code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib lowercase : Any = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } lowercase : List[str] = logging.WARNING def lowerCamelCase__ ( ): snake_case : Tuple = os.getenv("""DATASETS_VERBOSITY""" , __lowercase ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F'''Unknown option DATASETS_VERBOSITY={env_level_str}, ''' F'''has to be one of: { ", ".join(log_levels.keys() ) }''' ) return _default_log_level def lowerCamelCase__ ( ): return __name__.split(""".""" )[0] def lowerCamelCase__ ( ): return logging.getLogger(_get_library_name() ) def lowerCamelCase__ ( ): # Apply our default configuration to the library root logger. snake_case : Union[str, Any] = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def lowerCamelCase__ ( ): snake_case : Dict = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def lowerCamelCase__ ( __lowercase = None ): if name is None: snake_case : List[Any] = _get_library_name() return logging.getLogger(__lowercase ) def lowerCamelCase__ ( ): return _get_library_root_logger().getEffectiveLevel() def lowerCamelCase__ ( __lowercase ): _get_library_root_logger().setLevel(__lowercase ) def lowerCamelCase__ ( ): return set_verbosity(__lowercase ) def lowerCamelCase__ ( ): return set_verbosity(__lowercase ) def lowerCamelCase__ ( ): return set_verbosity(__lowercase ) def lowerCamelCase__ ( ): return set_verbosity(__lowercase ) def lowerCamelCase__ ( ): snake_case : int = False def lowerCamelCase__ ( ): snake_case : Optional[Any] = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class _a : '''simple docstring''' def __init__( self ,*__a ,**__a ) -> List[str]: # pylint: disable=unused-argument snake_case : Tuple = args[0] if args else None def __iter__( self ) -> Optional[int]: return iter(self._iterator ) def __getattr__( self ,__a ) -> Any: def empty_fn(*__a ,**__a ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ) -> Tuple: return self def __exit__( self ,__a ,__a ,__a ) -> Tuple: return lowercase : Optional[Any] = True class _a : '''simple docstring''' def __call__( self ,*__a ,__a=False ,**__a ) -> str: if _tqdm_active and not disable: return tqdm_lib.tqdm(*__a ,**__a ) else: return EmptyTqdm(*__a ,**__a ) def snake_case_ ( self ,*__a ,**__a ) -> int: snake_case : List[Any] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*__a ,**__a ) def snake_case_ ( self ) -> List[Any]: if _tqdm_active: return tqdm_lib.tqdm.get_lock() lowercase : Optional[Any] = _tqdm_cls() def lowerCamelCase__ ( ): global _tqdm_active return bool(_tqdm_active ) def lowerCamelCase__ ( ): global _tqdm_active snake_case : str = True def lowerCamelCase__ ( ): global _tqdm_active snake_case : Optional[int] = False
116
'''simple docstring''' import numpy as np lowercase : str = [ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class _a : '''simple docstring''' def __init__( self ) -> None: snake_case : Dict = np.array(__a ) def snake_case_ ( self ,__a ) -> np.ndarray: snake_case , snake_case : Optional[Any] = np.where(letter == self.SQUARE ) snake_case : List[Any] = np.concatenate([indexa + 1, indexa + 1] ) return indexes def snake_case_ ( self ,__a ,__a ) -> str: snake_case : List[Any] = self.SQUARE[indexa - 1, indexa - 1] return letter def snake_case_ ( self ,__a ) -> str: snake_case : List[Any] = message.lower() snake_case : Dict = message.replace(""" """ ,"""""" ) snake_case : List[str] = message.replace("""j""" ,"""i""" ) snake_case : Optional[int] = np.empty((2, len(__a )) ) for letter_index in range(len(__a ) ): snake_case : Tuple = self.letter_to_numbers(message[letter_index] ) snake_case : Optional[Any] = numbers[0] snake_case : List[str] = numbers[1] snake_case : List[str] = first_step.reshape(2 * len(__a ) ) snake_case : List[Any] = """""" for numbers_index in range(len(__a ) ): snake_case : List[str] = int(second_step[numbers_index * 2] ) snake_case : List[Any] = int(second_step[(numbers_index * 2) + 1] ) snake_case : str = self.numbers_to_letter(__a ,__a ) snake_case : Any = encoded_message + letter return encoded_message def snake_case_ ( self ,__a ) -> str: snake_case : Any = message.lower() message.replace(""" """ ,"""""" ) snake_case : Dict = np.empty(2 * len(__a ) ) for letter_index in range(len(__a ) ): snake_case : str = self.letter_to_numbers(message[letter_index] ) snake_case : Any = numbers[0] snake_case : int = numbers[1] snake_case : List[str] = first_step.reshape((2, len(__a )) ) snake_case : Dict = """""" for numbers_index in range(len(__a ) ): snake_case : Optional[Any] = int(second_step[0, numbers_index] ) snake_case : Optional[int] = int(second_step[1, numbers_index] ) snake_case : Tuple = self.numbers_to_letter(__a ,__a ) snake_case : int = decoded_message + letter return decoded_message
116
1
'''simple docstring''' from __future__ import annotations import math def A_ ( snake_case , snake_case ): SCREAMING_SNAKE_CASE:Optional[Any] = u for i in range(1 , __UpperCAmelCase ): SCREAMING_SNAKE_CASE:Dict = temp * (u - i) return temp def A_ ( ): SCREAMING_SNAKE_CASE:Union[str, Any] = int(input("enter the numbers of values: " ) ) SCREAMING_SNAKE_CASE:List[Any] = [] for _ in range(__UpperCAmelCase ): y.append([] ) for i in range(__UpperCAmelCase ): for j in range(__UpperCAmelCase ): y[i].append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE:List[Any] = 0 print("enter the values of parameters in a list: " ) SCREAMING_SNAKE_CASE:Any = list(map(__UpperCAmelCase , input().split() ) ) print("enter the values of corresponding parameters: " ) for i in range(__UpperCAmelCase ): SCREAMING_SNAKE_CASE:List[str] = float(input() ) SCREAMING_SNAKE_CASE:int = int(input("enter the value to interpolate: " ) ) SCREAMING_SNAKE_CASE:str = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __UpperCAmelCase ): for j in range(n - i ): SCREAMING_SNAKE_CASE:Any = y[j + 1][i - 1] - y[j][i - 1] SCREAMING_SNAKE_CASE:Union[str, Any] = y[0][0] for i in range(1 , __UpperCAmelCase ): summ += (ucal(__UpperCAmelCase , __UpperCAmelCase ) * y[0][i]) / math.factorial(__UpperCAmelCase ) print(F'''the value at {value} is {summ}''' ) if __name__ == "__main__": main()
713
'''simple docstring''' from math import factorial def A_ ( snake_case , snake_case ): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError("Please enter positive integers for n and k where n >= k" ) return factorial(snake_case ) // (factorial(snake_case ) * factorial(n - k )) if __name__ == "__main__": print( "The number of five-card hands possible from a standard", f'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( "If a class of 40 students must be arranged into groups of", f'''4 for group projects, there are {combinations(40, 4)} ways''', "to arrange them.\n", ) print( "If 10 teams are competing in a Formula One race, there", f'''are {combinations(10, 3)} ways that first, second and''', "third place can be awarded.", )
465
0
'''simple docstring''' import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin __a = get_tests_dir("fixtures/test_sentencepiece.model") __a = get_tests_dir("fixtures/test_sentencepiece_bpe.model") __a = "pt" if is_torch_available() else "tf" @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( _a , unittest.TestCase ): """simple docstring""" lowercase = CamembertTokenizer lowercase = CamembertTokenizerFast lowercase = True lowercase = True def lowerCamelCase ( self : Tuple ): super().setUp() # We have a SentencePiece fixture for testing snake_case__ : List[str] = CamembertTokenizer(snake_case_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase ( self : int ): snake_case__ : Optional[Any] = """<pad>""" snake_case__ : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(snake_case_ ) , 1_004 ) def lowerCamelCase ( self : Tuple ): self.assertEqual(self.get_tokenizer().vocab_size , 1_005 ) def lowerCamelCase ( self : Optional[Any] ): snake_case__ : Dict = CamembertTokenizer(snake_case_ ) tokenizer.save_pretrained(self.tmpdirname ) snake_case__ : Dict = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) snake_case__ : Tuple = """I was born in 92000, and this is falsé.""" snake_case__ : Optional[Any] = tokenizer.encode(snake_case_ ) snake_case__ : List[Any] = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) snake_case__ : Any = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) snake_case__ : Optional[int] = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) snake_case__ : Optional[int] = tokenizer.convert_ids_to_tokens(snake_case_ ) snake_case__ : List[Any] = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCamelCase ( self : Any ): if not self.test_rust_tokenizer: return snake_case__ : Dict = self.get_tokenizer() snake_case__ : List[Any] = self.get_rust_tokenizer() snake_case__ : str = """I was born in 92000, and this is falsé.""" snake_case__ : Optional[Any] = tokenizer.tokenize(snake_case_ ) snake_case__ : Union[str, Any] = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) snake_case__ : int = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) snake_case__ : Tuple = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) snake_case__ : Union[str, Any] = self.get_rust_tokenizer() snake_case__ : str = tokenizer.encode(snake_case_ ) snake_case__ : List[Any] = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self : Optional[Any] ): # fmt: off snake_case__ : Tuple = {"""input_ids""": [[5, 54, 7_196, 297, 30, 23, 776, 18, 11, 3_215, 3_705, 8_252, 22, 3_164, 1_181, 2_116, 29, 16, 813, 25, 791, 3_314, 20, 3_446, 38, 27_575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9_088, 20, 1_517, 8, 22_804, 18_818, 10, 38, 629, 607, 607, 142, 19, 7_196, 867, 56, 10_326, 24, 2_267, 20, 416, 5_072, 15_612, 233, 734, 7, 2_399, 27, 16, 3_015, 1_649, 7, 24, 20, 4_338, 2_399, 27, 13, 3_400, 14, 13, 6_189, 8, 930, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. snake_case__ : Optional[int] = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=snake_case_ , )
374
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: __a = None __a = logging.get_logger(__name__) __a = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} __a = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" ), }, } __a = { "facebook/nllb-large-en-ro": 1024, "facebook/nllb-200-distilled-600M": 1024, } # fmt: off __a = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = ["input_ids", "attention_mask"] lowercase = NllbTokenizer lowercase = [] lowercase = [] def __init__( self : List[str] , snake_case_ : int=None , snake_case_ : Optional[int]=None , snake_case_ : Dict="<s>" , snake_case_ : Optional[Any]="</s>" , snake_case_ : Union[str, Any]="</s>" , snake_case_ : Optional[int]="<s>" , snake_case_ : Any="<unk>" , snake_case_ : Tuple="<pad>" , snake_case_ : Any="<mask>" , snake_case_ : Union[str, Any]=None , snake_case_ : Tuple=None , snake_case_ : Union[str, Any]=None , snake_case_ : Optional[int]=False , **snake_case_ : List[Any] , ): # Mask token behave like a normal word, i.e. include the space before it snake_case__ : Any = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token snake_case__ : str = legacy_behaviour super().__init__( vocab_file=snake_case_ , tokenizer_file=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , src_lang=snake_case_ , tgt_lang=snake_case_ , additional_special_tokens=snake_case_ , legacy_behaviour=snake_case_ , **snake_case_ , ) snake_case__ : Optional[Any] = vocab_file snake_case__ : str = False if not self.vocab_file else True snake_case__ : List[str] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) snake_case__ : Optional[int] = { lang_code: self.convert_tokens_to_ids(snake_case_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } snake_case__ : Any = src_lang if src_lang is not None else """eng_Latn""" snake_case__ : Optional[int] = self.convert_tokens_to_ids(self._src_lang ) snake_case__ : Any = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowerCamelCase ( self : str ): return self._src_lang @src_lang.setter def lowerCamelCase ( self : str , snake_case_ : str ): snake_case__ : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCamelCase ( self : int , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase ( self : Any , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): snake_case__ : int = [self.sep_token_id] snake_case__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase ( self : List[str] , snake_case_ : str , snake_case_ : str , snake_case_ : Optional[str] , snake_case_ : Optional[str] , **snake_case_ : List[Any] ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) snake_case__ : Any = src_lang snake_case__ : str = self(snake_case_ , add_special_tokens=snake_case_ , return_tensors=snake_case_ , **snake_case_ ) snake_case__ : Dict = self.convert_tokens_to_ids(snake_case_ ) snake_case__ : str = tgt_lang_id return inputs def lowerCamelCase ( self : int , snake_case_ : List[str] , snake_case_ : str = "eng_Latn" , snake_case_ : Optional[List[str]] = None , snake_case_ : str = "fra_Latn" , **snake_case_ : str , ): snake_case__ : str = src_lang snake_case__ : List[Any] = tgt_lang return super().prepare_seqaseq_batch(snake_case_ , snake_case_ , **snake_case_ ) def lowerCamelCase ( self : List[str] ): return self.set_src_lang_special_tokens(self.src_lang ) def lowerCamelCase ( self : Any ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCamelCase ( self : Optional[Any] , snake_case_ : List[str] ): snake_case__ : List[Any] = self.convert_tokens_to_ids(snake_case_ ) if self.legacy_behaviour: snake_case__ : Tuple = [] snake_case__ : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: snake_case__ : Tuple = [self.cur_lang_code] snake_case__ : int = [self.eos_token_id] snake_case__ : List[str] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case__ : Tuple = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case__ : Union[str, Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCamelCase ( self : int , snake_case_ : str ): snake_case__ : List[str] = self.convert_tokens_to_ids(snake_case_ ) if self.legacy_behaviour: snake_case__ : int = [] snake_case__ : Optional[Any] = [self.eos_token_id, self.cur_lang_code] else: snake_case__ : Dict = [self.cur_lang_code] snake_case__ : Dict = [self.eos_token_id] snake_case__ : Dict = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case__ : Any = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case__ : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCamelCase ( self : str , snake_case_ : str , snake_case_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(snake_case_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory." ) return snake_case__ : Dict = os.path.join( snake_case_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ): copyfile(self.vocab_file , snake_case_ ) return (out_vocab_file,)
374
1
def _SCREAMING_SNAKE_CASE ( a ) -> int: __A : list[list[int]] = [[0 for _ in range(a )] for _ in range(m + 1 )] for i in range(m + 1 ): __A : Optional[int] = 1 for n in range(m + 1 ): for k in range(1 , a ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: UpperCAmelCase : str = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: UpperCAmelCase : str = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
703
import glob import os import random from string import ascii_lowercase, digits import cva UpperCAmelCase : Dict = '''''' UpperCAmelCase : Union[str, Any] = '''''' UpperCAmelCase : Optional[int] = '''''' UpperCAmelCase : Union[str, Any] = 1 # (0 is vertical, 1 is horizontal) def _SCREAMING_SNAKE_CASE ( ) -> None: __A , __A : List[Any] = get_dataset(a , a ) print('Processing...' ) __A , __A , __A : Optional[Any] = update_image_and_anno(a , a , a ) for index, image in enumerate(a ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __A : Optional[int] = random_chars(32 ) __A : Dict = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0] __A : Dict = F"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(F"""/{file_root}.jpg""" , a , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"""Success {index+1}/{len(a )} with {file_name}""" ) __A : int = [] for anno in new_annos[index]: __A : Any = F"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(a ) with open(F"""/{file_root}.txt""" , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def _SCREAMING_SNAKE_CASE ( a , a ) -> tuple[list, list]: __A : int = [] __A : List[Any] = [] for label_file in glob.glob(os.path.join(a , '*.txt' ) ): __A : List[str] = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(a ) as in_file: __A : Tuple = in_file.readlines() __A : Dict = os.path.join(a , F"""{label_name}.jpg""" ) __A : Dict = [] for obj_list in obj_lists: __A : int = obj_list.rstrip('\n' ).split(' ' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(a ) labels.append(a ) return img_paths, labels def _SCREAMING_SNAKE_CASE ( a , a , a = 1 ) -> tuple[list, list, list]: __A : int = [] __A : Optional[Any] = [] __A : Dict = [] for idx in range(len(a ) ): __A : Dict = [] __A : Optional[Any] = img_list[idx] path_list.append(a ) __A : Union[str, Any] = anno_list[idx] __A : Optional[Any] = cva.imread(a ) if flip_type == 1: __A : Any = cva.flip(a , a ) for bbox in img_annos: __A : Dict = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __A : Union[str, Any] = cva.flip(a , a ) for bbox in img_annos: __A : Optional[Any] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(a ) new_imgs_list.append(a ) return new_imgs_list, new_annos_lists, path_list def _SCREAMING_SNAKE_CASE ( a = 32 ) -> str: assert number_char > 1, "The number of character should greater than 1" __A : List[Any] = ascii_lowercase + digits return "".join(random.choice(a ) for _ in range(a ) ) if __name__ == "__main__": main() print('''DONE ✅''')
77
0
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a : '''simple docstring''' def __init__( self : Any , __snake_case : Tuple , __snake_case : Optional[Any]=13 , __snake_case : int=30 , __snake_case : str=2 , __snake_case : List[Any]=3 , __snake_case : Any=True , __snake_case : str=True , __snake_case : Dict=32 , __snake_case : Dict=5 , __snake_case : int=4 , __snake_case : List[Any]=37 , __snake_case : List[Any]="gelu" , __snake_case : Optional[int]=0.1 , __snake_case : Tuple=0.1 , __snake_case : Any=10 , __snake_case : Union[str, Any]=0.02 , __snake_case : Any=None , __snake_case : Dict=2 , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope UpperCAmelCase_ = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ = (image_size // patch_size) ** 2 UpperCAmelCase_ = num_patches + 1 def lowerCamelCase_ ( self : Optional[int] ): UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Optional[Any] ): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowerCamelCase_ ( self : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Any ): UpperCAmelCase_ = ViTModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self : Dict , __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : Optional[Any] ): UpperCAmelCase_ = ViTForMaskedImageModeling(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ = model(__snake_case ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase_ = 1 UpperCAmelCase_ = ViTForMaskedImageModeling(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ = model(__snake_case ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowerCamelCase_ ( self : Optional[int] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : Optional[Any] ): UpperCAmelCase_ = self.type_sequence_label_size UpperCAmelCase_ = ViTForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ = 1 UpperCAmelCase_ = ViTForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase_ ( self : Any ): UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a ( _A , _A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase : List[str] = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) lowerCAmelCase : List[str] = ( {'feature-extraction': ViTModel, 'image-classification': ViTForImageClassification} if is_torch_available() else {} ) lowerCAmelCase : List[Any] = True lowerCAmelCase : Dict = False lowerCAmelCase : int = False lowerCAmelCase : List[str] = False def lowerCamelCase_ ( self : List[str] ): UpperCAmelCase_ = ViTModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 ) def lowerCamelCase_ ( self : Dict ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def lowerCamelCase_ ( self : str ): pass def lowerCamelCase_ ( self : Union[str, Any] ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) ) def lowerCamelCase_ ( self : Any ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(__snake_case ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __snake_case ) def lowerCamelCase_ ( self : Union[str, Any] ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def lowerCamelCase_ ( self : Tuple ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__snake_case ) def lowerCamelCase_ ( self : List[Any] ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) @slow def lowerCamelCase_ ( self : int ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = ViTModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class a ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase_ ( self : Union[str, Any] ): return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None @slow def lowerCamelCase_ ( self : List[Any] ): UpperCAmelCase_ = ViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' ).to(__snake_case ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=__snake_case , return_tensors='''pt''' ).to(__snake_case ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**__snake_case ) # verify the logits UpperCAmelCase_ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __snake_case ) UpperCAmelCase_ = torch.tensor([-0.2_744, 0.8_215, -0.0_836] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1E-4 ) ) @slow def lowerCamelCase_ ( self : Dict ): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. UpperCAmelCase_ = ViTModel.from_pretrained('''facebook/dino-vits8''' ).to(__snake_case ) UpperCAmelCase_ = ViTImageProcessor.from_pretrained('''facebook/dino-vits8''' , size=4_80 ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=__snake_case , return_tensors='''pt''' ) UpperCAmelCase_ = inputs.pixel_values.to(__snake_case ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(__snake_case , interpolate_pos_encoding=__snake_case ) # verify the logits UpperCAmelCase_ = torch.Size((1, 36_01, 3_84) ) self.assertEqual(outputs.last_hidden_state.shape , __snake_case ) UpperCAmelCase_ = torch.tensor( [[4.2_340, 4.3_906, -6.6_692], [4.5_463, 1.8_928, -6.7_257], [4.4_429, 0.8_496, -5.8_585]] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __snake_case , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def lowerCamelCase_ ( self : List[str] ): UpperCAmelCase_ = ViTModel.from_pretrained('''facebook/dino-vits8''' , torch_dtype=torch.floataa , device_map='''auto''' ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=__snake_case , return_tensors='''pt''' ) UpperCAmelCase_ = inputs.pixel_values.to(__snake_case ) # forward pass to make sure inference works in fp16 with torch.no_grad(): UpperCAmelCase_ = model(__snake_case )
