperCAmelCase_=False , UpperCAmelCase_="float32" , UpperCAmelCase_=False , UpperCAmelCase_=1_28 , UpperCAmelCase_=64 , UpperCAmelCase_=4 , UpperCAmelCase_=4 , UpperCAmelCase_=0.001 , UpperCAmelCase_=0.001 , UpperCAmelCase_="all" , UpperCAmelCase_=False , UpperCAmelCase_=False , UpperCAmelCase_=1.0 , UpperCAmelCase_=0.2 , UpperCAmelCase_=1 , UpperCAmelCase_=0 , UpperCAmelCase_=2 , UpperCAmelCase_=False , **UpperCAmelCase_ , ): snake_case_ = vocab_size snake_case_ = max_position_embeddings snake_case_ = d_model snake_case_ = encoder_ffn_dim snake_case_ = encoder_layers snake_case_ = encoder_attention_heads snake_case_ = decoder_ffn_dim snake_case_ = decoder_layers snake_case_ = decoder_attention_heads snake_case_ = dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = activation_function snake_case_ = init_std snake_case_ = encoder_layerdrop snake_case_ = decoder_layerdrop snake_case_ = use_cache snake_case_ = encoder_layers snake_case_ = scale_embedding # scale factor will be sqrt(d_model) if True snake_case_ = router_z_loss_coef snake_case_ = router_aux_loss_coef snake_case_ = decoder_sparse_step snake_case_ = encoder_sparse_step snake_case_ = num_experts snake_case_ = expert_capacity snake_case_ = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) snake_case_ = router_dtype snake_case_ = router_ignore_padding_tokens snake_case_ = batch_prioritized_routing snake_case_ = second_expert_policy snake_case_ = normalize_router_prob_before_dropping snake_case_ = moe_eval_capacity_token_fraction snake_case_ = moe_token_dropout snake_case_ = output_router_logits super().__init__( pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , )
508
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class _UpperCAmelCase ( _A ): """simple docstring""" A = '''EncodecFeatureExtractor''' A = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): '''simple docstring''' super().__init__(_lowerCAmelCase , _lowerCAmelCase ) lowerCAmelCase__ :Optional[int] = self.feature_extractor lowerCAmelCase__ :Tuple = False def snake_case_ ( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True ): '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=_lowerCAmelCase , language=_lowerCAmelCase , no_timestamps=_lowerCAmelCase ) def __call__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowerCAmelCase , **_lowerCAmelCase ) lowerCAmelCase__ :Optional[Any] = kwargs.pop("audio" , _lowerCAmelCase ) lowerCAmelCase__ :Optional[int] = kwargs.pop("sampling_rate" , _lowerCAmelCase ) lowerCAmelCase__ :Dict = kwargs.pop("text" , _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: lowerCAmelCase__ :Optional[int] = args[0] lowerCAmelCase__ :Tuple = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if text is not None: lowerCAmelCase__ :Any = self.tokenizer(_lowerCAmelCase , **_lowerCAmelCase ) if audio is not None: lowerCAmelCase__ :Tuple = self.feature_extractor(_lowerCAmelCase , *_lowerCAmelCase , sampling_rate=_lowerCAmelCase , **_lowerCAmelCase ) if audio is None: return inputs elif text is None: return audio_inputs else: lowerCAmelCase__ :List[str] = audio_inputs["input_values"] if "padding_mask" in audio_inputs: lowerCAmelCase__ :int = audio_inputs["padding_mask"] return inputs def snake_case_ ( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = kwargs.pop("audio" , _lowerCAmelCase ) lowerCAmelCase__ :Optional[int] = kwargs.pop("padding_mask" , _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: lowerCAmelCase__ :int = args[0] lowerCAmelCase__ :List[str] = args[1:] if audio_values is not None: return self._decode_audio(_lowerCAmelCase , padding_mask=_lowerCAmelCase ) else: return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def snake_case_ ( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase = None ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = to_numpy(_lowerCAmelCase ) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ :Optional[Any] = audio_values.shape if padding_mask is None: return list(_lowerCAmelCase ) lowerCAmelCase__ :List[str] = to_numpy(_lowerCAmelCase ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) lowerCAmelCase__ :str = seq_len - padding_mask.shape[-1] lowerCAmelCase__ :Union[str, Any] = 1 - self.feature_extractor.padding_value lowerCAmelCase__ :Optional[Any] = np.pad(_lowerCAmelCase , ((0, 0), (0, difference)) , "constant" , constant_values=_lowerCAmelCase ) lowerCAmelCase__ :Union[str, Any] = audio_values.tolist() for i in range(_lowerCAmelCase ): lowerCAmelCase__ :str = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] lowerCAmelCase__ :List[Any] = sliced_audio.reshape(_lowerCAmelCase , -1 ) return audio_values
145
0
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor lowerCamelCase__ = logging.get_logger(__name__) class A__ ( __magic_name__ ): def __init__( self : Union[str, Any] , *a : List[str] , **a : Dict ): '''simple docstring''' warnings.warn( 'The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use VideoMAEImageProcessor instead.' , a , ) super().__init__(*a , **a )
69
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( __magic_name__ , unittest.TestCase ): lowercase = ConsistencyModelPipeline lowercase = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowercase = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt lowercase = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) @property def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Dict = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test' , subfolder='test_unet' , ) return unet @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test' , subfolder='test_unet_class_cond' , ) return unet def _lowerCamelCase ( self : Optional[Any] , a : Union[str, Any]=False ): '''simple docstring''' if class_cond: lowerCAmelCase__ : Tuple = self.dummy_cond_unet else: lowerCAmelCase__ : Dict = self.dummy_uncond_unet # Default to CM multistep sampler lowerCAmelCase__ : Optional[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) lowerCAmelCase__ : List[Any] = { 'unet': unet, 'scheduler': scheduler, } return components def _lowerCamelCase ( self : int , a : Optional[int] , a : Any=0 ): '''simple docstring''' if str(a ).startswith('mps' ): lowerCAmelCase__ : List[str] = torch.manual_seed(a ) else: lowerCAmelCase__ : str = torch.Generator(device=a ).manual_seed(a ) lowerCAmelCase__ : str = { 'batch_size': 1, 'num_inference_steps': None, 'timesteps': [22, 0], 'generator': generator, 'output_type': 'np', } return inputs def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Any = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : Optional[Any] = self.get_dummy_components() lowerCAmelCase__ : List[Any] = ConsistencyModelPipeline(**a ) lowerCAmelCase__ : Tuple = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : str = self.get_dummy_inputs(a ) lowerCAmelCase__ : str = pipe(**a ).images assert image.shape == (1, 32, 32, 3) lowerCAmelCase__ : str = image[0, -3:, -3:, -1] lowerCAmelCase__ : Tuple = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : int = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : Tuple = self.get_dummy_components(class_cond=a ) lowerCAmelCase__ : Union[str, Any] = ConsistencyModelPipeline(**a ) lowerCAmelCase__ : Tuple = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(a ) lowerCAmelCase__ : int = 0 lowerCAmelCase__ : Union[str, Any] = pipe(**a ).images assert image.shape == (1, 32, 32, 3) lowerCAmelCase__ : Tuple = image[0, -3:, -3:, -1] lowerCAmelCase__ : str = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : Union[str, Any] = self.get_dummy_components() lowerCAmelCase__ : Tuple = ConsistencyModelPipeline(**a ) lowerCAmelCase__ : Dict = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Union[str, Any] = self.get_dummy_inputs(a ) lowerCAmelCase__ : Optional[Any] = 1 lowerCAmelCase__ : Dict = None lowerCAmelCase__ : List[Any] = pipe(**a ).images assert image.shape == (1, 32, 32, 3) lowerCAmelCase__ : Tuple = image[0, -3:, -3:, -1] lowerCAmelCase__ : Optional[Any] = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : Optional[int] = self.get_dummy_components(class_cond=a ) lowerCAmelCase__ : List[Any] = ConsistencyModelPipeline(**a ) lowerCAmelCase__ : Optional[Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Tuple = self.get_dummy_inputs(a ) lowerCAmelCase__ : Dict = 1 lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : Optional[Any] = 0 lowerCAmelCase__ : str = pipe(**a ).images assert image.shape == (1, 32, 32, 3) lowerCAmelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Dict = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Optional[Any] , a : Tuple=0 , a : Optional[Any]=False , a : Optional[Any]="cpu" , a : Union[str, Any]=torch.floataa , a : Dict=(1, 3, 64, 64) ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = torch.manual_seed(a ) lowerCAmelCase__ : List[Any] = { 'num_inference_steps': None, 'timesteps': [22, 0], 'class_labels': 0, 'generator': generator, 'output_type': 'np', } if get_fixed_latents: lowerCAmelCase__ : Optional[int] = self.get_fixed_latents(seed=a , device=a , dtype=a , shape=a ) lowerCAmelCase__ : Tuple = latents return inputs def _lowerCamelCase ( self : str , a : Tuple=0 , a : Tuple="cpu" , a : Tuple=torch.floataa , a : str=(1, 3, 64, 64) ): '''simple docstring''' if type(a ) == str: lowerCAmelCase__ : str = torch.device(a ) lowerCAmelCase__ : List[str] = torch.Generator(device=a ).manual_seed(a ) lowerCAmelCase__ : Any = randn_tensor(a , generator=a , device=a , dtype=a ) return latents def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : int = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) lowerCAmelCase__ : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) lowerCAmelCase__ : List[Any] = ConsistencyModelPipeline(unet=a , scheduler=a ) pipe.to(torch_device=a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Optional[Any] = self.get_inputs() lowerCAmelCase__ : Dict = pipe(**a ).images assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : List[str] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Union[str, Any] = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) lowerCAmelCase__ : Any = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) lowerCAmelCase__ : Optional[int] = ConsistencyModelPipeline(unet=a , scheduler=a ) pipe.to(torch_device=a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : List[str] = self.get_inputs() lowerCAmelCase__ : Union[str, Any] = 1 lowerCAmelCase__ : List[str] = None lowerCAmelCase__ : List[str] = pipe(**a ).images assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : Optional[int] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Union[str, Any] = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 @require_torch_a def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : int = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) lowerCAmelCase__ : List[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) lowerCAmelCase__ : Tuple = ConsistencyModelPipeline(unet=a , scheduler=a ) pipe.to(torch_device=a , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : str = self.get_inputs(get_fixed_latents=a , device=a ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=a , enable_math=a , enable_mem_efficient=a ): lowerCAmelCase__ : Dict = pipe(**a ).images assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : str = image[0, -3:, -3:, -1] lowerCAmelCase__ : str = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @require_torch_a def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) lowerCAmelCase__ : List[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) lowerCAmelCase__ : Dict = ConsistencyModelPipeline(unet=a , scheduler=a ) pipe.to(torch_device=a , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Any = self.get_inputs(get_fixed_latents=a , device=a ) lowerCAmelCase__ : List[str] = 1 lowerCAmelCase__ : str = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=a , enable_math=a , enable_mem_efficient=a ): lowerCAmelCase__ : List[str] = pipe(**a ).images assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : Dict = image[0, -3:, -3:, -1] lowerCAmelCase__ : Optional[int] = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
69
1
import os import string import sys lowercase : Optional[int] = 1 << 8 lowercase : Tuple = { '''tab''': ord('''\t'''), '''newline''': ord('''\r'''), '''esc''': 27, '''up''': 65 + ARROW_KEY_FLAG, '''down''': 66 + ARROW_KEY_FLAG, '''right''': 67 + ARROW_KEY_FLAG, '''left''': 68 + ARROW_KEY_FLAG, '''mod_int''': 91, '''undefined''': sys.maxsize, '''interrupt''': 3, '''insert''': 50, '''delete''': 51, '''pg_up''': 53, '''pg_down''': 54, } lowercase : Any = KEYMAP['''up'''] lowercase : Dict = KEYMAP['''left'''] if sys.platform == "win32": lowercase : int = [] lowercase : List[Any] = { B'''\xe0H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, B'''\x00H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, B'''\xe0P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, B'''\x00P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, B'''\xe0M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, B'''\x00M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, B'''\xe0K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, B'''\x00K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, } for i in range(10): lowercase : List[str] = ord(str(i)) def lowerCAmelCase__ ( ): if os.name == "nt": import msvcrt snake_case_ : List[Any] = "mbcs" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(_a ) == 0: # Read the keystroke snake_case_ : List[Any] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): snake_case_ : List[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: snake_case_ : str = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"] ) ) WIN_CH_BUFFER.append(_a ) if ord(_a ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_26 ) ) snake_case_ : int = chr(KEYMAP["esc"] ) except KeyError: snake_case_ : Any = cha[1] else: snake_case_ : Any = ch.decode(_a ) else: snake_case_ : Dict = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty snake_case_ : Optional[Any] = sys.stdin.fileno() snake_case_ : int = termios.tcgetattr(_a ) try: tty.setraw(_a ) snake_case_ : Union[str, Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(_a , termios.TCSADRAIN , _a ) return ch def lowerCAmelCase__ ( ): snake_case_ : Optional[Any] = get_raw_chars() if ord(_a ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(_a ) == KEYMAP["esc"]: snake_case_ : List[str] = get_raw_chars() if ord(_a ) == KEYMAP["mod_int"]: snake_case_ : Tuple = get_raw_chars() if ord(_a ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_a ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(_a ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
568
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
568
1
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __snake_case ( lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase_ = RoCBertTokenizer lowerCAmelCase_ = None lowerCAmelCase_ = False lowerCAmelCase_ = True lowerCAmelCase_ = filter_non_english def __a ( self : List[str] ): """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""] SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = {} for i, value in enumerate(_lowercase ): SCREAMING_SNAKE_CASE__ = i SCREAMING_SNAKE_CASE__ = i SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""] ) SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.word_shape_file , """w""" , encoding="""utf-8""" ) as word_shape_writer: json.dump(_lowercase , _lowercase , ensure_ascii=_lowercase ) with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""" ) as word_pronunciation_writer: json.dump(_lowercase , _lowercase , ensure_ascii=_lowercase ) def __a ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize("""你好[SEP]你是谁""" ) self.assertListEqual(_lowercase , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(_lowercase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(_lowercase ) , [5, 6, 2, 5, 7, 8] ) def __a ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = RoCBertBasicTokenizer(do_lower_case=_lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = RoCBertBasicTokenizer(do_lower_case=_lowercase , strip_accents=_lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = RoCBertBasicTokenizer(do_lower_case=_lowercase , strip_accents=_lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __a ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = RoCBertBasicTokenizer(do_lower_case=_lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __a ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = RoCBertBasicTokenizer(do_lower_case=_lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __a ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = RoCBertBasicTokenizer(do_lower_case=_lowercase , strip_accents=_lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __a ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = RoCBertBasicTokenizer(do_lower_case=_lowercase , strip_accents=_lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = RoCBertBasicTokenizer(do_lower_case=_lowercase , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] SCREAMING_SNAKE_CASE__ = {} for i, token in enumerate(_lowercase ): SCREAMING_SNAKE_CASE__ = i SCREAMING_SNAKE_CASE__ = RoCBertWordpieceTokenizer(vocab=_lowercase , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) def __a ( self : List[Any] ): """simple docstring""" self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def __a ( self : Any ): """simple docstring""" self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def __a ( self : Tuple ): """simple docstring""" self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def __a ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_lowercase ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) if self.test_rust_tokenizer: SCREAMING_SNAKE_CASE__ = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(_lowercase ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) def __a ( self : Union[str, Any] ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) SCREAMING_SNAKE_CASE__ = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" SCREAMING_SNAKE_CASE__ = tokenizer_r.encode_plus( _lowercase , return_attention_mask=_lowercase , return_token_type_ids=_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase , ) SCREAMING_SNAKE_CASE__ = tokenizer_r.do_lower_case if hasattr(_lowercase , """do_lower_case""" ) else False SCREAMING_SNAKE_CASE__ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] ) def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""的""", """人""", """有"""] SCREAMING_SNAKE_CASE__ = """""".join(_lowercase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase ) SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) SCREAMING_SNAKE_CASE__ = tokenizer_p.encode(_lowercase , add_special_tokens=_lowercase ) SCREAMING_SNAKE_CASE__ = tokenizer_r.encode(_lowercase , add_special_tokens=_lowercase ) SCREAMING_SNAKE_CASE__ = tokenizer_r.convert_ids_to_tokens(_lowercase ) SCREAMING_SNAKE_CASE__ = tokenizer_p.convert_ids_to_tokens(_lowercase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_lowercase , _lowercase ) self.assertListEqual(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) SCREAMING_SNAKE_CASE__ = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase ) SCREAMING_SNAKE_CASE__ = tokenizer_r.encode(_lowercase , add_special_tokens=_lowercase ) SCREAMING_SNAKE_CASE__ = tokenizer_p.encode(_lowercase , add_special_tokens=_lowercase ) SCREAMING_SNAKE_CASE__ = tokenizer_r.convert_ids_to_tokens(_lowercase ) SCREAMING_SNAKE_CASE__ = tokenizer_p.convert_ids_to_tokens(_lowercase ) # it is expected that only the first Chinese character is not preceded by "##". SCREAMING_SNAKE_CASE__ = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(_lowercase ) ] self.assertListEqual(_lowercase , _lowercase ) self.assertListEqual(_lowercase , _lowercase ) @slow def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) SCREAMING_SNAKE_CASE__ = tokenizer.encode("""你好""" , add_special_tokens=_lowercase ) SCREAMING_SNAKE_CASE__ = tokenizer.encode("""你是谁""" , add_special_tokens=_lowercase ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(_lowercase ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(_lowercase , _lowercase ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def __a ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.get_tokenizers(do_lower_case=_lowercase ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): SCREAMING_SNAKE_CASE__ = """你好,你是谁""" SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(_lowercase ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_tokens_to_ids(_lowercase ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_tokens_to_shape_ids(_lowercase ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_tokens_to_pronunciation_ids(_lowercase ) SCREAMING_SNAKE_CASE__ = tokenizer.prepare_for_model( _lowercase , _lowercase , _lowercase , add_special_tokens=_lowercase ) SCREAMING_SNAKE_CASE__ = tokenizer.encode_plus(_lowercase , add_special_tokens=_lowercase ) self.assertEqual(_lowercase , _lowercase )
379
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : List[Any] = logging.get_logger(__name__) __lowerCamelCase : str = { '''facebook/timesformer''': '''https://huggingface.co/facebook/timesformer/resolve/main/config.json''', } class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = "timesformer" def __init__( self : Any , _lowercase : Tuple=2_24 , _lowercase : Tuple=16 , _lowercase : List[Any]=3 , _lowercase : str=8 , _lowercase : Optional[Any]=7_68 , _lowercase : List[str]=12 , _lowercase : List[str]=12 , _lowercase : Dict=30_72 , _lowercase : List[str]="gelu" , _lowercase : List[str]=0.0 , _lowercase : List[str]=0.0 , _lowercase : Tuple=0.02 , _lowercase : List[Any]=1E-6 , _lowercase : List[str]=True , _lowercase : Dict="divided_space_time" , _lowercase : Union[str, Any]=0 , **_lowercase : Union[str, Any] , ): """simple docstring""" super().__init__(**_lowercase ) SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = num_frames SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = qkv_bias SCREAMING_SNAKE_CASE__ = attention_type SCREAMING_SNAKE_CASE__ = drop_path_rate
379
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCAmelCase_ ( unittest.TestCase): @property def _UpperCAmelCase ( self ) -> List[str]: torch.manual_seed(0 ) lowercase__ : Optional[int] = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def _UpperCAmelCase ( self ) -> str: lowercase__ : List[Any] = self.dummy_uncond_unet lowercase__ : int = KarrasVeScheduler() lowercase__ : int = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase__ : int = torch.manual_seed(0 ) lowercase__ : Any = pipe(num_inference_steps=2 , generator=a , output_type='numpy' ).images lowercase__ : Dict = torch.manual_seed(0 ) lowercase__ : Dict = pipe(num_inference_steps=2 , generator=a , output_type='numpy' , return_dict=a )[0] lowercase__ : Dict = image[0, -3:, -3:, -1] lowercase__ : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowercase__ : Union[str, Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> str: lowercase__ : Union[str, Any] = 'google/ncsnpp-celebahq-256' lowercase__ : str = UNetaDModel.from_pretrained(a ) lowercase__ : Union[str, Any] = KarrasVeScheduler() lowercase__ : Any = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase__ : str = torch.manual_seed(0 ) lowercase__ : Optional[int] = pipe(num_inference_steps=2_0 , generator=a , output_type='numpy' ).images lowercase__ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) lowercase__ : Any = np.array([0.578, 0.5_811, 0.5_924, 0.5_809, 0.587, 0.5_886, 0.5_861, 0.5_802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
599
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase : Optional[Any] = { "configuration_blip_2": [ "BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Blip2Config", "Blip2QFormerConfig", "Blip2VisionConfig", ], "processing_blip_2": ["Blip2Processor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : List[Any] = [ "BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Blip2Model", "Blip2QFormerModel", "Blip2PreTrainedModel", "Blip2ForConditionalGeneration", "Blip2VisionModel", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys _UpperCamelCase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
599
1
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def lowerCAmelCase ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" if isinstance(_lowerCAmelCase , collections.abc.Iterable ): return x return (x, x) @require_flax class _UpperCamelCase : def UpperCAmelCase_ ( self :int , lowerCamelCase :List[Any] , lowerCamelCase :Any ) -> List[str]: pass def UpperCAmelCase_ ( self :str ) -> Tuple: pass def UpperCAmelCase_ ( self :Optional[int] ) -> Optional[int]: pass def UpperCAmelCase_ ( self :Optional[Any] , lowerCamelCase :np.ndarray , lowerCamelCase :np.ndarray , lowerCamelCase :float ) -> Optional[int]: UpperCAmelCase__ = np.abs((a - b) ).max() self.assertLessEqual(lowerCamelCase , lowerCamelCase , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def UpperCAmelCase_ ( self :List[str] , lowerCamelCase :Union[str, Any] , lowerCamelCase :Optional[Any] , lowerCamelCase :int , lowerCamelCase :List[Any] , lowerCamelCase :str=None , **lowerCamelCase :str ) -> Tuple: UpperCAmelCase__ = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = FlaxVisionTextDualEncoderModel(lowerCamelCase ) UpperCAmelCase__ = model(input_ids=lowerCamelCase , pixel_values=lowerCamelCase , attention_mask=lowerCamelCase ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim) ) def UpperCAmelCase_ ( self :int , lowerCamelCase :int , lowerCamelCase :Tuple , lowerCamelCase :Optional[int] , lowerCamelCase :Any , lowerCamelCase :Optional[int]=None , **lowerCamelCase :Optional[Any] ) -> Optional[int]: UpperCAmelCase__ , UpperCAmelCase__ = self.get_vision_text_model(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = {"vision_model": vision_model, "text_model": text_model} UpperCAmelCase__ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase ) UpperCAmelCase__ = model(input_ids=lowerCamelCase , pixel_values=lowerCamelCase , attention_mask=lowerCamelCase ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def UpperCAmelCase_ ( self :Union[str, Any] , lowerCamelCase :Optional[int] , lowerCamelCase :Dict , lowerCamelCase :List[str] , lowerCamelCase :Dict , lowerCamelCase :Optional[Any]=None , **lowerCamelCase :int ) -> Tuple: UpperCAmelCase__ , UpperCAmelCase__ = self.get_vision_text_model(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = {"vision_model": vision_model, "text_model": text_model} UpperCAmelCase__ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase ) UpperCAmelCase__ = model(input_ids=lowerCamelCase , pixel_values=lowerCamelCase , attention_mask=lowerCamelCase ) UpperCAmelCase__ = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase ) UpperCAmelCase__ = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase ) UpperCAmelCase__ = model(input_ids=lowerCamelCase , pixel_values=lowerCamelCase , attention_mask=lowerCamelCase ) UpperCAmelCase__ = after_output[0] UpperCAmelCase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase , 1e-3 ) def UpperCAmelCase_ ( self :List[str] , lowerCamelCase :List[Any] , lowerCamelCase :List[Any] , lowerCamelCase :Any , lowerCamelCase :Union[str, Any] , lowerCamelCase :List[Any]=None , **lowerCamelCase :Tuple ) -> Tuple: UpperCAmelCase__ , UpperCAmelCase__ = self.get_vision_text_model(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = {"vision_model": vision_model, "text_model": text_model} UpperCAmelCase__ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase ) UpperCAmelCase__ = model( input_ids=lowerCamelCase , pixel_values=lowerCamelCase , attention_mask=lowerCamelCase , output_attentions=lowerCamelCase ) UpperCAmelCase__ = output.vision_model_output.attentions self.assertEqual(len(lowerCamelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase__ = to_atuple(vision_model.config.image_size ) UpperCAmelCase__ = to_atuple(vision_model.config.patch_size ) UpperCAmelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) UpperCAmelCase__ = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) UpperCAmelCase__ = output.text_model_output.attentions self.assertEqual(len(lowerCamelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def UpperCAmelCase_ ( self :int , lowerCamelCase :Union[str, Any] , lowerCamelCase :str , lowerCamelCase :List[str] ) -> Dict: pt_model.to(lowerCamelCase ) pt_model.eval() # prepare inputs UpperCAmelCase__ = inputs_dict UpperCAmelCase__ = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): UpperCAmelCase__ = pt_model(**lowerCamelCase ).to_tuple() UpperCAmelCase__ = fx_model(**lowerCamelCase ).to_tuple() self.assertEqual(len(lowerCamelCase ) , len(lowerCamelCase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowerCamelCase , pt_output.numpy() , 4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCamelCase ) UpperCAmelCase__ = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase , from_pt=lowerCamelCase ) UpperCAmelCase__ = fx_model_loaded(**lowerCamelCase ).to_tuple() self.assertEqual(len(lowerCamelCase ) , len(lowerCamelCase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowerCamelCase , pt_output.numpy() , 4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCamelCase ) UpperCAmelCase__ = VisionTextDualEncoderModel.from_pretrained(lowerCamelCase , from_flax=lowerCamelCase ) pt_model_loaded.to(lowerCamelCase ) pt_model_loaded.eval() with torch.no_grad(): UpperCAmelCase__ = pt_model_loaded(**lowerCamelCase ).to_tuple() self.assertEqual(len(lowerCamelCase ) , len(lowerCamelCase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(lowerCamelCase , pt_output_loaded.numpy() , 4e-2 ) def UpperCAmelCase_ ( self :int , lowerCamelCase :List[Any] , lowerCamelCase :List[str] , lowerCamelCase :List[str] ) -> Optional[int]: UpperCAmelCase__ = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = VisionTextDualEncoderModel(lowerCamelCase ) UpperCAmelCase__ = FlaxVisionTextDualEncoderModel(lowerCamelCase ) UpperCAmelCase__ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCamelCase ) UpperCAmelCase__ = fx_state self.check_pt_flax_equivalence(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def UpperCAmelCase_ ( self :Tuple , lowerCamelCase :int , lowerCamelCase :Optional[Any] , lowerCamelCase :List[Any] ) -> str: UpperCAmelCase__ = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = VisionTextDualEncoderModel(lowerCamelCase ) UpperCAmelCase__ = FlaxVisionTextDualEncoderModel(lowerCamelCase ) UpperCAmelCase__ = load_flax_weights_in_pytorch_model(lowerCamelCase , fx_model.params ) self.check_pt_flax_equivalence(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def UpperCAmelCase_ ( self :Tuple ) -> List[str]: UpperCAmelCase__ = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowerCamelCase ) def UpperCAmelCase_ ( self :Optional[int] ) -> Optional[Any]: UpperCAmelCase__ = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowerCamelCase ) def UpperCAmelCase_ ( self :List[str] ) -> Dict: UpperCAmelCase__ = self.prepare_config_and_inputs() self.check_save_load(**lowerCamelCase ) def UpperCAmelCase_ ( self :Optional[Any] ) -> str: UpperCAmelCase__ = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowerCamelCase ) @is_pt_flax_cross_test def UpperCAmelCase_ ( self :Optional[int] ) -> str: UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ = config_inputs_dict.pop("vision_config" ) UpperCAmelCase__ = config_inputs_dict.pop("text_config" ) UpperCAmelCase__ = config_inputs_dict self.check_equivalence_pt_to_flax(lowerCamelCase , lowerCamelCase , lowerCamelCase ) self.check_equivalence_flax_to_pt(lowerCamelCase , lowerCamelCase , lowerCamelCase ) @slow def UpperCAmelCase_ ( self :Optional[Any] ) -> List[str]: UpperCAmelCase__ , UpperCAmelCase__ = self.get_pretrained_model_and_inputs() UpperCAmelCase__ = model_a(**lowerCamelCase ) UpperCAmelCase__ = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowerCamelCase ) UpperCAmelCase__ = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase ) UpperCAmelCase__ = model_a(**lowerCamelCase ) UpperCAmelCase__ = after_outputs[0] UpperCAmelCase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase , 1e-5 ) @require_flax class _UpperCamelCase ( lowerCAmelCase , unittest.TestCase ): def UpperCAmelCase_ ( self :Optional[int] ) -> Tuple: UpperCAmelCase__ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-bert" , vision_from_pt=lowerCamelCase , text_from_pt=lowerCamelCase , ) UpperCAmelCase__ = 13 UpperCAmelCase__ = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) UpperCAmelCase__ = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) UpperCAmelCase__ = random_attention_mask([batch_size, 4] ) UpperCAmelCase__ = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def UpperCAmelCase_ ( self :List[Any] , lowerCamelCase :Optional[int] , lowerCamelCase :Optional[Any] ) -> Optional[Any]: UpperCAmelCase__ = FlaxViTModel(lowerCamelCase ) UpperCAmelCase__ = FlaxBertModel(lowerCamelCase ) return vision_model, text_model def UpperCAmelCase_ ( self :List[Any] ) -> Tuple: UpperCAmelCase__ = FlaxViTModelTester(self ) UpperCAmelCase__ = FlaxBertModelTester(self ) UpperCAmelCase__ = vit_model_tester.prepare_config_and_inputs() UpperCAmelCase__ = bert_model_tester.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ = vision_config_and_inputs UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class _UpperCamelCase ( lowerCAmelCase , unittest.TestCase ): def UpperCAmelCase_ ( self :int ) -> int: UpperCAmelCase__ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-clip" , "hf-internal-testing/tiny-bert" , vision_from_pt=lowerCamelCase , text_from_pt=lowerCamelCase , ) UpperCAmelCase__ = 13 UpperCAmelCase__ = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) UpperCAmelCase__ = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) UpperCAmelCase__ = random_attention_mask([batch_size, 4] ) UpperCAmelCase__ = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def UpperCAmelCase_ ( self :Optional[int] , lowerCamelCase :List[Any] , lowerCamelCase :List[str] ) -> Optional[int]: UpperCAmelCase__ = FlaxCLIPVisionModel(lowerCamelCase ) UpperCAmelCase__ = FlaxBertModel(lowerCamelCase ) return vision_model, text_model def UpperCAmelCase_ ( self :List[str] ) -> List[str]: UpperCAmelCase__ = FlaxCLIPVisionModelTester(self ) UpperCAmelCase__ = FlaxBertModelTester(self ) UpperCAmelCase__ = clip_model_tester.prepare_config_and_inputs() UpperCAmelCase__ = bert_model_tester.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ = vision_config_and_inputs UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class _UpperCamelCase ( unittest.TestCase ): @slow def UpperCAmelCase_ ( self :List[str] ) -> List[str]: UpperCAmelCase__ = FlaxVisionTextDualEncoderModel.from_pretrained("clip-italian/clip-italian" , logit_scale_init_value=1.0 ) UpperCAmelCase__ = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" ) UpperCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCAmelCase__ = processor( text=["una foto di un gatto", "una foto di un cane"] , images=lowerCamelCase , padding=lowerCamelCase , return_tensors="np" ) UpperCAmelCase__ = model(**lowerCamelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) UpperCAmelCase__ = np.array([[1.2_28_47_27, 0.3_10_41_22]] ) self.assertTrue(np.allclose(outputs.logits_per_image , lowerCamelCase , atol=1e-3 ) )
719
from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _lowerCAmelCase : Any = logging.get_logger(__name__) class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = ["""input_values""", """padding_mask"""] def __init__( self :Dict , lowerCamelCase :int = 1 , lowerCamelCase :int = 2_4000 , lowerCamelCase :float = 0.0 , lowerCamelCase :float = None , lowerCamelCase :float = None , **lowerCamelCase :Optional[Any] , ) -> str: super().__init__(feature_size=lowerCamelCase , sampling_rate=lowerCamelCase , padding_value=lowerCamelCase , **lowerCamelCase ) UpperCAmelCase__ = chunk_length_s UpperCAmelCase__ = overlap @property def UpperCAmelCase_ ( self :Optional[Any] ) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def UpperCAmelCase_ ( self :str ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self :List[Any] , lowerCamelCase :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCamelCase :Optional[Union[bool, str, PaddingStrategy]] = None , lowerCamelCase :Optional[bool] = False , lowerCamelCase :Optional[int] = None , lowerCamelCase :Optional[Union[str, TensorType]] = None , lowerCamelCase :Optional[int] = None , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) if padding and truncation: raise ValueError("Both padding and truncation were set. Make sure you only set one." ) elif padding is None: # by default let's pad the inputs UpperCAmelCase__ = True UpperCAmelCase__ = bool( isinstance(lowerCamelCase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase__ = [np.asarray(lowerCamelCase , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(lowerCamelCase , np.ndarray ): UpperCAmelCase__ = np.asarray(lowerCamelCase , dtype=np.floataa ) elif isinstance(lowerCamelCase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): UpperCAmelCase__ = raw_audio.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase__ = [np.asarray(lowerCamelCase ).T] # verify inputs are valid for idx, example in enumerate(lowerCamelCase ): if example.ndim > 2: raise ValueError(f'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f'''Expected stereo audio but example has {example.shape[-1]} channels''' ) UpperCAmelCase__ = None UpperCAmelCase__ = BatchFeature({"input_values": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: UpperCAmelCase__ = min(array.shape[0] for array in raw_audio ) UpperCAmelCase__ = int(np.floor(max_length / self.chunk_stride ) ) UpperCAmelCase__ = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: UpperCAmelCase__ = max(array.shape[0] for array in raw_audio ) UpperCAmelCase__ = int(np.ceil(max_length / self.chunk_stride ) ) UpperCAmelCase__ = (nb_step - 1) * self.chunk_stride + self.chunk_length UpperCAmelCase__ = "max_length" else: UpperCAmelCase__ = input_values # normal padding on batch if padded_inputs is None: UpperCAmelCase__ = self.pad( lowerCamelCase , max_length=lowerCamelCase , truncation=lowerCamelCase , padding=lowerCamelCase , return_attention_mask=lowerCamelCase , ) if padding: UpperCAmelCase__ = padded_inputs.pop("attention_mask" ) UpperCAmelCase__ = [] for example in padded_inputs.pop("input_values" ): if self.feature_size == 1: UpperCAmelCase__ = example[..., None] input_values.append(example.T ) UpperCAmelCase__ = input_values if return_tensors is not None: UpperCAmelCase__ = padded_inputs.convert_to_tensors(lowerCamelCase ) return padded_inputs
