code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa _lowerCamelCase = logging.getLogger(__name__) class _snake_case (__SCREAMING_SNAKE_CASE): __A : Any ="summarization" __A : Dict =["loss"] __A : Dict =ROUGE_KEYS __A : Union[str, Any] ="rouge2" def __init__( self ,_snake_case ,**_snake_case ): if hparams.sortish_sampler and hparams.gpus > 1: UpperCAmelCase_ : str = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("Dynamic Batch size does not work for multi-gpu training" ) if hparams.sortish_sampler: raise ValueError("--sortish_sampler and --max_tokens_per_batch may not be used simultaneously" ) super().__init__(_snake_case ,num_labels=_snake_case ,mode=self.mode ,**_snake_case ) use_task_specific_params(self.model ,"summarization" ) save_git_info(self.hparams.output_dir ) UpperCAmelCase_ : List[Any] = Path(self.output_dir ) / "metrics.json" UpperCAmelCase_ : Union[str, Any] = Path(self.output_dir ) / "hparams.pkl" pickle_save(self.hparams ,self.hparams_save_path ) UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : int = defaultdict(_snake_case ) UpperCAmelCase_ : str = self.config.model_type UpperCAmelCase_ : int = self.config.tgt_vocab_size if self.model_type == "fsmt" else self.config.vocab_size UpperCAmelCase_ : dict = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } UpperCAmelCase_ : int = { "train": self.hparams.n_train, "val": self.hparams.n_val, "test": self.hparams.n_test, } UpperCAmelCase_ : Optional[Any] = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} UpperCAmelCase_ : int = { "train": self.hparams.max_target_length, "val": self.hparams.val_max_target_length, "test": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], f'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) UpperCAmelCase_ : Union[str, Any] = get_git_info()["repo_sha"] UpperCAmelCase_ : Dict = hparams.num_workers UpperCAmelCase_ : Optional[int] = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer ,_snake_case ): UpperCAmelCase_ : str = self.tokenizer.lang_code_to_id[hparams.tgt_lang] UpperCAmelCase_ : Any = self.decoder_start_token_id UpperCAmelCase_ : Optional[Any] = ( SeqaSeqDataset if hasattr(self.tokenizer ,"prepare_seq2seq_batch" ) else LegacySeqaSeqDataset ) UpperCAmelCase_ : Any = False UpperCAmelCase_ : Optional[Any] = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: UpperCAmelCase_ : Tuple = self.hparams.eval_max_gen_length else: UpperCAmelCase_ : Union[str, Any] = self.model.config.max_length UpperCAmelCase_ : Optional[Any] = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : List[str] = { k: self.tokenizer.batch_decode(v.tolist() ) if "mask" not in k else v.shape for k, v in batch.items() } save_json(_snake_case ,Path(self.output_dir ) / "text_batch.json" ) save_json({k: v.tolist() for k, v in batch.items()} ,Path(self.output_dir ) / "tok_batch.json" ) UpperCAmelCase_ : Optional[Any] = True return readable_batch def UpperCamelCase__ ( self ,_snake_case ,**_snake_case ): return self.model(_snake_case ,**_snake_case ) def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : List[Any] = self.tokenizer.batch_decode( _snake_case ,skip_special_tokens=_snake_case ,clean_up_tokenization_spaces=_snake_case ) return lmap(str.strip ,_snake_case ) def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : List[Any] = self.tokenizer.pad_token_id UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = batch["input_ids"], batch["attention_mask"] UpperCAmelCase_ : Optional[Any] = batch["labels"] if isinstance(self.model ,_snake_case ): UpperCAmelCase_ : str = self.model._shift_right(_snake_case ) else: UpperCAmelCase_ : int = shift_tokens_right(_snake_case ,_snake_case ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero UpperCAmelCase_ : Tuple = decoder_input_ids self.save_readable_batch(_snake_case ) UpperCAmelCase_ : int = self(_snake_case ,attention_mask=_snake_case ,decoder_input_ids=_snake_case ,use_cache=_snake_case ) UpperCAmelCase_ : Optional[int] = outputs["logits"] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id UpperCAmelCase_ : List[Any] = nn.CrossEntropyLoss(ignore_index=_snake_case ) assert lm_logits.shape[-1] == self.vocab_size UpperCAmelCase_ : List[str] = ce_loss_fct(lm_logits.view(-1 ,lm_logits.shape[-1] ) ,tgt_ids.view(-1 ) ) else: UpperCAmelCase_ : Any = nn.functional.log_softmax(_snake_case ,dim=-1 ) UpperCAmelCase_ , UpperCAmelCase_ : str = label_smoothed_nll_loss( _snake_case ,_snake_case ,self.hparams.label_smoothing ,ignore_index=_snake_case ) return (loss,) @property def UpperCamelCase__ ( self ): return self.tokenizer.pad_token_id def UpperCamelCase__ ( self ,_snake_case ,_snake_case ): UpperCAmelCase_ : Tuple = self._step(_snake_case ) UpperCAmelCase_ : Any = dict(zip(self.loss_names ,_snake_case ) ) # tokens per batch UpperCAmelCase_ : Optional[int] = batch["input_ids"].ne(self.pad ).sum() + batch["labels"].ne(self.pad ).sum() UpperCAmelCase_ : Tuple = batch["input_ids"].shape[0] UpperCAmelCase_ : List[Any] = batch["input_ids"].eq(self.pad ).sum() UpperCAmelCase_ : List[Any] = batch["input_ids"].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def UpperCamelCase__ ( self ,_snake_case ,_snake_case ): return self._generative_step(_snake_case ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case="val" ): self.step_count += 1 UpperCAmelCase_ : Optional[int] = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} UpperCAmelCase_ : Tuple = losses["loss"] UpperCAmelCase_ : int = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["gen_time", "gen_len"] } UpperCAmelCase_ : List[Any] = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) UpperCAmelCase_ : torch.FloatTensor = torch.tensor(_snake_case ).type_as(_snake_case ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(_snake_case ) UpperCAmelCase_ : str = {f'''{prefix}_avg_{k}''': x for k, x in losses.items()} UpperCAmelCase_ : Dict = self.step_count self.metrics[prefix].append(_snake_case ) # callback writes this to self.metrics_save_path UpperCAmelCase_ : Optional[int] = flatten_list([x["preds"] for x in outputs] ) return { "log": all_metrics, "preds": preds, f'''{prefix}_loss''': loss, f'''{prefix}_{self.val_metric}''': metric_tensor, } def UpperCamelCase__ ( self ,_snake_case ,_snake_case ): return calculate_rouge(_snake_case ,_snake_case ) def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : int = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') UpperCAmelCase_ : Optional[Any] = self.model.generate( batch["input_ids"] ,attention_mask=batch["attention_mask"] ,use_cache=_snake_case ,decoder_start_token_id=self.decoder_start_token_id ,num_beams=self.eval_beams ,max_length=self.eval_max_length ,) UpperCAmelCase_ : str = (time.time() - ta) / batch["input_ids"].shape[0] UpperCAmelCase_ : List[str] = self.ids_to_clean_text(_snake_case ) UpperCAmelCase_ : List[str] = self.ids_to_clean_text(batch["labels"] ) UpperCAmelCase_ : Tuple = self._step(_snake_case ) UpperCAmelCase_ : List[Any] = dict(zip(self.loss_names ,_snake_case ) ) UpperCAmelCase_ : Dict = self.calc_generative_metrics(_snake_case ,_snake_case ) UpperCAmelCase_ : Dict = np.mean(lmap(_snake_case ,_snake_case ) ) base_metrics.update(gen_time=_snake_case ,gen_len=_snake_case ,preds=_snake_case ,target=_snake_case ,**_snake_case ) return base_metrics def UpperCamelCase__ ( self ,_snake_case ,_snake_case ): return self._generative_step(_snake_case ) def UpperCamelCase__ ( self ,_snake_case ): return self.validation_epoch_end(_snake_case ,prefix="test" ) def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : Any = self.n_obs[type_path] UpperCAmelCase_ : List[str] = self.target_lens[type_path] UpperCAmelCase_ : Union[str, Any] = self.dataset_class( self.tokenizer ,type_path=_snake_case ,n_obs=_snake_case ,max_target_length=_snake_case ,**self.dataset_kwargs ,) return dataset def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case = False ): UpperCAmelCase_ : Any = self.get_dataset(_snake_case ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": UpperCAmelCase_ : int = dataset.make_sortish_sampler(_snake_case ,distributed=self.hparams.gpus > 1 ) return DataLoader( _snake_case ,batch_size=_snake_case ,collate_fn=dataset.collate_fn ,shuffle=_snake_case ,num_workers=self.num_workers ,sampler=_snake_case ,) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": UpperCAmelCase_ : List[Any] = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch ,distributed=self.hparams.gpus > 1 ) return DataLoader( _snake_case ,batch_sampler=_snake_case ,collate_fn=dataset.collate_fn ,num_workers=self.num_workers ,) else: return DataLoader( _snake_case ,batch_size=_snake_case ,collate_fn=dataset.collate_fn ,shuffle=_snake_case ,num_workers=self.num_workers ,sampler=_snake_case ,) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Tuple = self.get_dataloader("train" ,batch_size=self.hparams.train_batch_size ,shuffle=_snake_case ) return dataloader def UpperCamelCase__ ( self ): return self.get_dataloader("val" ,batch_size=self.hparams.eval_batch_size ) def UpperCamelCase__ ( self ): return self.get_dataloader("test" ,batch_size=self.hparams.eval_batch_size ) @staticmethod def UpperCamelCase__ ( _snake_case ,_snake_case ): BaseTransformer.add_model_specific_args(_snake_case ,_snake_case ) add_generic_args(_snake_case ,_snake_case ) parser.add_argument( "--max_source_length" ,default=10_24 ,type=_snake_case ,help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) ,) parser.add_argument( "--max_target_length" ,default=56 ,type=_snake_case ,help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) ,) parser.add_argument( "--val_max_target_length" ,default=1_42 ,type=_snake_case ,help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) ,) parser.add_argument( "--test_max_target_length" ,default=1_42 ,type=_snake_case ,help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) ,) parser.add_argument("--freeze_encoder" ,action="store_true" ) parser.add_argument("--freeze_embeds" ,action="store_true" ) parser.add_argument("--sortish_sampler" ,action="store_true" ,default=_snake_case ) parser.add_argument("--overwrite_output_dir" ,action="store_true" ,default=_snake_case ) parser.add_argument("--max_tokens_per_batch" ,type=_snake_case ,default=_snake_case ) parser.add_argument("--logger_name" ,type=_snake_case ,choices=["default", "wandb", "wandb_shared"] ,default="default" ) parser.add_argument("--n_train" ,type=_snake_case ,default=-1 ,required=_snake_case ,help="# examples. -1 means use all." ) parser.add_argument("--n_val" ,type=_snake_case ,default=5_00 ,required=_snake_case ,help="# examples. -1 means use all." ) parser.add_argument("--n_test" ,type=_snake_case ,default=-1 ,required=_snake_case ,help="# examples. -1 means use all." ) parser.add_argument( "--task" ,type=_snake_case ,default="summarization" ,required=_snake_case ,help="# examples. -1 means use all." ) parser.add_argument("--label_smoothing" ,type=_snake_case ,default=0.0 ,required=_snake_case ) parser.add_argument("--src_lang" ,type=_snake_case ,default="" ,required=_snake_case ) parser.add_argument("--tgt_lang" ,type=_snake_case ,default="" ,required=_snake_case ) parser.add_argument("--eval_beams" ,type=_snake_case ,default=_snake_case ,required=_snake_case ) parser.add_argument( "--val_metric" ,type=_snake_case ,default=_snake_case ,required=_snake_case ,choices=["bleu", "rouge2", "loss", None] ) parser.add_argument("--eval_max_gen_length" ,type=_snake_case ,default=_snake_case ,help="never generate more than n tokens" ) parser.add_argument("--save_top_k" ,type=_snake_case ,default=1 ,required=_snake_case ,help="How many checkpoints to save" ) parser.add_argument( "--early_stopping_patience" ,type=_snake_case ,default=-1 ,required=_snake_case ,help=( "-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So" " val_check_interval will effect it." ) ,) return parser class _snake_case (__SCREAMING_SNAKE_CASE): __A : Any ="translation" __A : Optional[int] =["loss"] __A : str =["bleu"] __A : int ="bleu" def __init__( self ,_snake_case ,**_snake_case ): super().__init__(_snake_case ,**_snake_case ) UpperCAmelCase_ : Optional[int] = hparams.src_lang UpperCAmelCase_ : Optional[Any] = hparams.tgt_lang def UpperCamelCase__ ( self ,_snake_case ,_snake_case ): return calculate_bleu(_snake_case ,_snake_case ) def a__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : int=None ) -> SummarizationModule: """simple docstring""" Path(args.output_dir ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) check_output_dir(_SCREAMING_SNAKE_CASE , expected_items=3 ) if model is None: if "summarization" in args.task: UpperCAmelCase_ : SummarizationModule = SummarizationModule(_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ : SummarizationModule = TranslationModule(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("/tmp" ) or str(args.output_dir ).startswith("/var" ) ): UpperCAmelCase_ : Tuple = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger UpperCAmelCase_ : str = os.environ.get("WANDB_PROJECT" , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = WandbLogger(name=model.output_dir.name , project=_SCREAMING_SNAKE_CASE ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger UpperCAmelCase_ : List[Any] = WandbLogger(name=model.output_dir.name , project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: UpperCAmelCase_ : Optional[Any] = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: UpperCAmelCase_ : Union[str, Any] = False UpperCAmelCase_ : List[Any] = args.val_metric == "loss" UpperCAmelCase_ : pl.Trainer = generic_train( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , _SCREAMING_SNAKE_CASE ) , early_stopping_callback=_SCREAMING_SNAKE_CASE , logger=_SCREAMING_SNAKE_CASE , ) pickle_save(model.hparams , model.output_dir / "hparams.pkl" ) if not args.do_predict: return model UpperCAmelCase_ : Tuple = "" UpperCAmelCase_ : str = sorted(glob.glob(os.path.join(args.output_dir , "*.ckpt" ) , recursive=_SCREAMING_SNAKE_CASE ) ) if checkpoints: UpperCAmelCase_ : Optional[Any] = checkpoints[-1] UpperCAmelCase_ : Tuple = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() _lowerCamelCase = pl.Trainer.add_argparse_args(parser) _lowerCamelCase = SummarizationModule.add_model_specific_args(parser, os.getcwd()) _lowerCamelCase = parser.parse_args() main(args)
71
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def a (lowerCAmelCase__ ): __a = VideoMAEConfig() set_architecture_configs(lowerCAmelCase__ , lowerCAmelCase__ ) if "finetuned" not in model_name: __a = False if "finetuned" in model_name: __a = """huggingface/label-files""" if "kinetics" in model_name: __a = 400 __a = """kinetics400-id2label.json""" elif "ssv2" in model_name: __a = 174 __a = """something-something-v2-id2label.json""" else: raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" ) __a = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="""dataset""" ) , """r""" ) ) __a = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} return config def a (lowerCAmelCase__ , lowerCAmelCase__ ): if "small" in model_name: __a = 384 __a = 1_536 __a = 12 __a = 16 __a = 12 __a = 3 __a = 192 __a = 768 elif "large" in model_name: __a = 1_024 __a = 4_096 __a = 24 __a = 16 __a = 12 __a = 8 __a = 512 __a = 2_048 elif "huge" in model_name: __a = 1_280 __a = 5_120 __a = 32 __a = 16 __a = 12 __a = 8 __a = 640 __a = 2_560 elif "base" not in model_name: raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" ) def a (lowerCAmelCase__ ): if "encoder." in name: __a = name.replace("""encoder.""" , """""" ) if "cls_token" in name: __a = name.replace("""cls_token""" , """videomae.embeddings.cls_token""" ) if "decoder_pos_embed" in name: __a = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: __a = name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __a = name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __a = name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" ) if "decoder.blocks" in name: __a = name.replace("""decoder.blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: __a = name.replace("""blocks""" , """videomae.encoder.layer""" ) if "attn.proj" in name: __a = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "bias" not in name: __a = name.replace("""attn""" , """attention.self""" ) if "attn" in name: __a = name.replace("""attn""" , """attention.attention""" ) if "norm1" in name: __a = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __a = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __a = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __a = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: __a = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: __a = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: __a = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: __a = name.replace("""norm.weight""" , """videomae.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: __a = name.replace("""norm.bias""" , """videomae.layernorm.bias""" ) if "head" in name and "decoder" not in name: __a = name.replace("""head""" , """classifier""" ) return name def a (lowerCAmelCase__ , lowerCAmelCase__ ): for key in orig_state_dict.copy().keys(): __a = orig_state_dict.pop(lowerCAmelCase__ ) if key.startswith("""encoder.""" ): __a = key.replace("""encoder.""" , """""" ) if "qkv" in key: __a = key.split(""".""" ) if key.startswith("""decoder.blocks""" ): __a = config.decoder_hidden_size __a = int(key_split[2] ) __a = """decoder.decoder_layers.""" if "weight" in key: __a = val[:dim, :] __a = val[dim : dim * 2, :] __a = val[-dim:, :] else: __a = config.hidden_size __a = int(key_split[1] ) __a = """videomae.encoder.layer.""" if "weight" in key: __a = val[:dim, :] __a = val[dim : dim * 2, :] __a = val[-dim:, :] else: __a = val return orig_state_dict def a (): __a = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __a = np.load(lowerCAmelCase__ ) return list(lowerCAmelCase__ ) def a (lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __a = get_videomae_config(lowerCAmelCase__ ) if "finetuned" in model_name: __a = VideoMAEForVideoClassification(lowerCAmelCase__ ) else: __a = VideoMAEForPreTraining(lowerCAmelCase__ ) # download original checkpoint, hosted on Google Drive __a = """pytorch_model.bin""" gdown.cached_download(lowerCAmelCase__ , lowerCAmelCase__ , quiet=lowerCAmelCase__ ) __a = torch.load(lowerCAmelCase__ , map_location="""cpu""" ) if "model" in files: __a = files["""model"""] else: __a = files["""module"""] __a = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() # verify model on basic input __a = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) __a = prepare_video() __a = image_processor(lowerCAmelCase__ , return_tensors="""pt""" ) if "finetuned" not in model_name: __a = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) __a = torch.load(lowerCAmelCase__ ) __a = model(**lowerCAmelCase__ ) __a = outputs.logits __a = [ """videomae-small-finetuned-kinetics""", """videomae-small-finetuned-ssv2""", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) """videomae-base-short""", """videomae-base-short-finetuned-kinetics""", """videomae-base""", """videomae-base-finetuned-kinetics""", """videomae-large""", """videomae-large-finetuned-kinetics""", """videomae-huge-finetuned-kinetics""", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) """videomae-base-short-ssv2""", """videomae-base-short-finetuned-ssv2""", """videomae-base-ssv2""", """videomae-base-finetuned-ssv2""", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": __a = torch.Size([1, 400] ) __a = torch.tensor([-0.9_2_9_1, -0.4_0_6_1, -0.9_3_0_7] ) elif model_name == "videomae-small-finetuned-ssv2": __a = torch.Size([1, 174] ) __a = torch.tensor([0.2_6_7_1, -0.4_6_8_9, -0.8_2_3_5] ) elif model_name == "videomae-base": __a = torch.Size([1, 1_408, 1_536] ) __a = torch.tensor([[0.7_7_3_9, 0.7_9_6_8, 0.7_0_8_9], [0.6_7_0_1, 0.7_4_8_7, 0.6_2_0_9], [0.4_2_8_7, 0.5_1_5_8, 0.4_7_7_3]] ) elif model_name == "videomae-base-short": __a = torch.Size([1, 1_408, 1_536] ) __a = torch.tensor([[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] ) # we verified the loss both for normalized and unnormalized targets for this one __a = torch.tensor([0.5_1_4_2] ) if config.norm_pix_loss else torch.tensor([0.6_4_6_9] ) elif model_name == "videomae-large": __a = torch.Size([1, 1_408, 1_536] ) __a = torch.tensor([[0.7_1_4_9, 0.7_9_9_7, 0.6_9_6_6], [0.6_7_6_8, 0.7_8_6_9, 0.6_9_4_8], [0.5_1_3_9, 0.6_2_2_1, 0.5_6_0_5]] ) elif model_name == "videomae-large-finetuned-kinetics": __a = torch.Size([1, 400] ) __a = torch.tensor([0.0_7_7_1, 0.0_0_1_1, -0.3_6_2_5] ) elif model_name == "videomae-huge-finetuned-kinetics": __a = torch.Size([1, 400] ) __a = torch.tensor([0.2_4_3_3, 0.1_6_3_2, -0.4_8_9_4] ) elif model_name == "videomae-base-short-finetuned-kinetics": __a = torch.Size([1, 400] ) __a = torch.tensor([0.6_5_8_8, 0.0_9_9_0, -0.2_4_9_3] ) elif model_name == "videomae-base-finetuned-kinetics": __a = torch.Size([1, 400] ) __a = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ) elif model_name == "videomae-base-short-ssv2": __a = torch.Size([1, 1_408, 1_536] ) __a = torch.tensor([[0.4_7_1_2, 0.5_2_9_6, 0.5_7_8_6], [0.2_2_7_8, 0.2_7_2_9, 0.4_0_2_6], [0.0_3_5_2, 0.0_7_3_0, 0.2_5_0_6]] ) elif model_name == "videomae-base-short-finetuned-ssv2": __a = torch.Size([1, 174] ) __a = torch.tensor([-0.0_5_3_7, -0.1_5_3_9, -0.3_2_6_6] ) elif model_name == "videomae-base-ssv2": __a = torch.Size([1, 1_408, 1_536] ) __a = torch.tensor([[0.8_1_3_1, 0.8_7_2_7, 0.8_5_4_6], [0.7_3_6_6, 0.9_3_7_7, 0.8_8_7_0], [0.5_9_3_5, 0.8_8_7_4, 0.8_5_6_4]] ) elif model_name == "videomae-base-finetuned-ssv2": __a = torch.Size([1, 174] ) __a = torch.tensor([0.1_9_6_1, -0.8_3_3_7, -0.6_3_8_9] ) else: raise ValueError(f'''Model name not supported. Should be one of {model_names}''' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) else: print("""Logits:""" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) print("""Logits ok!""" ) # verify loss, if applicable if model_name == "videomae-base-short": __a = outputs.loss assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-4 ) print("""Loss ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print("""Pushing to the hub...""" ) model.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4', type=str, help=( 'URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct' ' download link.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default='/Users/nielsrogge/Documents/VideoMAE/Test', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--model_name', default='videomae-base', type=str, help='Name of the model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
99
0
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" snake_case_ = (DDIMParallelScheduler,) snake_case_ = (('''eta''', 0.0), ('''num_inference_steps''', 50)) def lowercase_ ( self , **lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.00_01, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''clip_sample''': True, } config.update(**lowerCamelCase__ ) return config def lowercase_ ( self , **lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config(**lowerCamelCase__ ) __lowerCamelCase = scheduler_class(**lowerCamelCase__ ) __lowerCamelCase = 10, 0.0 __lowerCamelCase = self.dummy_model() __lowerCamelCase = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase__ ) for t in scheduler.timesteps: __lowerCamelCase = model(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample return sample def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=lowerCamelCase__ ) def lowercase_ ( self ) -> Dict: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCamelCase__ ) __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config(steps_offset=1 ) __lowerCamelCase = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def lowercase_ ( self ) -> Dict: '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCamelCase__ , beta_end=lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCamelCase__ ) def lowercase_ ( self ) -> int: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowerCamelCase__ ) def lowercase_ ( self ) -> str: '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowerCamelCase__ ) def lowercase_ ( self ) -> Dict: '''simple docstring''' self.check_over_configs(thresholding=lowerCamelCase__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowerCamelCase__ , prediction_type=lowerCamelCase__ , sample_max_value=lowerCamelCase__ , ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' for t in [1, 10, 49]: self.check_over_forward(time_step=lowerCamelCase__ ) def lowercase_ ( self ) -> Any: '''simple docstring''' for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=lowerCamelCase__ , num_inference_steps=lowerCamelCase__ ) def lowercase_ ( self ) -> str: '''simple docstring''' for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=lowerCamelCase__ , eta=lowerCamelCase__ ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config() __lowerCamelCase = scheduler_class(**lowerCamelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_47_71 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_24_60 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_09_79 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1e-5 def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config() __lowerCamelCase = scheduler_class(**lowerCamelCase__ ) __lowerCamelCase = 10, 0.0 scheduler.set_timesteps(lowerCamelCase__ ) __lowerCamelCase = self.dummy_model() __lowerCamelCase = self.dummy_sample_deter __lowerCamelCase = self.dummy_sample_deter + 0.1 __lowerCamelCase = self.dummy_sample_deter - 0.1 __lowerCamelCase = samplea.shape[0] __lowerCamelCase = torch.stack([samplea, samplea, samplea] , dim=0 ) __lowerCamelCase = torch.arange(lowerCamelCase__ )[0:3, None].repeat(1 , lowerCamelCase__ ) __lowerCamelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) __lowerCamelCase = scheduler.batch_step_no_noise(lowerCamelCase__ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , lowerCamelCase__ ) __lowerCamelCase = torch.sum(torch.abs(lowerCamelCase__ ) ) __lowerCamelCase = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1e-2 assert abs(result_mean.item() - 0.49_82 ) < 1e-3 def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = self.full_loop() __lowerCamelCase = torch.sum(torch.abs(lowerCamelCase__ ) ) __lowerCamelCase = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1e-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1e-3 def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = self.full_loop(prediction_type='v_prediction' ) __lowerCamelCase = torch.sum(torch.abs(lowerCamelCase__ ) ) __lowerCamelCase = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 52.53_02 ) < 1e-2 assert abs(result_mean.item() - 0.06_84 ) < 1e-3 def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' # We specify different beta, so that the first alpha is 0.99 __lowerCamelCase = self.full_loop(set_alpha_to_one=lowerCamelCase__ , beta_start=0.01 ) __lowerCamelCase = torch.sum(torch.abs(lowerCamelCase__ ) ) __lowerCamelCase = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1e-2 assert abs(result_mean.item() - 0.19_51 ) < 1e-3 def lowercase_ ( self ) -> List[Any]: '''simple docstring''' # We specify different beta, so that the first alpha is 0.99 __lowerCamelCase = self.full_loop(set_alpha_to_one=lowerCamelCase__ , beta_start=0.01 ) __lowerCamelCase = torch.sum(torch.abs(lowerCamelCase__ ) ) __lowerCamelCase = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1e-2 assert abs(result_mean.item() - 0.19_41 ) < 1e-3
719
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): """simple docstring""" snake_case_ = '''maskformer-swin''' snake_case_ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , lowerCamelCase__=224 , lowerCamelCase__=4 , lowerCamelCase__=3 , lowerCamelCase__=96 , lowerCamelCase__=[2, 2, 6, 2] , lowerCamelCase__=[3, 6, 12, 24] , lowerCamelCase__=7 , lowerCamelCase__=4.0 , lowerCamelCase__=True , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__="gelu" , lowerCamelCase__=False , lowerCamelCase__=0.02 , lowerCamelCase__=1e-5 , lowerCamelCase__=None , lowerCamelCase__=None , **lowerCamelCase__ , ) -> Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) __lowerCamelCase = image_size __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = embed_dim __lowerCamelCase = depths __lowerCamelCase = len(lowerCamelCase__ ) __lowerCamelCase = num_heads __lowerCamelCase = window_size __lowerCamelCase = mlp_ratio __lowerCamelCase = qkv_bias __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = drop_path_rate __lowerCamelCase = hidden_act __lowerCamelCase = use_absolute_embeddings __lowerCamelCase = layer_norm_eps __lowerCamelCase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowerCamelCase = int(embed_dim * 2 ** (len(lowerCamelCase__ ) - 1) ) __lowerCamelCase = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )] __lowerCamelCase , __lowerCamelCase = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names )
167
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ : int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=False ) -> int: snake_case__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case__ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Dict: for i in range(config.num_hidden_layers ): if base_model: snake_case__ = '''''' else: snake_case__ = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ = in_proj_weight[ : config.hidden_size, : ] snake_case__ = in_proj_bias[: config.hidden_size] snake_case__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ = in_proj_weight[ -config.hidden_size :, : ] snake_case__ = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[Any]: snake_case__ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: snake_case__ = dct.pop(__lowerCAmelCase ) snake_case__ = val def SCREAMING_SNAKE_CASE ( ) -> str: snake_case__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Dict: snake_case__ = ViTConfig() snake_case__ = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": snake_case__ = True snake_case__ = int(vit_name[-12:-10] ) snake_case__ = int(vit_name[-9:-6] ) else: snake_case__ = 1000 snake_case__ = '''huggingface/label-files''' snake_case__ = '''imagenet-1k-id2label.json''' snake_case__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) snake_case__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ = idalabel snake_case__ = {v: k for k, v in idalabel.items()} snake_case__ = int(vit_name[-6:-4] ) snake_case__ = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): snake_case__ = 192 snake_case__ = 768 snake_case__ = 12 snake_case__ = 3 elif vit_name[9:].startswith('''small''' ): snake_case__ = 384 snake_case__ = 1536 snake_case__ = 12 snake_case__ = 6 else: pass else: if vit_name[4:].startswith('''small''' ): snake_case__ = 768 snake_case__ = 2304 snake_case__ = 8 snake_case__ = 8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): snake_case__ = 1024 snake_case__ = 4096 snake_case__ = 24 snake_case__ = 16 elif vit_name[4:].startswith('''huge''' ): snake_case__ = 1280 snake_case__ = 5120 snake_case__ = 32 snake_case__ = 16 # load original model from timm snake_case__ = timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ = timm_model.state_dict() if base_model: remove_classification_head_(__lowerCAmelCase ) snake_case__ = create_rename_keys(__lowerCAmelCase , __lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": snake_case__ = ViTModel(__lowerCAmelCase ).eval() else: snake_case__ = ViTForImageClassification(__lowerCAmelCase ).eval() model.load_state_dict(__lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: snake_case__ = DeiTImageProcessor(size=config.image_size ) else: snake_case__ = ViTImageProcessor(size=config.image_size ) snake_case__ = image_processor(images=prepare_img() , return_tensors='''pt''' ) snake_case__ = encoding['''pixel_values'''] snake_case__ = model(__lowerCAmelCase ) if base_model: snake_case__ = timm_model.forward_features(__lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__lowerCAmelCase , outputs.pooler_output , atol=1e-3 ) else: snake_case__ = timm_model(__lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCAmelCase , outputs.logits , atol=1e-3 ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_patch16_224""", type=str, help="""Name of the ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowerCamelCase__ : str = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
33
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) SCREAMING_SNAKE_CASE_ : str = { '''iou_prediction_head.layers.0''': '''iou_prediction_head.proj_in''', '''iou_prediction_head.layers.1''': '''iou_prediction_head.layers.0''', '''iou_prediction_head.layers.2''': '''iou_prediction_head.proj_out''', '''mask_decoder.output_upscaling.0''': '''mask_decoder.upscale_conv1''', '''mask_decoder.output_upscaling.1''': '''mask_decoder.upscale_layer_norm''', '''mask_decoder.output_upscaling.3''': '''mask_decoder.upscale_conv2''', '''mask_downscaling.0''': '''mask_embed.conv1''', '''mask_downscaling.1''': '''mask_embed.layer_norm1''', '''mask_downscaling.3''': '''mask_embed.conv2''', '''mask_downscaling.4''': '''mask_embed.layer_norm2''', '''mask_downscaling.6''': '''mask_embed.conv3''', '''point_embeddings''': '''point_embed''', '''pe_layer.positional_encoding_gaussian_matrix''': '''shared_embedding.positional_embedding''', '''image_encoder''': '''vision_encoder''', '''neck.0''': '''neck.conv1''', '''neck.1''': '''neck.layer_norm1''', '''neck.2''': '''neck.conv2''', '''neck.3''': '''neck.layer_norm2''', '''patch_embed.proj''': '''patch_embed.projection''', '''.norm''': '''.layer_norm''', '''blocks''': '''layers''', } def SCREAMING_SNAKE_CASE ( snake_case ) -> Tuple: __lowercase = {} state_dict.pop('pixel_mean' , snake_case ) state_dict.pop('pixel_std' , snake_case ) __lowercase = r'.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __lowercase = key.replace(snake_case , snake_case ) if re.match(snake_case , snake_case ): __lowercase = int(re.match(snake_case , snake_case ).group(2 ) ) if layer_nb == 0: __lowercase = key.replace('layers.0' , 'proj_in' ) elif layer_nb == 1: __lowercase = key.replace('layers.1' , 'layers.0' ) elif layer_nb == 2: __lowercase = key.replace('layers.2' , 'proj_out' ) __lowercase = value __lowercase = model_state_dict[ 'prompt_encoder.shared_embedding.positional_embedding' ] return model_state_dict def SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case , snake_case="ybelkada/segment-anything" ) -> int: __lowercase = hf_hub_download(snake_case , F"checkpoints/{model_name}.pth" ) if "sam_vit_b" in model_name: __lowercase = SamConfig() elif "sam_vit_l" in model_name: __lowercase = SamVisionConfig( hidden_size=1_024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) __lowercase = SamConfig( vision_config=snake_case , ) elif "sam_vit_h" in model_name: __lowercase = SamVisionConfig( hidden_size=1_280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) __lowercase = SamConfig( vision_config=snake_case , ) __lowercase = torch.load(snake_case , map_location='cpu' ) __lowercase = replace_keys(snake_case ) __lowercase = SamImageProcessor() __lowercase = SamProcessor(image_processor=snake_case ) __lowercase = SamModel(snake_case ) hf_model.load_state_dict(snake_case ) __lowercase = hf_model.to('cuda' ) __lowercase = 'https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png' __lowercase = Image.open(requests.get(snake_case , stream=snake_case ).raw ).convert('RGB' ) __lowercase = [[[400, 650]]] __lowercase = [[1]] __lowercase = processor(images=np.array(snake_case ) , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): __lowercase = hf_model(**snake_case ) __lowercase = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_8902_5115_9668 __lowercase = processor( images=np.array(snake_case ) , input_points=snake_case , input_labels=snake_case , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): __lowercase = hf_model(**snake_case ) __lowercase = output.iou_scores.squeeze() assert scores[-1].item() == 0.9712_6030_9219_3604 __lowercase = ((75, 275, 1_725, 850),) __lowercase = processor(images=np.array(snake_case ) , input_boxes=snake_case , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): __lowercase = hf_model(**snake_case ) __lowercase = output.iou_scores.squeeze() assert scores[-1].item() == 0.8686_0156_0592_6514 # Test with 2 points and 1 image. __lowercase = [[[400, 650], [800, 650]]] __lowercase = [[1, 1]] __lowercase = processor( images=np.array(snake_case ) , input_points=snake_case , input_labels=snake_case , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): __lowercase = hf_model(**snake_case ) __lowercase = output.iou_scores.squeeze() assert scores[-1].item() == 0.9936_0477_9243_4692 if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : Optional[Any] = argparse.ArgumentParser() SCREAMING_SNAKE_CASE_ : Union[str, Any] = ['''sam_vit_b_01ec64''', '''sam_vit_h_4b8939''', '''sam_vit_l_0b3195'''] parser.add_argument( '''--model_name''', default='''sam_vit_h_4b8939''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) parser.add_argument( '''--model_hub_id''', default='''ybelkada/segment-anything''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) SCREAMING_SNAKE_CASE_ : List[Any] = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
375
0
import math def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_): '''simple docstring''' return math.pow(lowerCAmelCase_ , 2) - a def __magic_name__ ( lowerCAmelCase_): '''simple docstring''' return 2 * x def __magic_name__ ( lowerCAmelCase_): '''simple docstring''' lowerCamelCase_ : int = 2.0 while start <= a: lowerCamelCase_ : List[Any] = math.pow(lowerCAmelCase_ , 2) return start def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ = 9999 , lowerCAmelCase_ = 0.00_00_00_00_00_00_01): '''simple docstring''' if a < 0: raise ValueError("math domain error") lowerCamelCase_ : List[str] = get_initial_point(lowerCAmelCase_) for _ in range(lowerCAmelCase_): lowerCamelCase_ : Tuple = value lowerCamelCase_ : Optional[int] = value - fx(lowerCAmelCase_ , lowerCAmelCase_) / fx_derivative(lowerCAmelCase_) if abs(prev_value - value) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
73
from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''', # See all Cvt models at https://huggingface.co/models?filter=cvt } class lowerCAmelCase__ ( __lowerCamelCase ): """simple docstring""" __UpperCAmelCase : List[str] = '''cvt''' def __init__( self , a_=3 , a_=[7, 3, 3] , a_=[4, 2, 2] , a_=[2, 1, 1] , a_=[64, 192, 384] , a_=[1, 3, 6] , a_=[1, 2, 10] , a_=[4.0, 4.0, 4.0] , a_=[0.0, 0.0, 0.0] , a_=[0.0, 0.0, 0.0] , a_=[0.0, 0.0, 0.1] , a_=[True, True, True] , a_=[False, False, True] , a_=["dw_bn", "dw_bn", "dw_bn"] , a_=[3, 3, 3] , a_=[1, 1, 1] , a_=[2, 2, 2] , a_=[1, 1, 1] , a_=[1, 1, 1] , a_=0.02 , a_=1E-12 , **a_ , ): super().__init__(**a_ ) lowerCamelCase_ : Optional[Any] = num_channels lowerCamelCase_ : str = patch_sizes lowerCamelCase_ : List[Any] = patch_stride lowerCamelCase_ : str = patch_padding lowerCamelCase_ : str = embed_dim lowerCamelCase_ : Union[str, Any] = num_heads lowerCamelCase_ : Optional[Any] = depth lowerCamelCase_ : int = mlp_ratio lowerCamelCase_ : Union[str, Any] = attention_drop_rate lowerCamelCase_ : Optional[Any] = drop_rate lowerCamelCase_ : Optional[int] = drop_path_rate lowerCamelCase_ : Union[str, Any] = qkv_bias lowerCamelCase_ : int = cls_token lowerCamelCase_ : int = qkv_projection_method lowerCamelCase_ : int = kernel_qkv lowerCamelCase_ : Optional[Any] = padding_kv lowerCamelCase_ : Optional[int] = stride_kv lowerCamelCase_ : Optional[int] = padding_q lowerCamelCase_ : List[Any] = stride_q lowerCamelCase_ : Any = initializer_range lowerCamelCase_ : int = layer_norm_eps
73
1
"""simple docstring""" import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class A_ : def _lowercase ( self: str ): '''simple docstring''' torch.manual_seed(0 ) _lowerCamelCase : Dict = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) _lowerCamelCase : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) _lowerCamelCase : str = UNetaDConditionModel( sample_size=32 ,layers_per_block=1 ,block_out_channels=[32, 64] ,down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] ,mid_block_type="UNetMidBlock2DSimpleCrossAttn" ,up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] ,in_channels=3 ,out_channels=6 ,cross_attention_dim=32 ,encoder_hid_dim=32 ,attention_head_dim=8 ,addition_embed_type="text" ,addition_embed_type_num_heads=2 ,cross_attention_norm="group_norm" ,resnet_time_scale_shift="scale_shift" ,act_fn="gelu" ,) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) _lowerCamelCase : Union[str, Any] = DDPMScheduler( num_train_timesteps=1_000 ,beta_schedule="squaredcos_cap_v2" ,beta_start=0.00_01 ,beta_end=0.02 ,thresholding=__lowerCAmelCase ,dynamic_thresholding_ratio=0.95 ,sample_max_value=1.0 ,prediction_type="epsilon" ,variance_type="learned_range" ,) torch.manual_seed(0 ) _lowerCamelCase : Tuple = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _lowercase ( self: Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) _lowerCamelCase : Dict = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) _lowerCamelCase : Any = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) _lowerCamelCase : Optional[int] = UNetaDConditionModel( sample_size=32 ,layers_per_block=[1, 2] ,block_out_channels=[32, 64] ,down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] ,mid_block_type="UNetMidBlock2DSimpleCrossAttn" ,up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] ,in_channels=6 ,out_channels=6 ,cross_attention_dim=32 ,encoder_hid_dim=32 ,attention_head_dim=8 ,addition_embed_type="text" ,addition_embed_type_num_heads=2 ,cross_attention_norm="group_norm" ,resnet_time_scale_shift="scale_shift" ,act_fn="gelu" ,class_embed_type="timestep" ,mid_block_scale_factor=1.4_14 ,time_embedding_act_fn="gelu" ,time_embedding_dim=32 ,) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) _lowerCamelCase : List[str] = DDPMScheduler( num_train_timesteps=1_000 ,beta_schedule="squaredcos_cap_v2" ,beta_start=0.00_01 ,beta_end=0.02 ,thresholding=__lowerCAmelCase ,dynamic_thresholding_ratio=0.95 ,sample_max_value=1.0 ,prediction_type="epsilon" ,variance_type="learned_range" ,) torch.manual_seed(0 ) _lowerCamelCase : Any = DDPMScheduler( num_train_timesteps=1_000 ,beta_schedule="squaredcos_cap_v2" ,beta_start=0.00_01 ,beta_end=0.02 ,) torch.manual_seed(0 ) _lowerCamelCase : Optional[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : str = self.get_dummy_components() _lowerCamelCase : Union[str, Any] = self.pipeline_class(**__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = self.get_dummy_inputs(__lowerCAmelCase ) _lowerCamelCase : List[Any] = inputs["prompt"] _lowerCamelCase : List[Any] = inputs["generator"] _lowerCamelCase : str = inputs["num_inference_steps"] _lowerCamelCase : Optional[Any] = inputs["output_type"] if "image" in inputs: _lowerCamelCase : Optional[Any] = inputs["image"] else: _lowerCamelCase : Optional[Any] = None if "mask_image" in inputs: _lowerCamelCase : Dict = inputs["mask_image"] else: _lowerCamelCase : Optional[Any] = None if "original_image" in inputs: _lowerCamelCase : Tuple = inputs["original_image"] else: _lowerCamelCase : Dict = None _lowerCamelCase, _lowerCamelCase : int = pipe.encode_prompt(__lowerCAmelCase ) # inputs with prompt converted to embeddings _lowerCamelCase : str = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: _lowerCamelCase : Union[str, Any] = image if mask_image is not None: _lowerCamelCase : Union[str, Any] = mask_image if original_image is not None: _lowerCamelCase : Tuple = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : List[Any] = pipe(**__lowerCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = self.pipeline_class.from_pretrained(__lowerCAmelCase ) pipe_loaded.to(__lowerCAmelCase ) pipe_loaded.set_progress_bar_config(disable=__lowerCAmelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(__lowerCAmelCase ,__lowerCAmelCase ) is None ,F"""`{optional_component}` did not stay set to None after loading.""" ,) _lowerCamelCase : Union[str, Any] = self.get_dummy_inputs(__lowerCAmelCase ) _lowerCamelCase : Tuple = inputs["generator"] _lowerCamelCase : Optional[int] = inputs["num_inference_steps"] _lowerCamelCase : List[Any] = inputs["output_type"] # inputs with prompt converted to embeddings _lowerCamelCase : str = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: _lowerCamelCase : Tuple = image if mask_image is not None: _lowerCamelCase : Dict = mask_image if original_image is not None: _lowerCamelCase : List[str] = original_image _lowerCamelCase : List[Any] = pipe_loaded(**__lowerCAmelCase )[0] _lowerCamelCase : str = np.abs(to_np(__lowerCAmelCase ) - to_np(__lowerCAmelCase ) ).max() self.assertLess(__lowerCAmelCase ,1e-4 ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Tuple = self.get_dummy_components() _lowerCamelCase : Optional[Any] = self.pipeline_class(**__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : List[Any] = self.get_dummy_inputs(__lowerCAmelCase ) _lowerCamelCase : List[str] = pipe(**__lowerCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : Tuple = self.pipeline_class.from_pretrained(__lowerCAmelCase ) pipe_loaded.to(__lowerCAmelCase ) pipe_loaded.set_progress_bar_config(disable=__lowerCAmelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests _lowerCamelCase : List[Any] = self.get_dummy_inputs(__lowerCAmelCase ) _lowerCamelCase : Dict = pipe_loaded(**__lowerCAmelCase )[0] _lowerCamelCase : Dict = np.abs(to_np(__lowerCAmelCase ) - to_np(__lowerCAmelCase ) ).max() self.assertLess(__lowerCAmelCase ,1e-4 )
46
"""simple docstring""" from sklearn.metrics import fa_score import datasets __UpperCAmelCase = '\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n' __UpperCAmelCase = '\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n\n - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {\'f1\': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results[\'f1\'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results[\'f1\'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")\n >>> print(round(results[\'f1\'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'f1\': array([0.8, 0. , 0. ])}\n' __UpperCAmelCase = '\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): def __lowercase ( self : List[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) ,reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"""] ,) def __lowercase ( self : Union[str, Any] ,A : List[str] ,A : List[Any] ,A : Optional[Any]=None ,A : List[str]=1 ,A : Optional[Any]="binary" ,A : Any=None ): '''simple docstring''' UpperCAmelCase__ : List[Any] = fa_score( A ,A ,labels=A ,pos_label=A ,average=A ,sample_weight=A ) return {"f1": float(A ) if score.size == 1 else score}
65
0
"""simple docstring""" import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = emb.weight.shape UpperCAmelCase = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) UpperCAmelCase = emb.weight.data return lin_layer def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = torch.load(_snake_case , map_location="""cpu""" ) UpperCAmelCase = mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""] UpperCAmelCase = mam_aaa["""model"""] remove_ignore_keys_(_snake_case ) UpperCAmelCase = state_dict["""encoder.embed_tokens.weight"""].shape[0] UpperCAmelCase = MaMaaaConfig( vocab_size=_snake_case , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , ) UpperCAmelCase = state_dict["""decoder.embed_tokens.weight"""] UpperCAmelCase = MaMaaaForConditionalGeneration(_snake_case ) model.model.load_state_dict(_snake_case , strict=_snake_case ) UpperCAmelCase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') lowerCAmelCase_ : Tuple = parser.parse_args() lowerCAmelCase_ : Union[str, Any] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
711
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
378
0
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def UpperCamelCase_( _A :Dict , _A :Optional[Any]=False )-> Dict: try: UpperCamelCase__ = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCamelCase__ = default else: # KEY is set, convert it to True or False. try: UpperCamelCase__ = strtobool(_A ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'''If set, {key} must be yes or no.''' ) return _value __UpperCamelCase = parse_flag_from_env('RUN_SLOW', default=False) def UpperCamelCase_( _A :Union[str, Any] )-> str: return unittest.skip("Test was skipped" )(_A ) def UpperCamelCase_( _A :Tuple )-> Dict: return unittest.skipUnless(_run_slow_tests , "test is slow" )(_A ) def UpperCamelCase_( _A :Optional[Any] )-> Dict: return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU" )(_A ) def UpperCamelCase_( _A :List[str] )-> str: return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU" )(_A ) def UpperCamelCase_( _A :Union[str, Any] )-> Tuple: return unittest.skipUnless(is_xpu_available() , "test requires a XPU" )(_A ) def UpperCamelCase_( _A :Optional[int] )-> Union[str, Any]: return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`" )(_A ) def UpperCamelCase_( _A :List[str] )-> Dict: return unittest.skipUnless( is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite" )(_A ) def UpperCamelCase_( _A :Any )-> Tuple: return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library" )(_A ) def UpperCamelCase_( _A :Tuple )-> str: return unittest.skipUnless(is_tpu_available() , "test requires TPU" )(_A ) def UpperCamelCase_( _A :List[str] )-> Dict: return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU" )(_A ) def UpperCamelCase_( _A :List[str] )-> Optional[Any]: return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU" )(_A ) def UpperCamelCase_( _A :Dict )-> Optional[Any]: return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs" )(_A ) def UpperCamelCase_( _A :Tuple )-> Dict: return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs" )(_A ) def UpperCamelCase_( _A :Optional[int] )-> str: return unittest.skipUnless(is_safetensors_available() , "test requires safetensors" )(_A ) def UpperCamelCase_( _A :List[Any] )-> Optional[int]: return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed" )(_A ) def UpperCamelCase_( _A :int )-> Union[str, Any]: return unittest.skipUnless(is_torch_version(">=" , "1.12.0" ) , "test requires torch version >= 1.12.0" )(_A ) def UpperCamelCase_( _A :List[Any]=None , _A :Optional[int]=None )-> Optional[Any]: if test_case is None: return partial(_A , version=_A ) return unittest.skipUnless(is_torch_version(">=" , _A ) , F'''test requires torch version >= {version}''' )(_A ) def UpperCamelCase_( _A :Optional[int] )-> Any: return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard" )(_A ) def UpperCamelCase_( _A :Dict )-> Tuple: return unittest.skipUnless(is_wandb_available() , "test requires wandb" )(_A ) def UpperCamelCase_( _A :Union[str, Any] )-> Union[str, Any]: return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml" )(_A ) __UpperCamelCase = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def UpperCamelCase_( _A :Dict )-> Union[str, Any]: return unittest.skipUnless( _atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(_A ) class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" _UpperCamelCase : Dict = True @classmethod def snake_case__ ( cls ): '''simple docstring''' UpperCamelCase__ = tempfile.mkdtemp() @classmethod def snake_case__ ( cls ): '''simple docstring''' if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def snake_case__ ( self ): '''simple docstring''' if self.clear_on_setup: for path in Path(self.tmpdir ).glob("**/*" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(snake_case ) class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self ): '''simple docstring''' super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self , snake_case ): '''simple docstring''' UpperCamelCase__ = mocks if isinstance(snake_case , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def UpperCamelCase_( _A :str )-> Union[str, Any]: UpperCamelCase__ = AcceleratorState() UpperCamelCase__ = tensor[None].clone().to(state.device ) UpperCamelCase__ = gather(_A ).cpu() UpperCamelCase__ = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , _A ): return False return True class lowerCamelCase__ : """simple docstring""" def __init__( self , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCamelCase__ = returncode UpperCamelCase__ = stdout UpperCamelCase__ = stderr async def UpperCamelCase_( _A :Optional[Any] , _A :Any )-> List[Any]: while True: UpperCamelCase__ = await stream.readline() if line: callback(_A ) else: break async def UpperCamelCase_( _A :List[str] , _A :List[str]=None , _A :str=None , _A :Optional[int]=None , _A :Dict=False , _A :Tuple=False )-> _RunOutput: if echo: print("\nRunning: " , " ".join(_A ) ) UpperCamelCase__ = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_A , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_A , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCamelCase__ = [] UpperCamelCase__ = [] def tee(_A :Optional[int] , _A :Any , _A :Any , _A :Any="" ): UpperCamelCase__ = line.decode("utf-8" ).rstrip() sink.append(_A ) if not quiet: print(_A , _A , file=_A ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _A : tee(_A , _A , sys.stdout , label="stdout:" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda _A : tee(_A , _A , sys.stderr , label="stderr:" ) ) ), ] , timeout=_A , ) return _RunOutput(await p.wait() , _A , _A ) def UpperCamelCase_( _A :Optional[int] , _A :Dict=None , _A :Union[str, Any]=None , _A :Tuple=1_80 , _A :Union[str, Any]=False , _A :Optional[int]=True )-> _RunOutput: UpperCamelCase__ = asyncio.get_event_loop() UpperCamelCase__ = loop.run_until_complete( _stream_subprocess(_A , env=_A , stdin=_A , timeout=_A , quiet=_A , echo=_A ) ) UpperCamelCase__ = " ".join(_A ) if result.returncode > 0: UpperCamelCase__ = "\n".join(result.stderr ) raise RuntimeError( F'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' F'''The combined stderr from workers follows:\n{stderr}''' ) return result class lowerCamelCase__ ( UpperCAmelCase ): """simple docstring""" pass def UpperCamelCase_( _A :List[str] , _A :Union[str, Any]=False )-> List[str]: try: UpperCamelCase__ = subprocess.check_output(_A , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(_A , "decode" ): UpperCamelCase__ = output.decode("utf-8" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F'''Command `{' '.join(_A )}` failed with the following error:\n\n{e.output.decode()}''' ) from e
551
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class lowerCamelCase__ ( UpperCAmelCase , unittest.TestCase ): """simple docstring""" _UpperCamelCase : List[str] = MvpTokenizer _UpperCamelCase : Any = MvpTokenizerFast _UpperCamelCase : List[str] = True _UpperCamelCase : Dict = filter_roberta_detectors def snake_case__ ( self ): '''simple docstring''' super().setUp() UpperCamelCase__ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] UpperCamelCase__ = dict(zip(snake_case , range(len(snake_case ) ) ) ) UpperCamelCase__ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] UpperCamelCase__ = {"unk_token": "<unk>"} UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(snake_case ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(snake_case ) ) def snake_case__ ( self , **snake_case ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case ) def snake_case__ ( self , **snake_case ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **snake_case ) def snake_case__ ( self , snake_case ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def snake_case__ ( self ): '''simple docstring''' return MvpTokenizer.from_pretrained("RUCAIBox/mvp" ) @cached_property def snake_case__ ( self ): '''simple docstring''' return MvpTokenizerFast.from_pretrained("RUCAIBox/mvp" ) @require_torch def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] UpperCamelCase__ = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase__ = tokenizer(snake_case , max_length=len(snake_case ) , padding=snake_case , return_tensors="pt" ) self.assertIsInstance(snake_case , snake_case ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) UpperCamelCase__ = batch.input_ids.tolist()[0] self.assertListEqual(snake_case , snake_case ) # Test that special tokens are reset @require_torch def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase__ = tokenizer(snake_case , padding=snake_case , return_tensors="pt" ) # check if input_ids are returned and no labels self.assertIn("input_ids" , snake_case ) self.assertIn("attention_mask" , snake_case ) self.assertNotIn("labels" , snake_case ) self.assertNotIn("decoder_attention_mask" , snake_case ) @require_torch def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase__ = tokenizer(text_target=snake_case , max_length=32 , padding="max_length" , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) @require_torch def snake_case__ ( self ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase__ = tokenizer( ["I am a small frog" * 1024, "I am a small frog"] , padding=snake_case , truncation=snake_case , return_tensors="pt" ) self.assertIsInstance(snake_case , snake_case ) self.assertEqual(batch.input_ids.shape , (2, 1024) ) @require_torch def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = ["A long paragraph for summarization."] UpperCamelCase__ = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase__ = tokenizer(snake_case , text_target=snake_case , return_tensors="pt" ) UpperCamelCase__ = inputs["input_ids"] UpperCamelCase__ = inputs["labels"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(snake_case , **snake_case ) UpperCamelCase__ = self.tokenizer_class.from_pretrained(snake_case , **snake_case ) UpperCamelCase__ = "A, <mask> AllenNLP sentence." UpperCamelCase__ = tokenizer_r.encode_plus(snake_case , add_special_tokens=snake_case , return_token_type_ids=snake_case ) UpperCamelCase__ = tokenizer_p.encode_plus(snake_case , add_special_tokens=snake_case , return_token_type_ids=snake_case ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) UpperCamelCase__ = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) UpperCamelCase__ = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( snake_case , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( snake_case , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
551
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _a : Tuple = logging.get_logger(__name__) _a : Union[str, Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } _a : List[Any] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def UpperCamelCase__ ( _A: int ): '''simple docstring''' __lowerCamelCase = {} with open(_A , """r""" ) as file: for line_number, line in enumerate(_A ): __lowerCamelCase = line.strip() if line: __lowerCamelCase = line.split() __lowerCamelCase = line_number __lowerCamelCase = words[0] __lowerCamelCase = value return result def UpperCamelCase__ ( _A: int , _A: List[Any] , _A: Union[str, Any] , _A: List[str] , _A: Optional[Any] ): '''simple docstring''' for attribute in key.split(""".""" ): __lowerCamelCase = getattr(_A , _A ) __lowerCamelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_A ): __lowerCamelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] __lowerCamelCase = """param""" if weight_type is not None and weight_type != "param": __lowerCamelCase = getattr(_A , _A ).shape elif weight_type is not None and weight_type == "param": __lowerCamelCase = hf_pointer for attribute in hf_param_name.split(""".""" ): __lowerCamelCase = getattr(_A , _A ) __lowerCamelCase = shape_pointer.shape # let's reduce dimension __lowerCamelCase = value[0] else: __lowerCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": __lowerCamelCase = value elif weight_type == "weight_g": __lowerCamelCase = value elif weight_type == "weight_v": __lowerCamelCase = value elif weight_type == "bias": __lowerCamelCase = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): __lowerCamelCase = getattr(_A , _A ) __lowerCamelCase = value else: __lowerCamelCase = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def UpperCamelCase__ ( _A: Any , _A: int , _A: Dict , _A: Tuple , _A: Any ): '''simple docstring''' __lowerCamelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_A ): __lowerCamelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] __lowerCamelCase = """param""" if weight_type is not None and weight_type != "param": __lowerCamelCase = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __lowerCamelCase = """.""".join([key, hf_param_name] ) else: __lowerCamelCase = key __lowerCamelCase = value if """lm_head""" in full_key else value[0] _a : str = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def UpperCamelCase__ ( _A: Tuple , _A: Dict , _A: List[Any]=None , _A: Union[str, Any]=None ): '''simple docstring''' __lowerCamelCase = False for key, mapped_key in MAPPING.items(): __lowerCamelCase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __lowerCamelCase = True if "*" in mapped_key: __lowerCamelCase = name.split(_A )[0].split(""".""" )[-2] __lowerCamelCase = mapped_key.replace("""*""" , _A ) if "weight_g" in name: __lowerCamelCase = """weight_g""" elif "weight_v" in name: __lowerCamelCase = """weight_v""" elif "bias" in name: __lowerCamelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCamelCase = """weight""" else: __lowerCamelCase = None if hf_dict is not None: rename_dict(_A , _A , _A , _A , _A ) else: set_recursively(_A , _A , _A , _A , _A ) return is_used return is_used def UpperCamelCase__ ( _A: Tuple , _A: Optional[Any] , _A: Union[str, Any] ): '''simple docstring''' __lowerCamelCase = [] __lowerCamelCase = fairseq_model.state_dict() __lowerCamelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __lowerCamelCase = False if "conv_layers" in name: load_conv_layer( _A , _A , _A , _A , hf_model.config.feat_extract_norm == """group""" , ) __lowerCamelCase = True else: __lowerCamelCase = load_wavaveca_layer(_A , _A , _A ) if not is_used: unused_weights.append(_A ) logger.warning(f'''Unused weights: {unused_weights}''' ) def UpperCamelCase__ ( _A: int , _A: Union[str, Any] , _A: List[Any] , _A: Tuple , _A: Dict ): '''simple docstring''' __lowerCamelCase = full_name.split("""conv_layers.""" )[-1] __lowerCamelCase = name.split(""".""" ) __lowerCamelCase = int(items[0] ) __lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __lowerCamelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __lowerCamelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) __lowerCamelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) __lowerCamelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_A ) @torch.no_grad() def UpperCamelCase__ ( _A: Tuple , _A: Optional[Any] , _A: Dict=None , _A: Dict=None , _A: str=True , _A: Union[str, Any]=False ): '''simple docstring''' if config_path is not None: __lowerCamelCase = WavaVecaConfig.from_pretrained(_A ) else: __lowerCamelCase = WavaVecaConfig() if is_seq_class: __lowerCamelCase = read_txt_into_dict(_A ) __lowerCamelCase = idalabel __lowerCamelCase = WavaVecaForSequenceClassification(_A ) __lowerCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_A , return_attention_mask=_A , ) feature_extractor.save_pretrained(_A ) elif is_finetuned: if dict_path: __lowerCamelCase = Dictionary.load(_A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __lowerCamelCase = target_dict.pad_index __lowerCamelCase = target_dict.bos_index __lowerCamelCase = target_dict.eos_index __lowerCamelCase = len(target_dict.symbols ) __lowerCamelCase = os.path.join(_A , """vocab.json""" ) if not os.path.isdir(_A ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_A ) ) return os.makedirs(_A , exist_ok=_A ) __lowerCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched __lowerCamelCase = 0 __lowerCamelCase = 1 with open(_A , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(_A , _A ) __lowerCamelCase = WavaVecaCTCTokenizer( _A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_A , ) __lowerCamelCase = True if config.feat_extract_norm == """layer""" else False __lowerCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_A , return_attention_mask=_A , ) __lowerCamelCase = WavaVecaProcessor(feature_extractor=_A , tokenizer=_A ) processor.save_pretrained(_A ) __lowerCamelCase = WavaVecaForCTC(_A ) else: __lowerCamelCase = WavaVecaForPreTraining(_A ) if is_finetuned or is_seq_class: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __lowerCamelCase = argparse.Namespace(task="""audio_pretraining""" ) __lowerCamelCase = fairseq.tasks.setup_task(_A ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_A ) __lowerCamelCase = model[0].eval() recursively_load_weights(_A , _A , not is_finetuned ) hf_wavavec.save_pretrained(_A ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) _a : Optional[int] = parser.parse_args() _a : str = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
571
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _a : str = logging.getLogger(__name__) _a : Optional[int] = 'Hello world! cécé herlolip' _a : List[str] = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def UpperCamelCase__ ( _A: int , _A: List[str] ): '''simple docstring''' __lowerCamelCase = BertAbsConfig( temp_dir=""".""" , finetune_bert=_A , large=_A , share_emb=_A , use_bert_emb=_A , encoder="""bert""" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) __lowerCamelCase = torch.load(_A , lambda _A , _A : storage ) __lowerCamelCase = AbsSummarizer(_A , torch.device("""cpu""" ) , _A ) original.eval() __lowerCamelCase = BertAbsSummarizer(_A , torch.device("""cpu""" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("""convert the model""" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("""Make sure that the models' outputs are identical""" ) __lowerCamelCase = BertTokenizer.from_pretrained("""bert-base-uncased""" ) # prepare the model inputs __lowerCamelCase = tokenizer.encode("""This is sample éàalj'-.""" ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_A )) ) __lowerCamelCase = torch.tensor(_A ).unsqueeze(0 ) __lowerCamelCase = tokenizer.encode("""This is sample 3 éàalj'-.""" ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_A )) ) __lowerCamelCase = torch.tensor(_A ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __lowerCamelCase = encoder_input_ids __lowerCamelCase = decoder_input_ids __lowerCamelCase = __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = __lowerCamelCase = None __lowerCamelCase = __lowerCamelCase = None __lowerCamelCase = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __lowerCamelCase = original(_A , _A , _A , _A , _A , _A , _A )[0] __lowerCamelCase = original.generator(_A ) __lowerCamelCase = new_model( _A , _A , _A , _A , _A )[0] __lowerCamelCase = new_model.generator(_A ) __lowerCamelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(_A ) ) __lowerCamelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(_A ) ) __lowerCamelCase = torch.allclose(_A , _A , atol=1e-3 ) if are_identical: logging.info("""all weights are equal up to 1e-3""" ) else: raise ValueError("""the weights are different. The new model is likely different from the original one.""" ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("""saving the model's state dictionary""" ) torch.save( new_model.state_dict() , """./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin""" ) if __name__ == "__main__": _a : Any = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) _a : Any = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
571
1
'''simple docstring''' from __future__ import annotations def __snake_case ( SCREAMING_SNAKE_CASE_ : list[int] ) -> int: """simple docstring""" UpperCAmelCase = len(SCREAMING_SNAKE_CASE_ ) // 2 # choose the middle 3 elements UpperCAmelCase = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
51
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A : Optional[int] = { "configuration_longt5": ["LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongT5Config", "LongT5OnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ "LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST", "LongT5EncoderModel", "LongT5ForConditionalGeneration", "LongT5Model", "LongT5PreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ "FlaxLongT5ForConditionalGeneration", "FlaxLongT5Model", "FlaxLongT5PreTrainedModel", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
602
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available lowerCAmelCase_ : Dict = {'''tokenization_herbert''': ['''HerbertTokenizer''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Dict = ['''HerbertTokenizerFast'''] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys lowerCAmelCase_ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
156
'''simple docstring''' import argparse import importlib from pathlib import Path # Test all the extensions added in the setup lowerCAmelCase_ : Tuple = [ '''kernels/rwkv/wkv_cuda.cu''', '''kernels/rwkv/wkv_op.cpp''', '''kernels/deformable_detr/ms_deform_attn.h''', '''kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh''', '''models/graphormer/algos_graphormer.pyx''', ] def __A ( lowerCAmelCase_ ): # Test all the extensions added in the setup for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": lowerCAmelCase_ : Tuple = argparse.ArgumentParser() parser.add_argument('''--check_lib''', action='''store_true''', help='''Whether to check the build or the actual package.''') lowerCAmelCase_ : str = parser.parse_args() if args.check_lib: lowerCAmelCase_ : Any = importlib.import_module('''transformers''') lowerCAmelCase_ : Dict = Path(transformers_module.__file__).parent else: lowerCAmelCase_ : str = Path.cwd() / '''build/lib/transformers''' if not test_custom_files_are_present(transformers_path): raise ValueError('''The built release does not contain the custom files. Fix this before going further!''')