144
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str = "laptop" ) -> DataFrame: UpperCAmelCase_ = f'https://www.amazon.in/laptop/s?k={product}' UpperCAmelCase_ = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } UpperCAmelCase_ = BeautifulSoup(requests.get(__UpperCamelCase , headers=__UpperCamelCase ).text ) # Initialize a Pandas dataframe with the column titles UpperCAmelCase_ = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''} ) , ): try: UpperCAmelCase_ = item.ha.text UpperCAmelCase_ = '''https://www.amazon.in/''' + item.ha.a['''href'''] UpperCAmelCase_ = item.find('''span''' , attrs={'''class''': '''a-offscreen'''} ).text try: UpperCAmelCase_ = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''} ).text except AttributeError: UpperCAmelCase_ = '''Not available''' try: UpperCAmelCase_ = ( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1] ) except AttributeError: UpperCAmelCase_ = '''''' try: UpperCAmelCase_ = float( ( ( float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) - float(product_price.strip('''₹''' ).replace(''',''' , '''''' ) ) ) / float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) ) * 100 ) except ValueError: UpperCAmelCase_ = float('''nan''' ) except AttributeError: pass UpperCAmelCase_ = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] UpperCAmelCase_ = ''' ''' UpperCAmelCase_ = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": _lowerCamelCase = 'headphones' get_amazon_product_data(product).to_csv(F"Amazon Product Data for {product}.csv")
144
1
'''simple docstring''' from maths.prime_factors import prime_factors def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: int ) -> int: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): __a = f"""Input value of [number={number}] must be an integer""" raise TypeError(SCREAMING_SNAKE_CASE__ ) if number < 1: raise ValueError('Input must be a positive integer' ) return -1 if len(prime_factors(SCREAMING_SNAKE_CASE__ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
270
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) @dataclass class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): __a =[ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self , **lowerCamelCase ) ->List[Any]: '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __a = deprecated_arg[3:] setattr(self , lowerCamelCase , not kwargs.pop(lowerCamelCase ) ) logger.warning( F"""{deprecated_arg} is depreciated. Please use --no_{positive_arg} or""" F""" {positive_arg}={kwargs[positive_arg]}""" ) __a = kwargs.pop('torchscript' , self.torchscript ) __a = kwargs.pop('torch_xla_tpu_print_metrics' , self.torch_xla_tpu_print_metrics ) __a = kwargs.pop('fp16_opt_level' , self.fpaa_opt_level ) super().__init__(**lowerCamelCase ) __a =field(default=_lowerCAmelCase , metadata={"help": "Trace the models using torchscript"} ) __a =field(default=_lowerCAmelCase , metadata={"help": "Print Xla/PyTorch tpu metrics"} ) __a =field( default="O1" , metadata={ "help": ( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. " "See details at https://nvidia.github.io/apex/amp.html" ) } , ) @cached_property def __UpperCamelCase ( self ) ->Tuple["torch.device", int]: '''simple docstring''' requires_backends(self , ['torch'] ) logger.info('PyTorch: setting up devices' ) if not self.cuda: __a = torch.device('cpu' ) __a = 0 elif is_torch_tpu_available(): __a = xm.xla_device() __a = 0 else: __a = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) __a = torch.cuda.device_count() return device, n_gpu @property def __UpperCamelCase ( self ) ->Optional[Any]: '''simple docstring''' return is_torch_tpu_available() and self.tpu @property def __UpperCamelCase ( self ) ->int: '''simple docstring''' requires_backends(self , ['torch'] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def __UpperCamelCase ( self ) ->"torch.device": '''simple docstring''' requires_backends(self , ['torch'] ) return self._setup_devices[0] @property def __UpperCamelCase ( self ) ->List[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) return self._setup_devices[1] @property def __UpperCamelCase ( self ) ->List[str]: '''simple docstring''' return self.n_gpu > 0
270
1
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowerCAmelCase : def __init__( self :Dict , _lowercase :Optional[Any] , ): '''simple docstring''' lowercase__ = parent lowercase__ = 13 lowercase__ = 7 lowercase__ = True lowercase__ = True lowercase__ = True lowercase__ = 99 lowercase__ = 32 lowercase__ = 2 lowercase__ = 4 lowercase__ = 37 lowercase__ = "gelu" lowercase__ = 0.1 lowercase__ = 0.1 lowercase__ = 5_12 lowercase__ = 16 lowercase__ = 2 lowercase__ = 0.02 lowercase__ = 3 lowercase__ = 4 lowercase__ = None def UpperCAmelCase ( self :Tuple ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self :Tuple ): '''simple docstring''' ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = self.prepare_config_and_inputs() lowercase__ = True lowercase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCAmelCase ( self :List[str] , _lowercase :str , _lowercase :str , _lowercase :Optional[Any] , _lowercase :int , _lowercase :Optional[int] , _lowercase :List[str] ): '''simple docstring''' lowercase__ = TFEsmModel(config=_lowercase ) lowercase__ = {"input_ids": input_ids, "attention_mask": input_mask} lowercase__ = model(_lowercase ) lowercase__ = [input_ids, input_mask] lowercase__ = model(_lowercase ) lowercase__ = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self :List[Any] , _lowercase :List[Any] , _lowercase :Optional[int] , _lowercase :Any , _lowercase :Dict , _lowercase :Union[str, Any] , _lowercase :Tuple , _lowercase :Tuple , _lowercase :str , ): '''simple docstring''' lowercase__ = True lowercase__ = TFEsmModel(config=_lowercase ) lowercase__ = { "input_ids": input_ids, "attention_mask": input_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, } lowercase__ = model(_lowercase ) lowercase__ = [input_ids, input_mask] lowercase__ = model(_lowercase , encoder_hidden_states=_lowercase ) # Also check the case where encoder outputs are not passed lowercase__ = model(_lowercase , attention_mask=_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self :Union[str, Any] , _lowercase :Tuple , _lowercase :str , _lowercase :List[Any] , _lowercase :List[str] , _lowercase :Optional[Any] , _lowercase :Union[str, Any] ): '''simple docstring''' lowercase__ = TFEsmForMaskedLM(config=_lowercase ) lowercase__ = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self :List[Any] , _lowercase :str , _lowercase :Dict , _lowercase :Dict , _lowercase :Optional[Any] , _lowercase :Optional[Any] , _lowercase :Union[str, Any] ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = TFEsmForTokenClassification(config=_lowercase ) lowercase__ = {"input_ids": input_ids, "attention_mask": input_mask} lowercase__ = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self :str ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase ( lowercase_ , lowercase_ , unittest.TestCase ): __lowerCamelCase = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) __lowerCamelCase = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) __lowerCamelCase = False __lowerCamelCase = False def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' lowercase__ = TFEsmModelTester(self ) lowercase__ = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def UpperCAmelCase ( self :str ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def UpperCAmelCase ( self :Tuple ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_lowercase ) def UpperCAmelCase ( self :Any ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowercase ) def UpperCAmelCase ( self :str ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowercase ) @slow def UpperCAmelCase ( self :List[str] ): '''simple docstring''' for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = TFEsmModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @unittest.skip("Protein models do not support embedding resizing." ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' pass @unittest.skip("Protein models do not support embedding resizing." ) def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' pass def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_lowercase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowercase__ = model.get_bias() assert isinstance(_lowercase , _lowercase ) for k, v in name.items(): assert isinstance(_lowercase , tf.Variable ) else: lowercase__ = model.get_output_embeddings() assert x is None lowercase__ = model.get_bias() assert name is None @require_tf class lowerCAmelCase ( unittest.TestCase ): @slow def UpperCAmelCase ( self :Any ): '''simple docstring''' lowercase__ = TFEsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" ) lowercase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase__ = model(_lowercase )[0] lowercase__ = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , _lowercase ) # compare the actual values for a slice. lowercase__ = tf.constant( [ [ [8.921518, -10.589814, -6.4671307], [-6.3967156, -13.911377, -1.1211915], [-7.781247, -13.951557, -3.740592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' lowercase__ = TFEsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" ) lowercase__ = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowercase__ = model(_lowercase )[0] # compare the actual values for a slice. lowercase__ = tf.constant( [ [ [0.14443092, 0.54125327, 0.3247739], [0.30340484, 0.00526676, 0.31077722], [0.32278043, -0.24987096, 0.3414628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
655
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class lowerCAmelCase : __lowerCamelCase = 42 # setable values __lowerCamelCase = 42 __lowerCamelCase = 42 __lowerCamelCase = None @classmethod def UpperCAmelCase ( cls :Union[str, Any] , _lowercase :CommonSchedulerState , _lowercase :jnp.ndarray , _lowercase :jnp.ndarray ): '''simple docstring''' return cls(common=_lowercase , init_noise_sigma=_lowercase , timesteps=_lowercase ) @dataclass class lowerCAmelCase ( lowercase_ ): __lowerCamelCase = 42 class lowerCAmelCase ( lowercase_ , lowercase_ ): __lowerCamelCase = [e.name for e in FlaxKarrasDiffusionSchedulers] __lowerCamelCase = 42 @property def UpperCAmelCase ( self :List[str] ): '''simple docstring''' return True @register_to_config def __init__( self :str , _lowercase :int = 10_00 , _lowercase :float = 0.0001 , _lowercase :float = 0.02 , _lowercase :str = "linear" , _lowercase :Optional[jnp.ndarray] = None , _lowercase :str = "fixed_small" , _lowercase :bool = True , _lowercase :str = "epsilon" , _lowercase :jnp.dtype = jnp.floataa , ): '''simple docstring''' lowercase__ = dtype def UpperCAmelCase ( self :str , _lowercase :Optional[CommonSchedulerState] = None ): '''simple docstring''' if common is None: lowercase__ = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowercase__ = jnp.array(1.0 , dtype=self.dtype ) lowercase__ = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=_lowercase , init_noise_sigma=_lowercase , timesteps=_lowercase , ) def UpperCAmelCase ( self :Optional[Any] , _lowercase :DDPMSchedulerState , _lowercase :jnp.ndarray , _lowercase :Optional[int] = None ): '''simple docstring''' return sample def UpperCAmelCase ( self :List[str] , _lowercase :DDPMSchedulerState , _lowercase :int , _lowercase :Tuple = () ): '''simple docstring''' lowercase__ = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowercase__ = (jnp.arange(0 , _lowercase ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=_lowercase , timesteps=_lowercase , ) def UpperCAmelCase ( self :Tuple , _lowercase :DDPMSchedulerState , _lowercase :int , _lowercase :List[str]=None , _lowercase :Tuple=None ): '''simple docstring''' lowercase__ = state.common.alphas_cumprod[t] lowercase__ = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowercase__ = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowercase__ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowercase__ = jnp.clip(_lowercase , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowercase__ = jnp.log(jnp.clip(_lowercase , a_min=1e-20 ) ) elif variance_type == "fixed_large": lowercase__ = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowercase__ = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowercase__ = variance lowercase__ = state.common.betas[t] lowercase__ = (predicted_variance + 1) / 2 lowercase__ = frac * max_log + (1 - frac) * min_log return variance def UpperCAmelCase ( self :Optional[int] , _lowercase :DDPMSchedulerState , _lowercase :jnp.ndarray , _lowercase :int , _lowercase :jnp.ndarray , _lowercase :Optional[jax.random.KeyArray] = None , _lowercase :bool = True , ): '''simple docstring''' lowercase__ = timestep if key is None: lowercase__ = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowercase__ , lowercase__ = jnp.split(_lowercase , sample.shape[1] , axis=1 ) else: lowercase__ = None # 1. compute alphas, betas lowercase__ = state.common.alphas_cumprod[t] lowercase__ = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) lowercase__ = 1 - alpha_prod_t lowercase__ = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowercase__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowercase__ = model_output elif self.config.prediction_type == "v_prediction": lowercase__ = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ''' " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowercase__ = jnp.clip(_lowercase , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowercase__ = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowercase__ = jax.random.split(_lowercase , num=1 ) lowercase__ = jax.random.normal(_lowercase , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(_lowercase , _lowercase , predicted_variance=_lowercase ) ** 0.5) * noise lowercase__ = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) lowercase__ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=_lowercase , state=_lowercase ) def UpperCAmelCase ( self :int , _lowercase :DDPMSchedulerState , _lowercase :jnp.ndarray , _lowercase :jnp.ndarray , _lowercase :jnp.ndarray , ): '''simple docstring''' return add_noise_common(state.common , _lowercase , _lowercase , _lowercase ) def UpperCAmelCase ( self :Dict , _lowercase :DDPMSchedulerState , _lowercase :jnp.ndarray , _lowercase :jnp.ndarray , _lowercase :jnp.ndarray , ): '''simple docstring''' return get_velocity_common(state.common , _lowercase , _lowercase , _lowercase ) def __len__( self :List[str] ): '''simple docstring''' return self.config.num_train_timesteps
655
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { 'edbeeching/decision-transformer-gym-hopper-medium': ( 'https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class __snake_case ( a__): _lowerCAmelCase = '''decision_transformer''' _lowerCAmelCase = ['''past_key_values'''] _lowerCAmelCase = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self, A=17, A=4, A=128, A=4096, A=True, A=1, A=1024, A=3, A=1, A=None, A="relu", A=0.1, A=0.1, A=0.1, A=1e-5, A=0.02, A=True, A=True, A=5_0256, A=5_0256, A=False, A=False, **A, ): """simple docstring""" lowerCamelCase : List[str] = state_dim lowerCamelCase : Optional[Any] = act_dim lowerCamelCase : Dict = hidden_size lowerCamelCase : List[str] = max_ep_len lowerCamelCase : List[str] = action_tanh lowerCamelCase : int = vocab_size lowerCamelCase : Optional[int] = n_positions lowerCamelCase : Optional[int] = n_layer lowerCamelCase : Optional[int] = n_head lowerCamelCase : Optional[int] = n_inner lowerCamelCase : Tuple = activation_function lowerCamelCase : int = resid_pdrop lowerCamelCase : Optional[int] = embd_pdrop lowerCamelCase : Optional[int] = attn_pdrop lowerCamelCase : Tuple = layer_norm_epsilon lowerCamelCase : List[Any] = initializer_range lowerCamelCase : int = scale_attn_weights lowerCamelCase : Tuple = use_cache lowerCamelCase : Optional[int] = scale_attn_by_inverse_layer_idx lowerCamelCase : str = reorder_and_upcast_attn lowerCamelCase : str = bos_token_id lowerCamelCase : List[str] = eos_token_id super().__init__(bos_token_id=A, eos_token_id=A, **A )
710
'''simple docstring''' from __future__ import annotations A = '#' class __snake_case : def __init__( self ): """simple docstring""" lowerCamelCase : dict = {} def UpperCAmelCase_ ( self, A ): """simple docstring""" lowerCamelCase : int = self._trie for char in text: if char not in trie: lowerCamelCase : Dict = {} lowerCamelCase : Optional[int] = trie[char] lowerCamelCase : Optional[Any] = True def UpperCAmelCase_ ( self, A ): """simple docstring""" lowerCamelCase : Dict = self._trie for char in prefix: if char in trie: lowerCamelCase : int = trie[char] else: return [] return self._elements(A ) def UpperCAmelCase_ ( self, A ): """simple docstring""" lowerCamelCase : Optional[Any] = [] for c, v in d.items(): lowerCamelCase : Optional[Any] = [' '] if c == END else [(c + s) for s in self._elements(A )] result.extend(A ) return tuple(A ) A = Trie() A = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def UpperCAmelCase ( UpperCAmelCase__ : str): lowerCamelCase : Any = trie.find_word(UpperCAmelCase__) return tuple(string + word for word in suffixes) def UpperCAmelCase ( ): print(autocomplete_using_trie('de')) if __name__ == "__main__": import doctest doctest.testmod() main()
449
0
from ....utils import logging snake_case_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__(self : Optional[int] , a__ : List[str] , a__ : List[Any]=None , a__ : Optional[int]=2048 ): """simple docstring""" __snake_case = config.__dict__ __snake_case = modal_hidden_size if num_labels: __snake_case = num_labels
592
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position snake_case_ = '2.13.1' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip snake_case_ = concatenate_datasets snake_case_ = DownloadConfig snake_case_ = DownloadManager snake_case_ = DownloadMode snake_case_ = DownloadConfig snake_case_ = DownloadMode snake_case_ = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
592
1
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class __A (snake_case__): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : UNetaDModel , UpperCAmelCase_ : UNetaDModel , UpperCAmelCase_ : DDPMScheduler , UpperCAmelCase_ : Tuple , ) ->Tuple: """simple docstring""" super().__init__() snake_case_ = value_function snake_case_ = unet snake_case_ = scheduler snake_case_ = env snake_case_ = env.get_dataset() snake_case_ = {} for key in self.data.keys(): try: snake_case_ = self.data[key].mean() except: # noqa: E722 pass snake_case_ = {} for key in self.data.keys(): try: snake_case_ = self.data[key].std() except: # noqa: E722 pass snake_case_ = env.observation_space.shape[0] snake_case_ = env.action_space.shape[0] def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] ) ->Optional[Any]: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] ) ->List[str]: """simple docstring""" return x_in * self.stds[key] + self.means[key] def lowerCAmelCase ( self : Any , UpperCAmelCase_ : Optional[Any] ) ->Union[str, Any]: """simple docstring""" if type(UpperCAmelCase_ ) is dict: return {k: self.to_torch(UpperCAmelCase_ ) for k, v in x_in.items()} elif torch.is_tensor(UpperCAmelCase_ ): return x_in.to(self.unet.device ) return torch.tensor(UpperCAmelCase_ , device=self.unet.device ) def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ) ->int: """simple docstring""" for key, val in cond.items(): snake_case_ = val.clone() return x_in def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Any ) ->Union[str, Any]: """simple docstring""" snake_case_ = x.shape[0] snake_case_ = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model snake_case_ = torch.full((batch_size,) , UpperCAmelCase_ , device=self.unet.device , dtype=torch.long ) for _ in range(UpperCAmelCase_ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models snake_case_ = self.value_function(x.permute(0 , 2 , 1 ) , UpperCAmelCase_ ).sample snake_case_ = torch.autograd.grad([y.sum()] , [x] )[0] snake_case_ = self.scheduler._get_variance(UpperCAmelCase_ ) snake_case_ = torch.exp(0.5 * posterior_variance ) snake_case_ = model_std * grad snake_case_ = 0 snake_case_ = x.detach() snake_case_ = x + scale * grad snake_case_ = self.reset_xa(UpperCAmelCase_ , UpperCAmelCase_ , self.action_dim ) snake_case_ = self.unet(x.permute(0 , 2 , 1 ) , UpperCAmelCase_ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg snake_case_ = self.scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , predict_epsilon=UpperCAmelCase_ )["""prev_sample"""] # apply conditions to the trajectory (set the initial state) snake_case_ = self.reset_xa(UpperCAmelCase_ , UpperCAmelCase_ , self.action_dim ) snake_case_ = self.to_torch(UpperCAmelCase_ ) return x, y def __call__( self : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str=64 , UpperCAmelCase_ : Optional[int]=32 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : str=0.1 ) ->str: """simple docstring""" snake_case_ = self.normalize(UpperCAmelCase_ , """observations""" ) snake_case_ = obs[None].repeat(UpperCAmelCase_ , axis=0 ) snake_case_ = {0: self.to_torch(UpperCAmelCase_ )} snake_case_ = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) snake_case_ = randn_tensor(UpperCAmelCase_ , device=self.unet.device ) snake_case_ = self.reset_xa(UpperCAmelCase_ , UpperCAmelCase_ , self.action_dim ) snake_case_ = self.to_torch(UpperCAmelCase_ ) # run the diffusion process snake_case_ , snake_case_ = self.run_diffusion(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # sort output trajectories by value snake_case_ = y.argsort(0 , descending=UpperCAmelCase_ ).squeeze() snake_case_ = x[sorted_idx] snake_case_ = sorted_values[:, :, : self.action_dim] snake_case_ = actions.detach().cpu().numpy() snake_case_ = self.de_normalize(UpperCAmelCase_ , key="""actions""" ) # select the action with the highest value if y is not None: snake_case_ = 0 else: # if we didn't run value guiding, select a random action snake_case_ = np.random.randint(0 , UpperCAmelCase_ ) snake_case_ = denorm_actions[selected_index, 0] return denorm_actions