364
0
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name class A_ ( UpperCAmelCase ): """simple docstring""" def __init__( self : Union[str, Any] ,__A : Union[str, Any] ,__A : Optional[Any]=768 ) -> Optional[int]: super().__init__(__A ) _lowercase = proj_size _lowercase = CLIPVisionModel(__A ) _lowercase = PaintByExampleMapper(__A ) _lowercase = nn.LayerNorm(config.hidden_size ) _lowercase = nn.Linear(config.hidden_size ,self.proj_size ) # uncondition for scaling _lowercase = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def __UpperCAmelCase ( self : str ,__A : Optional[int] ,__A : Optional[int]=False ) -> Union[str, Any]: _lowercase = self.model(pixel_values=__A ) _lowercase = clip_output.pooler_output _lowercase = self.mapper(latent_states[:, None] ) _lowercase = self.final_layer_norm(__A ) _lowercase = self.proj_out(__A ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class A_ ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] ,__A : Dict ) -> str: super().__init__() _lowercase = (config.num_hidden_layers + 1) // 5 _lowercase = config.hidden_size _lowercase = 1 _lowercase = nn.ModuleList( [ BasicTransformerBlock(__A ,__A ,__A ,activation_fn='gelu' ,attention_bias=__A ) for _ in range(__A ) ] ) def __UpperCAmelCase ( self : Tuple ,__A : Optional[Any] ) -> Dict: for block in self.blocks: _lowercase = block(__A ) return hidden_states
67
from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( snake_case__ :int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE__ ( snake_case__ :int ) -> list[int]: _lowercase = str(snake_case__ ) _lowercase = [n] for i in range(1 , len(snake_case__ ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def SCREAMING_SNAKE_CASE__ ( snake_case__ :int ) -> bool: if len(str(snake_case__ ) ) > 3: if not is_prime(int(str(snake_case__ )[-3:] ) ) or not is_prime(int(str(snake_case__ )[:3] ) ): return False return True def SCREAMING_SNAKE_CASE__ ( snake_case__ :int = 11 ) -> list[int]: _lowercase = [] _lowercase = 13 while len(snake_case__ ) != count: if validate(snake_case__ ): _lowercase = list_truncated_nums(snake_case__ ) if all(is_prime(snake_case__ ) for i in list_nums ): list_truncated_primes.append(snake_case__ ) num += 2 return list_truncated_primes def SCREAMING_SNAKE_CASE__ ( ) -> int: return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F"""{sum(compute_truncated_primes(1_1)) = }""")
67
1
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case = 16 snake_case = 32 def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ = 1_6 ): """simple docstring""" lowerCAmelCase__ : Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) lowerCAmelCase__ : List[Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(lowerCamelCase_ ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ : Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase__ : str = datasets.map( lowerCamelCase_ , batched=lowerCamelCase_ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase__ : List[Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowerCamelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase__ : List[str] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase__ : str = 1_6 elif accelerator.mixed_precision != "no": lowerCAmelCase__ : Optional[int] = 8 else: lowerCAmelCase__ : Optional[int] = None return tokenizer.pad( lowerCamelCase_ , padding="longest" , max_length=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_tensors="pt" , ) # Instantiate dataloaders. lowerCAmelCase__ : Any = DataLoader( tokenized_datasets["train"] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ ) lowerCAmelCase__ : Dict = DataLoader( tokenized_datasets["validation"] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders snake_case = mocked_dataloaders # noqa: F811 def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowerCamelCase_ ) == "1": lowerCAmelCase__ : int = 2 # New Code # lowerCAmelCase__ : Dict = int(args.gradient_accumulation_steps ) # Initialize accelerator lowerCAmelCase__ : str = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowerCamelCase_ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( "Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase__ : Optional[int] = config["lr"] lowerCAmelCase__ : Dict = int(config["num_epochs"] ) lowerCAmelCase__ : Dict = int(config["seed"] ) lowerCAmelCase__ : str = int(config["batch_size"] ) lowerCAmelCase__ : Tuple = evaluate.load("glue" , "mrpc" ) set_seed(lowerCamelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = get_dataloaders(lowerCamelCase_ , lowerCamelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase__ : str = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowerCamelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase__ : Optional[int] = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=lowerCamelCase_ ) # Instantiate scheduler lowerCAmelCase__ : str = get_linear_schedule_with_warmup( optimizer=lowerCamelCase_ , num_warmup_steps=1_0_0 , num_training_steps=(len(lowerCamelCase_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = accelerator.prepare( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Now we train the model for epoch in range(lowerCamelCase_ ): model.train() for step, batch in enumerate(lowerCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowerCamelCase_ ): lowerCAmelCase__ : Dict = model(**lowerCamelCase_ ) lowerCAmelCase__ : Optional[int] = output.loss accelerator.backward(lowerCamelCase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase__ : Tuple = model(**lowerCamelCase_ ) lowerCAmelCase__ : Tuple = outputs.logits.argmax(dim=-1 ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowerCamelCase_ , references=lowerCamelCase_ , ) lowerCAmelCase__ : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , lowerCamelCase_ ) def UpperCAmelCase_ ( ): """simple docstring""" lowerCAmelCase__ : Dict = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowerCamelCase_ , default=lowerCamelCase_ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=lowerCamelCase_ , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) lowerCAmelCase__ : List[Any] = parser.parse_args() lowerCAmelCase__ : Union[str, Any] = {"lr": 2e-5, "num_epochs": 3, "seed": 4_2, "batch_size": 1_6} training_function(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": main()
568
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: snake_case = None snake_case = logging.get_logger(__name__) snake_case = {"""vocab_file""": """sentencepiece.model""", """tokenizer_file""": """tokenizer.json"""} snake_case = { """vocab_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/sentencepiece.model""", }, """tokenizer_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/tokenizer.json""", }, } snake_case = { """google/rembert""": 2_56, } snake_case = """▁""" class lowerCAmelCase ( UpperCamelCase_ ): A_ : Dict = VOCAB_FILES_NAMES A_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : Tuple = RemBertTokenizer def __init__( self : Dict , a__ : int=None , a__ : List[Any]=None , a__ : List[Any]=True , a__ : Dict=True , a__ : int=False , a__ : Tuple="[CLS]" , a__ : Optional[int]="[SEP]" , a__ : Optional[Any]="<unk>" , a__ : List[str]="[SEP]" , a__ : Any="<pad>" , a__ : List[str]="[CLS]" , a__ : int="[MASK]" , **a__ : Dict , ): '''simple docstring''' lowerCAmelCase__ : Tuple = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token super().__init__( a__ , tokenizer_file=a__ , do_lower_case=a__ , remove_space=a__ , keep_accents=a__ , bos_token=a__ , eos_token=a__ , unk_token=a__ , sep_token=a__ , pad_token=a__ , cls_token=a__ , mask_token=a__ , **a__ , ) lowerCAmelCase__ : Dict = do_lower_case lowerCAmelCase__ : List[str] = remove_space lowerCAmelCase__ : Optional[int] = keep_accents lowerCAmelCase__ : Tuple = vocab_file lowerCAmelCase__ : Optional[int] = False if not self.vocab_file else True def _A ( self : List[str] , a__ : List[int] , a__ : Optional[List[int]] = None ): '''simple docstring''' lowerCAmelCase__ : Any = [self.sep_token_id] lowerCAmelCase__ : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _A ( self : List[str] , a__ : List[int] , a__ : Optional[List[int]] = None , a__ : bool = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(a__ )) + [1] + ([0] * len(a__ )) + [1] return [1] + ([0] * len(a__ )) + [1] def _A ( self : Tuple , a__ : List[int] , a__ : Optional[List[int]] = None ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = [self.sep_token_id] lowerCAmelCase__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _A ( self : List[str] , a__ : str , a__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(a__ ): logger.error("Vocabulary path ({}) should be a directory".format(a__ ) ) return lowerCAmelCase__ : List[Any] = os.path.join( a__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ): copyfile(self.vocab_file , a__ ) return (out_vocab_file,)
568
1
'''simple docstring''' _a : List[Any] = [ """Audio""", """Array2D""", """Array3D""", """Array4D""", """Array5D""", """ClassLabel""", """Features""", """Sequence""", """Value""", """Image""", """Translation""", """TranslationVariableLanguages""", ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
689
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def _lowerCAmelCase ( lowercase ) -> Optional[Any]: # vision encoder if "img_encoder.pos_embed" in name: __lowerCAmelCase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: __lowerCAmelCase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: __lowerCAmelCase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: __lowerCAmelCase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: __lowerCAmelCase = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: __lowerCAmelCase = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: __lowerCAmelCase = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: __lowerCAmelCase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: __lowerCAmelCase = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: __lowerCAmelCase = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: __lowerCAmelCase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: __lowerCAmelCase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: __lowerCAmelCase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: __lowerCAmelCase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: __lowerCAmelCase = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: __lowerCAmelCase = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: __lowerCAmelCase = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: __lowerCAmelCase = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: __lowerCAmelCase = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: __lowerCAmelCase = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: __lowerCAmelCase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: __lowerCAmelCase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: __lowerCAmelCase = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: __lowerCAmelCase = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def _lowerCAmelCase ( lowercase , lowercase ) -> Dict: for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowercase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase , __lowerCAmelCase = int(key_split[2] ), int(key_split[4] ) __lowerCAmelCase = config.vision_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase = int(key_split[3] ) __lowerCAmelCase = config.text_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[ dim : dim * 2, : ] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] else: __lowerCAmelCase = rename_key(lowercase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): __lowerCAmelCase = val.squeeze_() else: __lowerCAmelCase = val return orig_state_dict def _lowerCAmelCase ( ) -> str: __lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCAmelCase = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase="groupvit-gcc-yfcc" , lowercase=False ) -> List[Any]: __lowerCAmelCase = GroupViTConfig() __lowerCAmelCase = GroupViTModel(lowercase ).eval() __lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" )["""model"""] __lowerCAmelCase = convert_state_dict(lowercase , lowercase ) __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowercase , strict=lowercase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowercase ) == 0) # verify result __lowerCAmelCase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowercase , padding=lowercase , return_tensors="""pt""" ) with torch.no_grad(): __lowerCAmelCase = model(**lowercase ) if model_name == "groupvit-gcc-yfcc": __lowerCAmelCase = torch.tensor([[13.35_23, 6.36_29]] ) elif model_name == "groupvit-gcc-redcaps": __lowerCAmelCase = torch.tensor([[16.18_73, 8.62_30]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , lowercase , atol=1e-3 ) processor.save_pretrained(lowercase ) model.save_pretrained(lowercase ) print("""Successfully saved processor and model to""" , lowercase ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(lowercase , organization="""nielsr""" ) model.push_to_hub(lowercase , organization="""nielsr""" ) if __name__ == "__main__": _a : int = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) _a : List[str] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
689
1
'''simple docstring''' from math import isqrt def __UpperCAmelCase ( lowerCamelCase_) -> bool: return all(number % divisor != 0 for divisor in range(2 , isqrt(_SCREAMING_SNAKE_CASE) + 1)) def __UpperCAmelCase ( lowerCamelCase_ = 10**6) -> int: UpperCamelCase__ : int = 0 UpperCamelCase__ : Optional[int] = 1 UpperCamelCase__ : str = 7 while prime_candidate < max_prime: primes_count += is_prime(_SCREAMING_SNAKE_CASE) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(f'''{solution() = }''')
700
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = "cpu" , lowerCamelCase_ = None) -> None: UpperCamelCase__ : List[Any] = torch.load(lowerCamelCase_ , map_location=lowerCamelCase_) for k, v in tqdm(state_dict.items()): if not isinstance(lowerCamelCase_ , torch.Tensor): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin') UpperCamelCase__ : int = v.half() if save_path is None: # overwrite src_path UpperCamelCase__ : List[Any] = src_path torch.save(lowerCamelCase_ , lowerCamelCase_) if __name__ == "__main__": fire.Fire(convert)
6
0
lowerCamelCase_ = """Input must be a string of 8 numbers plus letter""" lowerCamelCase_ = """TRWAGMYFPDXBNJZSQVHLCKE""" def lowerCamelCase ( a_ ) -> bool: if not isinstance(a_ , a_ ): lowerCAmelCase_ = F'''Expected string as input, found {type(a_ ).__name__}''' raise TypeError(a_ ) lowerCAmelCase_ = spanish_id.replace('-' , '' ).upper() if len(a_ ) != 9: raise ValueError(a_ ) try: lowerCAmelCase_ = int(spanish_id_clean[0:8] ) lowerCAmelCase_ = spanish_id_clean[8] except ValueError as ex: raise ValueError(a_ ) from ex if letter.isdigit(): raise ValueError(a_ ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
318
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ = {"""configuration_xglm""": ["""XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XGLMConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ["""XGLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ["""XGLMTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ """XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XGLMForCausalLM""", """XGLMModel""", """XGLMPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ """FlaxXGLMForCausalLM""", """FlaxXGLMModel""", """FlaxXGLMPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ """TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXGLMForCausalLM""", """TFXGLMModel""", """TFXGLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
318
1
"""simple docstring""" import re from filelock import FileLock try: import nltk UpperCamelCase : int = True except (ImportError, ModuleNotFoundError): UpperCamelCase : List[str] = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def A ( snake_case :str ) -> str: re.sub('<n>' , '' , snake_case ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(snake_case ) )
708
"""simple docstring""" import string import numpy def A ( snake_case :int , snake_case :int ) -> int: return b if a == 0 else greatest_common_divisor(b % a , snake_case ) class __lowerCAmelCase : lowercase = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) lowercase = numpy.vectorize(lambda __SCREAMING_SNAKE_CASE : x % 36 ) lowercase = numpy.vectorize(__SCREAMING_SNAKE_CASE ) def __init__( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.modulus(__UpperCAmelCase ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key __UpperCamelCase = encrypt_key.shape[0] def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return self.key_string.index(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return self.key_string[round(__UpperCAmelCase )] def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __UpperCamelCase = det % len(self.key_string ) __UpperCamelCase = len(self.key_string ) if greatest_common_divisor(__UpperCAmelCase , len(self.key_string ) ) != 1: __UpperCamelCase = ( F'determinant modular {req_l} of encryption key({det}) ' F'is not co prime w.r.t {req_l}.\nTry another key.' ) raise ValueError(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = [char for char in text.upper() if char in self.key_string] __UpperCamelCase = chars[-1] while len(__UpperCAmelCase ) % self.break_key != 0: chars.append(__UpperCAmelCase ) return "".join(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.process_text(text.upper() ) __UpperCamelCase = '' for i in range(0 , len(__UpperCAmelCase ) - self.break_key + 1 , self.break_key ): __UpperCamelCase = text[i : i + self.break_key] __UpperCamelCase = [self.replace_letters(__UpperCAmelCase ) for char in batch] __UpperCamelCase = numpy.array([vec] ).T __UpperCamelCase = self.modulus(self.encrypt_key.dot(__UpperCAmelCase ) ).T.tolist()[ 0 ] __UpperCamelCase = ''.join( self.replace_digits(__UpperCAmelCase ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __UpperCamelCase = det % len(self.key_string ) __UpperCamelCase = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: __UpperCamelCase = i break __UpperCamelCase = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(__UpperCAmelCase ) ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.make_decrypt_key() __UpperCamelCase = self.process_text(text.upper() ) __UpperCamelCase = '' for i in range(0 , len(__UpperCAmelCase ) - self.break_key + 1 , self.break_key ): __UpperCamelCase = text[i : i + self.break_key] __UpperCamelCase = [self.replace_letters(__UpperCAmelCase ) for char in batch] __UpperCamelCase = numpy.array([vec] ).T __UpperCamelCase = self.modulus(decrypt_key.dot(__UpperCAmelCase ) ).T.tolist()[0] __UpperCamelCase = ''.join( self.replace_digits(__UpperCAmelCase ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def A ( ) -> None: __UpperCamelCase = int(input('Enter the order of the encryption key: ' ) ) __UpperCamelCase = [] print('Enter each row of the encryption key with space separated integers' ) for _ in range(snake_case ): __UpperCamelCase = [int(snake_case ) for x in input().split()] hill_matrix.append(snake_case ) __UpperCamelCase = HillCipher(numpy.array(snake_case ) ) print('Would you like to encrypt or decrypt some text? (1 or 2)' ) __UpperCamelCase = input('\n1. Encrypt\n2. Decrypt\n' ) if option == "1": __UpperCamelCase = input('What text would you like to encrypt?: ' ) print('Your encrypted text is:' ) print(hc.encrypt(snake_case ) ) elif option == "2": __UpperCamelCase = input('What text would you like to decrypt?: ' ) print('Your decrypted text is:' ) print(hc.decrypt(snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
293
0
"""simple docstring""" from functools import lru_cache @lru_cache def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' if num < 0: raise ValueError("""Number should not be negative.""" ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
673
"""simple docstring""" import math def _lowerCAmelCase ( lowerCAmelCase = 100 ): '''simple docstring''' UpperCAmelCase = sum(i * i for i in range(1 , n + 1 ) ) UpperCAmelCase = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'{solution() = }')
673
1
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def _a ( _SCREAMING_SNAKE_CASE : int ): return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def _a ( _SCREAMING_SNAKE_CASE : Optional[Any] ): _SCREAMING_SNAKE_CASE = create_tensor(_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE = gather(_SCREAMING_SNAKE_CASE ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def _a ( _SCREAMING_SNAKE_CASE : List[str] ): _SCREAMING_SNAKE_CASE = [state.process_index] _SCREAMING_SNAKE_CASE = gather_object(_SCREAMING_SNAKE_CASE ) assert len(_SCREAMING_SNAKE_CASE ) == state.num_processes, F'{gathered_obj}, {len(_SCREAMING_SNAKE_CASE )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), F'{gathered_obj} != {list(range(state.num_processes ) )}' def _a ( _SCREAMING_SNAKE_CASE : List[str] ): _SCREAMING_SNAKE_CASE = create_tensor(_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE = broadcast(_SCREAMING_SNAKE_CASE ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def _a ( _SCREAMING_SNAKE_CASE : Any ): # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes + 1 ).to(state.device ) else: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes ).to(state.device ) _SCREAMING_SNAKE_CASE = pad_across_processes(_SCREAMING_SNAKE_CASE ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def _a ( _SCREAMING_SNAKE_CASE : Union[str, Any] ): # For now runs on only two processes if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE = reduce(_SCREAMING_SNAKE_CASE , "sum" ) _SCREAMING_SNAKE_CASE = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), F'{reduced_tensor} != {truth_tensor}' def _a ( _SCREAMING_SNAKE_CASE : Any ): # For now runs on only two processes if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE = reduce(_SCREAMING_SNAKE_CASE , "mean" ) _SCREAMING_SNAKE_CASE = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), F'{reduced_tensor} != {truth_tensor}' def _a ( _SCREAMING_SNAKE_CASE : int ): # For xla_spawn (TPUs) main() def _a ( ): _SCREAMING_SNAKE_CASE = PartialState() state.print(F'State: {state}' ) state.print("testing gather" ) test_gather(_SCREAMING_SNAKE_CASE ) state.print("testing gather_object" ) test_gather_object(_SCREAMING_SNAKE_CASE ) state.print("testing broadcast" ) test_broadcast(_SCREAMING_SNAKE_CASE ) state.print("testing pad_across_processes" ) test_pad_across_processes(_SCREAMING_SNAKE_CASE ) state.print("testing reduce_sum" ) test_reduce_sum(_SCREAMING_SNAKE_CASE ) state.print("testing reduce_mean" ) test_reduce_mean(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
493
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): a : int = LayoutLMTokenizer a : Optional[int] = LayoutLMTokenizerFast a : Optional[int] = True a : Any = True def lowercase ( self ): super().setUp() _SCREAMING_SNAKE_CASE = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def lowercase ( self , **UpperCamelCase ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase ) def lowercase ( self , UpperCamelCase ): _SCREAMING_SNAKE_CASE = "UNwant\u00E9d,running" _SCREAMING_SNAKE_CASE = "unwanted, running" return input_text, output_text def lowercase ( self ): _SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file ) _SCREAMING_SNAKE_CASE = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(UpperCamelCase , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , [7, 4, 5, 10, 8, 9] ) def lowercase ( self ): pass
493
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
99
import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib __lowercase = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } __lowercase = logging.WARNING def _lowerCamelCase ( ): '''simple docstring''' A_ = os.getenv('''DATASETS_VERBOSITY''' , SCREAMING_SNAKE_CASE ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"Unknown option DATASETS_VERBOSITY={env_level_str}, " f"has to be one of: { ', '.join(log_levels.keys() ) }" ) return _default_log_level def _lowerCamelCase ( ): '''simple docstring''' return __name__.split('''.''' )[0] def _lowerCamelCase ( ): '''simple docstring''' return logging.getLogger(_get_library_name() ) def _lowerCamelCase ( ): '''simple docstring''' A_ = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def _lowerCamelCase ( ): '''simple docstring''' A_ = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def _lowerCamelCase ( SCREAMING_SNAKE_CASE = None ): '''simple docstring''' if name is None: A_ = _get_library_name() return logging.getLogger(SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( ): '''simple docstring''' return _get_library_root_logger().getEffectiveLevel() def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _get_library_root_logger().setLevel(SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( ): '''simple docstring''' return set_verbosity(SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( ): '''simple docstring''' return set_verbosity(SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( ): '''simple docstring''' return set_verbosity(SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( ): '''simple docstring''' return set_verbosity(SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( ): '''simple docstring''' A_ = False def _lowerCamelCase ( ): '''simple docstring''' A_ = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class _lowercase : def __init__( self : Optional[int] , *lowerCamelCase__ : int , **lowerCamelCase__ : Tuple ) -> Dict: # pylint: disable=unused-argument """simple docstring""" A_ = args[0] if args else None def __iter__( self : Optional[int] ) -> List[str]: """simple docstring""" return iter(self._iterator ) def __getattr__( self : int , lowerCamelCase__ : List[str] ) -> List[str]: """simple docstring""" def empty_fn(*lowerCamelCase__ : Optional[Any] , **lowerCamelCase__ : str ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Tuple ) -> Tuple: """simple docstring""" return self def __exit__( self : Tuple , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[Any] ) -> Optional[int]: """simple docstring""" return __lowercase = True class _lowercase : def __call__( self : Optional[int] , *lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[str]=False , **lowerCamelCase__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" if _tqdm_active and not disable: return tqdm_lib.tqdm(*lowerCamelCase__ , **lowerCamelCase__ ) else: return EmptyTqdm(*lowerCamelCase__ , **lowerCamelCase__ ) def UpperCamelCase ( self : Optional[Any] , *lowerCamelCase__ : Any , **lowerCamelCase__ : int ) -> str: """simple docstring""" A_ = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*lowerCamelCase__ , **lowerCamelCase__ ) def UpperCamelCase ( self : Optional[Any] ) -> int: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() __lowercase = _tqdm_cls() def _lowerCamelCase ( ): '''simple docstring''' global _tqdm_active return bool(_tqdm_active ) def _lowerCamelCase ( ): '''simple docstring''' global _tqdm_active A_ = True def _lowerCamelCase ( ): '''simple docstring''' global _tqdm_active A_ = False
203
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : Optional[Any] = {'configuration_sew': ['SEW_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SEWConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = [ 'SEW_PRETRAINED_MODEL_ARCHIVE_LIST', 'SEWForCTC', 'SEWForSequenceClassification', 'SEWModel', 'SEWPreTrainedModel', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys a : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
593
'''simple docstring''' a : Dict = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] a : Optional[Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] a : Optional[Any] = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> str: '''simple docstring''' assert len(str(__UpperCAmelCase ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: snake_case_ = year // 100 snake_case_ = (5 * (century % 4) + 2) % 7 snake_case_ = year % 100 snake_case_ = centurian % 12 snake_case_ = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 snake_case_ = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) snake_case_ = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
593
1
import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def lowerCAmelCase ( UpperCamelCase__ : Optional[int] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE: Dict = fname.split(os.path.sep )[-1] return re.search(R'''^(.*)_\d+\.jpg$''' , A__ ).groups()[0] class a ( __lowercase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None ): """simple docstring""" __SCREAMING_SNAKE_CASE: int = file_names __SCREAMING_SNAKE_CASE: Any = image_transform __SCREAMING_SNAKE_CASE: Optional[int] = label_to_id def __len__( self ): """simple docstring""" return len(self.file_names ) def __getitem__( self , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[Any] = self.file_names[idx] __SCREAMING_SNAKE_CASE: List[Any] = PIL.Image.open(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: List[Any] = raw_image.convert('''RGB''' ) if self.image_transform is not None: __SCREAMING_SNAKE_CASE: Any = self.image_transform(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: List[Any] = extract_label(_lowerCAmelCase ) if self.label_to_id is not None: __SCREAMING_SNAKE_CASE: Any = self.label_to_id[label] return {"image": image, "label": label} def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : Tuple ) -> Tuple: """simple docstring""" if args.with_tracking: __SCREAMING_SNAKE_CASE: Optional[Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: __SCREAMING_SNAKE_CASE: str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __SCREAMING_SNAKE_CASE: Union[str, Any] = config['''lr'''] __SCREAMING_SNAKE_CASE: Union[str, Any] = int(config['''num_epochs'''] ) __SCREAMING_SNAKE_CASE: Union[str, Any] = int(config['''seed'''] ) __SCREAMING_SNAKE_CASE: Dict = int(config['''batch_size'''] ) __SCREAMING_SNAKE_CASE: int = config['''image_size'''] if not isinstance(A__ , (list, tuple) ): __SCREAMING_SNAKE_CASE: int = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , '''isdigit''' ): if args.checkpointing_steps == "epoch": __SCREAMING_SNAKE_CASE: Optional[Any] = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): __SCREAMING_SNAKE_CASE: Optional[int] = int(args.checkpointing_steps ) else: raise ValueError( F"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" ) else: __SCREAMING_SNAKE_CASE: List[str] = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: __SCREAMING_SNAKE_CASE: Tuple = os.path.split(A__ )[-1].split('''.''' )[0] accelerator.init_trackers(A__ , A__ ) # Grab all the image filenames __SCREAMING_SNAKE_CASE: str = [os.path.join(args.data_dir , A__ ) for fname in os.listdir(args.data_dir ) if fname.endswith('''.jpg''' )] # Build the label correspondences __SCREAMING_SNAKE_CASE: List[Any] = [extract_label(A__ ) for fname in file_names] __SCREAMING_SNAKE_CASE: Any = list(set(A__ ) ) id_to_label.sort() __SCREAMING_SNAKE_CASE: Tuple = {lbl: i for i, lbl in enumerate(A__ )} # Set the seed before splitting the data. np.random.seed(A__ ) torch.manual_seed(A__ ) torch.cuda.manual_seed_all(A__ ) # Split our filenames between train and validation __SCREAMING_SNAKE_CASE: Optional[int] = np.random.permutation(len(A__ ) ) __SCREAMING_SNAKE_CASE: Optional[Any] = int(0.8 * len(A__ ) ) __SCREAMING_SNAKE_CASE: str = random_perm[:cut] __SCREAMING_SNAKE_CASE: Union[str, Any] = random_perm[cut:] # For training we use a simple RandomResizedCrop __SCREAMING_SNAKE_CASE: str = Compose([RandomResizedCrop(A__ , scale=(0.5, 1.0) ), ToTensor()] ) __SCREAMING_SNAKE_CASE: int = PetsDataset( [file_names[i] for i in train_split] , image_transform=A__ , label_to_id=A__ ) # For evaluation, we use a deterministic Resize __SCREAMING_SNAKE_CASE: Union[str, Any] = Compose([Resize(A__ ), ToTensor()] ) __SCREAMING_SNAKE_CASE: Optional[Any] = PetsDataset([file_names[i] for i in eval_split] , image_transform=A__ , label_to_id=A__ ) # Instantiate dataloaders. __SCREAMING_SNAKE_CASE: Any = DataLoader(A__ , shuffle=A__ , batch_size=A__ , num_workers=4 ) __SCREAMING_SNAKE_CASE: Union[str, Any] = DataLoader(A__ , shuffle=A__ , batch_size=A__ , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __SCREAMING_SNAKE_CASE: Optional[Any] = create_model('''resnet50d''' , pretrained=A__ , num_classes=len(A__ ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __SCREAMING_SNAKE_CASE: Dict = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): __SCREAMING_SNAKE_CASE: Union[str, Any] = False for param in model.get_classifier().parameters(): __SCREAMING_SNAKE_CASE: Dict = True # We normalize the batches of images to be a bit faster. __SCREAMING_SNAKE_CASE: Any = torch.tensor(model.default_cfg['''mean'''] )[None, :, None, None].to(accelerator.device ) __SCREAMING_SNAKE_CASE: Tuple = torch.tensor(model.default_cfg['''std'''] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer __SCREAMING_SNAKE_CASE: Optional[Any] = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler __SCREAMING_SNAKE_CASE: Union[str, Any] = OneCycleLR(optimizer=A__ , max_lr=A__ , epochs=A__ , steps_per_epoch=len(A__ ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Optional[Any] = accelerator.prepare( A__ , A__ , A__ , A__ , A__ ) # We need to keep track of how many total steps we have iterated over __SCREAMING_SNAKE_CASE: List[str] = 0 # We also need to keep track of the starting epoch so files are named properly __SCREAMING_SNAKE_CASE: int = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F"""Resumed from checkpoint: {args.resume_from_checkpoint}""" ) accelerator.load_state(args.resume_from_checkpoint ) __SCREAMING_SNAKE_CASE: Optional[int] = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint __SCREAMING_SNAKE_CASE: Tuple = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) __SCREAMING_SNAKE_CASE: int = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` __SCREAMING_SNAKE_CASE: Dict = os.path.splitext(A__ )[0] if "epoch" in training_difference: __SCREAMING_SNAKE_CASE: List[str] = int(training_difference.replace('''epoch_''' , '''''' ) ) + 1 __SCREAMING_SNAKE_CASE: Any = None else: __SCREAMING_SNAKE_CASE: Optional[int] = int(training_difference.replace('''step_''' , '''''' ) ) __SCREAMING_SNAKE_CASE: List[str] = resume_step // len(A__ ) resume_step -= starting_epoch * len(A__ ) # Now we train the model for epoch in range(A__ , A__ ): model.train() if args.with_tracking: __SCREAMING_SNAKE_CASE: int = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step __SCREAMING_SNAKE_CASE: Dict = accelerator.skip_first_batches(A__ , A__ ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader __SCREAMING_SNAKE_CASE: Optional[Any] = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. __SCREAMING_SNAKE_CASE: Optional[int] = {k: v.to(accelerator.device ) for k, v in batch.items()} __SCREAMING_SNAKE_CASE: Dict = (batch['''image'''] - mean) / std __SCREAMING_SNAKE_CASE: Tuple = model(A__ ) __SCREAMING_SNAKE_CASE: str = torch.nn.functional.cross_entropy(A__ , batch['''label'''] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(A__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(A__ , A__ ): __SCREAMING_SNAKE_CASE: List[Any] = F"""step_{overall_step}""" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: __SCREAMING_SNAKE_CASE: Any = os.path.join(args.output_dir , A__ ) accelerator.save_state(A__ ) model.eval() __SCREAMING_SNAKE_CASE: Any = 0 __SCREAMING_SNAKE_CASE: List[str] = 0 for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. __SCREAMING_SNAKE_CASE: List[str] = {k: v.to(accelerator.device ) for k, v in batch.items()} __SCREAMING_SNAKE_CASE: Dict = (batch['''image'''] - mean) / std with torch.no_grad(): __SCREAMING_SNAKE_CASE: Any = model(A__ ) __SCREAMING_SNAKE_CASE: Optional[int] = outputs.argmax(dim=-1 ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Tuple = accelerator.gather_for_metrics((predictions, batch['''label''']) ) __SCREAMING_SNAKE_CASE: Any = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() __SCREAMING_SNAKE_CASE: Any = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}: {100 * eval_metric:.2f}""" ) if args.with_tracking: accelerator.log( { '''accuracy''': 100 * eval_metric, '''train_loss''': total_loss.item() / len(A__ ), '''epoch''': epoch, } , step=A__ , ) if checkpointing_steps == "epoch": __SCREAMING_SNAKE_CASE: List[Any] = F"""epoch_{epoch}""" if args.output_dir is not None: __SCREAMING_SNAKE_CASE: Dict = os.path.join(args.output_dir , A__ ) accelerator.save_state(A__ ) if args.with_tracking: accelerator.end_training() def lowerCAmelCase ( ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument('''--data_dir''' , required=A__ , help='''The data folder on disk.''' ) parser.add_argument('''--fp16''' , action='''store_true''' , help='''If passed, will use FP16 training.''' ) parser.add_argument( '''--mixed_precision''' , type=A__ , default=A__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--checkpointing_steps''' , type=A__ , default=A__ , help='''Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.''' , ) parser.add_argument( '''--output_dir''' , type=A__ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=A__ , default=A__ , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=A__ , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) __SCREAMING_SNAKE_CASE: str = parser.parse_args() __SCREAMING_SNAKE_CASE: List[str] = {'''lr''': 3E-2, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 64, '''image_size''': 224} training_function(A__ , A__ ) if __name__ == "__main__": main()