156
1
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=None, _UpperCAmelCase=None ) -> List[str]: '''simple docstring''' if attention_mask is None: lowerCAmelCase : int = tf.cast(tf.math.not_equal(A__, config.pad_token_id ), tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class __A : lowerCAmelCase_ : Any = OPTConfig lowerCAmelCase_ : Union[str, Any] = {} lowerCAmelCase_ : Any = 'gelu' def __init__( self : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any]=13 , UpperCAmelCase_ : List[Any]=7 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Union[str, Any]=99 , UpperCAmelCase_ : List[str]=16 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Any=20 , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : List[str]=1 , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : List[Any]=16 , UpperCAmelCase_ : Tuple=16 , ): lowerCAmelCase : Dict = parent lowerCAmelCase : List[str] = batch_size lowerCAmelCase : Tuple = seq_length lowerCAmelCase : int = is_training lowerCAmelCase : Optional[int] = use_labels lowerCAmelCase : Optional[int] = vocab_size lowerCAmelCase : Any = hidden_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : Optional[int] = num_attention_heads lowerCAmelCase : Any = intermediate_size lowerCAmelCase : Union[str, Any] = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : List[Any] = attention_probs_dropout_prob lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : str = eos_token_id lowerCAmelCase : int = pad_token_id lowerCAmelCase : Union[str, Any] = bos_token_id lowerCAmelCase : Dict = embed_dim lowerCAmelCase : Tuple = word_embed_proj_dim lowerCAmelCase : Any = False def lowercase__ ( self : Dict ): lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCAmelCase : int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase : Tuple = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase : Any = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=__a , **self.config_updates , ) lowerCAmelCase : int = prepare_opt_inputs_dict(__a , __a ) return config, inputs_dict def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] ): lowerCAmelCase : Optional[int] = TFOPTModel(config=__a ) lowerCAmelCase : Dict = inputs_dict['input_ids'] lowerCAmelCase : List[Any] = input_ids[:1, :] lowerCAmelCase : Optional[int] = inputs_dict['attention_mask'][:1, :] lowerCAmelCase : Any = 1 # first forward pass lowerCAmelCase : int = model(__a , attention_mask=__a , use_cache=__a ) lowerCAmelCase : Tuple = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase : Union[str, Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCAmelCase : Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCAmelCase : Dict = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCAmelCase : Dict = model(__a , attention_mask=__a )[0] lowerCAmelCase : str = model(__a , attention_mask=__a , past_key_values=__a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCAmelCase : Dict = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCAmelCase : Dict = output_from_no_past[:, -3:, random_slice_idx] lowerCAmelCase : Any = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__a , __a , rtol=1E-3 ) @require_tf class __A ( lowercase__ , lowercase__ , unittest.TestCase ): lowerCAmelCase_ : List[Any] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowerCAmelCase_ : List[Any] = (TFOPTForCausalLM,) if is_tf_available() else () lowerCAmelCase_ : List[str] = ( {'feature-extraction': TFOPTModel, 'text-generation': TFOPTForCausalLM} if is_tf_available() else {} ) lowerCAmelCase_ : List[Any] = False lowerCAmelCase_ : Dict = False lowerCAmelCase_ : Dict = False lowerCAmelCase_ : int = 10 def lowercase__ ( self : Tuple ): lowerCAmelCase : Optional[int] = TFOPTModelTester(self ) lowerCAmelCase : List[Any] = ConfigTester(self , config_class=__a ) def lowercase__ ( self : Any ): self.config_tester.run_common_tests() def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__a ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] ): if hasattr(__a , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(__a , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings lowerCAmelCase : Any = model_class(config=__a ) lowerCAmelCase : Union[str, Any] = _get_word_embedding_weight(__a , model.get_input_embeddings() ) lowerCAmelCase : Any = _get_word_embedding_weight(__a , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(__a ) lowerCAmelCase : int = _get_word_embedding_weight(__a , model.get_input_embeddings() ) lowerCAmelCase : Tuple = _get_word_embedding_weight(__a , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. lowerCAmelCase : Tuple = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , __a ) # check that weights remain the same after resizing lowerCAmelCase : List[Any] = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCAmelCase : str = False self.assertTrue(__a ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , __a ) lowerCAmelCase : Dict = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCAmelCase : Tuple = False self.assertTrue(__a ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Dict: '''simple docstring''' return tf.constant(A__, dtype=tf.intaa ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : str = 99 def lowercase__ ( self : List[str] ): lowerCAmelCase : str = tf.ones((4, 1) , dtype=tf.intaa ) * 2 lowerCAmelCase : int = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) lowerCAmelCase : int = input_ids.shape[0] lowerCAmelCase : Optional[int] = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class __A ( unittest.TestCase ): @slow def lowercase__ ( self : List[Any] ): lowerCAmelCase : str = TFOPTModel.from_pretrained('facebook/opt-350m' ) lowerCAmelCase : Dict = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) lowerCAmelCase : List[Any] = tf.not_equal(__a , model.config.pad_token_id ) with tf.GradientTape(): lowerCAmelCase : Dict = model(input_ids=__a , attention_mask=__a ).last_hidden_state lowerCAmelCase : List[Any] = (1, 11, 512) self.assertEqual(output.shape , __a ) lowerCAmelCase : str = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , __a , atol=4E-3 ) ) lowerCAmelCase : int = tf.function(__a , jit_compile=__a ) lowerCAmelCase : Optional[int] = xla_generate(__a , __a )[0] self.assertTrue(np.allclose(output[:, :3, :3] , __a , atol=4E-2 ) ) @require_tf @slow class __A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ): super().setUp() lowerCAmelCase : str = 'facebook/opt-350m' def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : int = TFOPTForCausalLM.from_pretrained(self.path_model ) lowerCAmelCase : List[Any] = GPTaTokenizer.from_pretrained(self.path_model ) lowerCAmelCase : Optional[int] = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False lowerCAmelCase : str = tokenizer(__a , return_tensors='tf' , padding=__a , add_special_tokens=__a ) lowerCAmelCase : Tuple = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) lowerCAmelCase : List[str] = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(__a , __a , atol=1E-4 ) ) lowerCAmelCase : Union[str, Any] = tf.function(__a , jit_compile=__a ) lowerCAmelCase : List[Any] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(__a , __a , atol=1E-4 ) ) @require_tf @slow class __A ( unittest.TestCase ): @property def lowercase__ ( self : int ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def lowercase__ ( self : List[str] ): lowerCAmelCase : List[str] = 'facebook/opt-125m' lowerCAmelCase : Dict = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] lowerCAmelCase : Tuple = [] lowerCAmelCase : str = GPTaTokenizer.from_pretrained(__a ) lowerCAmelCase : Dict = TFOPTForCausalLM.from_pretrained(__a ) for prompt in self.prompts: lowerCAmelCase : Dict = tokenizer(__a , return_tensors='tf' ).input_ids lowerCAmelCase : int = model.generate(__a , max_length=10 ) lowerCAmelCase : List[Any] = tokenizer.batch_decode(__a , skip_special_tokens=__a ) predicted_outputs += generated_string self.assertListEqual(__a , __a ) def lowercase__ ( self : List[str] ): lowerCAmelCase : int = 'facebook/opt-350m' lowerCAmelCase : List[Any] = GPTaTokenizer.from_pretrained(__a ) lowerCAmelCase : str = TFOPTForCausalLM.from_pretrained(__a ) lowerCAmelCase : Optional[int] = 'left' # use different length sentences to test batching lowerCAmelCase : List[Any] = [ 'Hello, my dog is a little', 'Today, I', ] lowerCAmelCase : Optional[int] = tokenizer(__a , return_tensors='tf' , padding=__a ) lowerCAmelCase : Tuple = inputs['input_ids'] lowerCAmelCase : Optional[Any] = model.generate(input_ids=__a , attention_mask=inputs['attention_mask'] ) lowerCAmelCase : Any = tokenizer(sentences[0] , return_tensors='tf' ).input_ids lowerCAmelCase : Optional[Any] = model.generate(input_ids=__a ) lowerCAmelCase : List[Any] = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) lowerCAmelCase : Union[str, Any] = tokenizer(sentences[1] , return_tensors='tf' ).input_ids lowerCAmelCase : Any = model.generate(input_ids=__a , max_length=model.config.max_length - num_paddings ) lowerCAmelCase : Optional[int] = tokenizer.batch_decode(__a , skip_special_tokens=__a ) lowerCAmelCase : str = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__a ) lowerCAmelCase : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=__a ) lowerCAmelCase : Any = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(__a , __a ) self.assertListEqual(__a , [non_padded_sentence, padded_sentence] ) def lowercase__ ( self : Any ): lowerCAmelCase : Any = 'facebook/opt-350m' lowerCAmelCase : str = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] lowerCAmelCase : int = [] lowerCAmelCase : Tuple = GPTaTokenizer.from_pretrained(__a ) lowerCAmelCase : List[Any] = TFOPTForCausalLM.from_pretrained(__a ) for prompt in self.prompts: lowerCAmelCase : Optional[Any] = tokenizer(__a , return_tensors='tf' ).input_ids lowerCAmelCase : List[Any] = model.generate(__a , max_length=10 ) lowerCAmelCase : Union[str, Any] = tokenizer.batch_decode(__a , skip_special_tokens=__a ) predicted_outputs += generated_string self.assertListEqual(__a , __a )
343
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) a_ : Union[str, Any] = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[int] = ['''OwlViTFeatureExtractor'''] a_ : Tuple = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys a_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
594
0
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} __a = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } __a = { """allenai/longformer-base-4096""": 40_96, """allenai/longformer-large-4096""": 40_96, """allenai/longformer-large-4096-finetuned-triviaqa""": 40_96, """allenai/longformer-base-4096-extra.pos.embd.only""": 40_96, """allenai/longformer-large-4096-extra.pos.embd.only""": 40_96, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def a_ ( ) -> Dict: '''simple docstring''' UpperCamelCase_ = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) UpperCamelCase_ = bs[:] UpperCamelCase_ = 0 for b in range(2**8 ): if b not in bs: bs.append(__snake_case ) cs.append(2**8 + n ) n += 1 UpperCamelCase_ = [chr(__snake_case ) for n in cs] return dict(zip(__snake_case , __snake_case ) ) def a_ ( __snake_case ) -> Dict: '''simple docstring''' UpperCamelCase_ = set() UpperCamelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCamelCase_ = char return pairs class A ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : Dict = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self : List[str] , __UpperCAmelCase : List[str] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int]="replace" , __UpperCAmelCase : Tuple="<s>" , __UpperCAmelCase : List[Any]="</s>" , __UpperCAmelCase : Union[str, Any]="</s>" , __UpperCAmelCase : str="<s>" , __UpperCAmelCase : List[str]="<unk>" , __UpperCAmelCase : List[Any]="<pad>" , __UpperCAmelCase : int="<mask>" , __UpperCAmelCase : str=False , **__UpperCAmelCase : Dict , ) -> List[Any]: """simple docstring""" UpperCamelCase_ = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else bos_token UpperCamelCase_ = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else eos_token UpperCamelCase_ = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else sep_token UpperCamelCase_ = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else cls_token UpperCamelCase_ = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else unk_token UpperCamelCase_ = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase_ = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( errors=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , ) with open(__UpperCAmelCase , encoding='utf-8' ) as vocab_handle: UpperCamelCase_ = json.load(__UpperCAmelCase ) UpperCamelCase_ = {v: k for k, v in self.encoder.items()} UpperCamelCase_ = errors # how to handle errors in decoding UpperCamelCase_ = bytes_to_unicode() UpperCamelCase_ = {v: k for k, v in self.byte_encoder.items()} with open(__UpperCAmelCase , encoding='utf-8' ) as merges_handle: UpperCamelCase_ = merges_handle.read().split('\n' )[1:-1] UpperCamelCase_ = [tuple(merge.split() ) for merge in bpe_merges] UpperCamelCase_ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) UpperCamelCase_ = {} UpperCamelCase_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase_ = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def lowercase__ ( self : int ) -> List[Any]: """simple docstring""" return len(self.encoder ) def lowercase__ ( self : List[str] ) -> List[Any]: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowercase__ ( self : int , __UpperCAmelCase : Dict ) -> Any: """simple docstring""" if token in self.cache: return self.cache[token] UpperCamelCase_ = tuple(__UpperCAmelCase ) UpperCamelCase_ = get_pairs(__UpperCAmelCase ) if not pairs: return token while True: UpperCamelCase_ = min(__UpperCAmelCase , key=lambda __UpperCAmelCase : self.bpe_ranks.get(__UpperCAmelCase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break UpperCamelCase_ , UpperCamelCase_ = bigram UpperCamelCase_ = [] UpperCamelCase_ = 0 while i < len(__UpperCAmelCase ): try: UpperCamelCase_ = word.index(__UpperCAmelCase , __UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCamelCase_ = j if word[i] == first and i < len(__UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCamelCase_ = tuple(__UpperCAmelCase ) UpperCamelCase_ = new_word if len(__UpperCAmelCase ) == 1: break else: UpperCamelCase_ = get_pairs(__UpperCAmelCase ) UpperCamelCase_ = ' '.join(__UpperCAmelCase ) UpperCamelCase_ = word return word def lowercase__ ( self : int , __UpperCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = [] for token in re.findall(self.pat , __UpperCAmelCase ): UpperCamelCase_ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__UpperCAmelCase ).split(' ' ) ) return bpe_tokens def lowercase__ ( self : List[str] , __UpperCAmelCase : Any ) -> Optional[int]: """simple docstring""" return self.encoder.get(__UpperCAmelCase , self.encoder.get(self.unk_token ) ) def lowercase__ ( self : int , __UpperCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" return self.decoder.get(__UpperCAmelCase ) def lowercase__ ( self : Dict , __UpperCAmelCase : Tuple ) -> List[str]: """simple docstring""" UpperCamelCase_ = ''.join(__UpperCAmelCase ) UpperCamelCase_ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def lowercase__ ( self : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase_ = os.path.join( __UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase_ = os.path.join( __UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(__UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__UpperCAmelCase , ensure_ascii=__UpperCAmelCase ) + '\n' ) UpperCamelCase_ = 0 with open(__UpperCAmelCase , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) UpperCamelCase_ = token_index writer.write(' '.join(__UpperCAmelCase ) + '\n' ) index += 1 return vocab_file, merge_file def lowercase__ ( self : List[str] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase_ = [self.cls_token_id] UpperCamelCase_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self : Union[str, Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1] def lowercase__ ( self : int , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" UpperCamelCase_ = [self.sep_token_id] UpperCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase__ ( self : Tuple , __UpperCAmelCase : Dict , __UpperCAmelCase : Any=False , **__UpperCAmelCase : Dict ) -> int: """simple docstring""" UpperCamelCase_ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__UpperCAmelCase ) > 0 and not text[0].isspace()): UpperCamelCase_ = ' ' + text return (text, kwargs)
714
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class A ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = IFPipeline _SCREAMING_SNAKE_CASE : Any = TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} _SCREAMING_SNAKE_CASE : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS _SCREAMING_SNAKE_CASE : Optional[Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} def lowercase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" return self._get_dummy_components() def lowercase__ ( self : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : Any=0 ) -> Tuple: """simple docstring""" if str(__UpperCAmelCase ).startswith('mps' ): UpperCamelCase_ = torch.manual_seed(__UpperCAmelCase ) else: UpperCamelCase_ = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) UpperCamelCase_ = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowercase__ ( self : Any ) -> Any: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def lowercase__ ( self : List[Any] ) -> List[str]: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowercase__ ( self : Tuple ) -> Any: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowercase__ ( self : int ) -> int: """simple docstring""" self._test_save_load_local() def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class A ( unittest.TestCase ): def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Any ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0' , variant='fp16' , torch_dtype=torch.floataa ) UpperCamelCase_ = IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0' , variant='fp16' , torch_dtype=torch.floataa , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) UpperCamelCase_ , UpperCamelCase_ = pipe_a.encode_prompt('anime turtle' , device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() UpperCamelCase_ = None UpperCamelCase_ = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img UpperCamelCase_ = IFImgaImgPipeline(**pipe_a.components ) UpperCamelCase_ = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting UpperCamelCase_ = IFInpaintingPipeline(**pipe_a.components ) UpperCamelCase_ = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def lowercase__ ( self : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[Any] ) -> Any: """simple docstring""" _start_torch_memory_measurement() UpperCamelCase_ = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase_ = pipe_a( prompt_embeds=__UpperCAmelCase , negative_prompt_embeds=__UpperCAmelCase , num_inference_steps=2 , generator=__UpperCAmelCase , output_type='np' , ) UpperCamelCase_ = output.images[0] assert image.shape == (64, 64, 3) UpperCamelCase_ = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 UpperCamelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase ) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase_ = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__UpperCAmelCase ) UpperCamelCase_ = pipe_a( prompt_embeds=__UpperCAmelCase , negative_prompt_embeds=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=2 , output_type='np' , ) UpperCamelCase_ = output.images[0] assert image.shape == (256, 256, 3) UpperCamelCase_ = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCamelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase ) def lowercase__ ( self : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] ) -> int: """simple docstring""" _start_torch_memory_measurement() UpperCamelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__UpperCAmelCase ) UpperCamelCase_ = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase_ = pipe_a( prompt_embeds=__UpperCAmelCase , negative_prompt_embeds=__UpperCAmelCase , image=__UpperCAmelCase , num_inference_steps=2 , generator=__UpperCAmelCase , output_type='np' , ) UpperCamelCase_ = output.images[0] assert image.shape == (64, 64, 3) UpperCamelCase_ = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 UpperCamelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase ) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase_ = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase_ = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__UpperCAmelCase ) UpperCamelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__UpperCAmelCase ) UpperCamelCase_ = pipe_a( prompt_embeds=__UpperCAmelCase , negative_prompt_embeds=__UpperCAmelCase , image=__UpperCAmelCase , original_image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=2 , output_type='np' , ) UpperCamelCase_ = output.images[0] assert image.shape == (256, 256, 3) UpperCamelCase_ = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCamelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase ) def lowercase__ ( self : Any , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _start_torch_memory_measurement() UpperCamelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__UpperCAmelCase ) UpperCamelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(__UpperCAmelCase ) UpperCamelCase_ = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase_ = pipe_a( prompt_embeds=__UpperCAmelCase , negative_prompt_embeds=__UpperCAmelCase , image=__UpperCAmelCase , mask_image=__UpperCAmelCase , num_inference_steps=2 , generator=__UpperCAmelCase , output_type='np' , ) UpperCamelCase_ = output.images[0] assert image.shape == (64, 64, 3) UpperCamelCase_ = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 UpperCamelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase ) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase_ = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__UpperCAmelCase ) UpperCamelCase_ = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__UpperCAmelCase ) UpperCamelCase_ = floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(__UpperCAmelCase ) UpperCamelCase_ = pipe_a( prompt_embeds=__UpperCAmelCase , negative_prompt_embeds=__UpperCAmelCase , image=__UpperCAmelCase , mask_image=__UpperCAmelCase , original_image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=2 , output_type='np' , ) UpperCamelCase_ = output.images[0] assert image.shape == (256, 256, 3) UpperCamelCase_ = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCamelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase ) def a_ ( ) -> Union[str, Any]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
559
0
'''simple docstring''' import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class __SCREAMING_SNAKE_CASE ( lowercase__ ): lowerCamelCase_ = (DPMSolverSDEScheduler,) lowerCamelCase_ = 10 def lowerCamelCase_ ( self : List[Any] , **UpperCAmelCase__ : Tuple ): '''simple docstring''' lowercase : Union[str, Any] ={ '''num_train_timesteps''': 1100, '''beta_start''': 0.00_01, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**UpperCAmelCase__ ) return config def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase__ ) def lowerCamelCase_ ( self : str ): '''simple docstring''' for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ): self.check_over_configs(beta_start=UpperCAmelCase__ , beta_end=UpperCAmelCase__ ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=UpperCAmelCase__ ) def lowerCamelCase_ ( self : str ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase__ ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' lowercase : List[Any] =self.scheduler_classes[0] lowercase : Dict =self.get_scheduler_config() lowercase : Tuple =scheduler_class(**UpperCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) lowercase : int =self.dummy_model() lowercase : Dict =self.dummy_sample_deter * scheduler.init_noise_sigma lowercase : List[str] =sample.to(UpperCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): lowercase : List[Any] =scheduler.scale_model_input(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase : List[str] =model(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase : str =scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) lowercase : Tuple =output.prev_sample lowercase : int =torch.sum(torch.abs(UpperCAmelCase__ ) ) lowercase : Optional[Any] =torch.mean(torch.abs(UpperCAmelCase__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_67.47_82_10_44_92_18_75 ) < 1E-2 assert abs(result_mean.item() - 0.21_78_70_59_64_56_52_77 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_71.59_35_21_11_81_64_06 ) < 1E-2 assert abs(result_mean.item() - 0.2_23_42_90_68_92_29_96_52 ) < 1E-3 else: assert abs(result_sum.item() - 1_62.52_38_34_22_85_15_62 ) < 1E-2 assert abs(result_mean.item() - 0.2_11_61_95_70_85_13_26 ) < 1E-3 def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowercase : List[str] =self.scheduler_classes[0] lowercase : str =self.get_scheduler_config(prediction_type='''v_prediction''' ) lowercase : Tuple =scheduler_class(**UpperCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) lowercase : Optional[int] =self.dummy_model() lowercase : str =self.dummy_sample_deter * scheduler.init_noise_sigma lowercase : str =sample.to(UpperCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): lowercase : Optional[int] =scheduler.scale_model_input(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase : Any =model(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase : List[str] =scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) lowercase : int =output.prev_sample lowercase : Any =torch.sum(torch.abs(UpperCAmelCase__ ) ) lowercase : List[str] =torch.mean(torch.abs(UpperCAmelCase__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_24.77_14_92_00_43_94_53 ) < 1E-2 assert abs(result_mean.item() - 0.1_62_26_28_90_14_81_62_84 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_28.1_66_33_60_59_57_03 ) < 1E-2 assert abs(result_mean.item() - 0.1_66_88_32_60_01_16_72_97 ) < 1E-3 else: assert abs(result_sum.item() - 1_19.8_48_75_48_82_81_25 ) < 1E-2 assert abs(result_mean.item() - 0.15_60_53_06_62_53_66_21 ) < 1E-3 def lowerCamelCase_ ( self : str ): '''simple docstring''' lowercase : Optional[int] =self.scheduler_classes[0] lowercase : List[str] =self.get_scheduler_config() lowercase : List[Any] =scheduler_class(**UpperCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCAmelCase__ ) lowercase : List[Any] =self.dummy_model() lowercase : Union[str, Any] =self.dummy_sample_deter.to(UpperCAmelCase__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowercase : List[Any] =scheduler.scale_model_input(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase : Optional[Any] =model(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase : Tuple =scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) lowercase : List[str] =output.prev_sample lowercase : Any =torch.sum(torch.abs(UpperCAmelCase__ ) ) lowercase : Tuple =torch.mean(torch.abs(UpperCAmelCase__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_67.46_95_73_97_46_09_38 ) < 1E-2 assert abs(result_mean.item() - 0.2_18_05_93_46_07_98_26_35 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_71.59_35_36_37_69_53_12 ) < 1E-2 assert abs(result_mean.item() - 0.2_23_42_90_83_82_41_57_71 ) < 1E-3 else: assert abs(result_sum.item() - 1_62.52_38_34_22_85_15_62 ) < 1E-2 assert abs(result_mean.item() - 0.2_11_61_95_70_85_13_26 ) < 1E-3 def lowerCamelCase_ ( self : int ): '''simple docstring''' lowercase : Tuple =self.scheduler_classes[0] lowercase : Optional[Any] =self.get_scheduler_config() lowercase : Union[str, Any] =scheduler_class(**UpperCAmelCase__ , use_karras_sigmas=UpperCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCAmelCase__ ) lowercase : Union[str, Any] =self.dummy_model() lowercase : str =self.dummy_sample_deter.to(UpperCAmelCase__ ) * scheduler.init_noise_sigma lowercase : List[str] =sample.to(UpperCAmelCase__ ) for t in scheduler.timesteps: lowercase : int =scheduler.scale_model_input(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase : int =model(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase : Dict =scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) lowercase : Optional[int] =output.prev_sample lowercase : Any =torch.sum(torch.abs(UpperCAmelCase__ ) ) lowercase : List[Any] =torch.mean(torch.abs(UpperCAmelCase__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_76.66_97_41_35_74_21_88 ) < 1E-2 assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_77.63_65_35_64_45_31_25 ) < 1E-2 assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11 ) < 1E-2 else: assert abs(result_sum.item() - 1_70.3_13_52_23_38_86_72 ) < 1E-2 assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11 ) < 1E-2
92
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Optional[int] = (DDPMParallelScheduler,) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]: a_ : Optional[int] = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**SCREAMING_SNAKE_CASE__ ) return config def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE__ , beta_end=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE__ , prediction_type=SCREAMING_SNAKE_CASE__ , sample_max_value=SCREAMING_SNAKE_CASE__ , ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : str ) -> Any: a_ : List[Any] = self.scheduler_classes[0] a_ : Optional[Any] = self.get_scheduler_config() a_ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1E-5 def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: a_ : int = self.scheduler_classes[0] a_ : List[Any] = self.get_scheduler_config() a_ : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) a_ : List[str] = len(SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = self.dummy_model() a_ : str = self.dummy_sample_deter a_ : int = self.dummy_sample_deter + 0.1 a_ : List[str] = self.dummy_sample_deter - 0.1 a_ : Dict = samplea.shape[0] a_ : Any = torch.stack([samplea, samplea, samplea] , dim=0 ) a_ : Optional[int] = torch.arange(SCREAMING_SNAKE_CASE__ )[0:3, None].repeat(1 , SCREAMING_SNAKE_CASE__ ) a_ : Tuple = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) a_ : str = scheduler.batch_step_no_noise(SCREAMING_SNAKE_CASE__ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) a_ : str = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) a_ : List[str] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 1153.1833 ) < 1E-2 assert abs(result_mean.item() - 0.5005 ) < 1E-3 def SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: a_ : Any = self.scheduler_classes[0] a_ : List[str] = self.get_scheduler_config() a_ : int = scheduler_class(**SCREAMING_SNAKE_CASE__ ) a_ : Dict = len(SCREAMING_SNAKE_CASE__ ) a_ : int = self.dummy_model() a_ : Optional[Any] = self.dummy_sample_deter a_ : Any = torch.manual_seed(0 ) for t in reversed(range(SCREAMING_SNAKE_CASE__ ) ): # 1. predict noise residual a_ : List[Any] = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # 2. predict previous mean of sample x_t-1 a_ : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).prev_sample a_ : Union[str, Any] = pred_prev_sample a_ : List[str] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) a_ : Dict = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: a_ : Any = self.scheduler_classes[0] a_ : List[str] = self.get_scheduler_config(prediction_type='v_prediction' ) a_ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE__ ) a_ : Tuple = len(SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = self.dummy_model() a_ : Optional[Any] = self.dummy_sample_deter a_ : str = torch.manual_seed(0 ) for t in reversed(range(SCREAMING_SNAKE_CASE__ ) ): # 1. predict noise residual a_ : Any = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # 2. predict previous mean of sample x_t-1 a_ : int = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).prev_sample a_ : List[str] = pred_prev_sample a_ : Optional[Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) a_ : Optional[int] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: a_ : Optional[int] = self.scheduler_classes[0] a_ : int = self.get_scheduler_config() a_ : Optional[Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) a_ : int = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = scheduler.timesteps for i, timestep in enumerate(SCREAMING_SNAKE_CASE__ ): if i == len(SCREAMING_SNAKE_CASE__ ) - 1: a_ : Any = -1 else: a_ : Optional[int] = timesteps[i + 1] a_ : Optional[Any] = scheduler.previous_timestep(SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = prev_t.item() self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: a_ : Tuple = self.scheduler_classes[0] a_ : List[Any] = self.get_scheduler_config() a_ : Optional[int] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) a_ : str = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(SCREAMING_SNAKE_CASE__ , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: a_ : List[str] = self.scheduler_classes[0] a_ : Dict = self.get_scheduler_config() a_ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = [1_0_0, 8_7, 5_0, 1, 0] a_ : Optional[Any] = len(SCREAMING_SNAKE_CASE__ ) with self.assertRaises(SCREAMING_SNAKE_CASE__ , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE__ , timesteps=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: a_ : int = self.scheduler_classes[0] a_ : str = self.get_scheduler_config() a_ : Any = scheduler_class(**SCREAMING_SNAKE_CASE__ ) a_ : Dict = [scheduler.config.num_train_timesteps] with self.assertRaises( SCREAMING_SNAKE_CASE__ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE__ )
570
0
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : def __init__( self : List[Any] , lowercase__ : Dict , lowercase__ : str=1_3 , lowercase__ : str=3_0 , lowercase__ : List[Any]=2 , lowercase__ : Any=3 , lowercase__ : Optional[Any]=True , lowercase__ : str=True , lowercase__ : Any=3_2 , lowercase__ : List[Any]=5 , lowercase__ : int=4 , lowercase__ : Optional[Any]=3_7 , lowercase__ : List[Any]="gelu" , lowercase__ : Tuple=0.1 , lowercase__ : List[str]=0.1 , lowercase__ : List[str]=1_0 , lowercase__ : Optional[int]=0.02 , lowercase__ : Union[str, Any]=3 , lowercase__ : Dict=0.6 , lowercase__ : List[Any]=None , ): a_ = parent a_ = batch_size a_ = image_size a_ = patch_size a_ = num_channels a_ = is_training a_ = use_labels a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = type_sequence_label_size a_ = initializer_range a_ = mask_ratio a_ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) a_ = (image_size // patch_size) ** 2 a_ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __magic_name__ ( self : int ): a_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : int ): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __magic_name__ ( self : Tuple , lowercase__ : Any , lowercase__ : Optional[Any] , lowercase__ : Optional[int] ): a_ = ViTMAEModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() a_ = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Tuple , lowercase__ : Any , lowercase__ : Tuple , lowercase__ : Union[str, Any] ): a_ = ViTMAEForPreTraining(lowercase__ ) model.to(lowercase__ ) model.eval() a_ = model(lowercase__ ) a_ = (self.image_size // self.patch_size) ** 2 a_ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images a_ = 1 a_ = ViTMAEForPreTraining(lowercase__ ) model.to(lowercase__ ) model.eval() a_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a_ = model(lowercase__ ) a_ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __magic_name__ ( self : Tuple ): a_ = self.prepare_config_and_inputs() a_ , a_ , a_ = config_and_inputs a_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowercase ( a__ , a__ , unittest.TestCase ): _lowerCAmelCase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _lowerCAmelCase = {"feature-extraction": ViTMAEModel} if is_torch_available() else {} _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def __magic_name__ ( self : str ): a_ = ViTMAEModelTester(self ) a_ = ConfigTester(self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=3_7 ) def __magic_name__ ( self : List[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def __magic_name__ ( self : Union[str, Any] ): pass def __magic_name__ ( self : Dict ): a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(lowercase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ , nn.Linear ) ) def __magic_name__ ( self : Dict ): a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(lowercase__ ) a_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ = [*signature.parameters.keys()] a_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase__ ) def __magic_name__ ( self : str ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def __magic_name__ ( self : Optional[int] ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase__ ) def __magic_name__ ( self : Union[str, Any] , lowercase__ : Tuple , lowercase__ : str , lowercase__ : Tuple ): # make masks reproducible np.random.seed(2 ) a_ = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) a_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) a_ = torch.from_numpy(lowercase__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument a_ = pt_noise super().check_pt_tf_models(lowercase__ , lowercase__ , lowercase__ ) def __magic_name__ ( self : Any ): a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): a_ = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) a_ = outputs[0].cpu().numpy() a_ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase__ ) a_ = model_class.from_pretrained(lowercase__ ) model.to(lowercase__ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): a_ = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) # Make sure we don't have nans a_ = after_outputs[0].cpu().numpy() a_ = 0 a_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase__ , 1e-5 ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __magic_name__ ( self : Optional[Any] ): pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __magic_name__ ( self : List[str] ): pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __magic_name__ ( self : List[Any] ): pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def __magic_name__ ( self : Tuple ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __magic_name__ ( self : Optional[Any] ): pass @slow def __magic_name__ ( self : List[str] ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = ViTMAEModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) def UpperCAmelCase__ ( ): """simple docstring""" a_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): @cached_property def __magic_name__ ( self : Union[str, Any] ): return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def __magic_name__ ( self : Optional[Any] ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) a_ = ViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ).to(lowercase__ ) a_ = self.default_image_processor a_ = prepare_img() a_ = image_processor(images=lowercase__ , return_tensors='''pt''' ).to(lowercase__ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) a_ = ViTMAEConfig() a_ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) a_ = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): a_ = model(**lowercase__ , noise=torch.from_numpy(lowercase__ ).to(device=lowercase__ ) ) # verify the logits a_ = torch.Size((1, 1_9_6, 7_6_8) ) self.assertEqual(outputs.logits.shape , lowercase__ ) a_ = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(lowercase__ ) , atol=1e-4 ) )
704
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer UpperCamelCase__ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase__ = { '''vocab_file''': { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''unc-nlp/lxmert-base-uncased''': ( '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json''' ), }, } UpperCamelCase__ = { '''unc-nlp/lxmert-base-uncased''': 512, } UpperCamelCase__ = { '''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True}, } class __lowercase ( a__ ): _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = LxmertTokenizer def __init__( self : List[str] , lowercase__ : Optional[int]=None , lowercase__ : str=None , lowercase__ : str=True , lowercase__ : Union[str, Any]="[UNK]" , lowercase__ : List[Any]="[SEP]" , lowercase__ : Optional[Any]="[PAD]" , lowercase__ : Union[str, Any]="[CLS]" , lowercase__ : Optional[int]="[MASK]" , lowercase__ : Dict=True , lowercase__ : List[Any]=None , **lowercase__ : List[str] , ): super().__init__( lowercase__ , tokenizer_file=lowercase__ , do_lower_case=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , pad_token=lowercase__ , cls_token=lowercase__ , mask_token=lowercase__ , tokenize_chinese_chars=lowercase__ , strip_accents=lowercase__ , **lowercase__ , ) a_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowercase__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowercase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowercase__ ) != tokenize_chinese_chars ): a_ = getattr(lowercase__ , normalizer_state.pop('''type''' ) ) a_ = do_lower_case a_ = strip_accents a_ = tokenize_chinese_chars a_ = normalizer_class(**lowercase__ ) a_ = do_lower_case def __magic_name__ ( self : List[str] , lowercase__ : Any , lowercase__ : List[str]=None ): a_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __magic_name__ ( self : Optional[int] , lowercase__ : List[int] , lowercase__ : Optional[List[int]] = None ): a_ = [self.sep_token_id] a_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __magic_name__ ( self : Any , lowercase__ : str , lowercase__ : Optional[str] = None ): a_ = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ )
143
0
from __future__ import annotations from typing import Any def UpperCamelCase ( snake_case__): create_state_space_tree(snake_case__ , [] , 0) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): if index == len(snake_case__): print(snake_case__) return create_state_space_tree(snake_case__ , snake_case__ , index + 1) current_subsequence.append(sequence[index]) create_state_space_tree(snake_case__ , snake_case__ , index + 1) current_subsequence.pop() if __name__ == "__main__": _lowercase = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['''A''', '''B''', '''C''']) generate_all_subsequences(seq)
659
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('''1.6'''): _lowercase = True from torch.cuda.amp import autocast _lowercase = logging.getLogger(__name__) @dataclass class __snake_case : """simple docstring""" UpperCamelCase_ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) UpperCamelCase_ = field( default=snake_case__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) UpperCamelCase_ = field( default=snake_case__ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) UpperCamelCase_ = field( default=snake_case__ , metadata={'help': 'Whether to log verbose messages or not.'} , ) UpperCamelCase_ = field( default=2.0 , metadata={'help': 'Maximum temperature for gumbel softmax.'} ) UpperCamelCase_ = field( default=0.5 , metadata={'help': 'Minimum temperature for gumbel softmax.'} ) UpperCamelCase_ = field( default=0.99_99_95 , metadata={'help': 'Decay of gumbel temperature during training.'} ) def UpperCamelCase ( snake_case__ , snake_case__): logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout)] , ) lowerCAmelCase_ : str = logging.WARNING if model_args.verbose_logging: lowerCAmelCase_ : int = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank): lowerCAmelCase_ : Any = logging.INFO logger.setLevel(snake_case__) @dataclass class __snake_case : """simple docstring""" UpperCamelCase_ = field( default=snake_case__ , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) UpperCamelCase_ = field( default=snake_case__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) UpperCamelCase_ = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) UpperCamelCase_ = field( default='validation' , metadata={ 'help': ( 'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) UpperCamelCase_ = field( default='file' , metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''} , ) UpperCamelCase_ = field( default=snake_case__ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) UpperCamelCase_ = field( default=1 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) UpperCamelCase_ = field( default=snake_case__ , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) UpperCamelCase_ = field( default=20.0 , metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'} ) @dataclass class __snake_case : """simple docstring""" UpperCamelCase_ = 42 UpperCamelCase_ = 42 UpperCamelCase_ = "longest" UpperCamelCase_ = None UpperCamelCase_ = None def __call__( self : str ,lowerCAmelCase__ : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: '''simple docstring''' lowerCAmelCase_ : Tuple = self.feature_extractor.pad( lowerCAmelCase__ ,max_length=self.max_length ,padding=self.padding ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors="pt" ,) lowerCAmelCase_ : Union[str, Any] = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1] ) lowerCAmelCase_ : List[str] = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula lowerCAmelCase_ : Tuple = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1 ) ).to( torch.long ) lowerCAmelCase_ : Optional[Any] = torch.zeros( (batch_size, mask_indices_seq_length) ,dtype=torch.long ,device=batch["input_values"].device ) # these two operations makes sure that all values # before the output lengths indices are attended to lowerCAmelCase_ : Tuple = 1 lowerCAmelCase_ : int = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices lowerCAmelCase_ : str = _compute_mask_indices( (batch_size, mask_indices_seq_length) ,self.model.config.mask_time_prob ,self.model.config.mask_time_length ,attention_mask=lowerCAmelCase__ ,min_masks=2 ,) return batch class __snake_case ( snake_case__ ): """simple docstring""" def __init__( self : List[str] ,*lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Tuple=1 ,lowerCAmelCase__ : Optional[int]=0 ,lowerCAmelCase__ : Optional[Any]=1.0 ,**lowerCAmelCase__ : Any ) -> str: '''simple docstring''' super().__init__(*lowerCAmelCase__ ,**lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : int = max_gumbel_temp lowerCAmelCase_ : Union[str, Any] = min_gumbel_temp lowerCAmelCase_ : str = gumbel_temp_decay def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : nn.Module ,lowerCAmelCase__ : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: '''simple docstring''' model.train() lowerCAmelCase_ : str = self._prepare_inputs(lowerCAmelCase__ ) if self.use_amp: with autocast(): lowerCAmelCase_ : List[Any] = self.compute_loss(lowerCAmelCase__ ,lowerCAmelCase__ ) else: lowerCAmelCase_ : List[Any] = self.compute_loss(lowerCAmelCase__ ,lowerCAmelCase__ ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": lowerCAmelCase_ : List[Any] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": lowerCAmelCase_ : Optional[Any] = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: lowerCAmelCase_ : int = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowerCAmelCase__ ).backward() elif self.use_apex: with amp.scale_loss(lowerCAmelCase__ ,self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowerCAmelCase__ ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step ,self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step ,self.min_gumbel_temp ) ) return loss.detach() def UpperCamelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCAmelCase_ : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Dict = parser.parse_args_into_dataclasses() configure_logger(snake_case__ , snake_case__) # Downloading and loading a dataset from the hub. lowerCAmelCase_ : List[str] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" lowerCAmelCase_ : Any = DatasetDict() lowerCAmelCase_ : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}[:{data_args.validation_split_percentage}%]''' , cache_dir=model_args.cache_dir , ) lowerCAmelCase_ : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}[{data_args.validation_split_percentage}%:]''' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" lowerCAmelCase_ : Union[str, Any] = DatasetDict() lowerCAmelCase_ : int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) lowerCAmelCase_ : Any = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}''' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported lowerCAmelCase_ : Dict = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=snake_case__) def prepare_dataset(snake_case__): # check that all files have the correct sampling rate lowerCAmelCase_ , lowerCAmelCase_ : str = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate) return batch # load audio files into numpy arrays lowerCAmelCase_ : int = datasets.map( snake_case__ , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names) # filter audio files that are too long lowerCAmelCase_ : int = vectorized_datasets.filter( lambda snake_case__: len(data["speech"]) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate)) def normalize(snake_case__): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate) # normalize and transform to `BatchFeatures` lowerCAmelCase_ : str = vectorized_datasets.map( snake_case__ , batched=snake_case__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 lowerCAmelCase_ : Optional[Any] = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'") lowerCAmelCase_ : Dict = WavaVecaForPreTraining(snake_case__) lowerCAmelCase_ : int = DataCollatorForWavaVecaPretraining(model=snake_case__ , feature_extractor=snake_case__) lowerCAmelCase_ : List[Any] = WavaVecaPreTrainer( model=snake_case__ , data_collator=snake_case__ , args=snake_case__ , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=snake_case__ , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
659
1
class UpperCAmelCase__ : def __init__( self ,A__ ,A__ ,A__ ): _A : Optional[int] = name _A : int = value _A : Optional[Any] = weight def __repr__( self ): return f"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def A__ ( self ): return self.value def A__ ( self ): return self.name def A__ ( self ): return self.weight def A__ ( self ): return self.value / self.weight def a__ (__lowercase :Union[str, Any] , __lowercase :List[Any] , __lowercase :Optional[int] ) -> Tuple: _A : int = [] for i in range(len(__lowercase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def a__ (__lowercase :str , __lowercase :Tuple , __lowercase :List[str] ) -> Union[str, Any]: _A : int = sorted(__lowercase , key=__lowercase , reverse=__lowercase ) _A : Optional[int] = [] _A , _A : Optional[int] = 0.0, 0.0 for i in range(len(__lowercase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def a__ () -> Optional[Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
332
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record _UpperCamelCase : Union[str, Any] ='\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n' _UpperCamelCase : List[str] ='\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n' _UpperCamelCase : str ='\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def a__ (__lowercase :List[Any] , __lowercase :List[Any] ) -> Union[str, Any]: return float((preds == labels).mean() ) def a__ (__lowercase :Tuple , __lowercase :List[Any] , __lowercase :Union[str, Any]="binary" ) -> Optional[Any]: _A : Union[str, Any] = simple_accuracy(__lowercase , __lowercase ) _A : str = float(fa_score(y_true=__lowercase , y_pred=__lowercase , average=__lowercase ) ) return { "accuracy": acc, "f1": fa, } def a__ (__lowercase :List[str] , __lowercase :Optional[Any] ) -> List[str]: _A : str = {} for id_pred, label in zip(__lowercase , __lowercase ): _A : Optional[int] = f"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}""" _A : Tuple = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: _A : Union[str, Any] = [(pred, label)] _A , _A : List[Any] = [], [] for question, preds_labels in question_map.items(): _A , _A : List[str] = zip(*__lowercase ) _A : Union[str, Any] = fa_score(y_true=__lowercase , y_pred=__lowercase , average='''macro''' ) fas.append(__lowercase ) _A : Optional[Any] = int(sum(pred == label for pred, label in preds_labels ) == len(__lowercase ) ) ems.append(__lowercase ) _A : Optional[int] = float(sum(__lowercase ) / len(__lowercase ) ) _A : Dict = sum(__lowercase ) / len(__lowercase ) _A : List[Any] = float(fa_score(y_true=__lowercase , y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): def A__ ( self ): if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(self._get_feature_types() ) ,codebase_urls=[] ,reference_urls=[] ,format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None ,) def A__ ( self ): if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def A__ ( self ,A__ ,A__ ): if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(A__ ,A__ )} elif self.config_name == "cb": return acc_and_fa(A__ ,A__ ,fa_avg='''macro''' ) elif self.config_name == "record": _A : Any = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] _A : int = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(A__ ,A__ )[0] elif self.config_name == "multirc": return evaluate_multirc(A__ ,A__ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(A__ ,A__ )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
332
1
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def _lowerCamelCase ( __A : str , __A : Tuple=() , __A : List[str]=None , __A : Dict="no" , __A : Any="29500" ) -> Any: _UpperCAmelCase : Union[str, Any] = False _UpperCAmelCase : List[str] = False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): _UpperCAmelCase : Optional[int] = True elif "IPython" in sys.modules: _UpperCAmelCase : Union[str, Any] = '''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: _UpperCAmelCase : int = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' , __A ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: _UpperCAmelCase : List[Any] = 8 _UpperCAmelCase : List[Any] = PrepareForLaunch(__A , distributed_type='''TPU''' ) print(f'''Launching a training on {num_processes} TPU cores.''' ) xmp.spawn(__A , args=__A , nprocs=__A , start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*__A ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__A , master_addr='''127.0.01''' , master_port=__A , mixed_precision=__A ): _UpperCAmelCase : str = PrepareForLaunch(__A , distributed_type='''MULTI_GPU''' ) print(f'''Launching training on {num_processes} GPUs.''' ) try: start_processes(__A , args=__A , nprocs=__A , start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): _UpperCAmelCase : Dict = '''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*__A ) def _lowerCamelCase ( __A : Any , __A : Union[str, Any]=() , __A : int=2 ) -> Any: from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__A , master_addr='''127.0.01''' , master_port='''29500''' , accelerate_mixed_precision='''no''' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='''yes''' , ): _UpperCAmelCase : List[str] = PrepareForLaunch(__A , debug=__A ) start_processes(__A , args=__A , nprocs=__A , start_method='''fork''' )
485
def _lowerCamelCase ( __A : list ) -> list: if any(not isinstance(__A , __A ) or x < 0 for x in sequence ): raise TypeError('''Sequence must be list of non-negative integers''' ) for _ in range(len(__A ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__A , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
485
1
import requests def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> None: """simple docstring""" snake_case_ = {'''Content-Type''': '''application/json'''} snake_case_ = requests.post(SCREAMING_SNAKE_CASE , json={'''text''': message_body} , headers=SCREAMING_SNAKE_CASE ) if response.status_code != 200: snake_case_ = ( '''Request to slack returned an error ''' f'''{response.status_code}, the response is:\n{response.text}''' ) raise ValueError(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
531
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase_ ( lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCamelCase__ ( self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCamelCase__ ( self ): snake_case_ = ort.SessionOptions() snake_case_ = False return options def UpperCamelCase__ ( self ): snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) snake_case_ = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case_ = '''A red cat sitting on a park bench''' snake_case_ = np.random.RandomState(0 ) snake_case_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=10 , generator=_UpperCAmelCase , output_type='''np''' , ) snake_case_ = output.images snake_case_ = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) snake_case_ = np.array([0.2_514, 0.3_007, 0.3_517, 0.1_790, 0.2_382, 0.3_167, 0.1_944, 0.2_273, 0.2_464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCamelCase__ ( self ): snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) snake_case_ = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) snake_case_ = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case_ = '''A red cat sitting on a park bench''' snake_case_ = np.random.RandomState(0 ) snake_case_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=20 , generator=_UpperCAmelCase , output_type='''np''' , ) snake_case_ = output.images snake_case_ = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) snake_case_ = np.array([0.0_086, 0.0_077, 0.0_083, 0.0_093, 0.0_107, 0.0_139, 0.0_094, 0.0_097, 0.0_125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
531
1
"""simple docstring""" import operator as op def lowerCamelCase_ ( __lowerCAmelCase ) -> int: '''simple docstring''' lowerCamelCase__ =[] lowerCamelCase__ =lambda __lowerCAmelCase , __lowerCAmelCase : int(x / y ) # noqa: E731 integer division operation lowerCamelCase__ ={ "^": op.pow, "*": op.mul, "/": div, "+": op.add, "-": op.sub, } # operators & their respective operation # print table header print("Symbol".center(8 ) , "Action".center(12 ) , "Stack" , sep=" | " ) print("-" * (30 + len(__lowerCAmelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(__lowerCAmelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ("push(" + x + ")").ljust(12 ) , ",".join(__lowerCAmelCase ) , sep=" | " ) else: lowerCamelCase__ =stack.pop() # pop stack # output in tabular format print("".rjust(8 ) , ("pop(" + b + ")").ljust(12 ) , ",".join(__lowerCAmelCase ) , sep=" | " ) lowerCamelCase__ =stack.pop() # pop stack # output in tabular format print("".rjust(8 ) , ("pop(" + a + ")").ljust(12 ) , ",".join(__lowerCAmelCase ) , sep=" | " ) stack.append( str(opr[x](int(__lowerCAmelCase ) , int(__lowerCAmelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ("push(" + a + x + b + ")").ljust(12 ) , ",".join(__lowerCAmelCase ) , sep=" | " , ) return int(stack[0] ) if __name__ == "__main__": a =input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
530
"""simple docstring""" def lowerCamelCase_ ( __lowerCAmelCase ) -> int: '''simple docstring''' if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError("only integers accepted as input" ) else: lowerCamelCase__ =str(abs(__lowerCAmelCase ) ) lowerCamelCase__ =[list(__lowerCAmelCase ) for char in range(len(__lowerCAmelCase ) )] for index in range(len(__lowerCAmelCase ) ): num_transpositions[index].pop(__lowerCAmelCase ) return max( int("".join(list(__lowerCAmelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('doctest').testmod()
530
1
import argparse import os import re __A : Optional[int] = 'src/transformers' # Pattern that looks at the indentation in a line. __A : Any = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. __A : Optional[int] = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. __A : int = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. __A : Tuple = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. __A : int = re.compile(r'\[([^\]]+)\]') def __a ( A__ : List[str] ): SCREAMING_SNAKE_CASE = _re_indent.search(A__ ) return "" if search is None else search.groups()[0] def __a ( A__ : str , A__ : Dict="" , A__ : List[str]=None , A__ : Tuple=None ): SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(A__ ): index += 1 SCREAMING_SNAKE_CASE = ["\n".join(lines[:index] )] else: SCREAMING_SNAKE_CASE = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). SCREAMING_SNAKE_CASE = [lines[index]] index += 1 while index < len(A__ ) and (end_prompt is None or not lines[index].startswith(A__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(A__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(A__ ) ) if index < len(A__ ) - 1: SCREAMING_SNAKE_CASE = [lines[index + 1]] index += 1 else: SCREAMING_SNAKE_CASE = [] else: blocks.append("\n".join(A__ ) ) SCREAMING_SNAKE_CASE = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(A__ ) > 0: blocks.append("\n".join(A__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(A__ ): blocks.append("\n".join(lines[index:] ) ) return blocks def __a ( A__ : Optional[Any] ): def _inner(A__ : Any ): return key(A__ ).lower().replace("_" , "" ) return _inner def __a ( A__ : str , A__ : Union[str, Any]=None ): # If no key is provided, we use a noop. def noop(A__ : Any ): return x if key is None: SCREAMING_SNAKE_CASE = noop # Constants are all uppercase, they go first. SCREAMING_SNAKE_CASE = [obj for obj in objects if key(A__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. SCREAMING_SNAKE_CASE = [obj for obj in objects if key(A__ )[0].isupper() and not key(A__ ).isupper()] # Functions begin with a lowercase, they go last. SCREAMING_SNAKE_CASE = [obj for obj in objects if not key(A__ )[0].isupper()] SCREAMING_SNAKE_CASE = ignore_underscore(A__ ) return sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) def __a ( A__ : int ): # This inner function sort imports between [ ]. def _replace(A__ : Tuple ): SCREAMING_SNAKE_CASE = match.groups()[0] if "," not in imports: return F"[{imports}]" SCREAMING_SNAKE_CASE = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: SCREAMING_SNAKE_CASE = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(A__ )] ) + "]" SCREAMING_SNAKE_CASE = import_statement.split("\n" ) if len(A__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. SCREAMING_SNAKE_CASE = 2 if lines[1].strip() == "[" else 1 SCREAMING_SNAKE_CASE = [(i, _re_strip_line.search(A__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] SCREAMING_SNAKE_CASE = sort_objects(A__ , key=lambda A__ : x[1] ) SCREAMING_SNAKE_CASE = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(A__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: SCREAMING_SNAKE_CASE = _re_bracket_content.sub(_replace , lines[1] ) else: SCREAMING_SNAKE_CASE = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: SCREAMING_SNAKE_CASE = keys[:-1] SCREAMING_SNAKE_CASE = get_indent(lines[1] ) + ", ".join([F"\"{k}\"" for k in sort_objects(A__ )] ) return "\n".join(A__ ) else: # Finally we have to deal with imports fitting on one line SCREAMING_SNAKE_CASE = _re_bracket_content.sub(_replace , A__ ) return import_statement def __a ( A__ : Optional[Any] , A__ : str=True ): with open(A__ , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 SCREAMING_SNAKE_CASE = split_code_in_indented_blocks( A__ , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(A__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. SCREAMING_SNAKE_CASE = main_blocks[block_idx] SCREAMING_SNAKE_CASE = block.split("\n" ) # Get to the start of the imports. SCREAMING_SNAKE_CASE = 0 while line_idx < len(A__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: SCREAMING_SNAKE_CASE = len(A__ ) else: line_idx += 1 if line_idx >= len(A__ ): continue # Ignore beginning and last line: they don't contain anything. SCREAMING_SNAKE_CASE = "\n".join(block_lines[line_idx:-1] ) SCREAMING_SNAKE_CASE = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. SCREAMING_SNAKE_CASE = split_code_in_indented_blocks(A__ , indent_level=A__ ) # We have two categories of import key: list or _import_structure[key].append/extend SCREAMING_SNAKE_CASE = _re_direct_key if "_import_structure = {" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. SCREAMING_SNAKE_CASE = [(pattern.search(A__ ).groups()[0] if pattern.search(A__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. SCREAMING_SNAKE_CASE = [(i, key) for i, key in enumerate(A__ ) if key is not None] SCREAMING_SNAKE_CASE = [x[0] for x in sorted(A__ , key=lambda A__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = [] for i in range(len(A__ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: SCREAMING_SNAKE_CASE = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(A__ ) count += 1 # And we put our main block back together with its first and last line. SCREAMING_SNAKE_CASE = "\n".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(A__ ): if check_only: return True else: print(F"Overwriting {file}." ) with open(A__ , "w" , encoding="utf-8" ) as f: f.write("\n".join(A__ ) ) def __a ( A__ : Optional[Any]=True ): SCREAMING_SNAKE_CASE = [] for root, _, files in os.walk(A__ ): if "__init__.py" in files: SCREAMING_SNAKE_CASE = sort_imports(os.path.join(A__ , "__init__.py" ) , check_only=A__ ) if result: SCREAMING_SNAKE_CASE = [os.path.join(A__ , "__init__.py" )] if len(A__ ) > 0: raise ValueError(F"Would overwrite {len(A__ )} files, run `make style`." ) if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') __A : Dict = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