2
"""simple docstring""" from math import factorial def _a ( _SCREAMING_SNAKE_CASE = 20 ) -> int: snake_case_ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... snake_case_ = n // 2 return int(factorial(_SCREAMING_SNAKE_CASE ) / (factorial(_SCREAMING_SNAKE_CASE ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: __SCREAMING_SNAKE_CASE : Optional[int] = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
2
1
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex A_ : str = logging.getLogger(__name__) class _lowerCAmelCase: """simple docstring""" def __init__( self ): UpperCamelCase_: Optional[int] = False def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if not self.initialized: UpperCamelCase_: Optional[Any] = RagRetriever( _lowerCamelCase , question_encoder_tokenizer=_lowerCamelCase , generator_tokenizer=_lowerCamelCase , index=_lowerCamelCase , init_retrieval=_lowerCamelCase , ) UpperCamelCase_: str = True def _a ( self ): self.retriever.index.init_index() def _a ( self , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_ ,UpperCamelCase_: Any = self.retriever._main_retrieve(_lowerCamelCase , _lowerCamelCase ) return doc_ids, retrieved_doc_embeds class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): if index is not None and index.is_initialized() and len(_lowerCamelCase ) > 0: raise ValueError( 'When using Ray for distributed fine-tuning, ' 'you\'ll need to provide the paths instead, ' 'as the dataset and the index are loaded ' 'separately. More info in examples/rag/use_own_knowledge_dataset.py ' ) super().__init__( _lowerCamelCase , question_encoder_tokenizer=_lowerCamelCase , generator_tokenizer=_lowerCamelCase , index=_lowerCamelCase , init_retrieval=_lowerCamelCase , ) UpperCamelCase_: List[str] = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for worker in self.retrieval_workers ] ) def _a ( self ): logger.info('initializing retrieval' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def _a ( self , _lowerCamelCase , _lowerCamelCase ): if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. UpperCamelCase_: Union[str, Any] = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] UpperCamelCase_ ,UpperCamelCase_: str = ray.get(random_worker.retrieve.remote(_lowerCamelCase , _lowerCamelCase ) ) else: UpperCamelCase_ ,UpperCamelCase_: Dict = self._main_retrieve(_lowerCamelCase , _lowerCamelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_lowerCamelCase ) @classmethod def _a ( cls , _lowerCamelCase , _lowerCamelCase=None , **_lowerCamelCase ): return super(_lowerCamelCase , cls ).get_tokenizers(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) @classmethod def _a ( cls , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , **_lowerCamelCase ): UpperCamelCase_: List[str] = kwargs.pop('config' , _lowerCamelCase ) or RagConfig.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) UpperCamelCase_: Optional[int] = RagTokenizer.from_pretrained(_lowerCamelCase , config=_lowerCamelCase ) UpperCamelCase_: List[str] = rag_tokenizer.question_encoder UpperCamelCase_: List[Any] = rag_tokenizer.generator if indexed_dataset is not None: UpperCamelCase_: Union[str, Any] = 'custom' UpperCamelCase_: int = CustomHFIndex(config.retrieval_vector_size , _lowerCamelCase ) else: UpperCamelCase_: str = cls._build_index(_lowerCamelCase ) return cls( _lowerCamelCase , question_encoder_tokenizer=_lowerCamelCase , generator_tokenizer=_lowerCamelCase , retrieval_workers=_lowerCamelCase , index=_lowerCamelCase , )
57
'''simple docstring''' import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class lowercase__ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(lowerCamelCase__ ): _UpperCamelCase : Optional[int] = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) _UpperCamelCase : Dict = FlaxAutoModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(lowerCamelCase__ ): _UpperCamelCase : Any = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) _UpperCamelCase : Any = FlaxAutoModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) @slow def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: _UpperCamelCase : Optional[int] = AutoTokenizer.from_pretrained(lowerCamelCase__ ) _UpperCamelCase : List[Any] = FlaxBertModel.from_pretrained(lowerCamelCase__ ) _UpperCamelCase : Optional[int] = tokenizer('Do you support jax jitted function?' ,return_tensors=TensorType.JAX ) @jax.jit def eval(**lowerCamelCase__ : Union[str, Any] ): return model(**lowerCamelCase__ ) eval(**lowerCamelCase__ ).block_until_ready() @slow def UpperCamelCase_ ( self : Dict ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: _UpperCamelCase : Optional[int] = AutoTokenizer.from_pretrained(lowerCamelCase__ ) _UpperCamelCase : Tuple = FlaxRobertaModel.from_pretrained(lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = tokenizer('Do you support jax jitted function?' ,return_tensors=TensorType.JAX ) @jax.jit def eval(**lowerCamelCase__ : Union[str, Any] ): return model(**lowerCamelCase__ ) eval(**lowerCamelCase__ ).block_until_ready() def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase__ ,'bert-base is not a local folder and is not a valid model identifier' ): _UpperCamelCase : int = FlaxAutoModel.from_pretrained('bert-base' ) def UpperCamelCase_ ( self : str ): '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase__ ,R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): _UpperCamelCase : Tuple = FlaxAutoModel.from_pretrained(lowerCamelCase__ ,revision='aaaaaa' ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase__ ,'hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack' ,): _UpperCamelCase : List[Any] = FlaxAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' with self.assertRaisesRegex(lowerCamelCase__ ,'Use `from_pt=True` to load this model' ): _UpperCamelCase : Tuple = FlaxAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' )
195
0
'''simple docstring''' import string import numpy def _A ( A__ , A__ ): """simple docstring""" return b if a == 0 else greatest_common_divisor(b % a , A__ ) class lowercase_ : """simple docstring""" SCREAMING_SNAKE_CASE : int = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) SCREAMING_SNAKE_CASE : Dict = numpy.vectorize(lambda lowerCamelCase__ : x % 3_6 ) SCREAMING_SNAKE_CASE : Optional[Any] = numpy.vectorize(lowerCamelCase__ ) def __init__( self : Any ,lowercase__ : numpy.ndarray ): __lowercase = self.modulus(lowercase__ ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key __lowercase = encrypt_key.shape[0] def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : str ): return self.key_string.index(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ): return self.key_string[round(lowercase__ )] def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __lowercase = det % len(self.key_string ) __lowercase = len(self.key_string ) if greatest_common_divisor(lowercase__ ,len(self.key_string ) ) != 1: __lowercase = ( F"determinant modular {req_l} of encryption key({det}) " F"is not co prime w.r.t {req_l}.\nTry another key." ) raise ValueError(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : str ): __lowercase = [char for char in text.upper() if char in self.key_string] __lowercase = chars[-1] while len(lowercase__ ) % self.break_key != 0: chars.append(lowercase__ ) return "".join(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : str ): __lowercase = self.process_text(text.upper() ) __lowercase = '''''' for i in range(0 ,len(lowercase__ ) - self.break_key + 1 ,self.break_key ): __lowercase = text[i : i + self.break_key] __lowercase = [self.replace_letters(lowercase__ ) for char in batch] __lowercase = numpy.array([vec] ).T __lowercase = self.modulus(self.encrypt_key.dot(lowercase__ ) ).T.tolist()[ 0 ] __lowercase = ''''''.join( self.replace_digits(lowercase__ ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __lowercase = det % len(self.key_string ) __lowercase = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: __lowercase = i break __lowercase = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(lowercase__ ) ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : str ): __lowercase = self.make_decrypt_key() __lowercase = self.process_text(text.upper() ) __lowercase = '''''' for i in range(0 ,len(lowercase__ ) - self.break_key + 1 ,self.break_key ): __lowercase = text[i : i + self.break_key] __lowercase = [self.replace_letters(lowercase__ ) for char in batch] __lowercase = numpy.array([vec] ).T __lowercase = self.modulus(decrypt_key.dot(lowercase__ ) ).T.tolist()[0] __lowercase = ''''''.join( self.replace_digits(lowercase__ ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def _A ( ): """simple docstring""" __lowercase = int(input('''Enter the order of the encryption key: ''' ) ) __lowercase = [] print('''Enter each row of the encryption key with space separated integers''' ) for _ in range(A__ ): __lowercase = [int(A__ ) for x in input().split()] hill_matrix.append(A__ ) __lowercase = HillCipher(numpy.array(A__ ) ) print('''Would you like to encrypt or decrypt some text? (1 or 2)''' ) __lowercase = input('''\n1. Encrypt\n2. Decrypt\n''' ) if option == "1": __lowercase = input('''What text would you like to encrypt?: ''' ) print('''Your encrypted text is:''' ) print(hc.encrypt(A__ ) ) elif option == "2": __lowercase = input('''What text would you like to decrypt?: ''' ) print('''Your decrypted text is:''' ) print(hc.decrypt(A__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
624
'''simple docstring''' import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) lowerCAmelCase__ = logging.getLogger(__name__) lowerCAmelCase__ = '''Hello world! cécé herlolip''' lowerCAmelCase__ = namedtuple( '''BertAbsConfig''', [ '''temp_dir''', '''large''', '''use_bert_emb''', '''finetune_bert''', '''encoder''', '''share_emb''', '''max_pos''', '''enc_layers''', '''enc_hidden_size''', '''enc_heads''', '''enc_ff_size''', '''enc_dropout''', '''dec_layers''', '''dec_hidden_size''', '''dec_heads''', '''dec_ff_size''', '''dec_dropout''', ], ) def _A ( A__ , A__ ): """simple docstring""" __lowercase = BertAbsConfig( temp_dir='''.''' , finetune_bert=A__ , large=A__ , share_emb=A__ , use_bert_emb=A__ , encoder='''bert''' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) __lowercase = torch.load(A__ , lambda A__ , A__ : storage ) __lowercase = AbsSummarizer(A__ , torch.device('''cpu''' ) , A__ ) original.eval() __lowercase = BertAbsSummarizer(A__ , torch.device('''cpu''' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('''convert the model''' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('''Make sure that the models\' outputs are identical''' ) __lowercase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) # prepare the model inputs __lowercase = tokenizer.encode('''This is sample éàalj\'-.''' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(A__ )) ) __lowercase = torch.tensor(A__ ).unsqueeze(0 ) __lowercase = tokenizer.encode('''This is sample 3 éàalj\'-.''' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(A__ )) ) __lowercase = torch.tensor(A__ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __lowercase = encoder_input_ids __lowercase = decoder_input_ids __lowercase = __lowercase = None __lowercase = None __lowercase = __lowercase = None __lowercase = __lowercase = None __lowercase = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __lowercase = original(A__ , A__ , A__ , A__ , A__ , A__ , A__ )[0] __lowercase = original.generator(A__ ) __lowercase = new_model( A__ , A__ , A__ , A__ , A__ )[0] __lowercase = new_model.generator(A__ ) __lowercase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(A__ ) ) __lowercase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(A__ ) ) __lowercase = torch.allclose(A__ , A__ , atol=1e-3 ) if are_identical: logging.info('''all weights are equal up to 1e-3''' ) else: raise ValueError('''the weights are different. The new model is likely different from the original one.''' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('''saving the model\'s state dictionary''' ) torch.save( new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--bertabs_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''', ) lowerCAmelCase__ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
624
1
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = { 'vocab_file': 'vocab.json', 'tokenizer_config_file': 'tokenizer_config.json', 'merges_file': 'merges.txt', } __a = { 'vocab_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json' ), }, 'tokenizer_config_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json' ), }, 'merges_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt' ), }, } __a = '</w>' __a = '@@ ' def a ( snake_case__: Dict ): '''simple docstring''' lowercase_ = set() lowercase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase_ = char return pairs # Speech2Text2 has no max input length __a = {'facebook/s2t-wav2vec2-large-en-de': 1_0_2_4} class lowercase__( UpperCAmelCase ): """simple docstring""" a :int = VOCAB_FILES_NAMES a :Optional[int] = PRETRAINED_VOCAB_FILES_MAP a :List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a :Tuple = ['input_ids', 'attention_mask'] def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any]="<s>" , SCREAMING_SNAKE_CASE_ : Tuple="<pad>" , SCREAMING_SNAKE_CASE_ : int="</s>" , SCREAMING_SNAKE_CASE_ : int="<unk>" , SCREAMING_SNAKE_CASE_ : Optional[Any]=False , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , **SCREAMING_SNAKE_CASE_ : str , ) -> Optional[int]: super().__init__( unk_token=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowercase_ = do_lower_case with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as vocab_handle: lowercase_ = json.load(SCREAMING_SNAKE_CASE_ ) lowercase_ = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''' ) lowercase_ = None lowercase_ = None else: with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as merges_handle: lowercase_ = merges_handle.read().split('''\n''' )[:-1] lowercase_ = [tuple(merge.split()[:2] ) for merge in merges] lowercase_ = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) lowercase_ = {} @property def _lowercase ( self : Any ) -> int: return len(self.decoder ) def _lowercase ( self : List[str] ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : Any ) -> int: lowercase_ = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] lowercase_ = get_pairs(SCREAMING_SNAKE_CASE_ ) if not pairs: return token while True: lowercase_ = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase_ , lowercase_ = bigram lowercase_ = [] lowercase_ = 0 while i < len(SCREAMING_SNAKE_CASE_ ): try: lowercase_ = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase_ = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase_ = tuple(SCREAMING_SNAKE_CASE_ ) lowercase_ = new_word if len(SCREAMING_SNAKE_CASE_ ) == 1: break else: lowercase_ = get_pairs(SCREAMING_SNAKE_CASE_ ) lowercase_ = ''' '''.join(SCREAMING_SNAKE_CASE_ ) if word == "\n " + BPE_TOKEN_MERGES: lowercase_ = '''\n''' + BPE_TOKEN_MERGES if word.endswith(SCREAMING_SNAKE_CASE_ ): lowercase_ = word.replace(SCREAMING_SNAKE_CASE_ , '''''' ) lowercase_ = word.replace(''' ''' , SCREAMING_SNAKE_CASE_ ) lowercase_ = word return word def _lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Tuple: if self.bpe_ranks is None: raise ValueError( '''This tokenizer was instantiated without a `merges.txt` file, so''' ''' that it can only be used for decoding, not for encoding.''' '''Make sure to provide `merges.txt` file at instantiation to enable ''' '''encoding.''' ) if self.do_lower_case: lowercase_ = text.lower() lowercase_ = text.split() lowercase_ = [] for token in text: if token: split_tokens.extend(list(self.bpe(SCREAMING_SNAKE_CASE_ ).split(''' ''' ) ) ) return split_tokens def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : str ) -> int: return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) ) def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : int ) -> str: lowercase_ = self.decoder.get(SCREAMING_SNAKE_CASE_ , self.unk_token ) return result def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : List[str] ) -> str: lowercase_ = ''' '''.join(SCREAMING_SNAKE_CASE_ ) # make sure @@ tokens are concatenated lowercase_ = ''''''.join(string.split(SCREAMING_SNAKE_CASE_ ) ) return string def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase_ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '''\n''' ) lowercase_ = 0 if self.bpe_ranks is None: return (vocab_file,) with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) lowercase_ = token_index writer.write(''' '''.join(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) index += 1 return (vocab_file, merges_file)
97
'''simple docstring''' import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __a ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] ): # Construct model if gpta_config_file == "": a__ : Union[str, Any] = GPTaConfig() else: a__ : Dict = GPTaConfig.from_json_file(lowerCAmelCase__ ) a__ : Optional[int] = GPTaModel(lowerCAmelCase__ ) # Load weights from numpy load_tf_weights_in_gpta(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model a__ : int = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME a__ : Union[str, Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , lowerCAmelCase__ ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--gpt2_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
688
0
def _a ( __lowercase ) -> int: """simple docstring""" if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(__lowercase , __lowercase ): raise TypeError('Input value must be a \'int\' type' ) return bin(__lowercase ).count('1' ) if __name__ == "__main__": import doctest doctest.testmod()
567
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class lowerCAmelCase_ ( _lowercase ): """simple docstring""" UpperCAmelCase__ = "gpt_bigcode" UpperCAmelCase__ = ["past_key_values"] UpperCAmelCase__ = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _SCREAMING_SNAKE_CASE=50_257 , _SCREAMING_SNAKE_CASE=1_024 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="gelu_pytorch_tanh" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=50_256 , _SCREAMING_SNAKE_CASE=50_256 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , **_SCREAMING_SNAKE_CASE , ) -> Optional[int]: __UpperCamelCase = vocab_size __UpperCamelCase = n_positions __UpperCamelCase = n_embd __UpperCamelCase = n_layer __UpperCamelCase = n_head __UpperCamelCase = n_inner __UpperCamelCase = activation_function __UpperCamelCase = resid_pdrop __UpperCamelCase = embd_pdrop __UpperCamelCase = attn_pdrop __UpperCamelCase = layer_norm_epsilon __UpperCamelCase = initializer_range __UpperCamelCase = scale_attn_weights __UpperCamelCase = use_cache __UpperCamelCase = attention_softmax_in_fpaa __UpperCamelCase = scale_attention_softmax_in_fpaa __UpperCamelCase = multi_query __UpperCamelCase = bos_token_id __UpperCamelCase = eos_token_id super().__init__(bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
567
1