202
import sys lowercase_ = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def a ( A__ : str = N ) -> int: """simple docstring""" _lowercase =-sys.maxsize - 1 for i in range(len(A__ ) - 12 ): _lowercase =1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: _lowercase =product return largest_product if __name__ == "__main__": print(f"{solution() = }")
291
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = OrderedDict( [ ("align", "EfficientNetImageProcessor"), ("beit", "BeitImageProcessor"), ("bit", "BitImageProcessor"), ("blip", "BlipImageProcessor"), ("blip-2", "BlipImageProcessor"), ("bridgetower", "BridgeTowerImageProcessor"), ("chinese_clip", "ChineseCLIPImageProcessor"), ("clip", "CLIPImageProcessor"), ("clipseg", "ViTImageProcessor"), ("conditional_detr", "ConditionalDetrImageProcessor"), ("convnext", "ConvNextImageProcessor"), ("convnextv2", "ConvNextImageProcessor"), ("cvt", "ConvNextImageProcessor"), ("data2vec-vision", "BeitImageProcessor"), ("deformable_detr", "DeformableDetrImageProcessor"), ("deit", "DeiTImageProcessor"), ("deta", "DetaImageProcessor"), ("detr", "DetrImageProcessor"), ("dinat", "ViTImageProcessor"), ("donut-swin", "DonutImageProcessor"), ("dpt", "DPTImageProcessor"), ("efficientformer", "EfficientFormerImageProcessor"), ("efficientnet", "EfficientNetImageProcessor"), ("flava", "FlavaImageProcessor"), ("focalnet", "BitImageProcessor"), ("git", "CLIPImageProcessor"), ("glpn", "GLPNImageProcessor"), ("groupvit", "CLIPImageProcessor"), ("imagegpt", "ImageGPTImageProcessor"), ("instructblip", "BlipImageProcessor"), ("layoutlmv2", "LayoutLMv2ImageProcessor"), ("layoutlmv3", "LayoutLMv3ImageProcessor"), ("levit", "LevitImageProcessor"), ("mask2former", "Mask2FormerImageProcessor"), ("maskformer", "MaskFormerImageProcessor"), ("mgp-str", "ViTImageProcessor"), ("mobilenet_v1", "MobileNetV1ImageProcessor"), ("mobilenet_v2", "MobileNetV2ImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevitv2", "MobileViTImageProcessor"), ("nat", "ViTImageProcessor"), ("oneformer", "OneFormerImageProcessor"), ("owlvit", "OwlViTImageProcessor"), ("perceiver", "PerceiverImageProcessor"), ("pix2struct", "Pix2StructImageProcessor"), ("poolformer", "PoolFormerImageProcessor"), ("regnet", "ConvNextImageProcessor"), ("resnet", "ConvNextImageProcessor"), ("sam", "SamImageProcessor"), ("segformer", "SegformerImageProcessor"), ("swiftformer", "ViTImageProcessor"), ("swin", "ViTImageProcessor"), ("swin2sr", "Swin2SRImageProcessor"), ("swinv2", "ViTImageProcessor"), ("table-transformer", "DetrImageProcessor"), ("timesformer", "VideoMAEImageProcessor"), ("tvlt", "TvltImageProcessor"), ("upernet", "SegformerImageProcessor"), ("van", "ConvNextImageProcessor"), ("videomae", "VideoMAEImageProcessor"), ("vilt", "ViltImageProcessor"), ("vit", "ViTImageProcessor"), ("vit_hybrid", "ViTHybridImageProcessor"), ("vit_mae", "ViTImageProcessor"), ("vit_msn", "ViTImageProcessor"), ("xclip", "CLIPImageProcessor"), ("yolos", "YolosImageProcessor"), ] ) __UpperCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def A__ ( __lowerCamelCase ): for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: SCREAMING_SNAKE_CASE_ = model_type_to_module_name(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = importlib.import_module(F'''.{module_name}''', '''transformers.models''' ) try: return getattr(__lowerCamelCase, __lowerCamelCase ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(__lowerCamelCase, '''__name__''', __lowerCamelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. SCREAMING_SNAKE_CASE_ = importlib.import_module('''transformers''' ) if hasattr(__lowerCamelCase, __lowerCamelCase ): return getattr(__lowerCamelCase, __lowerCamelCase ) return None def A__ ( __lowerCamelCase, __lowerCamelCase = None, __lowerCamelCase = False, __lowerCamelCase = False, __lowerCamelCase = None, __lowerCamelCase = None, __lowerCamelCase = None, __lowerCamelCase = False, **__lowerCamelCase, ): SCREAMING_SNAKE_CASE_ = get_file_from_repo( __lowerCamelCase, __lowerCamelCase, cache_dir=__lowerCamelCase, force_download=__lowerCamelCase, resume_download=__lowerCamelCase, proxies=__lowerCamelCase, use_auth_token=__lowerCamelCase, revision=__lowerCamelCase, local_files_only=__lowerCamelCase, ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(__lowerCamelCase, encoding='''utf-8''' ) as reader: return json.load(__lowerCamelCase ) class UpperCamelCase__ : """simple docstring""" def __init__( self ) -> List[str]: raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(_A ) def _UpperCamelCase ( cls , _A , **_A ) -> int: SCREAMING_SNAKE_CASE_ = kwargs.pop('''config''' , _A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''trust_remote_code''' , _A ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = ImageProcessingMixin.get_image_processor_dict(_A , **_A ) SCREAMING_SNAKE_CASE_ = config_dict.get('''image_processor_type''' , _A ) SCREAMING_SNAKE_CASE_ = None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ): SCREAMING_SNAKE_CASE_ = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: SCREAMING_SNAKE_CASE_ = config_dict.pop('''feature_extractor_type''' , _A ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) SCREAMING_SNAKE_CASE_ = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): SCREAMING_SNAKE_CASE_ = config_dict['''auto_map''']['''AutoFeatureExtractor'''] SCREAMING_SNAKE_CASE_ = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_A , **_A ) # It could be in `config.image_processor_type`` SCREAMING_SNAKE_CASE_ = getattr(_A , '''image_processor_type''' , _A ) if hasattr(_A , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map: SCREAMING_SNAKE_CASE_ = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: SCREAMING_SNAKE_CASE_ = image_processor_class_from_name(_A ) SCREAMING_SNAKE_CASE_ = image_processor_auto_map is not None SCREAMING_SNAKE_CASE_ = image_processor_class is not None or type(_A ) in IMAGE_PROCESSOR_MAPPING SCREAMING_SNAKE_CASE_ = resolve_trust_remote_code( _A , _A , _A , _A ) if has_remote_code and trust_remote_code: SCREAMING_SNAKE_CASE_ = get_class_from_dynamic_module( _A , _A , **_A ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''code_revision''' , _A ) if os.path.isdir(_A ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(_A , **_A ) elif image_processor_class is not None: return image_processor_class.from_dict(_A , **_A ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(_A ) in IMAGE_PROCESSOR_MAPPING: SCREAMING_SNAKE_CASE_ = IMAGE_PROCESSOR_MAPPING[type(_A )] return image_processor_class.from_dict(_A , **_A ) raise ValueError( F'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' F'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def _UpperCamelCase ( _A , _A ) -> str: IMAGE_PROCESSOR_MAPPING.register(_A , _A )
597
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __UpperCAmelCase = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def A__ ( __lowerCamelCase ): # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model SCREAMING_SNAKE_CASE_ = list(s_dict.keys() ) for key in keys: SCREAMING_SNAKE_CASE_ = r'''.*/layers_(\d+)''' SCREAMING_SNAKE_CASE_ = key if re.match(__lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = re.sub(r'''layers_(\d+)''', r'''block/\1/layer''', __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = r'''(encoder|decoder)\/''' if re.match(__lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = re.match(__lowerCamelCase, __lowerCamelCase ).groups() if groups[0] == "encoder": SCREAMING_SNAKE_CASE_ = re.sub(r'''/mlp/''', r'''/1/mlp/''', __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = re.sub(r'''/pre_mlp_layer_norm/''', r'''/1/layer_norm/''', __lowerCamelCase ) elif groups[0] == "decoder": SCREAMING_SNAKE_CASE_ = re.sub(r'''/mlp/''', r'''/2/mlp/''', __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = re.sub(r'''/pre_mlp_layer_norm/''', r'''/2/layer_norm/''', __lowerCamelCase ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: SCREAMING_SNAKE_CASE_ = new_key.replace(__lowerCamelCase, __lowerCamelCase ) print(F'''{key} -> {new_key}''' ) SCREAMING_SNAKE_CASE_ = s_dict.pop(__lowerCamelCase ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: SCREAMING_SNAKE_CASE_ = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: SCREAMING_SNAKE_CASE_ = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: SCREAMING_SNAKE_CASE_ = s_dict[key].shape[0] SCREAMING_SNAKE_CASE_ = s_dict[key] for idx in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = expert_weihts[idx] print(F'''{key} -> {key.replace("expert/", "nested fstring" )}''' ) s_dict.pop(__lowerCamelCase ) return s_dict __UpperCAmelCase = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def A__ ( __lowerCamelCase, __lowerCamelCase ): # Convert a google style config to the hugging face fromat import regex as re with open(__lowerCamelCase, '''r''' ) as f: SCREAMING_SNAKE_CASE_ = f.read() SCREAMING_SNAKE_CASE_ = re.findall(r'''(.*) = ([0-9.]*)''', __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": SCREAMING_SNAKE_CASE_ = float(__lowerCamelCase ) if '''.''' in value else int(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = re.findall(r'''(.*activations) = \(\'(.*)\',\)''', __lowerCamelCase )[0] SCREAMING_SNAKE_CASE_ = str(activation[1] ) SCREAMING_SNAKE_CASE_ = num_experts SCREAMING_SNAKE_CASE_ = SwitchTransformersConfig(**__lowerCamelCase ) return config def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase="./", __lowerCamelCase=8 ): # Initialise PyTorch model print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) SCREAMING_SNAKE_CASE_ = checkpoints.load_tax_checkpoint(__lowerCamelCase ) if gin_file is not None: SCREAMING_SNAKE_CASE_ = convert_gin_to_config(__lowerCamelCase, __lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = SwitchTransformersConfig.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = SwitchTransformersForConditionalGeneration(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = flax_params['''target'''] SCREAMING_SNAKE_CASE_ = flatten_dict(__lowerCamelCase, sep='''/''' ) SCREAMING_SNAKE_CASE_ = rename_keys(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = unflatten_dict(__lowerCamelCase, sep='''/''' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(__lowerCamelCase, __lowerCamelCase ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") __UpperCAmelCase = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
597
1
'''simple docstring''' _UpperCAmelCase : dict[str, float] = { "joule": 1.0, "kilojoule": 10_00, "megajoule": 1_00_00_00, "gigajoule": 10_00_00_00_00, "wattsecond": 1.0, "watthour": 36_00, "kilowatthour": 3_60_00_00, "newtonmeter": 1.0, "calorie_nutr": 41_86.8, "kilocalorie_nutr": 4_18_68_00.00, "electronvolt": 1.6_02_17_66_34e-19, "britishthermalunit_it": 10_55.0_55_85, "footpound": 1.35_5818, } def UpperCamelCase ( lowercase_ : str , lowercase_ : str , lowercase_ : float ) -> float: '''simple docstring''' if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: lowercase =( f'Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n' f'Valid values are: {", ".join(lowercase_ )}' ) raise ValueError(lowercase_ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
72
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class A_ : '''simple docstring''' def __init__( self , snake_case , snake_case=13 , snake_case=7 , snake_case=True , snake_case=True , snake_case=False , snake_case=True , snake_case=99 , snake_case=32 , snake_case=5 , snake_case=4 , snake_case=37 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=16 , snake_case=2 , snake_case=0.02 , snake_case=3 , snake_case=4 , snake_case=None , ): lowercase = parent lowercase = batch_size lowercase = seq_length lowercase = is_training lowercase = use_input_mask lowercase = use_token_type_ids lowercase = use_labels lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = type_sequence_label_size lowercase = initializer_range lowercase = num_labels lowercase = num_choices lowercase = scope def SCREAMING_SNAKE_CASE__ ( self ): lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = None if self.use_input_mask: lowercase = random_attention_mask([self.batch_size, self.seq_length] ) lowercase = None if self.use_token_type_ids: lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase = None lowercase = None lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase = ids_tensor([self.batch_size] , self.num_choices ) lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self ): return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): lowercase = LlamaModel(config=snake_case ) model.to(snake_case ) model.eval() lowercase = model(snake_case , attention_mask=snake_case ) lowercase = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): lowercase = True lowercase = LlamaModel(snake_case ) model.to(snake_case ) model.eval() lowercase = model( snake_case , attention_mask=snake_case , encoder_hidden_states=snake_case , encoder_attention_mask=snake_case , ) lowercase = model( snake_case , attention_mask=snake_case , encoder_hidden_states=snake_case , ) lowercase = model(snake_case , attention_mask=snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): lowercase = LlamaForCausalLM(config=snake_case ) model.to(snake_case ) model.eval() lowercase = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): lowercase = True lowercase = True lowercase = LlamaForCausalLM(config=snake_case ) model.to(snake_case ) model.eval() # first forward pass lowercase = model( snake_case , attention_mask=snake_case , encoder_hidden_states=snake_case , encoder_attention_mask=snake_case , use_cache=snake_case , ) lowercase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase = torch.cat([input_mask, next_mask] , dim=-1 ) lowercase = model( snake_case , attention_mask=snake_case , encoder_hidden_states=snake_case , encoder_attention_mask=snake_case , output_hidden_states=snake_case , )['hidden_states'][0] lowercase = model( snake_case , attention_mask=snake_case , encoder_hidden_states=snake_case , encoder_attention_mask=snake_case , past_key_values=snake_case , output_hidden_states=snake_case , )['hidden_states'][0] # select random slice lowercase = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1E-3 ) ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) = config_and_inputs lowercase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): '''simple docstring''' _UpperCamelCase : Tuple = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _UpperCamelCase : List[Any] = (LlamaForCausalLM,) if is_torch_available() else () _UpperCamelCase : int = ( { """feature-extraction""": LlamaModel, """text-classification""": LlamaForSequenceClassification, """text-generation""": LlamaForCausalLM, """zero-shot""": LlamaForSequenceClassification, } if is_torch_available() else {} ) _UpperCamelCase : int = False _UpperCamelCase : int = False def SCREAMING_SNAKE_CASE__ ( self ): lowercase = LlamaModelTester(self ) lowercase = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase = type self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = 3 lowercase = input_dict['input_ids'] lowercase = input_ids.ne(1 ).to(snake_case ) lowercase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase = LlamaForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() lowercase = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = 3 lowercase = 'single_label_classification' lowercase = input_dict['input_ids'] lowercase = input_ids.ne(1 ).to(snake_case ) lowercase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase = LlamaForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() lowercase = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = 3 lowercase = 'multi_label_classification' lowercase = input_dict['input_ids'] lowercase = input_ids.ne(1 ).to(snake_case ) lowercase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowercase = LlamaForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() lowercase = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def SCREAMING_SNAKE_CASE__ ( self ): pass @parameterized.expand([('linear',), ('dynamic',)] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = ids_tensor([1, 10] , config.vocab_size ) lowercase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase = LlamaModel(snake_case ) original_model.to(snake_case ) original_model.eval() lowercase = original_model(snake_case ).last_hidden_state lowercase = original_model(snake_case ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase = {'type': scaling_type, 'factor': 10.0} lowercase = LlamaModel(snake_case ) scaled_model.to(snake_case ) scaled_model.eval() lowercase = scaled_model(snake_case ).last_hidden_state lowercase = scaled_model(snake_case ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case , snake_case , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(snake_case , snake_case , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case , snake_case , atol=1E-5 ) ) @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def SCREAMING_SNAKE_CASE__ ( self ): lowercase = [1, 306, 4658, 278, 6593, 310, 2834, 338] lowercase = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) lowercase = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 lowercase = torch.tensor([[-6.6_550, -4.1_227, -4.9_859, -3.2_406, 0.8_262, -3.0_033, 1.2_964, -3.3_699]] ) torch.testing.assert_close(out.mean(-1 ) , snake_case , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowercase = torch.tensor([-12.8_281, -7.4_453, -0.4_639, -8.0_625, -7.2_500, -8.0_000, -6.4_883, -7.7_695, -7.8_438, -7.0_312, -6.2_188, -7.1_328, -1.8_496, 1.9_961, -8.6_250, -6.7_227, -12.8_281, -6.9_492, -7.0_742, -7.7_852, -7.5_820, -7.9_062, -6.9_375, -7.9_805, -8.3_438, -8.1_562, -8.0_469, -7.6_250, -7.7_422, -7.3_398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , snake_case , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def SCREAMING_SNAKE_CASE__ ( self ): lowercase = [1, 306, 4658, 278, 6593, 310, 2834, 338] lowercase = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) lowercase = model(torch.tensor(snake_case ) ) # Expected mean on dim = -1 lowercase = torch.tensor([[-2.0_622, -1.2_794, -1.1_638, -0.9_788, -1.4_603, -1.0_238, -1.7_893, -1.4_411]] ) torch.testing.assert_close(out.mean(-1 ) , snake_case , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowercase = torch.tensor([-8.1_406, -8.0_547, 2.7_461, -1.2_344, -0.1_448, -1.8_262, -1.0_020, -1.8_154, -1.6_895, -1.8_516, -2.3_574, -0.9_277, 3.7_598, 6.5_742, -1.2_998, -0.1_177, -8.1_406, -2.9_688, -2.9_199, -3.1_699, -3.5_254, -2.3_555, -2.7_988, -3.4_141, -2.8_262, -4.5_195, -3.3_379, -3.3_164, -2.7_832, -3.0_273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , snake_case , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def SCREAMING_SNAKE_CASE__ ( self ): lowercase = [1, 306, 4658, 278, 6593, 310, 2834, 338] lowercase = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) lowercase = model(torch.tensor(snake_case ) ) # Expected mean on dim = -1 lowercase = torch.tensor([[-0.8_562, -1.8_520, -0.7_551, -0.4_162, -1.5_161, -1.2_038, -2.4_823, -2.3_254]] ) torch.testing.assert_close(out.mean(-1 ) , snake_case , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowercase = torch.tensor([-2.2_227, 4.8_828, 0.9_023, -0.4_578, -0.7_871, -0.1_033, -0.6_221, -0.5_786, -0.7_803, -1.0_674, -1.2_920, -0.1_570, 0.8_008, 2.0_723, -0.9_497, 0.2_771, -2.2_227, -0.7_612, -1.4_346, -1.2_061, -1.6_426, -0.3_000, -0.7_139, -1.1_934, -1.8_691, -1.6_973, -1.5_947, -1.2_705, -0.3_523, -0.5_513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , snake_case , atol=1E-2 , rtol=1E-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def SCREAMING_SNAKE_CASE__ ( self ): lowercase = [1, 306, 4658, 278, 6593, 310, 2834, 338] lowercase = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) lowercase = model(torch.tensor(snake_case ) ) lowercase = torch.tensor( [[-4.2_327, -3.3_360, -4.6_665, -4.7_631, -1.8_180, -3.4_170, -1.4_211, -3.1_810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , snake_case , atol=1E-2 , rtol=1E-2 ) # fmt: off lowercase = torch.tensor([-9.4_922, -3.9_551, 1.7_998, -5.6_758, -5.1_055, -5.8_984, -4.8_320, -6.8_086, -6.5_391, -5.6_172, -5.5_820, -5.5_352, 1.7_881, 3.6_289, -6.5_117, -3.4_785, -9.5_000, -6.0_352, -6.8_125, -6.0_195, -6.6_836, -5.4_727, -6.2_812, -6.0_391, -7.3_398, -7.4_297, -7.4_844, -6.5_820, -5.8_789, -5.5_312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , snake_case , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Model is curently gated' ) @slow def SCREAMING_SNAKE_CASE__ ( self ): lowercase = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' lowercase = 'Simply put, the theory of relativity states that ' lowercase = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) lowercase = tokenizer.encode(snake_case , return_tensors='pt' ) lowercase = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=snake_case ) # greedy generation outputs lowercase = model.generate(snake_case , max_new_tokens=64 , top_p=snake_case , temperature=1 , do_sample=snake_case ) lowercase = tokenizer.decode(generated_ids[0] , skip_special_tokens=snake_case ) self.assertEqual(snake_case , snake_case )
84
0
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def __lowerCAmelCase ( lowerCamelCase : Optional[Any] ): '''simple docstring''' __lowerCAmelCase = tmp_path / "file.csv" __lowerCAmelCase = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20\n " ) with open(lowerCamelCase , "w" ) as f: f.write(lowerCamelCase ) return str(lowerCamelCase ) @pytest.fixture def __lowerCAmelCase ( lowerCamelCase : Tuple ): '''simple docstring''' __lowerCAmelCase = tmp_path / "malformed_file.csv" __lowerCAmelCase = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20,\n " ) with open(lowerCamelCase , "w" ) as f: f.write(lowerCamelCase ) return str(lowerCamelCase ) @pytest.fixture def __lowerCAmelCase ( lowerCamelCase : Optional[int] , lowerCamelCase : List[str] ): '''simple docstring''' __lowerCAmelCase = tmp_path / "csv_with_image.csv" __lowerCAmelCase = textwrap.dedent( f'''\ image {image_file} ''' ) with open(lowerCamelCase , "w" ) as f: f.write(lowerCamelCase ) return str(lowerCamelCase ) @pytest.fixture def __lowerCAmelCase ( lowerCamelCase : int ): '''simple docstring''' __lowerCAmelCase = tmp_path / "csv_with_label.csv" __lowerCAmelCase = textwrap.dedent( "\\n label\n good\n bad\n good\n " ) with open(lowerCamelCase , "w" ) as f: f.write(lowerCamelCase ) return str(lowerCamelCase ) @pytest.fixture def __lowerCAmelCase ( lowerCamelCase : Dict ): '''simple docstring''' __lowerCAmelCase = tmp_path / "csv_with_int_list.csv" __lowerCAmelCase = textwrap.dedent( "\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n " ) with open(lowerCamelCase , "w" ) as f: f.write(lowerCamelCase ) return str(lowerCamelCase ) def __lowerCAmelCase ( lowerCamelCase : Dict , lowerCamelCase : str , lowerCamelCase : Any ): '''simple docstring''' __lowerCAmelCase = Csv() __lowerCAmelCase = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(lowerCamelCase , match="Error tokenizing data" ): for _ in generator: pass assert any( record.levelname == "ERROR" and "Failed to read file" in record.message and os.path.basename(lowerCamelCase ) in record.message for record in caplog.records ) @require_pil def __lowerCAmelCase ( lowerCamelCase : Optional[int] ): '''simple docstring''' with open(lowerCamelCase , encoding="utf-8" ) as f: __lowerCAmelCase = f.read().splitlines()[1] __lowerCAmelCase = Csv(encoding="utf-8" , features=Features({"image": Image()} ) ) __lowerCAmelCase = csv._generate_tables([[csv_file_with_image]] ) __lowerCAmelCase = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("image" ).type == Image()() __lowerCAmelCase = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] def __lowerCAmelCase ( lowerCamelCase : Tuple ): '''simple docstring''' with open(lowerCamelCase , encoding="utf-8" ) as f: __lowerCAmelCase = f.read().splitlines()[1:] __lowerCAmelCase = Csv(encoding="utf-8" , features=Features({"label": ClassLabel(names=["good", "bad"] )} ) ) __lowerCAmelCase = csv._generate_tables([[csv_file_with_label]] ) __lowerCAmelCase = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("label" ).type == ClassLabel(names=["good", "bad"] )() __lowerCAmelCase = pa_table.to_pydict()["label"] assert generated_content == [ClassLabel(names=["good", "bad"] ).straint(lowerCamelCase ) for label in labels] def __lowerCAmelCase ( lowerCamelCase : Dict ): '''simple docstring''' __lowerCAmelCase = Csv(encoding="utf-8" , sep="," , converters={"int_list": lambda lowerCamelCase : [int(lowerCamelCase ) for i in x.split()]} ) __lowerCAmelCase = csv._generate_tables([[csv_file_with_int_list]] ) __lowerCAmelCase = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("int_list" ).type ) __lowerCAmelCase = pa_table.to_pydict()["int_list"] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
39
'''simple docstring''' import requests from bsa import BeautifulSoup def __lowerCAmelCase ( lowerCamelCase : str = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' __lowerCAmelCase = BeautifulSoup(requests.get(lowerCamelCase ).text , "html.parser" ) __lowerCAmelCase = soup.findAll("h1" ) __lowerCAmelCase = soup.findAll("div" , {"class": "maincounter-number"} ) keys += soup.findAll("span" , {"class": "panel-title"} ) values += soup.findAll("div" , {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(lowerCamelCase , lowerCamelCase )} if __name__ == "__main__": print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''') for key, value in world_covidaa_stats().items(): print(f'{key}\n{value}\n')
39
1
from timeit import timeit lowerCamelCase_ = { "MALAYALAM": True, "String": False, "rotor": True, "level": True, "A": True, "BB": True, "ABC": False, "amanaplanacanalpanama": True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def UpperCAmelCase_ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE__ =0 SCREAMING_SNAKE_CASE__ =len(__UpperCamelCase ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def UpperCAmelCase_ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE__ =len(__UpperCamelCase ) // 2 SCREAMING_SNAKE_CASE__ =len(__UpperCamelCase ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(__UpperCamelCase ) ) def UpperCAmelCase_ ( __UpperCamelCase ): if len(__UpperCamelCase ) <= 2: return True if s[0] == s[len(__UpperCamelCase ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def UpperCAmelCase_ ( __UpperCamelCase ): return s == s[::-1] def UpperCAmelCase_ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE__ =f"""all({name}(key) is value for key, value in test_data.items())""" SCREAMING_SNAKE_CASE__ =f"""from __main__ import test_data, {name}""" SCREAMING_SNAKE_CASE__ =500_000 SCREAMING_SNAKE_CASE__ =timeit(stmt=__UpperCamelCase, setup=__UpperCamelCase, number=__UpperCamelCase ) print(f"""{name:<35} finished {number:,} runs in {result:.5f} seconds""" ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(f"""{key:21} {value}""") print("a man a plan a canal panama") # finished 500,000 runs in 0.46793 seconds benchmark_function("is_palindrome_slice") # finished 500,000 runs in 0.85234 seconds benchmark_function("is_palindrome") # finished 500,000 runs in 1.32028 seconds benchmark_function("is_palindrome_recursive") # finished 500,000 runs in 2.08679 seconds benchmark_function("is_palindrome_traversal")
151
class __a : """simple docstring""" def __init__( self : str ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ =0 SCREAMING_SNAKE_CASE__ =0 SCREAMING_SNAKE_CASE__ ={} def __A ( self : Tuple ,_UpperCamelCase : int ) -> Optional[int]: '''simple docstring''' if vertex not in self.adjacency: SCREAMING_SNAKE_CASE__ ={} self.num_vertices += 1 def __A ( self : str ,_UpperCamelCase : str ,_UpperCamelCase : Tuple ,_UpperCamelCase : Any ) -> Any: '''simple docstring''' self.add_vertex(_UpperCamelCase ) self.add_vertex(_UpperCamelCase ) if head == tail: return SCREAMING_SNAKE_CASE__ =weight SCREAMING_SNAKE_CASE__ =weight def __A ( self : Optional[int] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =self.get_edges() for edge in edges: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =edge edges.remove((tail, head, weight) ) for i in range(len(_UpperCamelCase ) ): SCREAMING_SNAKE_CASE__ =list(edges[i] ) edges.sort(key=lambda _UpperCamelCase : e[2] ) for i in range(len(_UpperCamelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: SCREAMING_SNAKE_CASE__ =edges[i][2] + 1 for edge in edges: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =edge SCREAMING_SNAKE_CASE__ =weight SCREAMING_SNAKE_CASE__ =weight def __str__( self : Union[str, Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ ="""""" for tail in self.adjacency: for head in self.adjacency[tail]: SCREAMING_SNAKE_CASE__ =self.adjacency[head][tail] string += f"""{head} -> {tail} == {weight}\n""" return string.rstrip("""\n""" ) def __A ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =[] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __A ( self : List[Any] ) -> Optional[int]: '''simple docstring''' return self.adjacency.keys() @staticmethod def __A ( _UpperCamelCase : Union[str, Any]=None ,_UpperCamelCase : List[Any]=None ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ =Graph() if vertices is None: SCREAMING_SNAKE_CASE__ =[] if edges is None: SCREAMING_SNAKE_CASE__ =[] for vertex in vertices: g.add_vertex(_UpperCamelCase ) for edge in edges: g.add_edge(*_UpperCamelCase ) return g class __a : """simple docstring""" def __init__( self : str ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ ={} SCREAMING_SNAKE_CASE__ ={} def __len__( self : int ) -> Optional[int]: '''simple docstring''' return len(self.parent ) def __A ( self : Any ,_UpperCamelCase : Any ) -> Optional[int]: '''simple docstring''' if item in self.parent: return self.find(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =item SCREAMING_SNAKE_CASE__ =0 return item def __A ( self : Union[str, Any] ,_UpperCamelCase : Tuple ) -> List[Any]: '''simple docstring''' if item not in self.parent: return self.make_set(_UpperCamelCase ) if item != self.parent[item]: SCREAMING_SNAKE_CASE__ =self.find(self.parent[item] ) return self.parent[item] def __A ( self : Any ,_UpperCamelCase : Any ,_UpperCamelCase : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ =self.find(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =self.find(_UpperCamelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: SCREAMING_SNAKE_CASE__ =roota return roota if self.rank[roota] < self.rank[roota]: SCREAMING_SNAKE_CASE__ =roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 SCREAMING_SNAKE_CASE__ =roota return roota return None @staticmethod def __A ( _UpperCamelCase : Union[str, Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =graph.num_vertices SCREAMING_SNAKE_CASE__ =Graph.UnionFind() SCREAMING_SNAKE_CASE__ =[] while num_components > 1: SCREAMING_SNAKE_CASE__ ={} for vertex in graph.get_vertices(): SCREAMING_SNAKE_CASE__ =-1 SCREAMING_SNAKE_CASE__ =graph.get_edges() for edge in edges: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =edge edges.remove((tail, head, weight) ) for edge in edges: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =edge SCREAMING_SNAKE_CASE__ =union_find.find(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =union_find.find(_UpperCamelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: SCREAMING_SNAKE_CASE__ =[head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: SCREAMING_SNAKE_CASE__ =[head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =cheap_edge[vertex] if union_find.find(_UpperCamelCase ) != union_find.find(_UpperCamelCase ): union_find.union(_UpperCamelCase ,_UpperCamelCase ) mst_edges.append(cheap_edge[vertex] ) SCREAMING_SNAKE_CASE__ =num_components - 1 SCREAMING_SNAKE_CASE__ =Graph.build(edges=_UpperCamelCase ) return mst
151
1
"""simple docstring""" from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar _SCREAMING_SNAKE_CASE : Optional[Any] = TypeVar('''T''') def lowerCamelCase__ ( _lowerCamelCase : str ) -> int: return (position - 1) // 2 def lowerCamelCase__ ( _lowerCamelCase : List[Any] ) -> int: return (2 * position) + 1 def lowerCamelCase__ ( _lowerCamelCase : int ) -> int: return (2 * position) + 2 class a ( Generic[T] ): def __init__( self : Any ) -> None: lowerCamelCase_ = [] lowerCamelCase_ = {} lowerCamelCase_ = 0 def __len__( self : List[str] ) -> int: return self.elements def __repr__( self : List[str] ) -> str: return str(self.heap ) def UpperCamelCase ( self : List[str] ) -> bool: return self.elements == 0 def UpperCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : int ) -> None: self.heap.append((elem, weight) ) lowerCamelCase_ = self.elements self.elements += 1 self._bubble_up(UpperCamelCase_ ) def UpperCamelCase ( self : int ) -> T: if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) lowerCamelCase_ = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: lowerCamelCase_ = self.heap[0] self._bubble_down(UpperCamelCase_ ) return elem def UpperCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : int ) -> None: lowerCamelCase_ = self.position_map[elem] lowerCamelCase_ = (elem, weight) if position > 0: lowerCamelCase_ = get_parent_position(UpperCamelCase_ ) lowerCamelCase_ = self.heap[parent_position] if parent_weight > weight: self._bubble_up(UpperCamelCase_ ) else: self._bubble_down(UpperCamelCase_ ) else: self._bubble_down(UpperCamelCase_ ) def UpperCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : T ) -> None: lowerCamelCase_ = self.position_map[elem] if curr_pos == 0: return None lowerCamelCase_ = get_parent_position(UpperCamelCase_ ) lowerCamelCase_ = self.heap[curr_pos] lowerCamelCase_ = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(UpperCamelCase_ , UpperCamelCase_ ) return self._bubble_up(UpperCamelCase_ ) return None def UpperCamelCase ( self : str , __SCREAMING_SNAKE_CASE : T ) -> None: lowerCamelCase_ = self.position_map[elem] lowerCamelCase_ = self.heap[curr_pos] lowerCamelCase_ = get_child_left_position(UpperCamelCase_ ) lowerCamelCase_ = get_child_right_position(UpperCamelCase_ ) if child_left_position < self.elements and child_right_position < self.elements: lowerCamelCase_ = self.heap[child_left_position] lowerCamelCase_ = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(UpperCamelCase_ , UpperCamelCase_ ) return self._bubble_down(UpperCamelCase_ ) if child_left_position < self.elements: lowerCamelCase_ = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(UpperCamelCase_ , UpperCamelCase_ ) return self._bubble_down(UpperCamelCase_ ) else: return None if child_right_position < self.elements: lowerCamelCase_ = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(UpperCamelCase_ , UpperCamelCase_ ) return self._bubble_down(UpperCamelCase_ ) return None def UpperCamelCase ( self : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> None: lowerCamelCase_ = self.heap[nodea_pos][0] lowerCamelCase_ = self.heap[nodea_pos][0] lowerCamelCase_ = ( self.heap[nodea_pos], self.heap[nodea_pos], ) lowerCamelCase_ = nodea_pos lowerCamelCase_ = nodea_pos class a ( Generic[T] ): def __init__( self : Any ) -> None: lowerCamelCase_ = {} lowerCamelCase_ = 0 def __repr__( self : Tuple ) -> str: return str(self.connections ) def __len__( self : int ) -> int: return self.nodes def UpperCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : T ) -> None: if node not in self.connections: lowerCamelCase_ = {} self.nodes += 1 def UpperCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : int ) -> None: self.add_node(UpperCamelCase_ ) self.add_node(UpperCamelCase_ ) lowerCamelCase_ = weight lowerCamelCase_ = weight def lowerCamelCase__ ( _lowerCamelCase : str , ) -> tuple[dict[T, int], dict[T, T | None]]: lowerCamelCase_ = {node: maxsize for node in graph.connections} lowerCamelCase_ = {node: None for node in graph.connections} lowerCamelCase_ = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(_lowercase , _lowercase ) if priority_queue.is_empty(): return dist, parent # initialization lowerCamelCase_ = priority_queue.extract_min() lowerCamelCase_ = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowerCamelCase_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_lowercase , dist[neighbour] ) lowerCamelCase_ = node # running prim's algorithm while not priority_queue.is_empty(): lowerCamelCase_ = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowerCamelCase_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_lowercase , dist[neighbour] ) lowerCamelCase_ = node return dist, parent
704
"""simple docstring""" import math def lowerCamelCase__ ( _lowerCamelCase : int ) -> bool: assert isinstance(_lowerCamelCase , _lowerCamelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False lowerCamelCase_ = range(3 , int(math.sqrt(_lowerCamelCase ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def lowerCamelCase__ ( _lowerCamelCase : List[Any] , _lowerCamelCase : str=1 , **_lowerCamelCase : int ) -> str: lowerCamelCase_ = factor * value lowerCamelCase_ = value while not is_prime(_lowerCamelCase ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **_lowerCamelCase ) return value