698
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' @slow @require_torch def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" ) SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("bert-base-uncased" ) SCREAMING_SNAKE_CASE = bertabert.config.encoder.vocab_size SCREAMING_SNAKE_CASE = tokenizer.sep_token_id SCREAMING_SNAKE_CASE = tokenizer.cls_token_id SCREAMING_SNAKE_CASE = 128 SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" ) SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" ) SCREAMING_SNAKE_CASE = train_dataset.select(range(32 ) ) SCREAMING_SNAKE_CASE = val_dataset.select(range(16 ) ) SCREAMING_SNAKE_CASE = 4 def _map_to_encoder_decoder_inputs(__lowerCamelCase : str ): # Tokenizer will automatically set [BOS] <text> [EOS] SCREAMING_SNAKE_CASE = tokenizer(batch["article"] , padding="max_length" , truncation=__lowerCamelCase , max_length=512 ) SCREAMING_SNAKE_CASE = tokenizer(batch["highlights"] , padding="max_length" , truncation=__lowerCamelCase , max_length=128 ) SCREAMING_SNAKE_CASE = inputs.input_ids SCREAMING_SNAKE_CASE = inputs.attention_mask SCREAMING_SNAKE_CASE = outputs.input_ids SCREAMING_SNAKE_CASE = outputs.input_ids.copy() SCREAMING_SNAKE_CASE = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] SCREAMING_SNAKE_CASE = outputs.attention_mask assert all(len(__lowerCamelCase ) == 512 for x in inputs.input_ids ) assert all(len(__lowerCamelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(__lowerCamelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE = pred.label_ids SCREAMING_SNAKE_CASE = pred.predictions # all unnecessary tokens are removed SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__lowerCamelCase ) )] ) / len(__lowerCamelCase ) return {"accuracy": accuracy} # map train dataset SCREAMING_SNAKE_CASE = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , ) train_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) # same for validation dataset SCREAMING_SNAKE_CASE = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , ) val_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE = SeqaSeqTrainingArguments( output_dir=__lowerCamelCase , per_device_train_batch_size=__lowerCamelCase , per_device_eval_batch_size=__lowerCamelCase , predict_with_generate=__lowerCamelCase , evaluation_strategy="steps" , do_train=__lowerCamelCase , do_eval=__lowerCamelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer SCREAMING_SNAKE_CASE = SeqaSeqTrainer( model=__lowerCamelCase , args=__lowerCamelCase , compute_metrics=_compute_metrics , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , tokenizer=__lowerCamelCase , ) # start training trainer.train()
698
1
from __future__ import annotations def UpperCAmelCase_ ( __UpperCamelCase, __UpperCamelCase ): if b == 0: return (1, 0) ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) =extended_euclid(__UpperCamelCase, a % b ) SCREAMING_SNAKE_CASE__ =a // b return (y, x - k * y) def UpperCAmelCase_ ( __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase ): ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) =extended_euclid(__UpperCamelCase, __UpperCamelCase ) SCREAMING_SNAKE_CASE__ =na * na SCREAMING_SNAKE_CASE__ =ra * x * na + ra * y * na return (n % m + m) % m def UpperCAmelCase_ ( __UpperCamelCase, __UpperCamelCase ): ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) =extended_euclid(__UpperCamelCase, __UpperCamelCase ) if b < 0: SCREAMING_SNAKE_CASE__ =(b % n + n) % n return b def UpperCAmelCase_ ( __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =invert_modulo(__UpperCamelCase, __UpperCamelCase ), invert_modulo(__UpperCamelCase, __UpperCamelCase ) SCREAMING_SNAKE_CASE__ =na * na SCREAMING_SNAKE_CASE__ =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
151
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class __a ( unittest.TestCase ): """simple docstring""" def __A ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ ="""hf-internal-testing/tiny-random-t5""" SCREAMING_SNAKE_CASE__ =AutoTokenizer.from_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =AutoModelForSeqaSeqLM.from_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =tokenizer("""This is me""" ,return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ =model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) SCREAMING_SNAKE_CASE__ =model.generate(**_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =AutoModelForSeqaSeqLM.from_pretrained(_UpperCamelCase ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) SCREAMING_SNAKE_CASE__ =model_reloaded.generate(**_UpperCamelCase ) self.assertTrue(torch.allclose(_UpperCamelCase ,_UpperCamelCase ) ) def __A ( self : Optional[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ ="""hf-internal-testing/tiny-random-t5""" SCREAMING_SNAKE_CASE__ =AutoModelForSeqaSeqLM.from_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_UpperCamelCase ): model.save_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =model.reverse_bettertransformer() model.save_pretrained(_UpperCamelCase )
151
1
'''simple docstring''' import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowercase__ : str = 1.5 lowercase__ : List[Any] = int(factor * num_class_images ) lowercase__ : int = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=UpperCAmelCase__ , aesthetic_weight=0.1 ) os.makedirs(F"""{class_data_dir}/images""" , exist_ok=UpperCAmelCase__ ) if len(list(Path(F"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images: return while True: lowercase__ : List[str] = client.query(text=UpperCAmelCase__ ) if len(UpperCAmelCase__ ) >= factor * num_class_images or num_images > 1E4: break else: lowercase__ : List[str] = int(factor * num_images ) lowercase__ : List[str] = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=UpperCAmelCase__ , aesthetic_weight=0.1 , ) lowercase__ : List[str] = 0 lowercase__ : Dict = 0 lowercase__ : Tuple = tqdm(desc='''downloading real regularization images''' , total=UpperCAmelCase__ ) with open(F"""{class_data_dir}/caption.txt""" , '''w''' ) as fa, open(F"""{class_data_dir}/urls.txt""" , '''w''' ) as fa, open( F"""{class_data_dir}/images.txt""" , '''w''' ) as fa: while total < num_class_images: lowercase__ : str = class_images[count] count += 1 try: lowercase__ : Union[str, Any] = requests.get(images['''url'''] ) if img.status_code == 200: lowercase__ : List[str] = Image.open(BytesIO(img.content ) ) with open(F"""{class_data_dir}/images/{total}.jpg""" , '''wb''' ) as f: f.write(img.content ) fa.write(images['''caption'''] + '''\n''' ) fa.write(images['''url'''] + '''\n''' ) fa.write(F"""{class_data_dir}/images/{total}.jpg""" + '''\n''' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def __UpperCamelCase ( ): lowercase__ : Any = argparse.ArgumentParser('''''' , add_help=UpperCAmelCase__ ) parser.add_argument('''--class_prompt''' , help='''text prompt to retrieve images''' , required=UpperCAmelCase__ , type=UpperCAmelCase__ ) parser.add_argument('''--class_data_dir''' , help='''path to save images''' , required=UpperCAmelCase__ , type=UpperCAmelCase__ ) parser.add_argument('''--num_class_images''' , help='''number of images to download''' , default=200 , type=UpperCAmelCase__ ) return parser.parse_args() if __name__ == "__main__": __a: Dict = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
708
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __a: Optional[int] = { """configuration_mobilebert""": [ """MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileBertConfig""", """MobileBertOnnxConfig""", ], """tokenization_mobilebert""": ["""MobileBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: Union[str, Any] = ["""MobileBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: int = [ """MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileBertForMaskedLM""", """MobileBertForMultipleChoice""", """MobileBertForNextSentencePrediction""", """MobileBertForPreTraining""", """MobileBertForQuestionAnswering""", """MobileBertForSequenceClassification""", """MobileBertForTokenClassification""", """MobileBertLayer""", """MobileBertModel""", """MobileBertPreTrainedModel""", """load_tf_weights_in_mobilebert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: str = [ """TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileBertForMaskedLM""", """TFMobileBertForMultipleChoice""", """TFMobileBertForNextSentencePrediction""", """TFMobileBertForPreTraining""", """TFMobileBertForQuestionAnswering""", """TFMobileBertForSequenceClassification""", """TFMobileBertForTokenClassification""", """TFMobileBertMainLayer""", """TFMobileBertModel""", """TFMobileBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys __a: List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
428
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : List[str] = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : List[str] = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : str = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : List[Any] = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : int = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : List[Any] = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : Optional[Any] = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : Any = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : List[Any] = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : List[Any] = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : List[Any] = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] )
650
"""simple docstring""" from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING A_ : int =logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase__ ) class __a ( lowerCAmelCase__ ): def __init__( self , *a__ , **a__ ): super().__init__(*a__ , **a__ ) self.check_model_type(a__ ) def snake_case_ ( self , a__=None , a__=None , a__=None , **a__ ): _lowerCamelCase , _lowerCamelCase = {}, {} if padding is not None: _lowerCamelCase = padding if truncation is not None: _lowerCamelCase = truncation if top_k is not None: _lowerCamelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self , a__ , a__ = None , **a__ ): if isinstance(a__ , (Image.Image, str) ) and isinstance(a__ , a__ ): _lowerCamelCase = {'image': image, 'question': question} else: _lowerCamelCase = image _lowerCamelCase = super().__call__(a__ , **a__ ) return results def snake_case_ ( self , a__ , a__=False , a__=False ): _lowerCamelCase = load_image(inputs['image'] ) _lowerCamelCase = self.tokenizer( inputs['question'] , return_tensors=self.framework , padding=a__ , truncation=a__ ) _lowerCamelCase = self.image_processor(images=a__ , return_tensors=self.framework ) model_inputs.update(a__ ) return model_inputs def snake_case_ ( self , a__ ): _lowerCamelCase = self.model(**a__ ) return model_outputs def snake_case_ ( self , a__ , a__=5 ): if top_k > self.model.config.num_labels: _lowerCamelCase = self.model.config.num_labels if self.framework == "pt": _lowerCamelCase = model_outputs.logits.sigmoid()[0] _lowerCamelCase , _lowerCamelCase = probs.topk(a__ ) else: raise ValueError(F'Unsupported framework: {self.framework}' ) _lowerCamelCase = scores.tolist() _lowerCamelCase = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(a__ , a__ )]
650
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[int]=1 , UpperCAmelCase_ : int=0 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : str="cls" , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Union[str, Any]=True , **UpperCAmelCase_ : int , ): """simple docstring""" super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) __UpperCAmelCase : Tuple = project_dim __UpperCAmelCase : Any = pooler_fn __UpperCAmelCase : Tuple = learn_encoder __UpperCAmelCase : Optional[int] = use_attention_mask class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE = [R'''pooler''', R'''logit_scale'''] SCREAMING_SNAKE_CASE = [R'''position_ids''', R'''predictions.decoder.bias'''] SCREAMING_SNAKE_CASE = '''roberta''' SCREAMING_SNAKE_CASE = RobertaSeriesConfig def __init__( self : Tuple , UpperCAmelCase_ : Tuple ): """simple docstring""" super().__init__(UpperCAmelCase_ ) __UpperCAmelCase : List[str] = XLMRobertaModel(UpperCAmelCase_ ) __UpperCAmelCase : Any = nn.Linear(config.hidden_size , config.project_dim ) __UpperCAmelCase : Optional[Any] = getattr(UpperCAmelCase_ , "has_pre_transformation" , UpperCAmelCase_ ) if self.has_pre_transformation: __UpperCAmelCase : List[str] = nn.Linear(config.hidden_size , config.project_dim ) __UpperCAmelCase : List[str] = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def lowerCamelCase_ ( self : List[Any] , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None , ): """simple docstring""" __UpperCAmelCase : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict __UpperCAmelCase : List[Any] = self.base_model( input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , encoder_attention_mask=UpperCAmelCase_ , output_attentions=UpperCAmelCase_ , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=UpperCAmelCase_ , ) if self.has_pre_transformation: __UpperCAmelCase : Tuple = outputs["hidden_states"][-2] __UpperCAmelCase : int = self.pre_LN(UpperCAmelCase_ ) __UpperCAmelCase : Any = self.transformation_pre(UpperCAmelCase_ ) return TransformationModelOutput( projection_state=UpperCAmelCase_ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: __UpperCAmelCase : Dict = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=UpperCAmelCase_ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
329
'''simple docstring''' import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE__ : """simple docstring""" @staticmethod def lowerCamelCase_ ( *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Tuple ): """simple docstring""" pass def __UpperCamelCase ( _UpperCAmelCase ): __UpperCAmelCase : Any = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def lowerCamelCase_ ( self : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] ): """simple docstring""" __UpperCAmelCase : int = DepthEstimationPipeline(model=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase_ ( self : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] ): """simple docstring""" __UpperCAmelCase : Tuple = depth_estimator("./tests/fixtures/tests_samples/COCO/000000039769.png" ) self.assertEqual({"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )} , UpperCAmelCase_ ) import datasets __UpperCAmelCase : str = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) __UpperCAmelCase : Dict = depth_estimator( [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] ) self.assertEqual( [ {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, ] , UpperCAmelCase_ , ) @require_tf @unittest.skip("Depth estimation is not implemented in TF" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" pass @slow @require_torch def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" __UpperCAmelCase : List[str] = "Intel/dpt-large" __UpperCAmelCase : Optional[int] = pipeline("depth-estimation" , model=UpperCAmelCase_ ) __UpperCAmelCase : Any = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg" ) __UpperCAmelCase : str = hashimage(outputs["depth"] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["predicted_depth"].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs["predicted_depth"].min().item() ) , 2.662 ) @require_torch def lowerCamelCase_ ( self : List[str] ): """simple docstring""" # This is highly irregular to have no small tests. self.skipTest("There is not hf-internal-testing tiny model for either GLPN nor DPT" )
329
1
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , __a , __a , __a=1024 , __a=1024 , __a=3.6 ) -> Any: """simple docstring""" UpperCAmelCase__ = tokenizer UpperCAmelCase__ = tokenizer.bos_token_id UpperCAmelCase__ = dataset UpperCAmelCase__ = seq_length UpperCAmelCase__ = seq_length * chars_per_token * num_of_sequences def __iter__(self ) -> Dict: """simple docstring""" UpperCAmelCase__ = iter(self.dataset ) UpperCAmelCase__ = True while more_examples: UpperCAmelCase__ , UpperCAmelCase__ = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(__a )['content'] ) buffer_len += len(buffer[-1] ) except StopIteration: UpperCAmelCase__ = False break UpperCAmelCase__ = tokenizer(__a , truncation=__a )['input_ids'] UpperCAmelCase__ = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(__a ) , self.seq_length ): UpperCAmelCase__ = all_token_ids[i : i + self.seq_length] if len(__a ) == self.seq_length: yield torch.tensor(__a ) def UpperCamelCase_( snake_case__: Optional[int] ) -> List[Any]: UpperCAmelCase__ = {'streaming': True} UpperCAmelCase__ = load_dataset(args.dataset_name , split='train' , **snake_case__ ) UpperCAmelCase__ = ConstantLengthDataset(snake_case__ , snake_case__ , seq_length=args.seq_length ) UpperCAmelCase__ = DataLoader(snake_case__ , batch_size=args.batch_size ) return eval_dataloader def UpperCamelCase_( snake_case__: Any ) -> Dict: model.eval() UpperCAmelCase__ = [] for step, batch in enumerate(snake_case__ ): with torch.no_grad(): UpperCAmelCase__ = model(snake_case__ , labels=snake_case__ ) UpperCAmelCase__ = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(snake_case__ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break UpperCAmelCase__ = torch.mean(torch.cat(snake_case__ ) ) try: UpperCAmelCase__ = torch.exp(snake_case__ ) except OverflowError: UpperCAmelCase__ = float('inf' ) return loss.item(), perplexity.item() # Setup Accelerator _UpperCamelCase = Accelerator() # Parse configuration _UpperCamelCase = HfArgumentParser(EvaluationArguments) _UpperCamelCase = parser.parse_args() set_seed(args.seed) # Logging _UpperCamelCase = logging.getLogger(__name__) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) # Load model and tokenizer _UpperCamelCase = AutoModelForCausalLM.from_pretrained(args.model_ckpt) _UpperCamelCase = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader _UpperCamelCase = create_dataloader(args) # Prepare everything with our `accelerator`. _UpperCamelCase , _UpperCamelCase = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('''Evaluating and saving model after training''') _UpperCamelCase , _UpperCamelCase = evaluate(args) logger.info(F"""loss/eval: {eval_loss}, perplexity: {perplexity}""")
146
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = BlenderbotSmallConfig __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = """gelu""" def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=False , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a=0.1 , __a=0.1 , __a=20 , __a=2 , __a=1 , __a=0 , ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = eos_token_id UpperCAmelCase__ = pad_token_id UpperCAmelCase__ = bos_token_id def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase__ = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase__ = prepare_blenderbot_small_inputs_dict(__a , __a , __a ) return config, inputs_dict def UpperCamelCase__ (self , __a , __a ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = TFBlenderbotSmallModel(config=__a ).get_decoder() UpperCAmelCase__ = inputs_dict['input_ids'] UpperCAmelCase__ = input_ids[:1, :] UpperCAmelCase__ = inputs_dict['attention_mask'][:1, :] UpperCAmelCase__ = inputs_dict['head_mask'] UpperCAmelCase__ = 1 # first forward pass UpperCAmelCase__ = model(__a , attention_mask=__a , head_mask=__a , use_cache=__a ) UpperCAmelCase__ , UpperCAmelCase__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase__ = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase__ = model(__a , attention_mask=__a )[0] UpperCAmelCase__ = model(__a , attention_mask=__a , past_key_values=__a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase__ = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__a , __a , rtol=1E-3 ) def UpperCamelCase_( snake_case__: Any , snake_case__: List[str] , snake_case__: Dict , snake_case__: Any=None , snake_case__: int=None , snake_case__: int=None , snake_case__: int=None , snake_case__: Optional[int]=None , ) -> int: if attention_mask is None: UpperCAmelCase__ = tf.cast(tf.math.not_equal(snake_case__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) __SCREAMING_SNAKE_CASE = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () __SCREAMING_SNAKE_CASE = ( { """conversational""": TFBlenderbotSmallForConditionalGeneration, """feature-extraction""": TFBlenderbotSmallModel, """summarization""": TFBlenderbotSmallForConditionalGeneration, """text2text-generation""": TFBlenderbotSmallForConditionalGeneration, """translation""": TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = TFBlenderbotSmallModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__a ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__a ) @require_tokenizers @require_tf class lowercase ( unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [ """Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like """ """ i'm going to throw up.\nand why is that?""" ] __SCREAMING_SNAKE_CASE = """facebook/blenderbot_small-90M""" @cached_property def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" return BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) @cached_property def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.tokenizer(self.src_text , return_tensors='tf' ) UpperCAmelCase__ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__a , ) UpperCAmelCase__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__a )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
146
1
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
152
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = {"""configuration_encoder_decoder""": ["""EncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["""EncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["""TFEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["""FlaxEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
152
1
'''simple docstring''' from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def __snake_case( _lowerCAmelCase ) -> List[str]: snake_case__ : Dict = [] snake_case__ : Tuple = [] snake_case__ : Optional[Any] = [] for rt in rc.restypes: snake_case__ : Dict = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) snake_case__ : Optional[int] = {name: i for i, name in enumerate(UpperCamelCase__ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) snake_case__ : Optional[int] = torch.tensor( UpperCamelCase__ , dtype=torch.intaa , device=protein["""aatype"""].device , ) snake_case__ : Dict = torch.tensor( UpperCamelCase__ , dtype=torch.intaa , device=protein["""aatype"""].device , ) snake_case__ : Optional[int] = torch.tensor( UpperCamelCase__ , dtype=torch.floataa , device=protein["""aatype"""].device , ) snake_case__ : Optional[Any] = protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein snake_case__ : Dict = restype_atomaa_to_atomaa[protein_aatype] snake_case__ : Optional[Any] = restype_atomaa_mask[protein_aatype] snake_case__ : Dict = residx_atomaa_mask snake_case__ : str = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back snake_case__ : Tuple = restype_atomaa_to_atomaa[protein_aatype] snake_case__ : Tuple = residx_atomaa_to_atomaa.long() # create the corresponding mask snake_case__ : Dict = torch.zeros([21, 37] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): snake_case__ : Optional[int] = rc.restype_atoa[restype_letter] snake_case__ : Any = rc.residue_atoms[restype_name] for atom_name in atom_names: snake_case__ : Dict = rc.atom_order[atom_name] snake_case__ : Tuple = 1 snake_case__ : List[str] = restype_atomaa_mask[protein_aatype] snake_case__ : Optional[Any] = residx_atomaa_mask return protein def __snake_case( _lowerCAmelCase ) -> Tuple: snake_case__ : str = tree_map(lambda _lowerCAmelCase : torch.tensor(UpperCamelCase__ , device=batch["""aatype"""].device ) , UpperCamelCase__ , np.ndarray ) snake_case__ : Any = tensor_tree_map(lambda _lowerCAmelCase : np.array(UpperCamelCase__ ) , make_atomaa_masks(UpperCamelCase__ ) ) return out
374
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( UpperCamelCase__ : Optional[int] ): """simple docstring""" a_ : List[Any] = DPTConfig(embedding_type="""hybrid""" ) if "large" in checkpoint_url: a_ : str = 1024 a_ : List[str] = 4096 a_ : int = 24 a_ : int = 16 a_ : Optional[Any] = [5, 11, 17, 23] a_ : Optional[int] = [256, 512, 1024, 1024] a_ : Union[str, Any] = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: a_ : Dict = 768 a_ : str = [1, 1, 1, 0.5] a_ : Dict = [256, 512, 768, 768] a_ : int = 150 a_ : Any = 16 a_ : Optional[int] = (1, 384, 384) a_ : Optional[Any] = False a_ : Dict = """project""" if "ade" in checkpoint_url: a_ : int = True a_ : int = 768 a_ : Optional[int] = [1, 1, 1, 0.5] a_ : Dict = 150 a_ : Any = 16 a_ : Optional[int] = """huggingface/label-files""" a_ : Optional[int] = """ade20k-id2label.json""" a_ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) ) , """r""" ) ) a_ : str = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} a_ : Optional[int] = idalabel a_ : Optional[Any] = {v: k for k, v in idalabel.items()} a_ : int = [1, 150, 480, 480] return config, expected_shape def _SCREAMING_SNAKE_CASE ( UpperCamelCase__ : Optional[int] ): """simple docstring""" a_ : Dict = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase__ : str ): """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): a_ : List[str] = name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: a_ : Union[str, Any] = name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: a_ : Optional[int] = name.replace("""patch_embed""" , """""" ) if "pos_embed" in name: a_ : List[str] = name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: a_ : Any = name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: a_ : Dict = name.replace("""proj""" , """projection""" ) if "blocks" in name: a_ : Union[str, Any] = name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: a_ : Optional[int] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: a_ : Any = name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name and "backbone" not in name: a_ : List[Any] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name and "backbone" not in name: a_ : int = name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: a_ : Tuple = name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: a_ : str = name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: a_ : Optional[Any] = name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: a_ : Dict = name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: a_ : Tuple = name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: a_ : str = name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: a_ : List[Any] = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 a_ : List[str] = name.replace(F"refinenet{layer_idx}" , F"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: a_ : Union[str, Any] = name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: a_ : Any = name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: a_ : List[str] = name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: a_ : str = name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: a_ : Dict = name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: a_ : str = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: a_ : int = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: a_ : Optional[Any] = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: a_ : List[Any] = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: a_ : List[Any] = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: a_ : List[Any] = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: a_ : str = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: a_ : Optional[int] = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: a_ : Optional[Any] = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: a_ : List[Any] = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: a_ : Optional[Any] = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: a_ : int = name.replace("""pretrained""" , """dpt""" ) if "bn" in name: a_ : Any = name.replace("""bn""" , """batch_norm""" ) if "head" in name: a_ : int = name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: a_ : Any = name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: a_ : Union[str, Any] = name.replace("""auxlayer""" , """auxiliary_head.head""" ) if "backbone" in name: a_ : Any = name.replace("""backbone""" , """backbone.bit.encoder""" ) if ".." in name: a_ : Any = name.replace("""..""" , """.""" ) if "stem.conv" in name: a_ : Optional[int] = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: a_ : Dict = name.replace("""blocks""" , """layers""" ) if "convolution" in name and "backbone" in name: a_ : str = name.replace("""convolution""" , """conv""" ) if "layer" in name and "backbone" in name: a_ : Any = name.replace("""layer""" , """layers""" ) if "backbone.bit.encoder.bit" in name: a_ : Dict = name.replace("""backbone.bit.encoder.bit""" , """backbone.bit""" ) if "embedder.conv" in name: a_ : List[str] = name.replace("""embedder.conv""" , """embedder.convolution""" ) if "backbone.bit.encoder.stem.norm" in name: a_ : int = name.replace("""backbone.bit.encoder.stem.norm""" , """backbone.bit.embedder.norm""" ) return name def _SCREAMING_SNAKE_CASE ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str ): """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a_ : List[str] = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.weight" ) a_ : Optional[Any] = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict a_ : Any = in_proj_weight[: config.hidden_size, :] a_ : int = in_proj_bias[: config.hidden_size] a_ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a_ : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a_ : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] a_ : str = in_proj_bias[-config.hidden_size :] def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" a_ : Optional[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" a_ : Union[str, Any] = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def _SCREAMING_SNAKE_CASE ( UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any ): """simple docstring""" a_ , a_ : Optional[Any] = get_dpt_config(UpperCamelCase__ ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") a_ : int = torch.load(UpperCamelCase__ , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(UpperCamelCase__ ) # rename keys for key in state_dict.copy().keys(): a_ : Any = state_dict.pop(UpperCamelCase__ ) a_ : Tuple = val # read in qkv matrices read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ ) # load HuggingFace model a_ : Any = DPTForSemanticSegmentation(UpperCamelCase__ ) if """ade""" in checkpoint_url else DPTForDepthEstimation(UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() # Check outputs on an image a_ : str = 480 if """ade""" in checkpoint_url else 384 a_ : Optional[int] = DPTImageProcessor(size=UpperCamelCase__ ) a_ : Dict = prepare_img() a_ : Any = image_processor(UpperCamelCase__ , return_tensors="""pt""" ) # forward pass a_ : Dict = model(**UpperCamelCase__ ).logits if """ade""" in checkpoint_url else model(**UpperCamelCase__ ).predicted_depth if show_prediction: a_ : Any = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="""bicubic""" , align_corners=UpperCamelCase__ , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: model.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) if __name__ == "__main__": lowerCAmelCase_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) parser.add_argument( '--show_prediction', action='store_true', ) lowerCAmelCase_ : Optional[Any] = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
442
0
from math import sqrt def _snake_case ( __snake_case = 1000000 ): _UpperCamelCase = 0 _UpperCamelCase = 0 _UpperCamelCase = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(__snake_case , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'{solution() = }')
704
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class lowerCAmelCase_ ( __lowercase ): def __init__( self : int , _A : NestedDataStructureLike[PathLike] , _A : Optional[NamedSplit] = None , _A : Optional[Features] = None , _A : str = None , _A : bool = False , _A : bool = False , _A : Optional[str] = None , _A : Optional[int] = None , **_A : str , ): super().__init__( _A , split=_A , features=_A , cache_dir=_A , keep_in_memory=_A , streaming=_A , num_proc=_A , **_A , ) _UpperCamelCase = field _UpperCamelCase = path_or_paths if isinstance(_A , _A ) else {self.split: path_or_paths} _UpperCamelCase = Json( cache_dir=_A , data_files=_A , features=_A , field=_A , **_A , ) def UpperCamelCase_ ( self : List[str] ): # Build iterable dataset if self.streaming: _UpperCamelCase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None self.builder.download_and_prepare( download_config=_A , download_mode=_A , verification_mode=_A , base_path=_A , num_proc=self.num_proc , ) _UpperCamelCase = self.builder.as_dataset( split=self.split , verification_mode=_A , in_memory=self.keep_in_memory ) return dataset class lowerCAmelCase_ : def __init__( self : Optional[Any] , _A : Dataset , _A : Union[PathLike, BinaryIO] , _A : Optional[int] = None , _A : Optional[int] = None , **_A : List[str] , ): if num_proc is not None and num_proc <= 0: raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""" ) _UpperCamelCase = dataset _UpperCamelCase = path_or_buf _UpperCamelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _UpperCamelCase = num_proc _UpperCamelCase = '''utf-8''' _UpperCamelCase = to_json_kwargs def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.to_json_kwargs.pop('''path_or_buf''' , _A ) _UpperCamelCase = self.to_json_kwargs.pop('''orient''' , '''records''' ) _UpperCamelCase = self.to_json_kwargs.pop('''lines''' , True if orient == '''records''' else False ) _UpperCamelCase = self.to_json_kwargs.pop('''index''' , False if orient in ['''split''', '''table'''] else True ) _UpperCamelCase = self.to_json_kwargs.pop('''compression''' , _A ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F"""`datasets` currently does not support {compression} compression""" ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , '''wb''' , compression=_A ) as buffer: _UpperCamelCase = self._write(file_obj=_A , orient=_A , lines=_A , index=_A , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F"""The compression parameter is not supported when writing to a buffer, but compression={compression}""" ''' was passed. Please provide a local path instead.''' ) _UpperCamelCase = self._write( file_obj=self.path_or_buf , orient=_A , lines=_A , index=_A , **self.to_json_kwargs ) return written def UpperCamelCase_ ( self : Any , _A : Optional[Any] ): _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = args _UpperCamelCase = query_table( table=self.dataset.data , key=slice(_A , offset + self.batch_size ) , indices=self.dataset._indices , ) _UpperCamelCase = batch.to_pandas().to_json( path_or_buf=_A , orient=_A , lines=_A , index=_A , **_A ) if not json_str.endswith('''\n''' ): json_str += "\n" return json_str.encode(self.encoding ) def UpperCamelCase_ ( self : int , _A : BinaryIO , _A : Dict , _A : Optional[Any] , _A : Dict , **_A : str , ): _UpperCamelCase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): _UpperCamelCase = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(_A ) else: _UpperCamelCase , _UpperCamelCase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , _A , _A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): written += file_obj.write(_A ) return written
71
0
"""simple docstring""" from __future__ import annotations import math from collections.abc import Callable def lowercase ( lowerCAmelCase__ : Callable[[int | float], int | float] , lowerCAmelCase__ : int | float , lowerCAmelCase__ : int | float , lowerCAmelCase__ : int = 100 , ) -> float: __a = x_start __a = fnc(lowerCAmelCase__ ) __a = 0.0 for _ in range(lowerCAmelCase__ ): # Approximates curve as a sequence of linear lines and sums their length __a = (x_end - x_start) / steps + xa __a = fnc(lowerCAmelCase__ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step __a = xa __a = fxa return length if __name__ == "__main__": def lowercase ( lowerCAmelCase__ : Any ) -> Tuple: return math.sin(10 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") lowercase_ = 1_0 while i <= 1_0_0_0_0_0: print(F'''With {i} steps: {line_length(f, -1_0, 1_0, i)}''') i *= 1_0
695
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : bool = False __UpperCAmelCase : float = 3.0 class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_a ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} ) @require_cuda def __UpperCAmelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. __a = GradScalerKwargs(init_scale=1_024 , growth_factor=2 ) AcceleratorState._reset_state() __a = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __a = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_000 ) self.assertEqual(scaler._enabled , _a ) @require_multi_gpu def __UpperCAmelCase ( self ): __a = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(_a , env=os.environ.copy() ) if __name__ == "__main__": lowercase_ = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) lowercase_ = Accelerator(kwargs_handlers=[ddp_scaler]) lowercase_ = torch.nn.Linear(1_0_0, 2_0_0) lowercase_ = accelerator.prepare(model) # Check the values changed in kwargs lowercase_ = "" lowercase_ = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
695
1
'''simple docstring''' import argparse import os from accelerate.test_utils import execute_subprocess_async def a_ ( _UpperCAmelCase : List[str]=None ) -> Optional[int]: if subparsers is not None: __snake_case : Tuple = subparsers.add_parser('test' ) else: __snake_case : str = argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' ,default=_UpperCAmelCase ,help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) ,) if subparsers is not None: parser.set_defaults(func=_UpperCAmelCase ) return parser def a_ ( _UpperCAmelCase : List[str] ) -> List[str]: __snake_case : str = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: __snake_case : int = script_name else: __snake_case : int = f'''--config_file={args.config_file} {script_name}''' __snake_case : int = ['accelerate-launch'] + test_args.split() __snake_case : List[str] = execute_subprocess_async(_UpperCAmelCase ,env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def a_ ( ) -> int: __snake_case : Optional[Any] = test_command_parser() __snake_case : int = parser.parse_args() test_command(_UpperCAmelCase ) if __name__ == "__main__": main()
701
'''simple docstring''' import requests def a_ ( _UpperCAmelCase : str ,_UpperCAmelCase : str ) -> None: __snake_case : Tuple = {'Content-Type': 'application/json'} __snake_case : Optional[int] = requests.post(_UpperCAmelCase ,json={'text': message_body} ,headers=_UpperCAmelCase ) if response.status_code != 2_00: __snake_case : Tuple = ( 'Request to slack returned an error ' f'''{response.status_code}, the response is:\n{response.text}''' ) raise ValueError(_UpperCAmelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('''<YOUR MESSAGE BODY>''', '''<SLACK CHANNEL URL>''')
124
0
'''simple docstring''' lowercase__ : List[str] = 'Alexander Joslin' import operator as op from .stack import Stack def a__ ( lowercase : str ) -> int: """simple docstring""" _UpperCamelCase = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} _UpperCamelCase = Stack() _UpperCamelCase = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(lowercase ) elif i == ")": # RULE 4 _UpperCamelCase = operator_stack.peek() operator_stack.pop() _UpperCamelCase = operand_stack.peek() operand_stack.pop() _UpperCamelCase = operand_stack.peek() operand_stack.pop() _UpperCamelCase = operators[opr](lowercase, lowercase ) operand_stack.push(lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowercase__ : Tuple = '(5 + ((4 * 2) * (2 + 3)))' # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
98
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig lowercase__ : int = logging.get_logger(__name__) lowercase__ : Any = 'T5Config' def a__ ( lowercase : jnp.array, lowercase : int, lowercase : int ) -> jnp.ndarray: """simple docstring""" _UpperCamelCase = jnp.zeros_like(lowercase ) _UpperCamelCase = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) _UpperCamelCase = shifted_input_ids.at[:, 0].set(lowercase ) _UpperCamelCase = jnp.where(shifted_input_ids == -100, lowercase, lowercase ) return shifted_input_ids class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Optional[Any] = 'mt5' _snake_case : Union[str, Any] = MTaConfig class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Tuple = 'mt5' _snake_case : int = MTaConfig class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Optional[int] = 'mt5' _snake_case : Optional[Any] = MTaConfig
98
1
'''simple docstring''' import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __lowerCAmelCase ( __a , unittest.TestCase ): snake_case : Union[str, Any] = """hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline""" def snake_case_ (self , lowerCAmelCase__=0 ): _UpperCAmelCase : Union[str, Any] = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(lowerCAmelCase__ ) ) _UpperCAmelCase : Optional[int] = np.random.RandomState(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """strength""": 0.7_5, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def snake_case_ (self ): _UpperCAmelCase : Union[str, Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = self.get_dummy_inputs() _UpperCAmelCase : Union[str, Any] = pipe(**lowerCAmelCase__ ).images _UpperCAmelCase : int = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_2_8, 1_2_8, 3) _UpperCAmelCase : List[str] = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def snake_case_ (self ): _UpperCAmelCase : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _UpperCAmelCase : Any = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = self.get_dummy_inputs() _UpperCAmelCase : List[str] = pipe(**lowerCAmelCase__ ).images _UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _UpperCAmelCase : Any = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def snake_case_ (self ): _UpperCAmelCase : Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _UpperCAmelCase : str = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) # warmup pass to apply optimizations _UpperCAmelCase : List[Any] = pipe(**self.get_dummy_inputs() ) _UpperCAmelCase : Any = self.get_dummy_inputs() _UpperCAmelCase : Dict = pipe(**lowerCAmelCase__ ).images _UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _UpperCAmelCase : str = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def snake_case_ (self ): _UpperCAmelCase : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _UpperCAmelCase : Any = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : Dict = self.get_dummy_inputs() _UpperCAmelCase : List[Any] = pipe(**lowerCAmelCase__ ).images _UpperCAmelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _UpperCAmelCase : Dict = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def snake_case_ (self ): _UpperCAmelCase : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _UpperCAmelCase : Tuple = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs() _UpperCAmelCase : Union[str, Any] = pipe(**lowerCAmelCase__ ).images _UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _UpperCAmelCase : Any = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def snake_case_ (self ): _UpperCAmelCase : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _UpperCAmelCase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = self.get_dummy_inputs() _UpperCAmelCase : str = pipe(**lowerCAmelCase__ ).images _UpperCAmelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _UpperCAmelCase : int = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): @property def snake_case_ (self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case_ (self ): _UpperCAmelCase : str = ort.SessionOptions() _UpperCAmelCase : Optional[int] = False return options def snake_case_ (self ): _UpperCAmelCase : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) _UpperCAmelCase : Dict = init_image.resize((7_6_8, 5_1_2) ) # using the PNDM scheduler by default _UpperCAmelCase : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : Any = """A fantasy landscape, trending on artstation""" _UpperCAmelCase : Optional[int] = np.random.RandomState(0 ) _UpperCAmelCase : Tuple = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=1_0 , generator=lowerCAmelCase__ , output_type="""np""" , ) _UpperCAmelCase : Optional[int] = output.images _UpperCAmelCase : Optional[Any] = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) _UpperCAmelCase : Union[str, Any] = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def snake_case_ (self ): _UpperCAmelCase : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) _UpperCAmelCase : Optional[int] = init_image.resize((7_6_8, 5_1_2) ) _UpperCAmelCase : Optional[Any] = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) _UpperCAmelCase : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : int = """A fantasy landscape, trending on artstation""" _UpperCAmelCase : Optional[Any] = np.random.RandomState(0 ) _UpperCAmelCase : List[str] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=2_0 , generator=lowerCAmelCase__ , output_type="""np""" , ) _UpperCAmelCase : Optional[Any] = output.images _UpperCAmelCase : List[Any] = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) _UpperCAmelCase : List[Any] = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
720
'''simple docstring''' from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __lowerCAmelCase ( __a ): @slow @require_torch def snake_case_ (self ): _UpperCAmelCase : Dict = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) _UpperCAmelCase : Tuple = BertTokenizer.from_pretrained("""bert-base-uncased""" ) _UpperCAmelCase : List[str] = bertabert.config.encoder.vocab_size _UpperCAmelCase : List[str] = tokenizer.sep_token_id _UpperCAmelCase : List[Any] = tokenizer.cls_token_id _UpperCAmelCase : List[str] = 1_2_8 _UpperCAmelCase : int = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) _UpperCAmelCase : Tuple = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) _UpperCAmelCase : str = train_dataset.select(range(3_2 ) ) _UpperCAmelCase : str = val_dataset.select(range(1_6 ) ) _UpperCAmelCase : Any = 4 def _map_to_encoder_decoder_inputs(lowerCAmelCase__ ): # Tokenizer will automatically set [BOS] <text> [EOS] _UpperCAmelCase : List[str] = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=lowerCAmelCase__ , max_length=5_1_2 ) _UpperCAmelCase : Union[str, Any] = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=lowerCAmelCase__ , max_length=1_2_8 ) _UpperCAmelCase : List[Any] = inputs.input_ids _UpperCAmelCase : int = inputs.attention_mask _UpperCAmelCase : Union[str, Any] = outputs.input_ids _UpperCAmelCase : List[Any] = outputs.input_ids.copy() _UpperCAmelCase : str = [ [-1_0_0 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] _UpperCAmelCase : Tuple = outputs.attention_mask assert all(len(lowerCAmelCase__ ) == 5_1_2 for x in inputs.input_ids ) assert all(len(lowerCAmelCase__ ) == 1_2_8 for x in outputs.input_ids ) return batch def _compute_metrics(lowerCAmelCase__ ): _UpperCAmelCase : Optional[int] = pred.label_ids _UpperCAmelCase : Optional[int] = pred.predictions # all unnecessary tokens are removed _UpperCAmelCase : Optional[Any] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : str = sum([int(pred_str[i] == label_str[i] ) for i in range(len(lowerCAmelCase__ ) )] ) / len(lowerCAmelCase__ ) return {"accuracy": accuracy} # map train dataset _UpperCAmelCase : int = train_dataset.map( _map_to_encoder_decoder_inputs , batched=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset _UpperCAmelCase : Tuple = val_dataset.map( _map_to_encoder_decoder_inputs , batched=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) _UpperCAmelCase : Any = self.get_auto_remove_tmp_dir() _UpperCAmelCase : int = SeqaSeqTrainingArguments( output_dir=lowerCAmelCase__ , per_device_train_batch_size=lowerCAmelCase__ , per_device_eval_batch_size=lowerCAmelCase__ , predict_with_generate=lowerCAmelCase__ , evaluation_strategy="""steps""" , do_train=lowerCAmelCase__ , do_eval=lowerCAmelCase__ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer _UpperCAmelCase : Any = SeqaSeqTrainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , compute_metrics=_compute_metrics , train_dataset=lowerCAmelCase__ , eval_dataset=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , ) # start training trainer.train()
156
0
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class lowercase ( unittest.TestCase ): def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Tuple = 0 def lowercase__ ( self : List[str] ): SCREAMING_SNAKE_CASE__ : int = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(_lowercase , _lowercase ) def lowercase__ ( self : Any ): with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : Union[str, Any] = Path(_lowercase ) / '''preprocessor_config.json''' SCREAMING_SNAKE_CASE__ : List[Any] = Path(_lowercase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_lowercase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_lowercase , '''w''' ) ) SCREAMING_SNAKE_CASE__ : Tuple = AutoImageProcessor.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) def lowercase__ ( self : Dict ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : List[str] = Path(_lowercase ) / '''preprocessor_config.json''' SCREAMING_SNAKE_CASE__ : Optional[int] = Path(_lowercase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_lowercase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_lowercase , '''w''' ) ) SCREAMING_SNAKE_CASE__ : Any = AutoImageProcessor.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) def lowercase__ ( self : List[str] ): with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : int = CLIPConfig() # Create a dummy config file with image_proceesor_type SCREAMING_SNAKE_CASE__ : Union[str, Any] = Path(_lowercase ) / '''preprocessor_config.json''' SCREAMING_SNAKE_CASE__ : Optional[int] = Path(_lowercase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_lowercase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_lowercase , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally SCREAMING_SNAKE_CASE__ : str = AutoImageProcessor.from_pretrained(_lowercase ).to_dict() config_dict.pop('''image_processor_type''' ) SCREAMING_SNAKE_CASE__ : List[str] = CLIPImageProcessor(**_lowercase ) # save in new folder model_config.save_pretrained(_lowercase ) config.save_pretrained(_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = AutoImageProcessor.from_pretrained(_lowercase ) # make sure private variable is not incorrectly saved SCREAMING_SNAKE_CASE__ : List[str] = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_lowercase , _lowercase ) def lowercase__ ( self : int ): with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : List[str] = Path(_lowercase ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_lowercase , '''w''' ) , ) SCREAMING_SNAKE_CASE__ : Optional[int] = AutoImageProcessor.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) def lowercase__ ( self : Union[str, Any] ): with self.assertRaisesRegex( _lowercase , '''clip-base is not a local folder and is not a valid model identifier''' ): SCREAMING_SNAKE_CASE__ : List[Any] = AutoImageProcessor.from_pretrained('''clip-base''' ) def lowercase__ ( self : str ): with self.assertRaisesRegex( _lowercase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): SCREAMING_SNAKE_CASE__ : Optional[Any] = AutoImageProcessor.from_pretrained(_lowercase , revision='''aaaaaa''' ) def lowercase__ ( self : List[str] ): with self.assertRaisesRegex( _lowercase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): SCREAMING_SNAKE_CASE__ : Optional[Any] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def lowercase__ ( self : Any ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_lowercase ): SCREAMING_SNAKE_CASE__ : List[Any] = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_lowercase ): SCREAMING_SNAKE_CASE__ : List[str] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_lowercase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = AutoImageProcessor.from_pretrained(_lowercase , trust_remote_code=_lowercase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def lowercase__ ( self : List[str] ): try: AutoConfig.register('''custom''' , _lowercase ) AutoImageProcessor.register(_lowercase , _lowercase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowercase ): AutoImageProcessor.register(_lowercase , _lowercase ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : Union[str, Any] = Path(_lowercase ) / '''preprocessor_config.json''' SCREAMING_SNAKE_CASE__ : int = Path(_lowercase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_lowercase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_lowercase , '''w''' ) ) SCREAMING_SNAKE_CASE__ : List[Any] = CustomImageProcessor.from_pretrained(_lowercase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = AutoImageProcessor.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def lowercase__ ( self : Optional[Any] ): class lowercase ( _UpperCAmelCase ): lowerCamelCase : Union[str, Any] = True try: AutoConfig.register('''custom''' , _lowercase ) AutoImageProcessor.register(_lowercase , _lowercase ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE__ : Optional[int] = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE__ : List[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_lowercase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE__ : Any = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_lowercase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(_lowercase , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
35
"""simple docstring""" from math import isqrt, loga def _snake_case ( __snake_case : int ): """simple docstring""" _lowerCamelCase : List[str] = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __snake_case , __snake_case ): _lowerCamelCase : Optional[int] = False return [i for i in range(2 , __snake_case ) if is_prime[i]] def _snake_case ( __snake_case : int = 800800 , __snake_case : int = 800800 ): """simple docstring""" _lowerCamelCase : Union[str, Any] = degree * loga(__snake_case ) _lowerCamelCase : Union[str, Any] = int(__snake_case ) _lowerCamelCase : Dict = calculate_prime_numbers(__snake_case ) _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : Any = 0 _lowerCamelCase : Any = len(__snake_case ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f'''{solution() = }''')
88
0
from __future__ import annotations def __UpperCAmelCase( lowercase_ , lowercase_ , lowercase_ , ): if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative in a semiconductor''' ) elif hole_conc < 0: raise ValueError('''Hole concentration cannot be negative in a semiconductor''' ) elif intrinsic_conc < 0: raise ValueError( '''Intrinsic concentration cannot be negative in a semiconductor''' ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
613
import pytest import datasets # Import fixture modules as plugins _lowerCamelCase = ['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec'] def __UpperCAmelCase( lowercase_ , lowercase_ ): # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def __UpperCAmelCase( lowercase_ ): config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=lowercase_ ) def __UpperCAmelCase( lowercase_ , lowercase_ ): # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? _lowerCamelCase : Optional[Any] = tmp_path_factory.getbasetemp() / '''cache''' _lowerCamelCase : Optional[Any] = test_hf_cache_home / '''datasets''' _lowerCamelCase : Union[str, Any] = test_hf_cache_home / '''metrics''' _lowerCamelCase : Dict = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(lowercase_ ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(lowercase_ ) ) _lowerCamelCase : str = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(lowercase_ ) ) _lowerCamelCase : Optional[int] = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase_ ) ) @pytest.fixture(autouse=lowercase_ , scope='''session''' ) def __UpperCAmelCase( ): datasets.disable_progress_bar() @pytest.fixture(autouse=lowercase_ ) def __UpperCAmelCase( lowercase_ ): # don't take tests into account when counting downloads monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , lowercase_ ) @pytest.fixture def __UpperCAmelCase( lowercase_ ): # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , lowercase_ )
613
1
'''simple docstring''' def a_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> List[Any]: return int((input_a, input_a).count(0 ) == 0 ) def a_ ( ) -> List[Any]: assert and_gate(0 ,0 ) == 0 assert and_gate(0 ,1 ) == 0 assert and_gate(1 ,0 ) == 0 assert and_gate(1 ,1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
286