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__=14, lowerCamelCase__=7, lowerCamelCase__=True, lowerCamelCase__=True, lowerCamelCase__=True, lowerCamelCase__=True, lowerCamelCase__=True, lowerCamelCase__=99, lowerCamelCase__=32, lowerCamelCase__=5, lowerCamelCase__=4, lowerCamelCase__=37, lowerCamelCase__="gelu", lowerCamelCase__=0.1, lowerCamelCase__=0.1, lowerCamelCase__=512, lowerCamelCase__=16, lowerCamelCase__=2, lowerCamelCase__=0.02, lowerCamelCase__=3, lowerCamelCase__=4, lowerCamelCase__=None, ): A : Union[str, Any] = parent A : Optional[Any] = batch_size A : List[Any] = seq_length A : Tuple = is_training A : Optional[Any] = use_token_type_ids A : List[str] = use_input_mask A : List[str] = use_labels A : Any = use_mc_token_ids A : Optional[Any] = vocab_size A : str = hidden_size A : str = num_hidden_layers A : int = num_attention_heads A : List[Any] = intermediate_size A : Dict = hidden_act A : Any = hidden_dropout_prob A : int = attention_probs_dropout_prob A : str = max_position_embeddings A : Optional[int] = type_vocab_size A : Union[str, Any] = type_sequence_label_size A : Dict = initializer_range A : Union[str, Any] = num_labels A : Any = num_choices A : Any = scope A : Any = self.vocab_size - 1 def _lowerCAmelCase ( self ): A : List[Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) A : Tuple = None if self.use_input_mask: A : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) A : Dict = None if self.use_token_type_ids: A : int = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) A : Any = None if self.use_mc_token_ids: A : Optional[Any] = ids_tensor([self.batch_size, self.num_choices], self.seq_length ) A : Union[str, Any] = None A : Union[str, Any] = None A : Any = None if self.use_labels: A : str = ids_tensor([self.batch_size], self.type_sequence_label_size ) A : Optional[int] = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) A : List[Any] = ids_tensor([self.batch_size], self.num_choices ) A : Tuple = self.get_config() A : Tuple = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def _lowerCAmelCase ( self ): return CTRLConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, n_positions=self.max_position_embeddings, pad_token_id=self.pad_token_id, ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, *lowerCamelCase__ ): A : int = CTRLModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() model(_lowerCAmelCase, token_type_ids=_lowerCAmelCase, head_mask=_lowerCAmelCase ) model(_lowerCAmelCase, token_type_ids=_lowerCAmelCase ) A : Dict = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ), config.n_layer ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, *lowerCamelCase__ ): A : str = CTRLLMHeadModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() A : Any = model(_lowerCAmelCase, token_type_ids=_lowerCAmelCase, labels=_lowerCAmelCase ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self ): A : Tuple = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) : Dict = config_and_inputs A : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask} return config, inputs_dict def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, *lowerCamelCase__ ): A : Optional[Any] = self.num_labels A : str = CTRLForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() A : Optional[int] = ids_tensor([self.batch_size], self.type_sequence_label_size ) A : Dict = model(_lowerCAmelCase, token_type_ids=_lowerCAmelCase, labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) @require_torch class SCREAMING_SNAKE_CASE__ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Any = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () __lowerCamelCase : Optional[int] = (CTRLLMHeadModel,) if is_torch_available() else () __lowerCamelCase : List[Any] = ( { 'feature-extraction': CTRLModel, 'text-classification': CTRLForSequenceClassification, 'text-generation': CTRLLMHeadModel, 'zero-shot': CTRLForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase : Dict = True __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : str = False def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def _lowerCAmelCase ( self ): A : List[Any] = CTRLModelTester(self ) A : Tuple = ConfigTester(self, config_class=_lowerCAmelCase, n_embd=37 ) def _lowerCAmelCase ( self ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ): self.config_tester.run_common_tests() def _lowerCAmelCase ( self ): A : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*_lowerCAmelCase ) def _lowerCAmelCase ( self ): A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_lowerCAmelCase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _lowerCAmelCase ( self ): pass @slow def _lowerCAmelCase ( self ): for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A : Tuple = CTRLModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def _lowerCAmelCase ( self ): pass @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def _lowerCAmelCase ( self ): A : Optional[int] = CTRLLMHeadModel.from_pretrained("""ctrl""" ) model.to(_lowerCAmelCase ) A : Dict = torch.tensor( [[1_1859, 0, 1611, 8]], dtype=torch.long, device=_lowerCAmelCase ) # Legal the president is A : Optional[int] = [ 1_1859, 0, 1611, 8, 5, 150, 2_6449, 2, 19, 348, 469, 3, 2595, 48, 2_0740, 24_6533, 24_6533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a A : Union[str, Any] = model.generate(_lowerCAmelCase, do_sample=_lowerCAmelCase ) self.assertListEqual(output_ids[0].tolist(), _lowerCAmelCase )
662
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase : def __init__( self : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : int=13 , _lowerCAmelCase : Any=32 , _lowerCAmelCase : str=3 , _lowerCAmelCase : int=4 , _lowerCAmelCase : Optional[int]=[10, 20, 30, 40] , _lowerCAmelCase : Optional[Any]=[2, 2, 3, 2] , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : int=True , _lowerCAmelCase : List[str]=37 , _lowerCAmelCase : List[str]="gelu" , _lowerCAmelCase : List[Any]=10 , _lowerCAmelCase : int=0.02 , _lowerCAmelCase : str=["stage2", "stage3", "stage4"] , _lowerCAmelCase : Dict=[2, 3, 4] , _lowerCAmelCase : Tuple=None , ) -> Any: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = num_channels __lowercase = num_stages __lowercase = hidden_sizes __lowercase = depths __lowercase = is_training __lowercase = use_labels __lowercase = intermediate_size __lowercase = hidden_act __lowercase = num_labels __lowercase = initializer_range __lowercase = out_features __lowercase = out_indices __lowercase = scope def _a ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels def _a ( self : List[str] ) -> Any: """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _a ( self : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple ) -> Dict: """simple docstring""" __lowercase = ConvNextModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _a ( self : Optional[int] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" __lowercase = ConvNextForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = ConvNextBackbone(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __lowercase = None __lowercase = ConvNextBackbone(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _a ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Optional[Any] = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) __snake_case :List[str] = ( {'feature-extraction': ConvNextModel, 'image-classification': ConvNextForImageClassification} if is_torch_available() else {} ) __snake_case :str = True __snake_case :Any = False __snake_case :Any = False __snake_case :Any = False __snake_case :int = False def _a ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = ConvNextModelTester(self ) __lowercase = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def _a ( self : Optional[Any] ) -> int: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self : Any ) -> Optional[Any]: """simple docstring""" return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def _a ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def _a ( self : Dict ) -> int: """simple docstring""" pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def _a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" pass def _a ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self : Any ) -> List[str]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" def check_hidden_states_output(_lowerCAmelCase : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] ): __lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = self.model_tester.num_stages self.assertEqual(len(_lowerCAmelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _a ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = ConvNextModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def snake_case ( ): '''simple docstring''' __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def _a ( self : Tuple ) -> Any: """simple docstring""" return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def _a ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(_lowerCAmelCase ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): __lowercase = model(**_lowerCAmelCase ) # verify the logits __lowercase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = torch.tensor([-0.0_260, -0.4_739, 0.1_911] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) @require_torch class __UpperCamelCase ( unittest.TestCase , _lowerCAmelCase ): __snake_case :Union[str, Any] = (ConvNextBackbone,) if is_torch_available() else () __snake_case :str = ConvNextConfig __snake_case :Optional[Any] = False def _a ( self : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase = ConvNextModelTester(self )
80
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class SCREAMING_SNAKE_CASE ( a__ , a__ ): '''simple docstring''' __UpperCamelCase = "swin" __UpperCamelCase = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , SCREAMING_SNAKE_CASE__=2_24 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=96 , SCREAMING_SNAKE_CASE__=[2, 2, 6, 2] , SCREAMING_SNAKE_CASE__=[3, 6, 12, 24] , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=4.0 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-5 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ , ): '''simple docstring''' super().__init__(**_A ) snake_case: str = image_size snake_case: List[str] = patch_size snake_case: str = num_channels snake_case: Optional[Any] = embed_dim snake_case: Optional[int] = depths snake_case: Any = len(_A ) snake_case: Union[str, Any] = num_heads snake_case: Dict = window_size snake_case: Dict = mlp_ratio snake_case: Tuple = qkv_bias snake_case: Any = hidden_dropout_prob snake_case: List[str] = attention_probs_dropout_prob snake_case: int = drop_path_rate snake_case: int = hidden_act snake_case: Tuple = use_absolute_embeddings snake_case: List[Any] = layer_norm_eps snake_case: Optional[Any] = initializer_range snake_case: Optional[Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case: Union[str, Any] = int(embed_dim * 2 ** (len(_A ) - 1) ) snake_case: Optional[Any] = ['stem'] + [F"""stage{idx}""" for idx in range(1 , len(_A ) + 1 )] snake_case: Tuple = get_aligned_output_features_output_indices( out_features=_A , out_indices=_A , stage_names=self.stage_names ) class SCREAMING_SNAKE_CASE ( a__ ): '''simple docstring''' __UpperCamelCase = version.parse("1.11" ) @property def _UpperCamelCase ( self ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _UpperCamelCase ( self ): '''simple docstring''' return 1E-4
716
'''simple docstring''' def lowerCAmelCase_ ( __A : List[str] ): '''simple docstring''' snake_case: str = [0] * len(__A ) snake_case: Tuple = [] snake_case: Tuple = [1] * len(__A ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__A ) ): if indegree[i] == 0: queue.append(__A ) while queue: snake_case: int = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: snake_case: Any = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__A ) print(max(__A ) ) # Adjacency list of Graph __UpperCAmelCase = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
692
0
"""simple docstring""" from abc import ABC, abstractmethod from typing import List, Optional class lowerCAmelCase__ ( A_ ): def __init__( self : Optional[int] ): # test for the above condition self.test() def lowercase ( self : List[str] ): _snake_case = 0 _snake_case = False while not completed: if counter == 1: self.reset() _snake_case = self.advance() if not self.does_advance(_lowerCamelCase ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) _snake_case , _snake_case , _snake_case = self.update(_lowerCamelCase ) counter += 1 if counter > 10000: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def lowercase ( self : str ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def lowercase ( self : str , _lowerCamelCase : int ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def lowercase ( self : Tuple , _lowerCamelCase : int ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def lowercase ( self : int ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def lowercase ( self : Any ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def lowercase ( self : Dict , _lowerCamelCase : Union[str, Any]=False ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowerCAmelCase__ ( A_ ): def __init__( self : Union[str, Any] , _lowerCamelCase : List[int] ): super(_lowerCamelCase , self ).__init__() if not isinstance(_lowerCamelCase , _lowerCamelCase ) or len(_lowerCamelCase ) == 0: raise ValueError(f'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(_lowerCamelCase , _lowerCamelCase ) or token_id < 0) for token_id in token_ids ): raise ValueError(f'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) _snake_case = token_ids _snake_case = len(self.token_ids ) _snake_case = -1 # the index of the currently fulfilled step _snake_case = False def lowercase ( self : List[Any] ): if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def lowercase ( self : Any , _lowerCamelCase : int ): if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_lowerCamelCase )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def lowercase ( self : str , _lowerCamelCase : int ): if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_lowerCamelCase )}''' ) _snake_case = False _snake_case = False _snake_case = False if self.does_advance(_lowerCamelCase ): self.fulfilled_idx += 1 _snake_case = True if self.fulfilled_idx == (self.seqlen - 1): _snake_case = True _snake_case = completed else: # failed to make progress. _snake_case = True self.reset() return stepped, completed, reset def lowercase ( self : int ): _snake_case = False _snake_case = 0 def lowercase ( self : Any ): return self.seqlen - (self.fulfilled_idx + 1) def lowercase ( self : Tuple , _lowerCamelCase : int=False ): _snake_case = PhrasalConstraint(self.token_ids ) if stateful: _snake_case = self.seqlen _snake_case = self.fulfilled_idx _snake_case = self.completed return new_constraint class lowerCAmelCase__ : def __init__( self : Optional[int] , _lowerCamelCase : List[List[int]] , _lowerCamelCase : int=True ): _snake_case = max([len(_lowerCamelCase ) for one in nested_token_ids] ) _snake_case = {} for token_ids in nested_token_ids: _snake_case = root for tidx, token_id in enumerate(_lowerCamelCase ): if token_id not in level: _snake_case = {} _snake_case = level[token_id] if no_subsets and self.has_subsets(_lowerCamelCase , _lowerCamelCase ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' f''' {nested_token_ids}.''' ) _snake_case = root def lowercase ( self : Optional[int] , _lowerCamelCase : List[str] ): _snake_case = self.trie for current_token in current_seq: _snake_case = start[current_token] _snake_case = list(start.keys() ) return next_tokens def lowercase ( self : List[Any] , _lowerCamelCase : int ): _snake_case = self.next_tokens(_lowerCamelCase ) return len(_lowerCamelCase ) == 0 def lowercase ( self : str , _lowerCamelCase : Optional[Any] ): _snake_case = list(root.values() ) if len(_lowerCamelCase ) == 0: return 1 else: return sum([self.count_leaves(_lowerCamelCase ) for nn in next_nodes] ) def lowercase ( self : str , _lowerCamelCase : str , _lowerCamelCase : int ): _snake_case = self.count_leaves(_lowerCamelCase ) return len(_lowerCamelCase ) != leaf_count class lowerCAmelCase__ ( A_ ): def __init__( self : Optional[int] , _lowerCamelCase : List[List[int]] ): super(_lowerCamelCase , self ).__init__() if not isinstance(_lowerCamelCase , _lowerCamelCase ) or len(_lowerCamelCase ) == 0: raise ValueError(f'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(_lowerCamelCase , _lowerCamelCase ) for token_ids in nested_token_ids ): raise ValueError(f'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(_lowerCamelCase , _lowerCamelCase ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) _snake_case = DisjunctiveTrie(_lowerCamelCase ) _snake_case = nested_token_ids _snake_case = self.trie.max_height _snake_case = [] _snake_case = False def lowercase ( self : Any ): _snake_case = self.trie.next_tokens(self.current_seq ) if len(_lowerCamelCase ) == 0: return None else: return token_list def lowercase ( self : Optional[Any] , _lowerCamelCase : int ): if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_lowerCamelCase )}''' ) _snake_case = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def lowercase ( self : List[str] , _lowerCamelCase : int ): if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_lowerCamelCase )}''' ) _snake_case = False _snake_case = False _snake_case = False if self.does_advance(_lowerCamelCase ): self.current_seq.append(_lowerCamelCase ) _snake_case = True else: _snake_case = True self.reset() _snake_case = self.trie.reached_leaf(self.current_seq ) _snake_case = completed return stepped, completed, reset def lowercase ( self : str ): _snake_case = False _snake_case = [] def lowercase ( self : Tuple ): if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def lowercase ( self : Any , _lowerCamelCase : List[str]=False ): _snake_case = DisjunctiveConstraint(self.token_ids ) if stateful: _snake_case = self.seqlen _snake_case = self.current_seq _snake_case = self.completed return new_constraint class lowerCAmelCase__ : def __init__( self : Any , _lowerCamelCase : List[Constraint] ): _snake_case = constraints # max # of steps required to fulfill a given constraint _snake_case = max([c.seqlen for c in constraints] ) _snake_case = len(_lowerCamelCase ) _snake_case = False self.init_state() def lowercase ( self : Optional[int] ): _snake_case = [] _snake_case = None _snake_case = [constraint.copy(stateful=_lowerCamelCase ) for constraint in self.constraints] def lowercase ( self : Tuple ): _snake_case = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def lowercase ( self : Optional[int] ): _snake_case = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" _snake_case = constraint.advance() if isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.append(_lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.extend(_lowerCamelCase ) else: _snake_case = self.inprogress_constraint.advance() if isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.append(_lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.extend(_lowerCamelCase ) if len(_lowerCamelCase ) == 0: return None else: return token_list def lowercase ( self : Union[str, Any] , _lowerCamelCase : Optional[List[int]] ): self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint _snake_case , _snake_case = self.add(_lowerCamelCase ) # the entire list of constraints are fulfilled if self.completed: break def lowercase ( self : Union[str, Any] , _lowerCamelCase : int ): if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(f'''`token_id` should be an `int`, but is `{token_id}`.''' ) _snake_case , _snake_case = False, False if self.completed: _snake_case = True _snake_case = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state _snake_case , _snake_case , _snake_case = self.inprogress_constraint.update(_lowerCamelCase ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_lowerCamelCase ) ) _snake_case = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) _snake_case = None if len(self.pending_constraints ) == 0: # we're done! _snake_case = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(_lowerCamelCase ): _snake_case , _snake_case , _snake_case = pending_constraint.update(_lowerCamelCase ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(_lowerCamelCase ) _snake_case = None if not complete and stepped: _snake_case = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". _snake_case = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. _snake_case = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def lowercase ( self : List[Any] , _lowerCamelCase : Optional[int]=True ): _snake_case = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: _snake_case = [ constraint.copy(stateful=_lowerCamelCase ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: _snake_case = self.inprogress_constraint.copy(stateful=_lowerCamelCase ) _snake_case = [constraint.copy() for constraint in self.pending_constraints] return new_state
224
"""simple docstring""" from __future__ import annotations import math class lowerCAmelCase__ : def __init__( self : int , _lowerCamelCase : int ): _snake_case = size # approximate the overall size of segment tree with given value _snake_case = [0 for i in range(0 , 4 * size )] # create array to store lazy update _snake_case = [0 for i in range(0 , 4 * size )] _snake_case = [0 for i in range(0 , 4 * size )] # flag for lazy update def lowercase ( self : Optional[Any] , _lowerCamelCase : int ): return idx * 2 def lowercase ( self : Dict , _lowerCamelCase : int ): return idx * 2 + 1 def lowercase ( self : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : list[int] ): if left_element == right_element: _snake_case = a[left_element - 1] else: _snake_case = (left_element + right_element) // 2 self.build(self.left(_lowerCamelCase ) , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.build(self.right(_lowerCamelCase ) , mid + 1 , _lowerCamelCase , _lowerCamelCase ) _snake_case = max( self.segment_tree[self.left(_lowerCamelCase )] , self.segment_tree[self.right(_lowerCamelCase )] ) def lowercase ( self : str , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int ): if self.flag[idx] is True: _snake_case = self.lazy[idx] _snake_case = False if left_element != right_element: _snake_case = self.lazy[idx] _snake_case = self.lazy[idx] _snake_case = True _snake_case = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: _snake_case = val if left_element != right_element: _snake_case = val _snake_case = val _snake_case = True _snake_case = True return True _snake_case = (left_element + right_element) // 2 self.update(self.left(_lowerCamelCase ) , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.update(self.right(_lowerCamelCase ) , mid + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _snake_case = max( self.segment_tree[self.left(_lowerCamelCase )] , self.segment_tree[self.right(_lowerCamelCase )] ) return True def lowercase ( self : Union[str, Any] , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int ): if self.flag[idx] is True: _snake_case = self.lazy[idx] _snake_case = False if left_element != right_element: _snake_case = self.lazy[idx] _snake_case = self.lazy[idx] _snake_case = True _snake_case = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] _snake_case = (left_element + right_element) // 2 _snake_case = self.query(self.left(_lowerCamelCase ) , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _snake_case = self.query(self.right(_lowerCamelCase ) , mid + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return max(_lowerCamelCase , _lowerCamelCase ) def __str__( self : List[Any] ): return str([self.query(1 , 1 , self.size , _lowerCamelCase , _lowerCamelCase ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": UpperCAmelCase__ = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] UpperCAmelCase__ = 15 UpperCAmelCase__ = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
224