137
0
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCamelCase_ (__A ): def __init__( self : List[Any] , lowerCAmelCase_ : TransformeraDModel , lowerCAmelCase_ : AutoencoderKL , lowerCAmelCase_ : KarrasDiffusionSchedulers , lowerCAmelCase_ : Optional[Dict[int, str]] = None , ) -> List[Any]: super().__init__() self.register_modules(transformer=lowerCAmelCase_ , vae=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) # create a imagenet -> id dictionary for easier use UpperCAmelCase_ : str = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split("," ): UpperCAmelCase_ : Union[str, Any] = int(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = dict(sorted(self.labels.items() ) ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : Union[str, List[str]] ) -> List[int]: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase_ : str = list(lowerCAmelCase_ ) for l in label: if l not in self.labels: raise ValueError( f"""{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.""" ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : List[str] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : float = 4.0 , lowerCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase_ : int = 50 , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: UpperCAmelCase_ : Optional[int] = len(lowerCAmelCase_ ) UpperCAmelCase_ : int = self.transformer.config.sample_size UpperCAmelCase_ : Optional[Any] = self.transformer.config.in_channels UpperCAmelCase_ : Tuple = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowerCAmelCase_ , device=self.device , dtype=self.transformer.dtype , ) UpperCAmelCase_ : str = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents UpperCAmelCase_ : List[Any] = torch.tensor(lowerCAmelCase_ , device=self.device ).reshape(-1 ) UpperCAmelCase_ : Optional[Any] = torch.tensor([1_000] * batch_size , device=self.device ) UpperCAmelCase_ : int = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowerCAmelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: UpperCAmelCase_ : Optional[Any] = latent_model_input[: len(lowerCAmelCase_ ) // 2] UpperCAmelCase_ : int = torch.cat([half, half] , dim=0 ) UpperCAmelCase_ : Optional[int] = self.scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = t if not torch.is_tensor(lowerCAmelCase_ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) UpperCAmelCase_ : List[Any] = latent_model_input.device.type == "mps" if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase_ : Optional[int] = torch.floataa if is_mps else torch.floataa else: UpperCAmelCase_ : int = torch.intaa if is_mps else torch.intaa UpperCAmelCase_ : Optional[int] = torch.tensor([timesteps] , dtype=lowerCAmelCase_ , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: UpperCAmelCase_ : List[Any] = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCAmelCase_ : List[Any] = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output UpperCAmelCase_ : List[Any] = self.transformer( lowerCAmelCase_ , timestep=lowerCAmelCase_ , class_labels=lowerCAmelCase_ ).sample # perform guidance if guidance_scale > 1: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = torch.split(lowerCAmelCase_ , len(lowerCAmelCase_ ) // 2 , dim=0 ) UpperCAmelCase_ : Optional[Any] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) UpperCAmelCase_ : Tuple = torch.cat([half_eps, half_eps] , dim=0 ) UpperCAmelCase_ : Optional[Any] = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: UpperCAmelCase_ , UpperCAmelCase_ : List[str] = torch.split(lowerCAmelCase_ , lowerCAmelCase_ , dim=1 ) else: UpperCAmelCase_ : Optional[Any] = noise_pred # compute previous image: x_t -> x_t-1 UpperCAmelCase_ : Union[str, Any] = self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample if guidance_scale > 1: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = latent_model_input.chunk(2 , dim=0 ) else: UpperCAmelCase_ : Optional[int] = latent_model_input UpperCAmelCase_ : Dict = 1 / self.vae.config.scaling_factor * latents UpperCAmelCase_ : Dict = self.vae.decode(lowerCAmelCase_ ).sample UpperCAmelCase_ : Tuple = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCAmelCase_ : Optional[Any] = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_ : Optional[int] = self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowerCAmelCase_ )
95
'''simple docstring''' def a_ ( __snake_case : str , __snake_case : str ) -> str: """simple docstring""" lowerCamelCase_ =len(__snake_case ) lowerCamelCase_ =len(__snake_case ) lowerCamelCase_ =( first_str_length if first_str_length > second_str_length else second_str_length ) lowerCamelCase_ =[] for char_count in range(__snake_case ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(__snake_case ) if __name__ == "__main__": print(alternative_string_arrange("""AB""", """XYZ"""), end=""" """)
676
0
def a ( lowerCamelCase_ = 1000 ): '''simple docstring''' lowercase__ = -1 lowercase__ = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c lowercase__ = (n * n - 2 * a * n) // (2 * n - 2 * a) lowercase__ = n - a - b if c * c == (a * a + b * b): lowercase__ = a * b * c if candidate >= product: lowercase__ = candidate return product if __name__ == "__main__": print(F"{solution() = }")
712
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = DistilBertTokenizer lowercase__ = DistilBertTokenizerFast lowercase__ = True @slow def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) lowercase__ = tokenizer.encode('''sequence builders''', add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.encode('''multi-sequence build''', add_special_tokens=lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase ) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase, lowerCamelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
671
0
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """nvidia/segformer-b0-finetuned-ade-512-512""": ( """https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json""" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = 'segformer' def __init__( self , lowercase=3 , lowercase=4 , lowercase=[2, 2, 2, 2] , lowercase=[8, 4, 2, 1] , lowercase=[32, 64, 160, 256] , lowercase=[7, 3, 3, 3] , lowercase=[4, 2, 2, 2] , lowercase=[1, 2, 5, 8] , lowercase=[4, 4, 4, 4] , lowercase="gelu" , lowercase=0.0 , lowercase=0.0 , lowercase=0.1 , lowercase=0.02 , lowercase=0.1 , lowercase=1e-6 , lowercase=256 , lowercase=255 , **lowercase , ) -> List[str]: '''simple docstring''' super().__init__(**lowercase ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( "Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be" " removed, as the behaviour will default to that of reshape_last_stage = True." , lowercase , ) A__ = num_channels A__ = num_encoder_blocks A__ = depths A__ = sr_ratios A__ = hidden_sizes A__ = patch_sizes A__ = strides A__ = mlp_ratios A__ = num_attention_heads A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = classifier_dropout_prob A__ = initializer_range A__ = drop_path_rate A__ = layer_norm_eps A__ = decoder_hidden_size A__ = kwargs.get("reshape_last_stage" , lowercase ) A__ = semantic_loss_ignore_index class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = version.parse('1.11' ) @property def UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCamelCase ( self ) -> float: '''simple docstring''' return 1e-4 @property def UpperCamelCase ( self ) -> int: '''simple docstring''' return 12
514
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = """▁""" lowerCAmelCase__ = {"""vocab_file""": """sentencepiece.bpe.model""", """monolingual_vocab_file""": """dict.txt"""} lowerCAmelCase__ = { """vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model""", }, """monolingual_vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt""", }, } lowerCAmelCase__ = {"""vinai/bartpho-syllable""": 1_0_2_4} class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = ['input_ids', 'attention_mask'] def __init__( self , lowercase , lowercase , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase = None , **lowercase , ) -> None: '''simple docstring''' A__ = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else mask_token A__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowercase , eos_token=lowercase , unk_token=lowercase , sep_token=lowercase , cls_token=lowercase , pad_token=lowercase , mask_token=lowercase , sp_model_kwargs=self.sp_model_kwargs , **lowercase , ) A__ = vocab_file A__ = monolingual_vocab_file A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowercase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility A__ = {} A__ = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(lowercase ) not in self.fairseq_tokens_to_ids: A__ = cnt cnt += 1 with open(lowercase , "r" , encoding="utf-8" ) as f: for line in f.readlines(): A__ = line.strip().split()[0] A__ = len(self.fairseq_tokens_to_ids ) if str(lowercase ) not in self.fairseq_tokens_to_ids: A__ = len(self.fairseq_tokens_to_ids ) A__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[Any]: '''simple docstring''' A__ = self.__dict__.copy() A__ = None A__ = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowercase ) -> Any: '''simple docstring''' A__ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): A__ = {} A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCamelCase ( self , lowercase , lowercase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ = [self.cls_token_id] A__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase ( self , lowercase , lowercase = None , lowercase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase ) if token_ids_a is None: return [1] + ([0] * len(lowercase )) + [1] return [1] + ([0] * len(lowercase )) + [1, 1] + ([0] * len(lowercase )) + [1] def UpperCamelCase ( self , lowercase , lowercase = None ) -> List[int]: '''simple docstring''' A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' return len(self.fairseq_ids_to_tokens ) def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' A__ = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase ( self , lowercase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(lowercase , out_type=lowercase ) def UpperCamelCase ( self , lowercase ) -> List[str]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def UpperCamelCase ( self , lowercase ) -> Any: '''simple docstring''' return self.fairseq_ids_to_tokens[index] def UpperCamelCase ( self , lowercase ) -> List[str]: '''simple docstring''' A__ = "".join(lowercase ).replace(lowercase , " " ).strip() return out_string def UpperCamelCase ( self , lowercase , lowercase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowercase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A__ = os.path.join( lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) A__ = os.path.join( lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["monolingual_vocab_file"] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase ) elif not os.path.isfile(self.vocab_file ): with open(lowercase , "wb" ) as fi: A__ = self.sp_model.serialized_model_proto() fi.write(lowercase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( lowercase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , lowercase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(lowercase , "w" , encoding="utf-8" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F'{str(lowercase )} \n' ) return out_vocab_file, out_monolingual_vocab_file
514
1
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class lowerCamelCase_ : '''simple docstring''' def __init__( self : str , __lowerCamelCase : str = "cpu" , __lowerCamelCase : str = "openai/clip-vit-large-patch14" ) -> None: A : int = device A : Optional[Any] = CLIPTokenizerFast.from_pretrained(__lowerCamelCase ) A : Optional[int] = [0.48145466, 0.4578275, 0.40821073] A : Tuple = [0.26862954, 0.26130258, 0.27577711] A : List[Any] = torchvision.transforms.Normalize(self.image_mean , self.image_std ) A : int = torchvision.transforms.Resize(2_24 ) A : Optional[int] = torchvision.transforms.CenterCrop(2_24 ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , __lowerCamelCase : Optional[int] ) -> str: A : Tuple = self.resize(__lowerCamelCase ) A : Dict = self.center_crop(__lowerCamelCase ) A : Any = self.normalize(__lowerCamelCase ) return images def __call__( self : List[str] , __lowerCamelCase : int=None , __lowerCamelCase : int=None , **__lowerCamelCase : Optional[int] ) -> Union[str, Any]: A : Any = self.tokenizer(text=__lowerCamelCase , **__lowerCamelCase ) A : Optional[Any] = self.preprocess_img(__lowerCamelCase ) A : str = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class lowerCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , __lowerCamelCase : List[str]=10 , __lowerCamelCase : Tuple=0.01 , __lowerCamelCase : Dict=None , __lowerCamelCase : List[Any]=None , __lowerCamelCase : str=None , __lowerCamelCase : str=None , __lowerCamelCase : List[str]=None , __lowerCamelCase : int=None , __lowerCamelCase : Dict=False , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : str="image" , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : List[str]=False , __lowerCamelCase : str=False , __lowerCamelCase : List[str]=False , ) -> None: super().__init__() A : Optional[Any] = None A : str = device if device else get_device() if vqgan: A : List[str] = vqgan else: A : Dict = load_vqgan(self.device , conf_path=__lowerCamelCase , ckpt_path=__lowerCamelCase ) self.vqgan.eval() if clip: A : Optional[Any] = clip else: A : Dict = CLIPModel.from_pretrained("openai/clip-vit-base-patch32" ) self.clip.to(self.device ) A : Optional[Any] = ProcessorGradientFlow(device=self.device ) A : Dict = iterations A : Tuple = lr A : Tuple = log A : Optional[int] = make_grid A : str = return_val A : List[Any] = quantize A : str = self.vqgan.decoder.z_shape def SCREAMING_SNAKE_CASE__ ( self : int , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Dict=None , __lowerCamelCase : int=5 , __lowerCamelCase : str=True ) -> Union[str, Any]: A : Optional[Any] = [] if output_path is None: A : List[Any] = "./animation.gif" if input_path is None: A : str = self.save_path A : Optional[int] = sorted(glob(input_path + "/*" ) ) if not len(__lowerCamelCase ): raise ValueError( "No images found in save path, aborting (did you pass save_intermediate=True to the generate" " function?)" ) if len(__lowerCamelCase ) == 1: print("Only one image found in save path, (did you pass save_intermediate=True to the generate function?)" ) A : Union[str, Any] = total_duration / len(__lowerCamelCase ) A : Optional[Any] = [frame_duration] * len(__lowerCamelCase ) if extend_frames: A : int = 1.5 A : int = 3 for file_name in paths: if file_name.endswith(".png" ): images.append(imageio.imread(__lowerCamelCase ) ) imageio.mimsave(__lowerCamelCase , __lowerCamelCase , duration=__lowerCamelCase ) print(F"""gif saved to {output_path}""" ) def SCREAMING_SNAKE_CASE__ ( self : int , __lowerCamelCase : List[str]=None , __lowerCamelCase : Dict=None ) -> Union[str, Any]: if not (path or img): raise ValueError("Input either path or tensor" ) if img is not None: raise NotImplementedError A : List[str] = preprocess(Image.open(__lowerCamelCase ) , target_image_size=2_56 ).to(self.device ) A : str = preprocess_vqgan(__lowerCamelCase ) A , *A : Optional[Any] = self.vqgan.encode(__lowerCamelCase ) return z def SCREAMING_SNAKE_CASE__ ( self : Dict , __lowerCamelCase : Optional[Any] ) -> Union[str, Any]: A : int = self.latent.detach().requires_grad_() A : List[str] = base_latent + transform_vector if self.quantize: A , *A : Union[str, Any] = self.vqgan.quantize(__lowerCamelCase ) else: A : str = trans_latent return self.vqgan.decode(__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any]=None ) -> Dict: A : Union[str, Any] = self.clip_preprocessor(text=__lowerCamelCase , images=__lowerCamelCase , return_tensors="pt" , padding=__lowerCamelCase ) A : int = self.clip(**__lowerCamelCase ) A : Optional[int] = clip_outputs.logits_per_image if weights is not None: A : Any = similarity_logits * weights return similarity_logits.sum() def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ) -> str: A : Any = self._get_clip_similarity(pos_prompts["prompts"] , __lowerCamelCase , weights=(1 / pos_prompts["weights"]) ) if neg_prompts: A : List[Any] = self._get_clip_similarity(neg_prompts["prompts"] , __lowerCamelCase , weights=neg_prompts["weights"] ) else: A : Tuple = torch.tensor([1] , device=self.device ) A : List[Any] = -torch.log(__lowerCamelCase ) + torch.log(__lowerCamelCase ) return loss def SCREAMING_SNAKE_CASE__ ( self : Any , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict ) -> str: A : Any = torch.randn_like(self.latent , requires_grad=__lowerCamelCase , device=self.device ) A : Optional[int] = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() A : List[str] = self._add_vector(__lowerCamelCase ) A : List[Any] = loop_post_process(__lowerCamelCase ) A : Any = self._get_CLIP_loss(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) print("CLIP loss" , __lowerCamelCase ) if self.log: wandb.log({"CLIP Loss": clip_loss} ) clip_loss.backward(retain_graph=__lowerCamelCase ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] ) -> Optional[Any]: wandb.init(reinit=__lowerCamelCase , project="face-editor" ) wandb.config.update({"Positive Prompts": positive_prompts} ) wandb.config.update({"Negative Prompts": negative_prompts} ) wandb.config.update({"lr": self.lr, "iterations": self.iterations} ) if image_path: A : List[str] = Image.open(__lowerCamelCase ) A : Optional[Any] = image.resize((2_56, 2_56) ) wandb.log("Original Image" , wandb.Image(__lowerCamelCase ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , __lowerCamelCase : Optional[Any] ) -> List[Any]: if not prompts: return [] A : Optional[Any] = [] A : int = [] if isinstance(__lowerCamelCase , __lowerCamelCase ): A : int = [prompt.strip() for prompt in prompts.split("|" )] for prompt in prompts: if isinstance(__lowerCamelCase , (tuple, list) ): A : List[Any] = prompt[0] A : Optional[Any] = float(prompt[1] ) elif ":" in prompt: A , A : Optional[Any] = prompt.split(":" ) A : Union[str, Any] = float(__lowerCamelCase ) else: A : Tuple = prompt A : Optional[int] = 1.0 processed_prompts.append(__lowerCamelCase ) weights.append(__lowerCamelCase ) return { "prompts": processed_prompts, "weights": torch.tensor(__lowerCamelCase , device=self.device ), } def SCREAMING_SNAKE_CASE__ ( self : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : List[Any]=False , __lowerCamelCase : int=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Optional[int]=None , ) -> Optional[int]: if image_path: A : str = self._get_latent(__lowerCamelCase ) else: A : List[Any] = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) assert pos_prompts, "You must provide at least one positive prompt." A : List[str] = self.process_prompts(__lowerCamelCase ) A : Dict = self.process_prompts(__lowerCamelCase ) if save_final and save_path is None: A : Any = os.path.join("./outputs/" , "_".join(pos_prompts["prompts"] ) ) if not os.path.exists(__lowerCamelCase ): os.makedirs(__lowerCamelCase ) else: A : List[Any] = save_path + "_" + get_timestamp() os.makedirs(__lowerCamelCase ) A : Dict = save_path A : List[str] = self.vqgan.decode(self.latent )[0] if show_intermediate: print("Original Image" ) show_pil(custom_to_pil(__lowerCamelCase ) ) A : Union[str, Any] = loop_post_process(__lowerCamelCase ) for iter, transformed_img in enumerate(self._optimize_CLIP(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) ): if show_intermediate: show_pil(__lowerCamelCase ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F"""iter_{iter:03d}.png""" ) ) if self.log: wandb.log({"Image": wandb.Image(__lowerCamelCase )} ) if show_final: show_pil(__lowerCamelCase ) if save_final: transformed_img.save(os.path.join(self.save_path , F"""iter_{iter:03d}_final.png""" ) )
17
from sklearn.metrics import recall_score import datasets __SCREAMING_SNAKE_CASE = """ Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. """ __SCREAMING_SNAKE_CASE = """ Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {'recall': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {'recall': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric('recall') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {'recall': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric('recall') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'recall': array([1., 0., 0.])} """ __SCREAMING_SNAKE_CASE = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCamelCase_ ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"] , ) def SCREAMING_SNAKE_CASE__ ( self : Any , __lowerCamelCase : int , __lowerCamelCase : Dict , __lowerCamelCase : str=None , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : Tuple="binary" , __lowerCamelCase : Tuple=None , __lowerCamelCase : Tuple="warn" , ) -> Optional[Any]: A : str = recall_score( __lowerCamelCase , __lowerCamelCase , labels=__lowerCamelCase , pos_label=__lowerCamelCase , average=__lowerCamelCase , sample_weight=__lowerCamelCase , zero_division=__lowerCamelCase , ) return {"recall": float(__lowerCamelCase ) if score.size == 1 else score}
17
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __A = { 'configuration_owlvit': [ 'OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OwlViTConfig', 'OwlViTOnnxConfig', 'OwlViTTextConfig', 'OwlViTVisionConfig', ], 'processing_owlvit': ['OwlViTProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['OwlViTFeatureExtractor'] __A = ['OwlViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OwlViTModel', 'OwlViTPreTrainedModel', 'OwlViTTextModel', 'OwlViTVisionModel', 'OwlViTForObjectDetection', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
593
def a__ ( A_ ): '''simple docstring''' if len(A_ ) < 2: return collection def circle_sort_util(A_, A_, A_ ) -> bool: __magic_name__ = False if low == high: return swapped __magic_name__ = low __magic_name__ = high while left < right: if collection[left] > collection[right]: __magic_name__ , __magic_name__ = ( collection[right], collection[left], ) __magic_name__ = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: __magic_name__ , __magic_name__ = ( collection[right + 1], collection[left], ) __magic_name__ = True __magic_name__ = low + int((high - low) / 2 ) __magic_name__ = circle_sort_util(A_, A_, A_ ) __magic_name__ = circle_sort_util(A_, mid + 1, A_ ) return swapped or left_swap or right_swap __magic_name__ = True while is_not_sorted is True: __magic_name__ = circle_sort_util(A_, 0, len(A_ ) - 1 ) return collection if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = input('Enter numbers separated by a comma:\n').strip() __lowerCAmelCase : Tuple = [int(item) for item in user_input.split(',')] print(circle_sort(unsorted))
529
0
'''simple docstring''' import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort _UpperCamelCase : str = logging.get_logger(__name__) _UpperCamelCase : Optional[int] = { "tensor(bool)": np.bool_, "tensor(int8)": np.inta, "tensor(uint8)": np.uinta, "tensor(int16)": np.intaa, "tensor(uint16)": np.uintaa, "tensor(int32)": np.intaa, "tensor(uint32)": np.uintaa, "tensor(int64)": np.intaa, "tensor(uint64)": np.uintaa, "tensor(float16)": np.floataa, "tensor(float)": np.floataa, "tensor(double)": np.floataa, } class _snake_case : def __init__( self , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) lowerCAmelCase = model lowerCAmelCase = kwargs.get('model_save_dir' , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = kwargs.get('latest_model_name' , _SCREAMING_SNAKE_CASE ) def __call__( self , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = {k: np.array(_SCREAMING_SNAKE_CASE ) for k, v in kwargs.items()} return self.model.run(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @staticmethod def _SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) lowerCAmelCase = 'CPUExecutionProvider' return ort.InferenceSession(_SCREAMING_SNAKE_CASE , providers=[provider] , sess_options=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME lowerCAmelCase = self.model_save_dir.joinpath(self.latest_model_name ) lowerCAmelCase = Path(_SCREAMING_SNAKE_CASE ).joinpath(_SCREAMING_SNAKE_CASE ) try: shutil.copyfile(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) except shutil.SameFileError: pass # copy external weights (for models >2GB) lowerCAmelCase = self.model_save_dir.joinpath(_SCREAMING_SNAKE_CASE ) if src_path.exists(): lowerCAmelCase = Path(_SCREAMING_SNAKE_CASE ).joinpath(_SCREAMING_SNAKE_CASE ) try: shutil.copyfile(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) except shutil.SameFileError: pass def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ): '''simple docstring''' if os.path.isfile(_SCREAMING_SNAKE_CASE ): logger.error(F'Provided path ({save_directory}) should be a directory, not a file' ) return os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) # saving model weights/files self._save_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ): '''simple docstring''' lowerCAmelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_SCREAMING_SNAKE_CASE ): lowerCAmelCase = OnnxRuntimeModel.load_model( os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , provider=_SCREAMING_SNAKE_CASE , sess_options=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = Path(_SCREAMING_SNAKE_CASE ) # load model from hub else: # download model lowerCAmelCase = hf_hub_download( repo_id=_SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , use_auth_token=_SCREAMING_SNAKE_CASE , revision=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , force_download=_SCREAMING_SNAKE_CASE , ) lowerCAmelCase = Path(_SCREAMING_SNAKE_CASE ).parent lowerCAmelCase = Path(_SCREAMING_SNAKE_CASE ).name lowerCAmelCase = OnnxRuntimeModel.load_model(_SCREAMING_SNAKE_CASE , provider=_SCREAMING_SNAKE_CASE , sess_options=_SCREAMING_SNAKE_CASE ) return cls(model=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ): '''simple docstring''' lowerCAmelCase = None if len(str(_SCREAMING_SNAKE_CASE ).split('@' ) ) == 2: lowerCAmelCase , lowerCAmelCase = model_id.split('@' ) return cls._from_pretrained( model_id=_SCREAMING_SNAKE_CASE , revision=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , force_download=_SCREAMING_SNAKE_CASE , use_auth_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
514
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch _UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) class _snake_case : def __init__( self , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if not conversation_id: lowerCAmelCase = uuid.uuida() if past_user_inputs is None: lowerCAmelCase = [] if generated_responses is None: lowerCAmelCase = [] lowerCAmelCase = conversation_id lowerCAmelCase = past_user_inputs lowerCAmelCase = generated_responses lowerCAmelCase = text def __eq__( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ): '''simple docstring''' if self.new_user_input: if overwrite: logger.warning( F'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ' F'with: "{text}".' ) lowerCAmelCase = text else: logger.warning( F'User input added while unprocessed input was existing: "{self.new_user_input}" new input ' F'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input' ) else: lowerCAmelCase = text def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) lowerCAmelCase = None def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' self.generated_responses.append(_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): '''simple docstring''' lowerCAmelCase = F'Conversation id: {self.uuid} \n' for is_user, text in self.iter_texts(): lowerCAmelCase = 'user' if is_user else 'bot' output += F'{name} >> {text} \n' return output @add_end_docstrings( a_ , R''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class _snake_case ( a_ ): def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if self.tokenizer.pad_token_id is None: lowerCAmelCase = self.tokenizer.eos_token def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = {} lowerCAmelCase = {} lowerCAmelCase = {} if min_length_for_response is not None: lowerCAmelCase = min_length_for_response if minimum_tokens is not None: lowerCAmelCase = minimum_tokens if "max_length" in generate_kwargs: lowerCAmelCase = generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: lowerCAmelCase = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(_SCREAMING_SNAKE_CASE ) return preprocess_params, forward_params, postprocess_params def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = super().__call__(_SCREAMING_SNAKE_CASE , num_workers=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(_SCREAMING_SNAKE_CASE ) == 1: return outputs[0] return outputs def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=32 ): '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( F'Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ' 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): lowerCAmelCase = self.tokenizer._build_conversation_input_ids(_SCREAMING_SNAKE_CASE ) else: # If the tokenizer cannot handle conversations, we default to only the old version lowerCAmelCase = self._legacy_parse_and_tokenize(_SCREAMING_SNAKE_CASE ) if self.framework == "pt": lowerCAmelCase = torch.LongTensor([input_ids] ) elif self.framework == "tf": lowerCAmelCase = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=10 , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = generate_kwargs.get('max_length' , self.model.config.max_length ) lowerCAmelCase = model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(F'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})' ) lowerCAmelCase = max_length - minimum_tokens lowerCAmelCase = model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: lowerCAmelCase = model_inputs['attention_mask'][:, -trim:] lowerCAmelCase = model_inputs.pop('conversation' ) lowerCAmelCase = max_length lowerCAmelCase = self.model.generate(**_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if self.model.config.is_encoder_decoder: lowerCAmelCase = 1 else: lowerCAmelCase = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): '''simple docstring''' lowerCAmelCase = model_outputs['output_ids'] lowerCAmelCase = self.tokenizer.decode( output_ids[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE , ) lowerCAmelCase = model_outputs['conversation'] conversation.mark_processed() conversation.append_response(_SCREAMING_SNAKE_CASE ) return conversation def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = self.tokenizer.eos_token_id lowerCAmelCase = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) ) if len(_SCREAMING_SNAKE_CASE ) > self.tokenizer.model_max_length: lowerCAmelCase = input_ids[-self.tokenizer.model_max_length :] return input_ids
514
1
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class a ( UpperCAmelCase ): _lowercase = (DDIMParallelScheduler,) _lowercase = (("eta", 0.0), ("num_inference_steps", 5_0)) def _UpperCAmelCase ( self , **A_ ): '''simple docstring''' _UpperCAmelCase : List[str] = { "num_train_timesteps": 1000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**A_ ) return config def _UpperCAmelCase ( self , **A_ ): '''simple docstring''' _UpperCAmelCase : List[str] = self.scheduler_classes[0] _UpperCAmelCase : Optional[int] = self.get_scheduler_config(**A_ ) _UpperCAmelCase : Dict = scheduler_class(**A_ ) _UpperCAmelCase , _UpperCAmelCase : Tuple = 10, 0.0 _UpperCAmelCase : List[Any] = self.dummy_model() _UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter scheduler.set_timesteps(A_ ) for t in scheduler.timesteps: _UpperCAmelCase : Optional[Any] = model(A_ , A_ ) _UpperCAmelCase : Any = scheduler.step(A_ , A_ , A_ , A_ ).prev_sample return sample def _UpperCAmelCase ( self ): '''simple docstring''' for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=A_ ) _UpperCAmelCase : List[Any] = self.scheduler_classes[0] _UpperCAmelCase : Union[str, Any] = self.get_scheduler_config(steps_offset=1 ) _UpperCAmelCase : Dict = scheduler_class(**A_ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def _UpperCAmelCase ( self ): '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=A_ , beta_end=A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' self.check_over_configs(thresholding=A_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=A_ , prediction_type=A_ , sample_max_value=A_ , ) def _UpperCAmelCase ( self ): '''simple docstring''' for t in [1, 10, 49]: self.check_over_forward(time_step=A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=A_ , num_inference_steps=A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=A_ , eta=A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.scheduler_classes[0] _UpperCAmelCase : Dict = self.get_scheduler_config() _UpperCAmelCase : str = scheduler_class(**A_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_47_71 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_24_60 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_09_79 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1e-5 def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0] _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : Optional[Any] = scheduler_class(**A_ ) _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = 10, 0.0 scheduler.set_timesteps(A_ ) _UpperCAmelCase : Optional[Any] = self.dummy_model() _UpperCAmelCase : str = self.dummy_sample_deter _UpperCAmelCase : Optional[int] = self.dummy_sample_deter + 0.1 _UpperCAmelCase : str = self.dummy_sample_deter - 0.1 _UpperCAmelCase : List[str] = samplea.shape[0] _UpperCAmelCase : Any = torch.stack([samplea, samplea, samplea] , dim=0 ) _UpperCAmelCase : List[Any] = torch.arange(A_ )[0:3, None].repeat(1 , A_ ) _UpperCAmelCase : Dict = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _UpperCAmelCase : Tuple = scheduler.batch_step_no_noise(A_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , A_ ) _UpperCAmelCase : str = torch.sum(torch.abs(A_ ) ) _UpperCAmelCase : Any = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1e-2 assert abs(result_mean.item() - 0.49_82 ) < 1e-3 def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Any = self.full_loop() _UpperCAmelCase : List[str] = torch.sum(torch.abs(A_ ) ) _UpperCAmelCase : List[str] = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1e-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1e-3 def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.full_loop(prediction_type="v_prediction" ) _UpperCAmelCase : int = torch.sum(torch.abs(A_ ) ) _UpperCAmelCase : Tuple = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 52.53_02 ) < 1e-2 assert abs(result_mean.item() - 0.06_84 ) < 1e-3 def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.full_loop(set_alpha_to_one=A_ , beta_start=0.01 ) _UpperCAmelCase : Dict = torch.sum(torch.abs(A_ ) ) _UpperCAmelCase : Union[str, Any] = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1e-2 assert abs(result_mean.item() - 0.19_51 ) < 1e-3 def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.full_loop(set_alpha_to_one=A_ , beta_start=0.01 ) _UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(A_ ) ) _UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1e-2 assert abs(result_mean.item() - 0.19_41 ) < 1e-3
300
from statistics import mean, stdev def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: list , lowerCAmelCase: int = 3 ) -> list: _UpperCAmelCase : Tuple = min(lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = max(lowerCAmelCase ) # normalize data return [round((x - x_min) / (x_max - x_min) , lowerCAmelCase ) for x in data] def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: list , lowerCAmelCase: int = 3 ) -> list: _UpperCAmelCase : Union[str, Any] = mean(lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = stdev(lowerCAmelCase ) # standardize data return [round((x - mu) / (sigma) , lowerCAmelCase ) for x in data]
300
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/config.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/config.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/config.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/config.json', 'bert-base-multilingual-uncased': 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json', 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/config.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/config.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-base-cased-finetuned-mrpc': 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json', 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json', 'bert-base-german-dbmdz-uncased': 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json', 'cl-tohoku/bert-base-japanese': 'https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json', 'cl-tohoku/bert-base-japanese-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json' ), 'wietsedv/bert-base-dutch-cased': 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json', # See all BERT models at https://huggingface.co/models?filter=bert } class snake_case ( __snake_case ): """simple docstring""" __lowerCAmelCase = """bert""" def __init__( self , lowerCAmelCase_=3_0522 , lowerCAmelCase_=768 , lowerCAmelCase_=12 , lowerCAmelCase_=12 , lowerCAmelCase_=3072 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=512 , lowerCAmelCase_=2 , lowerCAmelCase_=0.02 , lowerCAmelCase_=1E-1_2 , lowerCAmelCase_=0 , lowerCAmelCase_="absolute" , lowerCAmelCase_=True , lowerCAmelCase_=None , **lowerCAmelCase_ , ): super().__init__(pad_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = position_embedding_type __lowercase = use_cache __lowercase = classifier_dropout class snake_case ( __snake_case ): """simple docstring""" @property def snake_case__ ( self ): if self.task == "multiple-choice": __lowercase = {0: "batch", 1: "choice", 2: "sequence"} else: __lowercase = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