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets UpperCAmelCase : Optional[Any] = """ @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ UpperCAmelCase : Any = """\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. """ UpperCAmelCase : Union[str, Any] = """ Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=[\"About 95 species are currently accepted .\"] >>> predictions=[\"About 95 you now get in .\"] >>> references=[[\"About 95 species are currently known .\"]] >>> wiki_split = datasets.load_metric(\"wiki_split\") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0} """ def _A ( SCREAMING_SNAKE_CASE : str ): """simple docstring""" def remove_articles(SCREAMING_SNAKE_CASE : Optional[Any] ): a__ : Any =re.compile(r"\b(a|an|the)\b" , re.UNICODE ) return re.sub(SCREAMING_SNAKE_CASE , " " , SCREAMING_SNAKE_CASE ) def white_space_fix(SCREAMING_SNAKE_CASE : Optional[Any] ): return " ".join(text.split() ) def remove_punc(SCREAMING_SNAKE_CASE : List[Any] ): a__ : List[Any] =set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(SCREAMING_SNAKE_CASE : Union[str, Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(SCREAMING_SNAKE_CASE ) ) ) ) def _A ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" return int(normalize_answer(SCREAMING_SNAKE_CASE ) == normalize_answer(SCREAMING_SNAKE_CASE ) ) def _A ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" a__ : Any =[any(compute_exact(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for ref in refs ) for pred, refs in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )] return (sum(SCREAMING_SNAKE_CASE ) / len(SCREAMING_SNAKE_CASE )) * 100 def _A ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" a__ : str =[rgram for rgrams in rgramslist for rgram in rgrams] a__ : List[str] =Counter(SCREAMING_SNAKE_CASE ) a__ : List[Any] =Counter(SCREAMING_SNAKE_CASE ) a__ : Any =Counter() for sgram, scount in sgramcounter.items(): a__ : List[str] =scount * numref a__ : List[str] =Counter(SCREAMING_SNAKE_CASE ) a__ : Optional[Any] =Counter() for cgram, ccount in cgramcounter.items(): a__ : int =ccount * numref # KEEP a__ : Any =sgramcounter_rep & cgramcounter_rep a__ : List[str] =keepgramcounter_rep & rgramcounter a__ : str =sgramcounter_rep & rgramcounter a__ : Optional[int] =0 a__ : List[Any] =0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. a__ : Tuple =1 a__ : Dict =1 if len(SCREAMING_SNAKE_CASE ) > 0: a__ : List[str] =keeptmpscorea / len(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) a__ : int =keeptmpscorea / sum(keepgramcounterall_rep.values() ) a__ : Tuple =0 if keepscore_precision > 0 or keepscore_recall > 0: a__ : Any =2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION a__ : Optional[Any] =sgramcounter_rep - cgramcounter_rep a__ : Optional[Any] =delgramcounter_rep - rgramcounter a__ : Optional[int] =sgramcounter_rep - rgramcounter a__ : int =0 a__ : Dict =0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. a__ : Any =1 if len(SCREAMING_SNAKE_CASE ) > 0: a__ : Optional[Any] =deltmpscorea / len(SCREAMING_SNAKE_CASE ) # ADDITION a__ : Union[str, Any] =set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) a__ : List[Any] =set(SCREAMING_SNAKE_CASE ) & set(SCREAMING_SNAKE_CASE ) a__ : Tuple =set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) a__ : Any =0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. a__ : int =1 a__ : Dict =1 if len(SCREAMING_SNAKE_CASE ) > 0: a__ : Optional[int] =addtmpscore / len(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: a__ : List[str] =addtmpscore / len(SCREAMING_SNAKE_CASE ) a__ : List[str] =0 if addscore_precision > 0 or addscore_recall > 0: a__ : Optional[Any] =2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def _A ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" a__ : int =len(SCREAMING_SNAKE_CASE ) a__ : Tuple =ssent.split(" " ) a__ : str =csent.split(" " ) a__ : List[Any] =[] a__ : int =[] a__ : List[Any] =[] a__ : Any =[] a__ : List[Any] =[] a__ : Any =[] a__ : Union[str, Any] =[] a__ : Union[str, Any] =[] a__ : Union[str, Any] =[] a__ : Tuple =[] for rsent in rsents: a__ : Optional[int] =rsent.split(" " ) a__ : Tuple =[] a__ : Tuple =[] a__ : int =[] ragramslist.append(SCREAMING_SNAKE_CASE ) for i in range(0 , len(SCREAMING_SNAKE_CASE ) - 1 ): if i < len(SCREAMING_SNAKE_CASE ) - 1: a__ : Union[str, Any] =ragrams[i] + " " + ragrams[i + 1] ragrams.append(SCREAMING_SNAKE_CASE ) if i < len(SCREAMING_SNAKE_CASE ) - 2: a__ : Optional[int] =ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] ragrams.append(SCREAMING_SNAKE_CASE ) if i < len(SCREAMING_SNAKE_CASE ) - 3: a__ : List[Any] =ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] + " " + ragrams[i + 3] ragrams.append(SCREAMING_SNAKE_CASE ) ragramslist.append(SCREAMING_SNAKE_CASE ) ragramslist.append(SCREAMING_SNAKE_CASE ) ragramslist.append(SCREAMING_SNAKE_CASE ) for i in range(0 , len(SCREAMING_SNAKE_CASE ) - 1 ): if i < len(SCREAMING_SNAKE_CASE ) - 1: a__ : str =sagrams[i] + " " + sagrams[i + 1] sagrams.append(SCREAMING_SNAKE_CASE ) if i < len(SCREAMING_SNAKE_CASE ) - 2: a__ : Dict =sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] sagrams.append(SCREAMING_SNAKE_CASE ) if i < len(SCREAMING_SNAKE_CASE ) - 3: a__ : Any =sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] + " " + sagrams[i + 3] sagrams.append(SCREAMING_SNAKE_CASE ) for i in range(0 , len(SCREAMING_SNAKE_CASE ) - 1 ): if i < len(SCREAMING_SNAKE_CASE ) - 1: a__ : List[Any] =cagrams[i] + " " + cagrams[i + 1] cagrams.append(SCREAMING_SNAKE_CASE ) if i < len(SCREAMING_SNAKE_CASE ) - 2: a__ : List[str] =cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] cagrams.append(SCREAMING_SNAKE_CASE ) if i < len(SCREAMING_SNAKE_CASE ) - 3: a__ : Optional[int] =cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] + " " + cagrams[i + 3] cagrams.append(SCREAMING_SNAKE_CASE ) ((a__) , (a__) , (a__)) : Optional[Any] =SARIngram(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ((a__) , (a__) , (a__)) : Dict =SARIngram(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ((a__) , (a__) , (a__)) : List[str] =SARIngram(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ((a__) , (a__) , (a__)) : Dict =SARIngram(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) a__ : Tuple =sum([keepascore, keepascore, keepascore, keepascore] ) / 4 a__ : Tuple =sum([delascore, delascore, delascore, delascore] ) / 4 a__ : int =sum([addascore, addascore, addascore, addascore] ) / 4 a__ : Optional[int] =(avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def _A ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : str = "13a" , SCREAMING_SNAKE_CASE : bool = True ): """simple docstring""" if lowercase: a__ : Optional[int] =sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: a__ : Any =sacrebleu.metrics.bleu._get_tokenizer(SCREAMING_SNAKE_CASE )()(SCREAMING_SNAKE_CASE ) else: a__ : Any =sacrebleu.TOKENIZERS[tokenizer]()(SCREAMING_SNAKE_CASE ) elif tokenizer == "moses": a__ : Dict =sacremoses.MosesTokenizer().tokenize(SCREAMING_SNAKE_CASE , return_str=SCREAMING_SNAKE_CASE , escape=SCREAMING_SNAKE_CASE ) elif tokenizer == "penn": a__ : Optional[int] =sacremoses.MosesTokenizer().penn_tokenize(SCREAMING_SNAKE_CASE , return_str=SCREAMING_SNAKE_CASE ) else: a__ : Dict =sentence if not return_str: a__ : List[Any] =normalized_sent.split() return normalized_sent def _A ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" if not (len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE )): raise ValueError("Sources length must match predictions and references lengths." ) a__ : Dict =0 for src, pred, refs in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): sari_score += SARIsent(normalize(SCREAMING_SNAKE_CASE ) , normalize(SCREAMING_SNAKE_CASE ) , [normalize(SCREAMING_SNAKE_CASE ) for sent in refs] ) a__ : Tuple =sari_score / len(SCREAMING_SNAKE_CASE ) return 100 * sari_score def _A ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple="exp" , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : Dict=False , SCREAMING_SNAKE_CASE : Dict=False , SCREAMING_SNAKE_CASE : Tuple=False , ): """simple docstring""" a__ : int =len(references[0] ) if any(len(SCREAMING_SNAKE_CASE ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) a__ : List[str] =[[refs[i] for refs in references] for i in range(SCREAMING_SNAKE_CASE )] a__ : Optional[int] =sacrebleu.corpus_bleu( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , smooth_method=SCREAMING_SNAKE_CASE , smooth_value=SCREAMING_SNAKE_CASE , force=SCREAMING_SNAKE_CASE , lowercase=SCREAMING_SNAKE_CASE , use_effective_order=SCREAMING_SNAKE_CASE , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __lowerCAmelCase ( datasets.Metric): def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=[ "https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py", "https://github.com/cocoxu/simplification/blob/master/SARI.py", "https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py", "https://github.com/mjpost/sacreBLEU", ] , reference_urls=[ "https://www.aclweb.org/anthology/Q16-1029.pdf", "https://github.com/mjpost/sacreBLEU", "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] , ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' a__ : List[Any] ={} result.update({"sari": compute_sari(sources=lowerCAmelCase__ , predictions=lowerCAmelCase__ , references=lowerCAmelCase__ )} ) result.update({"sacrebleu": compute_sacrebleu(predictions=lowerCAmelCase__ , references=lowerCAmelCase__ )} ) result.update({"exact": compute_em(predictions=lowerCAmelCase__ , references=lowerCAmelCase__ )} ) return result
563
0
import re from filelock import FileLock try: import nltk lowercase = True except (ImportError, ModuleNotFoundError): lowercase = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def __UpperCAmelCase ( a_): re.sub('<n>' , '' , a_) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(a_))
607
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore lowercase = "\nHuman: <<task>>\n\nAssistant: " lowercase = "huggingface-tools/default-prompts" lowercase = {"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def __UpperCAmelCase ( a_ , a_ , a_="run"): if prompt_or_repo_id is None: snake_case_ = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('\\s' , a_) is not None: return prompt_or_repo_id snake_case_ = cached_file( a_ , PROMPT_FILES[mode] , repo_type='dataset' , user_agent={'agent': agent_name}) with open(a_ , 'r' , encoding='utf-8') as f: return f.read()
607
1
"""simple docstring""" def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : List[str] ): # noqa: E741 '''simple docstring''' lowerCAmelCase = len(SCREAMING_SNAKE_CASE ) lowerCAmelCase = 0 lowerCAmelCase = [0] * n lowerCAmelCase = [False] * n lowerCAmelCase = [False] * n def dfs(SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Any ): if parent == root: out_edge_count += 1 lowerCAmelCase = True lowerCAmelCase = at for to in l[at]: if to == parent: pass elif not visited[to]: lowerCAmelCase = dfs(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: lowerCAmelCase = True # AP found via cycle if at == low[to]: lowerCAmelCase = True else: lowerCAmelCase = min(low[at] , SCREAMING_SNAKE_CASE ) return out_edge_count for i in range(SCREAMING_SNAKE_CASE ): if not visited[i]: lowerCAmelCase = 0 lowerCAmelCase = dfs(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , -1 , SCREAMING_SNAKE_CASE ) lowerCAmelCase = out_edge_count > 1 for x in range(len(SCREAMING_SNAKE_CASE ) ): if is_art[x] is True: print(SCREAMING_SNAKE_CASE ) # Adjacency list of graph SCREAMING_SNAKE_CASE__ = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
532
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "uclanlp/visualbert-vqa": "https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json", "uclanlp/visualbert-vqa-pre": "https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json", "uclanlp/visualbert-vqa-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json" ), "uclanlp/visualbert-vcr": "https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json", "uclanlp/visualbert-vcr-pre": "https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json", "uclanlp/visualbert-vcr-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json" ), "uclanlp/visualbert-nlvr2": "https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json", "uclanlp/visualbert-nlvr2-pre": "https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json", "uclanlp/visualbert-nlvr2-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 'visual_bert' def __init__( self , lowercase=30_522 , lowercase=768 , lowercase=512 , lowercase=12 , lowercase=12 , lowercase=3_072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=2 , lowercase=0.02 , lowercase=1e-12 , lowercase=False , lowercase=True , lowercase=1 , lowercase=0 , lowercase=2 , **lowercase , ) -> int: super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) lowerCAmelCase = vocab_size lowerCAmelCase = max_position_embeddings lowerCAmelCase = hidden_size lowerCAmelCase = visual_embedding_dim lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = type_vocab_size lowerCAmelCase = layer_norm_eps lowerCAmelCase = bypass_transformer lowerCAmelCase = special_visual_initialize
532
1
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = TypeVar('DatasetType', Dataset, IterableDataset) def __UpperCAmelCase( lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = "first_exhausted" , ): from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(lowercase_ ): if not isinstance(lowercase_ , (Dataset, IterableDataset) ): if isinstance(lowercase_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ '''is an empty dataset dictionary.''' ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(lowercase_ )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(lowercase_ ) )}\']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowercase_ ).__name__}.""" ) if i == 0: _lowerCamelCase, _lowerCamelCase : Dict = ( (Dataset, IterableDataset) if isinstance(lowercase_ , lowercase_ ) else (IterableDataset, Dataset) ) elif not isinstance(lowercase_ , lowercase_ ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( lowercase_ , lowercase_ , lowercase_ , info=lowercase_ , split=lowercase_ , stopping_strategy=lowercase_ ) else: return _interleave_iterable_datasets( lowercase_ , lowercase_ , lowercase_ , info=lowercase_ , split=lowercase_ , stopping_strategy=lowercase_ ) def __UpperCAmelCase( lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , ): if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(lowercase_ ): if not isinstance(lowercase_ , (Dataset, IterableDataset) ): if isinstance(lowercase_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ '''is an empty dataset dictionary.''' ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(lowercase_ )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(lowercase_ ) )}\']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowercase_ ).__name__}.""" ) if i == 0: _lowerCamelCase, _lowerCamelCase : Dict = ( (Dataset, IterableDataset) if isinstance(lowercase_ , lowercase_ ) else (IterableDataset, Dataset) ) elif not isinstance(lowercase_ , lowercase_ ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(lowercase_ , info=lowercase_ , split=lowercase_ , axis=lowercase_ ) else: return _concatenate_iterable_datasets(lowercase_ , info=lowercase_ , split=lowercase_ , axis=lowercase_ )
717
import warnings from .generation import TFGenerationMixin class __A ( lowerCamelCase__ ): """simple docstring""" warnings.warn( """Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will """ """be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.""" ,lowerCamelCase__ ,)
613
0
UpperCAmelCase : Optional[int] = tuple[float, float, float] UpperCAmelCase : int = tuple[float, float, float] def __lowerCamelCase ( lowerCamelCase__ : Pointad , lowerCamelCase__ : Pointad ): '''simple docstring''' lowerCamelCase = end_pointa[0] - end_pointa[0] lowerCamelCase = end_pointa[1] - end_pointa[1] lowerCamelCase = end_pointa[2] - end_pointa[2] return (x, y, z) def __lowerCamelCase ( lowerCamelCase__ : Vectorad , lowerCamelCase__ : Vectorad ): '''simple docstring''' lowerCamelCase = ab[1] * ac[2] - ab[2] * ac[1] # *i lowerCamelCase = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j lowerCamelCase = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def __lowerCamelCase ( lowerCamelCase__ : Vectorad , lowerCamelCase__ : int ): '''simple docstring''' return tuple(round(snake_case__ , snake_case__ ) for x in vector ) == (0, 0, 0) def __lowerCamelCase ( lowerCamelCase__ : Pointad , lowerCamelCase__ : Pointad , lowerCamelCase__ : Pointad , lowerCamelCase__ : int = 10 ): '''simple docstring''' lowerCamelCase = create_vector(snake_case__ , snake_case__ ) lowerCamelCase = create_vector(snake_case__ , snake_case__ ) return is_zero_vector(get_ad_vectors_cross(snake_case__ , snake_case__ ) , snake_case__ )
457
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Any class snake_case : """simple docstring""" def __init__( self , lowerCamelCase ) -> int: """simple docstring""" snake_case__ : Any = data snake_case__ : Node | None = None class snake_case : """simple docstring""" def __init__( self ) -> List[str]: """simple docstring""" snake_case__ : Union[str, Any] = None snake_case__ : int = None def __iter__( self ) -> Iterator[Any]: """simple docstring""" snake_case__ : Dict = self.head while self.head: yield node.data snake_case__ : str = node.next if node == self.head: break def __len__( self ) -> int: """simple docstring""" return sum(1 for _ in self ) def __repr__( self ) -> Optional[int]: """simple docstring""" return "->".join(str(lowerCamelCase ) for item in iter(self ) ) def lowercase__ ( self , lowerCamelCase ) -> None: """simple docstring""" self.insert_nth(len(self ) , lowerCamelCase ) def lowercase__ ( self , lowerCamelCase ) -> None: """simple docstring""" self.insert_nth(0 , lowerCamelCase ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase ) -> None: """simple docstring""" if index < 0 or index > len(self ): raise IndexError('''list index out of range.''' ) snake_case__ : Optional[int] = Node(lowerCamelCase ) if self.head is None: snake_case__ : Tuple = new_node # first node points itself snake_case__ : Union[str, Any] = new_node elif index == 0: # insert at head snake_case__ : Any = self.head snake_case__ : Any = new_node else: snake_case__ : Optional[Any] = self.head for _ in range(index - 1 ): snake_case__ : List[Any] = temp.next snake_case__ : Dict = temp.next snake_case__ : str = new_node if index == len(self ) - 1: # insert at tail snake_case__ : Optional[Any] = new_node def lowercase__ ( self ) -> int: """simple docstring""" return self.delete_nth(0 ) def lowercase__ ( self ) -> Any: """simple docstring""" return self.delete_nth(len(self ) - 1 ) def lowercase__ ( self , lowerCamelCase = 0 ) -> Any: """simple docstring""" if not 0 <= index < len(self ): raise IndexError('''list index out of range.''' ) snake_case__ : Union[str, Any] = self.head if self.head == self.tail: # just one node snake_case__ : int = None elif index == 0: # delete head node snake_case__ : Dict = self.tail.next.next snake_case__ : int = self.head.next else: snake_case__ : Dict = self.head for _ in range(index - 1 ): snake_case__ : Any = temp.next snake_case__ : Dict = temp.next snake_case__ : str = temp.next.next if index == len(self ) - 1: # delete at tail snake_case__ : List[Any] = temp return delete_node.data def lowercase__ ( self ) -> bool: """simple docstring""" return len(self ) == 0 def _A ( ): snake_case__ : int = CircularLinkedList() assert len(snake_case__ ) == 0 assert circular_linked_list.is_empty() is True assert str(snake_case__ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(snake_case__ ) == i circular_linked_list.insert_nth(snake_case__ , i + 1 ) assert str(snake_case__ ) == "->".join(str(snake_case__ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(snake_case__ ) == "->".join(str(snake_case__ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(snake_case__ ) == "->".join(str(snake_case__ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(snake_case__ ) == "->".join(str(snake_case__ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(snake_case__ ) == "->".join(str(snake_case__ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
261
0
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str=13 , UpperCAmelCase_ : List[str]=7 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[str]=99 , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : Any=5 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Dict=64 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : str=512 , UpperCAmelCase_ : Optional[Any]=16 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : str=3 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[int]=2 , UpperCAmelCase_ : Optional[int]=2 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : int=1 , ): SCREAMING_SNAKE_CASE : Optional[Any] = parent SCREAMING_SNAKE_CASE : Any = batch_size SCREAMING_SNAKE_CASE : Tuple = seq_length SCREAMING_SNAKE_CASE : str = is_training SCREAMING_SNAKE_CASE : Tuple = use_input_mask SCREAMING_SNAKE_CASE : List[Any] = use_token_type_ids SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Tuple = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE : str = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE : Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE : str = type_sequence_label_size SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : Dict = num_labels SCREAMING_SNAKE_CASE : Dict = num_choices SCREAMING_SNAKE_CASE : List[str] = scope SCREAMING_SNAKE_CASE : List[Any] = q_groups SCREAMING_SNAKE_CASE : Any = k_groups SCREAMING_SNAKE_CASE : Tuple = v_groups SCREAMING_SNAKE_CASE : Tuple = post_attention_groups SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_groups SCREAMING_SNAKE_CASE : str = output_groups def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Optional[int] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : int = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : List[str] = None if self.use_labels: SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _A ( self : List[Any] ): return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def _A ( self : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ): SCREAMING_SNAKE_CASE : List[Any] = SqueezeBertModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Dict = model(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A ( self : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE : Dict = SqueezeBertForMaskedLM(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A ( self : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE : Optional[int] = SqueezeBertForQuestionAnswering(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Union[str, Any] = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A ( self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] ): SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : int = SqueezeBertForSequenceClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A ( self : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict ): SCREAMING_SNAKE_CASE : List[Any] = self.num_labels SCREAMING_SNAKE_CASE : List[str] = SqueezeBertForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_choices SCREAMING_SNAKE_CASE : Tuple = SqueezeBertForMultipleChoice(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : List[str] = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _A ( self : Any ): SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) : List[Any] = config_and_inputs SCREAMING_SNAKE_CASE : Any = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Tuple = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) UpperCamelCase_ : List[Any] = ( { '''feature-extraction''': SqueezeBertModel, '''fill-mask''': SqueezeBertForMaskedLM, '''question-answering''': SqueezeBertForQuestionAnswering, '''text-classification''': SqueezeBertForSequenceClassification, '''token-classification''': SqueezeBertForTokenClassification, '''zero-shot''': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase_ : List[Any] = False UpperCamelCase_ : Optional[Any] = True UpperCamelCase_ : Optional[Any] = False def _A ( self : Dict ): SCREAMING_SNAKE_CASE : List[str] = SqueezeBertModelTester(self ) SCREAMING_SNAKE_CASE : str = ConfigTester(self , config_class=UpperCAmelCase_ , dim=37 ) def _A ( self : str ): self.config_tester.run_common_tests() def _A ( self : int ): SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*UpperCAmelCase_ ) def _A ( self : Dict ): SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*UpperCAmelCase_ ) def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*UpperCAmelCase_ ) def _A ( self : str ): SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*UpperCAmelCase_ ) def _A ( self : int ): SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*UpperCAmelCase_ ) def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*UpperCAmelCase_ ) @slow def _A ( self : Dict ): for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Union[str, Any] = SqueezeBertModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @require_sentencepiece @require_tokenizers @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def _A ( self : str ): SCREAMING_SNAKE_CASE : str = SqueezeBertForSequenceClassification.from_pretrained("squeezebert/squeezebert-mnli" ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]] ) SCREAMING_SNAKE_CASE : Any = model(UpperCAmelCase_ )[0] SCREAMING_SNAKE_CASE : str = torch.Size((1, 3) ) self.assertEqual(output.shape , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = torch.tensor([[0.6_401, -0.0_349, -0.6_041]] ) self.assertTrue(torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-4 ) )
488
def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
488
1
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 100 ) -> int: snake_case__ = set() snake_case__ = 0 snake_case__ = n + 1 # maximum limit for a in range(2 , __lowerCAmelCase ): for b in range(2 , __lowerCAmelCase ): snake_case__ = a**b # calculates the current power collect_powers.add(__lowerCAmelCase ) # adds the result to the set return len(__lowerCAmelCase ) if __name__ == "__main__": print("""Number of terms """, solution(int(str(input()).strip())))
33
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } lowerCamelCase_ = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } lowerCamelCase_ = {'''facebook/blenderbot_small-90M''': 512} def snake_case ( A__ ): UpperCAmelCase_ : str = set() UpperCAmelCase_ : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase_ : Dict = char UpperCAmelCase_ : List[Any] = set(A__ ) return pairs class UpperCamelCase_ (__A ): __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int]="__start__" , lowerCAmelCase_ : str="__end__" , lowerCAmelCase_ : Union[str, Any]="__unk__" , lowerCAmelCase_ : Union[str, Any]="__null__" , **lowerCAmelCase_ : List[Any] , ) -> str: super().__init__(unk_token=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , **lowerCAmelCase_ ) with open(lowerCAmelCase_ , encoding="utf-8" ) as vocab_handle: UpperCAmelCase_ : str = json.load(lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding="utf-8" ) as merges_handle: UpperCAmelCase_ : Optional[Any] = merges_handle.read().split("\n" )[1:-1] UpperCAmelCase_ : str = [tuple(merge.split() ) for merge in merges] UpperCAmelCase_ : Any = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) UpperCAmelCase_ : Any = {} @property def _SCREAMING_SNAKE_CASE ( self : str ) -> int: return len(self.encoder ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : str ) -> str: if token in self.cache: return self.cache[token] UpperCAmelCase_ : Dict = re.sub("([.,!?()])" , R" \1" , lowerCAmelCase_ ) UpperCAmelCase_ : int = re.sub("(')" , R" \1 " , lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = re.sub(R"\s{2,}" , " " , lowerCAmelCase_ ) if "\n" in token: UpperCAmelCase_ : Tuple = token.replace("\n" , " __newln__" ) UpperCAmelCase_ : Tuple = token.split(" " ) UpperCAmelCase_ : int = [] for token in tokens: if not len(lowerCAmelCase_ ): continue UpperCAmelCase_ : Any = token.lower() UpperCAmelCase_ : List[str] = tuple(lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) UpperCAmelCase_ : List[Any] = get_pairs(lowerCAmelCase_ ) if not pairs: words.append(lowerCAmelCase_ ) continue while True: UpperCAmelCase_ : Union[str, Any] = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase_ , UpperCAmelCase_ : Dict = bigram UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Dict = 0 while i < len(lowerCAmelCase_ ): try: UpperCAmelCase_ : int = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) new_word.extend(word[i:j] ) UpperCAmelCase_ : Any = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase_ : Dict = tuple(lowerCAmelCase_ ) UpperCAmelCase_ : Any = new_word if len(lowerCAmelCase_ ) == 1: break else: UpperCAmelCase_ : Union[str, Any] = get_pairs(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = "@@ ".join(lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = word[:-4] UpperCAmelCase_ : Optional[Any] = word words.append(lowerCAmelCase_ ) return " ".join(lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : str ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = [] UpperCAmelCase_ : List[Any] = re.findall(R"\S+\n?" , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(" " ) ) ) return split_tokens def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : str ) -> int: UpperCAmelCase_ : List[Any] = token.lower() return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : int ) -> str: return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : List[str] ) -> str: UpperCAmelCase_ : List[str] = " ".join(lowerCAmelCase_ ).replace("@@ " , "" ).strip() return out_string def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ : Dict = os.path.join( lowerCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ : Union[str, Any] = os.path.join( lowerCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCAmelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + "\n" ) UpperCAmelCase_ : Any = 0 with open(lowerCAmelCase_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) UpperCAmelCase_ : List[Any] = token_index writer.write(" ".join(lowerCAmelCase_ ) + "\n" ) index += 1 return vocab_file, merge_file
95
0
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : Optional[Union[str, Path]] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : bool =True a_ : Optional[int] =None a_ : int =1 a_ : Optional[Union[str, bool]] =None a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(UpperCamelCase ) for k, v in self.__dict__.items()} )
669
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =["""image_processor""", """tokenizer"""] a_ : Optional[int] ="""CLIPImageProcessor""" a_ : Optional[Any] =("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[Any]=None , **UpperCamelCase : Dict ): '''simple docstring''' _snake_case : int = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) _snake_case : Optional[Any] = kwargs.pop('feature_extractor' ) _snake_case : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self : Dict , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Dict ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _snake_case : Optional[int] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if images is not None: _snake_case : Optional[int] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None and images is not None: _snake_case : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Any = self.tokenizer.model_input_names _snake_case : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
669
1
from __future__ import annotations class _snake_case : def __init__( self , a) -> None: SCREAMING_SNAKE_CASE = data SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None def lowerCamelCase__ (_UpperCAmelCase): # In Order traversal of the tree if tree: display(tree.left) print(tree.data) display(tree.right) def lowerCamelCase__ (_UpperCAmelCase): return 1 + max(depth_of_tree(tree.left) , depth_of_tree(tree.right)) if tree else 0 def lowerCamelCase__ (_UpperCAmelCase): if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left) and is_full_binary_tree(tree.right) else: return not tree.left and not tree.right def lowerCamelCase__ (): # Main function for testing. SCREAMING_SNAKE_CASE = Node(1) SCREAMING_SNAKE_CASE = Node(2) SCREAMING_SNAKE_CASE = Node(3) SCREAMING_SNAKE_CASE = Node(4) SCREAMING_SNAKE_CASE = Node(5) SCREAMING_SNAKE_CASE = Node(6) SCREAMING_SNAKE_CASE = Node(7) SCREAMING_SNAKE_CASE = Node(8) SCREAMING_SNAKE_CASE = Node(9) print(is_full_binary_tree(_UpperCAmelCase)) print(depth_of_tree(_UpperCAmelCase)) print('Tree is: ') display(_UpperCAmelCase) if __name__ == "__main__": main()
73
"""simple docstring""" _lowerCAmelCase = [ "Audio", "Array2D", "Array3D", "Array4D", "Array5D", "ClassLabel", "Features", "Sequence", "Value", "Image", "Translation", "TranslationVariableLanguages", ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
180
0
'''simple docstring''' import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def _A (lowerCAmelCase__ :str , lowerCAmelCase__ :int , lowerCAmelCase__ :Any ) -> str: '''simple docstring''' _a = BertConfig.from_json_file(lowerCAmelCase__ ) print(f'Building PyTorch model from configuration: {config}' ) _a = BertForPreTraining(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_bert(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , lowerCAmelCase__ ) if __name__ == "__main__": a_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) a_ : Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
532
'''simple docstring''' def _A (lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[Any] ) -> Optional[int]: '''simple docstring''' print('\nThe shortest path matrix using Floyd Warshall algorithm\n' ) for i in range(lowerCAmelCase__ ): for j in range(lowerCAmelCase__ ): if dist[i][j] != float('inf' ): print(int(dist[i][j] ) , end='\t' ) else: print('INF' , end='\t' ) print() def _A (lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[str] ) -> List[str]: '''simple docstring''' _a = [[float('inf' ) for _ in range(lowerCAmelCase__ )] for _ in range(lowerCAmelCase__ )] for i in range(lowerCAmelCase__ ): for j in range(lowerCAmelCase__ ): _a = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(lowerCAmelCase__ ): # looping through rows of graph array for i in range(lowerCAmelCase__ ): # looping through columns of graph array for j in range(lowerCAmelCase__ ): if ( dist[i][k] != float('inf' ) and dist[k][j] != float('inf' ) and dist[i][k] + dist[k][j] < dist[i][j] ): _a = dist[i][k] + dist[k][j] _print_dist(lowerCAmelCase__ , lowerCAmelCase__ ) return dist, v if __name__ == "__main__": a_ : Optional[Any] = int(input("Enter number of vertices: ")) a_ : List[Any] = int(input("Enter number of edges: ")) a_ : Dict = [[float("inf") for i in range(v)] for j in range(v)] for i in range(v): a_ : Union[str, Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) a_ : Union[str, Any] = int(input("Enter source:")) a_ : int = int(input("Enter destination:")) a_ : Tuple = float(input("Enter weight:")) a_ : Dict = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
532
1
import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json UpperCamelCase_ = "sshleifer/mar_enro_6_3_student" class _SCREAMING_SNAKE_CASE ( snake_case__ ): def _UpperCAmelCase ( self : List[Any] ): """simple docstring""" super().setUp() A : int = cached_path( '''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''' , extract_compressed_file=__lowercase , ) A : Dict = f"""{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k""" @slow @require_torch_gpu def _UpperCAmelCase ( self : int ): """simple docstring""" MarianMTModel.from_pretrained(__lowercase ) @slow @require_torch_gpu def _UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" A : Tuple = { '''$MAX_LEN''': 64, '''$BS''': 64, '''$GAS''': 1, '''$ENRO_DIR''': self.data_dir, '''facebook/mbart-large-cc25''': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '''--learning_rate=3e-5''': '''--learning_rate 3e-4''', '''--num_train_epochs 6''': '''--num_train_epochs 1''', } # Clean up bash script A : str = (self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''' )[1].strip() A : Union[str, Any] = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) for k, v in env_vars_to_replace.items(): A : Tuple = bash_script.replace(__lowercase , str(__lowercase ) ) A : Union[str, Any] = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") A : List[Any] = f"""\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n """.split() # XXX: args.gpus > 1 : handle multi_gpu in the future A : str = ['''finetune.py'''] + bash_script.split() + args with patch.object(__lowercase , '''argv''' , __lowercase ): A : str = argparse.ArgumentParser() A : Dict = pl.Trainer.add_argparse_args(__lowercase ) A : List[Any] = SummarizationModule.add_model_specific_args(__lowercase , os.getcwd() ) A : int = parser.parse_args() A : Tuple = main(__lowercase ) # Check metrics A : Union[str, Any] = load_json(model.metrics_save_path ) A : Any = metrics['''val'''][0] A : int = metrics['''val'''][-1] self.assertEqual(len(metrics['''val'''] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f"""val_avg_{model.val_metric}"""] , __lowercase ) self.assertGreater(last_step_stats['''val_avg_gen_time'''] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['''val_avg_gen_time'''] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['''val_avg_bleu'''] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu'''] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict A : Any = os.listdir(__lowercase ) A : Tuple = [x for x in contents if x.endswith('''.ckpt''' )][0] A : int = os.path.join(args.output_dir , __lowercase ) A : List[str] = torch.load(__lowercase , map_location='''cpu''' ) A : str = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: A : str = {os.path.basename(__lowercase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1 class _SCREAMING_SNAKE_CASE ( snake_case__ ): @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def _UpperCAmelCase ( self : str ): """simple docstring""" A : int = f"""{self.test_file_dir_str}/test_data/wmt_en_ro""" A : List[Any] = { '''--fp16_opt_level=O1''': '''''', '''$MAX_LEN''': 128, '''$BS''': 16, '''$GAS''': 1, '''$ENRO_DIR''': data_dir, '''$m''': '''sshleifer/student_marian_en_ro_6_1''', '''val_check_interval=0.25''': '''val_check_interval=1.0''', } # Clean up bash script A : Any = ( (self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''' )[1].strip() ) A : Optional[Any] = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) A : Union[str, Any] = bash_script.replace('''--fp16 ''' , ''' ''' ) for k, v in env_vars_to_replace.items(): A : str = bash_script.replace(__lowercase , str(__lowercase ) ) A : Any = self.get_auto_remove_tmp_dir() A : Optional[int] = bash_script.replace('''--fp16''' , '''''' ) A : Tuple = 6 A : str = ( ['''distillation.py'''] + bash_script.split() + [ f"""--output_dir={output_dir}""", '''--gpus=1''', '''--learning_rate=1e-3''', f"""--num_train_epochs={epochs}""", '''--warmup_steps=10''', '''--val_check_interval=1.0''', '''--do_predict''', ] ) with patch.object(__lowercase , '''argv''' , __lowercase ): A : int = argparse.ArgumentParser() A : int = pl.Trainer.add_argparse_args(__lowercase ) A : Optional[int] = SummarizationDistiller.add_model_specific_args(__lowercase , os.getcwd() ) A : Union[str, Any] = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu A : Union[str, Any] = distill_main(__lowercase ) # Check metrics A : Dict = load_json(model.metrics_save_path ) A : List[str] = metrics['''val'''][0] A : Tuple = metrics['''val'''][-1] assert len(metrics['''val'''] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f"""val_avg_{model.val_metric}"""] , __lowercase ) # check lightning ckpt can be loaded and has a reasonable statedict A : int = os.listdir(__lowercase ) A : str = [x for x in contents if x.endswith('''.ckpt''' )][0] A : Union[str, Any] = os.path.join(args.output_dir , __lowercase ) A : Optional[int] = torch.load(__lowercase , map_location='''cpu''' ) A : int = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: A : int = {os.path.basename(__lowercase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1
256
"""simple docstring""" import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' __lowerCamelCase : Tuple =torch.exp(SCREAMING_SNAKE_CASE ) __lowerCamelCase : Dict =torch.sum(SCREAMING_SNAKE_CASE , dim=1 ) # sum of exp(x_i) __lowerCamelCase : Optional[int] =torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(SCREAMING_SNAKE_CASE ) - B / A class SCREAMING_SNAKE_CASE_ ( nn.Module ): """simple docstring""" def __init__( self :List[str] , __lowercase :int ): super().__init__() __lowerCamelCase : str =config.output_attentions __lowerCamelCase : List[Any] =config.output_hidden_states __lowerCamelCase : Dict =nn.ModuleList([BertLayer(__lowercase ) for _ in range(config.num_hidden_layers )] ) __lowerCamelCase : str =nn.ModuleList([BertHighway(__lowercase ) for _ in range(config.num_hidden_layers )] ) __lowerCamelCase : Optional[Any] =[-1 for _ in range(config.num_hidden_layers )] def __lowercase ( self :Union[str, Any] , __lowercase :Union[str, Any] ): if (type(__lowercase ) is float) or (type(__lowercase ) is int): for i in range(len(self.early_exit_entropy ) ): __lowerCamelCase : Tuple =x else: __lowerCamelCase : Any =x def __lowercase ( self :Union[str, Any] , __lowercase :Tuple ): __lowerCamelCase : Union[str, Any] =pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def __lowercase ( self :Tuple , __lowercase :Optional[int] , __lowercase :Dict=None , __lowercase :Union[str, Any]=None , __lowercase :List[str]=None , __lowercase :str=None , ): __lowerCamelCase : Any =() __lowerCamelCase : List[str] =() __lowerCamelCase : Optional[int] =() for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: __lowerCamelCase : int =all_hidden_states + (hidden_states,) __lowerCamelCase : List[Any] =layer_module( __lowercase , __lowercase , head_mask[i] , __lowercase , __lowercase ) __lowerCamelCase : Optional[int] =layer_outputs[0] if self.output_attentions: __lowerCamelCase : Optional[Any] =all_attentions + (layer_outputs[1],) __lowerCamelCase : Any =(hidden_states,) if self.output_hidden_states: __lowerCamelCase : Optional[Any] =current_outputs + (all_hidden_states,) if self.output_attentions: __lowerCamelCase : Dict =current_outputs + (all_attentions,) __lowerCamelCase : str =self.highway[i](__lowercase ) # logits, pooled_output if not self.training: __lowerCamelCase : Tuple =highway_exit[0] __lowerCamelCase : Tuple =entropy(__lowercase ) __lowerCamelCase : Tuple =highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy __lowerCamelCase : Optional[int] =all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: __lowerCamelCase : Dict =(highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(__lowercase , i + 1 ) else: __lowerCamelCase : Union[str, Any] =all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: __lowerCamelCase : Optional[Any] =all_hidden_states + (hidden_states,) __lowerCamelCase : List[Any] =(hidden_states,) if self.output_hidden_states: __lowerCamelCase : Tuple =outputs + (all_hidden_states,) if self.output_attentions: __lowerCamelCase : Optional[int] =outputs + (all_attentions,) __lowerCamelCase : int =outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( """The Bert Model transformer with early exiting (DeeBERT). """ , snake_case__ , ) class SCREAMING_SNAKE_CASE_ ( snake_case__ ): """simple docstring""" def __init__( self :Union[str, Any] , __lowercase :str ): super().__init__(__lowercase ) __lowerCamelCase : Union[str, Any] =config __lowerCamelCase : List[str] =BertEmbeddings(__lowercase ) __lowerCamelCase : Dict =DeeBertEncoder(__lowercase ) __lowerCamelCase : List[Any] =BertPooler(__lowercase ) self.init_weights() def __lowercase ( self :Tuple ): self.encoder.init_highway_pooler(self.pooler ) def __lowercase ( self :Dict ): return self.embeddings.word_embeddings def __lowercase ( self :List[str] , __lowercase :int ): __lowerCamelCase : Union[str, Any] =value def __lowercase ( self :List[Any] , __lowercase :Dict ): for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(__lowercase ) @add_start_docstrings_to_model_forward(__lowercase ) def __lowercase ( self :Optional[Any] , __lowercase :List[str]=None , __lowercase :List[Any]=None , __lowercase :Any=None , __lowercase :Tuple=None , __lowercase :Union[str, Any]=None , __lowercase :Optional[Any]=None , __lowercase :Union[str, Any]=None , __lowercase :Tuple=None , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: __lowerCamelCase : List[str] =input_ids.size() elif inputs_embeds is not None: __lowerCamelCase : str =inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) __lowerCamelCase : Optional[int] =input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __lowerCamelCase : str =torch.ones(__lowercase , device=__lowercase ) if encoder_attention_mask is None: __lowerCamelCase : Tuple =torch.ones(__lowercase , device=__lowercase ) if token_type_ids is None: __lowerCamelCase : List[Any] =torch.zeros(__lowercase , dtype=torch.long , device=__lowercase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __lowerCamelCase : torch.Tensor =self.get_extended_attention_mask(__lowercase , __lowercase , __lowercase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: __lowerCamelCase : List[str] =encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: __lowerCamelCase : Any =encoder_attention_mask[:, None, None, :] __lowerCamelCase : Optional[Any] =encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility __lowerCamelCase : List[str] =(1.0 - encoder_extended_attention_mask) * -10000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __lowerCamelCase : Union[str, Any] =self.get_head_mask(__lowercase , self.config.num_hidden_layers ) __lowerCamelCase : str =self.embeddings( input_ids=__lowercase , position_ids=__lowercase , token_type_ids=__lowercase , inputs_embeds=__lowercase ) __lowerCamelCase : Dict =self.encoder( __lowercase , attention_mask=__lowercase , head_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , ) __lowerCamelCase : int =encoder_outputs[0] __lowerCamelCase : Tuple =self.pooler(__lowercase ) __lowerCamelCase : int =( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class SCREAMING_SNAKE_CASE_ ( snake_case__ ): """simple docstring""" def __init__( self :List[Any] , __lowercase :Optional[Any] , __lowercase :Dict ): __lowerCamelCase : List[Any] =message __lowerCamelCase : int =exit_layer # start from 1! class SCREAMING_SNAKE_CASE_ ( nn.Module ): """simple docstring""" def __init__( self :Any , __lowercase :str ): super().__init__() __lowerCamelCase : str =BertPooler(__lowercase ) __lowerCamelCase : Union[str, Any] =nn.Dropout(config.hidden_dropout_prob ) __lowerCamelCase : List[str] =nn.Linear(config.hidden_size , config.num_labels ) def __lowercase ( self :Union[str, Any] , __lowercase :List[str] ): # Pooler __lowerCamelCase : Optional[Any] =encoder_outputs[0] __lowerCamelCase : Any =self.pooler(__lowercase ) # "return" pooler_output # BertModel __lowerCamelCase : List[str] =(pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification __lowerCamelCase : List[Any] =bmodel_output[1] __lowerCamelCase : Optional[Any] =self.dropout(__lowercase ) __lowerCamelCase : int =self.classifier(__lowercase ) return logits, pooled_output @add_start_docstrings( """Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. """ , snake_case__ , ) class SCREAMING_SNAKE_CASE_ ( snake_case__ ): """simple docstring""" def __init__( self :Union[str, Any] , __lowercase :Dict ): super().__init__(__lowercase ) __lowerCamelCase : Any =config.num_labels __lowerCamelCase : int =config.num_hidden_layers __lowerCamelCase : Tuple =DeeBertModel(__lowercase ) __lowerCamelCase : Optional[int] =nn.Dropout(config.hidden_dropout_prob ) __lowerCamelCase : Optional[int] =nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(__lowercase ) def __lowercase ( self :List[str] , __lowercase :List[str]=None , __lowercase :str=None , __lowercase :Optional[Any]=None , __lowercase :List[Any]=None , __lowercase :Union[str, Any]=None , __lowercase :Dict=None , __lowercase :int=None , __lowercase :int=-1 , __lowercase :List[str]=False , ): __lowerCamelCase : Union[str, Any] =self.num_layers try: __lowerCamelCase : Union[str, Any] =self.bert( __lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , position_ids=__lowercase , head_mask=__lowercase , inputs_embeds=__lowercase , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits __lowerCamelCase : List[Any] =outputs[1] __lowerCamelCase : Optional[Any] =self.dropout(__lowercase ) __lowerCamelCase : Tuple =self.classifier(__lowercase ) __lowerCamelCase : int =(logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __lowerCamelCase : Union[str, Any] =e.message __lowerCamelCase : Optional[Any] =e.exit_layer __lowerCamelCase : Any =outputs[0] if not self.training: __lowerCamelCase : List[Any] =entropy(__lowercase ) __lowerCamelCase : Union[str, Any] =[] __lowerCamelCase : int =[] if labels is not None: if self.num_labels == 1: # We are doing regression __lowerCamelCase : Union[str, Any] =MSELoss() __lowerCamelCase : List[Any] =loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: __lowerCamelCase : Dict =CrossEntropyLoss() __lowerCamelCase : List[Any] =loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits __lowerCamelCase : str =[] for highway_exit in outputs[-1]: __lowerCamelCase : List[str] =highway_exit[0] if not self.training: highway_logits_all.append(__lowercase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __lowerCamelCase : Optional[int] =MSELoss() __lowerCamelCase : Optional[Any] =loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: __lowerCamelCase : int =CrossEntropyLoss() __lowerCamelCase : int =loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(__lowercase ) if train_highway: __lowerCamelCase : Dict =(sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __lowerCamelCase : List[str] =(loss,) + outputs if not self.training: __lowerCamelCase : List[Any] =outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __lowerCamelCase : Dict =( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
179
0
"""simple docstring""" from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ = None , a_ = None , a_ = None , a_ = None , a_ = False , a_ = False , a_ = None , **a_ , ): '''simple docstring''' __snake_case : Optional[int] = path_or_paths __snake_case : str = split if split or isinstance(a_ , a_ ) else '''train''' __snake_case : int = features __snake_case : List[Any] = cache_dir __snake_case : Optional[Any] = keep_in_memory __snake_case : Union[str, Any] = streaming __snake_case : int = num_proc __snake_case : Tuple = kwargs @abstractmethod def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ = None , a_ = None , a_ = False , a_ = False , a_ = None , **a_ , ): '''simple docstring''' __snake_case : str = features __snake_case : str = cache_dir __snake_case : List[Any] = keep_in_memory __snake_case : Union[str, Any] = streaming __snake_case : int = num_proc __snake_case : Dict = kwargs @abstractmethod def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass
229
"""simple docstring""" def lowercase ( _snake_case : Union[str, Any] ) ->Optional[int]: """simple docstring""" if not head: return True # split the list to two parts __snake_case , __snake_case : str = head.next, head while fast and fast.next: __snake_case : List[str] = fast.next.next __snake_case : Optional[int] = slow.next __snake_case : Tuple = slow.next __snake_case : List[Any] = None # Don't forget here! But forget still works! # reverse the second part __snake_case : Union[str, Any] = None while second: __snake_case : Optional[Any] = second.next __snake_case : List[str] = node __snake_case : List[Any] = second __snake_case : Tuple = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False __snake_case : int = node.next __snake_case : Any = head.next return True def lowercase ( _snake_case : int ) ->Union[str, Any]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) __snake_case : Optional[int] = head while fast and fast.next: __snake_case , __snake_case : Union[str, Any] = fast.next.next, slow.next # 2. Push the second half into the stack __snake_case : int = [slow.val] while slow.next: __snake_case : str = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False __snake_case : str = cur.next return True def lowercase ( _snake_case : str ) ->Dict: """simple docstring""" if not head or not head.next: return True __snake_case : Optional[int] = {} __snake_case : Dict = 0 while head: if head.val in d: d[head.val].append(_snake_case ) else: __snake_case : Tuple = [pos] __snake_case : str = head.next pos += 1 __snake_case : str = pos - 1 __snake_case : Union[str, Any] = 0 for v in d.values(): if len(_snake_case ) % 2 != 0: middle += 1 else: __snake_case : Tuple = 0 for i in range(0 , len(_snake_case ) ): if v[i] + v[len(_snake_case ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
229
1
'''simple docstring''' import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def _A ( A__ , A__ , A__ ): """simple docstring""" __lowercase = os.path.abspath(A__ ) logger.info(F"Converting TensorFlow checkpoint from {tf_path}" ) # Load weights from TF model __lowercase = tf.train.list_variables(A__ ) __lowercase = [] __lowercase = [] __lowercase = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") __lowercase = full_name.split('''/''' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(F"Skipping non-model layer {full_name}" ) continue if "optimizer" in full_name: logger.info(F"Skipping optimization layer {full_name}" ) continue if name[0] == "model": # ignore initial 'model' __lowercase = name[1:] # figure out how many levels deep the name is __lowercase = 0 for _name in name: if _name.startswith('''layer_with_weights''' ): depth += 1 else: break layer_depth.append(A__ ) # read data __lowercase = tf.train.load_variable(A__ , A__ ) names.append('''/'''.join(A__ ) ) arrays.append(A__ ) logger.info(F"Read a total of {len(A__ ):,} layers" ) # Sanity check if len(set(A__ ) ) != 1: raise ValueError(F"Found layer names with different depths (layer depth {list(set(A__ ) )})" ) __lowercase = list(set(A__ ) )[0] if layer_depth != 1: raise ValueError( '''The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP''' ''' heads.''' ) # convert layers logger.info('''Converting weights...''' ) for full_name, array in zip(A__ , A__ ): __lowercase = full_name.split('''/''' ) __lowercase = model __lowercase = [] for i, m_name in enumerate(A__ ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('''layer_with_weights''' ): __lowercase = int(m_name.split('''-''' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['''embeddings''', '''LayerNorm'''] ) __lowercase = getattr(A__ , '''embeddings''' ) __lowercase = getattr(A__ , '''LayerNorm''' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['''encoder''', '''layer''', str(layer_num - 4 )] ) __lowercase = getattr(A__ , '''encoder''' ) __lowercase = getattr(A__ , '''layer''' ) __lowercase = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['''pooler''', '''dense'''] ) __lowercase = getattr(A__ , '''pooler''' ) __lowercase = getattr(A__ , '''dense''' ) elif m_name == "embeddings": trace.append('''embeddings''' ) __lowercase = getattr(A__ , '''embeddings''' ) if layer_num == 0: trace.append('''word_embeddings''' ) __lowercase = getattr(A__ , '''word_embeddings''' ) elif layer_num == 1: trace.append('''position_embeddings''' ) __lowercase = getattr(A__ , '''position_embeddings''' ) elif layer_num == 2: trace.append('''token_type_embeddings''' ) __lowercase = getattr(A__ , '''token_type_embeddings''' ) else: raise ValueError(F"Unknown embedding layer with name {full_name}" ) trace.append('''weight''' ) __lowercase = getattr(A__ , '''weight''' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['''attention''', '''self'''] ) __lowercase = getattr(A__ , '''attention''' ) __lowercase = getattr(A__ , '''self''' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['''attention''', '''output''', '''LayerNorm'''] ) __lowercase = getattr(A__ , '''attention''' ) __lowercase = getattr(A__ , '''output''' ) __lowercase = getattr(A__ , '''LayerNorm''' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['''attention''', '''output''', '''dense'''] ) __lowercase = getattr(A__ , '''attention''' ) __lowercase = getattr(A__ , '''output''' ) __lowercase = getattr(A__ , '''dense''' ) elif m_name == "_output_dense": # output dense trace.extend(['''output''', '''dense'''] ) __lowercase = getattr(A__ , '''output''' ) __lowercase = getattr(A__ , '''dense''' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['''output''', '''LayerNorm'''] ) __lowercase = getattr(A__ , '''output''' ) __lowercase = getattr(A__ , '''LayerNorm''' ) elif m_name == "_key_dense": # attention key trace.append('''key''' ) __lowercase = getattr(A__ , '''key''' ) elif m_name == "_query_dense": # attention query trace.append('''query''' ) __lowercase = getattr(A__ , '''query''' ) elif m_name == "_value_dense": # attention value trace.append('''value''' ) __lowercase = getattr(A__ , '''value''' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['''intermediate''', '''dense'''] ) __lowercase = getattr(A__ , '''intermediate''' ) __lowercase = getattr(A__ , '''dense''' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('''output''' ) __lowercase = getattr(A__ , '''output''' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('''bias''' ) __lowercase = getattr(A__ , '''bias''' ) elif m_name in ["kernel", "gamma"]: trace.append('''weight''' ) __lowercase = getattr(A__ , '''weight''' ) else: logger.warning(F"Ignored {m_name}" ) # for certain layers reshape is necessary __lowercase = '''.'''.join(A__ ) if re.match(R'''(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)''' , A__ ) or re.match( R'''(\S+)\.attention\.output\.dense\.weight''' , A__ ): __lowercase = array.reshape(pointer.data.shape ) if "kernel" in full_name: __lowercase = array.transpose() if pointer.shape == array.shape: __lowercase = torch.from_numpy(A__ ) else: raise ValueError( F"Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:" F" {array.shape}" ) logger.info(F"Successfully set variable {full_name} to PyTorch layer {trace}" ) return model def _A ( A__ , A__ , A__ ): """simple docstring""" logger.info(F"Loading model based on config from {config_path}..." ) __lowercase = BertConfig.from_json_file(A__ ) __lowercase = BertModel(A__ ) # Load weights from checkpoint logger.info(F"Loading weights from checkpoint {tf_checkpoint_path}..." ) load_tfa_weights_in_bert(A__ , A__ , A__ ) # Save pytorch-model logger.info(F"Saving PyTorch model to {pytorch_dump_path}..." ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow 2.x checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', type=str, required=True, help='''The config json file corresponding to the BERT model. This specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', type=str, required=True, help='''Path to the output PyTorch model (must include filename).''', ) lowerCAmelCase__ = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
41
'''simple docstring''' def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return [sentence[i : i + ngram_size] for i in range(len(lowerCAmelCase_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
310
0
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType a_ : Optional[List[str]] = None a_ : Optional[int] = '<' if sys.byteorder == 'little' else '>' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image a_ : Dict = [ np.dtype('|b1'), np.dtype('|u1'), np.dtype('<u2'), np.dtype('>u2'), np.dtype('<i2'), np.dtype('>i2'), np.dtype('<u4'), np.dtype('>u4'), np.dtype('<i4'), np.dtype('>i4'), np.dtype('<f4'), np.dtype('>f4'), np.dtype('<f8'), np.dtype('>f8'), ] @dataclass class _snake_case : _lowercase : bool = True _lowercase : Optional[str] = None # Automatically constructed _lowercase : ClassVar[str] = "PIL.Image.Image" _lowercase : ClassVar[Any] = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) _lowercase : str = field(default='''Image''' , init=A__ , repr=A__ ) def __call__( self) -> List[Any]: return self.pa_type def SCREAMING_SNAKE_CASE__ ( self , a) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.') if isinstance(a , a): SCREAMING_SNAKE_CASE = np.array(a) if isinstance(a , a): return {"path": value, "bytes": None} elif isinstance(a , a): return {"path": None, "bytes": value} elif isinstance(a , np.ndarray): # convert the image array to PNG/TIFF bytes return encode_np_array(a) elif isinstance(a , PIL.Image.Image): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(a) elif value.get('path') is not None and os.path.isfile(value['path']): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('path')} elif value.get('bytes') is not None or value.get('path') is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('bytes'), "path": value.get('path')} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''') def SCREAMING_SNAKE_CASE__ ( self , a , a=None) -> "PIL.Image.Image": if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Image(decode=True) instead.') if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support decoding images, please install \'Pillow\'.') if token_per_repo_id is None: SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = value['path'], value['bytes'] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''') else: if is_local_path(a): SCREAMING_SNAKE_CASE = PIL.Image.open(a) else: SCREAMING_SNAKE_CASE = path.split('::')[-1] try: SCREAMING_SNAKE_CASE = string_to_dict(a , config.HUB_DATASETS_URL)['repo_id'] SCREAMING_SNAKE_CASE = token_per_repo_id.get(a) except ValueError: SCREAMING_SNAKE_CASE = None with xopen(a , 'rb' , use_auth_token=a) as f: SCREAMING_SNAKE_CASE = BytesIO(f.read()) SCREAMING_SNAKE_CASE = PIL.Image.open(bytes_) else: SCREAMING_SNAKE_CASE = PIL.Image.open(BytesIO(bytes_)) image.load() # to avoid "Too many open files" errors return image def SCREAMING_SNAKE_CASE__ ( self) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return ( self if self.decode else { "bytes": Value('binary'), "path": Value('string'), } ) def SCREAMING_SNAKE_CASE__ ( self , a) -> pa.StructArray: if pa.types.is_string(storage.type): SCREAMING_SNAKE_CASE = pa.array([None] * len(a) , type=pa.binary()) SCREAMING_SNAKE_CASE = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null()) elif pa.types.is_binary(storage.type): SCREAMING_SNAKE_CASE = pa.array([None] * len(a) , type=pa.string()) SCREAMING_SNAKE_CASE = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null()) elif pa.types.is_struct(storage.type): if storage.type.get_field_index('bytes') >= 0: SCREAMING_SNAKE_CASE = storage.field('bytes') else: SCREAMING_SNAKE_CASE = pa.array([None] * len(a) , type=pa.binary()) if storage.type.get_field_index('path') >= 0: SCREAMING_SNAKE_CASE = storage.field('path') else: SCREAMING_SNAKE_CASE = pa.array([None] * len(a) , type=pa.string()) SCREAMING_SNAKE_CASE = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null()) elif pa.types.is_list(storage.type): SCREAMING_SNAKE_CASE = pa.array( [encode_np_array(np.array(a))['bytes'] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) SCREAMING_SNAKE_CASE = pa.array([None] * len(a) , type=pa.string()) SCREAMING_SNAKE_CASE = pa.StructArray.from_arrays( [bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null()) return array_cast(a , self.pa_type) def SCREAMING_SNAKE_CASE__ ( self , a) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(a): with xopen(a , 'rb') as f: SCREAMING_SNAKE_CASE = f.read() return bytes_ SCREAMING_SNAKE_CASE = pa.array( [ (path_to_bytes(x['path']) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) SCREAMING_SNAKE_CASE = pa.array( [os.path.basename(a) if path is not None else None for path in storage.field('path').to_pylist()] , type=pa.string() , ) SCREAMING_SNAKE_CASE = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null()) return array_cast(a , self.pa_type) def lowerCamelCase__ (): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.') global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() SCREAMING_SNAKE_CASE = list(set(PIL.Image.OPEN.keys()) & set(PIL.Image.SAVE.keys())) return _IMAGE_COMPRESSION_FORMATS def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = BytesIO() if image.format in list_image_compression_formats(): SCREAMING_SNAKE_CASE = image.format else: SCREAMING_SNAKE_CASE = 'PNG' if image.mode in ['1', 'L', 'LA', 'RGB', 'RGBA'] else 'TIFF' image.save(_UpperCAmelCase , format=_UpperCAmelCase) return buffer.getvalue() def lowerCamelCase__ (_UpperCAmelCase): if hasattr(_UpperCAmelCase , 'filename') and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_UpperCAmelCase)} def lowerCamelCase__ (_UpperCAmelCase): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.') SCREAMING_SNAKE_CASE = array.dtype SCREAMING_SNAKE_CASE = dtype.byteorder if dtype.byteorder != '=' else _NATIVE_BYTEORDER SCREAMING_SNAKE_CASE = dtype.kind SCREAMING_SNAKE_CASE = dtype.itemsize SCREAMING_SNAKE_CASE = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: SCREAMING_SNAKE_CASE = np.dtype('|u1') if dtype_kind not in ["u", "i"]: raise TypeError( F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''') if dtype is not dest_dtype: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''') # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: SCREAMING_SNAKE_CASE = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: SCREAMING_SNAKE_CASE = dtype_byteorder + dtype_kind + str(_UpperCAmelCase) SCREAMING_SNAKE_CASE = np.dtype(_UpperCAmelCase) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''') break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''') SCREAMING_SNAKE_CASE = PIL.Image.fromarray(array.astype(_UpperCAmelCase)) return {"path": None, "bytes": image_to_bytes(_UpperCAmelCase)} def lowerCamelCase__ (_UpperCAmelCase): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.') if objs: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = first_non_null_value(_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_UpperCAmelCase , np.ndarray): SCREAMING_SNAKE_CASE = no_op_if_value_is_null(_UpperCAmelCase) return [obj_to_image_dict_func(_UpperCAmelCase) for obj in objs] elif isinstance(_UpperCAmelCase , PIL.Image.Image): SCREAMING_SNAKE_CASE = no_op_if_value_is_null(_UpperCAmelCase) return [obj_to_image_dict_func(_UpperCAmelCase) for obj in objs] else: return objs else: return objs
700
import os from collections.abc import Iterator def lowerCamelCase__ (_UpperCAmelCase = "."): for dir_path, dir_names, filenames in os.walk(_UpperCAmelCase): SCREAMING_SNAKE_CASE = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_UpperCAmelCase)[1] in (".py", ".ipynb"): yield os.path.join(_UpperCAmelCase , _UpperCAmelCase).lstrip('./') def lowerCamelCase__ (_UpperCAmelCase): return F'''{i * ' '}*''' if i else "\n##" def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = old_path.split(os.sep) for i, new_part in enumerate(new_path.split(os.sep)): if (i + 1 > len(_UpperCAmelCase) or old_parts[i] != new_part) and new_part: print(F'''{md_prefix(_UpperCAmelCase)} {new_part.replace('_' , ' ').title()}''') return new_path def lowerCamelCase__ (_UpperCAmelCase = "."): SCREAMING_SNAKE_CASE = '' for filepath in sorted(good_file_paths(_UpperCAmelCase)): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = os.path.split(_UpperCAmelCase) if filepath != old_path: SCREAMING_SNAKE_CASE = print_path(_UpperCAmelCase , _UpperCAmelCase) SCREAMING_SNAKE_CASE = (filepath.count(os.sep) + 1) if filepath else 0 SCREAMING_SNAKE_CASE = F'''{filepath}/{filename}'''.replace(' ' , '%20') SCREAMING_SNAKE_CASE = os.path.splitext(filename.replace('_' , ' ').title())[0] print(F'''{md_prefix(_UpperCAmelCase)} [{filename}]({url})''') if __name__ == "__main__": print_directory_md('.')