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase :Union[str, Any] = logging.get_logger(__name__) __UpperCAmelCase :int = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class a ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = "yolos" def __init__( self : Tuple , snake_case : int=768 , snake_case : Tuple=12 , snake_case : List[str]=12 , snake_case : str=3072 , snake_case : List[str]="gelu" , snake_case : Union[str, Any]=0.0 , snake_case : Optional[int]=0.0 , snake_case : Dict=0.02 , snake_case : Optional[int]=1E-12 , snake_case : Tuple=[512, 864] , snake_case : Any=16 , snake_case : Union[str, Any]=3 , snake_case : Any=True , snake_case : int=100 , snake_case : List[str]=True , snake_case : Optional[int]=False , snake_case : int=1 , snake_case : Tuple=5 , snake_case : Optional[Any]=2 , snake_case : List[Any]=5 , snake_case : Tuple=2 , snake_case : str=0.1 , **snake_case : List[str] , ) -> str: super().__init__(**snake_case ) __UpperCAmelCase : int = hidden_size __UpperCAmelCase : Optional[Any] = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : Tuple = intermediate_size __UpperCAmelCase : Optional[int] = hidden_act __UpperCAmelCase : int = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : str = layer_norm_eps __UpperCAmelCase : Any = image_size __UpperCAmelCase : Any = patch_size __UpperCAmelCase : List[Any] = num_channels __UpperCAmelCase : List[str] = qkv_bias __UpperCAmelCase : Any = num_detection_tokens __UpperCAmelCase : List[str] = use_mid_position_embeddings __UpperCAmelCase : Any = auxiliary_loss # Hungarian matcher __UpperCAmelCase : Dict = class_cost __UpperCAmelCase : int = bbox_cost __UpperCAmelCase : List[str] = giou_cost # Loss coefficients __UpperCAmelCase : Dict = bbox_loss_coefficient __UpperCAmelCase : Optional[Any] = giou_loss_coefficient __UpperCAmelCase : Tuple = eos_coefficient class a ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = version.parse("1.11" ) @property def lowerCamelCase__ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowerCamelCase__ ( self : Dict ) -> float: return 1E-4 @property def lowerCamelCase__ ( self : Any ) -> int: return 12
709
'''simple docstring''' import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class a ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = JukeboxTokenizer SCREAMING_SNAKE_CASE : Tuple = { "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def lowerCamelCase__ ( self : Optional[int] ) -> Optional[Any]: import torch __UpperCAmelCase : List[str] = JukeboxTokenizer.from_pretrained('''openai/jukebox-1b-lyrics''' ) __UpperCAmelCase : int = tokenizer(**self.metas )['''input_ids'''] # fmt: off __UpperCAmelCase : List[str] = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def lowerCamelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: import torch __UpperCAmelCase : Optional[int] = JukeboxTokenizer.from_pretrained('''openai/jukebox-5b-lyrics''' ) __UpperCAmelCase : List[Any] = tokenizer(**self.metas )['''input_ids'''] # fmt: off __UpperCAmelCase : List[str] = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
266
0
'''simple docstring''' def UpperCAmelCase_ ( A ): '''simple docstring''' return str(A ) == str(A )[::-1] def UpperCAmelCase_ ( A ): '''simple docstring''' return int(A ) + int(str(A )[::-1] ) def UpperCAmelCase_ ( A = 1_0_0_0_0 ): '''simple docstring''' _a : Union[str, Any] = [] for num in range(1 , A ): _a : str = 0 _a : Optional[Any] = num while iterations < 5_0: _a : Dict = sum_reverse(A ) iterations += 1 if is_palindrome(A ): break else: lychrel_nums.append(A ) return len(A ) if __name__ == "__main__": print(f'''{solution() = }''')
120
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Any = { "asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json", # See all SEW models at https://huggingface.co/models?filter=sew } class a ( snake_case__ ): '''simple docstring''' __lowerCAmelCase : Tuple = """sew""" def __init__( self , lowerCamelCase_=3_2 , lowerCamelCase_=7_6_8 , lowerCamelCase_=1_2 , lowerCamelCase_=1_2 , lowerCamelCase_=3_0_7_2 , lowerCamelCase_=2 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=0.0 , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=0.02 , lowerCamelCase_=1e-5 , lowerCamelCase_="group" , lowerCamelCase_="gelu" , lowerCamelCase_=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowerCamelCase_=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowerCamelCase_=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowerCamelCase_=False , lowerCamelCase_=1_2_8 , lowerCamelCase_=1_6 , lowerCamelCase_=True , lowerCamelCase_=0.05 , lowerCamelCase_=1_0 , lowerCamelCase_=2 , lowerCamelCase_=0.0 , lowerCamelCase_=1_0 , lowerCamelCase_=0 , lowerCamelCase_="mean" , lowerCamelCase_=False , lowerCamelCase_=False , lowerCamelCase_=2_5_6 , lowerCamelCase_=0 , lowerCamelCase_=1 , lowerCamelCase_=2 , **lowerCamelCase_ , ) -> Tuple: super().__init__(**lowerCamelCase_ , pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ ) _a : Optional[int] = hidden_size _a : int = feat_extract_norm _a : Optional[int] = feat_extract_activation _a : str = list(lowerCamelCase_ ) _a : Union[str, Any] = list(lowerCamelCase_ ) _a : List[Any] = list(lowerCamelCase_ ) _a : Union[str, Any] = conv_bias _a : Optional[int] = num_conv_pos_embeddings _a : Dict = num_conv_pos_embedding_groups _a : str = len(self.conv_dim ) _a : Any = num_hidden_layers _a : List[Any] = intermediate_size _a : Tuple = squeeze_factor _a : Tuple = hidden_act _a : Any = num_attention_heads _a : Optional[int] = hidden_dropout _a : List[str] = attention_dropout _a : Optional[Any] = activation_dropout _a : str = feat_proj_dropout _a : str = final_dropout _a : str = layerdrop _a : Optional[Any] = layer_norm_eps _a : Optional[Any] = initializer_range _a : Any = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a : str = apply_spec_augment _a : List[Any] = mask_time_prob _a : Optional[Any] = mask_time_length _a : Union[str, Any] = mask_time_min_masks _a : List[str] = mask_feature_prob _a : List[str] = mask_feature_length _a : str = mask_feature_min_masks # ctc loss _a : Any = ctc_loss_reduction _a : Optional[Any] = ctc_zero_infinity # sequence classification _a : List[Any] = use_weighted_layer_sum _a : Tuple = classifier_proj_size @property def __UpperCamelCase ( self ) -> Optional[int]: return functools.reduce(operator.mul , self.conv_stride , 1 )
120
1
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __a : '''simple docstring''' def __init__( self , _a , _a=14 , _a=7 , _a=True , _a=True , _a=False , _a=True , _a=99 , _a=32 , _a=4 , _a=4 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0.02 , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = parent SCREAMING_SNAKE_CASE__ : List[str] = batch_size SCREAMING_SNAKE_CASE__ : Tuple = seq_length SCREAMING_SNAKE_CASE__ : Dict = is_training SCREAMING_SNAKE_CASE__ : Tuple = use_input_mask SCREAMING_SNAKE_CASE__ : Union[str, Any] = use_token_type_ids SCREAMING_SNAKE_CASE__ : Any = use_labels SCREAMING_SNAKE_CASE__ : int = vocab_size SCREAMING_SNAKE_CASE__ : Tuple = hidden_size SCREAMING_SNAKE_CASE__ : List[Any] = rotary_dim SCREAMING_SNAKE_CASE__ : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE__ : List[str] = num_attention_heads SCREAMING_SNAKE_CASE__ : Tuple = intermediate_size SCREAMING_SNAKE_CASE__ : List[Any] = hidden_act SCREAMING_SNAKE_CASE__ : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE__ : Any = initializer_range SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ : Dict = vocab_size - 1 SCREAMING_SNAKE_CASE__ : str = vocab_size - 1 SCREAMING_SNAKE_CASE__ : Optional[Any] = vocab_size - 1 def _a ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ : List[Any] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=_a , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ : int = config_and_inputs SCREAMING_SNAKE_CASE__ : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def _a ( self , _a , _a , _a , _a ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = 20 SCREAMING_SNAKE_CASE__ : int = model_class_name(_a ) SCREAMING_SNAKE_CASE__ : List[Any] = model.init_cache(input_ids.shape[0] , _a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) SCREAMING_SNAKE_CASE__ : Any = model( input_ids[:, :-1] , attention_mask=_a , past_key_values=_a , position_ids=_a , ) SCREAMING_SNAKE_CASE__ : str = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) SCREAMING_SNAKE_CASE__ : str = model( input_ids[:, -1:] , attention_mask=_a , past_key_values=outputs_cache.past_key_values , position_ids=_a , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_a ) SCREAMING_SNAKE_CASE__ : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) def _a ( self , _a , _a , _a , _a ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = 20 SCREAMING_SNAKE_CASE__ : Union[str, Any] = model_class_name(_a ) SCREAMING_SNAKE_CASE__ : List[Any] = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) SCREAMING_SNAKE_CASE__ : Any = model.init_cache(input_ids.shape[0] , _a ) SCREAMING_SNAKE_CASE__ : Optional[int] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) SCREAMING_SNAKE_CASE__ : Dict = model( input_ids[:, :-1] , attention_mask=_a , past_key_values=_a , position_ids=_a , ) SCREAMING_SNAKE_CASE__ : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=_a , position_ids=_a , ) SCREAMING_SNAKE_CASE__ : Dict = model(_a , attention_mask=_a ) SCREAMING_SNAKE_CASE__ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) @require_flax class __a (UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :List[str] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () _SCREAMING_SNAKE_CASE :Tuple = (FlaxGPTJForCausalLM,) if is_flax_available() else () def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = FlaxGPTJModelTester(self ) def _a ( self ) -> Optional[Any]: """simple docstring""" for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(_a , _a , _a , _a ) def _a ( self ) -> Tuple: """simple docstring""" for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( _a , _a , _a , _a ) @tooslow def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" ) SCREAMING_SNAKE_CASE__ : Dict = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=_a , truncation=_a ) SCREAMING_SNAKE_CASE__ : Tuple = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = False SCREAMING_SNAKE_CASE__ : Union[str, Any] = model.config.eos_token_id SCREAMING_SNAKE_CASE__ : Optional[Any] = jax.jit(model.generate ) SCREAMING_SNAKE_CASE__ : Optional[int] = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.batch_decode(_a , skip_special_tokens=_a ) SCREAMING_SNAKE_CASE__ : List[str] = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(_a , _a ) @is_pt_flax_cross_test def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs SCREAMING_SNAKE_CASE__ : Dict = self._prepare_for_class(_a , _a ) SCREAMING_SNAKE_CASE__ : int = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class SCREAMING_SNAKE_CASE__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE__ : Union[str, Any] = getattr(_a , _a ) SCREAMING_SNAKE_CASE__ : List[Any] = pt_inputs["""input_ids"""].shape SCREAMING_SNAKE_CASE__ : Any = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_a ): SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : Dict = 1 SCREAMING_SNAKE_CASE__ : List[str] = 0 SCREAMING_SNAKE_CASE__ : Any = 1 SCREAMING_SNAKE_CASE__ : Tuple = pt_model_class(_a ).eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] = model_class(_a , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE__ : List[Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _a ) SCREAMING_SNAKE_CASE__ : List[str] = fx_state with torch.no_grad(): SCREAMING_SNAKE_CASE__ : List[Any] = pt_model(**_a ).to_tuple() SCREAMING_SNAKE_CASE__ : Optional[Any] = fx_model(**_a ).to_tuple() self.assertEqual(len(_a ) , len(_a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(_a , _a ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_a ) SCREAMING_SNAKE_CASE__ : str = model_class.from_pretrained(_a , from_pt=_a ) SCREAMING_SNAKE_CASE__ : List[str] = fx_model_loaded(**_a ).to_tuple() self.assertEqual( len(_a ) , len(_a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(_a , _a ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs SCREAMING_SNAKE_CASE__ : List[Any] = self._prepare_for_class(_a , _a ) SCREAMING_SNAKE_CASE__ : List[str] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class SCREAMING_SNAKE_CASE__ : Dict = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE__ : Union[str, Any] = getattr(_a , _a ) SCREAMING_SNAKE_CASE__ : int = pt_model_class(_a ).eval() SCREAMING_SNAKE_CASE__ : Optional[Any] = model_class(_a , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE__ : List[str] = load_flax_weights_in_pytorch_model(_a , fx_model.params ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = pt_inputs["""input_ids"""].shape SCREAMING_SNAKE_CASE__ : Tuple = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_a ): SCREAMING_SNAKE_CASE__ : Dict = 0 SCREAMING_SNAKE_CASE__ : Tuple = 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0 SCREAMING_SNAKE_CASE__ : int = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Tuple = pt_model(**_a ).to_tuple() SCREAMING_SNAKE_CASE__ : Any = fx_model(**_a ).to_tuple() self.assertEqual(len(_a ) , len(_a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(_a , _a ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = pt_model_class.from_pretrained(_a , from_flax=_a ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : List[Any] = pt_model_loaded(**_a ).to_tuple() self.assertEqual( len(_a ) , len(_a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(_a , _a ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def _a ( self ) -> Tuple: """simple docstring""" for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE__ : List[str] = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_a )
712
"""simple docstring""" def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> bool: SCREAMING_SNAKE_CASE__ : Optional[Any] = len(__lowerCAmelCase ) + 1 SCREAMING_SNAKE_CASE__ : int = len(__lowerCAmelCase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. SCREAMING_SNAKE_CASE__ : Dict = [[0 for i in range(__lowerCAmelCase )] for j in range(__lowerCAmelCase )] # since string of zero length match pattern of zero length SCREAMING_SNAKE_CASE__ : Dict = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , __lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , __lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : int = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , __lowerCAmelCase ): for j in range(1 , __lowerCAmelCase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": SCREAMING_SNAKE_CASE__ : Any = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: SCREAMING_SNAKE_CASE__ : List[str] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): SCREAMING_SNAKE_CASE__ : List[Any] = dp[i - 1][j] else: SCREAMING_SNAKE_CASE__ : Optional[int] = 0 else: SCREAMING_SNAKE_CASE__ : Dict = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") a :Any = "aab" a :Optional[Any] = "c*a*b" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f'{input_string} matches the given pattern {pattern}') else: print(f'{input_string} does not match with the given pattern {pattern}')
12
0
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , a : Optional[Any] , a : Dict=3 , a : Optional[int]=32 , a : Any=3 , a : Optional[Any]=10 , a : List[str]=[10, 20, 30, 40] , a : Dict=[1, 1, 2, 1] , a : Dict=True , a : int=True , a : List[Any]="relu" , a : List[str]=3 , a : List[Any]=None , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : int = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : Optional[Any] = image_size SCREAMING_SNAKE_CASE : Optional[int] = num_channels SCREAMING_SNAKE_CASE : str = embeddings_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_sizes SCREAMING_SNAKE_CASE : Optional[Any] = depths SCREAMING_SNAKE_CASE : int = is_training SCREAMING_SNAKE_CASE : Dict = use_labels SCREAMING_SNAKE_CASE : Any = hidden_act SCREAMING_SNAKE_CASE : str = num_labels SCREAMING_SNAKE_CASE : int = scope SCREAMING_SNAKE_CASE : str = len(a ) def __UpperCamelCase ( self : int ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE : str = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def __UpperCamelCase ( self : Optional[int] , a : Optional[int] , a : Optional[int] , a : Tuple ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = TFRegNetModel(config=a ) SCREAMING_SNAKE_CASE : int = model(a , training=a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __UpperCamelCase ( self : Dict , a : Any , a : List[str] , a : Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_labels SCREAMING_SNAKE_CASE : Tuple = TFRegNetForImageClassification(a ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(a , labels=a , training=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class _UpperCamelCase ( __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =(TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () lowerCamelCase__ =( {'feature-extraction': TFRegNetModel, 'image-classification': TFRegNetForImageClassification} if is_tf_available() else {} ) lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False def __UpperCamelCase ( self : int ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = TFRegNetModelTester(self ) SCREAMING_SNAKE_CASE : List[str] = ConfigTester(self , config_class=a , has_text_modality=a ) def __UpperCamelCase ( self : Tuple ) -> List[str]: """simple docstring""" return @unittest.skip(reason="RegNet does not use inputs_embeds" ) def __UpperCamelCase ( self : str ) -> int: """simple docstring""" pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def __UpperCamelCase ( self : Dict ) -> List[str]: """simple docstring""" super().test_keras_fit() @unittest.skip(reason="RegNet does not support input and output embeddings" ) def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" pass def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[Any] = model_class(a ) SCREAMING_SNAKE_CASE : Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Any = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , a ) def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" def check_hidden_states_output(a : Dict , a : Optional[int] , a : Any ): SCREAMING_SNAKE_CASE : str = model_class(a ) SCREAMING_SNAKE_CASE : str = model(**self._prepare_for_class(a , a ) , training=a ) SCREAMING_SNAKE_CASE : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE : List[str] = self.model_tester.num_stages self.assertEqual(len(a ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : int = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: SCREAMING_SNAKE_CASE : int = layer_type SCREAMING_SNAKE_CASE : Optional[Any] = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : List[Any] = True check_hidden_states_output(a , a , a ) def __UpperCamelCase ( self : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(a : int , a : Union[str, Any] , a : int , a : Dict={} ): SCREAMING_SNAKE_CASE : Optional[Any] = model(a , return_dict=a , **a ) SCREAMING_SNAKE_CASE : Any = model(a , return_dict=a , **a ).to_tuple() def recursive_check(a : Optional[Any] , a : Tuple ): if isinstance(a , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(a , a ): recursive_check(a , a ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(a , a ) ) , msg=( "Tuple and dict output are not equal. Difference:" F" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}" ) , ) recursive_check(a , a ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(a ) SCREAMING_SNAKE_CASE : List[str] = self._prepare_for_class(a , a ) SCREAMING_SNAKE_CASE : int = self._prepare_for_class(a , a ) check_equivalence(a , a , a ) SCREAMING_SNAKE_CASE : Dict = self._prepare_for_class(a , a , return_labels=a ) SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(a , a , return_labels=a ) check_equivalence(a , a , a ) SCREAMING_SNAKE_CASE : str = self._prepare_for_class(a , a ) SCREAMING_SNAKE_CASE : List[str] = self._prepare_for_class(a , a ) check_equivalence(a , a , a , {"output_hidden_states": True} ) SCREAMING_SNAKE_CASE : int = self._prepare_for_class(a , a , return_labels=a ) SCREAMING_SNAKE_CASE : Dict = self._prepare_for_class(a , a , return_labels=a ) check_equivalence(a , a , a , {"output_hidden_states": True} ) def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) @slow def __UpperCamelCase ( self : List[Any] ) -> str: """simple docstring""" for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : str = TFRegNetModel.from_pretrained(a ) self.assertIsNotNone(a ) def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_tf @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) SCREAMING_SNAKE_CASE : List[str] = self.default_image_processor SCREAMING_SNAKE_CASE : List[str] = prepare_img() SCREAMING_SNAKE_CASE : Any = image_processor(images=a , return_tensors="tf" ) # forward pass SCREAMING_SNAKE_CASE : Tuple = model(**a , training=a ) # verify the logits SCREAMING_SNAKE_CASE : int = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , a ) SCREAMING_SNAKE_CASE : Optional[Any] = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] , a , atol=1e-4 )
25
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def __lowercase (_lowercase ) -> Optional[Any]: """simple docstring""" if not is_accelerate_available(): return method __lowerCamelCase : Optional[int] = version.parse(accelerate.__version__ ).base_version if version.parse(_lowercase ) < version.parse("""0.17.0""" ): return method def wrapper(self, *_lowercase, **_lowercase ): if hasattr(self, """_hf_hook""" ) and hasattr(self._hf_hook, """pre_forward""" ): self._hf_hook.pre_forward(self ) return method(self, *_lowercase, **_lowercase ) return wrapper
150