576
from __future__ import annotations def __lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' print(f'''Vertex\tShortest Distance from vertex {src}''' ) for i, d in enumerate(_UpperCAmelCase ): print(f'''{i}\t\t{d}''' ) def __lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> str: '''simple docstring''' for j in range(_UpperCAmelCase ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: return True return False def __lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> list[float]: '''simple docstring''' __lowercase = [float("inf" )] * vertex_count __lowercase = 0.0 for _ in range(vertex_count - 1 ): for j in range(_UpperCAmelCase ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: __lowercase = distance[u] + w __lowercase = check_negative_cycle(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if negative_cycle_exists: raise Exception("Negative cycle found" ) return distance if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = int(input('Enter number of vertices: ').strip()) lowerCAmelCase__ = int(input('Enter number of edges: ').strip()) lowerCAmelCase__ = [{} for _ in range(E)] for i in range(E): print('Edge ', i + 1) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = ( int(x) for x in input('Enter source, destination, weight: ').strip().split(' ') ) lowerCAmelCase__ = {'src': src, 'dst': dest, 'weight': weight} lowerCAmelCase__ = int(input('\nEnter shortest path source:').strip()) lowerCAmelCase__ = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
576
1
'''simple docstring''' from pathlib import Path import fire def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int ) -> int: """simple docstring""" UpperCAmelCase = Path(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = Path(SCREAMING_SNAKE_CASE_ ) dest_dir.mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) for path in src_dir.iterdir(): UpperCAmelCase = [x.rstrip() for x in list(path.open().readlines() )][:n] UpperCAmelCase = dest_dir.joinpath(path.name ) print(SCREAMING_SNAKE_CASE_ ) dest_path.open('''w''' ).write('''\n'''.join(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": fire.Fire(minify)
51
import math def _UpperCAmelCase (UpperCamelCase__ : int ): return math.sqrt(UpperCamelCase__ ) * math.sqrt(UpperCamelCase__ ) == num def _UpperCAmelCase (UpperCamelCase__ : int ): _A : Dict = 0 _A : Dict = n while left <= right: _A : Optional[int] = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: _A : Optional[Any] = mid - 1 else: _A : str = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
503
0
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int _snake_case = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class _SCREAMING_SNAKE_CASE ( datasets.BuilderConfig ): '''simple docstring''' SCREAMING_SNAKE_CASE_: Any = None def __snake_case ( SCREAMING_SNAKE_CASE: "pyspark.sql.DataFrame" , SCREAMING_SNAKE_CASE: List[int] , ): """simple docstring""" import pyspark def generate_fn(): _lowerCAmelCase = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: _lowerCAmelCase = df_with_partition_id.select('*' ).where(f"""part_id = {partition_id}""" ).drop('part_id' ) _lowerCAmelCase = partition_df.collect() _lowerCAmelCase = 0 for row in rows: yield f"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class _SCREAMING_SNAKE_CASE ( _BaseExamplesIterable ): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : "pyspark.sql.DataFrame" , UpperCAmelCase_ : Optional[int]=None , ) -> List[Any]: """simple docstring""" _lowerCAmelCase = df _lowerCAmelCase = partition_order or range(self.df.rdd.getNumPartitions() ) _lowerCAmelCase = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : List[Any] ) -> str: """simple docstring""" yield from self.generate_examples_fn() def __lowerCamelCase ( self : Optional[int] , UpperCAmelCase_ : np.random.Generator ) -> List[Any]: """simple docstring""" _lowerCAmelCase = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(lowercase_ ) return SparkExamplesIterable(self.df , partition_order=lowercase_ ) def __lowerCamelCase ( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> List[str]: """simple docstring""" _lowerCAmelCase = self.split_shard_indices_by_worker(lowercase_ , lowercase_ ) return SparkExamplesIterable(self.df , partition_order=lowercase_ ) @property def __lowerCamelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" return len(self.partition_order ) class _SCREAMING_SNAKE_CASE ( datasets.DatasetBuilder ): '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] = SparkConfig def __init__( self : Tuple , UpperCAmelCase_ : "pyspark.sql.DataFrame" , UpperCAmelCase_ : str = None , UpperCAmelCase_ : str = None , **UpperCAmelCase_ : str , ) -> Tuple: """simple docstring""" import pyspark _lowerCAmelCase = pyspark.sql.SparkSession.builder.getOrCreate() _lowerCAmelCase = df _lowerCAmelCase = working_dir super().__init__( cache_dir=lowercase_ , config_name=str(self.df.semanticHash() ) , **lowercase_ , ) def __lowerCamelCase ( self : str ) -> Union[str, Any]: """simple docstring""" def create_cache_and_write_probe(UpperCAmelCase_ : str ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=lowercase_ ) _lowerCAmelCase = os.path.join(self._cache_dir , 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(lowercase_ , 'a' ) return [probe_file] if self._spark.conf.get('spark.master' , '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: _lowerCAmelCase = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(lowercase_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def __lowerCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def __lowerCamelCase ( self : List[Any] , UpperCAmelCase_ : datasets.download.download_manager.DownloadManager ) -> str: """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def __lowerCamelCase ( self : List[str] , UpperCAmelCase_ : Union[str, Any] ) -> Tuple: """simple docstring""" import pyspark def get_arrow_batch_size(UpperCAmelCase_ : Any ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) _lowerCAmelCase = self.df.count() _lowerCAmelCase = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. _lowerCAmelCase = ( self.df.limit(lowercase_ ) .repartition(1 ) .mapInArrow(lowercase_ , 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) _lowerCAmelCase = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. _lowerCAmelCase = min(lowercase_ , int(approx_total_size / max_shard_size ) ) _lowerCAmelCase = self.df.repartition(lowercase_ ) def __lowerCamelCase ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int , ) -> List[str]: """simple docstring""" import pyspark _lowerCAmelCase = ParquetWriter if file_format == """parquet""" else ArrowWriter _lowerCAmelCase = os.path.join(self._working_dir , os.path.basename(lowercase_ ) ) if self._working_dir else fpath _lowerCAmelCase = file_format == """parquet""" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. _lowerCAmelCase = self.config.features _lowerCAmelCase = self._writer_batch_size _lowerCAmelCase = self._fs.storage_options def write_arrow(UpperCAmelCase_ : str ): # Within the same SparkContext, no two task attempts will share the same attempt ID. _lowerCAmelCase = pyspark.TaskContext().taskAttemptId() _lowerCAmelCase = next(lowercase_ , lowercase_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['task_id', 'num_examples', 'num_bytes'] , ) _lowerCAmelCase = 0 _lowerCAmelCase = writer_class( features=lowercase_ , path=working_fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , writer_batch_size=lowercase_ , storage_options=lowercase_ , embed_local_files=lowercase_ , ) _lowerCAmelCase = pa.Table.from_batches([first_batch] ) writer.write_table(lowercase_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: _lowerCAmelCase = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) shard_id += 1 _lowerCAmelCase = writer_class( features=writer._features , path=working_fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , writer_batch_size=lowercase_ , storage_options=lowercase_ , embed_local_files=lowercase_ , ) _lowerCAmelCase = pa.Table.from_batches([batch] ) writer.write_table(lowercase_ ) if writer._num_bytes > 0: _lowerCAmelCase = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(lowercase_ ) ): _lowerCAmelCase = os.path.join(os.path.dirname(lowercase_ ) , os.path.basename(lowercase_ ) ) shutil.move(lowercase_ , lowercase_ ) _lowerCAmelCase = ( self.df.mapInArrow(lowercase_ , 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ) , pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ) , pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ) , pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def __lowerCamelCase ( self : Dict , UpperCAmelCase_ : "datasets.SplitGenerator" , UpperCAmelCase_ : str = "arrow" , UpperCAmelCase_ : Optional[Union[str, int]] = None , UpperCAmelCase_ : Optional[int] = None , **UpperCAmelCase_ : List[str] , ) -> str: """simple docstring""" self._validate_cache_dir() _lowerCAmelCase = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(lowercase_ ) _lowerCAmelCase = not is_remote_filesystem(self._fs ) _lowerCAmelCase = os.path.join if is_local else posixpath.join _lowerCAmelCase = """-TTTTT-SSSSS-of-NNNNN""" _lowerCAmelCase = F"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" _lowerCAmelCase = path_join(self._output_dir , lowercase_ ) _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = [] _lowerCAmelCase = [] for task_id, content in self._prepare_split_single(lowercase_ , lowercase_ , lowercase_ ): ( _lowerCAmelCase ) = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(lowercase_ ) _lowerCAmelCase = total_num_examples _lowerCAmelCase = total_num_bytes # should rename everything at the end logger.debug(F"""Renaming {total_shards} shards.""" ) if total_shards > 1: _lowerCAmelCase = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. _lowerCAmelCase = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , ): rename( lowercase_ , fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , fpath.replace('TTTTT-SSSSS' , F"""{global_shard_id:05d}""" ).replace('NNNNN' , F"""{total_shards:05d}""" ) , ) _lowerCAmelCase = [] _lowerCAmelCase = 0 for i in range(len(lowercase_ ) ): _lowerCAmelCase = task_id_and_num_shards[i] for shard_id in range(lowercase_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(lowercase_ , len(lowercase_ ) ).map(lambda UpperCAmelCase_ : _rename_shard(*lowercase_ ) ).collect() else: # don't use any pattern _lowerCAmelCase = 0 _lowerCAmelCase = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , fpath.replace(lowercase_ , '' ) , ) def __lowerCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : "datasets.SplitGenerator" , ) -> Any: """simple docstring""" return SparkExamplesIterable(self.df )
708
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline _snake_case = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') _snake_case = parser.parse_args() _snake_case = '''cpu''' _snake_case = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' _snake_case = '''path-to-your-trained-model''' _snake_case = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: _snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) _snake_case = pipe.to(device) # to channels last _snake_case = pipe.unet.to(memory_format=torch.channels_last) _snake_case = pipe.vae.to(memory_format=torch.channels_last) _snake_case = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: _snake_case = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex _snake_case = torch.randn(2, 4, 6_4, 6_4) _snake_case = torch.rand(1) * 9_9_9 _snake_case = torch.randn(2, 7_7, 7_6_8) _snake_case = (sample, timestep, encoder_hidden_status) try: _snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: _snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) _snake_case = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) _snake_case = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: _snake_case = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute _snake_case = 6_6_6 _snake_case = torch.Generator(device).manual_seed(seed) _snake_case = {'''generator''': generator} if args.steps is not None: _snake_case = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): _snake_case = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
491
0
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class A_ ( _a ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 class A_ ( _a , _a ): lowerCAmelCase__ = 1 @register_to_config def __init__( self: List[Any] ,__lowerCAmelCase: int = 2_000 ,__lowerCAmelCase: float = 0.15 ,__lowerCAmelCase: float = 0.01 ,__lowerCAmelCase: float = 13_48.0 ,__lowerCAmelCase: float = 1e-5 ,__lowerCAmelCase: int = 1 ,): '''simple docstring''' _lowerCamelCase : int = sigma_max # setable values _lowerCamelCase : Tuple = None self.set_sigmas(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Optional[int] = None ): '''simple docstring''' return sample def _lowercase ( self: Tuple ,__lowerCAmelCase: int ,__lowerCAmelCase: float = None ,__lowerCAmelCase: Union[str, torch.device] = None ): '''simple docstring''' _lowerCamelCase : str = sampling_eps if sampling_eps is not None else self.config.sampling_eps _lowerCamelCase : str = torch.linspace(1 ,__lowerCAmelCase ,__lowerCAmelCase ,device=__lowerCAmelCase ) def _lowercase ( self: int ,__lowerCAmelCase: int ,__lowerCAmelCase: float = None ,__lowerCAmelCase: float = None ,__lowerCAmelCase: float = None ): '''simple docstring''' _lowerCamelCase : List[str] = sigma_min if sigma_min is not None else self.config.sigma_min _lowerCamelCase : List[Any] = sigma_max if sigma_max is not None else self.config.sigma_max _lowerCamelCase : Any = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Dict = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) _lowerCamelCase : str = torch.exp(torch.linspace(math.log(__lowerCAmelCase ) ,math.log(__lowerCAmelCase ) ,__lowerCAmelCase ) ) _lowerCamelCase : Tuple = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' return torch.where( timesteps == 0 ,torch.zeros_like(t.to(timesteps.device ) ) ,self.discrete_sigmas[timesteps - 1].to(timesteps.device ) ,) def _lowercase ( self: Tuple ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: int ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Optional[torch.Generator] = None ,__lowerCAmelCase: bool = True ,): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) _lowerCamelCase : Optional[int] = timestep * torch.ones( sample.shape[0] ,device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) _lowerCamelCase : Dict = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda _lowerCamelCase : Any = timesteps.to(self.discrete_sigmas.device ) _lowerCamelCase : Optional[Any] = self.discrete_sigmas[timesteps].to(sample.device ) _lowerCamelCase : Optional[Any] = self.get_adjacent_sigma(__lowerCAmelCase ,__lowerCAmelCase ).to(sample.device ) _lowerCamelCase : Optional[Any] = torch.zeros_like(__lowerCAmelCase ) _lowerCamelCase : Tuple = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods _lowerCamelCase : Optional[int] = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): _lowerCamelCase : Tuple = diffusion.unsqueeze(-1 ) _lowerCamelCase : Any = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of _lowerCamelCase : str = randn_tensor( sample.shape ,layout=sample.layout ,generator=__lowerCAmelCase ,device=sample.device ,dtype=sample.dtype ) _lowerCamelCase : int = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? _lowerCamelCase : Optional[int] = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=__lowerCAmelCase ,prev_sample_mean=__lowerCAmelCase ) def _lowercase ( self: str ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Optional[torch.Generator] = None ,__lowerCAmelCase: bool = True ,): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction _lowerCamelCase : Optional[Any] = randn_tensor(sample.shape ,layout=sample.layout ,generator=__lowerCAmelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr _lowerCamelCase : Union[str, Any] = torch.norm(model_output.reshape(model_output.shape[0] ,-1 ) ,dim=-1 ).mean() _lowerCamelCase : List[Any] = torch.norm(noise.reshape(noise.shape[0] ,-1 ) ,dim=-1 ).mean() _lowerCamelCase : Optional[Any] = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 _lowerCamelCase : Optional[Any] = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term _lowerCamelCase : Dict = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): _lowerCamelCase : Optional[int] = step_size.unsqueeze(-1 ) _lowerCamelCase : Any = sample + step_size * model_output _lowerCamelCase : List[str] = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__lowerCAmelCase ) def _lowercase ( self: List[str] ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: torch.FloatTensor ,): '''simple docstring''' _lowerCamelCase : Union[str, Any] = timesteps.to(original_samples.device ) _lowerCamelCase : str = self.discrete_sigmas.to(original_samples.device )[timesteps] _lowerCamelCase : Optional[Any] = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(__lowerCAmelCase ) * sigmas[:, None, None, None] ) _lowerCamelCase : Optional[Any] = noise + original_samples return noisy_samples def __len__( self: List[str] ): '''simple docstring''' return self.config.num_train_timesteps
46
"""simple docstring""" import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all BART models at https://huggingface.co/models?filter=bart UpperCamelCase = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, } UpperCamelCase = { """facebook/bart-base""": 1024, """facebook/bart-large""": 1024, """facebook/bart-large-mnli""": 1024, """facebook/bart-large-cnn""": 1024, """facebook/bart-large-xsum""": 1024, """yjernite/bart_eli5""": 1024, } @lru_cache() def _lowerCamelCase ( ) -> Tuple: """simple docstring""" A__ = ( list(range(ord("!" ), ord("~" ) + 1 ) ) + list(range(ord("¡" ), ord("¬" ) + 1 ) ) + list(range(ord("®" ), ord("ÿ" ) + 1 ) ) ) A__ = bs[:] A__ = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCAmelCase_ ) cs.append(2**8 + n ) n += 1 A__ = [chr(UpperCAmelCase_ ) for n in cs] return dict(zip(UpperCAmelCase_, UpperCAmelCase_ ) ) def _lowerCamelCase ( UpperCAmelCase_ : str ) -> List[str]: """simple docstring""" A__ = set() A__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A__ = char return pairs class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" A__ : Union[str, Any] = VOCAB_FILES_NAMES A__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Optional[int] = ["input_ids", "attention_mask"] def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="replace" , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="<unk>" , SCREAMING_SNAKE_CASE__="<pad>" , SCREAMING_SNAKE_CASE__="<mask>" , SCREAMING_SNAKE_CASE__=False , **SCREAMING_SNAKE_CASE__ , ) -> Tuple: A__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else bos_token A__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else eos_token A__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else sep_token A__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else cls_token A__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else unk_token A__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it A__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token super().__init__( errors=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) with open(SCREAMING_SNAKE_CASE__ , encoding="utf-8" ) as vocab_handle: A__ = json.load(SCREAMING_SNAKE_CASE__ ) A__ = {v: k for k, v in self.encoder.items()} A__ = errors # how to handle errors in decoding A__ = bytes_to_unicode() A__ = {v: k for k, v in self.byte_encoder.items()} with open(SCREAMING_SNAKE_CASE__ , encoding="utf-8" ) as merges_handle: A__ = merges_handle.read().split("\n" )[1:-1] A__ = [tuple(merge.split() ) for merge in bpe_merges] A__ = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) A__ = {} A__ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions A__ = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def snake_case__ ( self ) -> List[Any]: return len(self.encoder ) def snake_case__ ( self ) -> List[Any]: return dict(self.encoder , **self.added_tokens_encoder ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> Dict: if token in self.cache: return self.cache[token] A__ = tuple(SCREAMING_SNAKE_CASE__ ) A__ = get_pairs(SCREAMING_SNAKE_CASE__ ) if not pairs: return token while True: A__ = min(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break A__ , A__ = bigram A__ = [] A__ = 0 while i < len(SCREAMING_SNAKE_CASE__ ): try: A__ = word.index(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A__ = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A__ = tuple(SCREAMING_SNAKE_CASE__ ) A__ = new_word if len(SCREAMING_SNAKE_CASE__ ) == 1: break else: A__ = get_pairs(SCREAMING_SNAKE_CASE__ ) A__ = " ".join(SCREAMING_SNAKE_CASE__ ) A__ = word return word def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> List[Any]: A__ = [] for token in re.findall(self.pat , SCREAMING_SNAKE_CASE__ ): A__ = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE__ ).split(" " ) ) return bpe_tokens def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> str: return self.encoder.get(SCREAMING_SNAKE_CASE__ , self.encoder.get(self.unk_token ) ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> Any: return self.decoder.get(SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> Dict: A__ = "".join(SCREAMING_SNAKE_CASE__ ) A__ = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return A__ = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) A__ = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(SCREAMING_SNAKE_CASE__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) + "\n" ) A__ = 0 with open(SCREAMING_SNAKE_CASE__ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE__ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) A__ = token_index writer.write(" ".join(SCREAMING_SNAKE_CASE__ ) + "\n" ) index += 1 return vocab_file, merge_file def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ = [self.cls_token_id] A__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> List[int]: A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , **SCREAMING_SNAKE_CASE__ ) -> Optional[int]: A__ = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE__ ) > 0 and not text[0].isspace()): A__ = " " + text return (text, kwargs)
104
0
"""simple docstring""" import copy import random from transformers import CLIPTokenizer class _A ( __a ): def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" super().__init__(*a_ , **a_ ) lowercase = {} def A__ ( self , __lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" lowercase = super().add_tokens(a_ , *a_ , **a_ ) if num_added_tokens == 0: raise ValueError( f'The tokenizer already contains the token {placeholder_token}. Please pass a different' """ `placeholder_token` that is not already in the tokenizer.""" ) def A__ ( self , __lowerCAmelCase , *__lowerCAmelCase , __lowerCAmelCase=1 , **__lowerCAmelCase ): """simple docstring""" lowercase = [] if num_vec_per_token == 1: self.try_adding_tokens(a_ , *a_ , **a_ ) output.append(a_ ) else: lowercase = [] for i in range(a_ ): lowercase = placeholder_token + f'_{i}' self.try_adding_tokens(a_ , *a_ , **a_ ) output.append(a_ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f'The tokenizer already has placeholder token {token} that can get confused with' f' {placeholder_token}keep placeholder tokens independent' ) lowercase = output def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=1.0 ): """simple docstring""" if isinstance(a_ , a_ ): lowercase = [] for i in range(len(a_ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=a_ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: lowercase = self.token_map[placeholder_token] lowercase = tokens[: 1 + int(len(a_ ) * prop_tokens_to_load )] if vector_shuffle: lowercase = copy.copy(a_ ) random.shuffle(a_ ) lowercase = text.replace(a_ , """ """.join(a_ ) ) return text def __call__( self , __lowerCAmelCase , *__lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=1.0 , **__lowerCAmelCase ): """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( a_ , vector_shuffle=a_ , prop_tokens_to_load=a_ ) , *a_ , **a_ , ) def A__ ( self , __lowerCAmelCase , *__lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=1.0 , **__lowerCAmelCase ): """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( a_ , vector_shuffle=a_ , prop_tokens_to_load=a_ ) , *a_ , **a_ , )
706
"""simple docstring""" import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :Tuple ) -> Union[str, Any]: '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def UpperCAmelCase__ ( lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :List[str] ) -> int: '''simple docstring''' lowercase = tmp_path / """cache""" lowercase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase = SqlDatasetReader( """dataset""" , """sqlite:///""" + sqlite_path , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ ).read() _check_sql_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) @require_sqlalchemy @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any] ) -> Optional[int]: '''simple docstring''' lowercase = tmp_path / """cache""" lowercase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowercase = features.copy() if features else default_expected_features lowercase = ( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_sql_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :Any ) -> Optional[int]: '''simple docstring''' with contextlib.closing(sqlitea.connect(lowerCAmelCase__ ) ) as con: lowercase = con.cursor() cur.execute("""SELECT * FROM dataset""" ) for row in cur: yield row @require_sqlalchemy def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :str , lowerCAmelCase__ :int ) -> List[Any]: '''simple docstring''' lowercase = tmp_path / """cache""" lowercase = os.path.join(lowerCAmelCase__ , """tmp.sql""" ) lowercase = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=lowerCAmelCase__ ).read() SqlDatasetWriter(lowerCAmelCase__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=1 ).write() lowercase = iter_sql_file(lowerCAmelCase__ ) lowercase = iter_sql_file(lowerCAmelCase__ ) for rowa, rowa in zip(lowerCAmelCase__ , lowerCAmelCase__ ): assert rowa == rowa @require_sqlalchemy def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Optional[int] ) -> Optional[int]: '''simple docstring''' lowercase = tmp_path / """cache""" lowercase = os.path.join(lowerCAmelCase__ , """tmp.sql""" ) lowercase = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=lowerCAmelCase__ ).read() SqlDatasetWriter(lowerCAmelCase__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=2 ).write() lowercase = iter_sql_file(lowerCAmelCase__ ) lowercase = iter_sql_file(lowerCAmelCase__ ) for rowa, rowa in zip(lowerCAmelCase__ , lowerCAmelCase__ ): assert rowa == rowa @require_sqlalchemy def UpperCAmelCase__ ( lowerCAmelCase__ :Dict , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Tuple ) -> Any: '''simple docstring''' lowercase = tmp_path / """cache""" lowercase = os.path.join(lowerCAmelCase__ , """tmp.sql""" ) lowercase = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=lowerCAmelCase__ ).read() with pytest.raises(lowerCAmelCase__ ): SqlDatasetWriter(lowerCAmelCase__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=0 ).write()
197
0
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): if digit_amount > 0: return round(number - int(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) return number - int(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
84
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : jnp.ndarray _UpperCamelCase : jnp.ndarray class A_ ( nn.Module ): '''simple docstring''' _UpperCamelCase : int _UpperCamelCase : Tuple[int] = (16, 32, 96, 256) _UpperCamelCase : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE__ ( self ): lowercase = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowercase = [] for i in range(len(self.block_out_channels ) - 1 ): lowercase = self.block_out_channels[i] lowercase = self.block_out_channels[i + 1] lowercase = nn.Conv( snake_case , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(snake_case ) lowercase = nn.Conv( snake_case , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(snake_case ) lowercase = blocks lowercase = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , snake_case ): lowercase = self.conv_in(snake_case ) lowercase = nn.silu(snake_case ) for block in self.blocks: lowercase = block(snake_case ) lowercase = nn.silu(snake_case ) lowercase = self.conv_out(snake_case ) return embedding @flax_register_to_config class A_ ( nn.Module , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : int = 32 _UpperCamelCase : int = 4 _UpperCamelCase : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _UpperCamelCase : Union[bool, Tuple[bool]] = False _UpperCamelCase : Tuple[int] = (320, 640, 1280, 1280) _UpperCamelCase : int = 2 _UpperCamelCase : Union[int, Tuple[int]] = 8 _UpperCamelCase : Optional[Union[int, Tuple[int]]] = None _UpperCamelCase : int = 1280 _UpperCamelCase : float = 0.0 _UpperCamelCase : bool = False _UpperCamelCase : jnp.dtype = jnp.floataa _UpperCamelCase : bool = True _UpperCamelCase : int = 0 _UpperCamelCase : str = "rgb" _UpperCamelCase : Tuple[int] = (16, 32, 96, 256) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): # init input tensors lowercase = (1, self.in_channels, self.sample_size, self.sample_size) lowercase = jnp.zeros(snake_case , dtype=jnp.floataa ) lowercase = jnp.ones((1,) , dtype=jnp.intaa ) lowercase = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowercase = (1, 3, self.sample_size * 8, self.sample_size * 8) lowercase = jnp.zeros(snake_case , dtype=jnp.floataa ) lowercase , lowercase = jax.random.split(snake_case ) lowercase = {'params': params_rng, 'dropout': dropout_rng} return self.init(snake_case , snake_case , snake_case , snake_case , snake_case )["params"] def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.block_out_channels lowercase = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowercase = self.num_attention_heads or self.attention_head_dim # input lowercase = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowercase = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowercase = FlaxTimestepEmbedding(snake_case , dtype=self.dtype ) lowercase = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) lowercase = self.only_cross_attention if isinstance(snake_case , snake_case ): lowercase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(snake_case , snake_case ): lowercase = (num_attention_heads,) * len(self.down_block_types ) # down lowercase = [] lowercase = [] lowercase = block_out_channels[0] lowercase = nn.Conv( snake_case , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(snake_case ) for i, down_block_type in enumerate(self.down_block_types ): lowercase = output_channel lowercase = block_out_channels[i] lowercase = i == len(snake_case ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowercase = FlaxCrossAttnDownBlockaD( in_channels=snake_case , out_channels=snake_case , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: lowercase = FlaxDownBlockaD( in_channels=snake_case , out_channels=snake_case , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(snake_case ) for _ in range(self.layers_per_block ): lowercase = nn.Conv( snake_case , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(snake_case ) if not is_final_block: lowercase = nn.Conv( snake_case , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(snake_case ) lowercase = down_blocks lowercase = controlnet_down_blocks # mid lowercase = block_out_channels[-1] lowercase = FlaxUNetMidBlockaDCrossAttn( in_channels=snake_case , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) lowercase = nn.Conv( snake_case , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , snake_case , snake_case , snake_case , snake_case , snake_case = 1.0 , snake_case = True , snake_case = False , ): lowercase = self.controlnet_conditioning_channel_order if channel_order == "bgr": lowercase = jnp.flip(snake_case , axis=1 ) # 1. time if not isinstance(snake_case , jnp.ndarray ): lowercase = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(snake_case , jnp.ndarray ) and len(timesteps.shape ) == 0: lowercase = timesteps.astype(dtype=jnp.floataa ) lowercase = jnp.expand_dims(snake_case , 0 ) lowercase = self.time_proj(snake_case ) lowercase = self.time_embedding(snake_case ) # 2. pre-process lowercase = jnp.transpose(snake_case , (0, 2, 3, 1) ) lowercase = self.conv_in(snake_case ) lowercase = jnp.transpose(snake_case , (0, 2, 3, 1) ) lowercase = self.controlnet_cond_embedding(snake_case ) sample += controlnet_cond # 3. down lowercase = (sample,) for down_block in self.down_blocks: if isinstance(snake_case , snake_case ): lowercase , lowercase = down_block(snake_case , snake_case , snake_case , deterministic=not train ) else: lowercase , lowercase = down_block(snake_case , snake_case , deterministic=not train ) down_block_res_samples += res_samples # 4. mid lowercase = self.mid_block(snake_case , snake_case , snake_case , deterministic=not train ) # 5. contronet blocks lowercase = () for down_block_res_sample, controlnet_block in zip(snake_case , self.controlnet_down_blocks ): lowercase = controlnet_block(snake_case ) controlnet_down_block_res_samples += (down_block_res_sample,) lowercase = controlnet_down_block_res_samples lowercase = self.controlnet_mid_block(snake_case ) # 6. scaling lowercase = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=snake_case , mid_block_res_sample=snake_case )
84
1
def UpperCAmelCase_( a__ ): """simple docstring""" if p < 2: raise ValueError('''p should not be less than 2!''' ) elif p == 2: return True SCREAMING_SNAKE_CASE : Any = 4 SCREAMING_SNAKE_CASE : Optional[Any] = (1 << p) - 1 for _ in range(p - 2 ): SCREAMING_SNAKE_CASE : int = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
710
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Any = { '''configuration_rembert''': ['''REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RemBertConfig''', '''RemBertOnnxConfig'''] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = ['''RemBertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = ['''RemBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ '''REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RemBertForCausalLM''', '''RemBertForMaskedLM''', '''RemBertForMultipleChoice''', '''RemBertForQuestionAnswering''', '''RemBertForSequenceClassification''', '''RemBertForTokenClassification''', '''RemBertLayer''', '''RemBertModel''', '''RemBertPreTrainedModel''', '''load_tf_weights_in_rembert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ '''TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRemBertForCausalLM''', '''TFRemBertForMaskedLM''', '''TFRemBertForMultipleChoice''', '''TFRemBertForQuestionAnswering''', '''TFRemBertForSequenceClassification''', '''TFRemBertForTokenClassification''', '''TFRemBertLayer''', '''TFRemBertModel''', '''TFRemBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys a__ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
333
0
"""simple docstring""" from ...processing_utils import ProcessorMixin class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''SpeechT5FeatureExtractor''' __lowerCAmelCase = '''SpeechT5Tokenizer''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self , *_UpperCAmelCase , **_UpperCAmelCase ): __a : Tuple = kwargs.pop('''audio''' , _UpperCAmelCase ) __a : List[Any] = kwargs.pop('''text''' , _UpperCAmelCase ) __a : List[Any] = kwargs.pop('''text_target''' , _UpperCAmelCase ) __a : Tuple = kwargs.pop('''audio_target''' , _UpperCAmelCase ) __a : List[str] = kwargs.pop('''sampling_rate''' , _UpperCAmelCase ) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''' ) if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''' ) if audio is not None: __a : Dict = self.feature_extractor(_UpperCAmelCase , *_UpperCAmelCase , sampling_rate=_UpperCAmelCase , **_UpperCAmelCase ) elif text is not None: __a : Union[str, Any] = self.tokenizer(_UpperCAmelCase , **_UpperCAmelCase ) else: __a : str = None if audio_target is not None: __a : Optional[int] = self.feature_extractor(audio_target=_UpperCAmelCase , *_UpperCAmelCase , sampling_rate=_UpperCAmelCase , **_UpperCAmelCase ) __a : Any = targets['''input_values'''] elif text_target is not None: __a : int = self.tokenizer(_UpperCAmelCase , **_UpperCAmelCase ) __a : Optional[Any] = targets['''input_ids'''] else: __a : List[Any] = None if inputs is None: return targets if targets is not None: __a : Dict = labels __a : List[Any] = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: __a : List[str] = decoder_attention_mask return inputs def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): __a : List[str] = kwargs.pop('''input_values''' , _UpperCAmelCase ) __a : Optional[Any] = kwargs.pop('''input_ids''' , _UpperCAmelCase ) __a : Dict = kwargs.pop('''labels''' , _UpperCAmelCase ) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''' ) if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''' ) if input_values is not None: __a : str = self.feature_extractor.pad(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) elif input_ids is not None: __a : str = self.tokenizer.pad(_UpperCAmelCase , **_UpperCAmelCase ) else: __a : List[Any] = None if labels is not None: if "input_ids" in labels or (isinstance(_UpperCAmelCase , _UpperCAmelCase ) and "input_ids" in labels[0]): __a : str = self.tokenizer.pad(_UpperCAmelCase , **_UpperCAmelCase ) __a : str = targets['''input_ids'''] else: __a : Optional[Any] = self.feature_extractor.feature_size __a : Tuple = self.feature_extractor.num_mel_bins __a : str = self.feature_extractor.pad(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) __a : List[str] = feature_size_hack __a : int = targets['''input_values'''] else: __a : Tuple = None if inputs is None: return targets if targets is not None: __a : List[Any] = labels __a : Optional[int] = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: __a : Any = decoder_attention_mask return inputs def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