444
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' A__ : List[str] =TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) A__ : Tuple =tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" A__ : int =model(lowerCAmelCase_ )["""last_hidden_state"""] A__ : Optional[Any] =tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape , lowerCAmelCase_ ) # compare the actual values for a slice. A__ : Optional[int] =tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
215
'''simple docstring''' def __lowerCamelCase ( __snake_case : int = 10, __snake_case : int = 22 ) -> int: """simple docstring""" A__ : Any =range(1, __snake_case ) A__ : List[str] =range(1, __snake_case ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"""{solution(10, 22) = }""")
215
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase = { """configuration_mobilebert""": [ """MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileBertConfig""", """MobileBertOnnxConfig""", ], """tokenization_mobilebert""": ["""MobileBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["""MobileBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ """MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileBertForMaskedLM""", """MobileBertForMultipleChoice""", """MobileBertForNextSentencePrediction""", """MobileBertForPreTraining""", """MobileBertForQuestionAnswering""", """MobileBertForSequenceClassification""", """MobileBertForTokenClassification""", """MobileBertLayer""", """MobileBertModel""", """MobileBertPreTrainedModel""", """load_tf_weights_in_mobilebert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ """TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileBertForMaskedLM""", """TFMobileBertForMultipleChoice""", """TFMobileBertForNextSentencePrediction""", """TFMobileBertForPreTraining""", """TFMobileBertForQuestionAnswering""", """TFMobileBertForSequenceClassification""", """TFMobileBertForTokenClassification""", """TFMobileBertMainLayer""", """TFMobileBertModel""", """TFMobileBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
481
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,): '''simple docstring''' A_ , A_ : int = coefficient_matrix.shape A_ , A_ : Tuple = constant_matrix.shape if rowsa != colsa: A_ : int = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(_lowerCAmelCase ) if colsa != 1: A_ : List[Any] = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(_lowerCAmelCase ) if rowsa != rowsa: A_ : str = ( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ f"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(_lowerCAmelCase ) if len(_lowerCAmelCase ) != rowsa: A_ : Any = ( """Number of initial values must be equal to number of rows in coefficient """ f"""matrix but received {len(_lowerCAmelCase )} and {rowsa}""" ) raise ValueError(_lowerCAmelCase ) if iterations <= 0: raise ValueError("""Iterations must be at least 1""" ) A_ : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) ,axis=1 ) A_ , A_ : str = table.shape strictly_diagonally_dominant(_lowerCAmelCase ) # Iterates the whole matrix for given number of times for _ in range(_lowerCAmelCase ): A_ : Union[str, Any] = [] for row in range(_lowerCAmelCase ): A_ : str = 0 for col in range(_lowerCAmelCase ): if col == row: A_ : Optional[Any] = table[row][col] elif col == cols - 1: A_ : List[str] = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] A_ : str = (temp + val) / denom new_val.append(_lowerCAmelCase ) A_ : List[str] = new_val return [float(_lowerCAmelCase ) for i in new_val] def _lowerCAmelCase ( _lowerCAmelCase ): '''simple docstring''' A_ , A_ : str = table.shape A_ : Any = True for i in range(0 ,_lowerCAmelCase ): A_ : Optional[Any] = 0 for j in range(0 ,cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
481
1
"""simple docstring""" def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = len(_snake_case ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None __SCREAMING_SNAKE_CASE = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(_snake_case ): return None __SCREAMING_SNAKE_CASE = sorted_collection[point] if current_item == item: return point else: if point < left: __SCREAMING_SNAKE_CASE = left __SCREAMING_SNAKE_CASE = point elif point > right: __SCREAMING_SNAKE_CASE = right __SCREAMING_SNAKE_CASE = point else: if item < current_item: __SCREAMING_SNAKE_CASE = point - 1 else: __SCREAMING_SNAKE_CASE = point + 1 return None def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Dict: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None __SCREAMING_SNAKE_CASE = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(_snake_case ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(_snake_case , _snake_case , _snake_case , _snake_case ) elif point > right: return interpolation_search_by_recursion(_snake_case , _snake_case , _snake_case , _snake_case ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( _snake_case , _snake_case , _snake_case , point - 1 ) else: return interpolation_search_by_recursion( _snake_case , _snake_case , point + 1 , _snake_case ) def _a ( UpperCAmelCase__ ) -> Any: if collection != sorted(_snake_case ): raise ValueError('''Collection must be ascending sorted''' ) return True if __name__ == "__main__": import sys lowerCAmelCase__ =0 if debug == 1: lowerCAmelCase__ =[10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit("Sequence must be ascending sorted to apply interpolation search") lowerCAmelCase__ =67 lowerCAmelCase__ =interpolation_search(collection, target) if result is not None: print(F'''{target} found at positions: {result}''') else: print("Not found")
482
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __init__( self :Any, snake_case :Optional[int], snake_case :Optional[Any]=7, snake_case :str=3, snake_case :Optional[int]=18, snake_case :str=30, snake_case :List[Any]=400, snake_case :Any=True, snake_case :Dict=None, snake_case :Any=True, snake_case :Dict=None, snake_case :List[Any]=True, snake_case :Optional[int]=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], snake_case :Any=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], snake_case :int=True, ): """simple docstring""" _lowercase =size if size is not None else {'height': 224, 'width': 224} _lowercase =crop_size if crop_size is not None else {'height': 18, 'width': 18} _lowercase =parent _lowercase =batch_size _lowercase =num_channels _lowercase =image_size _lowercase =min_resolution _lowercase =max_resolution _lowercase =do_resize _lowercase =size _lowercase =do_center_crop _lowercase =crop_size _lowercase =do_normalize _lowercase =image_mean _lowercase =image_std _lowercase =do_convert_rgb def UpperCamelCase__ ( self :Any): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def UpperCamelCase__ ( self :Dict, snake_case :List[Any]=False, snake_case :Any=False, snake_case :Union[str, Any]=False): """simple docstring""" assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: _lowercase =[] for i in range(self.batch_size): image_inputs.append( np.random.randint( 255, size=(self.num_channels, self.max_resolution, self.max_resolution), dtype=np.uinta)) else: _lowercase =[] for i in range(self.batch_size): _lowercase , _lowercase =np.random.choice(np.arange(self.min_resolution, self.max_resolution), 2) image_inputs.append(np.random.randint(255, size=(self.num_channels, width, height), dtype=np.uinta)) if not numpify and not torchify: # PIL expects the channel dimension as last dimension _lowercase =[Image.fromarray(np.moveaxis(snake_case, 0, -1)) for x in image_inputs] if torchify: _lowercase =[torch.from_numpy(snake_case) for x in image_inputs] return image_inputs @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( _a , unittest.TestCase ): """simple docstring""" __lowerCAmelCase : List[Any] =ChineseCLIPImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self :Dict): """simple docstring""" _lowercase =ChineseCLIPImageProcessingTester(self, do_center_crop=snake_case) @property def UpperCamelCase__ ( self :Dict): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self :Optional[int]): """simple docstring""" _lowercase =self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(snake_case, 'do_resize')) self.assertTrue(hasattr(snake_case, 'size')) self.assertTrue(hasattr(snake_case, 'do_center_crop')) self.assertTrue(hasattr(snake_case, 'center_crop')) self.assertTrue(hasattr(snake_case, 'do_normalize')) self.assertTrue(hasattr(snake_case, 'image_mean')) self.assertTrue(hasattr(snake_case, 'image_std')) self.assertTrue(hasattr(snake_case, 'do_convert_rgb')) def UpperCamelCase__ ( self :List[str]): """simple docstring""" _lowercase =self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {'height': 224, 'width': 224}) self.assertEqual(image_processor.crop_size, {'height': 18, 'width': 18}) _lowercase =self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84) self.assertEqual(image_processor.size, {'shortest_edge': 42}) self.assertEqual(image_processor.crop_size, {'height': 84, 'width': 84}) def UpperCamelCase__ ( self :Tuple): """simple docstring""" pass def UpperCamelCase__ ( self :Any): """simple docstring""" _lowercase =self.image_processing_class(**self.image_processor_dict) # create random PIL images _lowercase =self.image_processor_tester.prepare_inputs(equal_resolution=snake_case) for image in image_inputs: self.assertIsInstance(snake_case, Image.Image) # Test not batched input _lowercase =image_processing(image_inputs[0], return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) # Test batched _lowercase =image_processing(snake_case, return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) def UpperCamelCase__ ( self :List[str]): """simple docstring""" _lowercase =self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _lowercase =self.image_processor_tester.prepare_inputs(equal_resolution=snake_case, numpify=snake_case) for image in image_inputs: self.assertIsInstance(snake_case, np.ndarray) # Test not batched input _lowercase =image_processing(image_inputs[0], return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) # Test batched _lowercase =image_processing(snake_case, return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) def UpperCamelCase__ ( self :Optional[int]): """simple docstring""" _lowercase =self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _lowercase =self.image_processor_tester.prepare_inputs(equal_resolution=snake_case, torchify=snake_case) for image in image_inputs: self.assertIsInstance(snake_case, torch.Tensor) # Test not batched input _lowercase =image_processing(image_inputs[0], return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) # Test batched _lowercase =image_processing(snake_case, return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( _a , unittest.TestCase ): """simple docstring""" __lowerCAmelCase : Optional[Any] =ChineseCLIPImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self :Dict): """simple docstring""" _lowercase =ChineseCLIPImageProcessingTester(self, num_channels=4, do_center_crop=snake_case) _lowercase =3 @property def UpperCamelCase__ ( self :Tuple): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self :Tuple): """simple docstring""" _lowercase =self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(snake_case, 'do_resize')) self.assertTrue(hasattr(snake_case, 'size')) self.assertTrue(hasattr(snake_case, 'do_center_crop')) self.assertTrue(hasattr(snake_case, 'center_crop')) self.assertTrue(hasattr(snake_case, 'do_normalize')) self.assertTrue(hasattr(snake_case, 'image_mean')) self.assertTrue(hasattr(snake_case, 'image_std')) self.assertTrue(hasattr(snake_case, 'do_convert_rgb')) def UpperCamelCase__ ( self :Dict): """simple docstring""" pass def UpperCamelCase__ ( self :str): """simple docstring""" _lowercase =self.image_processing_class(**self.image_processor_dict) # create random PIL images _lowercase =self.image_processor_tester.prepare_inputs(equal_resolution=snake_case) for image in image_inputs: self.assertIsInstance(snake_case, Image.Image) # Test not batched input _lowercase =image_processing(image_inputs[0], return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape, ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) # Test batched _lowercase =image_processing(snake_case, return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), )
181
0
"""simple docstring""" import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) lowerCamelCase__ : str = logging.getLogger() def __A ( a_ : Tuple )-> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = {} SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(_snake_case , '''all_results.json''' ) if os.path.exists(_snake_case ): with open(_snake_case , '''r''' ) as f: SCREAMING_SNAKE_CASE : Optional[int] = json.load(_snake_case ) else: raise ValueError(F"can\'t find {path}" ) return results lowerCamelCase__ : Optional[int] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __lowerCAmelCase ( self :Any ) -> Any: '''simple docstring''' import xla_spawn SCREAMING_SNAKE_CASE : int = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE : Optional[Any] = f"\n ./examples/pytorch/text-classification/run_glue.py\n --num_cores=8\n ./examples/pytorch/text-classification/run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --do_train\n --do_eval\n --debug tpu_metrics_debug\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --max_steps=10\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(lowerCamelCase_ , '''argv''' , lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Dict = time() xla_spawn.main() SCREAMING_SNAKE_CASE : str = time() SCREAMING_SNAKE_CASE : Any = get_results(lowerCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.7_5 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 5_00 ) def __lowerCAmelCase ( self :int ) -> Any: '''simple docstring''' import xla_spawn SCREAMING_SNAKE_CASE : Tuple = ''' ./tests/test_trainer_tpu.py --num_cores=8 ./tests/test_trainer_tpu.py '''.split() with patch.object(lowerCamelCase_ , '''argv''' , lowerCamelCase_ ): xla_spawn.main()
707
"""simple docstring""" import os import sys lowerCamelCase__ : List[Any] = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCamelCase__ : str = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __A ( *a_ : Any , **a_ : Union[str, Any] )-> Dict: '''simple docstring''' return AutoConfig.from_pretrained(*a_ , **a_ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __A ( *a_ : str , **a_ : Union[str, Any] )-> Union[str, Any]: '''simple docstring''' return AutoTokenizer.from_pretrained(*a_ , **a_ ) @add_start_docstrings(AutoModel.__doc__ ) def __A ( *a_ : List[str] , **a_ : int )-> Dict: '''simple docstring''' return AutoModel.from_pretrained(*a_ , **a_ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __A ( *a_ : Any , **a_ : Tuple )-> Dict: '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*a_ , **a_ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __A ( *a_ : Dict , **a_ : Optional[Any] )-> Optional[int]: '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*a_ , **a_ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __A ( *a_ : Optional[int] , **a_ : str )-> Optional[int]: '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*a_ , **a_ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __A ( *a_ : List[str] , **a_ : int )-> List[Any]: '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*a_ , **a_ )
18
0
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _SCREAMING_SNAKE_CASE : Union[str, Any] = get_tests_dir('''fixtures''') class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : List[Any] ) -> List[str]: # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE__ = mock.Mock() SCREAMING_SNAKE_CASE__ = 500 SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = HTTPError SCREAMING_SNAKE_CASE__ = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=__UpperCamelCase ) as mock_head: SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # This check we did call the fake head request mock_head.assert_called() def lowercase_ ( self : List[Any] ) -> Dict: # This test is for deprecated behavior and can be removed in v5 SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' ) @is_staging_test class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @classmethod def lowercase_ ( cls : List[str] ) -> List[str]: SCREAMING_SNAKE_CASE__ = TOKEN HfFolder.save_token(__UpperCamelCase ) @classmethod def lowercase_ ( cls : Union[str, Any] ) -> int: try: delete_repo(token=cls._token , repo_id='''test-feature-extractor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-feature-extractor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-feature-extractor''' ) except HTTPError: pass def lowercase_ ( self : str ) -> int: SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained(__UpperCamelCase ) feature_extractor.push_to_hub('''test-feature-extractor''' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained(f'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __UpperCamelCase , repo_id='''test-feature-extractor''' , push_to_hub=__UpperCamelCase , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained(f'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) def lowercase_ ( self : List[str] ) -> Dict: SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained(__UpperCamelCase ) feature_extractor.push_to_hub('''valid_org/test-feature-extractor''' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __UpperCamelCase , repo_id='''valid_org/test-feature-extractor-org''' , push_to_hub=__UpperCamelCase , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) def lowercase_ ( self : str ) -> List[Any]: CustomFeatureExtractor.register_for_auto_class() SCREAMING_SNAKE_CASE__ = CustomFeatureExtractor.from_pretrained(__UpperCamelCase ) feature_extractor.push_to_hub('''test-dynamic-feature-extractor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''} , ) SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained( f'''{USER}/test-dynamic-feature-extractor''' , trust_remote_code=__UpperCamelCase ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , '''CustomFeatureExtractor''' )
493
"""simple docstring""" import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def lowercase ( a__ : str ) -> List[Any]: return EnvironmentCommand() class UpperCAmelCase_ ( _lowercase): @staticmethod def _UpperCamelCase ( __UpperCamelCase : ArgumentParser ) -> List[Any]: _UpperCamelCase = parser.add_parser('''env''' ) download_parser.set_defaults(func=__UpperCamelCase ) def _UpperCamelCase ( self : List[str] ) -> Optional[int]: _UpperCamelCase = huggingface_hub.__version__ _UpperCamelCase = '''not installed''' _UpperCamelCase = '''NA''' if is_torch_available(): import torch _UpperCamelCase = torch.__version__ _UpperCamelCase = torch.cuda.is_available() _UpperCamelCase = '''not installed''' if is_transformers_available(): import transformers _UpperCamelCase = transformers.__version__ _UpperCamelCase = '''not installed''' if is_accelerate_available(): import accelerate _UpperCamelCase = accelerate.__version__ _UpperCamelCase = '''not installed''' if is_xformers_available(): import xformers _UpperCamelCase = xformers.__version__ _UpperCamelCase = { '''`diffusers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''', '''Huggingface_hub version''': hub_version, '''Transformers version''': transformers_version, '''Accelerate version''': accelerate_version, '''xFormers version''': xformers_version, '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(__UpperCamelCase ) ) return info @staticmethod def _UpperCamelCase ( __UpperCamelCase : List[str] ) -> Dict: return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
420
0
'''simple docstring''' import operator as op SCREAMING_SNAKE_CASE__ : str = '''scaler.pt''' SCREAMING_SNAKE_CASE__ : int = '''pytorch_model''' SCREAMING_SNAKE_CASE__ : Tuple = '''random_states''' SCREAMING_SNAKE_CASE__ : Optional[Any] = '''optimizer''' SCREAMING_SNAKE_CASE__ : str = '''scheduler''' SCREAMING_SNAKE_CASE__ : int = '''pytorch_model.bin''' SCREAMING_SNAKE_CASE__ : Dict = '''pytorch_model.bin.index.json''' SCREAMING_SNAKE_CASE__ : List[Any] = '''model.safetensors''' SCREAMING_SNAKE_CASE__ : Optional[int] = '''model.safetensors.index.json''' SCREAMING_SNAKE_CASE__ : Optional[int] = '''1.10.2''' SCREAMING_SNAKE_CASE__ : str = '''py38''' SCREAMING_SNAKE_CASE__ : Optional[int] = '''4.17.0''' SCREAMING_SNAKE_CASE__ : Tuple = ['''ml.p3.16xlarge''', '''ml.p3dn.24xlarge''', '''ml.p4dn.24xlarge'''] SCREAMING_SNAKE_CASE__ : Optional[Any] = ['''FULL_SHARD''', '''SHARD_GRAD_OP''', '''NO_SHARD''', '''HYBRID_SHARD''', '''HYBRID_SHARD_ZERO2'''] SCREAMING_SNAKE_CASE__ : str = ['''TRANSFORMER_BASED_WRAP''', '''SIZE_BASED_WRAP''', '''NO_WRAP'''] SCREAMING_SNAKE_CASE__ : Optional[Any] = ['''BACKWARD_PRE''', '''BACKWARD_POST''', '''NO_PREFETCH'''] SCREAMING_SNAKE_CASE__ : List[str] = ['''FULL_STATE_DICT''', '''LOCAL_STATE_DICT''', '''SHARDED_STATE_DICT'''] SCREAMING_SNAKE_CASE__ : Union[str, Any] = '''2.0.1''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = ['''pdsh''', '''standard''', '''openmpi''', '''mvapich'''] SCREAMING_SNAKE_CASE__ : int = ['''default''', '''reduce-overhead''', '''max-autotune'''] SCREAMING_SNAKE_CASE__ : Optional[Any] = {'''>''': op.gt, '''>=''': op.ge, '''==''': op.eq, '''!=''': op.ne, '''<=''': op.le, '''<''': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 SCREAMING_SNAKE_CASE__ : List[Any] = [ '''nnodes''', '''nproc_per_node''', '''rdzv_backend''', '''rdzv_endpoint''', '''rdzv_id''', '''rdzv_conf''', '''standalone''', '''max_restarts''', '''monitor_interval''', '''start_method''', '''role''', '''module''', '''m''', '''no_python''', '''run_path''', '''log_dir''', '''r''', '''redirects''', '''t''', '''tee''', '''node_rank''', '''master_addr''', '''master_port''', ] SCREAMING_SNAKE_CASE__ : Any = ['''DEEPSPEED''', '''MULTI_GPU''', '''FSDP''', '''MEGATRON_LM'''] SCREAMING_SNAKE_CASE__ : List[Any] = ['''DEEPSPEED''', '''MULTI_XPU''', '''FSDP''']
719
'''simple docstring''' import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets SCREAMING_SNAKE_CASE__ : Any = ''' @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' SCREAMING_SNAKE_CASE__ : List[str] = '''\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. ''' SCREAMING_SNAKE_CASE__ : Optional[Any] = ''' Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=["About 95 species are currently accepted ."] >>> predictions=["About 95 you now get in ."] >>> references=[["About 95 species are currently known ."]] >>> wiki_split = datasets.load_metric("wiki_split") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0} ''' def a ( UpperCamelCase_ : Dict ) -> Union[str, Any]: def remove_articles(UpperCamelCase_ : List[str] ): snake_case__ =re.compile(r'\b(a|an|the)\b' , re.UNICODE ) return re.sub(UpperCamelCase_ , ' ' , UpperCamelCase_ ) def white_space_fix(UpperCamelCase_ : List[str] ): return " ".join(text.split() ) def remove_punc(UpperCamelCase_ : Tuple ): snake_case__ =set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCamelCase_ : Tuple ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(UpperCamelCase_ ) ) ) ) def a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] ) -> Tuple: return int(normalize_answer(UpperCamelCase_ ) == normalize_answer(UpperCamelCase_ ) ) def a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Any ) -> Dict: snake_case__ =[any(compute_exact(UpperCamelCase_ , UpperCamelCase_ ) for ref in refs ) for pred, refs in zip(UpperCamelCase_ , UpperCamelCase_ )] return (sum(UpperCamelCase_ ) / len(UpperCamelCase_ )) * 100 def a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any ) -> Union[str, Any]: snake_case__ =[rgram for rgrams in rgramslist for rgram in rgrams] snake_case__ =Counter(UpperCamelCase_ ) snake_case__ =Counter(UpperCamelCase_ ) snake_case__ =Counter() for sgram, scount in sgramcounter.items(): snake_case__ =scount * numref snake_case__ =Counter(UpperCamelCase_ ) snake_case__ =Counter() for cgram, ccount in cgramcounter.items(): snake_case__ =ccount * numref # KEEP snake_case__ =sgramcounter_rep & cgramcounter_rep snake_case__ =keepgramcounter_rep & rgramcounter snake_case__ =sgramcounter_rep & rgramcounter snake_case__ =0 snake_case__ =0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. snake_case__ =1 snake_case__ =1 if len(UpperCamelCase_ ) > 0: snake_case__ =keeptmpscorea / len(UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) snake_case__ =keeptmpscorea / sum(keepgramcounterall_rep.values() ) snake_case__ =0 if keepscore_precision > 0 or keepscore_recall > 0: snake_case__ =2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION snake_case__ =sgramcounter_rep - cgramcounter_rep snake_case__ =delgramcounter_rep - rgramcounter snake_case__ =sgramcounter_rep - rgramcounter snake_case__ =0 snake_case__ =0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. snake_case__ =1 if len(UpperCamelCase_ ) > 0: snake_case__ =deltmpscorea / len(UpperCamelCase_ ) # ADDITION snake_case__ =set(UpperCamelCase_ ) - set(UpperCamelCase_ ) snake_case__ =set(UpperCamelCase_ ) & set(UpperCamelCase_ ) snake_case__ =set(UpperCamelCase_ ) - set(UpperCamelCase_ ) snake_case__ =0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. snake_case__ =1 snake_case__ =1 if len(UpperCamelCase_ ) > 0: snake_case__ =addtmpscore / len(UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: snake_case__ =addtmpscore / len(UpperCamelCase_ ) snake_case__ =0 if addscore_precision > 0 or addscore_recall > 0: snake_case__ =2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def a ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : str ) -> Optional[int]: snake_case__ =len(UpperCamelCase_ ) snake_case__ =ssent.split(' ' ) snake_case__ =csent.split(' ' ) snake_case__ =[] snake_case__ =[] snake_case__ =[] snake_case__ =[] snake_case__ =[] snake_case__ =[] snake_case__ =[] snake_case__ =[] snake_case__ =[] snake_case__ =[] for rsent in rsents: snake_case__ =rsent.split(' ' ) snake_case__ =[] snake_case__ =[] snake_case__ =[] ragramslist.append(UpperCamelCase_ ) for i in range(0 , len(UpperCamelCase_ ) - 1 ): if i < len(UpperCamelCase_ ) - 1: snake_case__ =ragrams[i] + ' ' + ragrams[i + 1] ragrams.append(UpperCamelCase_ ) if i < len(UpperCamelCase_ ) - 2: snake_case__ =ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] ragrams.append(UpperCamelCase_ ) if i < len(UpperCamelCase_ ) - 3: snake_case__ =ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] + ' ' + ragrams[i + 3] ragrams.append(UpperCamelCase_ ) ragramslist.append(UpperCamelCase_ ) ragramslist.append(UpperCamelCase_ ) ragramslist.append(UpperCamelCase_ ) for i in range(0 , len(UpperCamelCase_ ) - 1 ): if i < len(UpperCamelCase_ ) - 1: snake_case__ =sagrams[i] + ' ' + sagrams[i + 1] sagrams.append(UpperCamelCase_ ) if i < len(UpperCamelCase_ ) - 2: snake_case__ =sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] sagrams.append(UpperCamelCase_ ) if i < len(UpperCamelCase_ ) - 3: snake_case__ =sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] + ' ' + sagrams[i + 3] sagrams.append(UpperCamelCase_ ) for i in range(0 , len(UpperCamelCase_ ) - 1 ): if i < len(UpperCamelCase_ ) - 1: snake_case__ =cagrams[i] + ' ' + cagrams[i + 1] cagrams.append(UpperCamelCase_ ) if i < len(UpperCamelCase_ ) - 2: snake_case__ =cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] cagrams.append(UpperCamelCase_ ) if i < len(UpperCamelCase_ ) - 3: snake_case__ =cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] + ' ' + cagrams[i + 3] cagrams.append(UpperCamelCase_ ) ((snake_case__) , (snake_case__) , (snake_case__)) =SARIngram(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ((snake_case__) , (snake_case__) , (snake_case__)) =SARIngram(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ((snake_case__) , (snake_case__) , (snake_case__)) =SARIngram(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ((snake_case__) , (snake_case__) , (snake_case__)) =SARIngram(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) snake_case__ =sum([keepascore, keepascore, keepascore, keepascore] ) / 4 snake_case__ =sum([delascore, delascore, delascore, delascore] ) / 4 snake_case__ =sum([addascore, addascore, addascore, addascore] ) / 4 snake_case__ =(avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def a ( UpperCamelCase_ : Any , UpperCamelCase_ : bool = True , UpperCamelCase_ : str = "13a" , UpperCamelCase_ : bool = True ) -> Dict: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: snake_case__ =sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: snake_case__ =sacrebleu.metrics.bleu._get_tokenizer(UpperCamelCase_ )()(UpperCamelCase_ ) else: snake_case__ =sacrebleu.TOKENIZERS[tokenizer]()(UpperCamelCase_ ) elif tokenizer == "moses": snake_case__ =sacremoses.MosesTokenizer().tokenize(UpperCamelCase_ , return_str=UpperCamelCase_ , escape=UpperCamelCase_ ) elif tokenizer == "penn": snake_case__ =sacremoses.MosesTokenizer().penn_tokenize(UpperCamelCase_ , return_str=UpperCamelCase_ ) else: snake_case__ =sentence if not return_str: snake_case__ =normalized_sent.split() return normalized_sent def a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : Any ) -> List[str]: if not (len(UpperCamelCase_ ) == len(UpperCamelCase_ ) == len(UpperCamelCase_ )): raise ValueError('Sources length must match predictions and references lengths.' ) snake_case__ =0 for src, pred, refs in zip(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): sari_score += SARIsent(normalize(UpperCamelCase_ ) , normalize(UpperCamelCase_ ) , [normalize(UpperCamelCase_ ) for sent in refs] ) snake_case__ =sari_score / len(UpperCamelCase_ ) return 100 * sari_score def a ( UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any]="exp" , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : List[str]=False , UpperCamelCase_ : Optional[int]=False , UpperCamelCase_ : Any=False , ) -> Tuple: snake_case__ =len(references[0] ) if any(len(UpperCamelCase_ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) snake_case__ =[[refs[i] for refs in references] for i in range(UpperCamelCase_ )] snake_case__ =sacrebleu.corpus_bleu( UpperCamelCase_ , UpperCamelCase_ , smooth_method=UpperCamelCase_ , smooth_value=UpperCamelCase_ , force=UpperCamelCase_ , lowercase=UpperCamelCase_ , use_effective_order=UpperCamelCase_ , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__( datasets.Metric ): def _lowercase ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=[ 'https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py', 'https://github.com/cocoxu/simplification/blob/master/SARI.py', 'https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py', 'https://github.com/mjpost/sacreBLEU', ] , reference_urls=[ 'https://www.aclweb.org/anthology/Q16-1029.pdf', 'https://github.com/mjpost/sacreBLEU', 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: snake_case__ ={} result.update({'sari': compute_sari(sources=_UpperCAmelCase , predictions=_UpperCAmelCase , references=_UpperCAmelCase )} ) result.update({'sacrebleu': compute_sacrebleu(predictions=_UpperCAmelCase , references=_UpperCAmelCase )} ) result.update({'exact': compute_em(predictions=_UpperCAmelCase , references=_UpperCAmelCase )} ) return result
581
0
from collections import deque from math import floor from random import random from time import time class lowerCAmelCase__ : def __init__( self : List[str] ) -> List[str]: A = {} def __UpperCamelCase ( self : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : int , __UpperCamelCase : Any=1 ) -> Dict: if self.graph.get(__UpperCamelCase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: A = [[w, v]] if not self.graph.get(__UpperCamelCase ): A = [] def __UpperCamelCase ( self : int ) -> Any: return list(self.graph ) def __UpperCamelCase ( self : str , __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] ) -> Dict: if self.graph.get(__UpperCamelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__UpperCamelCase ) def __UpperCamelCase ( self : Optional[int] , __UpperCamelCase : Dict=-2 , __UpperCamelCase : str=-1 ) -> int: if s == d: return [] A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(__UpperCamelCase ) visited.append(__UpperCamelCase ) A = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__UpperCamelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__UpperCamelCase ) != 0: A = stack[len(__UpperCamelCase ) - 1] else: A = ss # check if se have reached the starting point if len(__UpperCamelCase ) == 0: return visited def __UpperCamelCase ( self : List[Any] , __UpperCamelCase : List[Any]=-1 ) -> List[Any]: if c == -1: A = floor(random() * 10_000 ) + 10 for i in range(__UpperCamelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A = floor(random() * c ) + 1 if n != i: self.add_pair(__UpperCamelCase , __UpperCamelCase , 1 ) def __UpperCamelCase ( self : Optional[int] , __UpperCamelCase : Dict=-2 ) -> Any: A = deque() A = [] if s == -2: A = list(self.graph )[0] d.append(__UpperCamelCase ) visited.append(__UpperCamelCase ) while d: A = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def __UpperCamelCase ( self : Tuple , __UpperCamelCase : int ) -> str: A = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def __UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : List[Any] ) -> Optional[Any]: return len(self.graph[u] ) def __UpperCamelCase ( self : Any , __UpperCamelCase : Optional[int]=-2 ) -> List[str]: A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(__UpperCamelCase ) visited.append(__UpperCamelCase ) A = s A = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(__UpperCamelCase ) != 0: A = stack[len(__UpperCamelCase ) - 1] else: A = ss # check if se have reached the starting point if len(__UpperCamelCase ) == 0: return sorted_nodes def __UpperCamelCase ( self : List[Any] ) -> int: A = [] A = [] A = list(self.graph )[0] stack.append(__UpperCamelCase ) visited.append(__UpperCamelCase ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(__UpperCamelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(__UpperCamelCase ) != 0: A = stack[len(__UpperCamelCase ) - 1] else: A = False indirect_parents.append(__UpperCamelCase ) A = s A = ss # check if se have reached the starting point if len(__UpperCamelCase ) == 0: return list(__UpperCamelCase ) def __UpperCamelCase ( self : str ) -> Optional[int]: A = [] A = [] A = list(self.graph )[0] stack.append(__UpperCamelCase ) visited.append(__UpperCamelCase ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(__UpperCamelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(__UpperCamelCase ) != 0: A = stack[len(__UpperCamelCase ) - 1] else: A = False indirect_parents.append(__UpperCamelCase ) A = s A = ss # check if se have reached the starting point if len(__UpperCamelCase ) == 0: return False def __UpperCamelCase ( self : Tuple , __UpperCamelCase : Tuple=-2 , __UpperCamelCase : Union[str, Any]=-1 ) -> Dict: A = time() self.dfs(__UpperCamelCase , __UpperCamelCase ) A = time() return end - begin def __UpperCamelCase ( self : Any , __UpperCamelCase : List[str]=-2 ) -> Optional[int]: A = time() self.bfs(__UpperCamelCase ) A = time() return end - begin class lowerCAmelCase__ : def __init__( self : int ) -> Optional[int]: A = {} def __UpperCamelCase ( self : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any]=1 ) -> Any: # check if the u exists if self.graph.get(__UpperCamelCase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist A = [[w, v]] # add the other way if self.graph.get(__UpperCamelCase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist A = [[w, u]] def __UpperCamelCase ( self : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict ) -> Dict: if self.graph.get(__UpperCamelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__UpperCamelCase ) # the other way round if self.graph.get(__UpperCamelCase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(__UpperCamelCase ) def __UpperCamelCase ( self : List[Any] , __UpperCamelCase : Optional[Any]=-2 , __UpperCamelCase : List[str]=-1 ) -> Optional[int]: if s == d: return [] A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(__UpperCamelCase ) visited.append(__UpperCamelCase ) A = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__UpperCamelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__UpperCamelCase ) != 0: A = stack[len(__UpperCamelCase ) - 1] else: A = ss # check if se have reached the starting point if len(__UpperCamelCase ) == 0: return visited def __UpperCamelCase ( self : int , __UpperCamelCase : str=-1 ) -> Optional[Any]: if c == -1: A = floor(random() * 10_000 ) + 10 for i in range(__UpperCamelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A = floor(random() * c ) + 1 if n != i: self.add_pair(__UpperCamelCase , __UpperCamelCase , 1 ) def __UpperCamelCase ( self : int , __UpperCamelCase : List[Any]=-2 ) -> int: A = deque() A = [] if s == -2: A = list(self.graph )[0] d.append(__UpperCamelCase ) visited.append(__UpperCamelCase ) while d: A = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def __UpperCamelCase ( self : Optional[int] , __UpperCamelCase : str ) -> Optional[Any]: return len(self.graph[u] ) def __UpperCamelCase ( self : Optional[int] ) -> str: A = [] A = [] A = list(self.graph )[0] stack.append(__UpperCamelCase ) visited.append(__UpperCamelCase ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(__UpperCamelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(__UpperCamelCase ) != 0: A = stack[len(__UpperCamelCase ) - 1] else: A = False indirect_parents.append(__UpperCamelCase ) A = s A = ss # check if se have reached the starting point if len(__UpperCamelCase ) == 0: return list(__UpperCamelCase ) def __UpperCamelCase ( self : Optional[int] ) -> Optional[int]: A = [] A = [] A = list(self.graph )[0] stack.append(__UpperCamelCase ) visited.append(__UpperCamelCase ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(__UpperCamelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(__UpperCamelCase ) != 0: A = stack[len(__UpperCamelCase ) - 1] else: A = False indirect_parents.append(__UpperCamelCase ) A = s A = ss # check if se have reached the starting point if len(__UpperCamelCase ) == 0: return False def __UpperCamelCase ( self : str ) -> int: return list(self.graph ) def __UpperCamelCase ( self : List[str] , __UpperCamelCase : Optional[int]=-2 , __UpperCamelCase : Union[str, Any]=-1 ) -> Optional[Any]: A = time() self.dfs(__UpperCamelCase , __UpperCamelCase ) A = time() return end - begin def __UpperCamelCase ( self : int , __UpperCamelCase : List[Any]=-2 ) -> Optional[Any]: A = time() self.bfs(__UpperCamelCase ) A = time() return end - begin
106
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class lowerCAmelCase__ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: A = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) A = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(__UpperCamelCase ) A = -1 A = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__UpperCamelCase ) A = model.generate(__UpperCamelCase , max_new_tokens=10 , do_sample=__UpperCamelCase ) A = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: A = TextStreamer(__UpperCamelCase ) model.generate(__UpperCamelCase , max_new_tokens=10 , do_sample=__UpperCamelCase , streamer=__UpperCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A = cs.out[:-1] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def __UpperCamelCase ( self : int ) -> List[Any]: A = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) A = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(__UpperCamelCase ) A = -1 A = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__UpperCamelCase ) A = model.generate(__UpperCamelCase , max_new_tokens=10 , do_sample=__UpperCamelCase ) A = tokenizer.decode(greedy_ids[0] ) A = TextIteratorStreamer(__UpperCamelCase ) A = {'input_ids': input_ids, 'max_new_tokens': 10, 'do_sample': False, 'streamer': streamer} A = Thread(target=model.generate , kwargs=__UpperCamelCase ) thread.start() A = '' for new_text in streamer: streamer_text += new_text self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def __UpperCamelCase ( self : int ) -> Tuple: A = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) A = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(__UpperCamelCase ) A = -1 A = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__UpperCamelCase ) A = model.generate(__UpperCamelCase , max_new_tokens=10 , do_sample=__UpperCamelCase ) A = greedy_ids[:, input_ids.shape[1] :] A = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: A = TextStreamer(__UpperCamelCase , skip_prompt=__UpperCamelCase ) model.generate(__UpperCamelCase , max_new_tokens=10 , do_sample=__UpperCamelCase , streamer=__UpperCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A = cs.out[:-1] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def __UpperCamelCase ( self : List[Any] ) -> Tuple: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them A = AutoTokenizer.from_pretrained('distilgpt2' ) A = AutoModelForCausalLM.from_pretrained('distilgpt2' ).to(__UpperCamelCase ) A = -1 A = torch.ones((1, 5) , device=__UpperCamelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: A = TextStreamer(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) model.generate(__UpperCamelCase , max_new_tokens=1 , do_sample=__UpperCamelCase , streamer=__UpperCamelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token A = cs.out[:-1] # Remove the final "\n" A = tokenizer(__UpperCamelCase , return_tensors='pt' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def __UpperCamelCase ( self : Any ) -> Dict: A = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) A = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(__UpperCamelCase ) A = -1 A = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__UpperCamelCase ) A = TextIteratorStreamer(__UpperCamelCase , timeout=0.0_0_1 ) A = {'input_ids': input_ids, 'max_new_tokens': 10, 'do_sample': False, 'streamer': streamer} A = Thread(target=model.generate , kwargs=__UpperCamelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__UpperCamelCase ): A = '' for new_text in streamer: streamer_text += new_text
106
1
"""simple docstring""" # Lint as: python3 import itertools import os import re lowerCAmelCase : Tuple = re.compile(r"""([A-Z]+)([A-Z][a-z])""") lowerCAmelCase : Union[str, Any] = re.compile(r"""([a-z\d])([A-Z])""") lowerCAmelCase : Any = re.compile(r"""(?<!_)_(?!_)""") lowerCAmelCase : Tuple = re.compile(r"""(_{2,})""") lowerCAmelCase : Any = r"""^\w+(\.\w+)*$""" lowerCAmelCase : Optional[int] = r"""<>:/\|?*""" def a__ ( snake_case__ ) -> Tuple: lowerCamelCase = _uppercase_uppercase_re.sub(R"""\1_\2""" , snake_case__ ) lowerCamelCase = _lowercase_uppercase_re.sub(R"""\1_\2""" , snake_case__ ) return name.lower() def a__ ( snake_case__ ) -> List[str]: lowerCamelCase = _single_underscore_re.split(snake_case__ ) lowerCamelCase = [_multiple_underscores_re.split(snake_case__ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(snake_case__ ) if n != """""" ) def a__ ( snake_case__ ) -> Optional[int]: if os.path.basename(snake_case__ ) != name: raise ValueError(F'Should be a dataset name, not a path: {name}' ) return camelcase_to_snakecase(snake_case__ ) def a__ ( snake_case__ , snake_case__ ) -> Tuple: if os.path.basename(snake_case__ ) != name: raise ValueError(F'Should be a dataset name, not a path: {name}' ) if not re.match(_split_re , snake_case__ ): raise ValueError(F'Split name should match \'{_split_re}\'\' but got \'{split}\'.' ) return F'{filename_prefix_for_name(snake_case__ )}-{split}' def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=None ) -> Tuple: lowerCamelCase = filename_prefix_for_split(snake_case__ , snake_case__ ) if filetype_suffix: prefix += F'.{filetype_suffix}' lowerCamelCase = os.path.join(snake_case__ , snake_case__ ) return F'{filepath}*' def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None ) -> Tuple: lowerCamelCase = filename_prefix_for_split(snake_case__ , snake_case__ ) lowerCamelCase = os.path.join(snake_case__ , snake_case__ ) if shard_lengths: lowerCamelCase = len(snake_case__ ) lowerCamelCase = [F'{prefix}-{shard_id:05d}-of-{num_shards:05d}' for shard_id in range(snake_case__ )] if filetype_suffix: lowerCamelCase = [filename + F'.{filetype_suffix}' for filename in filenames] return filenames else: lowerCamelCase = prefix if filetype_suffix: filename += F'.{filetype_suffix}' return [filename]
533
"""simple docstring""" def a__ ( snake_case__ ) -> list: if n_term == "": return [] lowerCamelCase = [] for temp in range(int(snake_case__ ) ): series.append(F'1/{temp + 1}' if series else """1""" ) return series if __name__ == "__main__": lowerCAmelCase : Optional[int] = input("""Enter the last number (nth term) of the Harmonic Series""") print("""Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n""") print(harmonic_series(nth_term))
533
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a_ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') @dataclass class _UpperCamelCase : '''simple docstring''' lowerCamelCase__ =field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) lowerCamelCase__ =field( default=__A , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowerCamelCase__ =field( default=__A , metadata={'help': 'The column name of the images in the files.'} ) lowerCamelCase__ =field(default=__A , metadata={'help': 'A folder containing the training data.'} ) lowerCamelCase__ =field(default=__A , metadata={'help': 'A folder containing the validation data.'} ) lowerCamelCase__ =field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) lowerCamelCase__ =field( default=__A , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCamelCase__ =field( default=__A , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def __UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = {} if self.train_dir is not None: SCREAMING_SNAKE_CASE : Dict = self.train_dir if self.validation_dir is not None: SCREAMING_SNAKE_CASE : Tuple = self.validation_dir SCREAMING_SNAKE_CASE : Any = data_files if data_files else None @dataclass class _UpperCamelCase : '''simple docstring''' lowerCamelCase__ =field( default=__A , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) lowerCamelCase__ =field( default=__A , metadata={'help': 'Pretrained config name or path if not the same as model_name_or_path'} ) lowerCamelCase__ =field( default=__A , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) lowerCamelCase__ =field( default=__A , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) lowerCamelCase__ =field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowerCamelCase__ =field(default=__A , metadata={'help': 'Name or path of preprocessor config.'} ) lowerCamelCase__ =field( default=__A , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) lowerCamelCase__ =field( default=0.75 , metadata={'help': 'The ratio of the number of masked tokens in the input sequence.'} ) lowerCamelCase__ =field( default=__A , metadata={'help': 'Whether or not to train with normalized pixel values as target.'} ) @dataclass class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ =field( default=1e-3 , metadata={'help': 'Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'} ) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : List[Any] = torch.stack([example["pixel_values"] for example in examples]) return {"pixel_values": pixel_values} def lowerCamelCase__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. SCREAMING_SNAKE_CASE : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_mae" , _a , _a) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout)] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() SCREAMING_SNAKE_CASE : List[Any] = training_args.get_process_log_level() logger.setLevel(_a) transformers.utils.logging.set_verbosity(_a) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fpaa}") logger.info(f"Training/evaluation parameters {training_args}") # Detecting last checkpoint. SCREAMING_SNAKE_CASE : Dict = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE : List[str] = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome.") elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch.") # Initialize our dataset. SCREAMING_SNAKE_CASE : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. SCREAMING_SNAKE_CASE : Dict = None if "validation" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _a) and data_args.train_val_split > 0.0: SCREAMING_SNAKE_CASE : str = ds["train"].train_test_split(data_args.train_val_split) SCREAMING_SNAKE_CASE : Tuple = split["train"] SCREAMING_SNAKE_CASE : Dict = split["test"] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE : str = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name: SCREAMING_SNAKE_CASE : Union[str, Any] = ViTMAEConfig.from_pretrained(model_args.config_name , **_a) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE : Union[str, Any] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_a) else: SCREAMING_SNAKE_CASE : List[Any] = ViTMAEConfig() logger.warning("You are instantiating a new config instance from scratch.") if model_args.config_overrides is not None: logger.info(f"Overriding config: {model_args.config_overrides}") config.update_from_string(model_args.config_overrides) logger.info(f"New config: {config}") # adapt config config.update( { "mask_ratio": model_args.mask_ratio, "norm_pix_loss": model_args.norm_pix_loss, }) # create image processor if model_args.image_processor_name: SCREAMING_SNAKE_CASE : Optional[Any] = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_a) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE : int = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_a) else: SCREAMING_SNAKE_CASE : Any = ViTImageProcessor() # create model if model_args.model_name_or_path: SCREAMING_SNAKE_CASE : Any = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path) , config=_a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("Training new model from scratch") SCREAMING_SNAKE_CASE : Optional[int] = ViTMAEForPreTraining(_a) if training_args.do_train: SCREAMING_SNAKE_CASE : Optional[Any] = ds["train"].column_names else: SCREAMING_SNAKE_CASE : List[Any] = ds["validation"].column_names if data_args.image_column_name is not None: SCREAMING_SNAKE_CASE : Optional[int] = data_args.image_column_name elif "image" in column_names: SCREAMING_SNAKE_CASE : Tuple = "image" elif "img" in column_names: SCREAMING_SNAKE_CASE : str = "img" else: SCREAMING_SNAKE_CASE : Union[str, Any] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: SCREAMING_SNAKE_CASE : List[Any] = image_processor.size["shortest_edge"] else: SCREAMING_SNAKE_CASE : Optional[Any] = (image_processor.size["height"], image_processor.size["width"]) SCREAMING_SNAKE_CASE : Any = Compose( [ Lambda(lambda _a: img.convert("RGB") if img.mode != "RGB" else img), RandomResizedCrop(_a , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std), ]) def preprocess_images(_a): SCREAMING_SNAKE_CASE : Any = [transforms(_a) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("--do_train requires a train dataset") if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE : int = ds["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples)) # Set the training transforms ds["train"].set_transform(_a) if training_args.do_eval: if "validation" not in ds: raise ValueError("--do_eval requires a validation dataset") if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE : List[str] = ( ds["validation"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples)) ) # Set the validation transforms ds["validation"].set_transform(_a) # Compute absolute learning rate SCREAMING_SNAKE_CASE : Optional[int] = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: SCREAMING_SNAKE_CASE : List[Any] = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer SCREAMING_SNAKE_CASE : Any = Trainer( model=_a , args=_a , train_dataset=ds["train"] if training_args.do_train else None , eval_dataset=ds["validation"] if training_args.do_eval else None , tokenizer=_a , data_collator=_a , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE : int = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE : Any = last_checkpoint SCREAMING_SNAKE_CASE : Optional[int] = trainer.train(resume_from_checkpoint=_a) trainer.save_model() trainer.log_metrics("train" , train_result.metrics) trainer.save_metrics("train" , train_result.metrics) trainer.save_state() # Evaluation if training_args.do_eval: SCREAMING_SNAKE_CASE : Dict = trainer.evaluate() trainer.log_metrics("eval" , _a) trainer.save_metrics("eval" , _a) # Write model card and (optionally) push to hub SCREAMING_SNAKE_CASE : List[str] = { "tasks": "masked-auto-encoding", "dataset": data_args.dataset_name, "tags": ["masked-auto-encoding"], } if training_args.push_to_hub: trainer.push_to_hub(**_a) else: trainer.create_model_card(**_a) def lowerCamelCase__ ( _a): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
25
from __future__ import annotations def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Optional[Any] = 2 SCREAMING_SNAKE_CASE : Optional[int] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_a) if n > 1: factors.append(_a) return factors if __name__ == "__main__": import doctest doctest.testmod()
25
1
"""simple docstring""" def _a ( _snake_case , _snake_case , _snake_case = 0 , _snake_case = 0 ): """simple docstring""" UpperCAmelCase = right or len(_snake_case ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(_snake_case , _snake_case , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
74
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position _UpperCamelCase = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _UpperCamelCase = concatenate_datasets _UpperCamelCase = DownloadConfig _UpperCamelCase = DownloadManager _UpperCamelCase = DownloadMode _UpperCamelCase = DownloadConfig _UpperCamelCase = DownloadMode _UpperCamelCase = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
74
1
"""simple docstring""" from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def lowerCAmelCase ( __UpperCamelCase = "isbn/0140328726" ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = olid.strip().strip("""/""" ) # Remove leading/trailing whitespace & slashes if new_olid.count("""/""" ) != 1: UpperCAmelCase__ : Dict = F"{olid} is not a valid Open Library olid" raise ValueError(__UpperCamelCase ) return requests.get(F"https://openlibrary.org/{new_olid}.json" ).json() def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : Any = { """title""": """Title""", """publish_date""": """Publish date""", """authors""": """Authors""", """number_of_pages""": """Number of pages:""", """first_sentence""": """First sentence""", """isbn_10""": """ISBN (10)""", """isbn_13""": """ISBN (13)""", } UpperCAmelCase__ : Dict = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} UpperCAmelCase__ : str = [ get_openlibrary_data(author["""key"""] )["""name"""] for author in data["""Authors"""] ] UpperCAmelCase__ : Dict = data["""First sentence"""]["""value"""] for key, value in data.items(): if isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCAmelCase__ : Dict = """, """.join(__UpperCamelCase ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: __UpperCAmelCase = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F"Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.") continue print(F"\nSearching Open Library for ISBN: {isbn}...\n") try: __UpperCAmelCase = summarize_book(get_openlibrary_data(F"isbn/{isbn}")) print('\n'.join(F"{key}: {value}" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F"Sorry, there are no results for ISBN: {isbn}.")
65
'''simple docstring''' import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore _lowerCAmelCase :Any = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" _lowerCAmelCase :Any = [file for file in filepaths if file != file.lower()] if upper_files: print(f"""{len(upper_files)} files contain uppercase characters:""") print("""\n""".join(upper_files) + """\n""") _lowerCAmelCase :Optional[int] = [file for file in filepaths if """ """ in file] if space_files: print(f"""{len(space_files)} files contain space characters:""") print("""\n""".join(space_files) + """\n""") _lowerCAmelCase :List[str] = [file for file in filepaths if """-""" in file] if hyphen_files: print(f"""{len(hyphen_files)} files contain hyphen characters:""") print("""\n""".join(hyphen_files) + """\n""") _lowerCAmelCase :Optional[int] = [file for file in filepaths if os.sep not in file] if nodir_files: print(f"""{len(nodir_files)} files are not in a directory:""") print("""\n""".join(nodir_files) + """\n""") _lowerCAmelCase :str = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
251
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase__ : Dict = { "configuration_rag": ["RagConfig"], "retrieval_rag": ["RagRetriever"], "tokenization_rag": ["RagTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Optional[int] = [ "RagModel", "RagPreTrainedModel", "RagSequenceForGeneration", "RagTokenForGeneration", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Optional[Any] = [ "TFRagModel", "TFRagPreTrainedModel", "TFRagSequenceForGeneration", "TFRagTokenForGeneration", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys UpperCamelCase__ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
620
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy UpperCamelCase__ : Optional[int] = logging.getLogger(__name__) def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : torch.nn.Module , _SCREAMING_SNAKE_CASE : BnbQuantizationConfig , _SCREAMING_SNAKE_CASE : Union[str, os.PathLike] = None , _SCREAMING_SNAKE_CASE : Optional[Dict[str, Union[int, str, torch.device]]] = None , _SCREAMING_SNAKE_CASE : Optional[List[str]] = None , _SCREAMING_SNAKE_CASE : Optional[Dict[Union[int, str], Union[int, str]]] = None , _SCREAMING_SNAKE_CASE : Optional[Union[str, os.PathLike]] = None , _SCREAMING_SNAKE_CASE : bool = False , ): """simple docstring""" SCREAMING_SNAKE_CASE_ = bnb_quantization_config.load_in_abit SCREAMING_SNAKE_CASE_ = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( 'You have a version of `bitsandbytes` that is not compatible with 8bit quantization,' ' make sure you have the latest version of `bitsandbytes` installed.' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( 'You have a version of `bitsandbytes` that is not compatible with 4bit quantization,' 'make sure you have the latest version of `bitsandbytes` installed.' ) SCREAMING_SNAKE_CASE_ = [] # custom device map if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(device_map.keys() ) > 1: SCREAMING_SNAKE_CASE_ = [key for key, value in device_map.items() if value in ['disk', 'cpu']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: SCREAMING_SNAKE_CASE_ = get_keys_to_not_convert(_SCREAMING_SNAKE_CASE ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(_SCREAMING_SNAKE_CASE ) # compatibility with peft SCREAMING_SNAKE_CASE_ = load_in_abit SCREAMING_SNAKE_CASE_ = load_in_abit SCREAMING_SNAKE_CASE_ = get_parameter_device(_SCREAMING_SNAKE_CASE ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( 'It is not recommended to quantize a loaded model. ' 'The model should be instantiated under the `init_empty_weights` context manager.' ) SCREAMING_SNAKE_CASE_ = replace_with_bnb_layers(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , modules_to_not_convert=_SCREAMING_SNAKE_CASE ) # convert param to the right dtype SCREAMING_SNAKE_CASE_ = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: SCREAMING_SNAKE_CASE_ = name.replace('.weight' , '' ).replace('.bias' , '' ) SCREAMING_SNAKE_CASE_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(_SCREAMING_SNAKE_CASE ): param.to(_SCREAMING_SNAKE_CASE ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info( f"""The model device type is {model_device.type}. However, cuda is needed for quantization.""" 'We move the model to cuda.' ) return model elif weights_location is None: raise RuntimeError( f"""`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} """ ) else: with init_empty_weights(): SCREAMING_SNAKE_CASE_ = replace_with_bnb_layers( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , modules_to_not_convert=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = get_quantized_model_device_map( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_memory=_SCREAMING_SNAKE_CASE , no_split_module_classes=_SCREAMING_SNAKE_CASE , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = any(x in list(device_map.values() ) for x in ['cpu', 'disk'] ) load_checkpoint_in_model( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , dtype=bnb_quantization_config.torch_dtype , offload_folder=_SCREAMING_SNAKE_CASE , offload_state_dict=_SCREAMING_SNAKE_CASE , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(_SCREAMING_SNAKE_CASE , device_map=_SCREAMING_SNAKE_CASE , offload_dir=_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[str]=None , _SCREAMING_SNAKE_CASE : List[str]=None , _SCREAMING_SNAKE_CASE : Union[str, Any]=None ): """simple docstring""" if device_map is None: if torch.cuda.is_available(): SCREAMING_SNAKE_CASE_ = {'': torch.cuda.current_device()} else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info('The device_map was not initialized.' 'Setting device_map to `{\'\':torch.cuda.current_device()}`.' ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( 'If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ' '\'sequential\'.' ) SCREAMING_SNAKE_CASE_ = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = special_dtypes SCREAMING_SNAKE_CASE_ = no_split_module_classes SCREAMING_SNAKE_CASE_ = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": SCREAMING_SNAKE_CASE_ = get_balanced_memory( _SCREAMING_SNAKE_CASE , low_zero=(device_map == 'balanced_low_0') , max_memory=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE_ = max_memory SCREAMING_SNAKE_CASE_ = infer_auto_device_map(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # check if don't have any quantized module on the cpu SCREAMING_SNAKE_CASE_ = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules SCREAMING_SNAKE_CASE_ = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( '\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ' ) else: logger.info( 'Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit' ) del device_map_without_some_modules return device_map def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int=None , _SCREAMING_SNAKE_CASE : Union[str, Any]=None ): """simple docstring""" if modules_to_not_convert is None: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = _replace_with_bnb_layers( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[Any]=None , _SCREAMING_SNAKE_CASE : str=None , ): """simple docstring""" SCREAMING_SNAKE_CASE_ = False for name, module in model.named_children(): if current_key_name is None: SCREAMING_SNAKE_CASE_ = [] current_key_name.append(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` SCREAMING_SNAKE_CASE_ = '.'.join(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: SCREAMING_SNAKE_CASE_ = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: SCREAMING_SNAKE_CASE_ = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=_SCREAMING_SNAKE_CASE , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: SCREAMING_SNAKE_CASE_ = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('load_in_8bit and load_in_4bit can\'t be both False' ) SCREAMING_SNAKE_CASE_ = module.weight.data if module.bias is not None: SCREAMING_SNAKE_CASE_ = module.bias.data bnb_module.requires_grad_(_SCREAMING_SNAKE_CASE ) setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = True if len(list(module.children() ) ) > 0: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = _replace_with_bnb_layers( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" with init_empty_weights(): SCREAMING_SNAKE_CASE_ = deepcopy(_SCREAMING_SNAKE_CASE ) # this has 0 cost since it is done inside `init_empty_weights` context manager` SCREAMING_SNAKE_CASE_ = find_tied_parameters(_SCREAMING_SNAKE_CASE ) # For compatibility with Accelerate < 0.18 if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: SCREAMING_SNAKE_CASE_ = sum(_SCREAMING_SNAKE_CASE , [] ) SCREAMING_SNAKE_CASE_ = len(_SCREAMING_SNAKE_CASE ) > 0 # Check if it is a base model SCREAMING_SNAKE_CASE_ = False if hasattr(_SCREAMING_SNAKE_CASE , 'base_model_prefix' ): SCREAMING_SNAKE_CASE_ = not hasattr(_SCREAMING_SNAKE_CASE , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head SCREAMING_SNAKE_CASE_ = list(model.named_children() ) SCREAMING_SNAKE_CASE_ = [list_modules[-1][0]] # add last module together with tied weights SCREAMING_SNAKE_CASE_ = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = list(set(_SCREAMING_SNAKE_CASE ) ) + list(_SCREAMING_SNAKE_CASE ) # remove ".weight" from the keys SCREAMING_SNAKE_CASE_ = ['.weight', '.bias'] SCREAMING_SNAKE_CASE_ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: SCREAMING_SNAKE_CASE_ = name.replace(_SCREAMING_SNAKE_CASE , '' ) filtered_module_names.append(_SCREAMING_SNAKE_CASE ) return filtered_module_names def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" for m in model.modules(): if isinstance(_SCREAMING_SNAKE_CASE , bnb.nn.Linearabit ): return True return False def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : nn.Module ): """simple docstring""" return next(parameter.parameters() ).device def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ): """simple docstring""" if fpaa_statistics is None: set_module_tensor_to_device(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 0 , dtype=_SCREAMING_SNAKE_CASE , value=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = param_name SCREAMING_SNAKE_CASE_ = model if "." in tensor_name: SCREAMING_SNAKE_CASE_ = tensor_name.split('.' ) for split in splits[:-1]: SCREAMING_SNAKE_CASE_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if new_module is None: raise ValueError(f"""{module} has no attribute {split}.""" ) SCREAMING_SNAKE_CASE_ = new_module SCREAMING_SNAKE_CASE_ = splits[-1] # offload weights SCREAMING_SNAKE_CASE_ = False offload_weight(module._parameters[tensor_name] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE ) if hasattr(module._parameters[tensor_name] , 'SCB' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('weight' , 'SCB' ) , _SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE , ) else: offload_weight(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE ) offload_weight(_SCREAMING_SNAKE_CASE , param_name.replace('weight' , 'SCB' ) , _SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE ) set_module_tensor_to_device(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 'meta' , dtype=_SCREAMING_SNAKE_CASE , value=torch.empty(*param.size() ) )
620
1
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase :int = StableDiffusionDiffEditPipeline lowerCamelCase :Tuple = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} lowerCamelCase :int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} lowerCamelCase :Optional[int] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCamelCase :List[str] = frozenset([] ) def UpperCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) _A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=lowerCAmelCase_ , ) _A = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=lowerCAmelCase_ , set_alpha_to_one=lowerCAmelCase_ , ) _A = DDIMInverseScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=lowerCAmelCase_ , set_alpha_to_zero=lowerCAmelCase_ , ) torch.manual_seed(0 ) _A = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) _A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) _A = CLIPTextModel(lowerCAmelCase_ ) _A = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _A = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=0 ) -> Any: _A = floats_tensor((1, 16, 16) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) _A = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) if str(lowerCAmelCase_ ).startswith("""mps""" ): _A = torch.manual_seed(lowerCAmelCase_ ) else: _A = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _A = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=0 ) -> str: _A = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) _A = image.cpu().permute(0 , 2 , 3 , 1 )[0] _A = Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert("""RGB""" ) if str(lowerCAmelCase_ ).startswith("""mps""" ): _A = torch.manual_seed(lowerCAmelCase_ ) else: _A = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _A = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=0 ) -> List[Any]: _A = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) _A = image.cpu().permute(0 , 2 , 3 , 1 )[0] _A = Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert("""RGB""" ) if str(lowerCAmelCase_ ).startswith("""mps""" ): _A = torch.manual_seed(lowerCAmelCase_ ) else: _A = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _A = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def UpperCAmelCase ( self ) -> int: if not hasattr(self.pipeline_class , """_optional_components""" ): return _A = self.get_dummy_components() _A = self.pipeline_class(**lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) _A = self.get_dummy_inputs(lowerCAmelCase_ ) _A = pipe(**lowerCAmelCase_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCAmelCase_ ) _A = self.pipeline_class.from_pretrained(lowerCAmelCase_ ) pipe_loaded.to(lowerCAmelCase_ ) pipe_loaded.set_progress_bar_config(disable=lowerCAmelCase_ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCAmelCase_ , lowerCAmelCase_ ) is None , F'''`{optional_component}` did not stay set to None after loading.''' , ) _A = self.get_dummy_inputs(lowerCAmelCase_ ) _A = pipe_loaded(**lowerCAmelCase_ )[0] _A = np.abs(output - output_loaded ).max() self.assertLess(lowerCAmelCase_ , 1E-4 ) def UpperCAmelCase ( self ) -> List[str]: _A = """cpu""" _A = self.get_dummy_components() _A = self.pipeline_class(**lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _A = self.get_dummy_mask_inputs(lowerCAmelCase_ ) _A = pipe.generate_mask(**lowerCAmelCase_ ) _A = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) _A = np.array([0] * 9 ) _A = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase_ , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def UpperCAmelCase ( self ) -> Union[str, Any]: _A = """cpu""" _A = self.get_dummy_components() _A = self.pipeline_class(**lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _A = self.get_dummy_inversion_inputs(lowerCAmelCase_ ) _A = pipe.invert(**lowerCAmelCase_ ).images _A = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) _A = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799] , ) _A = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase_ , 1E-3 ) def UpperCAmelCase ( self ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def UpperCAmelCase ( self ) -> Tuple: _A = """cpu""" _A = self.get_dummy_components() _A = {"""beta_start""": 0.0_0085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} _A = DPMSolverMultistepScheduler(**lowerCAmelCase_ ) _A = DPMSolverMultistepInverseScheduler(**lowerCAmelCase_ ) _A = self.pipeline_class(**lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _A = self.get_dummy_inversion_inputs(lowerCAmelCase_ ) _A = pipe.invert(**lowerCAmelCase_ ).images _A = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) _A = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799] , ) _A = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase_ , 1E-3 ) @require_torch_gpu @slow class a ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def UpperCAmelCase ( cls ) -> str: _A = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) _A = raw_image.convert("""RGB""" ).resize((7_68, 7_68) ) _A = raw_image def UpperCAmelCase ( self ) -> Any: _A = torch.manual_seed(0 ) _A = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=lowerCAmelCase_ , torch_dtype=torch.floataa ) _A = DDIMScheduler.from_config(pipe.scheduler.config ) _A = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _A = """a bowl of fruit""" _A = """a bowl of pears""" _A = pipe.generate_mask( image=self.raw_image , source_prompt=lowerCAmelCase_ , target_prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , ) _A = pipe.invert( prompt=lowerCAmelCase_ , image=self.raw_image , inpaint_strength=0.7 , generator=lowerCAmelCase_ ).latents _A = pipe( prompt=lowerCAmelCase_ , mask_image=lowerCAmelCase_ , image_latents=lowerCAmelCase_ , generator=lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] _A = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5E-1 def UpperCAmelCase ( self ) -> int: _A = torch.manual_seed(0 ) _A = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=lowerCAmelCase_ , torch_dtype=torch.floataa ) _A = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _A = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _A = """a bowl of fruit""" _A = """a bowl of pears""" _A = pipe.generate_mask( image=self.raw_image , source_prompt=lowerCAmelCase_ , target_prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , ) _A = pipe.invert( prompt=lowerCAmelCase_ , image=self.raw_image , inpaint_strength=0.7 , generator=lowerCAmelCase_ , num_inference_steps=25 , ).latents _A = pipe( prompt=lowerCAmelCase_ , mask_image=lowerCAmelCase_ , image_latents=lowerCAmelCase_ , generator=lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] _A = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5E-1