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase__ = { "vocab_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/vocab.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/vocab.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/vocab.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json" ), }, "merges_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/merges.txt", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/merges.txt", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/merges.txt", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt" ), }, "tokenizer_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/tokenizer.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/tokenizer.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json", "roberta-base-openai-detector": ( "https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json" ), "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json" ), }, } UpperCamelCase__ = { "roberta-base": 5_12, "roberta-large": 5_12, "roberta-large-mnli": 5_12, "distilroberta-base": 5_12, "roberta-base-openai-detector": 5_12, "roberta-large-openai-detector": 5_12, } class _lowerCAmelCase ( _UpperCAmelCase ): """simple docstring""" lowercase__ : Dict = VOCAB_FILES_NAMES lowercase__ : str = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Optional[Any] = ["""input_ids""", """attention_mask"""] lowercase__ : Tuple = RobertaTokenizer def __init__( self : Dict , lowercase : Optional[int]=None , lowercase : Union[str, Any]=None , lowercase : Tuple=None , lowercase : Optional[int]="replace" , lowercase : Union[str, Any]="<s>" , lowercase : Optional[Any]="</s>" , lowercase : Union[str, Any]="</s>" , lowercase : List[Any]="<s>" , lowercase : Optional[Any]="<unk>" , lowercase : List[Any]="<pad>" , lowercase : List[str]="<mask>" , lowercase : Optional[Any]=False , lowercase : Dict=True , **lowercase : str , ) -> Tuple: """simple docstring""" super().__init__( lowercase , lowercase , tokenizer_file=lowercase , errors=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase , **lowercase , ) __lowercase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , lowercase ) != add_prefix_space: __lowercase = getattr(lowercase , pre_tok_state.pop("""type""" ) ) __lowercase = add_prefix_space __lowercase = pre_tok_class(**lowercase ) __lowercase = add_prefix_space __lowercase = """post_processor""" __lowercase = getattr(self.backend_tokenizer , lowercase , lowercase ) if tokenizer_component_instance: __lowercase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __lowercase = tuple(state["""sep"""] ) if "cls" in state: __lowercase = tuple(state["""cls"""] ) __lowercase = False if state.get("""add_prefix_space""" , lowercase ) != add_prefix_space: __lowercase = add_prefix_space __lowercase = True if state.get("""trim_offsets""" , lowercase ) != trim_offsets: __lowercase = trim_offsets __lowercase = True if changes_to_apply: __lowercase = getattr(lowercase , state.pop("""type""" ) ) __lowercase = component_class(**lowercase ) setattr(self.backend_tokenizer , lowercase , lowercase ) @property def snake_case__ ( self : Any ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def snake_case__ ( self : Any , lowercase : Tuple ) -> Optional[int]: """simple docstring""" __lowercase = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else value __lowercase = value def snake_case__ ( self : List[Any] , *lowercase : Tuple , **lowercase : Dict ) -> BatchEncoding: """simple docstring""" __lowercase = kwargs.get("""is_split_into_words""" , lowercase ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowercase , **lowercase ) def snake_case__ ( self : Any , *lowercase : int , **lowercase : Optional[int] ) -> BatchEncoding: """simple docstring""" __lowercase = kwargs.get("""is_split_into_words""" , lowercase ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*lowercase , **lowercase ) def snake_case__ ( self : int , lowercase : str , lowercase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __lowercase = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase ) def snake_case__ ( self : Tuple , lowercase : Dict , lowercase : Optional[Any]=None ) -> List[str]: """simple docstring""" __lowercase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def snake_case__ ( self : Tuple , lowercase : List[int] , lowercase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
718
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class _lowerCAmelCase : """simple docstring""" def __init__( self : List[Any] , lowercase : str , lowercase : Union[str, Any]=13 , lowercase : Tuple=32 , lowercase : Optional[Any]=2 , lowercase : Tuple=3 , lowercase : Tuple=16 , lowercase : Tuple=[1, 2, 1] , lowercase : Optional[Any]=[2, 2, 4] , lowercase : Dict=2 , lowercase : Optional[int]=2.0 , lowercase : List[Any]=True , lowercase : str=0.0 , lowercase : Any=0.0 , lowercase : Optional[int]=0.1 , lowercase : int="gelu" , lowercase : Tuple=False , lowercase : Optional[Any]=True , lowercase : int=0.02 , lowercase : Union[str, Any]=1E-5 , lowercase : Dict=True , lowercase : Any=None , lowercase : str=True , lowercase : str=10 , lowercase : Dict=8 , lowercase : int=["stage1", "stage2", "stage3"] , lowercase : Optional[int]=[1, 2, 3] , ) -> Any: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = embed_dim __lowercase = depths __lowercase = num_heads __lowercase = window_size __lowercase = mlp_ratio __lowercase = qkv_bias __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = drop_path_rate __lowercase = hidden_act __lowercase = use_absolute_embeddings __lowercase = patch_norm __lowercase = layer_norm_eps __lowercase = initializer_range __lowercase = is_training __lowercase = scope __lowercase = use_labels __lowercase = type_sequence_label_size __lowercase = encoder_stride __lowercase = out_features __lowercase = out_indices def snake_case__ ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def snake_case__ ( self : List[str] ) -> int: """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def snake_case__ ( self : Any , lowercase : List[Any] , lowercase : Optional[int] , lowercase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = MaskFormerSwinModel(config=lowercase ) model.to(lowercase ) model.eval() __lowercase = model(lowercase ) __lowercase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __lowercase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def snake_case__ ( self : Any , lowercase : Tuple , lowercase : Any , lowercase : Optional[int] ) -> List[str]: """simple docstring""" __lowercase = MaskFormerSwinBackbone(config=lowercase ) model.to(lowercase ) model.eval() __lowercase = model(lowercase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(lowercase ): __lowercase = ["""stem"""] __lowercase = MaskFormerSwinBackbone(config=lowercase ) def snake_case__ ( self : int ) -> Any: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowercase__ : Optional[int] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowercase__ : List[str] = {"""feature-extraction""": MaskFormerSwinModel} if is_torch_available() else {} lowercase__ : List[str] = False lowercase__ : int = False lowercase__ : int = False lowercase__ : Tuple = False lowercase__ : Optional[Any] = False def snake_case__ ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = MaskFormerSwinModelTester(self ) __lowercase = ConfigTester(self , config_class=lowercase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( """`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with""" """ `nn.DataParallel`""" ) ) def snake_case__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def snake_case__ ( self : Tuple ) -> Optional[int]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case__ ( self : Optional[Any] ) -> Dict: """simple docstring""" return def snake_case__ ( self : Tuple ) -> List[str]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def snake_case__ ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowercase ) @unittest.skip("""Swin does not use inputs_embeds""" ) def snake_case__ ( self : int ) -> Any: """simple docstring""" pass @unittest.skip("""Swin does not support feedforward chunking""" ) def snake_case__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" pass def snake_case__ ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , nn.Linear ) ) def snake_case__ ( self : Dict ) -> Any: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowercase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowercase ) @unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" ) def snake_case__ ( self : Any ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" ) def snake_case__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass def snake_case__ ( self : Tuple , lowercase : Tuple , lowercase : Optional[int] , lowercase : Optional[int] , lowercase : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowercase , lowercase ) ) __lowercase = outputs.hidden_states __lowercase = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowercase ) , lowercase ) # Swin has a different seq_length __lowercase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def snake_case__ ( self : int ) -> Dict: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __lowercase = True self.check_hidden_states_output(lowercase , lowercase , lowercase , lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True self.check_hidden_states_output(lowercase , lowercase , lowercase , lowercase ) def snake_case__ ( self : int ) -> str: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = 3 __lowercase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __lowercase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowercase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __lowercase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __lowercase = True self.check_hidden_states_output(lowercase , lowercase , lowercase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True self.check_hidden_states_output(lowercase , lowercase , lowercase , (padded_height, padded_width) ) @unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" ) def snake_case__ ( self : Any ) -> Any: """simple docstring""" pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def snake_case__ ( self : List[str] ) -> str: """simple docstring""" pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def snake_case__ ( self : str ) -> Union[str, Any]: """simple docstring""" pass def snake_case__ ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(lowercase : Optional[int] ): __lowercase = 0 return t def check_equivalence(lowercase : Optional[int] , lowercase : str , lowercase : str , lowercase : Tuple={} ): with torch.no_grad(): __lowercase = model(**lowercase , return_dict=lowercase , **lowercase ) __lowercase = model(**lowercase , return_dict=lowercase , **lowercase ).to_tuple() def recursive_check(lowercase : int , lowercase : Optional[Any] ): if isinstance(lowercase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(lowercase , lowercase ): recursive_check(lowercase , lowercase ) elif isinstance(lowercase , lowercase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(lowercase , lowercase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(lowercase ) , set_nan_tensor_to_zero(lowercase ) , atol=1E-5 ) , msg=( """Tuple and dict output are not equal. Difference:""" F" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:" F" {torch.isnan(lowercase ).any()} and `inf`: {torch.isinf(lowercase )}. Dict has" F" `nan`: {torch.isnan(lowercase ).any()} and `inf`: {torch.isinf(lowercase )}." ) , ) recursive_check(lowercase , lowercase ) for model_class in self.all_model_classes: __lowercase = model_class(lowercase ) model.to(lowercase ) model.eval() __lowercase = self._prepare_for_class(lowercase , lowercase ) __lowercase = self._prepare_for_class(lowercase , lowercase ) check_equivalence(lowercase , lowercase , lowercase ) __lowercase = self._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) __lowercase = self._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) check_equivalence(lowercase , lowercase , lowercase ) __lowercase = self._prepare_for_class(lowercase , lowercase ) __lowercase = self._prepare_for_class(lowercase , lowercase ) check_equivalence(lowercase , lowercase , lowercase , {"""output_hidden_states""": True} ) __lowercase = self._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) __lowercase = self._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) check_equivalence(lowercase , lowercase , lowercase , {"""output_hidden_states""": True} ) @require_torch class _lowerCAmelCase ( unittest.TestCase , _UpperCAmelCase ): """simple docstring""" lowercase__ : List[str] = (MaskFormerSwinBackbone,) if is_torch_available() else () lowercase__ : Any = MaskFormerSwinConfig def snake_case__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase = MaskFormerSwinModelTester(self ) def snake_case__ ( self : Any ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = inputs_dict["""pixel_values"""].shape[0] for backbone_class in self.all_model_classes: __lowercase = backbone_class(lowercase ) backbone.to(lowercase ) backbone.eval() __lowercase = backbone(**lowercase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , lowercase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True __lowercase = backbone(**lowercase , output_hidden_states=lowercase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __lowercase , __lowercase , __lowercase = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: __lowercase = backbone(**lowercase , output_attentions=lowercase ) self.assertIsNotNone(outputs.attentions )
634
0
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. UpperCAmelCase_ : Optional[int] = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def _UpperCamelCase (_lowerCamelCase : Any )-> int: '''simple docstring''' from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowerCamelCase ) def _UpperCamelCase (_lowerCamelCase : int )-> Tuple: '''simple docstring''' from diffusers.utils.testing_utils import pytest_terminal_summary_main __snake_case = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(_lowerCamelCase , id=_lowerCamelCase )
24
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCAmelCase ( unittest.TestCase): def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=18 , __SCREAMING_SNAKE_CASE=30 , __SCREAMING_SNAKE_CASE=400 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , ) -> Tuple: '''simple docstring''' __snake_case = size if size is not None else {'''shortest_edge''': 20} __snake_case = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __snake_case = parent __snake_case = batch_size __snake_case = num_channels __snake_case = image_size __snake_case = min_resolution __snake_case = max_resolution __snake_case = do_resize __snake_case = size __snake_case = do_center_crop __snake_case = crop_size __snake_case = do_flip_channel_order def lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class lowerCAmelCase ( __lowerCAmelCase , unittest.TestCase): __lowercase : Union[str, Any] = MobileViTImageProcessor if is_vision_available() else None def lowerCAmelCase ( self ) -> str: '''simple docstring''' __snake_case = MobileViTImageProcessingTester(self ) @property def lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_resize''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''size''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_center_crop''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''center_crop''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_flip_channel_order''' ) ) def lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) __snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' pass def lowerCAmelCase ( self ) -> str: '''simple docstring''' __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
24
1
"""simple docstring""" from numpy import exp, pi, sqrt def lowercase (_snake_case ,_snake_case = 0.0 ,_snake_case = 1.0 ) -> int: '''simple docstring''' return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
228
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging _A = logging.get_logger(__name__) class __UpperCAmelCase ( snake_case__ ): """simple docstring""" _snake_case : Optional[int] = ['audio_values', 'audio_mask'] def __init__( self : Dict , A_ : Optional[int]=20_48 , A_ : Union[str, Any]=1 , A_ : Dict=[16, 16] , A_ : Optional[Any]=1_28 , A_ : str=4_41_00 , A_ : Optional[int]=86 , A_ : Tuple=20_48 , A_ : Union[str, Any]=0.0 , **A_ : List[str] , )-> Optional[Any]: super().__init__( feature_size=A_ , sampling_rate=A_ , padding_value=A_ , **A_ , ) __UpperCamelCase = spectrogram_length __UpperCamelCase = num_channels __UpperCamelCase = patch_size __UpperCamelCase = feature_size // self.patch_size[1] __UpperCamelCase = n_fft __UpperCamelCase = sampling_rate // hop_length_to_sampling_rate __UpperCamelCase = sampling_rate __UpperCamelCase = padding_value __UpperCamelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=A_ , min_frequency=0.0 , max_frequency=22_050.0 , sampling_rate=A_ , norm="slaney" , mel_scale="slaney" , ).T def A ( self : Union[str, Any] , A_ : np.array )-> np.ndarray: __UpperCamelCase = spectrogram( A_ , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="dB" , db_range=80.0 , ) __UpperCamelCase = log_spec[:, :-1] __UpperCamelCase = log_spec - 20.0 __UpperCamelCase = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : str , A_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , A_ : Optional[Union[str, TensorType]] = None , A_ : Optional[bool] = True , A_ : Optional[int] = None , A_ : bool = False , A_ : bool = False , **A_ : str , )-> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( "This feature extractor is set to support sampling rate" f""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" f""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) __UpperCamelCase = isinstance(A_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) __UpperCamelCase = is_batched_numpy or ( isinstance(A_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __UpperCamelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(A_ , np.ndarray ): __UpperCamelCase = np.asarray(A_ , dtype=np.floataa ) elif isinstance(A_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __UpperCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __UpperCamelCase = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis __UpperCamelCase = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , A_ ): __UpperCamelCase = [np.asarray(A_ , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask __UpperCamelCase = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: __UpperCamelCase = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] __UpperCamelCase = np.array(A_ ).astype(np.floataa ) # convert into correct format for padding __UpperCamelCase = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch __UpperCamelCase = np.ones([len(A_ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) __UpperCamelCase = padded_audio_features * self.padding_value for i in range(len(A_ ) ): __UpperCamelCase = audio_features[i] __UpperCamelCase = feature # return as BatchFeature if return_attention_mask: __UpperCamelCase = {"audio_values": padded_audio_features, "audio_mask": audio_mask} else: __UpperCamelCase = {"audio_values": padded_audio_features} __UpperCamelCase = BatchFeature(data=A_ , tensor_type=A_ ) return encoded_inputs
228
1
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) lowerCAmelCase_ = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) lowerCAmelCase_ = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) lowerCAmelCase_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) lowerCAmelCase_ = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) lowerCAmelCase_ = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) lowerCAmelCase_ = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) lowerCAmelCase_ = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) lowerCAmelCase_ = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) lowerCAmelCase_ = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) lowerCAmelCase_ = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) lowerCAmelCase_ = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) lowerCAmelCase_ = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) lowerCAmelCase_ = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) lowerCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) lowerCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) lowerCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) lowerCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) lowerCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) lowerCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) lowerCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) lowerCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) lowerCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) lowerCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) lowerCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) lowerCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) lowerCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) lowerCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class UpperCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" __SCREAMING_SNAKE_CASE = FLAX_MODEL_MAPPING lowerCAmelCase_ = auto_class_update(FlaxAutoModel) class UpperCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_PRETRAINING_MAPPING lowerCAmelCase_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class UpperCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING lowerCAmelCase_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class UpperCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_MASKED_LM_MAPPING lowerCAmelCase_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class UpperCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCAmelCase_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class UpperCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCAmelCase_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class UpperCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING lowerCAmelCase_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class UpperCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCAmelCase_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class UpperCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING lowerCAmelCase_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class UpperCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING lowerCAmelCase_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class UpperCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCAmelCase_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class UpperCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING lowerCAmelCase_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class UpperCAmelCase_ ( _BaseAutoModelClass ): """simple docstring""" __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING lowerCAmelCase_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