52
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCamelCase : List[Any] = { "configuration_vivit": ["VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "VivitConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = ["VivitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ "VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "VivitModel", "VivitPreTrainedModel", "VivitForVideoClassification", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys _lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
430
0
def __SCREAMING_SNAKE_CASE ( lowercase_ = 50 ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F'{solution() = }')
702
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' if not nums: return 0 __UpperCAmelCase : int = nums[0] __UpperCAmelCase : Optional[Any] = 0 for num in nums[1:]: __UpperCAmelCase , __UpperCAmelCase : int = ( max_excluding + num, max(lowercase_ , lowercase_ ), ) return max(lowercase_ , lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
675
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _a : Dict = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt") _a : Tuple = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) _a : List[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def _lowercase ( lowerCamelCase__ ) -> Dict: """simple docstring""" with open(lowerCamelCase__ , "rb" ) as f: __UpperCAmelCase : str = Image.open(lowerCamelCase__ ) return im.convert("RGB" ) @dataclass class __A : snake_case :Optional[str] = field( default=__magic_name__ , metadata={ "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." } , ) snake_case :Optional[str] = field( default=__magic_name__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) snake_case :Optional[str] = field(default=__magic_name__ , metadata={"help": "A folder containing the training data."} ) snake_case :Optional[str] = field(default=__magic_name__ , metadata={"help": "A folder containing the validation data."} ) snake_case :Optional[float] = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) snake_case :Optional[int] = field( default=__magic_name__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) snake_case :Optional[int] = field( default=__magic_name__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def _snake_case ( self ): if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class __A : snake_case :str = field( default="google/vit-base-patch16-224-in21k" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) snake_case :Optional[str] = field( default=__magic_name__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(__magic_name__ )} , ) snake_case :Optional[str] = field( default=__magic_name__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) snake_case :Optional[str] = field( default=__magic_name__ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) snake_case :str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) snake_case :str = field(default=__magic_name__ , metadata={"help": "Name or path of preprocessor config."} ) snake_case :bool = field( default=__magic_name__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) snake_case :bool = field( default=__magic_name__ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def _lowercase ( lowerCamelCase__ ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Optional[Any] = torch.stack([example["pixel_values"] for example in examples] ) __UpperCAmelCase : Tuple = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def _lowercase ( ) -> List[str]: """simple docstring""" __UpperCAmelCase : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[str] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification" , lowerCamelCase__ , lowerCamelCase__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __UpperCAmelCase : Dict = training_args.get_process_log_level() logger.setLevel(lowerCamelCase__ ) transformers.utils.logging.set_verbosity(lowerCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __UpperCAmelCase : str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __UpperCAmelCase : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: __UpperCAmelCase : int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="image-classification" , use_auth_token=True if model_args.use_auth_token else None , ) else: __UpperCAmelCase : Optional[Any] = {} if data_args.train_dir is not None: __UpperCAmelCase : Dict = os.path.join(data_args.train_dir , "**" ) if data_args.validation_dir is not None: __UpperCAmelCase : List[Any] = os.path.join(data_args.validation_dir , "**" ) __UpperCAmelCase : str = load_dataset( "imagefolder" , data_files=lowerCamelCase__ , cache_dir=model_args.cache_dir , task="image-classification" , ) # If we don't have a validation split, split off a percentage of train as validation. __UpperCAmelCase : Optional[Any] = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowerCamelCase__ ) and data_args.train_val_split > 0.0: __UpperCAmelCase : List[Any] = dataset["train"].train_test_split(data_args.train_val_split ) __UpperCAmelCase : List[str] = split["train"] __UpperCAmelCase : Any = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. __UpperCAmelCase : Optional[Any] = dataset["train"].features["labels"].names __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = {}, {} for i, label in enumerate(lowerCamelCase__ ): __UpperCAmelCase : str = str(lowerCamelCase__ ) __UpperCAmelCase : int = label # Load the accuracy metric from the datasets package __UpperCAmelCase : List[Any] = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCamelCase__ ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) __UpperCAmelCase : Dict = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowerCamelCase__ ) , labelaid=lowerCamelCase__ , idalabel=lowerCamelCase__ , finetuning_task="image-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __UpperCAmelCase : Optional[Any] = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowerCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) __UpperCAmelCase : int = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: __UpperCAmelCase : List[Any] = image_processor.size["shortest_edge"] else: __UpperCAmelCase : int = (image_processor.size["height"], image_processor.size["width"]) __UpperCAmelCase : Dict = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) __UpperCAmelCase : List[Any] = Compose( [ RandomResizedCrop(lowerCamelCase__ ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) __UpperCAmelCase : List[str] = Compose( [ Resize(lowerCamelCase__ ), CenterCrop(lowerCamelCase__ ), ToTensor(), normalize, ] ) def train_transforms(lowerCamelCase__ ): __UpperCAmelCase : List[str] = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"] ] return example_batch def val_transforms(lowerCamelCase__ ): __UpperCAmelCase : str = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: __UpperCAmelCase : Dict = ( dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(lowerCamelCase__ ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: __UpperCAmelCase : Optional[int] = ( dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(lowerCamelCase__ ) # Initalize our trainer __UpperCAmelCase : Tuple = Trainer( model=lowerCamelCase__ , args=lowerCamelCase__ , train_dataset=dataset["train"] if training_args.do_train else None , eval_dataset=dataset["validation"] if training_args.do_eval else None , compute_metrics=lowerCamelCase__ , tokenizer=lowerCamelCase__ , data_collator=lowerCamelCase__ , ) # Training if training_args.do_train: __UpperCAmelCase : List[Any] = None if training_args.resume_from_checkpoint is not None: __UpperCAmelCase : Tuple = training_args.resume_from_checkpoint elif last_checkpoint is not None: __UpperCAmelCase : Dict = last_checkpoint __UpperCAmelCase : str = trainer.train(resume_from_checkpoint=lowerCamelCase__ ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __UpperCAmelCase : List[Any] = trainer.evaluate() trainer.log_metrics("eval" , lowerCamelCase__ ) trainer.save_metrics("eval" , lowerCamelCase__ ) # Write model card and (optionally) push to hub __UpperCAmelCase : Union[str, Any] = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase__ ) else: trainer.create_model_card(**lowerCamelCase__ ) if __name__ == "__main__": main()
168
'''simple docstring''' import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a : Any = logging.get_logger(__name__) _a : Optional[Any] = "▁" _a : str = {"vocab_file": "prophetnet.tokenizer"} _a : Any = { "vocab_file": { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer" ), } } _a : List[Any] = { "microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False}, } _a : int = { "microsoft/xprophetnet-large-wiki100-cased": 512, } def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: """simple docstring""" __UpperCAmelCase : List[str] = collections.OrderedDict() with open(lowerCamelCase__ , "r" , encoding="utf-8" ) as reader: __UpperCAmelCase : Any = reader.readlines() for index, token in enumerate(lowerCamelCase__ ): __UpperCAmelCase : List[str] = token.rstrip("\n" ) __UpperCAmelCase : Optional[int] = index return vocab class __A (__magic_name__ ): snake_case :Tuple = VOCAB_FILES_NAMES snake_case :Optional[Any] = PRETRAINED_VOCAB_FILES_MAP snake_case :Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :str = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_="[SEP]" , UpperCamelCase_="[SEP]" , UpperCamelCase_="[SEP]" , UpperCamelCase_="[UNK]" , UpperCamelCase_="[PAD]" , UpperCamelCase_="[CLS]" , UpperCamelCase_="[MASK]" , UpperCamelCase_ = None , **UpperCamelCase_ , ): __UpperCAmelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise __UpperCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) __UpperCAmelCase : List[str] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab __UpperCAmelCase : Union[str, Any] = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10 ): __UpperCAmelCase : List[str] = f"""[unused{i}]""" __UpperCAmelCase : Any = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab __UpperCAmelCase : Any = 12 __UpperCAmelCase : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(UpperCamelCase_ ) def __getstate__( self ): __UpperCAmelCase : Dict = self.__dict__.copy() __UpperCAmelCase : Tuple = None return state def __setstate__( self , UpperCamelCase_ ): __UpperCAmelCase : Dict = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCAmelCase : Any = {} __UpperCAmelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return ([0] * len(UpperCamelCase_ )) + [1] return ([0] * len(UpperCamelCase_ )) + [1] + ([0] * len(UpperCamelCase_ )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : Union[str, Any] = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _snake_case ( self ): return len(self.sp_model ) + self.fairseq_offset def _snake_case ( self ): __UpperCAmelCase : List[Any] = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , UpperCamelCase_ ): return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __UpperCAmelCase : Dict = self.sp_model.PieceToId(UpperCamelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self , UpperCamelCase_ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Dict = "".join(UpperCamelCase_ ).replace(UpperCamelCase_ , " " ).strip() return out_string def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : int = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , "wb" ) as fi: __UpperCAmelCase : str = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return token_ids_a + [self.sep_token_id] __UpperCAmelCase : str = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
168
1
"""simple docstring""" def A__ ( UpperCamelCase ): assert ( isinstance(UpperCamelCase , UpperCamelCase ) and number_of_steps > 0 ), F"number_of_steps needs to be positive integer, your input {number_of_steps}" if number_of_steps == 1: return 1 A, A = 1, 1 for _ in range(number_of_steps - 1 ): A, A = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
524
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _snake_case : List[Any] = logging.get_logger(__name__) _snake_case : Optional[int] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _snake_case : Optional[int] = { 'vocab_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/vocab.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/vocab.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/vocab.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/vocab.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/vocab.json', }, 'merges_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/merges.txt', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/merges.txt', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/merges.txt', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/merges.txt', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/merges.txt', }, 'tokenizer_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/tokenizer.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/tokenizer.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/tokenizer.json', }, } _snake_case : Union[str, Any] = { 'gpt2': 1024, 'gpt2-medium': 1024, 'gpt2-large': 1024, 'gpt2-xl': 1024, 'distilgpt2': 1024, } class _UpperCAmelCase ( lowercase_ ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['''input_ids''', '''attention_mask'''] UpperCamelCase = GPTaTokenizer def __init__( self :Optional[Any] , __UpperCamelCase :Optional[int]=None , __UpperCamelCase :Dict=None , __UpperCamelCase :Optional[Any]=None , __UpperCamelCase :str="<|endoftext|>" , __UpperCamelCase :Tuple="<|endoftext|>" , __UpperCamelCase :Dict="<|endoftext|>" , __UpperCamelCase :Union[str, Any]=False , **__UpperCamelCase :Union[str, Any] , ): super().__init__( __UpperCamelCase , __UpperCamelCase , tokenizer_file=__UpperCamelCase , unk_token=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , add_prefix_space=__UpperCamelCase , **__UpperCamelCase , ) A = kwargs.pop("add_bos_token" , __UpperCamelCase ) A = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __UpperCamelCase ) != add_prefix_space: A = getattr(__UpperCamelCase , pre_tok_state.pop("type" ) ) A = add_prefix_space A = pre_tok_class(**__UpperCamelCase ) A = add_prefix_space def lowerCamelCase ( self :Any , *__UpperCamelCase :Optional[int] , **__UpperCamelCase :Any ): A = kwargs.get("is_split_into_words" , __UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCamelCase , **__UpperCamelCase ) def lowerCamelCase ( self :Dict , *__UpperCamelCase :List[str] , **__UpperCamelCase :Optional[int] ): A = kwargs.get("is_split_into_words" , __UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCamelCase , **__UpperCamelCase ) def lowerCamelCase ( self :Optional[Any] , __UpperCamelCase :str , __UpperCamelCase :Optional[str] = None ): A = self._tokenizer.model.save(__UpperCamelCase , name=__UpperCamelCase ) return tuple(__UpperCamelCase ) def lowerCamelCase ( self :Dict , __UpperCamelCase :"Conversation" ): A = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) + [self.eos_token_id] ) if len(__UpperCamelCase ) > self.model_max_length: A = input_ids[-self.model_max_length :] return input_ids
524
1
'''simple docstring''' def _A ( A__ ): """simple docstring""" __lowercase = hex_num.strip() if not hex_num: raise ValueError('''No value was passed to the function''' ) __lowercase = hex_num[0] == '''-''' if is_negative: __lowercase = hex_num[1:] try: __lowercase = int(A__ , 16 ) except ValueError: raise ValueError('''Invalid value was passed to the function''' ) __lowercase = '''''' while int_num > 0: __lowercase = str(int_num % 2 ) + bin_str int_num >>= 1 return int(('''-''' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
41
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = TextToVideoSDPipeline SCREAMING_SNAKE_CASE : List[str] = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. SCREAMING_SNAKE_CASE : Optional[int] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=4 ,out_channels=4 ,down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') ,up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') ,cross_attention_dim=3_2 ,attention_head_dim=4 ,) __lowercase = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='''scaled_linear''' ,clip_sample=lowercase__ ,set_alpha_to_one=lowercase__ ,) torch.manual_seed(0 ) __lowercase = AutoencoderKL( block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,sample_size=1_2_8 ,) torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,hidden_act='''gelu''' ,projection_dim=5_1_2 ,) __lowercase = CLIPTextModel(lowercase__ ) __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowercase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : List[str]=0 ): if str(lowercase__ ).startswith('''mps''' ): __lowercase = torch.manual_seed(lowercase__ ) else: __lowercase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = TextToVideoSDPipeline(**lowercase__ ) __lowercase = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs(lowercase__ ) __lowercase = '''np''' __lowercase = sd_pipe(**lowercase__ ).frames __lowercase = frames[0][-3:, -3:, -1] assert frames[0].shape == (6_4, 6_4, 3) __lowercase = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def SCREAMING_SNAKE_CASE ( self : Any ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=1e-2 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ): pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass def SCREAMING_SNAKE_CASE ( self : List[str] ): return super().test_progress_bar() @slow @skip_mps class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2_5 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
41
1
from __future__ import annotations import requests def _lowerCamelCase ( snake_case ): _lowerCAmelCase = F'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty' return requests.get(snake_case ).json() def _lowerCamelCase ( snake_case = 10 ): _lowerCAmelCase = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' _lowerCAmelCase = requests.get(snake_case ).json()[:max_stories] return [get_hackernews_story(snake_case ) for story_id in story_ids] def _lowerCamelCase ( snake_case = 10 ): _lowerCAmelCase = hackernews_top_stories(snake_case ) return "\n".join('* [{title}]({url})'.format(**snake_case ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
225
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowerCamelCase__ ( UpperCAmelCase ): UpperCamelCase__ =(UniPCMultistepScheduler,) UpperCamelCase__ =(("num_inference_steps", 2_5),) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , **lowercase__ : Dict ): _lowerCAmelCase = { 'num_train_timesteps': 10_00, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'solver_order': 2, 'solver_type': 'bh2', } config.update(**lowercase__ ) return config def SCREAMING_SNAKE_CASE__ ( self : Any , lowercase__ : List[str]=0 , **lowercase__ : Union[str, Any] ): _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop('num_inference_steps' , lowercase__ ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config(**lowercase__ ) _lowerCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals _lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) _lowerCAmelCase = scheduler_class.from_pretrained(lowercase__ ) new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals _lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase , _lowerCAmelCase = sample, sample for t in range(lowercase__ , time_step + scheduler.config.solver_order + 1 ): _lowerCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample _lowerCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , lowercase__ : Tuple=0 , **lowercase__ : List[Any] ): _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop('num_inference_steps' , lowercase__ ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) _lowerCAmelCase = scheduler_class.from_pretrained(lowercase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample _lowerCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE__ ( self : Tuple , lowercase__ : int=None , **lowercase__ : List[Any] ): if scheduler is None: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(**lowercase__ ) _lowerCAmelCase = scheduler_class(**lowercase__ ) _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(**lowercase__ ) _lowerCAmelCase = scheduler_class(**lowercase__ ) _lowerCAmelCase = 10 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(lowercase__ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase = model(lowercase__ , lowercase__ ) _lowerCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample return sample def SCREAMING_SNAKE_CASE__ ( self : str ): _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop('num_inference_steps' , lowercase__ ) for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**lowercase__ ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase__ , 'set_timesteps' ): scheduler.set_timesteps(lowercase__ ) elif num_inference_steps is not None and not hasattr(lowercase__ , 'set_timesteps' ): _lowerCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] _lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] _lowerCAmelCase = scheduler.timesteps[5] _lowerCAmelCase = scheduler.timesteps[6] _lowerCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample _lowerCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE__ ( self : str ): # make sure that iterating over schedulers with same config names gives same results # for defaults _lowerCAmelCase = UniPCMultistepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase = self.full_loop(scheduler=lowercase__ ) _lowerCAmelCase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 _lowerCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = self.full_loop(scheduler=lowercase__ ) _lowerCAmelCase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): self.check_over_configs(thresholding=lowercase__ ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowercase__ , prediction_type=lowercase__ , sample_max_value=lowercase__ , solver_order=lowercase__ , solver_type=lowercase__ , ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowercase__ , solver_type=lowercase__ , prediction_type=lowercase__ , ) _lowerCAmelCase = self.full_loop( solver_order=lowercase__ , solver_type=lowercase__ , prediction_type=lowercase__ , ) assert not torch.isnan(lowercase__ ).any(), "Samples have nan numbers" def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): self.check_over_configs(lower_order_final=lowercase__ ) self.check_over_configs(lower_order_final=lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=lowercase__ , time_step=0 ) def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase = self.full_loop() _lowerCAmelCase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self : int ): _lowerCAmelCase = self.full_loop(prediction_type='v_prediction' ) _lowerCAmelCase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self : str ): _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(thresholding=lowercase__ , dynamic_thresholding_ratio=0 ) _lowerCAmelCase = scheduler_class(**lowercase__ ) _lowerCAmelCase = 10 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(lowercase__ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase = model(lowercase__ , lowercase__ ) _lowerCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample assert sample.dtype == torch.floataa def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , **lowercase__ : List[Any] ): for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config(**lowercase__ ) _lowerCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
225
1
from __future__ import annotations def _a ( __lowercase ) -> Union[str, Any]: """simple docstring""" if len(__lowercase ) == 0: return [] __UpperCamelCase , __UpperCamelCase = min(__lowercase ), max(__lowercase ) __UpperCamelCase = int(max_value - min_value ) + 1 __UpperCamelCase = [[] for _ in range(__lowercase )] for i in my_list: buckets[int(i - min_value )].append(__lowercase ) return [v for bucket in buckets for v in sorted(__lowercase )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
383
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class snake_case_ : '''simple docstring''' def __init__( self, A_, A_=2, A_=32, A_=16, A_=3, A_=True, A_=True, A_=32, A_=4, A_=[0, 1, 2, 3], A_=4, A_=37, A_="gelu", A_=0.1, A_=0.1, A_=0.02, A_=3, A_=[1, 384, 24, 24], A_=True, A_=None, ) -> Optional[int]: UpperCAmelCase__ =parent UpperCAmelCase__ =batch_size UpperCAmelCase__ =image_size UpperCAmelCase__ =patch_size UpperCAmelCase__ =num_channels UpperCAmelCase__ =is_training UpperCAmelCase__ =use_labels UpperCAmelCase__ =hidden_size UpperCAmelCase__ =num_hidden_layers UpperCAmelCase__ =backbone_out_indices UpperCAmelCase__ =num_attention_heads UpperCAmelCase__ =intermediate_size UpperCAmelCase__ =hidden_act UpperCAmelCase__ =hidden_dropout_prob UpperCAmelCase__ =attention_probs_dropout_prob UpperCAmelCase__ =initializer_range UpperCAmelCase__ =num_labels UpperCAmelCase__ =backbone_featmap_shape UpperCAmelCase__ =scope UpperCAmelCase__ =is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase__ =(image_size // patch_size) ** 2 UpperCAmelCase__ =num_patches + 1 def __UpperCAmelCase ( self ) -> str: UpperCAmelCase__ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ =None if self.use_labels: UpperCAmelCase__ =ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) UpperCAmelCase__ =self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase__ ={ "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 192, 384, 768], "num_groups": 2, } return DPTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, backbone_out_indices=self.backbone_out_indices, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=A_, initializer_range=self.initializer_range, is_hybrid=self.is_hybrid, backbone_config=A_, backbone_featmap_shape=self.backbone_featmap_shape, ) def __UpperCAmelCase ( self, A_, A_, A_ ) -> Optional[Any]: UpperCAmelCase__ =DPTModel(config=A_ ) model.to(A_ ) model.eval() UpperCAmelCase__ =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self, A_, A_, A_ ) -> Union[str, Any]: UpperCAmelCase__ =self.num_labels UpperCAmelCase__ =DPTForDepthEstimation(A_ ) model.to(A_ ) model.eval() UpperCAmelCase__ =model(A_ ) self.parent.assertEqual(result.predicted_depth.shape, (self.batch_size, self.image_size, self.image_size) ) def __UpperCAmelCase ( self, A_, A_, A_ ) -> Optional[Any]: UpperCAmelCase__ =self.num_labels UpperCAmelCase__ =DPTForSemanticSegmentation(A_ ) model.to(A_ ) model.eval() UpperCAmelCase__ =model(A_, labels=A_ ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __UpperCAmelCase ( self ) -> int: UpperCAmelCase__ =self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ =config_and_inputs UpperCAmelCase__ ={"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case_ ( a, a, unittest.TestCase ): '''simple docstring''' __UpperCamelCase = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __UpperCamelCase = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def __UpperCAmelCase ( self ) -> int: UpperCAmelCase__ =DPTModelTester(self ) UpperCAmelCase__ =ConfigTester(self, config_class=A_, has_text_modality=A_, hidden_size=37 ) def __UpperCAmelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def __UpperCAmelCase ( self ) -> List[Any]: pass def __UpperCAmelCase ( self ) -> str: UpperCAmelCase__ , UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ =model_class(A_ ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) UpperCAmelCase__ =model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_, nn.Linear ) ) def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase__ , UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ =model_class(A_ ) UpperCAmelCase__ =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ =[*signature.parameters.keys()] UpperCAmelCase__ =["pixel_values"] self.assertListEqual(arg_names[:1], A_ ) def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __UpperCAmelCase ( self ) -> str: UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*A_ ) def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A_ ) def __UpperCAmelCase ( self ) -> Any: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCAmelCase__ , UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ =True if model_class in get_values(A_ ): continue UpperCAmelCase__ =model_class(A_ ) model.to(A_ ) model.train() UpperCAmelCase__ =self._prepare_for_class(A_, A_, return_labels=A_ ) UpperCAmelCase__ =model(**A_ ).loss loss.backward() def __UpperCAmelCase ( self ) -> List[Any]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCAmelCase__ , UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ =False UpperCAmelCase__ =True if model_class in get_values(A_ ) or not model_class.supports_gradient_checkpointing: continue UpperCAmelCase__ =model_class(A_ ) model.to(A_ ) model.gradient_checkpointing_enable() model.train() UpperCAmelCase__ =self._prepare_for_class(A_, A_, return_labels=A_ ) UpperCAmelCase__ =model(**A_ ).loss loss.backward() def __UpperCAmelCase ( self ) -> int: UpperCAmelCase__ , UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ =_config_zero_init(A_ ) for model_class in self.all_model_classes: UpperCAmelCase__ =model_class(config=A_ ) # Skip the check for the backbone UpperCAmelCase__ =[] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": UpperCAmelCase__ =[f"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=f"""Parameter {name} of model {model_class} seems not properly initialized""", ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __UpperCAmelCase ( self ) -> List[Any]: pass @slow def __UpperCAmelCase ( self ) -> Optional[int]: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: UpperCAmelCase__ =DPTModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def __UpperCAmelCase ( self ) -> Any: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type UpperCAmelCase__ , UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ ="add" with self.assertRaises(A_ ): UpperCAmelCase__ =DPTForDepthEstimation(A_ ) def _UpperCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class snake_case_ ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase__ =DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) UpperCAmelCase__ =DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(A_ ) UpperCAmelCase__ =prepare_img() UpperCAmelCase__ =image_processor(images=A_, return_tensors="pt" ).to(A_ ) # forward pass with torch.no_grad(): UpperCAmelCase__ =model(**A_ ) UpperCAmelCase__ =outputs.predicted_depth # verify the predicted depth UpperCAmelCase__ =torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape, A_ ) UpperCAmelCase__ =torch.tensor( [[[5.64_37, 5.61_46, 5.65_11], [5.43_71, 5.56_49, 5.59_58], [5.52_15, 5.51_84, 5.52_93]]] ).to(A_ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100, A_, atol=1E-4 ) )
625
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase = { """configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""], """tokenization_electra""": ["""ElectraTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ["""ElectraTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ """ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """ElectraForCausalLM""", """ElectraForMaskedLM""", """ElectraForMultipleChoice""", """ElectraForPreTraining""", """ElectraForQuestionAnswering""", """ElectraForSequenceClassification""", """ElectraForTokenClassification""", """ElectraModel""", """ElectraPreTrainedModel""", """load_tf_weights_in_electra""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ """TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFElectraForMaskedLM""", """TFElectraForMultipleChoice""", """TFElectraForPreTraining""", """TFElectraForQuestionAnswering""", """TFElectraForSequenceClassification""", """TFElectraForTokenClassification""", """TFElectraModel""", """TFElectraPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ """FlaxElectraForCausalLM""", """FlaxElectraForMaskedLM""", """FlaxElectraForMultipleChoice""", """FlaxElectraForPreTraining""", """FlaxElectraForQuestionAnswering""", """FlaxElectraForSequenceClassification""", """FlaxElectraForTokenClassification""", """FlaxElectraModel""", """FlaxElectraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
150
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class SCREAMING_SNAKE_CASE_ ( unittest.TestCase): '''simple docstring''' def UpperCAmelCase ( self) -> Any: '''simple docstring''' snake_case__ : Dict = "ylacombe/bark-small" snake_case__ : str = tempfile.mkdtemp() snake_case__ : Optional[int] = "en_speaker_1" snake_case__ : Any = "This is a test string" snake_case__ : str = "speaker_embeddings_path.json" snake_case__ : str = "speaker_embeddings" def UpperCAmelCase ( self , **lowerCamelCase__) -> Union[str, Any]: '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCamelCase__) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname) def UpperCAmelCase ( self) -> int: '''simple docstring''' snake_case__ : int = self.get_tokenizer() snake_case__ : List[str] = BarkProcessor(tokenizer=lowerCamelCase__) processor.save_pretrained(self.tmpdirname) snake_case__ : Optional[int] = BarkProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab()) @slow def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' snake_case__ : Tuple = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) snake_case__ : Optional[Any] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)") snake_case__ : List[Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="(BOS)" , eos_token="(EOS)" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' snake_case__ : List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) snake_case__ : Optional[int] = 35 snake_case__ : Tuple = 2 snake_case__ : Union[str, Any] = 8 snake_case__ : Union[str, Any] = { "semantic_prompt": np.ones(lowerCamelCase__), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len)), "fine_prompt": np.ones((nb_codebooks_total, seq_len)), } # test providing already loaded voice_preset snake_case__ : List[Any] = processor(text=self.input_string , voice_preset=lowerCamelCase__) snake_case__ : List[Any] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCamelCase__ , np.array([])).tolist()) # test loading voice preset from npz file snake_case__ : Union[str, Any] = os.path.join(self.tmpdirname , "file.npz") np.savez(lowerCamelCase__ , **lowerCamelCase__) snake_case__ : Optional[int] = processor(text=self.input_string , voice_preset=lowerCamelCase__) snake_case__ : Optional[Any] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCamelCase__ , np.array([])).tolist()) # test loading voice preset from the hub snake_case__ : Dict = processor(text=self.input_string , voice_preset=self.voice_preset) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' snake_case__ : Any = self.get_tokenizer() snake_case__ : int = BarkProcessor(tokenizer=lowerCamelCase__) snake_case__ : List[str] = processor(text=self.input_string) snake_case__ : int = tokenizer( self.input_string , padding="max_length" , max_length=256 , add_special_tokens=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist())
150
1
"""simple docstring""" import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class UpperCamelCase_ (__A ): __magic_name__ = '''char''' __magic_name__ = '''bpe''' __magic_name__ = '''wp''' lowerCamelCase_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class UpperCamelCase_ (__A ): __magic_name__ = ['''image_processor''', '''char_tokenizer'''] __magic_name__ = '''ViTImageProcessor''' __magic_name__ = '''MgpstrTokenizer''' def __init__( self : Optional[int] , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Any=None , **lowerCAmelCase_ : str ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowerCAmelCase_ , ) UpperCAmelCase_ : Union[str, Any] = kwargs.pop("feature_extractor" ) UpperCAmelCase_ : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) UpperCAmelCase_ : List[str] = tokenizer UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained("gpt2" ) UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) def __call__( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : List[Any]=None , **lowerCAmelCase_ : Tuple ) -> List[Any]: if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: UpperCAmelCase_ : Tuple = self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) if text is not None: UpperCAmelCase_ : str = self.char_tokenizer(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) if text is None: return inputs elif images is None: return encodings else: UpperCAmelCase_ : List[str] = encodings["input_ids"] return inputs def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : Optional[Any] ) -> str: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = sequences UpperCAmelCase_ : Tuple = char_preds.size(0 ) UpperCAmelCase_ , UpperCAmelCase_ : int = self._decode_helper(lowerCAmelCase_ , "char" ) UpperCAmelCase_ , UpperCAmelCase_ : str = self._decode_helper(lowerCAmelCase_ , "bpe" ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self._decode_helper(lowerCAmelCase_ , "wp" ) UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Optional[Any] = [] for i in range(lowerCAmelCase_ ): UpperCAmelCase_ : Any = [char_scores[i], bpe_scores[i], wp_scores[i]] UpperCAmelCase_ : Union[str, Any] = [char_strs[i], bpe_strs[i], wp_strs[i]] UpperCAmelCase_ : Tuple = scores.index(max(lowerCAmelCase_ ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) UpperCAmelCase_ : Optional[Any] = {} UpperCAmelCase_ : Optional[Any] = final_strs UpperCAmelCase_ : Tuple = final_scores UpperCAmelCase_ : Optional[int] = char_strs UpperCAmelCase_ : int = bpe_strs UpperCAmelCase_ : Any = wp_strs return out def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] ) -> str: if format == DecodeType.CHARACTER: UpperCAmelCase_ : Dict = self.char_decode UpperCAmelCase_ : Union[str, Any] = 1 UpperCAmelCase_ : Optional[Any] = "[s]" elif format == DecodeType.BPE: UpperCAmelCase_ : int = self.bpe_decode UpperCAmelCase_ : Optional[Any] = 2 UpperCAmelCase_ : Any = "#" elif format == DecodeType.WORDPIECE: UpperCAmelCase_ : Union[str, Any] = self.wp_decode UpperCAmelCase_ : Optional[int] = 102 UpperCAmelCase_ : Union[str, Any] = "[SEP]" else: raise ValueError(f"""Format {format} is not supported.""" ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = [], [] UpperCAmelCase_ : int = pred_logits.size(0 ) UpperCAmelCase_ : str = pred_logits.size(1 ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = pred_logits.topk(1 , dim=-1 , largest=lowerCAmelCase_ , sorted=lowerCAmelCase_ ) UpperCAmelCase_ : Dict = preds_index.view(-1 , lowerCAmelCase_ )[:, 1:] UpperCAmelCase_ : Optional[Any] = decoder(lowerCAmelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = torch.nn.functional.softmax(lowerCAmelCase_ , dim=2 ).max(dim=2 ) UpperCAmelCase_ : int = preds_max_prob[:, 1:] for index in range(lowerCAmelCase_ ): UpperCAmelCase_ : Union[str, Any] = preds_str[index].find(lowerCAmelCase_ ) UpperCAmelCase_ : Dict = preds_str[index][:pred_eos] UpperCAmelCase_ : Tuple = preds_index[index].cpu().tolist() UpperCAmelCase_ : Optional[int] = pred_index.index(lowerCAmelCase_ ) if eos_token in pred_index else -1 UpperCAmelCase_ : str = preds_max_prob[index][: pred_eos_index + 1] UpperCAmelCase_ : Dict = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(lowerCAmelCase_ ) conf_scores.append(lowerCAmelCase_ ) return dec_strs, conf_scores def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : Any ) -> List[str]: UpperCAmelCase_ : List[Any] = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(lowerCAmelCase_ )] return decode_strs def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : Any ) -> List[str]: return self.bpe_tokenizer.batch_decode(lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : Any ) -> List[Any]: UpperCAmelCase_ : Dict = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(lowerCAmelCase_ )] return decode_strs