401
import string from math import logaa def snake_case ( snake_case__ :str , snake_case__ :str) -> int: _A = document.translate( str.maketrans("""""" , """""" , string.punctuation)).replace("""\n""" , """""") _A = document_without_punctuation.split(""" """) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()]) def snake_case ( snake_case__ :str , snake_case__ :str) -> tuple[int, int]: _A = corpus.lower().translate( str.maketrans("""""" , """""" , string.punctuation)) # strip all punctuation and replace it with '' _A = corpus_without_punctuation.split("""\n""") _A = term.lower() return (len([doc for doc in docs if term in doc]), len(snake_case__)) def snake_case ( snake_case__ :int , snake_case__ :int , snake_case__ :str=False) -> float: if smoothing: if n == 0: raise ValueError("""log10(0) is undefined.""") return round(1 + logaa(n / (1 + df)) , 3) if df == 0: raise ZeroDivisionError("""df must be > 0""") elif n == 0: raise ValueError("""log10(0) is undefined.""") return round(logaa(n / df) , 3) def snake_case ( snake_case__ :int , snake_case__ :int) -> float: return round(tf * idf , 3)
401
1
'''simple docstring''' import pickle import numpy as np from matplotlib import pyplot as plt class _a : """simple docstring""" def __init__( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE=0.2 ,__SCREAMING_SNAKE_CASE=0.2 ): SCREAMING_SNAKE_CASE : Optional[int] = bp_numa SCREAMING_SNAKE_CASE : List[Any] = bp_numa SCREAMING_SNAKE_CASE : List[Any] = bp_numa SCREAMING_SNAKE_CASE : List[Any] = conva_get[:2] SCREAMING_SNAKE_CASE : Any = conva_get[2] SCREAMING_SNAKE_CASE : Tuple = size_pa SCREAMING_SNAKE_CASE : Union[str, Any] = rate_w SCREAMING_SNAKE_CASE : Optional[int] = rate_t SCREAMING_SNAKE_CASE : List[Any] = [ np.mat(-1 * np.random.rand(self.conva[0] ,self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] SCREAMING_SNAKE_CASE : Any = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) SCREAMING_SNAKE_CASE : Any = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) SCREAMING_SNAKE_CASE : Tuple = -2 * np.random.rand(self.conva[1] ) + 1 SCREAMING_SNAKE_CASE : str = -2 * np.random.rand(self.num_bpa ) + 1 SCREAMING_SNAKE_CASE : List[str] = -2 * np.random.rand(self.num_bpa ) + 1 def __a ( self ,__SCREAMING_SNAKE_CASE ): # save model dict with pickle SCREAMING_SNAKE_CASE : Union[str, Any] = { 'num_bp1': self.num_bpa, 'num_bp2': self.num_bpa, 'num_bp3': self.num_bpa, 'conv1': self.conva, 'step_conv1': self.step_conva, 'size_pooling1': self.size_poolinga, 'rate_weight': self.rate_weight, 'rate_thre': self.rate_thre, 'w_conv1': self.w_conva, 'wkj': self.wkj, 'vji': self.vji, 'thre_conv1': self.thre_conva, 'thre_bp2': self.thre_bpa, 'thre_bp3': self.thre_bpa, } with open(UpperCAmelCase_ ,'wb' ) as f: pickle.dump(UpperCAmelCase_ ,UpperCAmelCase_ ) print(f"""Model saved: {save_path}""" ) @classmethod def __a ( cls ,__SCREAMING_SNAKE_CASE ): # read saved model with open(UpperCAmelCase_ ,'rb' ) as f: SCREAMING_SNAKE_CASE : str = pickle.load(UpperCAmelCase_ ) # noqa: S301 SCREAMING_SNAKE_CASE : Optional[Any] = model_dic.get('conv1' ) conv_get.append(model_dic.get('step_conv1' ) ) SCREAMING_SNAKE_CASE : str = model_dic.get('size_pooling1' ) SCREAMING_SNAKE_CASE : str = model_dic.get('num_bp1' ) SCREAMING_SNAKE_CASE : List[Any] = model_dic.get('num_bp2' ) SCREAMING_SNAKE_CASE : List[Any] = model_dic.get('num_bp3' ) SCREAMING_SNAKE_CASE : List[Any] = model_dic.get('rate_weight' ) SCREAMING_SNAKE_CASE : int = model_dic.get('rate_thre' ) # create model instance SCREAMING_SNAKE_CASE : List[Any] = CNN(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) # modify model parameter SCREAMING_SNAKE_CASE : Any = model_dic.get('w_conv1' ) SCREAMING_SNAKE_CASE : List[Any] = model_dic.get('wkj' ) SCREAMING_SNAKE_CASE : Tuple = model_dic.get('vji' ) SCREAMING_SNAKE_CASE : Tuple = model_dic.get('thre_conv1' ) SCREAMING_SNAKE_CASE : Union[str, Any] = model_dic.get('thre_bp2' ) SCREAMING_SNAKE_CASE : str = model_dic.get('thre_bp3' ) return conv_ins def __a ( self ,__SCREAMING_SNAKE_CASE ): return 1 / (1 + np.exp(-1 * x )) def __a ( self ,__SCREAMING_SNAKE_CASE ): return round(UpperCAmelCase_ ,3 ) def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ): # convolution process SCREAMING_SNAKE_CASE : str = convs[0] SCREAMING_SNAKE_CASE : Optional[int] = convs[1] SCREAMING_SNAKE_CASE : int = np.shape(UpperCAmelCase_ )[0] # get the data slice of original image data, data_focus SCREAMING_SNAKE_CASE : List[Any] = [] for i_focus in range(0 ,size_data - size_conv + 1 ,UpperCAmelCase_ ): for j_focus in range(0 ,size_data - size_conv + 1 ,UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : str = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(UpperCAmelCase_ ) # calculate the feature map of every single kernel, and saved as list of matrix SCREAMING_SNAKE_CASE : Tuple = [] SCREAMING_SNAKE_CASE : Tuple = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : Optional[Any] = [] for i_focus in range(len(UpperCAmelCase_ ) ): SCREAMING_SNAKE_CASE : int = ( np.sum(np.multiply(data_focus[i_focus] ,w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE : int = np.asmatrix(UpperCAmelCase_ ).reshape( UpperCAmelCase_ ,UpperCAmelCase_ ) data_featuremap.append(UpperCAmelCase_ ) # expanding the data slice to One dimenssion SCREAMING_SNAKE_CASE : Tuple = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE : str = np.asarray(UpperCAmelCase_ ) return focus_list, data_featuremap def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE="average_pool" ): # pooling process SCREAMING_SNAKE_CASE : str = len(featuremaps[0] ) SCREAMING_SNAKE_CASE : List[str] = int(size_map / size_pooling ) SCREAMING_SNAKE_CASE : Dict = [] for i_map in range(len(UpperCAmelCase_ ) ): SCREAMING_SNAKE_CASE : Optional[Any] = featuremaps[i_map] SCREAMING_SNAKE_CASE : Dict = [] for i_focus in range(0 ,UpperCAmelCase_ ,UpperCAmelCase_ ): for j_focus in range(0 ,UpperCAmelCase_ ,UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : Any = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(UpperCAmelCase_ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE : Optional[Any] = np.asmatrix(UpperCAmelCase_ ).reshape(UpperCAmelCase_ ,UpperCAmelCase_ ) featuremap_pooled.append(UpperCAmelCase_ ) return featuremap_pooled def __a ( self ,__SCREAMING_SNAKE_CASE ): # expanding three dimension data to one dimension list SCREAMING_SNAKE_CASE : Optional[Any] = [] for i in range(len(UpperCAmelCase_ ) ): SCREAMING_SNAKE_CASE : Dict = np.shape(data[i] ) SCREAMING_SNAKE_CASE : Dict = data[i].reshape(1 ,shapes[0] * shapes[1] ) SCREAMING_SNAKE_CASE : str = data_listed.getA().tolist()[0] data_expanded.extend(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = np.asarray(UpperCAmelCase_ ) return data_expanded def __a ( self ,__SCREAMING_SNAKE_CASE ): # expanding matrix to one dimension list SCREAMING_SNAKE_CASE : int = np.asarray(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = np.shape(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = data_mat.reshape(1 ,shapes[0] * shapes[1] ) return data_expanded def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : int = 0 for i_map in range(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : List[str] = np.ones((size_map, size_map) ) for i in range(0 ,UpperCAmelCase_ ,UpperCAmelCase_ ): for j in range(0 ,UpperCAmelCase_ ,UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : List[Any] = pd_pool[ i_pool ] SCREAMING_SNAKE_CASE : Optional[Any] = i_pool + 1 SCREAMING_SNAKE_CASE : Dict = np.multiply( UpperCAmelCase_ ,np.multiply(out_map[i_map] ,(1 - out_map[i_map]) ) ) pd_all.append(UpperCAmelCase_ ) return pd_all def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE=bool ): # model traning print('----------------------Start Training-------------------------' ) print((' - - Shape: Train_Data ', np.shape(UpperCAmelCase_ )) ) print((' - - Shape: Teach_Data ', np.shape(UpperCAmelCase_ )) ) SCREAMING_SNAKE_CASE : Optional[Any] = 0 SCREAMING_SNAKE_CASE : Tuple = [] SCREAMING_SNAKE_CASE : List[Any] = 10000 while rp < n_repeat and mse >= error_accuracy: SCREAMING_SNAKE_CASE : int = 0 print(f"""-------------Learning Time {rp}--------------""" ) for p in range(len(UpperCAmelCase_ ) ): # print('------------Learning Image: %d--------------'%p) SCREAMING_SNAKE_CASE : Optional[Any] = np.asmatrix(datas_train[p] ) SCREAMING_SNAKE_CASE : List[Any] = np.asarray(datas_teach[p] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.convolute( UpperCAmelCase_ ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) SCREAMING_SNAKE_CASE : str = self.pooling(UpperCAmelCase_ ,self.size_poolinga ) SCREAMING_SNAKE_CASE : Tuple = np.shape(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = self._expand(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = data_bp_input SCREAMING_SNAKE_CASE : List[Any] = np.dot(UpperCAmelCase_ ,self.vji.T ) - self.thre_bpa SCREAMING_SNAKE_CASE : Tuple = self.sig(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = np.dot(UpperCAmelCase_ ,self.wkj.T ) - self.thre_bpa SCREAMING_SNAKE_CASE : int = self.sig(UpperCAmelCase_ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- SCREAMING_SNAKE_CASE : int = np.multiply( (data_teach - bp_outa) ,np.multiply(UpperCAmelCase_ ,(1 - bp_outa) ) ) SCREAMING_SNAKE_CASE : int = np.multiply( np.dot(UpperCAmelCase_ ,self.wkj ) ,np.multiply(UpperCAmelCase_ ,(1 - bp_outa) ) ) SCREAMING_SNAKE_CASE : Optional[Any] = np.dot(UpperCAmelCase_ ,self.vji ) SCREAMING_SNAKE_CASE : Union[str, Any] = pd_i_all / (self.size_poolinga * self.size_poolinga) SCREAMING_SNAKE_CASE : Dict = pd_conva_pooled.T.getA().tolist() SCREAMING_SNAKE_CASE : Optional[Any] = self._calculate_gradient_from_pool( UpperCAmelCase_ ,UpperCAmelCase_ ,shape_featuremapa[0] ,shape_featuremapa[1] ,self.size_poolinga ,) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): SCREAMING_SNAKE_CASE : Optional[Any] = self._expand_mat(pd_conva_all[k_conv] ) SCREAMING_SNAKE_CASE : Dict = self.rate_weight * np.dot(UpperCAmelCase_ ,UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) SCREAMING_SNAKE_CASE : str = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer SCREAMING_SNAKE_CASE : Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight SCREAMING_SNAKE_CASE : Tuple = self.vji + pd_j_all.T * bp_outa * self.rate_weight SCREAMING_SNAKE_CASE : Union[str, Any] = self.thre_bpa - pd_k_all * self.rate_thre SCREAMING_SNAKE_CASE : Optional[Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image SCREAMING_SNAKE_CASE : List[Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) SCREAMING_SNAKE_CASE : Tuple = rp + 1 SCREAMING_SNAKE_CASE : Any = error_count / patterns all_mse.append(UpperCAmelCase_ ) def draw_error(): SCREAMING_SNAKE_CASE : Optional[Any] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(UpperCAmelCase_ ,'+-' ) plt.plot(UpperCAmelCase_ ,'r--' ) plt.xlabel('Learning Times' ) plt.ylabel('All_mse' ) plt.grid(UpperCAmelCase_ ,alpha=0.5 ) plt.show() print('------------------Training Complished---------------------' ) print((' - - Training epoch: ', rp, f""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def __a ( self ,__SCREAMING_SNAKE_CASE ): # model predict SCREAMING_SNAKE_CASE : Any = [] print('-------------------Start Testing-------------------------' ) print((' - - Shape: Test_Data ', np.shape(UpperCAmelCase_ )) ) for p in range(len(UpperCAmelCase_ ) ): SCREAMING_SNAKE_CASE : List[str] = np.asmatrix(datas_test[p] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.convolute( UpperCAmelCase_ ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) SCREAMING_SNAKE_CASE : Dict = self.pooling(UpperCAmelCase_ ,self.size_poolinga ) SCREAMING_SNAKE_CASE : str = self._expand(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = data_bp_input SCREAMING_SNAKE_CASE : List[str] = bp_outa * self.vji.T - self.thre_bpa SCREAMING_SNAKE_CASE : int = self.sig(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = bp_outa * self.wkj.T - self.thre_bpa SCREAMING_SNAKE_CASE : int = self.sig(UpperCAmelCase_ ) produce_out.extend(bp_outa.getA().tolist() ) SCREAMING_SNAKE_CASE : List[str] = [list(map(self.do_round ,UpperCAmelCase_ ) ) for each in produce_out] return np.asarray(UpperCAmelCase_ ) def __a ( self ,__SCREAMING_SNAKE_CASE ): # return the data of image after convoluting process so we can check it out SCREAMING_SNAKE_CASE : int = np.asmatrix(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.convolute( UpperCAmelCase_ ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) SCREAMING_SNAKE_CASE : List[Any] = self.pooling(UpperCAmelCase_ ,self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
711
'''simple docstring''' import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" A = DDIMPipeline A = UNCONDITIONAL_IMAGE_GENERATION_PARAMS A = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } A = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS A = False def __a ( self ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=('DownBlock2D', 'AttnDownBlock2D') ,up_block_types=('AttnUpBlock2D', 'UpBlock2D') ,) SCREAMING_SNAKE_CASE : str = DDIMScheduler() SCREAMING_SNAKE_CASE : Union[str, Any] = {'unet': unet, 'scheduler': scheduler} return components def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE=0 ): if str(__SCREAMING_SNAKE_CASE ).startswith('mps' ): SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE : Any = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Dict = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def __a ( self ): SCREAMING_SNAKE_CASE : Optional[Any] = 'cpu' SCREAMING_SNAKE_CASE : str = self.get_dummy_components() SCREAMING_SNAKE_CASE : Any = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[Any] = pipe(**__SCREAMING_SNAKE_CASE ).images SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape ,(1, 32, 32, 3) ) SCREAMING_SNAKE_CASE : Any = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) SCREAMING_SNAKE_CASE : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__SCREAMING_SNAKE_CASE ,1e-3 ) def __a ( self ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __a ( self ): super().test_save_load_local(expected_max_difference=3e-3 ) def __a ( self ): super().test_save_load_optional_components(expected_max_difference=3e-3 ) def __a ( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _a ( unittest.TestCase ): """simple docstring""" def __a ( self ): SCREAMING_SNAKE_CASE : Any = 'google/ddpm-cifar10-32' SCREAMING_SNAKE_CASE : str = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Dict = DDIMScheduler() SCREAMING_SNAKE_CASE : Optional[Any] = DDIMPipeline(unet=__SCREAMING_SNAKE_CASE ,scheduler=__SCREAMING_SNAKE_CASE ) ddim.to(__SCREAMING_SNAKE_CASE ) ddim.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = ddim(generator=__SCREAMING_SNAKE_CASE ,eta=0.0 ,output_type='numpy' ).images SCREAMING_SNAKE_CASE : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __a ( self ): SCREAMING_SNAKE_CASE : Tuple = 'google/ddpm-ema-bedroom-256' SCREAMING_SNAKE_CASE : List[Any] = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[Any] = DDIMScheduler.from_pretrained(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : int = DDIMPipeline(unet=__SCREAMING_SNAKE_CASE ,scheduler=__SCREAMING_SNAKE_CASE ) ddpm.to(__SCREAMING_SNAKE_CASE ) ddpm.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : int = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = ddpm(generator=__SCREAMING_SNAKE_CASE ,output_type='numpy' ).images SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : List[Any] = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
220
0
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) UpperCAmelCase__ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.encoder.norm.weight''', '''encoder.layernorm.weight'''), ('''transformer.encoder.norm.bias''', '''encoder.layernorm.bias'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : Dict,_SCREAMING_SNAKE_CASE : Union[str, Any],_SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" __A= state_dict.pop(_SCREAMING_SNAKE_CASE ) __A= val def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" __A= OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __A= key.replace('backbone.0.body','backbone.conv_encoder.model' ) __A= value else: __A= value return new_state_dict def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : str ): """simple docstring""" __A= '' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __A= state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) __A= state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __A= in_proj_weight[:256, :] __A= in_proj_bias[:256] __A= in_proj_weight[256:512, :] __A= in_proj_bias[256:512] __A= in_proj_weight[-256:, :] __A= in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention __A= state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) __A= state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __A= in_proj_weight[:256, :] __A= in_proj_bias[:256] __A= in_proj_weight[256:512, :] __A= in_proj_bias[256:512] __A= in_proj_weight[-256:, :] __A= in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention __A= state_dict.pop( f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) __A= state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict __A= in_proj_weight_cross_attn[:256, :] __A= in_proj_bias_cross_attn[:256] __A= in_proj_weight_cross_attn[256:512, :] __A= in_proj_bias_cross_attn[256:512] __A= in_proj_weight_cross_attn[-256:, :] __A= in_proj_bias_cross_attn[-256:] def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : Any,_SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" __A, __A= image.size __A= max(_SCREAMING_SNAKE_CASE,_SCREAMING_SNAKE_CASE ) __A= 800 if 'detection' in checkpoint_url else 1000 __A= target_max_size / current_max_size __A= image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" __A= F.to_tensor(_SCREAMING_SNAKE_CASE ) __A= F.normalize(_SCREAMING_SNAKE_CASE,mean=[0.4_85, 0.4_56, 0.4_06],std=[0.2_29, 0.2_24, 0.2_25] ) return image @torch.no_grad() def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : Dict,_SCREAMING_SNAKE_CASE : int,_SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" logger.info('Converting model...' ) # load original state dict __A= torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE,map_location='cpu' ) # rename keys for src, dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE,_SCREAMING_SNAKE_CASE,_SCREAMING_SNAKE_CASE ) __A= rename_backbone_keys(_SCREAMING_SNAKE_CASE ) # query, key and value matrices need special treatment read_in_q_k_v(_SCREAMING_SNAKE_CASE ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __A= 'model.' for key in state_dict.copy().keys(): if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): __A= state_dict.pop(_SCREAMING_SNAKE_CASE ) __A= val # create HuggingFace model and load state dict __A= TableTransformerConfig( backbone='resnet18',mask_loss_coefficient=1,dice_loss_coefficient=1,ce_loss_coefficient=1,bbox_loss_coefficient=5,giou_loss_coefficient=2,eos_coefficient=0.4,class_cost=1,bbox_cost=5,giou_cost=2,) if "detection" in checkpoint_url: __A= 15 __A= 2 __A= {0: 'table', 1: 'table rotated'} __A= idalabel __A= {v: k for k, v in idalabel.items()} else: __A= 125 __A= 6 __A= { 0: 'table', 1: 'table column', 2: 'table row', 3: 'table column header', 4: 'table projected row header', 5: 'table spanning cell', } __A= idalabel __A= {v: k for k, v in idalabel.items()} __A= DetrImageProcessor( format='coco_detection',max_size=800 if 'detection' in checkpoint_url else 1000 ) __A= TableTransformerForObjectDetection(_SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() # verify our conversion __A= 'example_pdf.png' if 'detection' in checkpoint_url else 'example_table.png' __A= hf_hub_download(repo_id='nielsr/example-pdf',repo_type='dataset',filename=_SCREAMING_SNAKE_CASE ) __A= Image.open(_SCREAMING_SNAKE_CASE ).convert('RGB' ) __A= normalize(resize(_SCREAMING_SNAKE_CASE,_SCREAMING_SNAKE_CASE ) ).unsqueeze(0 ) __A= model(_SCREAMING_SNAKE_CASE ) if "detection" in checkpoint_url: __A= (1, 15, 3) __A= torch.tensor( [[-6.78_97, -16.99_85, 6.79_37], [-8.01_86, -22.21_92, 6.96_77], [-7.31_17, -21.07_08, 7.40_55]] ) __A= torch.tensor([[0.48_67, 0.17_67, 0.67_32], [0.67_18, 0.44_79, 0.38_30], [0.47_16, 0.17_60, 0.63_64]] ) else: __A= (1, 125, 7) __A= torch.tensor( [[-18.14_30, -8.32_14, 4.82_74], [-18.46_85, -7.13_61, -4.26_67], [-26.36_93, -9.34_29, -4.99_62]] ) __A= torch.tensor([[0.49_83, 0.55_95, 0.94_40], [0.49_16, 0.63_15, 0.59_54], [0.61_08, 0.86_37, 0.11_35]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3],_SCREAMING_SNAKE_CASE,atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3],_SCREAMING_SNAKE_CASE,atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: # Push model to HF hub logger.info('Pushing model to the hub...' ) __A= ( 'microsoft/table-transformer-detection' if 'detection' in checkpoint_url else 'microsoft/table-transformer-structure-recognition' ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) image_processor.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''', type=str, choices=[ '''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''', '''https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth''', ], help='''URL of the Table Transformer checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) UpperCAmelCase__ = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
186
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {'''vocab_file''': '''spiece.model'''} UpperCAmelCase__ = { '''vocab_file''': { '''AI-Sweden/gpt-sw3-126m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-350m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-1.6b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-6.7b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-20b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model''', } } UpperCAmelCase__ = { '''AI-Sweden/gpt-sw3-126m''': 2_0_4_8, '''AI-Sweden/gpt-sw3-350m''': 2_0_4_8, '''AI-Sweden/gpt-sw3-1.6b''': 2_0_4_8, '''AI-Sweden/gpt-sw3-6.7b''': 2_0_4_8, '''AI-Sweden/gpt-sw3-20b''': 2_0_4_8, } class a__ ( a_ ): '''simple docstring''' A : int = VOCAB_FILES_NAMES A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP A : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : int = ['''input_ids''', '''attention_mask'''] def __init__( self : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[Dict[str, Any]] = None , **lowerCAmelCase_ : Optional[Any] , ) -> None: __A= {} if sp_model_kwargs is None else sp_model_kwargs __A= kwargs.get('name_or_path' ) if name_or_path is None: logger.warning( 'name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,' ' you are testing the model, this can safely be ignored' ) __A= 'None' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing __A= '<|endoftext|>' if eos_token is None else eos_token __A= '<unk>' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: __A= unk_token if pad_token is None else pad_token __A= eos_token if bos_token is None else bos_token else: __A= '<pad>' if pad_token is None else pad_token __A= '<s>' if bos_token is None else bos_token super().__init__( do_lower_case=lowerCAmelCase_ , remove_space=lowerCAmelCase_ , keep_accents=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase_ , ) __A= do_lower_case __A= remove_space __A= keep_accents __A= vocab_file __A= spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase_ ) # Used for whitespace normalization in input texts # fmt : off __A= {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '', '„'} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing __A= re.compile( F"""[{"".join(map(lowerCAmelCase_ , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8_203] ) )}]""" ) def __getstate__( self : Optional[int] ) -> Tuple: __A= self.__dict__.copy() __A= None return state def __setstate__( self : int , lowerCAmelCase_ : int ) -> Tuple: __A= d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __A= {} __A= spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def lowerCAmelCase ( self : Tuple ) -> int: return len(self.sp_model ) def lowerCAmelCase ( self : int , lowerCAmelCase_ : str ) -> str: __A= self.non_printing_characters_re.sub('' , lowerCAmelCase_ ) # Normalize whitespaces __A= ''.join([char if char not in self.whitespaces else ' ' for char in text] ) # NFC Unicode normalization __A= unicodedata.normalize('NFC' , lowerCAmelCase_ ) return text def lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : str , **lowerCAmelCase_ : Optional[Any] ) -> List[str]: __A= self.preprocess_text(lowerCAmelCase_ ) return self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ ) def lowerCAmelCase ( self : Any , lowerCAmelCase_ : str ) -> int: return self.sp_model.PieceToId(lowerCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : int ) -> str: return self.sp_model.IdToPiece(lowerCAmelCase_ ) @staticmethod def lowerCAmelCase ( lowerCAmelCase_ : str ) -> str: return out_string def lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : List[str] ) -> str: __A= [] __A= '' __A= False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase_ ) + token __A= True __A= [] else: current_sub_tokens.append(lowerCAmelCase_ ) __A= False out_string += self.sp_model.decode(lowerCAmelCase_ ) return out_string def lowerCAmelCase ( self : List[Any] ) -> Dict[str, int]: __A= {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase ( self : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __A= os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase_ , 'wb' ) as fi: __A= self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase_ ) return (out_vocab_file,) def lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Union[str, List[str]] , lowerCAmelCase_ : Union[str, bool] = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __A= self.preprocess_text(lowerCAmelCase_ ) __A= self.sp_model.encode(lowerCAmelCase_ ) else: __A= [self.preprocess_text(lowerCAmelCase_ ) for t in text] __A= self.sp_model.encode(lowerCAmelCase_ ) if return_tensors is True or return_tensors == "pt": __A= torch.tensor(lowerCAmelCase_ ) return token_ids def lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : Union[int, List[int]] ) -> str: return self.sp_model.decode(lowerCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : "Conversation" ) -> List[int]: __A= [F"""User: {text}""" if is_user else F"""Bot: {text}""" for is_user, text in conversation.iter_texts()] __A= ( F"""{self.eos_token}{self.bos_token}""" + F"""{self.bos_token}""".join(lowerCAmelCase_ ) + F"""{self.bos_token}Bot:""" ) return self.encode(text=lowerCAmelCase_ )
186
1
"""simple docstring""" import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py a_ = "src/transformers" a_ = "docs/source/en/tasks" def a__ ( __lowercase , __lowercase , __lowercase ) -> List[str]: with open(__lowercase , "r" , encoding="utf-8" , newline="\n" ) as f: _A = f.readlines() # Find the start prompt. _A = 0 while not lines[start_index].startswith(__lowercase ): start_index += 1 start_index += 1 _A = start_index while not lines[end_index].startswith(__lowercase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. a_ = direct_transformers_import(TRANSFORMERS_PATH) a_ = { "asr.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, "audio_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, "language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, "image_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, "masked_language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, "multiple_choice.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, "object_detection.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, "question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, "semantic_segmentation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, "sequence_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, "summarization.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "token_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, "translation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "video_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, "document_question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, "monocular_depth_estimation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). a_ = { "summarization.md": ("nllb",), "translation.md": ("nllb",), } def a__ ( __lowercase ) -> Dict: _A = TASK_GUIDE_TO_MODELS[task_guide] _A = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(__lowercase , set() ) _A = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def a__ ( __lowercase , __lowercase=False ) -> Any: _A , _A , _A , _A = _find_text_in_file( filename=os.path.join(__lowercase , __lowercase ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , ) _A = get_model_list_for_task(__lowercase ) if current_list != new_list: if overwrite: with open(os.path.join(__lowercase , __lowercase ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" " to fix this." ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") a_ = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
719
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging a_ = logging.get_logger(__name__) a_ = {"vocab_file": "spiece.model"} a_ = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", } } # TODO(PVP) - this should be removed in Transformers v5 a_ = { "t5-small": 5_12, "t5-base": 5_12, "t5-large": 5_12, "t5-3b": 5_12, "t5-11b": 5_12, } a_ = "▁" class snake_case ( _UpperCamelCase): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['input_ids', 'attention_mask'] def __init__( self : List[str] , a__ : Optional[int] , a__ : Union[str, Any]="</s>" , a__ : Union[str, Any]="<unk>" , a__ : str="<pad>" , a__ : Optional[int]=1_00 , a__ : List[Any]=None , a__ : Optional[Dict[str, Any]] = None , a__ : Any=True , **a__ : Optional[int] , ) -> None: '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: _A = [F"""<extra_id_{i}>""" for i in range(a__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _A = len(set(filter(lambda a__ : bool("extra_id" in str(a__ ) ) , a__ ) ) ) if extra_tokens != extra_ids: raise ValueError( F"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens" ) if legacy: logger.warning_once( F"""You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to""" " read the related pull request available at https://github.com/huggingface/transformers/pull/24565" ) _A = legacy _A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=a__ , unk_token=a__ , pad_token=a__ , extra_ids=a__ , additional_special_tokens=a__ , sp_model_kwargs=self.sp_model_kwargs , legacy=a__ , **a__ , ) _A = vocab_file _A = extra_ids _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a__ ) @staticmethod def a_ ( a__ : List[str] , a__ : Optional[int] , a__ : Tuple ) -> Tuple: '''simple docstring''' if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: _A = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" F""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" F""" {pretrained_model_name_or_path} automatically truncating your input to""" F""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" F""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value." , a__ , ) return max_model_length @property def a_ ( self : List[Any] ) -> Dict: '''simple docstring''' return self.sp_model.get_piece_size() + self._extra_ids def a_ ( self : Dict ) -> Optional[Any]: '''simple docstring''' _A = {self.convert_ids_to_tokens(a__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a_ ( self : Optional[Any] , a__ : List[int] , a__ : Optional[List[int]] = None , a__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(a__ )) + [1] return ([0] * len(a__ )) + [1] + ([0] * len(a__ )) + [1] def a_ ( self : List[str] ) -> List[str]: '''simple docstring''' return list( set(filter(lambda a__ : bool(re.search(r"<extra_id_\d+>" , a__ ) ) is not None , self.additional_special_tokens ) ) ) def a_ ( self : str ) -> List[Any]: '''simple docstring''' return [self._convert_token_to_id(a__ ) for token in self.get_sentinel_tokens()] def a_ ( self : List[Any] , a__ : List[int] ) -> List[int]: '''simple docstring''' if len(a__ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] def a_ ( self : int , a__ : List[int] , a__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _A = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def a_ ( self : Union[str, Any] , a__ : List[int] , a__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _A = self._add_eos_if_not_present(a__ ) if token_ids_a is None: return token_ids_a else: _A = self._add_eos_if_not_present(a__ ) return token_ids_a + token_ids_a def __getstate__( self : Dict ) -> Union[str, Any]: '''simple docstring''' _A = self.__dict__.copy() _A = None return state def __setstate__( self : int , a__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' _A = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _A = {} _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a_ ( self : int , a__ : "TextInput" , **a__ : List[str] ) -> List[str]: '''simple docstring''' if not self.legacy: _A = SPIECE_UNDERLINE + text.replace(a__ , " " ) return super().tokenize(a__ , **a__ ) def a_ ( self : str , a__ : Dict , **a__ : Optional[int] ) -> Any: '''simple docstring''' if not self.legacy: _A = text.startswith(a__ ) if is_first: _A = text[1:] _A = self.sp_model.encode(a__ , out_type=a__ ) if not self.legacy and not is_first and not text.startswith(" " ) and tokens[0].startswith(a__ ): _A = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def a_ ( self : int , a__ : List[Any] ) -> List[str]: '''simple docstring''' if token.startswith("<extra_id_" ): _A = re.match(r"<extra_id_(\d+)>" , a__ ) _A = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(a__ ) def a_ ( self : Dict , a__ : Union[str, Any] ) -> Any: '''simple docstring''' if index < self.sp_model.get_piece_size(): _A = self.sp_model.IdToPiece(a__ ) else: _A = F"""<extra_id_{self.vocab_size - 1 - index}>""" return token def a_ ( self : Optional[int] , a__ : Tuple ) -> List[str]: '''simple docstring''' _A = [] _A = "" _A = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a__ ) + token _A = True _A = [] else: current_sub_tokens.append(a__ ) _A = False out_string += self.sp_model.decode(a__ ) return out_string.strip() def a_ ( self : Dict , a__ : str , a__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(a__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A = os.path.join( a__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a__ ) elif not os.path.isfile(self.vocab_file ): with open(a__ , "wb" ) as fi: _A = self.sp_model.serialized_model_proto() fi.write(a__ ) return (out_vocab_file,)
621
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class snake_case__ ( UpperCamelCase_ ): @staticmethod @abstractmethod def UpperCAmelCase__ ( _lowerCamelCase : ArgumentParser ): raise NotImplementedError() @abstractmethod def UpperCAmelCase__ ( self : Any ): raise NotImplementedError()
170
def lowercase__( A ): snake_case__ : Optional[Any] = '' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def lowercase__( A ): snake_case__ : List[Any] = [chr(i + 6_5 ) for i in range(2_6 )] # Remove duplicate characters from key snake_case__ : Optional[Any] = remove_duplicates(key.upper() ) snake_case__ : Dict = len(A ) # First fill cipher with key characters snake_case__ : Optional[int] = {alphabet[i]: char for i, char in enumerate(A )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(A ) , 2_6 ): snake_case__ : List[Any] = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 snake_case__ : Dict = alphabet[i - offset] snake_case__ : Optional[int] = char return cipher_alphabet def lowercase__( A , A ): return "".join(cipher_map.get(A , A ) for ch in message.upper() ) def lowercase__( A , A ): snake_case__ : Union[str, Any] = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(A , A ) for ch in message.upper() ) def lowercase__( ): snake_case__ : Union[str, Any] = input('Enter message to encode or decode: ' ).strip() snake_case__ : str = input('Enter keyword: ' ).strip() snake_case__ : Optional[int] = input('Encipher or decipher? E/D:' ).strip()[0].lower() try: snake_case__ : Optional[Any] = {'e': encipher, 'd': decipher}[option] except KeyError: raise KeyError('invalid input option' ) snake_case__ : int = create_cipher_map(A ) print(func(A , A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
170
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class lowerCamelCase ( _UpperCAmelCase ): __lowerCamelCase = 42 __lowerCamelCase = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.26.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version('>=', '0.0.12') ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class lowerCamelCase ( _UpperCAmelCase ): __lowerCamelCase = 42 __lowerCamelCase = 42 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
708
from __future__ import annotations from dataclasses import dataclass @dataclass class lowerCamelCase : __lowerCamelCase = 42 __lowerCamelCase = None __lowerCamelCase = None def a_ (_lowerCAmelCase : TreeNode | None )-> bool: # Validation def is_valid_tree(_lowerCAmelCase : TreeNode | None ) -> bool: if node is None: return True if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(_lowerCAmelCase ): raise ValueError( """Each node should be type of TreeNode and data should be float.""" ) def is_binary_search_tree_recursive_check( _lowerCAmelCase : TreeNode | None , _lowerCAmelCase : float , _lowerCAmelCase : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , _lowerCAmelCase , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , _lowerCAmelCase ) ) return is_binary_search_tree_recursive_check(_lowerCAmelCase , -float("""inf""" ) , float("""inf""" ) ) if __name__ == "__main__": import doctest doctest.testmod()
164
0
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case ( UpperCamelCase_ ): def __init__( self : str , a_ : Optional[Any] , a_ : Optional[Any]=13 , a_ : List[Any]=7 , a_ : Optional[int]=True , a_ : Any=True , a_ : Dict=True , a_ : Tuple=True , a_ : str=True , a_ : Tuple=False , a_ : Optional[int]=False , a_ : Union[str, Any]=False , a_ : int=2 , a_ : Dict=99 , a_ : Union[str, Any]=0 , a_ : str=32 , a_ : Union[str, Any]=5 , a_ : Any=4 , a_ : int=0.1 , a_ : Any=0.1 , a_ : List[str]=512 , a_ : Optional[int]=12 , a_ : Union[str, Any]=2 , a_ : List[Any]=0.02 , a_ : Tuple=3 , a_ : int=4 , a_ : Optional[int]="last" , a_ : List[str]=None , a_ : List[Any]=None , )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = parent SCREAMING_SNAKE_CASE__ : Optional[int] = batch_size SCREAMING_SNAKE_CASE__ : Optional[int] = seq_length SCREAMING_SNAKE_CASE__ : Optional[Any] = is_training SCREAMING_SNAKE_CASE__ : str = use_input_lengths SCREAMING_SNAKE_CASE__ : Optional[int] = use_token_type_ids SCREAMING_SNAKE_CASE__ : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE__ : List[str] = gelu_activation SCREAMING_SNAKE_CASE__ : str = sinusoidal_embeddings SCREAMING_SNAKE_CASE__ : Any = causal SCREAMING_SNAKE_CASE__ : Optional[Any] = asm SCREAMING_SNAKE_CASE__ : Union[str, Any] = n_langs SCREAMING_SNAKE_CASE__ : Dict = vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = n_special SCREAMING_SNAKE_CASE__ : Any = hidden_size SCREAMING_SNAKE_CASE__ : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : Dict = num_attention_heads SCREAMING_SNAKE_CASE__ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : int = max_position_embeddings SCREAMING_SNAKE_CASE__ : List[Any] = type_vocab_size SCREAMING_SNAKE_CASE__ : str = type_sequence_label_size SCREAMING_SNAKE_CASE__ : Dict = initializer_range SCREAMING_SNAKE_CASE__ : Dict = num_labels SCREAMING_SNAKE_CASE__ : List[Any] = num_choices SCREAMING_SNAKE_CASE__ : List[Any] = summary_type SCREAMING_SNAKE_CASE__ : Optional[Any] = use_proj SCREAMING_SNAKE_CASE__ : List[str] = scope def __lowercase( self : Optional[int] )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : str = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ : Dict = None if self.use_input_lengths: SCREAMING_SNAKE_CASE__ : Optional[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length SCREAMING_SNAKE_CASE__ : Tuple = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) SCREAMING_SNAKE_CASE__ : Optional[Any] = None SCREAMING_SNAKE_CASE__ : Optional[int] = None SCREAMING_SNAKE_CASE__ : List[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size] , 2 ).float() SCREAMING_SNAKE_CASE__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ : Dict = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __lowercase( self : int )-> Any: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def __lowercase( self : List[Any] , a_ : Union[str, Any] , a_ : Any , a_ : Union[str, Any] , a_ : Any , a_ : Union[str, Any] , a_ : List[str] , a_ : List[Any] , a_ : int , a_ : Any , )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = FlaubertModel(config=a_ ) model.to(a_ ) model.eval() SCREAMING_SNAKE_CASE__ : List[Any] = model(a_ , lengths=a_ , langs=a_ ) SCREAMING_SNAKE_CASE__ : int = model(a_ , langs=a_ ) SCREAMING_SNAKE_CASE__ : Tuple = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase( self : str , a_ : str , a_ : int , a_ : Union[str, Any] , a_ : List[Any] , a_ : Union[str, Any] , a_ : Any , a_ : int , a_ : Tuple , a_ : str , )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = FlaubertWithLMHeadModel(a_ ) model.to(a_ ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[int] = model(a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase( self : Any , a_ : Optional[Any] , a_ : Union[str, Any] , a_ : str , a_ : int , a_ : Union[str, Any] , a_ : List[Any] , a_ : Any , a_ : Any , a_ : Union[str, Any] , )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = FlaubertForQuestionAnsweringSimple(a_ ) model.to(a_ ) model.eval() SCREAMING_SNAKE_CASE__ : Dict = model(a_ ) SCREAMING_SNAKE_CASE__ : List[Any] = model(a_ , start_positions=a_ , end_positions=a_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowercase( self : Tuple , a_ : Tuple , a_ : int , a_ : Optional[Any] , a_ : Optional[int] , a_ : Tuple , a_ : List[Any] , a_ : int , a_ : Optional[int] , a_ : int , )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = FlaubertForQuestionAnswering(a_ ) model.to(a_ ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[int] = model(a_ ) SCREAMING_SNAKE_CASE__ : Tuple = model( a_ , start_positions=a_ , end_positions=a_ , cls_index=a_ , is_impossible=a_ , p_mask=a_ , ) SCREAMING_SNAKE_CASE__ : List[Any] = model( a_ , start_positions=a_ , end_positions=a_ , cls_index=a_ , is_impossible=a_ , ) ((SCREAMING_SNAKE_CASE__) , ) : Optional[Any] = result_with_labels.to_tuple() SCREAMING_SNAKE_CASE__ : Optional[int] = model(a_ , start_positions=a_ , end_positions=a_ ) ((SCREAMING_SNAKE_CASE__) , ) : int = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __lowercase( self : Dict , a_ : int , a_ : Optional[int] , a_ : Tuple , a_ : Dict , a_ : Any , a_ : List[str] , a_ : str , a_ : List[Any] , a_ : int , )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = FlaubertForSequenceClassification(a_ ) model.to(a_ ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[int] = model(a_ ) SCREAMING_SNAKE_CASE__ : List[str] = model(a_ , labels=a_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowercase( self : List[str] , a_ : Tuple , a_ : str , a_ : Optional[Any] , a_ : List[Any] , a_ : Tuple , a_ : List[Any] , a_ : List[Any] , a_ : Optional[int] , a_ : List[str] , )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.num_labels SCREAMING_SNAKE_CASE__ : Any = FlaubertForTokenClassification(a_ ) model.to(a_ ) model.eval() SCREAMING_SNAKE_CASE__ : List[str] = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowercase( self : Optional[int] , a_ : Union[str, Any] , a_ : str , a_ : List[str] , a_ : Any , a_ : Any , a_ : Any , a_ : List[Any] , a_ : Optional[Any] , a_ : Any , )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.num_choices SCREAMING_SNAKE_CASE__ : Union[str, Any] = FlaubertForMultipleChoice(config=a_ ) model.to(a_ ) model.eval() SCREAMING_SNAKE_CASE__ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ : Dict = model( a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowercase( self : Optional[Any] )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) : Dict = config_and_inputs SCREAMING_SNAKE_CASE__ : Optional[int] = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class snake_case ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): lowercase_ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) lowercase_ = ( { 'feature-extraction': FlaubertModel, 'fill-mask': FlaubertWithLMHeadModel, 'question-answering': FlaubertForQuestionAnsweringSimple, 'text-classification': FlaubertForSequenceClassification, 'token-classification': FlaubertForTokenClassification, 'zero-shot': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def __lowercase( self : Union[str, Any] , a_ : str , a_ : List[Any] , a_ : int , a_ : str , a_ : Union[str, Any] )-> int: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __lowercase( self : Optional[Any] , a_ : List[Any] , a_ : int , a_ : List[str]=False )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = super()._prepare_for_class(a_ , a_ , return_labels=a_ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a_ ) SCREAMING_SNAKE_CASE__ : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a_ ) return inputs_dict def __lowercase( self : List[str] )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = FlaubertModelTester(self ) SCREAMING_SNAKE_CASE__ : Optional[int] = ConfigTester(self , config_class=a_ , emb_dim=37 ) def __lowercase( self : Dict )-> Any: """simple docstring""" self.config_tester.run_common_tests() def __lowercase( self : Tuple )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*a_ ) def __lowercase( self : Optional[Any] )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*a_ ) def __lowercase( self : Union[str, Any] )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*a_ ) def __lowercase( self : Union[str, Any] )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*a_ ) def __lowercase( self : List[Any] )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*a_ ) def __lowercase( self : Dict )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*a_ ) def __lowercase( self : Tuple )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*a_ ) @slow def __lowercase( self : int )-> List[Any]: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : Tuple = FlaubertModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @slow @require_torch_gpu def __lowercase( self : str )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return SCREAMING_SNAKE_CASE__ : Tuple = True SCREAMING_SNAKE_CASE__ : Any = model_class(config=a_ ) SCREAMING_SNAKE_CASE__ : int = self._prepare_for_class(a_ , a_ ) SCREAMING_SNAKE_CASE__ : str = torch.jit.trace( a_ , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a_ , os.path.join(a_ , 'traced_model.pt' ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.jit.load(os.path.join(a_ , 'traced_model.pt' ) , map_location=a_ ) loaded(inputs_dict['input_ids'].to(a_ ) , inputs_dict['attention_mask'].to(a_ ) ) @require_torch class snake_case ( unittest.TestCase ): @slow def __lowercase( self : Union[str, Any] )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = FlaubertModel.from_pretrained('flaubert/flaubert_base_cased' ) SCREAMING_SNAKE_CASE__ : List[str] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Optional[Any] = model(a_ )[0] SCREAMING_SNAKE_CASE__ : Dict = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , a_ ) SCREAMING_SNAKE_CASE__ : str = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , a_ , atol=1e-4 ) )
85
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): lowercase_ = StableDiffusionInstructPixaPixPipeline lowercase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width', 'cross_attention_kwargs'} lowercase_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowercase_ = IMAGE_TO_IMAGE_IMAGE_PARAMS lowercase_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def __lowercase( self : str )-> int: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE__ : List[str] = PNDMScheduler(skip_prk_steps=a_ ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE__ : int = CLIPTextModel(a_ ) SCREAMING_SNAKE_CASE__ : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE__ : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __lowercase( self : List[Any] , a_ : Tuple , a_ : Optional[Any]=0 )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(a_ ) ).to(a_ ) SCREAMING_SNAKE_CASE__ : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE__ : List[Any] = Image.fromarray(np.uinta(a_ ) ).convert('RGB' ) if str(a_ ).startswith('mps' ): SCREAMING_SNAKE_CASE__ : str = torch.manual_seed(a_ ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.Generator(device=a_ ).manual_seed(a_ ) SCREAMING_SNAKE_CASE__ : Dict = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'image_guidance_scale': 1, 'output_type': 'numpy', } return inputs def __lowercase( self : str )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : List[str] = StableDiffusionInstructPixaPixPipeline(**a_ ) SCREAMING_SNAKE_CASE__ : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) SCREAMING_SNAKE_CASE__ : Tuple = self.get_dummy_inputs(a_ ) SCREAMING_SNAKE_CASE__ : int = sd_pipe(**a_ ).images SCREAMING_SNAKE_CASE__ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE__ : Dict = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __lowercase( self : Optional[Any] )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ : Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : Optional[Any] = StableDiffusionInstructPixaPixPipeline(**a_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) SCREAMING_SNAKE_CASE__ : List[str] = self.get_dummy_inputs(a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = 'french fries' SCREAMING_SNAKE_CASE__ : Optional[Any] = sd_pipe(**a_ , negative_prompt=a_ ) SCREAMING_SNAKE_CASE__ : Dict = output.images SCREAMING_SNAKE_CASE__ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE__ : List[str] = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __lowercase( self : List[Any] )-> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : Optional[Any] = StableDiffusionInstructPixaPixPipeline(**a_ ) SCREAMING_SNAKE_CASE__ : int = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_dummy_inputs(a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [inputs['prompt']] * 2 SCREAMING_SNAKE_CASE__ : List[str] = np.array(inputs['image'] ).astype(np.floataa ) / 255.0 SCREAMING_SNAKE_CASE__ : Tuple = torch.from_numpy(a_ ).unsqueeze(0 ).to(a_ ) SCREAMING_SNAKE_CASE__ : Dict = image / 2 + 0.5 SCREAMING_SNAKE_CASE__ : Tuple = image.permute(0 , 3 , 1 , 2 ) SCREAMING_SNAKE_CASE__ : int = image.repeat(2 , 1 , 1 , 1 ) SCREAMING_SNAKE_CASE__ : Optional[int] = sd_pipe(**a_ ).images SCREAMING_SNAKE_CASE__ : Any = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) SCREAMING_SNAKE_CASE__ : int = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __lowercase( self : List[Any] )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ : str = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : Optional[Any] = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' ) SCREAMING_SNAKE_CASE__ : List[Any] = StableDiffusionInstructPixaPixPipeline(**a_ ) SCREAMING_SNAKE_CASE__ : Dict = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_dummy_inputs(a_ ) SCREAMING_SNAKE_CASE__ : Tuple = sd_pipe(**a_ ).images SCREAMING_SNAKE_CASE__ : Any = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ : Any = [round(a_ , 4 ) for x in image_slice.flatten().tolist()] print(','.join([str(a_ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE__ : List[Any] = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __lowercase( self : Union[str, Any] )-> Any: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def __lowercase( self : List[Any] )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : List[str] = StableDiffusionInstructPixaPixPipeline(**a_ ) SCREAMING_SNAKE_CASE__ : int = VaeImageProcessor(do_resize=a_ , do_normalize=a_ ) SCREAMING_SNAKE_CASE__ : Tuple = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) SCREAMING_SNAKE_CASE__ : Any = pipe(**self.get_dummy_inputs_by_type(a_ , input_image_type='pt' ) )[0] SCREAMING_SNAKE_CASE__ : Optional[int] = components['vae'] SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_dummy_inputs_by_type(a_ , input_image_type='pt' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = vae.encode(inputs[image_param] ).latent_dist.mode() SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe(**a_ )[0] SCREAMING_SNAKE_CASE__ : List[Any] = np.abs(out - out_latents_inputs ).max() self.assertLess(a_ , 1e-4 , 'passing latents as image input generate different result from passing image' ) @slow @require_torch_gpu class snake_case ( unittest.TestCase ): def __lowercase( self : Tuple )-> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase( self : List[Any] , a_ : Dict=0 )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = torch.manual_seed(a_ ) SCREAMING_SNAKE_CASE__ : List[str] = load_image( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg' ) SCREAMING_SNAKE_CASE__ : Tuple = { 'prompt': 'turn him into a cyborg', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'image_guidance_scale': 1.0, 'output_type': 'numpy', } return inputs def __lowercase( self : int )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ : str = self.get_inputs() SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe(**a_ ).images SCREAMING_SNAKE_CASE__ : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __lowercase( self : Dict )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=a_ ) SCREAMING_SNAKE_CASE__ : str = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ : Tuple = self.get_inputs() SCREAMING_SNAKE_CASE__ : Dict = pipe(**a_ ).images SCREAMING_SNAKE_CASE__ : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ : List[Any] = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __lowercase( self : Optional[int] )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=a_ ) SCREAMING_SNAKE_CASE__ : Dict = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ : str = self.get_inputs() SCREAMING_SNAKE_CASE__ : Tuple = pipe(**a_ ).images SCREAMING_SNAKE_CASE__ : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ : List[str] = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __lowercase( self : int )-> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = 0 def callback_fn(a_ : int , a_ : int , a_ : torch.FloatTensor ) -> None: SCREAMING_SNAKE_CASE__ : Tuple = True nonlocal number_of_steps number_of_steps += 1 if step == 1: SCREAMING_SNAKE_CASE__ : Union[str, Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) SCREAMING_SNAKE_CASE__ : List[Any] = latents[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ : Optional[int] = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: SCREAMING_SNAKE_CASE__ : Optional[int] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) SCREAMING_SNAKE_CASE__ : Tuple = latents[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ : Dict = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 SCREAMING_SNAKE_CASE__ : List[str] = False SCREAMING_SNAKE_CASE__ : List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=a_ , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ : Tuple = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ : Tuple = self.get_inputs() pipe(**a_ , callback=a_ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __lowercase( self : int )-> Any: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE__ : Union[str, Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=a_ , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ : Tuple = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE__ : Tuple = self.get_inputs() SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipe(**a_ ) SCREAMING_SNAKE_CASE__ : Any = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def __lowercase( self : Tuple )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 SCREAMING_SNAKE_CASE__ : Dict = inputs['image'].resize((504, 504) ) SCREAMING_SNAKE_CASE__ : List[Any] = 'timbrooks/instruct-pix2pix' SCREAMING_SNAKE_CASE__ : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( a_ , safety_checker=a_ , ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ : Any = pipe(**a_ ) SCREAMING_SNAKE_CASE__ : List[str] = output.images[0] SCREAMING_SNAKE_CASE__ : Any = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) SCREAMING_SNAKE_CASE__ : str = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
85
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): '''simple docstring''' __lowerCamelCase : List[str] =['image_processor', 'tokenizer'] __lowerCamelCase : Tuple ='ViTImageProcessor' __lowerCamelCase : Optional[int] =('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : Optional[int] , __lowercase : int=None , __lowercase : Any=None , **__lowercase : Any ): '''simple docstring''' __a = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __lowercase , ) __a = kwargs.pop("""feature_extractor""" ) __a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__lowercase , __lowercase ) def __call__( self : List[Any] , __lowercase : Optional[int]=None , __lowercase : Optional[int]=None , __lowercase : List[str]=None , __lowercase : Tuple=None , **__lowercase : Optional[int] ): '''simple docstring''' if text is None and visual_prompt is None and images is None: raise ValueError("""You have to specify either text, visual prompt or images.""" ) if text is not None and visual_prompt is not None: raise ValueError("""You have to specify exactly one type of prompt. Either text or visual prompt.""" ) if text is not None: __a = self.tokenizer(__lowercase , return_tensors=__lowercase , **__lowercase ) if visual_prompt is not None: __a = self.image_processor(__lowercase , return_tensors=__lowercase , **__lowercase ) if images is not None: __a = self.image_processor(__lowercase , return_tensors=__lowercase , **__lowercase ) if visual_prompt is not None and images is not None: __a = { """pixel_values""": image_features.pixel_values, """conditional_pixel_values""": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: __a = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: __a = { """conditional_pixel_values""": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**__lowercase ) , tensor_type=__lowercase ) def UpperCamelCase_ ( self : List[str] , *__lowercase : int , **__lowercase : List[str] ): '''simple docstring''' return self.tokenizer.batch_decode(*__lowercase , **__lowercase ) def UpperCamelCase_ ( self : Optional[Any] , *__lowercase : List[str] , **__lowercase : Any ): '''simple docstring''' return self.tokenizer.decode(*__lowercase , **__lowercase ) @property def UpperCamelCase_ ( self : Any ): '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __lowercase , ) return self.image_processor_class @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __lowercase , ) return self.image_processor
703
import itertools import string from collections.abc import Generator, Iterable def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Iterable[str] , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __a = iter(_SCREAMING_SNAKE_CASE ) while True: __a = tuple(itertools.islice(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) if not chunk: return yield chunk def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str ): """simple docstring""" __a = """""".join([c.upper() for c in dirty if c in string.ascii_letters] ) __a = """""" if len(_SCREAMING_SNAKE_CASE ) < 2: return dirty for i in range(len(_SCREAMING_SNAKE_CASE ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(_SCREAMING_SNAKE_CASE ) & 1: clean += "X" return clean def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str ): """simple docstring""" __a = """ABCDEFGHIKLMNOPQRSTUVWXYZ""" # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler __a = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(_SCREAMING_SNAKE_CASE ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(_SCREAMING_SNAKE_CASE ) return table def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ): """simple docstring""" __a = generate_table(_SCREAMING_SNAKE_CASE ) __a = prepare_input(_SCREAMING_SNAKE_CASE ) __a = """""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_SCREAMING_SNAKE_CASE , 2 ): __a , __a = divmod(table.index(_SCREAMING_SNAKE_CASE ) , 5 ) __a , __a = divmod(table.index(_SCREAMING_SNAKE_CASE ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ): """simple docstring""" __a = generate_table(_SCREAMING_SNAKE_CASE ) __a = """""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_SCREAMING_SNAKE_CASE , 2 ): __a , __a = divmod(table.index(_SCREAMING_SNAKE_CASE ) , 5 ) __a , __a = divmod(table.index(_SCREAMING_SNAKE_CASE ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
547
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case : str = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : str = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys _snake_case : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
22
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = StableDiffusionInpaintPipeline A_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS A_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A_ = frozenset([] ) def UpperCAmelCase__ ( self) -> List[Any]: torch.manual_seed(0) UpperCamelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowerCamelCase_ , ) UpperCamelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase_) torch.manual_seed(0) UpperCamelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , ) UpperCamelCase = CLIPTextModel(lowerCamelCase_) UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') UpperCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=0) -> Dict: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched UpperCamelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCamelCase_)).to(lowerCamelCase_) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1)[0] UpperCamelCase = Image.fromarray(np.uinta(lowerCamelCase_)).convert('''RGB''').resize((6_4, 6_4)) UpperCamelCase = Image.fromarray(np.uinta(image + 4)).convert('''RGB''').resize((6_4, 6_4)) if str(lowerCamelCase_).startswith('''mps'''): UpperCamelCase = torch.manual_seed(lowerCamelCase_) else: UpperCamelCase = torch.Generator(device=lowerCamelCase_).manual_seed(lowerCamelCase_) UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = StableDiffusionInpaintPipeline(**lowerCamelCase_) UpperCamelCase = sd_pipe.to(lowerCamelCase_) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_) UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_) UpperCamelCase = sd_pipe(**lowerCamelCase_).images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCAmelCase__ ( self) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained(lowerCamelCase_ , safety_checker=lowerCamelCase_) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 9e-3 def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , torch_dtype=torch.floataa , safety_checker=lowerCamelCase_ , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 5e-1 def UpperCAmelCase__ ( self) -> List[str]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = PNDMScheduler.from_pretrained(lowerCamelCase_ , subfolder='''scheduler''') UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , safety_checker=lowerCamelCase_ , scheduler=lowerCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='''np''' , ) UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
34
0
from __future__ import annotations from typing import TypedDict class UpperCAmelCase_ ( a__): '''simple docstring''' __UpperCamelCase : str __UpperCamelCase : int def a ( SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" if not isinstance(_lowercase , _lowercase ): raise TypeError('''The parameter s type must be str.''' ) return [s[i:] + s[:i] for i in range(len(_lowercase ) )] def a ( SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" if not isinstance(_lowercase , _lowercase ): raise TypeError('''The parameter s type must be str.''' ) if not s: raise ValueError('''The parameter s must not be empty.''' ) UpperCamelCase : str = all_rotations(_lowercase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation UpperCamelCase : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(_lowercase ), } return response def a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if not isinstance(_lowercase , _lowercase ): raise TypeError('''The parameter bwt_string type must be str.''' ) if not bwt_string: raise ValueError('''The parameter bwt_string must not be empty.''' ) try: UpperCamelCase : Tuple = int(_lowercase ) except ValueError: raise TypeError( '''The parameter idx_original_string type must be int or passive''' ''' of cast to int.''' ) if idx_original_string < 0: raise ValueError('''The parameter idx_original_string must not be lower than 0.''' ) if idx_original_string >= len(_lowercase ): raise ValueError( '''The parameter idx_original_string must be lower than''' ''' len(bwt_string).''' ) UpperCamelCase : str = [""] * len(_lowercase ) for _ in range(len(_lowercase ) ): for i in range(len(_lowercase ) ): UpperCamelCase : int = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": __UpperCAmelCase : Optional[int] = '''Provide a string that I will generate its BWT transform: ''' __UpperCAmelCase : Optional[int] = input(entry_msg).strip() __UpperCAmelCase : List[Any] = bwt_transform(s) print( f'''Burrows Wheeler transform for string \'{s}\' results ''' f'''in \'{result['bwt_string']}\'''' ) __UpperCAmelCase : Any = reverse_bwt(result["bwt_string"], result["idx_original_string"]) print( f'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' f'''we get original string \'{original_string}\'''' )
709
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration __UpperCAmelCase : Optional[int] = 500000 __UpperCAmelCase , __UpperCAmelCase : Any = os.path.split(__file__) __UpperCAmelCase : int = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def a ( SCREAMING_SNAKE_CASE_ : datasets.Dataset , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" UpperCamelCase : Tuple = dataset.map(**SCREAMING_SNAKE_CASE_ ) @get_duration def a ( SCREAMING_SNAKE_CASE_ : datasets.Dataset , **SCREAMING_SNAKE_CASE_ : Any ): """simple docstring""" UpperCamelCase : int = dataset.filter(**SCREAMING_SNAKE_CASE_ ) def a ( ): """simple docstring""" UpperCamelCase : Optional[int] = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase : Dict = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) UpperCamelCase : List[str] = generate_example_dataset( os.path.join(SCREAMING_SNAKE_CASE_ , '''dataset.arrow''' ) , SCREAMING_SNAKE_CASE_ , num_examples=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=SCREAMING_SNAKE_CASE_ ) def tokenize(SCREAMING_SNAKE_CASE_ : Dict ): return tokenizer(examples['''text'''] ) UpperCamelCase : List[Any] = map(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = map(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''numpy''' ): UpperCamelCase : Tuple = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''pandas''' ): UpperCamelCase : int = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): UpperCamelCase : Dict = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): UpperCamelCase : Tuple = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = map(SCREAMING_SNAKE_CASE_ , function=SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = filter(SCREAMING_SNAKE_CASE_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(SCREAMING_SNAKE_CASE_ , '''wb''' ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE_ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
643
0
"""simple docstring""" from __future__ import annotations import csv import requests from bsa import BeautifulSoup def lowercase (_snake_case = "" ) -> dict[str, float]: '''simple docstring''' __UpperCamelCase = url or "https://www.imdb.com/chart/top/?ref_=nv_mv_250" __UpperCamelCase = BeautifulSoup(requests.get(_snake_case ).text ,"html.parser" ) __UpperCamelCase = soup.find_all("td" ,attrs="titleColumn" ) __UpperCamelCase = soup.find_all("td" ,class_="ratingColumn imdbRating" ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(_snake_case ,_snake_case ) } def lowercase (_snake_case = "IMDb_Top_250_Movies.csv" ) -> None: '''simple docstring''' __UpperCamelCase = get_imdb_top_aaa_movies() with open(_snake_case ,"w" ,newline="" ) as out_file: __UpperCamelCase = csv.writer(_snake_case ) writer.writerow(["Movie title", "IMDb rating"] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
505
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __UpperCAmelCase ( snake_case__ , unittest.TestCase ): """simple docstring""" _snake_case : Dict = KandinskyInpaintPipeline _snake_case : int = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] _snake_case : str = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] _snake_case : Optional[int] = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] _snake_case : Optional[Any] = False @property def A ( self : int )-> Tuple: return 32 @property def A ( self : int )-> List[Any]: return 32 @property def A ( self : Dict )-> Tuple: return self.time_input_dim @property def A ( self : Union[str, Any] )-> Tuple: return self.time_input_dim * 4 @property def A ( self : Dict )-> str: return 1_00 @property def A ( self : int )-> Dict: __UpperCamelCase = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def A ( self : Tuple )-> Optional[Any]: torch.manual_seed(0 ) __UpperCamelCase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __UpperCamelCase = MultilingualCLIP(A_ ) __UpperCamelCase = text_encoder.eval() return text_encoder @property def A ( self : int )-> str: torch.manual_seed(0 ) __UpperCamelCase = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } __UpperCamelCase = UNetaDConditionModel(**A_ ) return model @property def A ( self : Optional[int] )-> Union[str, Any]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A ( self : List[str] )-> Tuple: torch.manual_seed(0 ) __UpperCamelCase = VQModel(**self.dummy_movq_kwargs ) return model def A ( self : str )-> List[Any]: __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = self.dummy_tokenizer __UpperCamelCase = self.dummy_unet __UpperCamelCase = self.dummy_movq __UpperCamelCase = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="linear" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=A_ , set_alpha_to_one=A_ , steps_offset=1 , prediction_type="epsilon" , thresholding=A_ , ) __UpperCamelCase = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def A ( self : Union[str, Any] , A_ : Optional[Any] , A_ : Optional[Any]=0 )-> Dict: __UpperCamelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(A_ ) ).to(A_ ) __UpperCamelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(A_ ) # create init_image __UpperCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(A_ ) ).to(A_ ) __UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCamelCase = Image.fromarray(np.uinta(A_ ) ).convert("RGB" ).resize((2_56, 2_56) ) # create mask __UpperCamelCase = np.ones((64, 64) , dtype=np.floataa ) __UpperCamelCase = 0 if str(A_ ).startswith("mps" ): __UpperCamelCase = torch.manual_seed(A_ ) else: __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) __UpperCamelCase = { "prompt": "horse", "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs def A ( self : Optional[int] )-> Dict: __UpperCamelCase = "cpu" __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = self.pipeline_class(**A_ ) __UpperCamelCase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = pipe(**self.get_dummy_inputs(A_ ) ) __UpperCamelCase = output.images __UpperCamelCase = pipe( **self.get_dummy_inputs(A_ ) , return_dict=A_ , )[0] __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] print(f"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) __UpperCamelCase = np.array( [0.8_326_919, 0.73_790_467, 0.20_918_581, 0.9_309_612, 0.5_511_791, 0.43_713_328, 0.5_513_321, 0.49_922_934, 0.59_497_786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def A ( self : Union[str, Any] )-> int: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def A ( self : str )-> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Any )-> str: __UpperCamelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" ) __UpperCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) __UpperCamelCase = np.ones((7_68, 7_68) , dtype=np.floataa ) __UpperCamelCase = 0 __UpperCamelCase = "a hat" __UpperCamelCase = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(A_ ) __UpperCamelCase = KandinskyInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa ) __UpperCamelCase = pipeline.to(A_ ) pipeline.set_progress_bar_config(disable=A_ ) __UpperCamelCase = torch.Generator(device="cpu" ).manual_seed(0 ) __UpperCamelCase , __UpperCamelCase = pipe_prior( A_ , generator=A_ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() __UpperCamelCase = pipeline( A_ , image=A_ , mask_image=A_ , image_embeds=A_ , negative_image_embeds=A_ , generator=A_ , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="np" , ) __UpperCamelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(A_ , A_ )