173
'''simple docstring''' import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = jnp.ones((batch_size, length) ) / length return scores def UpperCamelCase_ ( self ): lowerCamelCase__ = None lowerCamelCase__ = 20 lowerCamelCase__ = self._get_uniform_logits(batch_size=2 ,length=_lowerCAmelCase ) # tweak scores to not be uniform anymore lowerCamelCase__ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCamelCase__ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCamelCase__ = jax.nn.softmax(_lowerCAmelCase ,axis=-1 ) lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCamelCase__ = jax.nn.softmax(temp_dist_warper_sharper(_lowerCAmelCase ,scores.copy() ,cur_len=_lowerCAmelCase ) ,axis=-1 ) lowerCamelCase__ = jax.nn.softmax(temp_dist_warper_smoother(_lowerCAmelCase ,scores.copy() ,cur_len=_lowerCAmelCase ) ,axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_sharp[0, :] ,atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_smooth[0, :] ,atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() ,warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() ,warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() ,warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() ,warped_prob_smooth[1, :].min() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = None lowerCamelCase__ = 10 lowerCamelCase__ = 2 # create ramp distribution lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, vocab_size) ).copy() lowerCamelCase__ = ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCamelCase__ = FlaxTopKLogitsWarper(3 ) lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() ,7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() ,2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCamelCase__ = 5 lowerCamelCase__ = FlaxTopKLogitsWarper(top_k=1 ,filter_value=0.0 ,min_tokens_to_keep=3 ) lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, length) ).copy() lowerCamelCase__ = top_k_warp_safety_check(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() ,[2, 2] ) def UpperCamelCase_ ( self ): lowerCamelCase__ = None lowerCamelCase__ = 10 lowerCamelCase__ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCamelCase__ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 ) lowerCamelCase__ = np.exp(top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCamelCase__ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) ) # check edge cases with negative and extreme logits lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCamelCase__ = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept lowerCamelCase__ = FlaxTopPLogitsWarper(0.9 ,min_tokens_to_keep=2 ,filter_value=0.0 ) lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() ,[3, 2] ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 20 lowerCamelCase__ = 4 lowerCamelCase__ = 0 lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase ) # check that min length is applied at length 5 lowerCamelCase__ = ids_tensor((batch_size, 20) ,vocab_size=20 ) lowerCamelCase__ = 5 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = min_dist_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() ,4 * [-float("""inf""" )] ) # check that min length is not applied anymore at length 15 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = 15 lowerCamelCase__ = min_dist_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 20 lowerCamelCase__ = 4 lowerCamelCase__ = 0 lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the bos_token_id score lowerCamelCase__ = ids_tensor((batch_size, 1) ,vocab_size=20 ) lowerCamelCase__ = 1 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() ,4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCamelCase__ = 3 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 20 lowerCamelCase__ = 4 lowerCamelCase__ = 0 lowerCamelCase__ = 5 lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCamelCase__ = ids_tensor((batch_size, 4) ,vocab_size=20 ) lowerCamelCase__ = 4 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() ,4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCamelCase__ = 3 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 4 lowerCamelCase__ = 10 lowerCamelCase__ = 15 lowerCamelCase__ = 2 lowerCamelCase__ = 1 lowerCamelCase__ = 15 # dummy input_ids and scores lowerCamelCase__ = ids_tensor((batch_size, sequence_length) ,_lowerCAmelCase ) lowerCamelCase__ = input_ids.copy() lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = scores.copy() # instantiate all dist processors lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase__ = FlaxTopKLogitsWarper(3 ) lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase ) lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ) lowerCamelCase__ = 10 # no processor list lowerCamelCase__ = temp_dist_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = min_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = bos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = eos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # with processor list lowerCamelCase__ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase__ = processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 4 lowerCamelCase__ = 10 lowerCamelCase__ = 15 lowerCamelCase__ = 2 lowerCamelCase__ = 1 lowerCamelCase__ = 15 # dummy input_ids and scores lowerCamelCase__ = ids_tensor((batch_size, sequence_length) ,_lowerCAmelCase ) lowerCamelCase__ = input_ids.copy() lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = scores.copy() # instantiate all dist processors lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase__ = FlaxTopKLogitsWarper(3 ) lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase ) lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ) lowerCamelCase__ = 10 # no processor list def run_no_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = temp_dist_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = min_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = bos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = eos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) return scores # with processor list def run_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase__ = processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) return scores lowerCamelCase__ = jax.jit(_lowerCAmelCase ) lowerCamelCase__ = jax.jit(_lowerCAmelCase ) lowerCamelCase__ = jitted_run_no_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = jitted_run_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() )
50
0
"""simple docstring""" from math import isqrt def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" return all(number % divisor != 0 for divisor in range(2 , isqrt(SCREAMING_SNAKE_CASE ) + 1 ) ) def __UpperCamelCase ( SCREAMING_SNAKE_CASE = 10**6 ) -> int: """simple docstring""" __snake_case = 0 __snake_case = 1 __snake_case = 7 while prime_candidate < max_prime: primes_count += is_prime(SCREAMING_SNAKE_CASE ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F"""{solution() = }""")
614
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _SCREAMING_SNAKE_CASE = { """configuration_mobilevit""": ["""MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileViTConfig""", """MobileViTOnnxConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""MobileViTFeatureExtractor"""] _SCREAMING_SNAKE_CASE = ["""MobileViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileViTForImageClassification""", """MobileViTForSemanticSegmentation""", """MobileViTModel""", """MobileViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileViTForImageClassification""", """TFMobileViTForSemanticSegmentation""", """TFMobileViTModel""", """TFMobileViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
614
1
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments _lowercase = logging.getLogger(__name__) @dataclass class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[float] = field( default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} ) _lowerCamelCase: bool = field(default=_lowercase , metadata={'''help''': '''Whether to SortishSamler or not.'''} ) _lowerCamelCase: bool = field( default=_lowercase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) _lowerCamelCase: bool = field(default=_lowercase , metadata={'''help''': '''whether to use adafactor'''} ) _lowerCamelCase: Optional[float] = field( default=_lowercase , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} ) _lowerCamelCase: Optional[float] = field( default=_lowercase , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} ) _lowerCamelCase: Optional[float] = field(default=_lowercase , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} ) _lowerCamelCase: Optional[float] = field( default=_lowercase , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} ) _lowerCamelCase: Optional[str] = field( default='''linear''' , metadata={'''help''': F'Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'} , )
91
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ : List[Any] = logging.get_logger(__name__) UpperCamelCase_ : Tuple = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class _a ( __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : List[str] = """rwkv""" SCREAMING_SNAKE_CASE_ : Any = {"""max_position_embeddings""": """context_length"""} def __init__( self ,_SCREAMING_SNAKE_CASE=50_277 ,_SCREAMING_SNAKE_CASE=1_024 ,_SCREAMING_SNAKE_CASE=4_096 ,_SCREAMING_SNAKE_CASE=32 ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=1e-5 ,_SCREAMING_SNAKE_CASE=0 ,_SCREAMING_SNAKE_CASE=0 ,_SCREAMING_SNAKE_CASE=6 ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=True ,**_SCREAMING_SNAKE_CASE ,) -> List[str]: _snake_case = vocab_size _snake_case = context_length _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = attention_hidden_size if attention_hidden_size is not None else hidden_size _snake_case = intermediate_size if intermediate_size is not None else 4 * hidden_size _snake_case = layer_norm_epsilon _snake_case = rescale_every _snake_case = use_cache _snake_case = bos_token_id _snake_case = eos_token_id super().__init__( tie_word_embeddings=_SCREAMING_SNAKE_CASE ,bos_token_id=_SCREAMING_SNAKE_CASE ,eos_token_id=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE )
185
0
import os import numpy import onnx def __UpperCamelCase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple ): __a : Optional[Any] = a.name __a : int = b.name __a : Dict = '''''' __a : List[str] = '''''' __a : Optional[Any] = a == b __a : Tuple = name_a __a : Any = name_b return res def __UpperCamelCase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int ): for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(a__ , a__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , a__ , a__ ) _graph_replace_input_with(node_proto.attribute[1].g , a__ , a__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , a__ , a__ ) def __UpperCamelCase ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int] ): for n in graph_proto.node: _node_replace_input_with(a__ , a__ , a__ ) def __UpperCamelCase ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] ): __a : int = list(model.graph.initializer ) __a : Dict = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __a : Dict = inits[i].name __a : int = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , a__ , a__ ) def __UpperCamelCase ( lowerCAmelCase__ : Dict ): __a : Optional[int] = os.path.dirname(a__ ) __a : str = os.path.basename(a__ ) __a : str = onnx.load(os.path.join(a__ , a__ ) ) __a : str = list(model.graph.initializer ) __a : int = set() __a : Union[str, Any] = {} __a : Optional[Any] = [] __a : Union[str, Any] = 0 for i in range(len(a__ ) ): if i in dup_set: continue for j in range(i + 1 , len(a__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(a__ ) dup_set.add(a__ ) __a : Dict = inits[j].data_type __a : int = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 1_1: mem_size *= 8 else: print('''unexpected data type: ''' , a__ ) total_reduced_size += mem_size __a : Optional[int] = inits[i].name __a : Optional[Any] = inits[j].name if name_i in dup_map: dup_map[name_i].append(a__ ) else: __a : Optional[int] = [name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''' , total_reduced_size / 1_0_2_4 / 1_0_2_4 / 1_0_2_4 , '''GB''' ) __a : Union[str, Any] = sorted(a__ ) _remove_dup_initializers_from_model(a__ , a__ , a__ ) __a : Tuple = '''optimized_''' + model_file_name __a : Union[str, Any] = os.path.join(a__ , a__ ) onnx.save(a__ , a__ ) return new_model
714
from collections.abc import Callable import numpy as np def __UpperCamelCase ( lowerCAmelCase__ : Callable , lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ): __a : List[Any] = int(np.ceil((x_end - xa) / step_size ) ) __a : str = np.zeros((n + 1,) ) __a : List[Any] = ya __a : str = xa for k in range(lowerCAmelCase__ ): __a : int = y[k] + step_size * ode_func(lowerCAmelCase__ , y[k] ) __a : List[str] = y[k] + ( (step_size / 2) * (ode_func(lowerCAmelCase__ , y[k] ) + ode_func(x + step_size , lowerCAmelCase__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
326
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase_ = { '''configuration_altclip''': [ '''ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AltCLIPConfig''', '''AltCLIPTextConfig''', '''AltCLIPVisionConfig''', ], '''processing_altclip''': ['''AltCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ '''ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AltCLIPPreTrainedModel''', '''AltCLIPModel''', '''AltCLIPTextModel''', '''AltCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
209
'''simple docstring''' import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets UpperCamelCase_ = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' UpperCamelCase_ = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' UpperCamelCase_ = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE( datasets.Metric ): def __lowerCamelCase ( self : Any ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def __lowerCamelCase ( self : Optional[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Tuple=True , UpperCamelCase_ : str=False ) -> Optional[Any]: if rouge_types is None: SCREAMING_SNAKE_CASE__ :Optional[int] = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] SCREAMING_SNAKE_CASE__ :Union[str, Any] = rouge_scorer.RougeScorer(rouge_types=UpperCamelCase_ , use_stemmer=UpperCamelCase_ ) if use_aggregator: SCREAMING_SNAKE_CASE__ :Tuple = scoring.BootstrapAggregator() else: SCREAMING_SNAKE_CASE__ :Any = [] for ref, pred in zip(UpperCamelCase_ , UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ :Tuple = scorer.score(UpperCamelCase_ , UpperCamelCase_ ) if use_aggregator: aggregator.add_scores(UpperCamelCase_ ) else: scores.append(UpperCamelCase_ ) if use_aggregator: SCREAMING_SNAKE_CASE__ :Tuple = aggregator.aggregate() else: SCREAMING_SNAKE_CASE__ :List[str] = {} for key in scores[0]: SCREAMING_SNAKE_CASE__ :int = [score[key] for score in scores] return result
209
1
def lowerCAmelCase__ ( a__ ) ->Optional[Any]: '''simple docstring''' if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError("multiplicative_persistence() only accepts integral values" ) if num < 0: raise ValueError("multiplicative_persistence() does not accept negative values" ) _UpperCamelCase = 0 _UpperCamelCase = str(UpperCamelCase__ ) while len(UpperCamelCase__ ) != 1: _UpperCamelCase = [int(UpperCamelCase__ ) for i in num_string] _UpperCamelCase = 1 for i in range(0 , len(UpperCamelCase__ ) ): total *= numbers[i] _UpperCamelCase = str(UpperCamelCase__ ) steps += 1 return steps def lowerCAmelCase__ ( a__ ) ->str: '''simple docstring''' if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError("additive_persistence() only accepts integral values" ) if num < 0: raise ValueError("additive_persistence() does not accept negative values" ) _UpperCamelCase = 0 _UpperCamelCase = str(UpperCamelCase__ ) while len(UpperCamelCase__ ) != 1: _UpperCamelCase = [int(UpperCamelCase__ ) for i in num_string] _UpperCamelCase = 0 for i in range(0 , len(UpperCamelCase__ ) ): total += numbers[i] _UpperCamelCase = str(UpperCamelCase__ ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
719
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def lowerCAmelCase__ ( a__ , a__ , a__ ) ->int: '''simple docstring''' _UpperCamelCase = 1.5 _UpperCamelCase = int(factor * num_class_images ) _UpperCamelCase = ClipClient( url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=a__ , aesthetic_weight=0.1 ) os.makedirs(f'{class_data_dir}/images' , exist_ok=a__ ) if len(list(Path(f'{class_data_dir}/images' ).iterdir() ) ) >= num_class_images: return while True: _UpperCamelCase = client.query(text=a__ ) if len(a__ ) >= factor * num_class_images or num_images > 1e4: break else: _UpperCamelCase = int(factor * num_images ) _UpperCamelCase = ClipClient( url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=a__ , aesthetic_weight=0.1 , ) _UpperCamelCase = 0 _UpperCamelCase = 0 _UpperCamelCase = tqdm(desc="downloading real regularization images" , total=a__ ) with open(f'{class_data_dir}/caption.txt' , "w" ) as fa, open(f'{class_data_dir}/urls.txt' , "w" ) as fa, open( f'{class_data_dir}/images.txt' , "w" ) as fa: while total < num_class_images: _UpperCamelCase = class_images[count] count += 1 try: _UpperCamelCase = requests.get(images["url"] ) if img.status_code == 200: _UpperCamelCase = Image.open(BytesIO(img.content ) ) with open(f'{class_data_dir}/images/{total}.jpg' , "wb" ) as f: f.write(img.content ) fa.write(images["caption"] + "\n" ) fa.write(images["url"] + "\n" ) fa.write(f'{class_data_dir}/images/{total}.jpg' + "\n" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def lowerCAmelCase__ ( ) ->Optional[Any]: '''simple docstring''' _UpperCamelCase = argparse.ArgumentParser("" , add_help=a__ ) parser.add_argument("--class_prompt" , help="text prompt to retrieve images" , required=a__ , type=a__ ) parser.add_argument("--class_data_dir" , help="path to save images" , required=a__ , type=a__ ) parser.add_argument("--num_class_images" , help="number of images to download" , default=200 , type=a__ ) return parser.parse_args() if __name__ == "__main__": lowerCamelCase__ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
82
0
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _a : List[Any] = logging.get_logger(__name__) _a : Any = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'encoder.layer_norm_for_extract': 'layer_norm_for_extract', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'label_embs_concat': 'label_embeddings_concat', 'mask_emb': 'masked_spec_embed', 'spk_proj': 'speaker_proj', } _a : Tuple = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'label_embeddings_concat', 'speaker_proj', 'layer_norm_for_extract', ] def snake_case__ ( UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : str ): for attribute in key.split("." ): lowerCAmelCase__ :List[Any] = getattr(__snake_case , __snake_case ) if weight_type is not None: lowerCAmelCase__ :Optional[int] = getattr(__snake_case , __snake_case ).shape else: lowerCAmelCase__ :Any = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowerCAmelCase__ :str = value elif weight_type == "weight_g": lowerCAmelCase__ :Dict = value elif weight_type == "weight_v": lowerCAmelCase__ :Optional[int] = value elif weight_type == "bias": lowerCAmelCase__ :List[Any] = value else: lowerCAmelCase__ :Optional[Any] = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def snake_case__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] ): lowerCAmelCase__ :Union[str, Any] = [] lowerCAmelCase__ :Optional[int] = fairseq_model.state_dict() lowerCAmelCase__ :List[str] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase__ :Any = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == "group" , ) lowerCAmelCase__ :Dict = True else: for key, mapped_key in MAPPING.items(): lowerCAmelCase__ :Union[str, Any] = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue lowerCAmelCase__ :str = True if "*" in mapped_key: lowerCAmelCase__ :List[Any] = name.split(__snake_case )[0].split("." )[-2] lowerCAmelCase__ :Optional[int] = mapped_key.replace("*" , __snake_case ) if "weight_g" in name: lowerCAmelCase__ :Dict = "weight_g" elif "weight_v" in name: lowerCAmelCase__ :Dict = "weight_v" elif "bias" in name: lowerCAmelCase__ :str = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCAmelCase__ :Dict = "weight" else: lowerCAmelCase__ :Optional[int] = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(F'''Unused weights: {unused_weights}''' ) def snake_case__ ( UpperCAmelCase : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : str ): lowerCAmelCase__ :List[Any] = full_name.split("conv_layers." )[-1] lowerCAmelCase__ :List[str] = name.split("." ) lowerCAmelCase__ :Optional[int] = int(items[0] ) lowerCAmelCase__ :Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowerCAmelCase__ :Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowerCAmelCase__ :int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) lowerCAmelCase__ :Optional[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowerCAmelCase__ :List[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__snake_case ) @torch.no_grad() def snake_case__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Optional[int]=True ): if config_path is not None: lowerCAmelCase__ :Optional[int] = UniSpeechSatConfig.from_pretrained(__snake_case ) else: lowerCAmelCase__ :Any = UniSpeechSatConfig() lowerCAmelCase__ :List[Any] = "" if is_finetuned: lowerCAmelCase__ :Any = UniSpeechSatForCTC(__snake_case ) else: lowerCAmelCase__ :Optional[int] = UniSpeechSatForPreTraining(__snake_case ) lowerCAmelCase__ :Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) lowerCAmelCase__ :List[str] = model[0].eval() recursively_load_weights(__snake_case , __snake_case ) hf_wavavec.save_pretrained(__snake_case ) if __name__ == "__main__": _a : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) _a : Any = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