95
import os def __UpperCAmelCase( ): with open(os.path.dirname(lowercase_ ) + '''/p022_names.txt''' ) as file: _lowerCamelCase : Optional[int] = str(file.readlines()[0] ) _lowerCamelCase : List[Any] = names.replace('''"''' , '''''' ).split(''',''' ) names.sort() _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : Tuple = 0 for i, name in enumerate(lowercase_ ): for letter in name: name_score += ord(lowercase_ ) - 64 total_score += (i + 1) * name_score _lowerCamelCase : Optional[int] = 0 return total_score if __name__ == "__main__": print(solution())
114
0
'''simple docstring''' import gc import threading import time import psutil import torch class UpperCAmelCase__ : """simple docstring""" def __init__(self ) -> List[Any]: lowercase_ : str = psutil.Process() lowercase_ : str = False def _lowerCamelCase (self ) -> str: lowercase_ : Tuple = -1 while True: lowercase_ : Tuple = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def _lowerCamelCase (self ) -> List[str]: lowercase_ : List[str] = True lowercase_ : List[str] = threading.Thread(target=self.peak_monitor ) lowercase_ : Tuple = True self.thread.start() def _lowerCamelCase (self ) -> Dict: lowercase_ : Tuple = False self.thread.join() return self.cpu_memory_peak _A = PeakCPUMemory() def _UpperCamelCase ( ): # Time lowercase_ : Dict = {'time': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem lowercase_ : List[str] = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): lowercase_ : Union[str, Any] = torch.cuda.memory_allocated(SCREAMING_SNAKE_CASE_ ) torch.cuda.reset_peak_memory_stats() return measures def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): # Time lowercase_ : Any = {'time': time.time() - start_measures['time']} gc.collect() torch.cuda.empty_cache() # CPU mem lowercase_ : Tuple = (psutil.Process().memory_info().rss - start_measures['cpu']) / 2**20 lowercase_ : Tuple = (cpu_peak_tracker.stop() - start_measures['cpu']) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): lowercase_ : Any = (torch.cuda.memory_allocated(SCREAMING_SNAKE_CASE_ ) - start_measures[str(SCREAMING_SNAKE_CASE_ )]) / 2**20 lowercase_ : Dict = (torch.cuda.max_memory_allocated(SCREAMING_SNAKE_CASE_ ) - start_measures[str(SCREAMING_SNAKE_CASE_ )]) / 2**20 return measures def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): print(f'''{description}:''' ) print(f'''- Time: {measures["time"]:.2f}s''' ) for i in range(torch.cuda.device_count() ): print(f'''- GPU {i} allocated: {measures[str(SCREAMING_SNAKE_CASE_ )]:.2f}MiB''' ) lowercase_ : Union[str, Any] = measures[f'''{i}-peak'''] print(f'''- GPU {i} peak: {peak:.2f}MiB''' ) print(f'''- CPU RAM allocated: {measures["cpu"]:.2f}MiB''' ) print(f'''- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB''' )
703
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: _A = None _A = logging.get_logger(__name__) _A = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} _A = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json' ), }, } _A = { 'facebook/nllb-large-en-ro': 1_0_2_4, 'facebook/nllb-200-distilled-600M': 1_0_2_4, } # fmt: off _A = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class UpperCAmelCase__ ( _snake_case ): """simple docstring""" A : List[str] = VOCAB_FILES_NAMES A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Dict = PRETRAINED_VOCAB_FILES_MAP A : str = ['''input_ids''', '''attention_mask'''] A : str = NllbTokenizer A : List[int] = [] A : List[int] = [] def __init__(self , _a=None , _a=None , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=None , _a=None , _a=None , _a=False , **_a , ) -> Optional[int]: # Mask token behave like a normal word, i.e. include the space before it lowercase_ : Union[str, Any] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token lowercase_ : Any = legacy_behaviour super().__init__( vocab_file=_a , tokenizer_file=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , src_lang=_a , tgt_lang=_a , additional_special_tokens=_a , legacy_behaviour=_a , **_a , ) lowercase_ : Optional[int] = vocab_file lowercase_ : str = False if not self.vocab_file else True lowercase_ : Union[str, Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) lowercase_ : Tuple = { lang_code: self.convert_tokens_to_ids(_a ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowercase_ : Optional[Any] = src_lang if src_lang is not None else 'eng_Latn' lowercase_ : Tuple = self.convert_tokens_to_ids(self._src_lang ) lowercase_ : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _lowerCamelCase (self ) -> str: return self._src_lang @src_lang.setter def _lowerCamelCase (self , _a ) -> None: lowercase_ : Optional[int] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowerCamelCase (self , _a , _a = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCamelCase (self , _a , _a = None ) -> List[int]: lowercase_ : Tuple = [self.sep_token_id] lowercase_ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase (self , _a , _a , _a , _a , **_a ) -> Optional[int]: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowercase_ : Dict = src_lang lowercase_ : Dict = self(_a , add_special_tokens=_a , return_tensors=_a , **_a ) lowercase_ : Tuple = self.convert_tokens_to_ids(_a ) lowercase_ : Optional[Any] = tgt_lang_id return inputs def _lowerCamelCase (self , _a , _a = "eng_Latn" , _a = None , _a = "fra_Latn" , **_a , ) -> BatchEncoding: lowercase_ : Dict = src_lang lowercase_ : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(_a , _a , **_a ) def _lowerCamelCase (self ) -> List[Any]: return self.set_src_lang_special_tokens(self.src_lang ) def _lowerCamelCase (self ) -> Tuple: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowerCamelCase (self , _a ) -> None: lowercase_ : Dict = self.convert_tokens_to_ids(_a ) if self.legacy_behaviour: lowercase_ : Tuple = [] lowercase_ : str = [self.eos_token_id, self.cur_lang_code] else: lowercase_ : Union[str, Any] = [self.cur_lang_code] lowercase_ : Union[str, Any] = [self.eos_token_id] lowercase_ : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) lowercase_ : Tuple = self.convert_ids_to_tokens(self.suffix_tokens ) lowercase_ : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowerCamelCase (self , _a ) -> None: lowercase_ : str = self.convert_tokens_to_ids(_a ) if self.legacy_behaviour: lowercase_ : List[Any] = [] lowercase_ : Optional[Any] = [self.eos_token_id, self.cur_lang_code] else: lowercase_ : Optional[int] = [self.cur_lang_code] lowercase_ : Dict = [self.eos_token_id] lowercase_ : Dict = self.convert_ids_to_tokens(self.prefix_tokens ) lowercase_ : Optional[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowercase_ : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowerCamelCase (self , _a , _a = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return lowercase_ : Any = os.path.join( _a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
438
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class snake_case ( __lowercase , unittest.TestCase ): UpperCAmelCase__ = DanceDiffusionPipeline UpperCAmelCase__ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS UpperCAmelCase__ = PipelineTesterMixin.required_optional_params - { '''callback''', '''latents''', '''callback_steps''', '''output_type''', '''num_images_per_prompt''', } UpperCAmelCase__ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS UpperCAmelCase__ = False UpperCAmelCase__ = False def _lowercase (self ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=5_12 , sample_rate=1_60_00 , in_channels=2 , out_channels=2 , flip_sin_to_cos=SCREAMING_SNAKE_CASE_ , use_timestep_embedding=SCREAMING_SNAKE_CASE_ , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , ) SCREAMING_SNAKE_CASE_ = IPNDMScheduler() SCREAMING_SNAKE_CASE_ = { '''unet''': unet, '''scheduler''': scheduler, } return components def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ): """simple docstring""" if str(SCREAMING_SNAKE_CASE_ ).startswith('''mps''' ): SCREAMING_SNAKE_CASE_ = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: SCREAMING_SNAKE_CASE_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 4, } return inputs def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ = self.get_dummy_components() SCREAMING_SNAKE_CASE_ = DanceDiffusionPipeline(**SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = pipe(**SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = output.audios SCREAMING_SNAKE_CASE_ = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) SCREAMING_SNAKE_CASE_ = np.array([-0.72_65, 1.00_00, -0.83_88, 0.11_75, 0.94_98, -1.00_00] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def _lowercase (self ): """simple docstring""" return super().test_save_load_local() @skip_mps def _lowercase (self ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def _lowercase (self ): """simple docstring""" return super().test_save_load_optional_components() @skip_mps def _lowercase (self ): """simple docstring""" return super().test_attention_slicing_forward_pass() def _lowercase (self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class snake_case ( unittest.TestCase ): def _lowercase (self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = torch_device SCREAMING_SNAKE_CASE_ = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' ) SCREAMING_SNAKE_CASE_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe(generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=1_00 , audio_length_in_s=4.0_96 ) SCREAMING_SNAKE_CASE_ = output.audios SCREAMING_SNAKE_CASE_ = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) SCREAMING_SNAKE_CASE_ = np.array([-0.01_92, -0.02_31, -0.03_18, -0.00_59, 0.00_02, -0.00_20] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = torch_device SCREAMING_SNAKE_CASE_ = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe(generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=1_00 , audio_length_in_s=4.0_96 ) SCREAMING_SNAKE_CASE_ = output.audios SCREAMING_SNAKE_CASE_ = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) SCREAMING_SNAKE_CASE_ = np.array([-0.03_67, -0.04_88, -0.07_71, -0.05_25, -0.04_44, -0.03_41] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
626
"""simple docstring""" import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case ( __lowercase , unittest.TestCase ): UpperCAmelCase__ = None UpperCAmelCase__ = BloomTokenizerFast UpperCAmelCase__ = BloomTokenizerFast UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = '''tokenizer_file''' UpperCAmelCase__ = {'''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''unk_token''': '''<unk>''', '''pad_token''': '''<pad>'''} def _lowercase (self ): """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE_ = BloomTokenizerFast.from_pretrained('''bigscience/tokenizer''' ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase (self , **SCREAMING_SNAKE_CASE_ ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ = ['''The quick brown fox</s>''', '''jumps over the lazy dog</s>'''] SCREAMING_SNAKE_CASE_ = [[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]] SCREAMING_SNAKE_CASE_ = tokenizer.batch_encode_plus(SCREAMING_SNAKE_CASE_ )['''input_ids'''] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _lowercase (self , SCREAMING_SNAKE_CASE_=6 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input SCREAMING_SNAKE_CASE_ = '''This is a simple input''' SCREAMING_SNAKE_CASE_ = ['''This is a simple input 1''', '''This is a simple input 2'''] SCREAMING_SNAKE_CASE_ = ('''This is a simple input''', '''This is a pair''') SCREAMING_SNAKE_CASE_ = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests try: tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) tokenizer_r.encode_plus(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) tokenizer_r.batch_encode_plus(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) tokenizer_r.batch_encode_plus(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) except ValueError: self.fail('''Bloom Tokenizer should be able to deal with padding''' ) SCREAMING_SNAKE_CASE_ = None # Hotfixing padding = None self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='''max_length''' ) # Simple input self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='''max_length''' ) # Simple input self.assertRaises( SCREAMING_SNAKE_CASE_ , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='''max_length''' , ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='''max_length''' ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='''max_length''' ) # Pair input self.assertRaises( SCREAMING_SNAKE_CASE_ , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='''max_length''' , ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ = load_dataset('''xnli''' , '''all_languages''' , split='''test''' , streaming=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = next(iter(SCREAMING_SNAKE_CASE_ ) )['''premise'''] # pick up one data SCREAMING_SNAKE_CASE_ = list(sample_data.values() ) SCREAMING_SNAKE_CASE_ = list(map(tokenizer.encode , SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE_ = [tokenizer.decode(SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) for x in output_tokens] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
626
1
'''simple docstring''' import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging lowerCAmelCase_ : Tuple = logging.get_logger(__name__) def __a ( __lowerCamelCase : int=None , __lowerCamelCase : Dict=None ) -> List[str]: '''simple docstring''' return field(default_factory=lambda: default , metadata=__UpperCamelCase ) @dataclass class lowercase : lowerCamelCase_ =list_field( default=[] , metadata={ 'help': ( 'Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version' ' of all available models' ) } , ) lowerCamelCase_ =list_field( default=[8] , metadata={'help': 'List of batch sizes for which memory and time performance will be evaluated'} ) lowerCamelCase_ =list_field( default=[8, 3_2, 1_2_8, 5_1_2] , metadata={'help': 'List of sequence lengths for which memory and time performance will be evaluated'} , ) lowerCamelCase_ =field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to benchmark inference of model. Inference can be disabled via --no-inference.'} , ) lowerCamelCase_ =field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'} , ) lowerCamelCase_ =field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'} ) lowerCamelCase_ =field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Use FP16 to accelerate inference.'} ) lowerCamelCase_ =field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Benchmark training of model'} ) lowerCamelCase_ =field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Verbose memory tracing'} ) lowerCamelCase_ =field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'} , ) lowerCamelCase_ =field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': 'Whether to perform memory measurements. Memory measurements can be disabled via --no-memory' } , ) lowerCamelCase_ =field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Trace memory line by line'} ) lowerCamelCase_ =field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Save result to a CSV file'} ) lowerCamelCase_ =field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Save all print statements in a log file'} ) lowerCamelCase_ =field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to print environment information'} ) lowerCamelCase_ =field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use' ' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled' ' for debugging / testing and on TPU.' ) } , ) lowerCamelCase_ =field( default=f'''inference_time_{round(time() )}.csv''' , metadata={'help': 'CSV filename used if saving time results to csv.'} , ) lowerCamelCase_ =field( default=f'''inference_memory_{round(time() )}.csv''' , metadata={'help': 'CSV filename used if saving memory results to csv.'} , ) lowerCamelCase_ =field( default=f'''train_time_{round(time() )}.csv''' , metadata={'help': 'CSV filename used if saving time results to csv for training.'} , ) lowerCamelCase_ =field( default=f'''train_memory_{round(time() )}.csv''' , metadata={'help': 'CSV filename used if saving memory results to csv for training.'} , ) lowerCamelCase_ =field( default=f'''env_info_{round(time() )}.csv''' , metadata={'help': 'CSV filename used if saving environment information.'} , ) lowerCamelCase_ =field( default=f'''log_{round(time() )}.csv''' , metadata={'help': 'Log filename used if print statements are saved in log.'} , ) lowerCamelCase_ =field(default=3 , metadata={'help': 'Times an experiment will be run.'} ) lowerCamelCase_ =field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain' ' model weights.' ) } , ) def __UpperCAmelCase ( self : List[Any]) -> Tuple: warnings.warn( F'The class {self.__class__} is deprecated. Hugging Face Benchmarking utils' " are deprecated in general and it is advised to use external Benchmarking libraries " " to benchmark Transformer models." , _lowercase , ) def __UpperCAmelCase ( self : int) -> Tuple: return json.dumps(dataclasses.asdict(self) , indent=2) @property def __UpperCAmelCase ( self : Union[str, Any]) -> List[str]: if len(self.models) <= 0: raise ValueError( "Please make sure you provide at least one model name / model identifier, *e.g.* `--models" " bert-base-cased` or `args.models = ['bert-base-cased'].") return self.models @property def __UpperCAmelCase ( self : Dict) -> Optional[Any]: if not self.multi_process: return False elif self.is_tpu: logger.info("Multiprocessing is currently not possible on TPU.") return False else: return True
721
'''simple docstring''' import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) lowerCAmelCase_ : Optional[Any] = "bert-base-cased" lowerCAmelCase_ : Any = "fp16" lowerCAmelCase_ : Union[str, Any] = "bf16" lowerCAmelCase_ : List[Any] = [FPaa, BFaa] @require_fsdp @require_cuda class lowercase ( __lowerCamelCase ): def __UpperCAmelCase ( self : str) -> Union[str, Any]: super().setUp() lowercase_ = dict( ACCELERATE_USE_FSDP="true" , MASTER_ADDR="localhost" , MASTER_PORT="10999" , RANK="0" , LOCAL_RANK="0" , WORLD_SIZE="1" , ) def __UpperCAmelCase ( self : Optional[Any]) -> List[Any]: from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__lowerCAmelCase): lowercase_ = self.dist_env.copy() lowercase_ = F'{i + 1}' lowercase_ = strategy with mockenv_context(**__lowerCAmelCase): lowercase_ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1)) def __UpperCAmelCase ( self : Union[str, Any]) -> List[str]: from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__lowerCAmelCase): lowercase_ = self.dist_env.copy() lowercase_ = prefetch_policy with mockenv_context(**__lowerCAmelCase): lowercase_ = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1)) def __UpperCAmelCase ( self : Dict) -> List[str]: from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__lowerCAmelCase): lowercase_ = self.dist_env.copy() lowercase_ = state_dict_type with mockenv_context(**__lowerCAmelCase): lowercase_ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1)) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only) def __UpperCAmelCase ( self : Optional[int]) -> List[Any]: lowercase_ = AutoModel.from_pretrained(__lowerCAmelCase) for policy in FSDP_AUTO_WRAP_POLICY: lowercase_ = self.dist_env.copy() lowercase_ = policy if policy == "TRANSFORMER_BASED_WRAP": lowercase_ = "BertLayer" elif policy == "SIZE_BASED_WRAP": lowercase_ = "2000" with mockenv_context(**__lowerCAmelCase): lowercase_ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__lowerCAmelCase) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy) lowercase_ = self.dist_env.copy() lowercase_ = "TRANSFORMER_BASED_WRAP" lowercase_ = "T5Layer" with mockenv_context(**__lowerCAmelCase): lowercase_ = FullyShardedDataParallelPlugin() with self.assertRaises(__lowerCAmelCase) as cm: fsdp_plugin.set_auto_wrap_policy(__lowerCAmelCase) self.assertTrue("Could not find the transformer layer class to wrap in the model." in str(cm.exception)) lowercase_ = self.dist_env.copy() lowercase_ = "SIZE_BASED_WRAP" lowercase_ = "0" with mockenv_context(**__lowerCAmelCase): lowercase_ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__lowerCAmelCase) self.assertIsNone(fsdp_plugin.auto_wrap_policy) def __UpperCAmelCase ( self : Union[str, Any]) -> int: from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: lowercase_ = self.dist_env.copy() lowercase_ = mp_dtype with mockenv_context(**__lowerCAmelCase): lowercase_ = Accelerator() if mp_dtype == "fp16": lowercase_ = torch.floataa elif mp_dtype == "bf16": lowercase_ = torch.bfloataa lowercase_ = MixedPrecision(param_dtype=__lowerCAmelCase , reduce_dtype=__lowerCAmelCase , buffer_dtype=__lowerCAmelCase) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , __lowerCAmelCase) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , __lowerCAmelCase)) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler) AcceleratorState._reset_state(__lowerCAmelCase) def __UpperCAmelCase ( self : List[str]) -> Dict: from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: lowercase_ = self.dist_env.copy() lowercase_ = str(__lowerCAmelCase).lower() with mockenv_context(**__lowerCAmelCase): lowercase_ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=__lowerCAmelCase)) @require_fsdp @require_multi_gpu @slow class lowercase ( __lowerCamelCase ): def __UpperCAmelCase ( self : Optional[int]) -> str: super().setUp() lowercase_ = 0.82 lowercase_ = [ "fsdp_shard_grad_op_transformer_based_wrap", "fsdp_full_shard_transformer_based_wrap", ] lowercase_ = { "multi_gpu_fp16": 3200, "fsdp_shard_grad_op_transformer_based_wrap_fp16": 2000, "fsdp_full_shard_transformer_based_wrap_fp16": 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } lowercase_ = 160 lowercase_ = 160 lowercase_ = inspect.getfile(accelerate.test_utils) lowercase_ = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "external_deps"]) def __UpperCAmelCase ( self : Optional[Any]) -> Optional[Any]: lowercase_ = os.path.join(self.test_scripts_folder , "test_performance.py") lowercase_ = ["accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp"] for config in self.performance_configs: lowercase_ = cmd.copy() for i, strategy in enumerate(__lowerCAmelCase): if strategy.lower() in config: cmd_config.append(F'--fsdp_sharding_strategy={i+1}') break if "fp32" in config: cmd_config.append("--mixed_precision=no") else: cmd_config.append("--mixed_precision=fp16") if "cpu_offload" in config: cmd_config.append("--fsdp_offload_params=True") for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F'--fsdp_auto_wrap_policy={policy}') break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer") elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000") cmd_config.extend( [ self.test_file_path, F'--output_dir={self.tmpdir}', F'--performance_lower_bound={self.performance_lower_bound}', ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(__lowerCAmelCase , env=os.environ.copy()) def __UpperCAmelCase ( self : Dict) -> Dict: lowercase_ = os.path.join(self.test_scripts_folder , "test_checkpointing.py") lowercase_ = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp", "--mixed_precision=fp16", "--fsdp_transformer_layer_cls_to_wrap=BertLayer", ] for i, strategy in enumerate(__lowerCAmelCase): lowercase_ = cmd.copy() cmd_config.append(F'--fsdp_sharding_strategy={i+1}') if strategy != "FULL_SHARD": continue lowercase_ = len(__lowerCAmelCase) for state_dict_type in FSDP_STATE_DICT_TYPE: lowercase_ = cmd_config[:state_dict_config_index] cmd_config.append(F'--fsdp_state_dict_type={state_dict_type}') cmd_config.extend( [ self.test_file_path, F'--output_dir={self.tmpdir}', "--partial_train_epoch=1", ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(__lowerCAmelCase , env=os.environ.copy()) lowercase_ = cmd_config[:-1] lowercase_ = os.path.join(self.tmpdir , "epoch_0") cmd_config.extend( [ F'--resume_from_checkpoint={resume_from_checkpoint}', ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(__lowerCAmelCase , env=os.environ.copy()) def __UpperCAmelCase ( self : Optional[int]) -> int: lowercase_ = os.path.join(self.test_scripts_folder , "test_peak_memory_usage.py") lowercase_ = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): lowercase_ = cmd.copy() if "fp16" in spec: cmd_config.extend(["--mixed_precision=fp16"]) else: cmd_config.extend(["--mixed_precision=no"]) if "multi_gpu" in spec: continue else: cmd_config.extend(["--use_fsdp"]) for i, strategy in enumerate(__lowerCAmelCase): if strategy.lower() in spec: cmd_config.append(F'--fsdp_sharding_strategy={i+1}') break if "cpu_offload" in spec: cmd_config.append("--fsdp_offload_params=True") for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F'--fsdp_auto_wrap_policy={policy}') break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer") elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000") cmd_config.extend( [ self.test_file_path, F'--output_dir={self.tmpdir}', F'--peak_memory_upper_bound={peak_mem_upper_bound}', F'--n_train={self.n_train}', F'--n_val={self.n_val}', ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(__lowerCAmelCase , env=os.environ.copy())
461
0
"""simple docstring""" import copy import re class __magic_name__ : _SCREAMING_SNAKE_CASE : str = 'hp' _SCREAMING_SNAKE_CASE : List[Any] = {} _SCREAMING_SNAKE_CASE : Any = None @classmethod def lowerCAmelCase ( cls : int , snake_case_ : int , snake_case_ : Any ): __snake_case = prefix __snake_case = defaults cls.build_naming_info() @staticmethod def lowerCAmelCase ( snake_case_ : List[Any] , snake_case_ : str ): if len(snake_case_ ) == 0: return "" __snake_case = None if any(char.isdigit() for char in word ): raise Exception(F'''Parameters should not contain numbers: \'{word}\' contains a number''' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(snake_case_ ) + 1 ): __snake_case = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: __snake_case = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(snake_case_ : List[Any] ): __snake_case = "" while integer != 0: __snake_case = chr(ord("A" ) + integer % 10 ) + s integer //= 10 return s __snake_case = 0 while True: __snake_case = word + "#" + int_to_alphabetic(snake_case_ ) if sword in info["reverse_short_word"]: continue else: __snake_case = sword break __snake_case = short_word __snake_case = word return short_word @staticmethod def lowerCAmelCase ( snake_case_ : Optional[int] , snake_case_ : Tuple ): __snake_case = param_name.split("_" ) __snake_case = [TrialShortNamer.shortname_for_word(snake_case_ , snake_case_ ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name __snake_case = ["", "_"] for separator in separators: __snake_case = separator.join(snake_case_ ) if shortname not in info["reverse_short_param"]: __snake_case = shortname __snake_case = param_name return shortname return param_name @staticmethod def lowerCAmelCase ( snake_case_ : Tuple , snake_case_ : List[str] ): __snake_case = TrialShortNamer.shortname_for_key(snake_case_ , snake_case_ ) __snake_case = short_name __snake_case = param_name @classmethod def lowerCAmelCase ( cls : List[str] ): if cls.NAMING_INFO is not None: return __snake_case = { "short_word": {}, "reverse_short_word": {}, "short_param": {}, "reverse_short_param": {}, } __snake_case = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(snake_case_ , snake_case_ ) __snake_case = info @classmethod def lowerCAmelCase ( cls : Union[str, Any] , snake_case_ : Optional[Any] ): cls.build_naming_info() assert cls.PREFIX is not None __snake_case = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(F'''You should provide a default value for the param name {k} with value {v}''' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue __snake_case = cls.NAMING_INFO["short_param"][k] if isinstance(snake_case_ , snake_case_ ): __snake_case = 1 if v else 0 __snake_case = "" if isinstance(snake_case_ , (int, float) ) else "-" __snake_case = F'''{key}{sep}{v}''' name.append(snake_case_ ) return "_".join(snake_case_ ) @classmethod def lowerCAmelCase ( cls : int , snake_case_ : Union[str, Any] ): __snake_case = repr[len(cls.PREFIX ) + 1 :] if repr == "": __snake_case = [] else: __snake_case = repr.split("_" ) __snake_case = {} for value in values: if "-" in value: __snake_case , __snake_case = value.split("-" ) else: __snake_case = re.sub("[0-9.]" , "" , snake_case_ ) __snake_case = float(re.sub("[^0-9.]" , "" , snake_case_ ) ) __snake_case = cls.NAMING_INFO["reverse_short_param"][p_k] __snake_case = p_v for k in cls.DEFAULTS: if k not in parameters: __snake_case = cls.DEFAULTS[k] return parameters
163
"""simple docstring""" from typing import List from .keymap import KEYMAP, get_character def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" def decorator(SCREAMING_SNAKE_CASE ): __snake_case = getattr(SCREAMING_SNAKE_CASE , "handle_key" , [] ) handle += [key] setattr(SCREAMING_SNAKE_CASE , "handle_key" , SCREAMING_SNAKE_CASE ) return func return decorator def __UpperCamelCase ( *SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" def decorator(SCREAMING_SNAKE_CASE ): __snake_case = getattr(SCREAMING_SNAKE_CASE , "handle_key" , [] ) handle += keys setattr(SCREAMING_SNAKE_CASE , "handle_key" , SCREAMING_SNAKE_CASE ) return func return decorator class __magic_name__ ( lowercase__ ): def __new__( cls : Optional[Any] , snake_case_ : List[Any] , snake_case_ : Dict , snake_case_ : Tuple ): __snake_case = super().__new__(cls , snake_case_ , snake_case_ , snake_case_ ) if not hasattr(snake_case_ , "key_handler" ): setattr(snake_case_ , "key_handler" , {} ) setattr(snake_case_ , "handle_input" , KeyHandler.handle_input ) for value in attrs.values(): __snake_case = getattr(snake_case_ , "handle_key" , [] ) for key in handled_keys: __snake_case = value return new_cls @staticmethod def lowerCAmelCase ( cls : Dict ): __snake_case = get_character() if char != KEYMAP["undefined"]: __snake_case = ord(snake_case_ ) __snake_case = cls.key_handler.get(snake_case_ ) if handler: __snake_case = char return handler(cls ) else: return None def __UpperCamelCase ( cls ) -> int: """simple docstring""" return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
163
1
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def A_( A , A ): UpperCAmelCase_ = f"""{sampling_rate}""" UpperCAmelCase_ = """1""" UpperCAmelCase_ = """f32le""" UpperCAmelCase_ = [ """ffmpeg""", """-i""", """pipe:0""", """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] try: with subprocess.Popen(A , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: UpperCAmelCase_ = ffmpeg_process.communicate(A ) except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to load audio files from filename""" ) from error UpperCAmelCase_ = output_stream[0] UpperCAmelCase_ = np.frombuffer(A , np.floataa ) if audio.shape[0] == 0: raise ValueError("""Malformed soundfile""" ) return audio def A_( A , A , A = "f32le" , ): UpperCAmelCase_ = f"""{sampling_rate}""" UpperCAmelCase_ = """1""" if format_for_conversion == "s16le": UpperCAmelCase_ = 2 elif format_for_conversion == "f32le": UpperCAmelCase_ = 4 else: raise ValueError(f"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) UpperCAmelCase_ = platform.system() if system == "Linux": UpperCAmelCase_ = """alsa""" UpperCAmelCase_ = """default""" elif system == "Darwin": UpperCAmelCase_ = """avfoundation""" UpperCAmelCase_ = """:0""" elif system == "Windows": UpperCAmelCase_ = """dshow""" UpperCAmelCase_ = """default""" UpperCAmelCase_ = [ """ffmpeg""", """-f""", format_, """-i""", input_, """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-fflags""", """nobuffer""", """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] UpperCAmelCase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample UpperCAmelCase_ = _ffmpeg_stream(A , A ) for item in iterator: yield item def A_( A , A , A = None , A = None , A = "f32le" , ): if stream_chunk_s is not None: UpperCAmelCase_ = stream_chunk_s else: UpperCAmelCase_ = chunk_length_s UpperCAmelCase_ = ffmpeg_microphone(A , A , format_for_conversion=A ) if format_for_conversion == "s16le": UpperCAmelCase_ = np.intaa UpperCAmelCase_ = 2 elif format_for_conversion == "f32le": UpperCAmelCase_ = np.floataa UpperCAmelCase_ = 4 else: raise ValueError(f"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: UpperCAmelCase_ = chunk_length_s / 6 UpperCAmelCase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(A , (int, float) ): UpperCAmelCase_ = [stride_length_s, stride_length_s] UpperCAmelCase_ = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample UpperCAmelCase_ = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample UpperCAmelCase_ = datetime.datetime.now() UpperCAmelCase_ = datetime.timedelta(seconds=A ) for item in chunk_bytes_iter(A , A , stride=(stride_left, stride_right) , stream=A ): # Put everything back in numpy scale UpperCAmelCase_ = np.frombuffer(item["""raw"""] , dtype=A ) UpperCAmelCase_ = ( item["""stride"""][0] // size_of_sample, item["""stride"""][1] // size_of_sample, ) UpperCAmelCase_ = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def A_( A , A , A , A = False ): UpperCAmelCase_ = b"""""" UpperCAmelCase_ , UpperCAmelCase_ = stride if stride_left + stride_right >= chunk_len: raise ValueError( f"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) UpperCAmelCase_ = 0 for raw in iterator: acc += raw if stream and len(A ) < chunk_len: UpperCAmelCase_ = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(A ) >= chunk_len: # We are flushing the accumulator UpperCAmelCase_ = (_stride_left, stride_right) UpperCAmelCase_ = {"""raw""": acc[:chunk_len], """stride""": stride} if stream: UpperCAmelCase_ = False yield item UpperCAmelCase_ = stride_left UpperCAmelCase_ = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(A ) > stride_left: UpperCAmelCase_ = {"""raw""": acc, """stride""": (_stride_left, 0)} if stream: UpperCAmelCase_ = False yield item def A_( A , A ): UpperCAmelCase_ = 2**24 # 16Mo try: with subprocess.Popen(A , stdout=subprocess.PIPE , bufsize=A ) as ffmpeg_process: while True: UpperCAmelCase_ = ffmpeg_process.stdout.read(A ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to stream audio files from filename""" ) from error
486