505
1
'''simple docstring''' from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class A_ ( lowerCAmelCase_ ): def lowercase ( self : Dict ): return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = {"col_1": [3, 2, 1, 0], "col_2": ["a", "b", "c", "d"]} return Dataset.from_dict(snake_case_ ) def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = self._create_example_records() _UpperCAmelCase = Dataset.from_list(snake_case_ ) self.assertListEqual(dset.column_names , ["col_1", "col_2"] ) for i, r in enumerate(snake_case_ ): self.assertDictEqual(snake_case_ , example_records[i] ) def lowercase ( self : str ): _UpperCAmelCase = self._create_example_records() _UpperCAmelCase = Dataset.from_list(snake_case_ ) _UpperCAmelCase = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def lowercase ( self : str ): # checks what happens with missing columns _UpperCAmelCase = [{"col_1": 1}, {"col_2": "x"}] _UpperCAmelCase = Dataset.from_list(snake_case_ ) self.assertDictEqual(dset[0] , {"col_1": 1} ) self.assertDictEqual(dset[1] , {"col_1": None} ) # NB: first record is used for columns def lowercase ( self : List[Any] ): # checks if the type can be inferred from the second record _UpperCAmelCase = [{"col_1": []}, {"col_1": [1, 2]}] _UpperCAmelCase = Dataset.from_list(snake_case_ ) self.assertEqual(dset.info.features["col_1"] , Sequence(Value("int64" ) ) ) def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = Dataset.from_list([] ) self.assertEqual(len(snake_case_ ) , 0 ) self.assertListEqual(dset.column_names , [] )
707
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger() @dataclass class A_ : _lowerCamelCase : nn.Module _lowerCamelCase : List[nn.Module] = field(default_factory=lowerCAmelCase_ ) _lowerCamelCase : list = field(default_factory=lowerCAmelCase_ ) def lowercase ( self : Dict , snake_case_ : Dict , snake_case_ : Tensor , snake_case_ : Tensor ): _UpperCAmelCase = len(list(m.modules() ) ) == 1 or isinstance(snake_case_ , nn.Convad ) or isinstance(snake_case_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case_ ) def __call__( self : str , snake_case_ : Tensor ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case_ ) [x.remove() for x in self.handles] return self @property def lowercase ( self : int ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda snake_case_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class A_ : _lowerCamelCase : nn.Module _lowerCamelCase : nn.Module _lowerCamelCase : int = 1 _lowerCamelCase : List = field(default_factory=lowerCAmelCase_ ) _lowerCamelCase : List = field(default_factory=lowerCAmelCase_ ) _lowerCamelCase : bool = True def __call__( self : str , snake_case_ : Tensor ): _UpperCAmelCase = Tracker(self.dest )(snake_case_ ).parametrized _UpperCAmelCase = Tracker(self.src )(snake_case_ ).parametrized _UpperCAmelCase = list(filter(lambda snake_case_ : type(snake_case_ ) not in self.src_skip , snake_case_ ) ) _UpperCAmelCase = list(filter(lambda snake_case_ : type(snake_case_ ) not in self.dest_skip , snake_case_ ) ) if len(snake_case_ ) != len(snake_case_ ) and self.raise_if_mismatch: raise Exception( f'Numbers of operations are different. Source module has {len(snake_case_ )} operations while' f' destination module has {len(snake_case_ )}.' ) for dest_m, src_m in zip(snake_case_ , snake_case_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) class A_ ( nn.Module ): def __init__( self : str , snake_case_ : nn.Module ): super().__init__() _UpperCAmelCase = [] # - get the stem feature_blocks.append(("conv1", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("block" ), f'Unexpected layer name {k}' _UpperCAmelCase = len(snake_case_ ) + 1 feature_blocks.append((f'res{block_index}', v) ) _UpperCAmelCase = nn.ModuleDict(snake_case_ ) def lowercase ( self : Optional[int] , snake_case_ : Tensor ): return get_trunk_forward_outputs( snake_case_ , out_feat_keys=snake_case_ , feature_blocks=self._feature_blocks , ) class A_ ( lowerCAmelCase_ ): def lowercase ( self : Any , snake_case_ : str ): _UpperCAmelCase = x.split("-" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : Any , snake_case_ : str ): # default to timm! if x not in self: _UpperCAmelCase = self.convert_name_to_timm(snake_case_ ) _UpperCAmelCase = partial(lambda: (timm.create_model(snake_case_ , pretrained=snake_case_ ).eval(), None) ) else: _UpperCAmelCase = super().__getitem__(snake_case_ ) return val class A_ ( lowerCAmelCase_ ): def __getitem__( self : Tuple , snake_case_ : str ): if "seer" in x and "in1k" not in x: _UpperCAmelCase = RegNetModel else: _UpperCAmelCase = RegNetForImageClassification return val def UpperCAmelCase_ ( __lowercase : Optional[Any] , __lowercase : str , __lowercase : List[Tuple[str, str]] ) -> List[Any]: '''simple docstring''' for from_key, to_key in keys: _UpperCAmelCase = from_state_dict[from_key].clone() print(f'Copied key={from_key} to={to_key}' ) return to_state_dict def UpperCAmelCase_ ( __lowercase : str , __lowercase : Callable[[], nn.Module] , __lowercase : Callable[[], nn.Module] , __lowercase : RegNetConfig , __lowercase : Path , __lowercase : bool = True , ) -> str: '''simple docstring''' print(f'Converting {name}...' ) with torch.no_grad(): _UpperCAmelCase , _UpperCAmelCase = from_model_func() _UpperCAmelCase = our_model_func(__lowercase ).eval() _UpperCAmelCase = ModuleTransfer(src=__lowercase , dest=__lowercase , raise_if_mismatch=__lowercase ) _UpperCAmelCase = torch.randn((1, 3, 224, 224) ) module_transfer(__lowercase ) if from_state_dict is not None: _UpperCAmelCase = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: _UpperCAmelCase = [("0.clf.0.weight", "classifier.1.weight"), ("0.clf.0.bias", "classifier.1.bias")] _UpperCAmelCase = manually_copy_vissl_head(__lowercase , our_model.state_dict() , __lowercase ) our_model.load_state_dict(__lowercase ) _UpperCAmelCase = our_model(__lowercase , output_hidden_states=__lowercase ) _UpperCAmelCase = ( our_outputs.logits if isinstance(__lowercase , __lowercase ) else our_outputs.last_hidden_state ) _UpperCAmelCase = from_model(__lowercase ) _UpperCAmelCase = from_output[-1] if type(__lowercase ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: _UpperCAmelCase = our_outputs.hidden_states[-1] assert torch.allclose(__lowercase , __lowercase ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add model" , use_temp_dir=__lowercase , ) _UpperCAmelCase = 224 if "seer" not in name else 384 # we can use the convnext one _UpperCAmelCase = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" , size=__lowercase ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add image processor" , use_temp_dir=__lowercase , ) print(f'Pushed {name}' ) def UpperCAmelCase_ ( __lowercase : Path , __lowercase : str = None , __lowercase : bool = True ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = "imagenet-1k-id2label.json" _UpperCAmelCase = 1000 _UpperCAmelCase = (1, num_labels) _UpperCAmelCase = "huggingface/label-files" _UpperCAmelCase = num_labels _UpperCAmelCase = json.load(open(cached_download(hf_hub_url(__lowercase , __lowercase , repo_type="dataset" ) ) , "r" ) ) _UpperCAmelCase = {int(__lowercase ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} _UpperCAmelCase = partial(__lowercase , num_labels=__lowercase , idalabel=__lowercase , labelaid=__lowercase ) _UpperCAmelCase = { "regnet-x-002": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type="x" ), "regnet-x-004": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type="x" ), "regnet-x-006": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type="x" ), "regnet-x-008": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type="x" ), "regnet-x-016": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type="x" ), "regnet-x-032": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type="x" ), "regnet-x-040": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type="x" ), "regnet-x-064": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type="x" ), "regnet-x-080": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type="x" ), "regnet-x-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type="x" ), "regnet-x-160": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type="x" ), "regnet-x-320": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type="x" ), # y variant "regnet-y-002": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), "regnet-y-004": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), "regnet-y-006": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), "regnet-y-008": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), "regnet-y-016": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), "regnet-y-032": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ), "regnet-y-040": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ), "regnet-y-064": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ), "regnet-y-080": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ), "regnet-y-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ), "regnet-y-160": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ), "regnet-y-320": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 "regnet-y-320-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), "regnet-y-640-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), "regnet-y-1280-seer": RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), "regnet-y-2560-seer": RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), "regnet-y-10b-seer": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), # finetuned on imagenet "regnet-y-320-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), "regnet-y-640-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), "regnet-y-1280-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), "regnet-y-2560-seer-in1k": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), "regnet-y-10b-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), } _UpperCAmelCase = NameToOurModelFuncMap() _UpperCAmelCase = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(__lowercase : str , __lowercase : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: _UpperCAmelCase = torch.hub.load_state_dict_from_url(__lowercase , model_dir=str(__lowercase ) , map_location="cpu" ) _UpperCAmelCase = model_func() # check if we have a head, if yes add it _UpperCAmelCase = files["classy_state_dict"]["base_model"]["model"] _UpperCAmelCase = model_state_dict["trunk"] model.load_state_dict(__lowercase ) return model.eval(), model_state_dict["heads"] # pretrained _UpperCAmelCase = partial( __lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _UpperCAmelCase = partial( __lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _UpperCAmelCase = partial( __lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) _UpperCAmelCase = partial( __lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned _UpperCAmelCase = partial( __lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _UpperCAmelCase = partial( __lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _UpperCAmelCase = partial( __lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) _UpperCAmelCase = partial( __lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( __lowercase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , __lowercase , __lowercase , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( __lowercase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , __lowercase , __lowercase , __lowercase , ) return config, expected_shape if __name__ == "__main__": __SCREAMING_SNAKE_CASE :Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported regnet* architecture,''' ''' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) __SCREAMING_SNAKE_CASE :Any = parser.parse_args() __SCREAMING_SNAKE_CASE :Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
119
0
'''simple docstring''' # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def UpperCAmelCase_ (__a : List[str] , __a : Optional[int] , __a : int , __a : Any ): """simple docstring""" _a : Optional[int] = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, nicht wahr?', } # BLUE scores as follows: # "pair": [fairseq, transformers] _a : Optional[int] = { 'wmt16-en-de-dist-12-1': [28.3, 27.52], 'wmt16-en-de-dist-6-1': [27.4, 27.11], 'wmt16-en-de-12-1': [26.9, 25.75], } _a : Optional[int] = f"""{src_lang}-{tgt_lang}""" _a : int = f""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"allenai/{model_name}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` """ model_card_dir.mkdir(parents=__a , exist_ok=__a ) _a : Tuple = os.path.join(__a , 'README.md' ) print(f"""Generating {path}""" ) with open(__a , 'w' , encoding='utf-8' ) as f: f.write(__a ) # make sure we are under the root of the project __lowerCAmelCase = Path(__file__).resolve().parent.parent.parent __lowerCAmelCase = repo_dir / """model_cards""" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: __lowerCAmelCase = model_cards_dir / """allenai""" / model_name write_model_card(model_card_dir, src_lang="""en""", tgt_lang="""de""", model_name=model_name)
229
'''simple docstring''' import operator as op def UpperCAmelCase_ (__a : List[str] ): """simple docstring""" _a : Dict = [] _a : List[str] = lambda __a , __a : int(x / y ) # noqa: E731 integer division operation _a : List[Any] = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) , 'Action'.center(1_2 ) , 'Stack' , sep=' | ' ) print('-' * (3_0 + len(__a )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(__a ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('push(' + x + ')').ljust(1_2 ) , ','.join(__a ) , sep=' | ' ) else: _a : str = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + b + ')').ljust(1_2 ) , ','.join(__a ) , sep=' | ' ) _a : str = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + a + ')').ljust(1_2 ) , ','.join(__a ) , sep=' | ' ) stack.append( str(opr[x](int(__a ) , int(__a ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(1_2 ) , ','.join(__a ) , sep=' | ' , ) return int(stack[0] ) if __name__ == "__main__": __lowerCAmelCase = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
229
1
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _lowerCamelCase = Lock() def _lowerCAmelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : int ): """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(__lowerCamelCase ) process_lock.release() # receive your right neighbor's value process_lock.acquire() __SCREAMING_SNAKE_CASE : Union[str, Any] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left __SCREAMING_SNAKE_CASE : Tuple = min(__lowerCamelCase , __lowerCamelCase ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(__lowerCamelCase ) process_lock.release() # receive your left neighbor's value process_lock.acquire() __SCREAMING_SNAKE_CASE : Tuple = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right __SCREAMING_SNAKE_CASE : List[Any] = max(__lowerCamelCase , __lowerCamelCase ) # after all swaps are performed, send the values back to main result_pipe[1].send(__lowerCamelCase ) def _lowerCAmelCase ( __lowerCamelCase : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = [] __SCREAMING_SNAKE_CASE : str = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop __SCREAMING_SNAKE_CASE : int = Pipe() __SCREAMING_SNAKE_CASE : Optional[Any] = Pipe() process_array_.append( Process( target=__lowerCamelCase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) __SCREAMING_SNAKE_CASE : Any = temp_rs __SCREAMING_SNAKE_CASE : Dict = temp_rr for i in range(1 , len(__lowerCamelCase ) - 1 ): __SCREAMING_SNAKE_CASE : Optional[int] = Pipe() __SCREAMING_SNAKE_CASE : List[Any] = Pipe() process_array_.append( Process( target=__lowerCamelCase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) __SCREAMING_SNAKE_CASE : int = temp_rs __SCREAMING_SNAKE_CASE : List[Any] = temp_rr process_array_.append( Process( target=__lowerCamelCase , args=( len(__lowerCamelCase ) - 1, arr[len(__lowerCamelCase ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(__lowerCamelCase ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(__lowerCamelCase ) ): __SCREAMING_SNAKE_CASE : Dict = result_pipe[p][0].recv() process_array_[p].join() return arr def _lowerCAmelCase ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = list(range(10 , 0 , -1 ) ) print("Initial List" ) print(*__lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = odd_even_transposition(__lowerCamelCase ) print("Sorted List\n" ) print(*__lowerCamelCase ) if __name__ == "__main__": main()
447
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { """BAAI/AltCLIP""": """https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json""", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class _SCREAMING_SNAKE_CASE (UpperCamelCase ): lowerCAmelCase = """altclip_text_model""" def __init__( self : Union[str, Any] , UpperCamelCase : List[Any]=2_5_0_0_0_2 , UpperCamelCase : int=1_0_2_4 , UpperCamelCase : Dict=2_4 , UpperCamelCase : Dict=1_6 , UpperCamelCase : Dict=4_0_9_6 , UpperCamelCase : List[str]="gelu" , UpperCamelCase : Any=0.1 , UpperCamelCase : List[str]=0.1 , UpperCamelCase : Union[str, Any]=5_1_4 , UpperCamelCase : List[Any]=1 , UpperCamelCase : Any=0.0_2 , UpperCamelCase : Any=0.0_2 , UpperCamelCase : Union[str, Any]=1E-05 , UpperCamelCase : List[str]=1 , UpperCamelCase : Dict=0 , UpperCamelCase : Tuple=2 , UpperCamelCase : Union[str, Any]="absolute" , UpperCamelCase : Optional[int]=True , UpperCamelCase : Any=7_6_8 , **UpperCamelCase : str , )->Any: super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size __SCREAMING_SNAKE_CASE : Optional[int] = hidden_size __SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : Any = num_attention_heads __SCREAMING_SNAKE_CASE : List[Any] = hidden_act __SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size __SCREAMING_SNAKE_CASE : int = hidden_dropout_prob __SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Dict = max_position_embeddings __SCREAMING_SNAKE_CASE : List[str] = type_vocab_size __SCREAMING_SNAKE_CASE : Any = initializer_range __SCREAMING_SNAKE_CASE : int = initializer_factor __SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps __SCREAMING_SNAKE_CASE : Optional[Any] = position_embedding_type __SCREAMING_SNAKE_CASE : List[str] = use_cache __SCREAMING_SNAKE_CASE : Any = project_dim class _SCREAMING_SNAKE_CASE (UpperCamelCase ): lowerCAmelCase = """altclip_vision_model""" def __init__( self : Dict , UpperCamelCase : Tuple=7_6_8 , UpperCamelCase : Optional[int]=3_0_7_2 , UpperCamelCase : Optional[Any]=5_1_2 , UpperCamelCase : int=1_2 , UpperCamelCase : List[Any]=1_2 , UpperCamelCase : List[str]=3 , UpperCamelCase : List[Any]=2_2_4 , UpperCamelCase : int=3_2 , UpperCamelCase : Optional[Any]="quick_gelu" , UpperCamelCase : List[Any]=1E-5 , UpperCamelCase : List[str]=0.0 , UpperCamelCase : Tuple=0.0_2 , UpperCamelCase : str=1.0 , **UpperCamelCase : Tuple , )->Optional[int]: super().__init__(**UpperCamelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = hidden_size __SCREAMING_SNAKE_CASE : Dict = intermediate_size __SCREAMING_SNAKE_CASE : Optional[int] = projection_dim __SCREAMING_SNAKE_CASE : int = num_hidden_layers __SCREAMING_SNAKE_CASE : str = num_attention_heads __SCREAMING_SNAKE_CASE : Tuple = num_channels __SCREAMING_SNAKE_CASE : Union[str, Any] = patch_size __SCREAMING_SNAKE_CASE : str = image_size __SCREAMING_SNAKE_CASE : List[str] = initializer_range __SCREAMING_SNAKE_CASE : int = initializer_factor __SCREAMING_SNAKE_CASE : Tuple = attention_dropout __SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act @classmethod def __snake_case ( cls : Union[str, Any] , UpperCamelCase : Union[str, os.PathLike] , **UpperCamelCase : Optional[Any] )->"PretrainedConfig": cls._set_token_in_kwargs(UpperCamelCase ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = cls.get_config_dict(UpperCamelCase , **UpperCamelCase ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("model_type" ) == "altclip": __SCREAMING_SNAKE_CASE : List[str] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCamelCase , **UpperCamelCase ) class _SCREAMING_SNAKE_CASE (UpperCamelCase ): lowerCAmelCase = """altclip""" lowerCAmelCase = True def __init__( self : Optional[Any] , UpperCamelCase : List[str]=None , UpperCamelCase : List[str]=None , UpperCamelCase : Union[str, Any]=7_6_8 , UpperCamelCase : Optional[Any]=2.6_5_9_2 , **UpperCamelCase : int )->Any: # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). __SCREAMING_SNAKE_CASE : Optional[Any] = kwargs.pop("text_config_dict" , UpperCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs.pop("vision_config_dict" , UpperCamelCase ) super().__init__(**UpperCamelCase ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: __SCREAMING_SNAKE_CASE : Tuple = {} # This is the complete result when using `text_config_dict`. __SCREAMING_SNAKE_CASE : Optional[Any] = AltCLIPTextConfig(**UpperCamelCase ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: __SCREAMING_SNAKE_CASE : List[str] = ( F"""`{key}` is found in both `text_config_dict` and `text_config` but with different values. """ F"""The value `text_config_dict[\"{key}\"]` will be used instead.""" ) # If inferred from default argument values (just to be super careful) else: __SCREAMING_SNAKE_CASE : Union[str, Any] = ( F"""`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The """ F"""value `text_config[\"{key}\"]` will be overriden.""" ) logger.warning(UpperCamelCase ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: __SCREAMING_SNAKE_CASE : int = {} # This is the complete result when using `vision_config_dict`. __SCREAMING_SNAKE_CASE : Optional[int] = AltCLIPVisionConfig(**UpperCamelCase ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: __SCREAMING_SNAKE_CASE : List[Any] = { str(UpperCamelCase ): value for key, value in _vision_config_dict["id2label"].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: __SCREAMING_SNAKE_CASE : Dict = ( F"""`{key}` is found in both `vision_config_dict` and `vision_config` but with different """ F"""values. The value `vision_config_dict[\"{key}\"]` will be used instead.""" ) # If inferred from default argument values (just to be super careful) else: __SCREAMING_SNAKE_CASE : Dict = ( F"""`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. """ F"""The value `vision_config[\"{key}\"]` will be overriden.""" ) logger.warning(UpperCamelCase ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: __SCREAMING_SNAKE_CASE : List[Any] = {} logger.info("`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values." ) if vision_config is None: __SCREAMING_SNAKE_CASE : List[str] = {} logger.info("`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values." ) __SCREAMING_SNAKE_CASE : Tuple = AltCLIPTextConfig(**UpperCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = AltCLIPVisionConfig(**UpperCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = projection_dim __SCREAMING_SNAKE_CASE : int = logit_scale_init_value __SCREAMING_SNAKE_CASE : List[Any] = 1.0 @classmethod def __snake_case ( cls : Dict , UpperCamelCase : AltCLIPTextConfig , UpperCamelCase : AltCLIPVisionConfig , **UpperCamelCase : int )->Dict: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCamelCase ) def __snake_case ( self : str )->List[str]: __SCREAMING_SNAKE_CASE : List[Any] = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE : Dict = self.text_config.to_dict() __SCREAMING_SNAKE_CASE : Optional[int] = self.vision_config.to_dict() __SCREAMING_SNAKE_CASE : int = self.__class__.model_type return output
447
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[str] = "▁" UpperCAmelCase__ : Dict = {"vocab_file": "sentencepiece.bpe.model"} UpperCAmelCase__ : int = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } UpperCAmelCase__ : Dict = { "facebook/xglm-564M": 20_48, } class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :List[Any] = VOCAB_FILES_NAMES snake_case__ :Any = PRETRAINED_VOCAB_FILES_MAP snake_case__ :str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ :Tuple = ['input_ids', 'attention_mask'] def __init__( self : int , __magic_name__ : str , __magic_name__ : Optional[int]="<s>" , __magic_name__ : int="</s>" , __magic_name__ : Optional[Any]="</s>" , __magic_name__ : List[Any]="<s>" , __magic_name__ : List[str]="<unk>" , __magic_name__ : Optional[int]="<pad>" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : Optional[Any] , ): """simple docstring""" lowerCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer lowerCAmelCase__ = 7 lowerCAmelCase__ = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] lowerCAmelCase__ = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , pad_token=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , ) lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__magic_name__ ) ) lowerCAmelCase__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCAmelCase__ = 1 # Mimic fairseq token-to-id alignment for the first 4 token lowerCAmelCase__ = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} lowerCAmelCase__ = len(self.sp_model ) lowerCAmelCase__ = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(__magic_name__ ) lowerCAmelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : List[str] ): """simple docstring""" lowerCAmelCase__ = self.__dict__.copy() lowerCAmelCase__ = None lowerCAmelCase__ = self.sp_model.serialized_model_proto() return state def __setstate__( self : List[str] , __magic_name__ : List[str] ): """simple docstring""" lowerCAmelCase__ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCAmelCase__ = {} lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.sep_token_id] + token_ids_a lowerCAmelCase__ = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ ) if token_ids_a is None: return [1] + ([0] * len(__magic_name__ )) return [1] + ([0] * len(__magic_name__ )) + [1, 1] + ([0] * len(__magic_name__ )) def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ): """simple docstring""" lowerCAmelCase__ = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" lowerCAmelCase__ = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str ): """simple docstring""" return self.sp_model.encode(__magic_name__ , out_type=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Dict ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCAmelCase__ = self.sp_model.PieceToId(__magic_name__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : Tuple ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : List[str] ): """simple docstring""" lowerCAmelCase__ = "".join(__magic_name__ ).replace(__magic_name__ , " " ).strip() return out_string def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(__magic_name__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ = os.path.join( __magic_name__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __magic_name__ ) elif not os.path.isfile(self.vocab_file ): with open(__magic_name__ , "wb" ) as fi: lowerCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(__magic_name__ ) return (out_vocab_file,)
48
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = "dpt" def __init__( self : Optional[Any] , _UpperCamelCase : Tuple=7_6_8 , _UpperCamelCase : Dict=1_2 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : List[Any]=3_0_7_2 , _UpperCamelCase : Dict="gelu" , _UpperCamelCase : Union[str, Any]=0.0 , _UpperCamelCase : Optional[int]=0.0 , _UpperCamelCase : Optional[int]=0.02 , _UpperCamelCase : List[str]=1e-12 , _UpperCamelCase : Any=3_8_4 , _UpperCamelCase : int=1_6 , _UpperCamelCase : Any=3 , _UpperCamelCase : Dict=False , _UpperCamelCase : str=True , _UpperCamelCase : Union[str, Any]=[2, 5, 8, 1_1] , _UpperCamelCase : List[str]="project" , _UpperCamelCase : Optional[int]=[4, 2, 1, 0.5] , _UpperCamelCase : Dict=[9_6, 1_9_2, 3_8_4, 7_6_8] , _UpperCamelCase : Dict=2_5_6 , _UpperCamelCase : Optional[Any]=-1 , _UpperCamelCase : int=False , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : str=0.4 , _UpperCamelCase : Tuple=2_5_5 , _UpperCamelCase : Union[str, Any]=0.1 , _UpperCamelCase : Tuple=[1, 1_0_2_4, 2_4, 2_4] , _UpperCamelCase : List[str]=[0, 1] , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : Dict , ) ->Any: super().__init__(**_UpperCamelCase ) snake_case_ = hidden_size snake_case_ = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) snake_case_ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } snake_case_ = BitConfig(**_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): logger.info('''Initializing the config with a `BiT` backbone.''' ) snake_case_ = BitConfig(**_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): snake_case_ = backbone_config else: raise ValueError( f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) snake_case_ = backbone_featmap_shape snake_case_ = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: snake_case_ = None snake_case_ = None snake_case_ = [] snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias snake_case_ = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) snake_case_ = readout_type snake_case_ = reassemble_factors snake_case_ = neck_hidden_sizes snake_case_ = fusion_hidden_size snake_case_ = head_in_index snake_case_ = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) snake_case_ = use_auxiliary_head snake_case_ = auxiliary_loss_weight snake_case_ = semantic_loss_ignore_index snake_case_ = semantic_classifier_dropout def snake_case__( self : List[str] ) ->List[Any]: snake_case_ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: snake_case_ = self.backbone_config.to_dict() snake_case_ = self.__class__.model_type return output
39
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE : Optional[int] = { """configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""], """tokenization_electra""": ["""ElectraTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[Any] = ["""ElectraTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[str] = [ """ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """ElectraForCausalLM""", """ElectraForMaskedLM""", """ElectraForMultipleChoice""", """ElectraForPreTraining""", """ElectraForQuestionAnswering""", """ElectraForSequenceClassification""", """ElectraForTokenClassification""", """ElectraModel""", """ElectraPreTrainedModel""", """load_tf_weights_in_electra""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = [ """TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFElectraForMaskedLM""", """TFElectraForMultipleChoice""", """TFElectraForPreTraining""", """TFElectraForQuestionAnswering""", """TFElectraForSequenceClassification""", """TFElectraForTokenClassification""", """TFElectraModel""", """TFElectraPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[int] = [ """FlaxElectraForCausalLM""", """FlaxElectraForMaskedLM""", """FlaxElectraForMultipleChoice""", """FlaxElectraForPreTraining""", """FlaxElectraForQuestionAnswering""", """FlaxElectraForSequenceClassification""", """FlaxElectraForTokenClassification""", """FlaxElectraModel""", """FlaxElectraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
525
from datetime import datetime as dt import os from github import Github SCREAMING_SNAKE_CASE : Optional[Any] = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def __A ( ): """simple docstring""" __a = Github(os.environ["GITHUB_TOKEN"] ) __a = g.get_repo("huggingface/transformers" ) __a = repo.get_issues(state="open" ) for issue in open_issues: __a = sorted([comment for comment in issue.get_comments()] , key=lambda _A : i.created_at , reverse=_A ) __a = comments[0] if len(_A ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="closed" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
525
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] snake_case_ = True if '''large''' in model_name or '''huge''' in model_name else False snake_case_ = True if '''large''' in model_name or '''huge''' in model_name else False snake_case_ = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: snake_case_ = [3, 3, 3, 3] snake_case_ = [5, 5, 5, 5] elif "fl4" in model_name: snake_case_ = [4, 4, 4, 4] snake_case_ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: snake_case_ = [3, 3, 3, 3] if "lrf" in model_name: snake_case_ = [3, 3, 3, 3] else: snake_case_ = [2, 2, 2, 2] if "tiny" in model_name: snake_case_ = 96 elif "small" in model_name: snake_case_ = 96 elif "base" in model_name: snake_case_ = 128 elif "large" in model_name: snake_case_ = 192 elif "xlarge" in model_name: snake_case_ = 256 elif "huge" in model_name: snake_case_ = 352 # set label information snake_case_ = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: snake_case_ = '''imagenet-22k-id2label.json''' else: snake_case_ = '''imagenet-1k-id2label.json''' snake_case_ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' ) , '''r''' ) ) snake_case_ = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} snake_case_ = {v: k for k, v in idalabel.items()} snake_case_ = FocalNetConfig( embed_dim=SCREAMING_SNAKE_CASE__ , depths=SCREAMING_SNAKE_CASE__ , focal_levels=SCREAMING_SNAKE_CASE__ , focal_windows=SCREAMING_SNAKE_CASE__ , use_conv_embed=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__ , use_post_layernorm=SCREAMING_SNAKE_CASE__ , use_layerscale=SCREAMING_SNAKE_CASE__ , ) return config def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if "patch_embed.proj" in name: snake_case_ = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: snake_case_ = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: snake_case_ = '''encoder.''' + name if "encoder.layers" in name: snake_case_ = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: snake_case_ = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: snake_case_ = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: snake_case_ = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: snake_case_ = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: snake_case_ = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": snake_case_ = '''layernorm.weight''' if name == "norm.bias": snake_case_ = '''layernorm.bias''' if "head" in name: snake_case_ = name.replace('''head''' , '''classifier''' ) else: snake_case_ = '''focalnet.''' + name return name def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ): # fmt: off snake_case_ = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on snake_case_ = model_name_to_url[model_name] print('''Checkpoint URL: ''' , SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): snake_case_ = state_dict.pop(SCREAMING_SNAKE_CASE__ ) snake_case_ = val snake_case_ = get_focalnet_config(SCREAMING_SNAKE_CASE__ ) snake_case_ = FocalNetForImageClassification(SCREAMING_SNAKE_CASE__ ) model.eval() # load state dict model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # verify conversion snake_case_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case_ = BitImageProcessor( do_resize=SCREAMING_SNAKE_CASE__ , size={'''shortest_edge''': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=SCREAMING_SNAKE_CASE__ , crop_size=224 , do_normalize=SCREAMING_SNAKE_CASE__ , image_mean=SCREAMING_SNAKE_CASE__ , image_std=SCREAMING_SNAKE_CASE__ , ) snake_case_ = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) snake_case_ = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' ) snake_case_ = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) snake_case_ = image_transforms(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) snake_case_ = model(**SCREAMING_SNAKE_CASE__ ) snake_case_ = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": snake_case_ = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": snake_case_ = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": snake_case_ = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": snake_case_ = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": snake_case_ = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": snake_case_ = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and processor of {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: print(F'''Pushing model and processor of {model_name} to the hub...''' ) model.push_to_hub(F'''{model_name}''' ) processor.push_to_hub(F'''{model_name}''' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''focalnet-tiny''', type=str, help='''Name of the FocalNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub.''', ) lowerCAmelCase_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
39
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __a = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. __a = direct_transformers_import(PATH_TO_TRANSFORMERS) __a = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __a = re.compile(r'''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') __a = { '''DecisionTransformerConfig''', '''EncoderDecoderConfig''', '''MusicgenConfig''', '''RagConfig''', '''SpeechEncoderDecoderConfig''', '''TimmBackboneConfig''', '''VisionEncoderDecoderConfig''', '''VisionTextDualEncoderConfig''', '''LlamaConfig''', } def __lowercase ( _UpperCamelCase ) ->Any: """simple docstring""" lowercase : Tuple = None # source code of `config_class` lowercase : Dict = inspect.getsource(_UpperCamelCase ) lowercase : List[str] = _re_checkpoint.findall(_UpperCamelCase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('''/''' ): lowercase : List[str] = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link lowercase : List[str] = f"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: lowercase : Dict = ckpt_name break return checkpoint def __lowercase ( ) ->str: """simple docstring""" lowercase : str = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue lowercase : Optional[int] = get_checkpoint_from_config_class(_UpperCamelCase ) lowercase : Union[str, Any] = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: lowercase : Any = '''\n'''.join(sorted(_UpperCamelCase ) ) raise ValueError(f"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
319
0
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _A = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def SCREAMING_SNAKE_CASE ( __UpperCAmelCase ) -> Optional[int]: from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowercase ) def SCREAMING_SNAKE_CASE ( __UpperCAmelCase ) -> Dict: from diffusers.utils.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE__ = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(_lowercase , id=_lowercase )
712
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def SCREAMING_SNAKE_CASE ( __UpperCAmelCase ) -> List[str]: return 1 / (1 + np.exp(-z )) def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: return (-y * np.log(__UpperCAmelCase ) - (1 - y) * np.log(1 - h )).mean() def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: SCREAMING_SNAKE_CASE__ = np.dot(__UpperCAmelCase , __UpperCAmelCase ) return np.sum(y * scores - np.log(1 + np.exp(__UpperCAmelCase ) ) ) def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=70_000 ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = np.zeros(x.shape[1] ) for iterations in range(__UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = np.dot(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = sigmoid_function(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = np.dot(x.T , h - y ) / y.size SCREAMING_SNAKE_CASE__ = theta - alpha * gradient # updating the weights SCREAMING_SNAKE_CASE__ = np.dot(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = sigmoid_function(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = cost_function(__UpperCAmelCase , __UpperCAmelCase ) if iterations % 100 == 0: print(F"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": _A = datasets.load_iris() _A = iris.data[:, :2] _A = (iris.target != 0) * 1 _A = 0.1 _A = logistic_reg(alpha, x, y, max_iterations=7_0_0_0_0) print('theta: ', theta) # printing the theta i.e our weights vector def SCREAMING_SNAKE_CASE ( __UpperCAmelCase ) -> Union[str, Any]: return sigmoid_function( np.dot(__UpperCAmelCase , __UpperCAmelCase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(1_0, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((_A) , (_A)) = (x[:, 0].min(), x[:, 0].max()) ((_A) , (_A)) = (x[:, 1].min(), x[:, 1].max()) ((_A) , (_A)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) _A = np.c_[xxa.ravel(), xxa.ravel()] _A = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
538
0
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
41
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device __UpperCamelCase : str = False class __SCREAMING_SNAKE_CASE( unittest.TestCase ): pass @nightly @require_torch_gpu class __SCREAMING_SNAKE_CASE( unittest.TestCase ): def lowerCAmelCase_ ( self: str ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self: Any ) -> Dict: snake_case__ = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) snake_case__ = torch.manual_seed(0 ) snake_case__ = pipe.dual_guided( prompt='first prompt' , image=UpperCamelCase , text_to_image_strength=0.75 , generator=UpperCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCamelCase ) snake_case__ = VersatileDiffusionPipeline.from_pretrained(UpperCamelCase , torch_dtype=torch.floataa ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ = generator.manual_seed(0 ) snake_case__ = pipe.dual_guided( prompt='first prompt' , image=UpperCamelCase , text_to_image_strength=0.75 , generator=UpperCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def lowerCAmelCase_ ( self: List[str] ) -> str: snake_case__ = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ = 'cyberpunk 2077' snake_case__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) snake_case__ = torch.manual_seed(0 ) snake_case__ = pipe.dual_guided( prompt=UpperCamelCase , image=UpperCamelCase , text_to_image_strength=0.75 , generator=UpperCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images snake_case__ = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) snake_case__ = np.array([0.1_448, 0.1_619, 0.1_741, 0.1_086, 0.1_147, 0.1_128, 0.1_199, 0.1_165, 0.1_001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 snake_case__ = 'A painting of a squirrel eating a burger ' snake_case__ = torch.manual_seed(0 ) snake_case__ = pipe.text_to_image( prompt=UpperCamelCase , generator=UpperCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images snake_case__ = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) snake_case__ = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 snake_case__ = pipe.image_variation(UpperCamelCase , generator=UpperCamelCase , output_type='numpy' ).images snake_case__ = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) snake_case__ = np.array([0.3_076, 0.3_123, 0.3_284, 0.3_782, 0.3_770, 0.3_894, 0.4_297, 0.4_331, 0.4_456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
328
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class _lowerCAmelCase ( __snake_case ): __lowerCAmelCase : Tuple = ( '''This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.''' '''It takes two arguments named `image` which should be the original image, and `label` which should be a text ''' '''describing the elements what should be identified in the segmentation mask. The tool returns the mask.''' ) __lowerCAmelCase : Optional[int] = '''CIDAS/clipseg-rd64-refined''' __lowerCAmelCase : Optional[Any] = '''image_segmenter''' __lowerCAmelCase : int = CLIPSegForImageSegmentation __lowerCAmelCase : List[str] = ['''image''', '''text'''] __lowerCAmelCase : Union[str, Any] = ['''image'''] def __init__( self : List[Any] , *a : Optional[int] , **a : Optional[int] ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ['''vision'''] ) super().__init__(*a , **a ) def _lowerCAmelCase ( self : Optional[int] , a : "Image" , a : str ) -> int: """simple docstring""" return self.pre_processor(text=[label] , images=[image] , padding=a , return_tensors='''pt''' ) def _lowerCAmelCase ( self : int , a : Dict ) -> Dict: """simple docstring""" with torch.no_grad(): lowercase = self.model(**a ).logits return logits def _lowerCAmelCase ( self : Union[str, Any] , a : int ) -> Union[str, Any]: """simple docstring""" lowercase = outputs.cpu().detach().numpy() lowercase = 0 lowercase = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
396
"""simple docstring""" import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--user''', type=str, default='''ubuntu''') parser.add_argument('''--host''', type=str, default='''localhost''') parser.add_argument('''--key_path''', type=str, default=None) parser.add_argument('''--instance''', type=str, default='''V100:1''') parser.add_argument('''--provider''', type=str, default='''cheapest''') parser.add_argument('''--use_spot''', type=bool, default=False) parser.add_argument('''--example''', type=str, default='''pytorch/text-generation/run_generation.py''') __lowerCAmelCase , __lowerCAmelCase = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('''Cannot specify both BYO and on-demand cluster args''') __lowerCAmelCase = rh.cluster( name='''rh-cluster''', ips=[args.host], ssh_creds={'''ssh_user''': args.user, '''ssh_private_key''': args.key_path} ) else: __lowerCAmelCase = rh.cluster( name='''rh-cluster''', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) __lowerCAmelCase = args.example.rsplit('''/''', 1)[0] # Set up remote environment cluster.install_packages(['''pip:./''']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f'''pip install -r transformers/examples/{example_dir}/requirements.txt''']) cluster.run(['''pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117''']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f'''python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}''']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
396
1
'''simple docstring''' from string import ascii_uppercase SCREAMING_SNAKE_CASE = {char: i for i, char in enumerate(ascii_uppercase)} SCREAMING_SNAKE_CASE = dict(enumerate(ascii_uppercase)) def lowercase_ ( __A : str , __A : str ) -> str: """simple docstring""" lowercase : Union[str, Any] =len(__A ) lowercase : Dict =0 while True: if x == i: lowercase : Dict =0 if len(__A ) == len(__A ): break key += key[i] i += 1 return key def lowercase_ ( __A : str , __A : str ) -> str: """simple docstring""" lowercase : Optional[int] ='''''' lowercase : List[Any] =0 for letter in message: if letter == " ": cipher_text += " " else: lowercase : Optional[Any] =(dicta[letter] - dicta[key_new[i]]) % 2_6 i += 1 cipher_text += dicta[x] return cipher_text def lowercase_ ( __A : str , __A : str ) -> str: """simple docstring""" lowercase : int ='''''' lowercase : List[Any] =0 for letter in cipher_text: if letter == " ": or_txt += " " else: lowercase : int =(dicta[letter] + dicta[key_new[i]] + 2_6) % 2_6 i += 1 or_txt += dicta[x] return or_txt def lowercase_ ( ) -> None: """simple docstring""" lowercase : Any ='''THE GERMAN ATTACK''' lowercase : Optional[Any] ='''SECRET''' lowercase : List[str] =generate_key(__A , __A ) lowercase : Optional[int] =cipher_text(__A , __A ) print(F'Encrypted Text = {s}' ) print(F'Original Text = {original_text(__A , __A )}' ) if __name__ == "__main__": import doctest doctest.testmod() main()
94
'''simple docstring''' from math import isqrt def lowercase_ ( __A : int ) -> list[int]: """simple docstring""" lowercase : Dict =[True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __A , __A ): lowercase : str =False return [i for i in range(2 , __A ) if is_prime[i]] def lowercase_ ( __A : int = 1_0**8 ) -> int: """simple docstring""" lowercase : Dict =calculate_prime_numbers(max_number // 2 ) lowercase : str =0 lowercase : Optional[Any] =0 lowercase : Union[str, Any] =len(__A ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f"""{solution() = }""")
94
1
'''simple docstring''' import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCamelCase__ ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ = BertTokenizer UpperCAmelCase__ = BertTokenizerFast UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = filter_non_english def snake_case ( self : List[str] ): """simple docstring""" super().setUp() _lowercase = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def snake_case ( self : Dict , __A : int ): """simple docstring""" _lowercase = "UNwant\u00E9d,running" _lowercase = "unwanted, running" return input_text, output_text def snake_case ( self : Tuple ): """simple docstring""" _lowercase = self.tokenizer_class(self.vocab_file ) _lowercase = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(__A , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def snake_case ( self : Dict ): """simple docstring""" if not self.test_rust_tokenizer: return _lowercase = self.get_tokenizer() _lowercase = self.get_rust_tokenizer() _lowercase = "UNwant\u00E9d,running" _lowercase = tokenizer.tokenize(__A ) _lowercase = rust_tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) _lowercase = tokenizer.encode(__A , add_special_tokens=__A ) _lowercase = rust_tokenizer.encode(__A , add_special_tokens=__A ) self.assertListEqual(__A , __A ) _lowercase = self.get_rust_tokenizer() _lowercase = tokenizer.encode(__A ) _lowercase = rust_tokenizer.encode(__A ) self.assertListEqual(__A , __A ) # With lower casing _lowercase = self.get_tokenizer(do_lower_case=__A ) _lowercase = self.get_rust_tokenizer(do_lower_case=__A ) _lowercase = "UNwant\u00E9d,running" _lowercase = tokenizer.tokenize(__A ) _lowercase = rust_tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) _lowercase = tokenizer.encode(__A , add_special_tokens=__A ) _lowercase = rust_tokenizer.encode(__A , add_special_tokens=__A ) self.assertListEqual(__A , __A ) _lowercase = self.get_rust_tokenizer() _lowercase = tokenizer.encode(__A ) _lowercase = rust_tokenizer.encode(__A ) self.assertListEqual(__A , __A ) def snake_case ( self : Dict ): """simple docstring""" _lowercase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def snake_case ( self : Dict ): """simple docstring""" _lowercase = BasicTokenizer(do_lower_case=__A ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def snake_case ( self : Any ): """simple docstring""" _lowercase = BasicTokenizer(do_lower_case=__A , strip_accents=__A ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def snake_case ( self : Any ): """simple docstring""" _lowercase = BasicTokenizer(do_lower_case=__A , strip_accents=__A ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def snake_case ( self : int ): """simple docstring""" _lowercase = BasicTokenizer(do_lower_case=__A ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def snake_case ( self : str ): """simple docstring""" _lowercase = BasicTokenizer(do_lower_case=__A ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def snake_case ( self : Optional[int] ): """simple docstring""" _lowercase = BasicTokenizer(do_lower_case=__A , strip_accents=__A ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def snake_case ( self : Any ): """simple docstring""" _lowercase = BasicTokenizer(do_lower_case=__A , strip_accents=__A ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def snake_case ( self : List[str] ): """simple docstring""" _lowercase = BasicTokenizer(do_lower_case=__A , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def snake_case ( self : Dict ): """simple docstring""" _lowercase = BasicTokenizer() _lowercase = "a\n'll !!to?'d of, can't." _lowercase = ["a", "'", "ll", "!", "!", "to", "?", "'", "d", "of", ",", "can", "'", "t", "."] self.assertListEqual(tokenizer.tokenize(__A ) , __A ) def snake_case ( self : str ): """simple docstring""" _lowercase = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] _lowercase = {} for i, token in enumerate(__A ): _lowercase = i _lowercase = WordpieceTokenizer(vocab=__A , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def snake_case ( self : List[str] ): """simple docstring""" self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def snake_case ( self : Optional[Any] ): """simple docstring""" self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def snake_case ( self : Any ): """simple docstring""" self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def snake_case ( self : Tuple ): """simple docstring""" _lowercase = self.get_tokenizer() _lowercase = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__A ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(__A ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def snake_case ( self : Any ): """simple docstring""" _lowercase = self.tokenizer_class.from_pretrained("bert-base-uncased" ) _lowercase = tokenizer.encode("sequence builders" , add_special_tokens=__A ) _lowercase = tokenizer.encode("multi-sequence build" , add_special_tokens=__A ) _lowercase = tokenizer.build_inputs_with_special_tokens(__A ) _lowercase = tokenizer.build_inputs_with_special_tokens(__A , __A ) assert encoded_sentence == [1_0_1] + text + [1_0_2] assert encoded_pair == [1_0_1] + text + [1_0_2] + text_a + [1_0_2] def snake_case ( self : Optional[int] ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowercase = self.rust_tokenizer_class.from_pretrained(__A , **__A ) _lowercase = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" _lowercase = tokenizer_r.encode_plus( __A , return_attention_mask=__A , return_token_type_ids=__A , return_offsets_mapping=__A , add_special_tokens=__A , ) _lowercase = tokenizer_r.do_lower_case if hasattr(__A , "do_lower_case" ) else False _lowercase = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), "Allen"), ((2_1, 2_3), "##NL"), ((2_3, 2_4), "##P"), ((2_5, 3_3), "sentence"), ((3_3, 3_4), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), "allen"), ((2_1, 2_3), "##nl"), ((2_3, 2_4), "##p"), ((2_5, 3_3), "sentence"), ((3_3, 3_4), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def snake_case ( self : str ): """simple docstring""" _lowercase = ["的", "人", "有"] _lowercase = "".join(__A ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowercase = True _lowercase = self.tokenizer_class.from_pretrained(__A , **__A ) _lowercase = self.rust_tokenizer_class.from_pretrained(__A , **__A ) _lowercase = tokenizer_p.encode(__A , add_special_tokens=__A ) _lowercase = tokenizer_r.encode(__A , add_special_tokens=__A ) _lowercase = tokenizer_r.convert_ids_to_tokens(__A ) _lowercase = tokenizer_p.convert_ids_to_tokens(__A ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__A , __A ) self.assertListEqual(__A , __A ) _lowercase = False _lowercase = self.rust_tokenizer_class.from_pretrained(__A , **__A ) _lowercase = self.tokenizer_class.from_pretrained(__A , **__A ) _lowercase = tokenizer_r.encode(__A , add_special_tokens=__A ) _lowercase = tokenizer_p.encode(__A , add_special_tokens=__A ) _lowercase = tokenizer_r.convert_ids_to_tokens(__A ) _lowercase = tokenizer_p.convert_ids_to_tokens(__A ) # it is expected that only the first Chinese character is not preceded by "##". _lowercase = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(__A ) ] self.assertListEqual(__A , __A ) self.assertListEqual(__A , __A )
602
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) __magic_name__ : List[Any] = {'''configuration_beit''': ['''BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BeitConfig''', '''BeitOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : str = ['''BeitFeatureExtractor'''] __magic_name__ : int = ['''BeitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : List[Any] = [ '''BEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BeitForImageClassification''', '''BeitForMaskedImageModeling''', '''BeitForSemanticSegmentation''', '''BeitModel''', '''BeitPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Optional[Any] = [ '''FlaxBeitForImageClassification''', '''FlaxBeitForMaskedImageModeling''', '''FlaxBeitModel''', '''FlaxBeitPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys __magic_name__ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
602
1
def __lowerCamelCase ( UpperCAmelCase_ : Dict = 1000 ): """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
445
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position snake_case : Dict = '2.13.1' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip snake_case : str = concatenate_datasets snake_case : Any = DownloadConfig snake_case : int = DownloadManager snake_case : int = DownloadMode snake_case : List[Any] = DownloadConfig snake_case : List[str] = DownloadMode snake_case : int = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
605
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class a__ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : int) -> Any: """simple docstring""" for model_name in ["bert-base-uncased"]: _lowerCAmelCase:List[Any] = AutoConfig.from_pretrained(a__) self.assertIsNotNone(a__) self.assertIsInstance(a__ ,a__) _lowerCAmelCase:Optional[int] = TFAutoModel.from_pretrained(a__ ,from_pt=a__) self.assertIsNotNone(a__) self.assertIsInstance(a__ ,a__) _lowerCAmelCase:List[Any] = AutoModel.from_pretrained(a__ ,from_tf=a__) self.assertIsNotNone(a__) self.assertIsInstance(a__ ,a__) @slow def __UpperCamelCase ( self : List[Any]) -> Any: """simple docstring""" for model_name in ["bert-base-uncased"]: _lowerCAmelCase:Optional[Any] = AutoConfig.from_pretrained(a__) self.assertIsNotNone(a__) self.assertIsInstance(a__ ,a__) _lowerCAmelCase:List[Any] = TFAutoModelForPreTraining.from_pretrained(a__ ,from_pt=a__) self.assertIsNotNone(a__) self.assertIsInstance(a__ ,a__) _lowerCAmelCase:Optional[int] = AutoModelForPreTraining.from_pretrained(a__ ,from_tf=a__) self.assertIsNotNone(a__) self.assertIsInstance(a__ ,a__) @slow def __UpperCamelCase ( self : Optional[Any]) -> int: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase:Dict = AutoConfig.from_pretrained(a__) self.assertIsNotNone(a__) self.assertIsInstance(a__ ,a__) _lowerCAmelCase:Union[str, Any] = TFAutoModelForCausalLM.from_pretrained(a__ ,from_pt=a__) _lowerCAmelCase , _lowerCAmelCase:Any = TFAutoModelForCausalLM.from_pretrained( a__ ,output_loading_info=a__ ,from_pt=a__) self.assertIsNotNone(a__) self.assertIsInstance(a__ ,a__) _lowerCAmelCase:Union[str, Any] = AutoModelForCausalLM.from_pretrained(a__ ,from_tf=a__) _lowerCAmelCase , _lowerCAmelCase:Any = AutoModelForCausalLM.from_pretrained( a__ ,output_loading_info=a__ ,from_tf=a__) self.assertIsNotNone(a__) self.assertIsInstance(a__ ,a__) @slow def __UpperCamelCase ( self : List[str]) -> Any: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase:Optional[int] = AutoConfig.from_pretrained(a__) self.assertIsNotNone(a__) self.assertIsInstance(a__ ,a__) _lowerCAmelCase:Optional[Any] = TFAutoModelWithLMHead.from_pretrained(a__ ,from_pt=a__) self.assertIsNotNone(a__) self.assertIsInstance(a__ ,a__) _lowerCAmelCase:Tuple = AutoModelWithLMHead.from_pretrained(a__ ,from_tf=a__) self.assertIsNotNone(a__) self.assertIsInstance(a__ ,a__) @slow def __UpperCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase:str = AutoConfig.from_pretrained(a__) self.assertIsNotNone(a__) self.assertIsInstance(a__ ,a__) _lowerCAmelCase:int = TFAutoModelForMaskedLM.from_pretrained(a__ ,from_pt=a__) _lowerCAmelCase , _lowerCAmelCase:Optional[Any] = TFAutoModelForMaskedLM.from_pretrained( a__ ,output_loading_info=a__ ,from_pt=a__) self.assertIsNotNone(a__) self.assertIsInstance(a__ ,a__) _lowerCAmelCase:Optional[int] = AutoModelForMaskedLM.from_pretrained(a__ ,from_tf=a__) _lowerCAmelCase , _lowerCAmelCase:Union[str, Any] = AutoModelForMaskedLM.from_pretrained( a__ ,output_loading_info=a__ ,from_tf=a__) self.assertIsNotNone(a__) self.assertIsInstance(a__ ,a__) @slow def __UpperCamelCase ( self : Optional[int]) -> int: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase:Optional[int] = AutoConfig.from_pretrained(a__) self.assertIsNotNone(a__) self.assertIsInstance(a__ ,a__) _lowerCAmelCase:int = TFAutoModelForSeqaSeqLM.from_pretrained(a__ ,from_pt=a__) _lowerCAmelCase , _lowerCAmelCase:Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained( a__ ,output_loading_info=a__ ,from_pt=a__) self.assertIsNotNone(a__) self.assertIsInstance(a__ ,a__) _lowerCAmelCase:Any = AutoModelForSeqaSeqLM.from_pretrained(a__ ,from_tf=a__) _lowerCAmelCase , _lowerCAmelCase:Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained( a__ ,output_loading_info=a__ ,from_tf=a__) self.assertIsNotNone(a__) self.assertIsInstance(a__ ,a__) @slow def __UpperCamelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: _lowerCAmelCase:Optional[int] = AutoConfig.from_pretrained(a__) self.assertIsNotNone(a__) self.assertIsInstance(a__ ,a__) _lowerCAmelCase:Union[str, Any] = TFAutoModelForSequenceClassification.from_pretrained(a__ ,from_pt=a__) self.assertIsNotNone(a__) self.assertIsInstance(a__ ,a__) _lowerCAmelCase:List[str] = AutoModelForSequenceClassification.from_pretrained(a__ ,from_tf=a__) self.assertIsNotNone(a__) self.assertIsInstance(a__ ,a__) @slow def __UpperCamelCase ( self : Optional[Any]) -> Any: """simple docstring""" for model_name in ["bert-base-uncased"]: _lowerCAmelCase:Union[str, Any] = AutoConfig.from_pretrained(a__) self.assertIsNotNone(a__) self.assertIsInstance(a__ ,a__) _lowerCAmelCase:Dict = TFAutoModelForQuestionAnswering.from_pretrained(a__ ,from_pt=a__) self.assertIsNotNone(a__) self.assertIsInstance(a__ ,a__) _lowerCAmelCase:str = AutoModelForQuestionAnswering.from_pretrained(a__ ,from_tf=a__) self.assertIsNotNone(a__) self.assertIsInstance(a__ ,a__) def __UpperCamelCase ( self : Tuple) -> Dict: """simple docstring""" _lowerCAmelCase:Dict = TFAutoModelWithLMHead.from_pretrained(a__ ,from_pt=a__) self.assertIsInstance(a__ ,a__) self.assertEqual(model.num_parameters() ,1_4410) self.assertEqual(model.num_parameters(only_trainable=a__) ,1_4410) _lowerCAmelCase:Optional[Any] = AutoModelWithLMHead.from_pretrained(a__ ,from_tf=a__) self.assertIsInstance(a__ ,a__) self.assertEqual(model.num_parameters() ,1_4410) self.assertEqual(model.num_parameters(only_trainable=a__) ,1_4410) def __UpperCamelCase ( self : str) -> Optional[int]: """simple docstring""" _lowerCAmelCase:Optional[Any] = TFAutoModelWithLMHead.from_pretrained(a__ ,from_pt=a__) self.assertIsInstance(a__ ,a__) self.assertEqual(model.num_parameters() ,1_4410) self.assertEqual(model.num_parameters(only_trainable=a__) ,1_4410) _lowerCAmelCase:Optional[int] = AutoModelWithLMHead.from_pretrained(a__ ,from_tf=a__) self.assertIsInstance(a__ ,a__) self.assertEqual(model.num_parameters() ,1_4410) self.assertEqual(model.num_parameters(only_trainable=a__) ,1_4410)
439
"""simple docstring""" import baseaa def UpperCAmelCase ( snake_case : str ): return baseaa.aaaencode(string.encode('''utf-8''' ) ) def UpperCAmelCase ( snake_case : bytes ): return baseaa.aaadecode(snake_case ).decode('''utf-8''' ) if __name__ == "__main__": import doctest doctest.testmod()
439
1
def __a ( __UpperCAmelCase ): if divisor % 5 == 0 or divisor % 2 == 0: return 0 a__ = 1 a__ = 1 while repunit: a__ = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def __a ( __UpperCAmelCase = 100_0000 ): a__ = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(UpperCAmelCase__ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f'{solution() = }')
194
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { '''configuration_x_clip''': [ '''XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XCLIPConfig''', '''XCLIPTextConfig''', '''XCLIPVisionConfig''', ], '''processing_x_clip''': ['''XCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ '''XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XCLIPModel''', '''XCLIPPreTrainedModel''', '''XCLIPTextModel''', '''XCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
209
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE_ = { """configuration_mask2former""": [ """MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Mask2FormerConfig""", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ["""Mask2FormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """Mask2FormerForUniversalSegmentation""", """Mask2FormerModel""", """Mask2FormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
714
"""simple docstring""" import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE_ = get_tests_dir("""fixtures/test_sentencepiece_with_bytefallback.model""") @require_sentencepiece @require_tokenizers class snake_case_ ( a_ ,unittest.TestCase ): __lowerCAmelCase = GPTSwaTokenizer __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = False def snake_case_ ( self ): super().setUp() # We have a SentencePiece fixture for testing a_ : Optional[int] = GPTSwaTokenizer(a_ , eos_token="<unk>" , bos_token="<unk>" , pad_token="<unk>" ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case_ ( self , a_ ): a_ : Union[str, Any] = "This is a test" a_ : Tuple = "This is a test" return input_text, output_text def snake_case_ ( self ): a_ : List[str] = "<s>" a_ : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a_ ) , a_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a_ ) , a_ ) def snake_case_ ( self ): a_ : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(a_ ) , 2_0_0_0 ) def snake_case_ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 2_0_0_0 ) def snake_case_ ( self ): a_ : Union[str, Any] = GPTSwaTokenizer(a_ ) a_ : str = tokenizer.tokenize("This is a test" ) self.assertListEqual(a_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , [4_6_5, 2_8_7, 2_6_5, 6_3_1, 8_4_2] ) a_ : str = tokenizer.tokenize("I was born in 92000, and this is falsé." ) # fmt: off self.assertListEqual( a_ , ["▁I", "▁was", "▁bor", "n", "▁in", "▁", "<0x39>", "2", "0", "0", "0", ",", "▁and", "▁this", "▁is", "▁f", "al", "s", "<0xC3>", "<0xA9>", "."] , ) # fmt: on a_ : List[str] = tokenizer.convert_tokens_to_ids(a_ ) self.assertListEqual( a_ , [2_6_2, 2_7_2, 1_5_2_5, 2_8_6, 2_7_1, 2_6_8, 6_0, 9_1_6, 6_3_3, 6_3_3, 6_3_3, 2_5_9, 2_6_6, 3_0_1, 2_8_7, 3_8_4, 3_6_7, 2_6_3, 1_9_8, 1_7_2, 2_6_0] , ) a_ : Optional[int] = tokenizer.convert_ids_to_tokens(a_ ) # fmt: off self.assertListEqual( a_ , ["▁I", "▁was", "▁bor", "n", "▁in", "▁", "<0x39>", "2", "0", "0", "0", ",", "▁and", "▁this", "▁is", "▁f", "al", "s", "<0xC3>", "<0xA9>", "."] ) # fmt: on def snake_case_ ( self ): a_ : List[str] = GPTSwaTokenizer(a_ ) a_ : List[Any] = ["This is a test", "I was born in 92000, and this is falsé."] a_ : Optional[Any] = [ [4_6_5, 2_8_7, 2_6_5, 6_3_1, 8_4_2], [2_6_2, 2_7_2, 1_5_2_5, 2_8_6, 2_7_1, 2_6_8, 6_0, 9_1_6, 6_3_3, 6_3_3, 6_3_3, 2_5_9, 2_6_6, 3_0_1, 2_8_7, 3_8_4, 3_6_7, 2_6_3, 1_9_8, 1_7_2, 2_6_0], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(a_ , a_ ): self.assertListEqual(tokenizer.encode_fast(a_ ) , a_ ) # Test that decode_fast returns the input text for text, token_ids in zip(a_ , a_ ): self.assertEqual(tokenizer.decode_fast(a_ ) , a_ ) @slow def snake_case_ ( self ): a_ : Dict = [ "<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')", "Hey there, how are you doing this fine day?", "This is a text with a trailing spaces followed by a dot .", "Häj sväjs lillebrör! =)", "Det är inget fel på Mr. Cool", ] # fmt: off a_ : Union[str, Any] = {"input_ids": [[6_3_4_2_3, 5, 6_8_1_1, 1_4_9_5_4, 2_8_2, 8_1_6, 3_8_2_1, 6_3_4_6_6, 6_3_4_2_5, 6_3_4_6_2, 1_8, 6_3_9_7_8, 6_7_8, 3_0_1, 1_3_2_0, 6_3_4_2_3, 6_3_4_5_5, 6_3_4_5_8, 1_8, 6_3_9_8_2, 4_2_4_6, 3_9_4_0, 1_9_0_1, 4_7_7_8_9, 5_5_4_7, 1_8_9_9_4], [1_9_6_3_0, 1_1_0_0, 6_3_4_4_6, 1_3_4_2, 6_3_3, 5_4_4, 4_4_8_8, 5_9_3, 5_1_0_2, 2_4_1_6, 6_3_4_9_5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_6_5_2, 4_2_8, 2_6_8, 1_9_3_6, 5_1_5, 2_6_8, 5_8_5_9_3, 2_2_4_1_3, 9_1_0_6, 5_4_6, 2_6_8, 3_3_2_1_3, 6_3_9_7_9, 6_9_8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5_1_3_0, 6_3_4_5_0, 9_2_4, 6_3_4_4_9, 2_2_4_9, 4_0_6_2, 1_5_5_8, 3_1_8, 6_3_5_0_4, 2_1_4_9_8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_0_9, 3_7_7, 2_8_2_7, 2_5_5_9, 3_3_2, 6_5_7_5, 6_3_4_4_3, 2_6_8_0_1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=a_ , model_name="AI-Sweden/gpt-sw3-126m" , sequences=a_ , )
370
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer __UpperCAmelCase : List[str] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : Optional[int] = { "vocab_file": { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt", }, "tokenizer_file": { "unc-nlp/lxmert-base-uncased": ( "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json" ), }, } __UpperCAmelCase : Union[str, Any] = { "unc-nlp/lxmert-base-uncased": 5_1_2, } __UpperCAmelCase : int = { "unc-nlp/lxmert-base-uncased": {"do_lower_case": True}, } class _snake_case ( _A ): _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_INIT_CONFIGURATION _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = LxmertTokenizer def __init__( self ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=True ,UpperCamelCase="[UNK]" ,UpperCamelCase="[SEP]" ,UpperCamelCase="[PAD]" ,UpperCamelCase="[CLS]" ,UpperCamelCase="[MASK]" ,UpperCamelCase=True ,UpperCamelCase=None ,**UpperCamelCase ,) -> int: super().__init__( UpperCamelCase ,tokenizer_file=UpperCamelCase ,do_lower_case=UpperCamelCase ,unk_token=UpperCamelCase ,sep_token=UpperCamelCase ,pad_token=UpperCamelCase ,cls_token=UpperCamelCase ,mask_token=UpperCamelCase ,tokenize_chinese_chars=UpperCamelCase ,strip_accents=UpperCamelCase ,**UpperCamelCase ,) snake_case__ :List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" ,UpperCamelCase ) != do_lower_case or normalizer_state.get("strip_accents" ,UpperCamelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" ,UpperCamelCase ) != tokenize_chinese_chars ): snake_case__ :List[Any] = getattr(UpperCamelCase ,normalizer_state.pop("type" ) ) snake_case__ :Dict = do_lower_case snake_case__ :Union[str, Any] = strip_accents snake_case__ :Optional[Any] = tokenize_chinese_chars snake_case__ :List[str] = normalizer_class(**UpperCamelCase ) snake_case__ :Optional[int] = do_lower_case def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase=None ) -> Tuple: snake_case__ :Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Any = [self.sep_token_id] snake_case__ :Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> Tuple[str]: snake_case__ :Dict = self._tokenizer.model.save(UpperCamelCase ,name=UpperCamelCase ) return tuple(UpperCamelCase )
241
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _snake_case ( _A , unittest.TestCase ): _A = DDIMPipeline _A = UNCONDITIONAL_IMAGE_GENERATION_PARAMS _A = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } _A = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS _A = False def lowerCAmelCase_ ( self ) -> Any: torch.manual_seed(0 ) snake_case__ :List[str] = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=("DownBlock2D", "AttnDownBlock2D") ,up_block_types=("AttnUpBlock2D", "UpBlock2D") ,) snake_case__ :int = DDIMScheduler() snake_case__ :List[Any] = {"unet": unet, "scheduler": scheduler} return components def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase=0 ) -> Optional[Any]: if str(UpperCamelCase ).startswith("mps" ): snake_case__ :Dict = torch.manual_seed(UpperCamelCase ) else: snake_case__ :Union[str, Any] = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) snake_case__ :List[str] = { "batch_size": 1, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def lowerCAmelCase_ ( self ) -> int: snake_case__ :Tuple = "cpu" snake_case__ :int = self.get_dummy_components() snake_case__ :str = self.pipeline_class(**UpperCamelCase ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ :Optional[Any] = self.get_dummy_inputs(UpperCamelCase ) snake_case__ :Dict = pipe(**UpperCamelCase ).images snake_case__ :Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape ,(1, 32, 32, 3) ) snake_case__ :Tuple = np.array( [1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] ) snake_case__ :Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase ,1E-3 ) def lowerCAmelCase_ ( self ) -> Any: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def lowerCAmelCase_ ( self ) -> List[Any]: super().test_save_load_local(expected_max_difference=3E-3 ) def lowerCAmelCase_ ( self ) -> Tuple: super().test_save_load_optional_components(expected_max_difference=3E-3 ) def lowerCAmelCase_ ( self ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> str: snake_case__ :Optional[int] = "google/ddpm-cifar10-32" snake_case__ :int = UNetaDModel.from_pretrained(UpperCamelCase ) snake_case__ :List[str] = DDIMScheduler() snake_case__ :Any = DDIMPipeline(unet=UpperCamelCase ,scheduler=UpperCamelCase ) ddim.to(UpperCamelCase ) ddim.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ :Dict = torch.manual_seed(0 ) snake_case__ :Optional[Any] = ddim(generator=UpperCamelCase ,eta=0.0 ,output_type="numpy" ).images snake_case__ :int = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case__ :str = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase_ ( self ) -> Any: snake_case__ :int = "google/ddpm-ema-bedroom-256" snake_case__ :Tuple = UNetaDModel.from_pretrained(UpperCamelCase ) snake_case__ :int = DDIMScheduler.from_pretrained(UpperCamelCase ) snake_case__ :Union[str, Any] = DDIMPipeline(unet=UpperCamelCase ,scheduler=UpperCamelCase ) ddpm.to(UpperCamelCase ) ddpm.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ :int = torch.manual_seed(0 ) snake_case__ :Optional[int] = ddpm(generator=UpperCamelCase ,output_type="numpy" ).images snake_case__ :Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) snake_case__ :Optional[int] = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
241
1
"""simple docstring""" import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef _a : Optional[Any]= ( "This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py" ) def __UpperCAmelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] ) -> Optional[int]: '''simple docstring''' warnings.warn(UpperCAmelCase_ , UpperCAmelCase_ ) requires_backends(UpperCAmelCase_ , 'sklearn' ) return (preds == labels).mean() def __UpperCAmelCase ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict ) -> str: '''simple docstring''' warnings.warn(UpperCAmelCase_ , UpperCAmelCase_ ) requires_backends(UpperCAmelCase_ , 'sklearn' ) __snake_case : List[str] = simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ ) __snake_case : Union[str, Any] = fa_score(y_true=UpperCAmelCase_ , y_pred=UpperCAmelCase_ ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def __UpperCAmelCase ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any ) -> Any: '''simple docstring''' warnings.warn(UpperCAmelCase_ , UpperCAmelCase_ ) requires_backends(UpperCAmelCase_ , 'sklearn' ) __snake_case : List[Any] = pearsonr(UpperCAmelCase_ , UpperCAmelCase_ )[0] __snake_case : Any = spearmanr(UpperCAmelCase_ , UpperCAmelCase_ )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def __UpperCAmelCase ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any ) -> Optional[int]: '''simple docstring''' warnings.warn(UpperCAmelCase_ , UpperCAmelCase_ ) requires_backends(UpperCAmelCase_ , 'sklearn' ) assert len(UpperCAmelCase_ ) == len(UpperCAmelCase_ ), F"Predictions and labels have mismatched lengths {len(UpperCAmelCase_ )} and {len(UpperCAmelCase_ )}" if task_name == "cola": return {"mcc": matthews_corrcoef(UpperCAmelCase_ , UpperCAmelCase_ )} elif task_name == "sst-2": return {"acc": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ )} elif task_name == "mrpc": return acc_and_fa(UpperCAmelCase_ , UpperCAmelCase_ ) elif task_name == "sts-b": return pearson_and_spearman(UpperCAmelCase_ , UpperCAmelCase_ ) elif task_name == "qqp": return acc_and_fa(UpperCAmelCase_ , UpperCAmelCase_ ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ )} elif task_name == "qnli": return {"acc": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ )} elif task_name == "rte": return {"acc": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ )} elif task_name == "wnli": return {"acc": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ )} elif task_name == "hans": return {"acc": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ )} else: raise KeyError(UpperCAmelCase_ ) def __UpperCAmelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ) -> List[Any]: '''simple docstring''' warnings.warn(UpperCAmelCase_ , UpperCAmelCase_ ) requires_backends(UpperCAmelCase_ , 'sklearn' ) if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): raise ValueError(F"Predictions and labels have mismatched lengths {len(UpperCAmelCase_ )} and {len(UpperCAmelCase_ )}" ) if task_name == "xnli": return {"acc": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ )} else: raise KeyError(UpperCAmelCase_ )
710
"""simple docstring""" import math def __UpperCAmelCase ( UpperCAmelCase_ : list , UpperCAmelCase_ : int ) -> int: '''simple docstring''' __snake_case : List[str] = len(UpperCAmelCase_ ) __snake_case : List[Any] = int(math.floor(math.sqrt(UpperCAmelCase_ ) ) ) __snake_case : Any = 0 while arr[min(UpperCAmelCase_ , UpperCAmelCase_ ) - 1] < x: __snake_case : Tuple = step step += int(math.floor(math.sqrt(UpperCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: __snake_case : Union[str, Any] = prev + 1 if prev == min(UpperCAmelCase_ , UpperCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": _a : str= input("Enter numbers separated by a comma:\n").strip() _a : int= [int(item) for item in user_input.split(",")] _a : Optional[Any]= int(input("Enter the number to be searched:\n")) _a : Tuple= jump_search(arr, x) if res == -1: print("Number not found!") else: print(f'''Number {x} is at index {res}''')
192
0
"""simple docstring""" import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( '''split_dict''' , [ SplitDict(), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=13_37 , num_examples=42 , dataset_name='''my_dataset''' )} ), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=13_37 , num_examples=42 )} ), SplitDict({'''train''': SplitInfo()} ), ] , ) def __UpperCAmelCase ( __lowerCamelCase ) -> int: lowercase__ : List[str] = split_dict._to_yaml_list() assert len(__lowerCamelCase ) == len(__lowerCamelCase ) lowercase__ : Tuple = SplitDict._from_yaml_list(__lowerCamelCase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump lowercase__ : str = None # the split name of split_dict takes over the name of the split info object lowercase__ : Any = split_name assert split_dict == reloaded @pytest.mark.parametrize( '''split_info''' , [SplitInfo(), SplitInfo(dataset_name=__lowerCamelCase ), SplitInfo(dataset_name='''my_dataset''' )] ) def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[Any]: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files lowercase__ : List[Any] = asdict(SplitDict({'''train''': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
560
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[str] = "roformer" def __init__( self : Any ,_snake_case : str=50_000 ,_snake_case : int=None ,_snake_case : int=768 ,_snake_case : Tuple=12 ,_snake_case : Dict=12 ,_snake_case : Dict=3_072 ,_snake_case : Tuple="gelu" ,_snake_case : List[Any]=0.1 ,_snake_case : List[Any]=0.1 ,_snake_case : Optional[Any]=1_536 ,_snake_case : Dict=2 ,_snake_case : Union[str, Any]=0.02 ,_snake_case : Optional[Any]=1e-12 ,_snake_case : Optional[Any]=0 ,_snake_case : Tuple=False ,_snake_case : Optional[int]=True ,**_snake_case : Optional[int] ,) -> Tuple: """simple docstring""" super().__init__(pad_token_id=_snake_case ,**_snake_case ) lowercase__ : Optional[int] = vocab_size lowercase__ : int = hidden_size if embedding_size is None else embedding_size lowercase__ : Union[str, Any] = hidden_size lowercase__ : Any = num_hidden_layers lowercase__ : Union[str, Any] = num_attention_heads lowercase__ : str = hidden_act lowercase__ : Union[str, Any] = intermediate_size lowercase__ : Dict = hidden_dropout_prob lowercase__ : Optional[Any] = attention_probs_dropout_prob lowercase__ : List[Any] = max_position_embeddings lowercase__ : List[str] = type_vocab_size lowercase__ : Optional[int] = initializer_range lowercase__ : List[Any] = layer_norm_eps lowercase__ : Optional[Any] = rotary_value lowercase__ : Optional[int] = use_cache class __A ( A_ ): '''simple docstring''' @property def UpperCAmelCase ( self : Any ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowercase__ : Union[str, Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase__ : List[Any] = {0: '''batch''', 1: '''sequence'''} lowercase__ : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
560
1
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList A: Optional[Any] = ['''\nclass''', '''\ndef''', '''\n#''', '''\n@''', '''\nprint''', '''\nif'''] class __magic_name__ ( __UpperCAmelCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase=None , _lowercase=1 ) -> List[Any]: lowercase_ : List[Any] = tokenizer lowercase_ : int = dataset lowercase_ : str = len(__SCREAMING_SNAKE_CASE ) if n_tasks is None else n_tasks lowercase_ : int = n_copies def __iter__( self ) -> str: lowercase_ : List[Any] = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) lowercase_ : str = self.tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class __magic_name__ ( __UpperCAmelCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase ) -> Tuple: lowercase_ : List[str] = start_length lowercase_ : List[Any] = eof_strings lowercase_ : str = tokenizer def __call__( self , _lowercase , _lowercase , **_lowercase ) -> str: lowercase_ : int = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowercase_ : List[str] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( a : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase_ : Optional[Any] = re.split('(%s)' % '|'.join(_UpperCAmelCase ) , _UpperCAmelCase ) # last string should be "" return "".join(string_list[:-2] ) def _UpperCAmelCase ( a : List[str] , a : Optional[int] , a : int , a : Union[str, Any] , a : Tuple , a : List[Any]=2_0 , **a : str ) -> List[Any]: """simple docstring""" lowercase_ : Optional[int] = defaultdict(_UpperCAmelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_UpperCAmelCase ) ): with torch.no_grad(): lowercase_ : int = batch['ids'].shape[-1] lowercase_ : Tuple = accelerator.unwrap_model(_UpperCAmelCase ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=_UpperCAmelCase , **_UpperCAmelCase ) # each task is generated batch_size times lowercase_ : Union[str, Any] = batch['task_id'].repeat(_UpperCAmelCase ) lowercase_ : Any = accelerator.pad_across_processes( _UpperCAmelCase , dim=1 , pad_index=tokenizer.pad_token_id ) lowercase_ , lowercase_ : List[str] = accelerator.gather((generated_tokens, generated_tasks) ) lowercase_ : Any = generated_tokens.cpu().numpy() lowercase_ : Optional[Any] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_UpperCAmelCase , _UpperCAmelCase ): gen_token_dict[task].append(_UpperCAmelCase ) lowercase_ : Optional[Any] = [[] for _ in range(_UpperCAmelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowercase_ : Dict = tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) code_gens[task].append(remove_last_block(_UpperCAmelCase ) ) return code_gens def _UpperCAmelCase ( ) -> Tuple: """simple docstring""" # Setup configuration lowercase_ : Tuple = HfArgumentParser(_UpperCAmelCase ) lowercase_ : Tuple = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowercase_ : Tuple = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowercase_ : Tuple = 'false' if args.num_workers is None: lowercase_ : Optional[int] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowercase_ : Tuple = Accelerator() set_seed(args.seed , device_specific=_UpperCAmelCase ) # Load model and tokenizer lowercase_ : str = AutoTokenizer.from_pretrained(args.model_ckpt ) lowercase_ : List[Any] = tokenizer.eos_token lowercase_ : Optional[int] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowercase_ : int = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , _UpperCAmelCase , _UpperCAmelCase )] ), } # Load evaluation dataset and metric lowercase_ : Tuple = load_dataset('openai_humaneval' ) lowercase_ : str = load_metric('code_eval' ) lowercase_ : int = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) lowercase_ : Union[str, Any] = args.n_samples // args.batch_size lowercase_ : List[Any] = TokenizedDataset(_UpperCAmelCase , human_eval['test'] , n_copies=_UpperCAmelCase , n_tasks=_UpperCAmelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences lowercase_ : str = DataLoader(_UpperCAmelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowercase_ : Union[str, Any] = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception lowercase_ , lowercase_ : str = accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase ) lowercase_ : List[Any] = complete_code( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , n_tasks=_UpperCAmelCase , batch_size=args.batch_size , **_UpperCAmelCase , ) if accelerator.is_main_process: lowercase_ : Dict = [] for task in tqdm(range(_UpperCAmelCase ) ): lowercase_ : int = human_eval['test'][task]['test'] lowercase_ : Optional[Any] = f"check({human_eval['test'][task]['entry_point']})" references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric lowercase_ , lowercase_ : Dict = code_eval_metric.compute( references=_UpperCAmelCase , predictions=_UpperCAmelCase , num_workers=args.num_workers ) print(f"Results: {pass_at_k}" ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
715
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) A: Tuple = logging.getLogger(__name__) def _UpperCAmelCase ( a : str ) -> List[Any]: """simple docstring""" lowercase_ : List[str] = git.Repo(search_parent_directories=a ) lowercase_ : Union[str, Any] = { 'repo_id': str(a ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), } with open(os.path.join(a , 'git_log.json' ) , 'w' ) as f: json.dump(a , a , indent=4 ) def _UpperCAmelCase ( a : str ) -> Union[str, Any]: """simple docstring""" if params.n_gpu <= 0: lowercase_ : int = 0 lowercase_ : Union[str, Any] = -1 lowercase_ : List[str] = True lowercase_ : Optional[Any] = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 lowercase_ : Dict = int(os.environ['WORLD_SIZE'] ) lowercase_ : Union[str, Any] = int(os.environ['N_GPU_NODE'] ) lowercase_ : Optional[int] = int(os.environ['RANK'] ) # number of nodes / node ID lowercase_ : int = params.world_size // params.n_gpu_per_node lowercase_ : str = params.global_rank // params.n_gpu_per_node lowercase_ : Dict = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 lowercase_ : str = 1 lowercase_ : Dict = 0 lowercase_ : Tuple = 0 lowercase_ : List[Any] = 0 lowercase_ : int = 1 lowercase_ : Tuple = 1 lowercase_ : str = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowercase_ : List[str] = params.node_id == 0 and params.local_rank == 0 lowercase_ : Optional[Any] = params.n_nodes > 1 # summary lowercase_ : int = f"--- Global rank: {params.global_rank} - " logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' , backend='nccl' , ) def _UpperCAmelCase ( a : Dict ) -> Optional[int]: """simple docstring""" np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
7
0
def UpperCamelCase ( ) -> List[Any]: '''simple docstring''' lowercase__ : List[Any] = [] lowercase__ : Optional[Any] = 1 while len(_SCREAMING_SNAKE_CASE ) < 1E6: constant.append(str(_SCREAMING_SNAKE_CASE ) ) i += 1 lowercase__ : List[str] = """""".join(_SCREAMING_SNAKE_CASE ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[9_99] ) * int(constant[99_99] ) * int(constant[9_99_99] ) * int(constant[99_99_99] ) ) if __name__ == "__main__": print(solution())
12
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class UpperCamelCase ( __a ): def A_ (self ) -> Any: UpperCamelCase_ : Dict = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__UpperCamelCase , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(__UpperCamelCase , """num_attention_heads""" ) ) class UpperCamelCase : def __init__(self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=64 , __UpperCamelCase=3 , __UpperCamelCase=3 , __UpperCamelCase=2 , __UpperCamelCase=1 , __UpperCamelCase=16 , __UpperCamelCase=[128, 256, 384] , __UpperCamelCase=[4, 6, 8] , __UpperCamelCase=[2, 3, 4] , __UpperCamelCase=[16, 16, 16] , __UpperCamelCase=0 , __UpperCamelCase=[2, 2, 2] , __UpperCamelCase=[2, 2, 2] , __UpperCamelCase=0.02 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=2 , ) -> Optional[int]: UpperCamelCase_ : Tuple = parent UpperCamelCase_ : Optional[Any] = batch_size UpperCamelCase_ : Dict = image_size UpperCamelCase_ : Dict = num_channels UpperCamelCase_ : Optional[Any] = kernel_size UpperCamelCase_ : int = stride UpperCamelCase_ : str = padding UpperCamelCase_ : Tuple = hidden_sizes UpperCamelCase_ : int = num_attention_heads UpperCamelCase_ : List[str] = depths UpperCamelCase_ : Dict = key_dim UpperCamelCase_ : Any = drop_path_rate UpperCamelCase_ : List[Any] = patch_size UpperCamelCase_ : Any = attention_ratio UpperCamelCase_ : Optional[Any] = mlp_ratio UpperCamelCase_ : Optional[int] = initializer_range UpperCamelCase_ : Optional[Any] = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] UpperCamelCase_ : Tuple = is_training UpperCamelCase_ : Any = use_labels UpperCamelCase_ : Dict = num_labels UpperCamelCase_ : List[str] = initializer_range def A_ (self ) -> Dict: UpperCamelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_ : List[str] = None if self.use_labels: UpperCamelCase_ : List[str] = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase_ : Any = self.get_config() return config, pixel_values, labels def A_ (self ) -> Optional[int]: return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def A_ (self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[Any]: UpperCamelCase_ : int = LevitModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase_ : List[Any] = model(__UpperCamelCase ) UpperCamelCase_ : int = (self.image_size, self.image_size) UpperCamelCase_,UpperCamelCase_ : Optional[int] = image_size[0], image_size[1] for _ in range(4 ): UpperCamelCase_ : Union[str, Any] = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) UpperCamelCase_ : List[Any] = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def A_ (self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Any: UpperCamelCase_ : List[str] = self.num_labels UpperCamelCase_ : Any = LevitForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase_ : int = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ (self ) -> str: UpperCamelCase_ : Tuple = self.prepare_config_and_inputs() UpperCamelCase_,UpperCamelCase_,UpperCamelCase_ : Any = config_and_inputs UpperCamelCase_ : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( __a , __a , unittest.TestCase ): a__ :Any = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) a__ :str = ( { '''feature-extraction''': LevitModel, '''image-classification''': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) a__ :Optional[Any] = False a__ :Optional[int] = False a__ :Tuple = False a__ :List[str] = False a__ :Dict = False def A_ (self ) -> List[Any]: UpperCamelCase_ : int = LevitModelTester(self ) UpperCamelCase_ : Union[str, Any] = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def A_ (self ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A_ (self ) -> Optional[Any]: return @unittest.skip(reason="""Levit does not use inputs_embeds""" ) def A_ (self ) -> int: pass @unittest.skip(reason="""Levit does not support input and output embeddings""" ) def A_ (self ) -> Any: pass @unittest.skip(reason="""Levit does not output attentions""" ) def A_ (self ) -> List[str]: pass def A_ (self ) -> Union[str, Any]: UpperCamelCase_,UpperCamelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ : str = model_class(__UpperCamelCase ) UpperCamelCase_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ : Dict = [*signature.parameters.keys()] UpperCamelCase_ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def A_ (self ) -> Optional[Any]: def check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): UpperCamelCase_ : List[str] = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): UpperCamelCase_ : Union[str, Any] = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) UpperCamelCase_ : Optional[Any] = outputs.hidden_states UpperCamelCase_ : Optional[int] = len(self.model_tester.depths ) + 1 self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) UpperCamelCase_ : Tuple = (self.model_tester.image_size, self.model_tester.image_size) UpperCamelCase_,UpperCamelCase_ : Optional[int] = image_size[0], image_size[1] for _ in range(4 ): UpperCamelCase_ : Dict = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) UpperCamelCase_ : List[str] = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) UpperCamelCase_,UpperCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ : Union[str, Any] = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase_ : List[str] = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def A_ (self ) -> Dict: pass def A_ (self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False ) -> Tuple: UpperCamelCase_ : List[str] = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def A_ (self ) -> Tuple: UpperCamelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def A_ (self ) -> List[Any]: UpperCamelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) def A_ (self ) -> Optional[Any]: if not self.model_tester.is_training: return UpperCamelCase_,UpperCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ : List[Any] = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__UpperCamelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue UpperCamelCase_ : int = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.train() UpperCamelCase_ : List[str] = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) UpperCamelCase_ : int = model(**__UpperCamelCase ).loss loss.backward() def A_ (self ) -> Union[str, Any]: UpperCamelCase_,UpperCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCamelCase_ : Tuple = False UpperCamelCase_ : str = True for model_class in self.all_model_classes: if model_class in get_values(__UpperCamelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue UpperCamelCase_ : str = model_class(__UpperCamelCase ) model.gradient_checkpointing_enable() model.to(__UpperCamelCase ) model.train() UpperCamelCase_ : Optional[Any] = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) UpperCamelCase_ : Optional[Any] = model(**__UpperCamelCase ).loss loss.backward() def A_ (self ) -> Union[str, Any]: UpperCamelCase_,UpperCamelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ : Any = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__UpperCamelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f'''Testing {model_class} with {problem_type["title"]}''' ): UpperCamelCase_ : Any = problem_type["""title"""] UpperCamelCase_ : Dict = problem_type["""num_labels"""] UpperCamelCase_ : Dict = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.train() UpperCamelCase_ : Optional[int] = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if problem_type["num_labels"] > 1: UpperCamelCase_ : Union[str, Any] = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) UpperCamelCase_ : Tuple = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__UpperCamelCase ) as warning_list: UpperCamelCase_ : str = model(**__UpperCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def A_ (self ) -> Dict: for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_ : Any = LevitModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def lowerCAmelCase_ ( ): UpperCamelCase_ : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): @cached_property def A_ (self ) -> Any: return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def A_ (self ) -> str: UpperCamelCase_ : Tuple = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __UpperCamelCase ) UpperCamelCase_ : Optional[Any] = self.default_image_processor UpperCamelCase_ : List[str] = prepare_img() UpperCamelCase_ : Optional[int] = image_processor(images=__UpperCamelCase , return_tensors="""pt""" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): UpperCamelCase_ : Union[str, Any] = model(**__UpperCamelCase ) # verify the logits UpperCamelCase_ : List[str] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) UpperCamelCase_ : Any = torch.tensor([1.0_448, -0.3_745, -1.8_317] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1E-4 ) )
635
0
from math import isqrt def SCREAMING_SNAKE_CASE__ ( snake_case__ :int ) -> List[str]: return all(number % divisor != 0 for divisor in range(2 , isqrt(lowerCamelCase_ ) + 1 ) ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :int = 10**6 ) -> str: _lowercase = 0 _lowercase = 1 _lowercase = 7 while prime_candidate < max_prime: primes_count += is_prime(lowerCamelCase_ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F"""{solution() = }""")
702
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation snake_case = logging.get_logger(__name__) snake_case = {"""vocab_file""": """spiece.model"""} snake_case = { """vocab_file""": { """AI-Sweden/gpt-sw3-126m""": """https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-350m""": """https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-1.6b""": """https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-6.7b""": """https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-20b""": """https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model""", } } snake_case = { """AI-Sweden/gpt-sw3-126m""": 2_0_4_8, """AI-Sweden/gpt-sw3-350m""": 2_0_4_8, """AI-Sweden/gpt-sw3-1.6b""": 2_0_4_8, """AI-Sweden/gpt-sw3-6.7b""": 2_0_4_8, """AI-Sweden/gpt-sw3-20b""": 2_0_4_8, } class A_ ( UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : str = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Optional[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : Any ,__A : Tuple ,__A : Any=False ,__A : int=False ,__A : List[str]=False ,__A : List[str]=None ,__A : Dict=None ,__A : Dict=None ,__A : Union[str, Any]=None ,__A : Optional[Dict[str, Any]] = None ,**__A : Tuple ,) -> None: _lowercase = {} if sp_model_kwargs is None else sp_model_kwargs _lowercase = kwargs.get('name_or_path' ) if name_or_path is None: logger.warning( 'name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,' ' you are testing the model, this can safely be ignored' ) _lowercase = 'None' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing _lowercase = '<|endoftext|>' if eos_token is None else eos_token _lowercase = '<unk>' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: _lowercase = unk_token if pad_token is None else pad_token _lowercase = eos_token if bos_token is None else bos_token else: _lowercase = '<pad>' if pad_token is None else pad_token _lowercase = '<s>' if bos_token is None else bos_token super().__init__( do_lower_case=__A ,remove_space=__A ,keep_accents=__A ,bos_token=__A ,eos_token=__A ,unk_token=__A ,pad_token=__A ,sp_model_kwargs=self.sp_model_kwargs ,**__A ,) _lowercase = do_lower_case _lowercase = remove_space _lowercase = keep_accents _lowercase = vocab_file _lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__A ) # Used for whitespace normalization in input texts # fmt : off _lowercase = {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '', '„'} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing _lowercase = re.compile( F"""[{"".join(map(__A ,list(range(0 ,9 ) ) + list(range(11 ,32 ) ) + list(range(127 ,160 ) ) + [160, 173, 8203] ) )}]""" ) def __getstate__( self : List[Any] ) -> List[str]: _lowercase = self.__dict__.copy() _lowercase = None return state def __setstate__( self : Optional[Any] ,__A : Dict ) -> str: _lowercase = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _lowercase = {} _lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def __UpperCAmelCase ( self : List[Any] ) -> int: return len(self.sp_model ) def __UpperCAmelCase ( self : Optional[Any] ,__A : str ) -> str: _lowercase = self.non_printing_characters_re.sub('' ,__A ) # Normalize whitespaces _lowercase = ''.join([char if char not in self.whitespaces else ' ' for char in text] ) # NFC Unicode normalization _lowercase = unicodedata.normalize('NFC' ,__A ) return text def __UpperCAmelCase ( self : Optional[Any] ,__A : str ,**__A : Optional[int] ) -> List[str]: _lowercase = self.preprocess_text(__A ) return self.sp_model.encode(__A ,out_type=__A ) def __UpperCAmelCase ( self : List[Any] ,__A : str ) -> int: return self.sp_model.PieceToId(__A ) def __UpperCAmelCase ( self : Any ,__A : int ) -> str: return self.sp_model.IdToPiece(__A ) @staticmethod def __UpperCAmelCase ( __A : str ) -> str: return out_string def __UpperCAmelCase ( self : Tuple ,__A : List[str] ) -> str: _lowercase = [] _lowercase = '' _lowercase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__A ) + token _lowercase = True _lowercase = [] else: current_sub_tokens.append(__A ) _lowercase = False out_string += self.sp_model.decode(__A ) return out_string def __UpperCAmelCase ( self : Optional[Any] ) -> Dict[str, int]: _lowercase = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __UpperCAmelCase ( self : Optional[int] ,__A : str ,__A : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowercase = os.path.join( __A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__A ) elif not os.path.isfile(self.vocab_file ): with open(__A ,'wb' ) as fi: _lowercase = self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,) def __UpperCAmelCase ( self : str ,__A : Union[str, List[str]] ,__A : Union[str, bool] = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: if isinstance(__A ,__A ): _lowercase = self.preprocess_text(__A ) _lowercase = self.sp_model.encode(__A ) else: _lowercase = [self.preprocess_text(__A ) for t in text] _lowercase = self.sp_model.encode(__A ) if return_tensors is True or return_tensors == "pt": _lowercase = torch.tensor(__A ) return token_ids def __UpperCAmelCase ( self : Optional[Any] ,__A : Union[int, List[int]] ) -> str: return self.sp_model.decode(__A ) def __UpperCAmelCase ( self : str ,__A : "Conversation" ) -> List[int]: _lowercase = [F"""User: {text}""" if is_user else F"""Bot: {text}""" for is_user, text in conversation.iter_texts()] _lowercase = ( F"""{self.eos_token}{self.bos_token}""" + F"""{self.bos_token}""".join(__A ) + F"""{self.bos_token}Bot:""" ) return self.encode(text=__A )
535
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowercase_ ( unittest.TestCase ): """simple docstring""" __lowerCAmelCase = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __lowerCAmelCase = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def __UpperCAmelCase ( self : Any, UpperCamelCase__ : str, UpperCamelCase__ : Optional[int], UpperCamelCase__ : Any ) -> List[str]: _A = TextaTextGenerationPipeline(model=UpperCamelCase__, tokenizer=UpperCamelCase__ ) return generator, ["Something to write", "Something else"] def __UpperCAmelCase ( self : Any, UpperCamelCase__ : Tuple, UpperCamelCase__ : Optional[Any] ) -> List[str]: _A = generator('Something there' ) self.assertEqual(UpperCamelCase__, [{'generated_text': ANY(UpperCamelCase__ )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there' ) ) _A = generator(['This is great !', 'Something else'], num_return_sequences=2, do_sample=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__, [ [{'generated_text': ANY(UpperCamelCase__ )}, {'generated_text': ANY(UpperCamelCase__ )}], [{'generated_text': ANY(UpperCamelCase__ )}, {'generated_text': ANY(UpperCamelCase__ )}], ], ) _A = generator( ['This is great !', 'Something else'], num_return_sequences=2, batch_size=2, do_sample=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__, [ [{'generated_text': ANY(UpperCamelCase__ )}, {'generated_text': ANY(UpperCamelCase__ )}], [{'generated_text': ANY(UpperCamelCase__ )}, {'generated_text': ANY(UpperCamelCase__ )}], ], ) with self.assertRaises(UpperCamelCase__ ): generator(4 ) @require_torch def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: _A = pipeline('text2text-generation', model='patrickvonplaten/t5-tiny-random', framework='pt' ) # do_sample=False necessary for reproducibility _A = generator('Something there', do_sample=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__, [{'generated_text': ''}] ) _A = 3 _A = generator( 'Something there', num_return_sequences=UpperCamelCase__, num_beams=UpperCamelCase__, ) _A = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(UpperCamelCase__, UpperCamelCase__ ) _A = generator('This is a test', do_sample=UpperCamelCase__, num_return_sequences=2, return_tensors=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__, [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], ) _A = generator.model.config.eos_token_id _A = '<pad>' _A = generator( ['This is a test', 'This is a second test'], do_sample=UpperCamelCase__, num_return_sequences=2, batch_size=2, return_tensors=UpperCamelCase__, ) self.assertEqual( UpperCamelCase__, [ [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], ], ) @require_tf def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: _A = pipeline('text2text-generation', model='patrickvonplaten/t5-tiny-random', framework='tf' ) # do_sample=False necessary for reproducibility _A = generator('Something there', do_sample=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__, [{'generated_text': ''}] )
107
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def _A( lowerCAmelCase , lowerCAmelCase=False ): A__ : Dict = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''module.blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''module.blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""module.cls_token""", """vit.embeddings.cls_token"""), ("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""module.pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""module.norm.weight""", """layernorm.weight"""), ("""module.norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A__ : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def _A( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False ): for i in range(config.num_hidden_layers ): if base_model: A__ : List[str] = """""" else: A__ : Dict = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ : List[str] = state_dict.pop(F'''module.blocks.{i}.attn.qkv.weight''' ) A__ : Tuple = state_dict.pop(F'''module.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict A__ : Tuple = in_proj_weight[ : config.hidden_size, : ] A__ : Union[str, Any] = in_proj_bias[: config.hidden_size] A__ : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ : int = in_proj_weight[ -config.hidden_size :, : ] A__ : List[Any] = in_proj_bias[-config.hidden_size :] def _A( lowerCAmelCase ): A__ : str = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowerCAmelCase , lowerCAmelCase ) def _A( lowerCAmelCase ): # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. A__ : Dict = [ """module.fc.fc1.weight""", """module.fc.fc1.bias""", """module.fc.bn1.weight""", """module.fc.bn1.bias""", """module.fc.bn1.running_mean""", """module.fc.bn1.running_var""", """module.fc.bn1.num_batches_tracked""", """module.fc.fc2.weight""", """module.fc.fc2.bias""", """module.fc.bn2.weight""", """module.fc.bn2.bias""", """module.fc.bn2.running_mean""", """module.fc.bn2.running_var""", """module.fc.bn2.num_batches_tracked""", """module.fc.fc3.weight""", """module.fc.fc3.bias""", ] for k in ignore_keys: state_dict.pop(lowerCAmelCase , lowerCAmelCase ) def _A( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): A__ : Optional[Any] = dct.pop(lowerCAmelCase ) A__ : List[Any] = val def _A( lowerCAmelCase , lowerCAmelCase ): A__ : str = ViTMSNConfig() A__ : List[str] = 1000 A__ : Optional[int] = """datasets/huggingface/label-files""" A__ : Optional[int] = """imagenet-1k-id2label.json""" A__ : str = json.load(open(hf_hub_download(lowerCAmelCase , lowerCAmelCase ) , """r""" ) ) A__ : Tuple = {int(lowerCAmelCase ): v for k, v in idalabel.items()} A__ : Optional[Any] = idalabel A__ : List[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: A__ : Tuple = 384 A__ : int = 1536 A__ : Union[str, Any] = 6 elif "l16" in checkpoint_url: A__ : int = 1024 A__ : int = 4096 A__ : Any = 24 A__ : int = 16 A__ : Union[str, Any] = 0.1 elif "b4" in checkpoint_url: A__ : Dict = 4 elif "l7" in checkpoint_url: A__ : List[str] = 7 A__ : Optional[int] = 1024 A__ : Optional[int] = 4096 A__ : Any = 24 A__ : Union[str, Any] = 16 A__ : Tuple = 0.1 A__ : List[str] = ViTMSNModel(lowerCAmelCase ) A__ : Any = torch.hub.load_state_dict_from_url(lowerCAmelCase , map_location="""cpu""" )["""target_encoder"""] A__ : List[str] = ViTImageProcessor(size=config.image_size ) remove_projection_head(lowerCAmelCase ) A__ : List[str] = create_rename_keys(lowerCAmelCase , base_model=lowerCAmelCase ) for src, dest in rename_keys: rename_key(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) read_in_q_k_v(lowerCAmelCase , lowerCAmelCase , base_model=lowerCAmelCase ) model.load_state_dict(lowerCAmelCase ) model.eval() A__ : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : int = Image.open(requests.get(lowerCAmelCase , stream=lowerCAmelCase ).raw ) A__ : List[Any] = ViTImageProcessor( size=config.image_size , image_mean=lowerCAmelCase , image_std=lowerCAmelCase ) A__ : Any = image_processor(images=lowerCAmelCase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) A__ : Tuple = model(**lowerCAmelCase ) A__ : Union[str, Any] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: A__ : Union[str, Any] = torch.tensor([[-1.0915, -1.4876, -1.1809]] ) elif "b16" in checkpoint_url: A__ : int = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: A__ : List[Any] = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: A__ : Optional[Any] = torch.tensor([[-4.3868, 5.2932, -0.4137]] ) else: A__ : str = torch.tensor([[-0.1792, -0.6465, 2.4263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , lowerCAmelCase , atol=1E-4 ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _UpperCamelCase = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
363
0
'''simple docstring''' import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class A ( __snake_case ): def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : int = tempfile.mkdtemp() A : Optional[int] = 8 # DPR tok A : Optional[int] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] A : Optional[int] = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) A : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok A : Tuple = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] A : Tuple = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) ) A : Any = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] A : str = {'''unk_token''': '''<unk>'''} A : Any = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) A : str = os.path.join(SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) A : List[str] = os.path.join(SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(SCREAMING_SNAKE_CASE ) ) def __lowerCAmelCase ( self ) -> DPRQuestionEncoderTokenizer: """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def __lowerCAmelCase ( self ) -> BartTokenizer: """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) @require_tokenizers def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Any = os.path.join(self.tmpdirname , '''rag_tokenizer''' ) A : List[str] = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) A : Tuple = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(SCREAMING_SNAKE_CASE ) rag_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) A : List[str] = RagTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , config=SCREAMING_SNAKE_CASE ) self.assertIsInstance(new_rag_tokenizer.question_encoder , SCREAMING_SNAKE_CASE ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , SCREAMING_SNAKE_CASE ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : int = RagTokenizer.from_pretrained('''facebook/rag-token-nq''' ) A : Union[str, Any] = [ '''who got the first nobel prize in physics''', '''when is the next deadpool movie being released''', '''which mode is used for short wave broadcast service''', '''who is the owner of reading football club''', '''when is the next scandal episode coming out''', '''when is the last time the philadelphia won the superbowl''', '''what is the most current adobe flash player version''', '''how many episodes are there in dragon ball z''', '''what is the first step in the evolution of the eye''', '''where is gall bladder situated in human body''', '''what is the main mineral in lithium batteries''', '''who is the president of usa right now''', '''where do the greasers live in the outsiders''', '''panda is a national animal of which country''', '''what is the name of manchester united stadium''', ] A : Dict = tokenizer(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) @slow def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : str = RagTokenizer.from_pretrained('''facebook/rag-sequence-nq''' ) A : List[str] = [ '''who got the first nobel prize in physics''', '''when is the next deadpool movie being released''', '''which mode is used for short wave broadcast service''', '''who is the owner of reading football club''', '''when is the next scandal episode coming out''', '''when is the last time the philadelphia won the superbowl''', '''what is the most current adobe flash player version''', '''how many episodes are there in dragon ball z''', '''what is the first step in the evolution of the eye''', '''where is gall bladder situated in human body''', '''what is the main mineral in lithium batteries''', '''who is the president of usa right now''', '''where do the greasers live in the outsiders''', '''panda is a national animal of which country''', '''what is the name of manchester united stadium''', ] A : Tuple = tokenizer(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE )
343
'''simple docstring''' import math import sys def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Dict = '''''' try: with open(snake_case__ , '''rb''' ) as binary_file: A : Optional[Any] = binary_file.read() for dat in data: A : Union[str, Any] = F'{dat:08b}' result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Optional[int] = {'''0''': '''0''', '''1''': '''1'''} A, A : Union[str, Any] = '''''', '''''' A : str = len(snake_case__ ) for i in range(len(snake_case__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue A : Dict = lexicon[curr_string] result += last_match_id A : Any = last_match_id + '''0''' if math.loga(snake_case__ ).is_integer(): A : Optional[int] = {} for curr_key in list(snake_case__ ): A : Any = lexicon.pop(snake_case__ ) A : List[str] = new_lex A : Dict = last_match_id + '''1''' index += 1 A : List[str] = '''''' return result def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : Tuple = 8 try: with open(snake_case__ , '''wb''' ) as opened_file: A : List[Any] = [ to_write[i : i + byte_length] for i in range(0 , len(snake_case__ ) , snake_case__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(snake_case__ , 2 ).to_bytes(1 , byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Optional[int] = 0 for letter in data_bits: if letter == "1": break counter += 1 A : Union[str, Any] = data_bits[counter:] A : Tuple = data_bits[counter + 1 :] return data_bits def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : int = read_file_binary(snake_case__ ) A : Dict = remove_prefix(snake_case__ ) A : Union[str, Any] = decompress_data(snake_case__ ) write_file_binary(snake_case__ , snake_case__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
343
1
"""simple docstring""" from __future__ import annotations def lowercase__ ( snake_case_ :list[int] , snake_case_ :int ): if len(snake_case_ ) == 0: return False __UpperCAmelCase = len(snake_case_ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , snake_case_ ) else: return binary_search(a_list[midpoint + 1 :] , snake_case_ ) if __name__ == "__main__": _lowercase : str = input('Enter numbers separated by comma:\n').strip() _lowercase : int = [int(item.strip()) for item in user_input.split(',')] _lowercase : str = int(input('Enter the number to be found in the list:\n').strip()) _lowercase : Union[str, Any] = '' if binary_search(sequence, target) else 'not ' print(f"""{target} was {not_str}found in {sequence}""")
49
"""simple docstring""" import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowercase : Union[str, Any] = logging.getLogger(__name__) _lowercase : Optional[Any] = 'Hello world! cécé herlolip' _lowercase : str = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowercase__ ( snake_case_ :Any , snake_case_ :int ): __UpperCAmelCase = BertAbsConfig( temp_dir='''.''' , finetune_bert=snake_case_ , large=snake_case_ , share_emb=snake_case_ , use_bert_emb=snake_case_ , encoder='''bert''' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2_048 , dec_dropout=0.2 , ) __UpperCAmelCase = torch.load(snake_case_ , lambda snake_case_ , snake_case_ : storage ) __UpperCAmelCase = AbsSummarizer(snake_case_ , torch.device('''cpu''' ) , snake_case_ ) original.eval() __UpperCAmelCase = BertAbsSummarizer(snake_case_ , torch.device('''cpu''' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('''convert the model''' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('''Make sure that the models\' outputs are identical''' ) __UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) # prepare the model inputs __UpperCAmelCase = tokenizer.encode('''This is sample éàalj\'-.''' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) ) __UpperCAmelCase = torch.tensor(snake_case_ ).unsqueeze(0 ) __UpperCAmelCase = tokenizer.encode('''This is sample 3 éàalj\'-.''' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) ) __UpperCAmelCase = torch.tensor(snake_case_ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __UpperCAmelCase = encoder_input_ids __UpperCAmelCase = decoder_input_ids __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __UpperCAmelCase = original(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0] __UpperCAmelCase = original.generator(snake_case_ ) __UpperCAmelCase = new_model( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0] __UpperCAmelCase = new_model.generator(snake_case_ ) __UpperCAmelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(snake_case_ ) ) __UpperCAmelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(snake_case_ ) ) __UpperCAmelCase = torch.allclose(snake_case_ , snake_case_ , atol=1E-3 ) if are_identical: logging.info('''all weights are equal up to 1e-3''' ) else: raise ValueError('''the weights are different. The new model is likely different from the original one.''' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('''saving the model\'s state dictionary''' ) torch.save( new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' ) if __name__ == "__main__": _lowercase : Tuple = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) _lowercase : List[str] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
49
1
"""simple docstring""" import math __SCREAMING_SNAKE_CASE =10 __SCREAMING_SNAKE_CASE =7 __SCREAMING_SNAKE_CASE =BALLS_PER_COLOUR * NUM_COLOURS def lowercase__( __SCREAMING_SNAKE_CASE : int = 20 ): lowercase_ : Dict = math.comb(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = math.comb(NUM_BALLS - BALLS_PER_COLOUR , __SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
477
"""simple docstring""" __SCREAMING_SNAKE_CASE ={ "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
477
1
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a__: Dict = logging.get_logger(__name__) a__: Any = { "nielsr/canine-s": 2_048, } # Unicode defines 1,114,112 total “codepoints” a__: Dict = 1_114_112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py a__: Any = 0 a__: Dict = 0xE_0_0_0 a__: Optional[Any] = 0xE_0_0_1 a__: Optional[Any] = 0xE_0_0_2 a__: List[str] = 0xE_0_0_3 a__: Any = 0xE_0_0_4 # Maps special codepoints to human-readable names. a__: Dict[int, str] = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. a__: Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class SCREAMING_SNAKE_CASE__ ( lowercase__ ): __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self,__lowerCamelCase=chr(UpperCamelCase_ ),__lowerCamelCase=chr(UpperCamelCase_ ),__lowerCamelCase=chr(UpperCamelCase_ ),__lowerCamelCase=chr(UpperCamelCase_ ),__lowerCamelCase=chr(UpperCamelCase_ ),__lowerCamelCase=chr(UpperCamelCase_ ),__lowerCamelCase=False,__lowerCamelCase=2048,**__lowerCamelCase,): A__ = AddedToken(UpperCamelCase_,lstrip=UpperCamelCase_,rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_,UpperCamelCase_ ) else bos_token A__ = AddedToken(UpperCamelCase_,lstrip=UpperCamelCase_,rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_,UpperCamelCase_ ) else eos_token A__ = AddedToken(UpperCamelCase_,lstrip=UpperCamelCase_,rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_,UpperCamelCase_ ) else sep_token A__ = AddedToken(UpperCamelCase_,lstrip=UpperCamelCase_,rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_,UpperCamelCase_ ) else cls_token A__ = AddedToken(UpperCamelCase_,lstrip=UpperCamelCase_,rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_,UpperCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it A__ = AddedToken(UpperCamelCase_,lstrip=UpperCamelCase_,rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_,UpperCamelCase_ ) else mask_token super().__init__( bos_token=UpperCamelCase_,eos_token=UpperCamelCase_,sep_token=UpperCamelCase_,cls_token=UpperCamelCase_,pad_token=UpperCamelCase_,mask_token=UpperCamelCase_,add_prefix_space=UpperCamelCase_,model_max_length=UpperCamelCase_,**UpperCamelCase_,) # Creates a mapping for looking up the IDs of special symbols. A__ = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): A__ = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. A__ = { codepoint: name for name, codepoint in self._special_codepoints.items() } A__ = UNICODE_VOCAB_SIZE A__ = len(self._special_codepoints ) @property def UpperCamelCase ( self ): return self._unicode_vocab_size def UpperCamelCase ( self,__lowerCamelCase ): return list(UpperCamelCase_ ) def UpperCamelCase ( self,__lowerCamelCase ): try: return ord(UpperCamelCase_ ) except TypeError: raise ValueError(f"invalid token: '{token}'" ) def UpperCamelCase ( self,__lowerCamelCase ): try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(UpperCamelCase_ ) except TypeError: raise ValueError(f"invalid id: {index}" ) def UpperCamelCase ( self,__lowerCamelCase ): return "".join(UpperCamelCase_ ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): A__ = [self.sep_token_id] A__ = [self.cls_token_id] A__ = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None,__lowerCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_,token_ids_a=UpperCamelCase_,already_has_special_tokens=UpperCamelCase_ ) A__ = [1] + ([0] * len(UpperCamelCase_ )) + [1] if token_ids_a is not None: result += ([0] * len(UpperCamelCase_ )) + [1] return result def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): A__ = [self.sep_token_id] A__ = [self.cls_token_id] A__ = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): return ()
190
import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE : str = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right SCREAMING_SNAKE_CASE : Union[str, Any] = 50_003 SCREAMING_SNAKE_CASE : Any = 50_002 @require_sentencepiece @require_tokenizers class UpperCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' lowercase : Dict =PLBartTokenizer lowercase : int =None lowercase : Optional[int] =False def UpperCamelCase ( self ): super().setUp() # We have a SentencePiece fixture for testing lowercase_ :Optional[Any] = PLBartTokenizer(UpperCamelCase_ , language_codes='''base''' , keep_accents=UpperCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self ): lowercase_ :int = PLBartTokenizer(UpperCamelCase_ , language_codes='''base''' , keep_accents=UpperCamelCase_ ) lowercase_ :Union[str, Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(UpperCamelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase_ :List[Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( UpperCamelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowercase_ :Tuple = tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) self.assertListEqual( UpperCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase_ :List[str] = tokenizer.convert_ids_to_tokens(UpperCamelCase_ ) self.assertListEqual( UpperCamelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) lowercase_ :List[str] = tokenizer.vocab_size lowercase_ :Union[str, Any] = [tokenizer.convert_ids_to_tokens(UpperCamelCase_ ) for x in range(end - 4 , UpperCamelCase_ )] self.assertListEqual(UpperCamelCase_ , ['''__java__''', '''__python__''', '''__en_XX__''', '''<mask>'''] ) lowercase_ :Dict = '''java.lang.Exception, python.lang.Exception, javascript, php, ruby, go''' lowercase_ :Union[str, Any] = tokenizer(UpperCamelCase_ ).input_ids self.assertEqual( tokenizer.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) , UpperCamelCase_ , ) def UpperCamelCase ( self ): lowercase_ :Union[str, Any] = PLBartTokenizer(UpperCamelCase_ , language_codes='''multi''' , keep_accents=UpperCamelCase_ ) lowercase_ :str = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(UpperCamelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase_ :Dict = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( UpperCamelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowercase_ :Optional[Any] = tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) self.assertListEqual( UpperCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase_ :int = tokenizer.convert_ids_to_tokens(UpperCamelCase_ ) self.assertListEqual( UpperCamelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) lowercase_ :Union[str, Any] = tokenizer.vocab_size lowercase_ :Optional[Any] = [tokenizer.convert_ids_to_tokens(UpperCamelCase_ ) for x in range(end - 7 , UpperCamelCase_ )] self.assertListEqual( UpperCamelCase_ , ['''__java__''', '''__python__''', '''__en_XX__''', '''__javascript__''', '''__php__''', '''__ruby__''', '''__go__'''] ) lowercase_ :List[Any] = '''java.lang.Exception, python.lang.Exception, javascript, php, ruby, go''' lowercase_ :Any = tokenizer(UpperCamelCase_ ).input_ids self.assertEqual( tokenizer.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) , UpperCamelCase_ , ) @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' lowercase : List[Any] ="""uclanlp/plbart-python-en_XX""" lowercase : Union[str, Any] =[ """def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])""", """def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""", ] lowercase : Union[str, Any] =[ """Returns the maximum value of a b c.""", """Sums the values of a b c.""", ] lowercase : int =[ 134, 5452, 33460, 33441, 33463, 33465, 33463, 33449, 988, 20, 33456, 19, 33456, 771, 39, 4258, 889, 3318, 33441, 33463, 33465, 33463, 33449, 2471, 2, PYTHON_CODE, ] @classmethod def UpperCamelCase ( cls ): lowercase_ :PLBartTokenizer = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes='''base''' , src_lang='''python''' , tgt_lang='''en_XX''' ) lowercase_ :Any = 1 return cls def UpperCamelCase ( self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__java__'''] , 5_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__python__'''] , 5_0002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__en_XX__'''] , 5_0003 ) def UpperCamelCase ( self ): lowercase_ :List[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase_ ) def UpperCamelCase ( self ): self.assertIn(UpperCamelCase_ , self.tokenizer.all_special_ids ) lowercase_ :Union[str, Any] = [EN_CODE, 9037, 3_3442, 57, 752, 153, 14, 56, 18, 9, 2] lowercase_ :List[Any] = self.tokenizer.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) lowercase_ :Optional[Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertNotIn(self.tokenizer.eos_token , UpperCamelCase_ ) def UpperCamelCase ( self ): lowercase_ :List[Any] = ['''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''' * 20] self.assertIsInstance(src_text[0] , UpperCamelCase_ ) lowercase_ :Any = 10 lowercase_ :Union[str, Any] = self.tokenizer(UpperCamelCase_ , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , UpperCamelCase_ ) self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) def UpperCamelCase ( self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''__java__'''] ) , [5_0004, 5_0001] ) def UpperCamelCase ( self ): lowercase_ :int = tempfile.mkdtemp() lowercase_ :str = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(UpperCamelCase_ ) lowercase_ :Tuple = PLBartTokenizer.from_pretrained(UpperCamelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , UpperCamelCase_ ) @require_torch def UpperCamelCase ( self ): lowercase_ :Optional[Any] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCamelCase_ , return_tensors='''pt''' ) lowercase_ :List[Any] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , UpperCamelCase_ ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def UpperCamelCase ( self ): lowercase_ :List[str] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) lowercase_ :List[Any] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) lowercase_ :Optional[int] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def UpperCamelCase ( self ): lowercase_ :List[str] = self.tokenizer(self.src_text , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=3 , return_tensors='''pt''' ) lowercase_ :int = self.tokenizer( text_target=self.tgt_text , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=10 , return_tensors='''pt''' ) lowercase_ :str = targets['''input_ids'''] lowercase_ :List[Any] = shift_tokens_right(UpperCamelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def UpperCamelCase ( self ): lowercase_ :int = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''java''' ) self.assertEqual( nested_simplify(UpperCamelCase_ ) , { # A, test, EOS, en_XX '''input_ids''': [[150, 242, 2, 5_0003]], '''attention_mask''': [[1, 1, 1, 1]], # java '''forced_bos_token_id''': 5_0001, } , )
257
0
"""simple docstring""" from random import shuffle import tensorflow as tf from numpy import array def __lowerCAmelCase ( lowercase : List[Any] , lowercase : int ) -> List[Any]: """simple docstring""" snake_case : Dict = int(lowercase ) assert noofclusters < len(lowercase ) # Find out the dimensionality snake_case : Dict = len(vectors[0] ) # Will help select random centroids from among the available vectors snake_case : List[str] = list(range(len(lowercase ) ) ) shuffle(lowercase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. snake_case : str = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION snake_case : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points snake_case : Tuple = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase ) ] ##These nodes will assign the centroid Variables the appropriate ##values snake_case : Dict = tf.placeholder("float64" , [dim] ) snake_case : Union[str, Any] = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase , lowercase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) snake_case : int = [tf.Variable(0 ) for i in range(len(lowercase ) )] ##These nodes will assign an assignment Variable the appropriate ##value snake_case : List[str] = tf.placeholder("int32" ) snake_case : Tuple = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase , lowercase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input snake_case : int = tf.placeholder("float" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors snake_case : Optional[Any] = tf.reduce_mean(lowercase , 0 ) ##Node for computing Euclidean distances # Placeholders for input snake_case : List[str] = tf.placeholder("float" , [dim] ) snake_case : Any = tf.placeholder("float" , [dim] ) snake_case : Any = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase , lowercase ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input snake_case : Tuple = tf.placeholder("float" , [noofclusters] ) snake_case : Optional[int] = tf.argmin(lowercase , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. snake_case : List[str] = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. snake_case : str = 100 for _ in range(lowercase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase ) ): snake_case : int = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. snake_case : Union[str, Any] = [ sess.run(lowercase , feed_dict={va: vect, va: sess.run(lowercase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input snake_case : int = sess.run( lowercase , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase ): # Collect all the vectors assigned to this cluster snake_case : Optional[Any] = [ vectors[i] for i in range(len(lowercase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location snake_case : Optional[Any] = sess.run( lowercase , feed_dict={mean_input: array(lowercase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments snake_case : List[str] = sess.run(lowercase ) snake_case : Union[str, Any] = sess.run(lowercase ) return centroids, assignments
117
"""simple docstring""" import baseaa def __lowerCAmelCase ( lowercase : str ) -> bytes: """simple docstring""" return baseaa.aaaencode(string.encode("utf-8" ) ) def __lowerCAmelCase ( lowercase : bytes ) -> str: """simple docstring""" return baseaa.aaadecode(lowercase ).decode("utf-8" ) if __name__ == "__main__": import doctest doctest.testmod()
117
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[int] = ShapEPipeline __SCREAMING_SNAKE_CASE : Any = ["prompt"] __SCREAMING_SNAKE_CASE : Dict = ["prompt"] __SCREAMING_SNAKE_CASE : Optional[int] = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] __SCREAMING_SNAKE_CASE : int = False @property def a_ ( self ) -> List[Any]: return 3_2 @property def a_ ( self ) -> int: return 3_2 @property def a_ ( self ) -> Optional[Any]: return self.time_input_dim * 4 @property def a_ ( self ) -> str: return 8 @property def a_ ( self ) -> Optional[int]: UpperCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def a_ ( self ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(UpperCAmelCase__ ) @property def a_ ( self ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase = { 'num_attention_heads': 2, 'attention_head_dim': 1_6, 'embedding_dim': self.time_input_dim, 'num_embeddings': 3_2, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } UpperCAmelCase = PriorTransformer(**UpperCAmelCase__ ) return model @property def a_ ( self ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase = { 'param_shapes': ( (self.renderer_dim, 9_3), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 1_2, 'background': ( 0.1, 0.1, 0.1, ), } UpperCAmelCase = ShapERenderer(**UpperCAmelCase__ ) return model def a_ ( self ) -> List[Any]: UpperCAmelCase = self.dummy_prior UpperCAmelCase = self.dummy_text_encoder UpperCAmelCase = self.dummy_tokenizer UpperCAmelCase = self.dummy_renderer UpperCAmelCase = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_0_2_4 , prediction_type='sample' , use_karras_sigmas=UpperCAmelCase__ , clip_sample=UpperCAmelCase__ , clip_sample_range=1.0 , ) UpperCAmelCase = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def a_ ( self , lowercase_ , lowercase_=0 ) -> Union[str, Any]: if str(UpperCAmelCase__ ).startswith('mps' ): UpperCAmelCase = torch.manual_seed(UpperCAmelCase__ ) else: UpperCAmelCase = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) UpperCAmelCase = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 3_2, 'output_type': 'np', } return inputs def a_ ( self ) -> Union[str, Any]: UpperCAmelCase = 'cpu' UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**UpperCAmelCase__ ) UpperCAmelCase = pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) UpperCAmelCase = pipe(**self.get_dummy_inputs(UpperCAmelCase__ ) ) UpperCAmelCase = output.images[0] UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (2_0, 3_2, 3_2, 3) UpperCAmelCase = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a_ ( self ) -> int: self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def a_ ( self ) -> List[str]: UpperCAmelCase = torch_device == 'cpu' UpperCAmelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCAmelCase__ , relax_max_difference=UpperCAmelCase__ , ) def a_ ( self ) -> Union[str, Any]: UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**UpperCAmelCase__ ) UpperCAmelCase = pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) UpperCAmelCase = 1 UpperCAmelCase = 2 UpperCAmelCase = self.get_dummy_inputs(UpperCAmelCase__ ) for key in inputs.keys(): if key in self.batch_params: UpperCAmelCase = batch_size * [inputs[key]] UpperCAmelCase = pipe(**UpperCAmelCase__ , num_images_per_prompt=UpperCAmelCase__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def a_ ( self ) -> List[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self ) -> Optional[int]: UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) UpperCAmelCase = ShapEPipeline.from_pretrained('openai/shap-e' ) UpperCAmelCase = pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) UpperCAmelCase = torch.Generator(device=UpperCAmelCase__ ).manual_seed(0 ) UpperCAmelCase = pipe( 'a shark' , generator=UpperCAmelCase__ , guidance_scale=1_5.0 , num_inference_steps=6_4 , frame_size=6_4 , output_type='np' , ).images[0] assert images.shape == (2_0, 6_4, 6_4, 3) assert_mean_pixel_difference(UpperCAmelCase__ , UpperCAmelCase__ )
373
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging _lowerCamelCase : int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: """simple docstring""" A__ = set() A__ = [] def parse_line(lowercase_ ): for line in fp: if isinstance(lowercase_ , lowercase_ ): A__ = line.decode('''UTF-8''' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(''' ''' ): # process a single warning and move it to `selected_warnings`. if len(lowercase_ ) > 0: A__ = '''\n'''.join(lowercase_ ) # Only keep the warnings specified in `targets` if any(f""": {x}: """ in warning for x in targets ): selected_warnings.add(lowercase_ ) buffer.clear() continue else: A__ = line.strip() buffer.append(lowercase_ ) if from_gh: for filename in os.listdir(lowercase_ ): A__ = os.path.join(lowercase_ , lowercase_ ) if not os.path.isdir(lowercase_ ): # read the file if filename != "warnings.txt": continue with open(lowercase_ ) as fp: parse_line(lowercase_ ) else: try: with zipfile.ZipFile(lowercase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowercase_ ): # read the file if filename != "warnings.txt": continue with z.open(lowercase_ ) as fp: parse_line(lowercase_ ) except Exception: logger.warning( f"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""" ) return selected_warnings def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: """simple docstring""" A__ = set() A__ = [os.path.join(lowercase_ , lowercase_ ) for p in os.listdir(lowercase_ ) if (p.endswith('''.zip''' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowercase_ , lowercase_ ) ) return selected_warnings if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: """simple docstring""" return values.split(''',''' ) _lowerCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) _lowerCamelCase : List[Any] = parser.parse_args() _lowerCamelCase : List[str] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links _lowerCamelCase : Any = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts _lowerCamelCase : Any = extract_warnings(args.output_dir, args.targets) _lowerCamelCase : Optional[Any] = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
87
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ =logging.get_logger(__name__) lowercase__ ={'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'} class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : Optional[Any] = "openai-gpt" _SCREAMING_SNAKE_CASE : str = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__(self : Tuple , snake_case_ : int=4_0_4_7_8 , snake_case_ : Any=5_1_2 , snake_case_ : List[str]=7_6_8 , snake_case_ : int=1_2 , snake_case_ : Dict=1_2 , snake_case_ : str="gelu" , snake_case_ : List[str]=0.1 , snake_case_ : List[Any]=0.1 , snake_case_ : List[Any]=0.1 , snake_case_ : Tuple=1E-5 , snake_case_ : Any=0.02 , snake_case_ : Union[str, Any]="cls_index" , snake_case_ : Optional[Any]=True , snake_case_ : List[Any]=None , snake_case_ : Tuple=True , snake_case_ : Tuple=0.1 , **snake_case_ : Optional[Any] , ): __a : int = vocab_size __a : int = n_positions __a : Any = n_embd __a : Tuple = n_layer __a : Tuple = n_head __a : Any = afn __a : str = resid_pdrop __a : List[str] = embd_pdrop __a : Optional[int] = attn_pdrop __a : Optional[Any] = layer_norm_epsilon __a : List[Any] = initializer_range __a : str = summary_type __a : Union[str, Any] = summary_use_proj __a : Dict = summary_activation __a : List[str] = summary_first_dropout __a : Dict = summary_proj_to_labels super().__init__(**snake_case_ )
700
import copy import re class UpperCamelCase__ : _SCREAMING_SNAKE_CASE : Optional[Any] = "hp" _SCREAMING_SNAKE_CASE : List[str] = {} _SCREAMING_SNAKE_CASE : Any = None @classmethod def lowerCAmelCase (cls : Tuple , snake_case_ : Any , snake_case_ : Optional[int] ): __a : Optional[Any] = prefix __a : Dict = defaults cls.build_naming_info() @staticmethod def lowerCAmelCase (snake_case_ : List[Any] , snake_case_ : Union[str, Any] ): if len(snake_case_ ) == 0: return "" __a : Optional[Any] = None if any(char.isdigit() for char in word ): raise Exception(f"Parameters should not contain numbers: '{word}' contains a number" ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(snake_case_ ) + 1 ): __a : int = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: __a : Tuple = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(snake_case_ : Optional[Any] ): __a : Optional[int] = '''''' while integer != 0: __a : Any = chr(ord('''A''' ) + integer % 1_0 ) + s integer //= 1_0 return s __a : Optional[int] = 0 while True: __a : Optional[int] = word + '''#''' + int_to_alphabetic(snake_case_ ) if sword in info["reverse_short_word"]: continue else: __a : int = sword break __a : Any = short_word __a : Dict = word return short_word @staticmethod def lowerCAmelCase (snake_case_ : Optional[int] , snake_case_ : Optional[int] ): __a : List[str] = param_name.split('''_''' ) __a : int = [TrialShortNamer.shortname_for_word(snake_case_ , snake_case_ ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name __a : Union[str, Any] = ['''''', '''_'''] for separator in separators: __a : Optional[Any] = separator.join(snake_case_ ) if shortname not in info["reverse_short_param"]: __a : str = shortname __a : Dict = param_name return shortname return param_name @staticmethod def lowerCAmelCase (snake_case_ : Tuple , snake_case_ : Any ): __a : Any = TrialShortNamer.shortname_for_key(snake_case_ , snake_case_ ) __a : Any = short_name __a : Any = param_name @classmethod def lowerCAmelCase (cls : Dict ): if cls.NAMING_INFO is not None: return __a : List[str] = { '''short_word''': {}, '''reverse_short_word''': {}, '''short_param''': {}, '''reverse_short_param''': {}, } __a : str = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(snake_case_ , snake_case_ ) __a : str = info @classmethod def lowerCAmelCase (cls : str , snake_case_ : Tuple ): cls.build_naming_info() assert cls.PREFIX is not None __a : Optional[int] = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f"You should provide a default value for the param name {k} with value {v}" ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue __a : List[Any] = cls.NAMING_INFO['''short_param'''][k] if isinstance(snake_case_ , snake_case_ ): __a : Optional[Any] = 1 if v else 0 __a : int = '''''' if isinstance(snake_case_ , (int, float) ) else '''-''' __a : Any = f"{key}{sep}{v}" name.append(snake_case_ ) return "_".join(snake_case_ ) @classmethod def lowerCAmelCase (cls : List[Any] , snake_case_ : List[Any] ): __a : Optional[int] = repr[len(cls.PREFIX ) + 1 :] if repr == "": __a : Union[str, Any] = [] else: __a : List[str] = repr.split('''_''' ) __a : List[str] = {} for value in values: if "-" in value: __a , __a : Optional[Any] = value.split('''-''' ) else: __a : Dict = re.sub('''[0-9.]''' , '''''' , snake_case_ ) __a : List[str] = float(re.sub('''[^0-9.]''' , '''''' , snake_case_ ) ) __a : Dict = cls.NAMING_INFO['''reverse_short_param'''][p_k] __a : int = p_v for k in cls.DEFAULTS: if k not in parameters: __a : int = cls.DEFAULTS[k] return parameters
326
0