import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def A_( ): UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("""--model_ckpt""" , type=A , default="""microsoft/unixcoder-base-nine""" ) parser.add_argument("""--num_epochs""" , type=A , default=5 ) parser.add_argument("""--batch_size""" , type=A , default=6 ) parser.add_argument("""--gradient_accumulation_steps""" , type=A , default=1 ) parser.add_argument("""--freeze""" , type=A , default=A ) parser.add_argument("""--learning_rate""" , type=A , default=5E-4 ) parser.add_argument("""--seed""" , type=A , default=0 ) parser.add_argument("""--lr_scheduler_type""" , type=A , default="""cosine""" ) parser.add_argument("""--num_warmup_steps""" , type=A , default=10 ) parser.add_argument("""--weight_decay""" , type=A , default=0.01 ) parser.add_argument("""--output_dir""" , type=A , default="""./results""" ) return parser.parse_args() UpperCamelCase__ : Any = load("""accuracy""") def A_( A ): UpperCAmelCase_ , UpperCAmelCase_ = eval_pred UpperCAmelCase_ = np.argmax(A , axis=1 ) return metric.compute(predictions=A , references=A ) class _UpperCamelCase ( A_ ): '''simple docstring''' def __init__( self : str , __lowercase : Any ): '''simple docstring''' super().__init__() UpperCAmelCase_ = trainer def SCREAMING_SNAKE_CASE ( self : Tuple , __lowercase : int , __lowercase : Tuple , __lowercase : Dict , **__lowercase : Dict ): '''simple docstring''' if control.should_evaluate: UpperCAmelCase_ = deepcopy(__lowercase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="""train""" ) return control_copy def A_( ): UpperCAmelCase_ = get_args() set_seed(args.seed ) UpperCAmelCase_ = load_dataset("""codeparrot/codecomplex""" , split="""train""" ) UpperCAmelCase_ = dataset.train_test_split(test_size=0.2 ) UpperCAmelCase_ = train_test["""test"""].train_test_split(test_size=0.5 ) UpperCAmelCase_ = DatasetDict( { """train""": train_test["""train"""], """test""": test_validation["""train"""], """valid""": test_validation["""test"""], } ) print("""Loading tokenizer and model""" ) UpperCAmelCase_ = AutoTokenizer.from_pretrained(args.model_ckpt ) UpperCAmelCase_ = tokenizer.eos_token UpperCAmelCase_ = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) UpperCAmelCase_ = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): UpperCAmelCase_ = False UpperCAmelCase_ = ClassLabel(num_classes=7 , names=list(set(train_test_validation["""train"""]["""complexity"""] ) ) ) def tokenize(A ): UpperCAmelCase_ = tokenizer(example["""src"""] , truncation=A , max_length=1024 ) UpperCAmelCase_ = labels.straint(example["""complexity"""] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } UpperCAmelCase_ = train_test_validation.map( A , batched=A , remove_columns=train_test_validation["""train"""].column_names , ) UpperCAmelCase_ = DataCollatorWithPadding(tokenizer=A ) UpperCAmelCase_ = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="""epoch""" , save_strategy="""epoch""" , logging_strategy="""epoch""" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model="""accuracy""" , run_name="""complexity-java""" , report_to="""wandb""" , ) UpperCAmelCase_ = Trainer( model=A , args=A , train_dataset=tokenized_datasets["""train"""] , eval_dataset=tokenized_datasets["""valid"""] , tokenizer=A , data_collator=A , compute_metrics=A , ) print("""Training...""" ) trainer.add_callback(CustomCallback(A ) ) trainer.train() if __name__ == "__main__": main()
486
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: _UpperCamelCase = None _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} _UpperCamelCase = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), }, 'tokenizer_file': { 'google/bigbird-roberta-base': ( 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json' ), 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json' ), }, } _UpperCamelCase = { 'google/bigbird-roberta-base': 4096, 'google/bigbird-roberta-large': 4096, 'google/bigbird-base-trivia-itc': 4096, } _UpperCamelCase = '▁' class SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): """simple docstring""" __snake_case : str = VOCAB_FILES_NAMES __snake_case : int = PRETRAINED_VOCAB_FILES_MAP __snake_case : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : Dict = BigBirdTokenizer __snake_case : int = ["""input_ids""", """attention_mask"""] __snake_case : int = [] def __init__( self :str , __lowercase :Tuple=None , __lowercase :Optional[Any]=None , __lowercase :Any="<unk>" , __lowercase :Any="<s>" , __lowercase :Union[str, Any]="</s>" , __lowercase :List[str]="<pad>" , __lowercase :Optional[Any]="[SEP]" , __lowercase :str="[MASK]" , __lowercase :Optional[Any]="[CLS]" , **__lowercase :Union[str, Any] , ): __lowerCamelCase : Optional[Any] =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token __lowerCamelCase : Any =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token __lowerCamelCase : Any =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else unk_token __lowerCamelCase : str =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token __lowerCamelCase : int =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token __lowerCamelCase : Optional[int] =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token # Mask token behave like a normal word, i.e. include the space before it __lowerCamelCase : Optional[int] =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( __A , tokenizer_file=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , **__A , ) __lowerCamelCase : Optional[int] =vocab_file __lowerCamelCase : Optional[Any] =False if not self.vocab_file else True def __lowercase ( self :List[Any] , __lowercase :List[int] , __lowercase :Optional[List[int]] = None ): __lowerCamelCase : int =[self.sep_token_id] __lowerCamelCase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __lowercase ( self :Optional[int] , __lowercase :List[int] , __lowercase :Optional[List[int]] = None , __lowercase :bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1] + ([0] * len(__A )) + [1] def __lowercase ( self :Optional[Any] , __lowercase :List[int] , __lowercase :Optional[List[int]] = None ): __lowerCamelCase : Dict =[self.sep_token_id] __lowerCamelCase : Tuple =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowercase ( self :int , __lowercase :str , __lowercase :Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCamelCase : Tuple =os.path.join( __A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ): copyfile(self.vocab_file , __A ) return (out_vocab_file,)
179
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = 42 class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ ): @register_to_config def __init__( self :Union[str, Any] , __A :int = 3 , __A :int = 3 , __A :Tuple[str] = ("DownEncoderBlock2D",) , __A :Tuple[str] = ("UpDecoderBlock2D",) , __A :Tuple[int] = (64,) , __A :int = 1 , __A :str = "silu" , __A :int = 3 , __A :int = 32 , __A :int = 256 , __A :int = 32 , __A :Optional[int] = None , __A :float = 0.1_8_2_1_5 , __A :str = "group" , ) -> Any: """simple docstring""" super().__init__() # pass init params to Encoder SCREAMING_SNAKE_CASE__ = Encoder( in_channels=__A , out_channels=__A , down_block_types=__A , block_out_channels=__A , layers_per_block=__A , act_fn=__A , norm_num_groups=__A , double_z=__A , ) SCREAMING_SNAKE_CASE__ = vq_embed_dim if vq_embed_dim is not None else latent_channels SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) SCREAMING_SNAKE_CASE__ = VectorQuantizer(__A , __A , beta=0.2_5 , remap=__A , sane_index_shape=__A ) SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) # pass init params to Decoder SCREAMING_SNAKE_CASE__ = Decoder( in_channels=__A , out_channels=__A , up_block_types=__A , block_out_channels=__A , layers_per_block=__A , act_fn=__A , norm_num_groups=__A , norm_type=__A , ) @apply_forward_hook def _snake_case ( self :Union[str, Any] , __A :torch.FloatTensor , __A :bool = True ) -> VQEncoderOutput: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.encoder(__A ) SCREAMING_SNAKE_CASE__ = self.quant_conv(__A ) if not return_dict: return (h,) return VQEncoderOutput(latents=__A ) @apply_forward_hook def _snake_case ( self :Tuple , __A :torch.FloatTensor , __A :bool = False , __A :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" if not force_not_quantize: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.quantize(__A ) else: SCREAMING_SNAKE_CASE__ = h SCREAMING_SNAKE_CASE__ = self.post_quant_conv(__A ) SCREAMING_SNAKE_CASE__ = self.decoder(__A , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=__A ) def _snake_case ( self :int , __A :torch.FloatTensor , __A :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" SCREAMING_SNAKE_CASE__ = sample SCREAMING_SNAKE_CASE__ = self.encode(__A ).latents SCREAMING_SNAKE_CASE__ = self.decode(__A ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__A )
6
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _SCREAMING_SNAKE_CASE : List[Any] = 16 _SCREAMING_SNAKE_CASE : List[Any] = 32 def UpperCAmelCase_ ( _A , _A = 16 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''bert-base-cased''' ) SCREAMING_SNAKE_CASE__ = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(_A ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_A , max_length=_A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE__ = datasets.map( _A , batched=_A , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE__ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(_A ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE__ = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE__ = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE__ = 8 else: SCREAMING_SNAKE_CASE__ = None return tokenizer.pad( _A , padding='''longest''' , max_length=_A , pad_to_multiple_of=_A , return_tensors='''pt''' , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE__ = DataLoader( tokenized_datasets['''train'''] , shuffle=_A , collate_fn=_A , batch_size=_A ) SCREAMING_SNAKE_CASE__ = DataLoader( tokenized_datasets['''validation'''] , shuffle=_A , collate_fn=_A , batch_size=_A ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _SCREAMING_SNAKE_CASE : Optional[Any] = mocked_dataloaders # noqa: F811 def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , _A ) == "1": SCREAMING_SNAKE_CASE__ = 2 # New Code # SCREAMING_SNAKE_CASE__ = int(args.gradient_accumulation_steps ) # Initialize accelerator SCREAMING_SNAKE_CASE__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=_A ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( '''Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE__ = config['''lr'''] SCREAMING_SNAKE_CASE__ = int(config['''num_epochs'''] ) SCREAMING_SNAKE_CASE__ = int(config['''seed'''] ) SCREAMING_SNAKE_CASE__ = int(config['''batch_size'''] ) SCREAMING_SNAKE_CASE__ = evaluate.load('''glue''' , '''mrpc''' ) set_seed(_A ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = get_dataloaders(_A , _A ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE__ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=_A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE__ = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE__ = AdamW(params=model.parameters() , lr=_A ) # Instantiate scheduler SCREAMING_SNAKE_CASE__ = get_linear_schedule_with_warmup( optimizer=_A , num_warmup_steps=1_00 , num_training_steps=(len(_A ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = accelerator.prepare( _A , _A , _A , _A , _A ) # Now we train the model for epoch in range(_A ): model.train() for step, batch in enumerate(_A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(_A ): SCREAMING_SNAKE_CASE__ = model(**_A ) SCREAMING_SNAKE_CASE__ = output.loss accelerator.backward(_A ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**_A ) SCREAMING_SNAKE_CASE__ = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=_A , references=_A , ) SCREAMING_SNAKE_CASE__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , _A ) def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=_A , default=_A , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' , type=_A , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(_A , _A ) if __name__ == "__main__": main()
472
from importlib import import_module from .logging import get_logger _SCREAMING_SNAKE_CASE : Optional[int] = get_logger(__name__) class UpperCAmelCase__ : """simple docstring""" def __init__( self : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any=None ) -> int: SCREAMING_SNAKE_CASE__ = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('''__''' ): setattr(self , __lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = module._original_module if isinstance(__lowerCamelCase , _PatchedModuleObj ) else module class UpperCAmelCase__ : """simple docstring""" a = [] def __init__( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any]=None ) -> Any: SCREAMING_SNAKE_CASE__ = obj SCREAMING_SNAKE_CASE__ = target SCREAMING_SNAKE_CASE__ = new SCREAMING_SNAKE_CASE__ = target.split('''.''' )[0] SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = attrs or [] def __enter__( self : int ) -> Tuple: *SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.target.split('''.''' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(__lowerCamelCase ) ): try: SCREAMING_SNAKE_CASE__ = import_module('''.'''.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): SCREAMING_SNAKE_CASE__ = getattr(self.obj , __lowerCamelCase ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(__lowerCamelCase , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): SCREAMING_SNAKE_CASE__ = obj_attr # patch at top level setattr(self.obj , __lowerCamelCase , _PatchedModuleObj(__lowerCamelCase , attrs=self.attrs ) ) SCREAMING_SNAKE_CASE__ = getattr(self.obj , __lowerCamelCase ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(__lowerCamelCase , __lowerCamelCase , _PatchedModuleObj(getattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , attrs=self.attrs ) ) SCREAMING_SNAKE_CASE__ = getattr(__lowerCamelCase , __lowerCamelCase ) # finally set the target attribute setattr(__lowerCamelCase , __lowerCamelCase , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: SCREAMING_SNAKE_CASE__ = getattr(import_module('''.'''.join(__lowerCamelCase ) ) , __lowerCamelCase ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , __lowerCamelCase ) is attr_value: SCREAMING_SNAKE_CASE__ = getattr(self.obj , __lowerCamelCase ) setattr(self.obj , __lowerCamelCase , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" SCREAMING_SNAKE_CASE__ = globals()['''__builtins__'''][target_attr] setattr(self.obj , __lowerCamelCase , self.new ) else: raise RuntimeError(f'''Tried to patch attribute {target_attr} instead of a submodule.''' ) def __exit__( self : Optional[Any] , *__lowerCamelCase : Tuple ) -> List[str]: for attr in list(self.original ): setattr(self.obj , __lowerCamelCase , self.original.pop(__lowerCamelCase ) ) def lowercase_ ( self : List[Any] ) -> Optional[Any]: self.__enter__() self._active_patches.append(self ) def lowercase_ ( self : int ) -> int: try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
472
1
"""simple docstring""" import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __SCREAMING_SNAKE_CASE : Dict = True except ImportError: __SCREAMING_SNAKE_CASE : Any = False __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def lowerCAmelCase_( lowercase_ : Namespace ) -> Optional[Any]: return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class lowerCamelCase_( A__ ): '''simple docstring''' @staticmethod def snake_case__ ( lowerCamelCase__ ): _lowerCamelCase = parser.add_parser('''add-new-model''' ) add_new_model_parser.add_argument('''--testing''' , action='''store_true''' , help='''If in testing mode.''' ) add_new_model_parser.add_argument('''--testing_file''' , type=lowerCamelCase__ , help='''Configuration file on which to run.''' ) add_new_model_parser.add_argument( '''--path''' , type=lowerCamelCase__ , help='''Path to cookiecutter. Should only be used for testing purposes.''' ) add_new_model_parser.set_defaults(func=lowerCamelCase__ ) def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , *lowerCamelCase__ ): _lowerCamelCase = testing _lowerCamelCase = testing_file _lowerCamelCase = path def snake_case__ ( self ): warnings.warn( '''The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ''' '''It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ''' '''checks, you should use `transformers-cli add-new-model-like` instead.''' ) if not _has_cookiecutter: raise ImportError( '''Model creation dependencies are required to use the `add_new_model` command. Install them by running ''' '''the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n''' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory _lowerCamelCase = [directory for directory in os.listdir() if '''cookiecutter-template-''' == directory[:2_2]] if len(lowerCamelCase__ ) > 0: raise ValueError( '''Several directories starting with `cookiecutter-template-` in current working directory. ''' '''Please clean your directory by removing all folders starting with `cookiecutter-template-` or ''' '''change your working directory.''' ) _lowerCamelCase = ( Path(lowerCamelCase__ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) _lowerCamelCase = path_to_transformer_root / '''templates''' / '''adding_a_new_model''' # Execute cookiecutter if not self._testing: cookiecutter(str(lowerCamelCase__ ) ) else: with open(self._testing_file , '''r''' ) as configuration_file: _lowerCamelCase = json.load(lowerCamelCase__ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=lowerCamelCase__ , extra_context=lowerCamelCase__ , ) _lowerCamelCase = [directory for directory in os.listdir() if '''cookiecutter-template-''' in directory[:2_2]][0] # Retrieve configuration with open(directory + '''/configuration.json''' , '''r''' ) as configuration_file: _lowerCamelCase = json.load(lowerCamelCase__ ) _lowerCamelCase = configuration['''lowercase_modelname'''] _lowerCamelCase = configuration['''generate_tensorflow_pytorch_and_flax'''] os.remove(F"""{directory}/configuration.json""" ) _lowerCamelCase = '''PyTorch''' in generate_tensorflow_pytorch_and_flax _lowerCamelCase = '''TensorFlow''' in generate_tensorflow_pytorch_and_flax _lowerCamelCase = '''Flax''' in generate_tensorflow_pytorch_and_flax _lowerCamelCase = F"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}""" os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) os.makedirs(F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""" , exist_ok=lowerCamelCase__ ) # Tests require submodules as they have parent imports with open(F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""" , '''w''' ): pass shutil.move( F"""{directory}/__init__.py""" , F"""{model_dir}/__init__.py""" , ) shutil.move( F"""{directory}/configuration_{lowercase_model_name}.py""" , F"""{model_dir}/configuration_{lowercase_model_name}.py""" , ) def remove_copy_lines(lowerCamelCase__ ): with open(lowerCamelCase__ , '''r''' ) as f: _lowerCamelCase = f.readlines() with open(lowerCamelCase__ , '''w''' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(lowerCamelCase__ ) if output_pytorch: if not self._testing: remove_copy_lines(F"""{directory}/modeling_{lowercase_model_name}.py""" ) shutil.move( F"""{directory}/modeling_{lowercase_model_name}.py""" , F"""{model_dir}/modeling_{lowercase_model_name}.py""" , ) shutil.move( F"""{directory}/test_modeling_{lowercase_model_name}.py""" , F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""" , ) else: os.remove(F"""{directory}/modeling_{lowercase_model_name}.py""" ) os.remove(F"""{directory}/test_modeling_{lowercase_model_name}.py""" ) if output_tensorflow: if not self._testing: remove_copy_lines(F"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) shutil.move( F"""{directory}/modeling_tf_{lowercase_model_name}.py""" , F"""{model_dir}/modeling_tf_{lowercase_model_name}.py""" , ) shutil.move( F"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" , F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""" , ) else: os.remove(F"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) os.remove(F"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" ) if output_flax: if not self._testing: remove_copy_lines(F"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) shutil.move( F"""{directory}/modeling_flax_{lowercase_model_name}.py""" , F"""{model_dir}/modeling_flax_{lowercase_model_name}.py""" , ) shutil.move( F"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" , F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""" , ) else: os.remove(F"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) os.remove(F"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" ) shutil.move( F"""{directory}/{lowercase_model_name}.md""" , F"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""" , ) shutil.move( F"""{directory}/tokenization_{lowercase_model_name}.py""" , F"""{model_dir}/tokenization_{lowercase_model_name}.py""" , ) shutil.move( F"""{directory}/tokenization_fast_{lowercase_model_name}.py""" , F"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): # Create temp file _lowerCamelCase , _lowerCamelCase = mkstemp() _lowerCamelCase = False with fdopen(lowerCamelCase__ , '''w''' ) as new_file: with open(lowerCamelCase__ ) as old_file: for line in old_file: new_file.write(lowerCamelCase__ ) if line_to_copy_below in line: _lowerCamelCase = True for line_to_copy in lines_to_copy: new_file.write(lowerCamelCase__ ) if not line_found: raise ValueError(F"""Line {line_to_copy_below} was not found in file.""" ) # Copy the file permissions from the old file to the new file copymode(lowerCamelCase__ , lowerCamelCase__ ) # Remove original file remove(lowerCamelCase__ ) # Move new file move(lowerCamelCase__ , lowerCamelCase__ ) def skip_units(lowerCamelCase__ ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(lowerCamelCase__ ): with open(lowerCamelCase__ ) as datafile: _lowerCamelCase = [] _lowerCamelCase = False _lowerCamelCase = False for line in datafile: if "# To replace in: " in line and "##" not in line: _lowerCamelCase = line.split('''"''' )[1] _lowerCamelCase = skip_units(lowerCamelCase__ ) elif "# Below: " in line and "##" not in line: _lowerCamelCase = line.split('''"''' )[1] _lowerCamelCase = skip_units(lowerCamelCase__ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _lowerCamelCase = [] elif "# Replace with" in line and "##" not in line: _lowerCamelCase = [] elif "##" not in line: lines_to_copy.append(lowerCamelCase__ ) remove(lowerCamelCase__ ) replace_in_files(F"""{directory}/to_replace_{lowercase_model_name}.py""" ) os.rmdir(lowerCamelCase__ )
661
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Optional[Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __SCREAMING_SNAKE_CASE : Union[str, Any] = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } __SCREAMING_SNAKE_CASE : str = { '''distilbert-base-uncased''': 5_1_2, '''distilbert-base-uncased-distilled-squad''': 5_1_2, '''distilbert-base-cased''': 5_1_2, '''distilbert-base-cased-distilled-squad''': 5_1_2, '''distilbert-base-german-cased''': 5_1_2, '''distilbert-base-multilingual-cased''': 5_1_2, } __SCREAMING_SNAKE_CASE : str = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class lowerCamelCase_( A__ ): '''simple docstring''' lowercase__ : List[Any] = VOCAB_FILES_NAMES lowercase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : str = PRETRAINED_INIT_CONFIGURATION lowercase__ : int = ['input_ids', 'attention_mask'] lowercase__ : Tuple = DistilBertTokenizer def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__="[UNK]" , lowerCamelCase__="[SEP]" , lowerCamelCase__="[PAD]" , lowerCamelCase__="[CLS]" , lowerCamelCase__="[MASK]" , lowerCamelCase__=True , lowerCamelCase__=None , **lowerCamelCase__ , ): super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , tokenize_chinese_chars=lowerCamelCase__ , strip_accents=lowerCamelCase__ , **lowerCamelCase__ , ) _lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCamelCase__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCamelCase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCamelCase__ ) != tokenize_chinese_chars ): _lowerCamelCase = getattr(lowerCamelCase__ , normalizer_state.pop('''type''' ) ) _lowerCamelCase = do_lower_case _lowerCamelCase = strip_accents _lowerCamelCase = tokenize_chinese_chars _lowerCamelCase = normalizer_class(**lowerCamelCase__ ) _lowerCamelCase = do_lower_case def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__=None ): _lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ): _lowerCamelCase = [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ): _lowerCamelCase = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
661
1
'''simple docstring''' lowerCAmelCase_ : str = '2.13.1' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip lowerCAmelCase_ : Union[str, Any] = concatenate_datasets lowerCAmelCase_ : str = DownloadConfig lowerCAmelCase_ : List[str] = DownloadManager lowerCAmelCase_ : str = DownloadMode lowerCAmelCase_ : Dict = DownloadConfig lowerCAmelCase_ : int = DownloadMode lowerCAmelCase_ : List[Any] = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
715
'''simple docstring''' import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py lowerCAmelCase_ : Optional[Any] = '.' if __name__ == "__main__": lowerCAmelCase_ : Optional[Any] = os.path.join(REPO_PATH, 'utils/documentation_tests.txt') lowerCAmelCase_ : Dict = [] lowerCAmelCase_ : Any = [] with open(doctest_file_path) as fp: for line in fp: lowerCAmelCase_ : List[str] = line.strip() lowerCAmelCase_ : Optional[Any] = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: lowerCAmelCase_ : Dict = '\n'.join(non_existent_paths) raise ValueError(f'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError('Files in `utils/documentation_tests.txt` are not in alphabetical order.')
464
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class UpperCamelCase : def __init__( self :List[Any] , __magic_name__ :List[str] , __magic_name__ :Optional[Any]=13 , __magic_name__ :List[str]=7 , __magic_name__ :int=True , __magic_name__ :Tuple=True , __magic_name__ :Dict=True , __magic_name__ :Optional[int]=True , __magic_name__ :Tuple=99 , __magic_name__ :int=[1, 1, 2] , __magic_name__ :Optional[int]=1 , __magic_name__ :str=32 , __magic_name__ :Tuple=4 , __magic_name__ :Optional[int]=8 , __magic_name__ :Union[str, Any]=37 , __magic_name__ :Dict="gelu_new" , __magic_name__ :Optional[Any]=0.1 , __magic_name__ :Optional[int]=0.1 , __magic_name__ :Union[str, Any]=0.0 , __magic_name__ :str=512 , __magic_name__ :Tuple=3 , __magic_name__ :Union[str, Any]=0.02 , __magic_name__ :Tuple=3 , __magic_name__ :Union[str, Any]=4 , __magic_name__ :List[Any]=None , __magic_name__ :List[str]=False , ) ->int: lowercase : List[Any] = parent lowercase : Union[str, Any] = batch_size lowercase : List[str] = seq_length lowercase : Any = is_training lowercase : str = use_input_mask lowercase : Any = use_token_type_ids lowercase : Optional[int] = use_labels lowercase : int = vocab_size lowercase : Union[str, Any] = block_sizes lowercase : Dict = num_decoder_layers lowercase : Union[str, Any] = d_model lowercase : Dict = n_head lowercase : Dict = d_head lowercase : Union[str, Any] = d_inner lowercase : Optional[Any] = hidden_act lowercase : List[Any] = hidden_dropout lowercase : Union[str, Any] = attention_dropout lowercase : Union[str, Any] = activation_dropout lowercase : Optional[int] = max_position_embeddings lowercase : Tuple = type_vocab_size lowercase : Dict = 2 lowercase : Tuple = num_labels lowercase : int = num_choices lowercase : Dict = scope lowercase : Union[str, Any] = initializer_std # Used in the tests to check the size of the first attention layer lowercase : List[str] = n_head # Used in the tests to check the size of the first hidden state lowercase : int = self.d_model # Used in the tests to check the number of output hidden states/attentions lowercase : int = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: lowercase : Dict = self.num_hidden_layers + 2 def __snake_case ( self :Any ) ->Any: lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : int = None if self.use_input_mask: lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : str = None if self.use_token_type_ids: lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : Optional[int] = None lowercase : Tuple = None lowercase : Optional[int] = None if self.use_labels: lowercase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Any = ids_tensor([self.batch_size] , self.num_choices ) lowercase : Optional[int] = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def __snake_case ( self :Optional[int] , __magic_name__ :List[str] , __magic_name__ :Tuple , __magic_name__ :Any , __magic_name__ :Union[str, Any] , __magic_name__ :Union[str, Any] , __magic_name__ :Optional[Any] , __magic_name__ :Optional[int] , ) ->int: lowercase : str = TFFunnelModel(config=lowercase_ ) lowercase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase : str = model(lowercase_ ) lowercase : Optional[int] = [input_ids, input_mask] lowercase : Tuple = model(lowercase_ ) lowercase : List[Any] = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) lowercase : Tuple = False lowercase : Optional[Any] = TFFunnelModel(config=lowercase_ ) lowercase : Any = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) lowercase : str = False lowercase : int = TFFunnelModel(config=lowercase_ ) lowercase : Dict = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def __snake_case ( self :List[str] , __magic_name__ :List[Any] , __magic_name__ :Any , __magic_name__ :str , __magic_name__ :int , __magic_name__ :Optional[Any] , __magic_name__ :Dict , __magic_name__ :Any , ) ->List[str]: lowercase : Tuple = TFFunnelBaseModel(config=lowercase_ ) lowercase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase : int = model(lowercase_ ) lowercase : Optional[Any] = [input_ids, input_mask] lowercase : Any = model(lowercase_ ) lowercase : Tuple = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) lowercase : Union[str, Any] = False lowercase : Optional[Any] = TFFunnelBaseModel(config=lowercase_ ) lowercase : int = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) lowercase : Tuple = False lowercase : Union[str, Any] = TFFunnelBaseModel(config=lowercase_ ) lowercase : Optional[Any] = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def __snake_case ( self :List[str] , __magic_name__ :Tuple , __magic_name__ :Tuple , __magic_name__ :Optional[int] , __magic_name__ :List[str] , __magic_name__ :Tuple , __magic_name__ :List[Any] , __magic_name__ :Optional[Any] , ) ->List[str]: lowercase : Tuple = TFFunnelForPreTraining(config=lowercase_ ) lowercase : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase : Tuple = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def __snake_case ( self :Optional[Any] , __magic_name__ :Any , __magic_name__ :Dict , __magic_name__ :Any , __magic_name__ :List[str] , __magic_name__ :List[Any] , __magic_name__ :Tuple , __magic_name__ :List[str] , ) ->Optional[int]: lowercase : str = TFFunnelForMaskedLM(config=lowercase_ ) lowercase : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase : Tuple = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case ( self :Optional[int] , __magic_name__ :Any , __magic_name__ :Optional[int] , __magic_name__ :Tuple , __magic_name__ :List[str] , __magic_name__ :Union[str, Any] , __magic_name__ :int , __magic_name__ :Optional[Any] , ) ->Union[str, Any]: lowercase : str = self.num_labels lowercase : Union[str, Any] = TFFunnelForSequenceClassification(config=lowercase_ ) lowercase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase : int = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self :int , __magic_name__ :Dict , __magic_name__ :Tuple , __magic_name__ :Union[str, Any] , __magic_name__ :int , __magic_name__ :Any , __magic_name__ :Optional[Any] , __magic_name__ :str , ) ->List[str]: lowercase : Optional[int] = self.num_choices lowercase : Tuple = TFFunnelForMultipleChoice(config=lowercase_ ) lowercase : List[str] = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) lowercase : List[str] = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) lowercase : Optional[Any] = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) lowercase : Union[str, Any] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } lowercase : Tuple = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __snake_case ( self :List[str] , __magic_name__ :str , __magic_name__ :Tuple , __magic_name__ :Tuple , __magic_name__ :Tuple , __magic_name__ :Dict , __magic_name__ :Any , __magic_name__ :Tuple , ) ->Tuple: lowercase : Optional[int] = self.num_labels lowercase : List[Any] = TFFunnelForTokenClassification(config=lowercase_ ) lowercase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase : List[Any] = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case ( self :List[str] , __magic_name__ :List[str] , __magic_name__ :Optional[int] , __magic_name__ :Tuple , __magic_name__ :Optional[int] , __magic_name__ :int , __magic_name__ :Dict , __magic_name__ :str , ) ->List[Any]: lowercase : List[Any] = TFFunnelForQuestionAnswering(config=lowercase_ ) lowercase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase : Optional[int] = model(lowercase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __snake_case ( self :Any ) ->str: lowercase : Any = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Dict = config_and_inputs lowercase : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class UpperCamelCase (lowercase__ , lowercase__ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Dict = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) _SCREAMING_SNAKE_CASE : List[str] = ( { """feature-extraction""": (TFFunnelBaseModel, TFFunnelModel), """fill-mask""": TFFunnelForMaskedLM, """question-answering""": TFFunnelForQuestionAnswering, """text-classification""": TFFunnelForSequenceClassification, """token-classification""": TFFunnelForTokenClassification, """zero-shot""": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) _SCREAMING_SNAKE_CASE : Tuple = False _SCREAMING_SNAKE_CASE : Union[str, Any] = False def __snake_case ( self :List[Any] ) ->List[str]: lowercase : Any = TFFunnelModelTester(self ) lowercase : Dict = ConfigTester(self , config_class=lowercase_ ) def __snake_case ( self :Tuple ) ->Tuple: self.config_tester.run_common_tests() def __snake_case ( self :Optional[int] ) ->List[str]: lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def __snake_case ( self :Any ) ->Union[str, Any]: lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase_ ) def __snake_case ( self :str ) ->Optional[int]: lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase_ ) def __snake_case ( self :Any ) ->Optional[int]: lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) def __snake_case ( self :Optional[Any] ) ->int: lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_ ) @require_tf class UpperCamelCase (lowercase__ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : int = False def __snake_case ( self :Optional[Any] ) ->Optional[int]: lowercase : List[str] = TFFunnelModelTester(self , base=lowercase_ ) lowercase : Tuple = ConfigTester(self , config_class=lowercase_ ) def __snake_case ( self :int ) ->Optional[Any]: self.config_tester.run_common_tests() def __snake_case ( self :List[Any] ) ->str: lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*lowercase_ ) def __snake_case ( self :List[Any] ) ->Any: lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase_ ) def __snake_case ( self :Any ) ->List[str]: lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase_ )
264
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowerCAmelCase: Optional[Any] = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase: List[str] = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys _lowerCAmelCase: List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
20
0
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __lowerCAmelCase : Optional[Any] =1_6 __lowerCAmelCase : int =3_2 def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[str] = 1_6 ) -> Tuple: '''simple docstring''' lowercase = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowercase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowerCAmelCase__ :Optional[Any] ): # max_length=None => use the model max length (it's actually the default) lowercase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCAmelCase__ :Any ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase = 1_6 elif accelerator.mixed_precision != "no": lowercase = 8 else: lowercase = None return tokenizer.pad( lowerCAmelCase__ , padding="""longest""" , max_length=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowercase = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) lowercase = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __lowerCAmelCase : List[str] =mocked_dataloaders # noqa: F811 def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :str ) -> Tuple: '''simple docstring''' if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , lowerCAmelCase__ ) == "1": lowercase = 2 # Initialize accelerator lowercase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase = config["""lr"""] lowercase = int(config["""num_epochs"""] ) lowercase = int(config["""seed"""] ) lowercase = int(config["""batch_size"""] ) lowercase = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation lowercase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowercase = batch_size // MAX_GPU_BATCH_SIZE lowercase = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase__ ) lowercase , lowercase = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCAmelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase = model.to(accelerator.device ) # Instantiate optimizer lowercase = AdamW(params=model.parameters() , lr=lowerCAmelCase__ ) # Instantiate scheduler lowercase = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase , lowercase , lowercase , lowercase , lowercase = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Now we train the model for epoch in range(lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase = model(**lowerCAmelCase__ ) lowercase = outputs.loss lowercase = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() lowercase = 0 for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase = model(**lowerCAmelCase__ ) lowercase = outputs.logits.argmax(dim=-1 ) lowercase , lowercase = accelerator.gather((predictions, batch["""labels"""]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(lowerCAmelCase__ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples lowercase = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowercase = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) lowercase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , lowerCAmelCase__ ) def UpperCAmelCase__ ( ) -> Tuple: '''simple docstring''' lowercase = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowercase = parser.parse_args() lowercase = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
709
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor __lowerCAmelCase : List[str] =logging.get_logger(__name__) class _A ( lowerCAmelCase ): def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , __lowerCAmelCase , ) super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
197
0