145
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": __snake_case : Optional[Any] = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') __snake_case : List[Any] = parser.parse_args() if args.model_type == "bert": __snake_case : int = BertForMaskedLM.from_pretrained(args.model_name) __snake_case : Tuple = 'bert' else: raise ValueError('args.model_type should be "bert".') __snake_case : List[Any] = model.state_dict() __snake_case : Any = {} for w in ["word_embeddings", "position_embeddings"]: __snake_case : List[str] = state_dict[F"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: __snake_case : Optional[int] = state_dict[F"""{prefix}.embeddings.LayerNorm.{w}"""] __snake_case : List[str] = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: __snake_case : str = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] __snake_case : Tuple = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] __snake_case : str = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] __snake_case : Any = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] __snake_case : Union[str, Any] = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] __snake_case : Union[str, Any] = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] __snake_case : Any = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] __snake_case : Optional[int] = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 __snake_case : Union[str, Any] = state_dict['cls.predictions.decoder.weight'] __snake_case : Union[str, Any] = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: __snake_case : Union[str, Any] = state_dict[F"""cls.predictions.transform.dense.{w}"""] __snake_case : List[str] = state_dict[F"""cls.predictions.transform.LayerNorm.{w}"""] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
293
0
"""simple docstring""" from ...processing_utils import ProcessorMixin class __lowerCAmelCase ( _UpperCamelCase): '''simple docstring''' __magic_name__ : Tuple = """WhisperFeatureExtractor""" __magic_name__ : List[Any] = """WhisperTokenizer""" def __init__( self : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] ): super().__init__(UpperCamelCase__ , UpperCamelCase__ ) A__ : Union[str, Any] =self.feature_extractor A__ : Union[str, Any] =False def _UpperCAmelCase ( self : str , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : List[str]=True ): return self.tokenizer.get_decoder_prompt_ids(task=UpperCamelCase__ , language=UpperCamelCase__ , no_timestamps=UpperCamelCase__ ) def __call__( self : Any , *UpperCamelCase__ : Optional[Any] , **UpperCamelCase__ : Tuple ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*UpperCamelCase__ , **UpperCamelCase__ ) A__ : Tuple =kwargs.pop("audio" , UpperCamelCase__ ) A__ : Optional[Any] =kwargs.pop("sampling_rate" , UpperCamelCase__ ) A__ : List[str] =kwargs.pop("text" , UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: A__ : str =args[0] A__ : List[Any] =args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: A__ : List[Any] =self.feature_extractor(UpperCamelCase__ , *UpperCamelCase__ , sampling_rate=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None: A__ : str =self.tokenizer(UpperCamelCase__ , **UpperCamelCase__ ) if text is None: return inputs elif audio is None: return encodings else: A__ : List[Any] =encodings["input_ids"] return inputs def _UpperCAmelCase ( self : Dict , *UpperCamelCase__ : str , **UpperCamelCase__ : Optional[Any] ): return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def _UpperCAmelCase ( self : Tuple , *UpperCamelCase__ : str , **UpperCamelCase__ : Optional[Any] ): return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) def _UpperCAmelCase ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any]="np" ): return self.tokenizer.get_prompt_ids(UpperCamelCase__ , return_tensors=UpperCamelCase__ )
595
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : Union[str, Any] = {"vocab_file": "vocab.txt"} __A : Dict = { "vocab_file": { "openbmb/cpm-ant-10b": "https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt", }, } __A : List[Any] = { "openbmb/cpm-ant-10b": 1_024, } def lowercase ( UpperCamelCase : List[Any] ): """simple docstring""" A__ : Any =collections.OrderedDict() with open(UpperCamelCase , "r" , encoding="utf-8" ) as reader: A__ : Tuple =reader.readlines() for index, token in enumerate(UpperCamelCase ): A__ : List[str] =token.rstrip("\n" ) A__ : Union[str, Any] =index return vocab class __lowerCAmelCase ( _UpperCamelCase): '''simple docstring''' def __init__( self : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any]="<unk>" , UpperCamelCase__ : int=200 ): A__ : List[Any] =vocab A__ : List[str] =unk_token A__ : Union[str, Any] =max_input_chars_per_word def _UpperCAmelCase ( self : Dict , UpperCamelCase__ : int ): A__ : Union[str, Any] =list(UpperCamelCase__ ) if len(UpperCamelCase__ ) > self.max_input_chars_per_word: return [self.unk_token] A__ : List[str] =0 A__ : List[str] =[] while start < len(UpperCamelCase__ ): A__ : int =len(UpperCamelCase__ ) A__ : Optional[int] =None while start < end: A__ : Optional[int] ="".join(chars[start:end] ) if substr in self.vocab: A__ : List[str] =substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(UpperCamelCase__ ) A__ : Dict =end return sub_tokens class __lowerCAmelCase ( _UpperCamelCase): '''simple docstring''' __magic_name__ : int = VOCAB_FILES_NAMES __magic_name__ : Dict = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Optional[int] = ["""input_ids""", """attention_mask"""] __magic_name__ : List[Any] = False def __init__( self : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str="<d>" , UpperCamelCase__ : Optional[int]="</d>" , UpperCamelCase__ : Optional[Any]="<s>" , UpperCamelCase__ : Tuple="</s>" , UpperCamelCase__ : List[Any]="<pad>" , UpperCamelCase__ : Tuple="<unk>" , UpperCamelCase__ : Optional[Any]="</n>" , UpperCamelCase__ : Dict="</_>" , UpperCamelCase__ : Optional[int]="left" , **UpperCamelCase__ : Tuple , ): requires_backends(self , ["jieba"] ) super().__init__( bod_token=UpperCamelCase__ , eod_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , line_token=UpperCamelCase__ , space_token=UpperCamelCase__ , padding_side=UpperCamelCase__ , **UpperCamelCase__ , ) A__ : Union[str, Any] =bod_token A__ : str =eod_token A__ : Any =load_vocab(UpperCamelCase__ ) A__ : Dict =self.encoder[space_token] A__ : Any =self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] A__ : Any =collections.OrderedDict(sorted(self.encoder.items() , key=lambda UpperCamelCase__ : x[1] ) ) A__ : int ={v: k for k, v in self.encoder.items()} A__ : Union[str, Any] =WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def _UpperCAmelCase ( self : Union[str, Any] ): return self.encoder[self.bod_token] @property def _UpperCAmelCase ( self : Optional[Any] ): return self.encoder[self.eod_token] @property def _UpperCAmelCase ( self : List[Any] ): return self.encoder["\n"] @property def _UpperCAmelCase ( self : Tuple ): return len(self.encoder ) def _UpperCAmelCase ( self : str ): return dict(self.encoder , **self.added_tokens_encoder ) def _UpperCAmelCase ( self : Tuple , UpperCamelCase__ : List[str] ): A__ : Optional[Any] =[] for x in jieba.cut(UpperCamelCase__ , cut_all=UpperCamelCase__ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(UpperCamelCase__ ) ) return output_tokens def _UpperCAmelCase ( self : str , UpperCamelCase__ : List[Any] , **UpperCamelCase__ : List[str] ): A__ : int =[i for i in token_ids if i >= 0] A__ : List[Any] =[ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(UpperCamelCase__ , **UpperCamelCase__ ) def _UpperCAmelCase ( self : List[str] , UpperCamelCase__ : Optional[Any] ): return token in self.encoder def _UpperCAmelCase ( self : Any , UpperCamelCase__ : List[str] ): return "".join(UpperCamelCase__ ) def _UpperCAmelCase ( self : Any , UpperCamelCase__ : Any ): return self.encoder.get(UpperCamelCase__ , self.encoder.get(self.unk_token ) ) def _UpperCAmelCase ( self : List[str] , UpperCamelCase__ : Dict ): return self.decoder.get(UpperCamelCase__ , self.unk_token ) def _UpperCAmelCase ( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): if os.path.isdir(UpperCamelCase__ ): A__ : List[str] =os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: A__ : Dict =(filename_prefix + "-" if filename_prefix else "") + save_directory A__ : Any =0 if " " in self.encoder: A__ : Any =self.encoder[" "] del self.encoder[" "] if "\n" in self.encoder: A__ : Any =self.encoder["\n"] del self.encoder["\n"] A__ : Tuple =collections.OrderedDict(sorted(self.encoder.items() , key=lambda UpperCamelCase__ : x[1] ) ) with open(UpperCamelCase__ , "w" , encoding="utf-8" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' " Please check that the vocabulary is not corrupted!" ) A__ : Dict =token_index writer.write(token + "\n" ) index += 1 return (vocab_file,) def _UpperCAmelCase ( self : Tuple , UpperCamelCase__ : List[int] , UpperCamelCase__ : List[int] = None ): if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def _UpperCAmelCase ( self : Optional[Any] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None , UpperCamelCase__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase__ )) + [1] + ([0] * len(UpperCamelCase__ )) return [1] + ([0] * len(UpperCamelCase__ ))
595
1
import re import subprocess import sys __lowerCamelCase : int = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") __lowerCamelCase : List[str] = subprocess.check_output(F"git diff --name-only {fork_point_sha}".split()).decode("""utf-8""").split() __lowerCamelCase : Dict = """|""".join(sys.argv[1:]) __lowerCamelCase : List[Any] = re.compile(rF"^({joined_dirs}).*?\.py$") __lowerCamelCase : List[str] = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
385
'''simple docstring''' import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _A = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["""memory_attention""", """encoder_attn"""], ["""attention""", """attn"""], ["""/""", """."""], [""".LayerNorm.gamma""", """_layer_norm.weight"""], [""".LayerNorm.beta""", """_layer_norm.bias"""], ["""r.layer_""", """r.layers."""], ["""output_proj""", """out_proj"""], ["""ffn.dense_1.""", """fc2."""], ["""ffn.dense.""", """fc1."""], ["""ffn_layer_norm""", """final_layer_norm"""], ["""kernel""", """weight"""], ["""encoder_layer_norm.""", """encoder.layer_norm."""], ["""decoder_layer_norm.""", """decoder.layer_norm."""], ["""embeddings.weights""", """shared.weight"""], ] def A_ ( __SCREAMING_SNAKE_CASE : Dict ) -> List[Any]: for pegasus_name, hf_name in PATTERNS: __SCREAMING_SNAKE_CASE : List[str] = k.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return k def A_ ( __SCREAMING_SNAKE_CASE : dict , __SCREAMING_SNAKE_CASE : dict ) -> PegasusForConditionalGeneration: __SCREAMING_SNAKE_CASE : Tuple = DEFAULTS.copy() cfg_kwargs.update(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Union[str, Any] = PegasusConfig(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : List[Any] = PegasusForConditionalGeneration(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Tuple = torch_model.model.state_dict() __SCREAMING_SNAKE_CASE : Dict = {} for k, v in tf_weights.items(): __SCREAMING_SNAKE_CASE : List[str] = rename_state_dict_key(__SCREAMING_SNAKE_CASE ) if new_k not in sd: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: __SCREAMING_SNAKE_CASE : Dict = v.T __SCREAMING_SNAKE_CASE : Any = torch.tensor(__SCREAMING_SNAKE_CASE , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected __SCREAMING_SNAKE_CASE : int = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) __SCREAMING_SNAKE_CASE : Optional[Any] = mapping['''shared.weight'''] __SCREAMING_SNAKE_CASE : Tuple = mapping['''shared.weight'''] __SCREAMING_SNAKE_CASE : List[Any] = {k: torch.zeros_like(__SCREAMING_SNAKE_CASE ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = torch_model.model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : List[Any] = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def A_ ( __SCREAMING_SNAKE_CASE : Union[str, Any]="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: __SCREAMING_SNAKE_CASE : Any = tf.train.list_variables(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Optional[int] = {} __SCREAMING_SNAKE_CASE : Union[str, Any] = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(__SCREAMING_SNAKE_CASE , desc='''converting tf checkpoint to dict''' ): __SCREAMING_SNAKE_CASE : Tuple = any(pat in name for pat in ignore_name ) if skip_key: continue __SCREAMING_SNAKE_CASE : Any = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Dict = array return tf_weights def A_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ) -> Optional[int]: # save tokenizer first __SCREAMING_SNAKE_CASE : List[str] = Path(__SCREAMING_SNAKE_CASE ).parent.name __SCREAMING_SNAKE_CASE : Optional[int] = task_specific_params[f"""summarization_{dataset}"""]['''max_position_embeddings'''] __SCREAMING_SNAKE_CASE : List[str] = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' , model_max_length=__SCREAMING_SNAKE_CASE ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(__SCREAMING_SNAKE_CASE ) # convert model __SCREAMING_SNAKE_CASE : Any = get_tf_weights_as_numpy(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : str = task_specific_params[f"""summarization_{dataset}"""] if dataset == "large": __SCREAMING_SNAKE_CASE : Dict = task_specific_params __SCREAMING_SNAKE_CASE : Optional[int] = convert_pegasus(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) torch_model.save_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : List[Any] = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(__SCREAMING_SNAKE_CASE , Path(__SCREAMING_SNAKE_CASE ) / '''pytorch_model.bin''' ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument("""tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") _A = parser.parse_args() if args.save_dir is None: _A = Path(args.tf_ckpt_path).parent.name _A = os.path.join("""pegasus""", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
158
0
'''simple docstring''' def UpperCamelCase__ ( __magic_name__ : int ) -> int: '''simple docstring''' if not isinstance(__magic_name__ , __magic_name__ ): raise TypeError("""Input value must be an 'int' type""" ) snake_case__ : List[str] = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
419
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): snake_case__ : List[str] = tempfile.mkdtemp() snake_case__ : Tuple = BlipImageProcessor() snake_case__ : Dict = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) snake_case__ : Dict = BlipaProcessor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self , **__SCREAMING_SNAKE_CASE ): return AutoProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ).tokenizer def __UpperCamelCase ( self , **__SCREAMING_SNAKE_CASE ): return AutoProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ).image_processor def __UpperCamelCase ( self ): shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self ): snake_case__ : int = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] snake_case__ : Union[str, Any] = [Image.fromarray(np.moveaxis(__SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def __UpperCamelCase ( self ): snake_case__ : List[Any] = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case__ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) snake_case__ : Optional[int] = self.get_image_processor(do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 ) snake_case__ : Any = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : List[Any] = self.get_image_processor() snake_case__ : Optional[int] = self.get_tokenizer() snake_case__ : Optional[Any] = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) snake_case__ : str = self.prepare_image_inputs() snake_case__ : Optional[int] = image_processor(__SCREAMING_SNAKE_CASE , return_tensors="""np""" ) snake_case__ : int = processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = self.get_image_processor() snake_case__ : int = self.get_tokenizer() snake_case__ : List[Any] = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = """lower newer""" snake_case__ : List[Any] = processor(text=__SCREAMING_SNAKE_CASE ) snake_case__ : int = tokenizer(__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase ( self ): snake_case__ : str = self.get_image_processor() snake_case__ : int = self.get_tokenizer() snake_case__ : List[str] = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = """lower newer""" snake_case__ : Optional[int] = self.prepare_image_inputs() snake_case__ : Tuple = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(__SCREAMING_SNAKE_CASE ): processor() def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = self.get_image_processor() snake_case__ : Optional[Any] = self.get_tokenizer() snake_case__ : int = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case__ : List[Any] = processor.batch_decode(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : List[Any] = self.get_image_processor() snake_case__ : List[Any] = self.get_tokenizer() snake_case__ : List[Any] = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = """lower newer""" snake_case__ : List[Any] = self.prepare_image_inputs() snake_case__ : Optional[Any] = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
419
1
from __future__ import annotations lowerCAmelCase_ = [-1_0, -5, 0, 5, 5.1, 1_1, 1_3, 2_1, 3, 4, -2_1, -1_0, -5, -1, 0] lowerCAmelCase_ = [-5, 0, 5, 5.1, 1_1, 1_3, 2_1, -1, 4, -1, -1_0, -5, -1, 0, -1] def lowerCamelCase_ ( _UpperCamelCase ) -> list[float]: """simple docstring""" snake_case_ : List[Any] = [] snake_case_ : Any = len(_UpperCamelCase ) for i in range(_UpperCamelCase ): snake_case_ : float = -1 for j in range(i + 1 , _UpperCamelCase ): if arr[i] < arr[j]: snake_case_ : List[Any] = arr[j] break result.append(_UpperCamelCase ) return result def lowerCamelCase_ ( _UpperCamelCase ) -> list[float]: """simple docstring""" snake_case_ : List[str] = [] for i, outer in enumerate(_UpperCamelCase ): snake_case_ : float = -1 for inner in arr[i + 1 :]: if outer < inner: snake_case_ : int = inner break result.append(_UpperCamelCase ) return result def lowerCamelCase_ ( _UpperCamelCase ) -> list[float]: """simple docstring""" snake_case_ : Tuple = len(_UpperCamelCase ) snake_case_ : list[float] = [] snake_case_ : list[float] = [-1] * arr_size for index in reversed(range(_UpperCamelCase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: snake_case_ : Optional[Any] = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) lowerCAmelCase_ = ( '''from __main__ import arr, next_greatest_element_slow, ''' '''next_greatest_element_fast, next_greatest_element''' ) print( '''next_greatest_element_slow():''', timeit('''next_greatest_element_slow(arr)''', setup=setup), ) print( '''next_greatest_element_fast():''', timeit('''next_greatest_element_fast(arr)''', setup=setup), ) print( ''' next_greatest_element():''', timeit('''next_greatest_element(arr)''', setup=setup), )
60
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : """simple docstring""" def __init__( self: List[Any] , _UpperCAmelCase: int , _UpperCAmelCase: MutableSequence[float] ): if len(_UpperCAmelCase ) != degree + 1: raise ValueError( 'The number of coefficients should be equal to the degree + 1.' ) _lowerCAmelCase :list[float] = list(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = degree def __add__( self: str , _UpperCAmelCase: Polynomial ): if self.degree > polynomial_a.degree: _lowerCAmelCase :Any = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , _UpperCAmelCase ) else: _lowerCAmelCase :List[Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , _UpperCAmelCase ) def __sub__( self: str , _UpperCAmelCase: Polynomial ): return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self: Union[str, Any] ): return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self: int , _UpperCAmelCase: Polynomial ): _lowerCAmelCase :list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: int | float ): _lowerCAmelCase :int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self: Union[str, Any] ): _lowerCAmelCase :Dict = '' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(_UpperCAmelCase ) return polynomial def __repr__( self: Optional[Any] ): return self.__str__() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :list[float] = [0] * self.degree for i in range(self.degree ): _lowerCAmelCase :Tuple = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int | float = 0 ): _lowerCAmelCase :list[float] = [0] * (self.degree + 2) _lowerCAmelCase :str = constant for i in range(self.degree + 1 ): _lowerCAmelCase :List[str] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , _UpperCAmelCase ) def __eq__( self: List[Any] , _UpperCAmelCase: object ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self: Optional[Any] , _UpperCAmelCase: object ): return not self.__eq__(_UpperCAmelCase )
687
0
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _A ( __UpperCAmelCase ): def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''hidden_sizes''')) self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''neck_hidden_sizes''')) self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''num_attention_heads''')) class _A : def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[str]=13 , __SCREAMING_SNAKE_CASE : Union[str, Any]=32 , __SCREAMING_SNAKE_CASE : int=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=3 , __SCREAMING_SNAKE_CASE : List[Any]=640 , __SCREAMING_SNAKE_CASE : str=4 , __SCREAMING_SNAKE_CASE : Optional[Any]="silu" , __SCREAMING_SNAKE_CASE : int=3 , __SCREAMING_SNAKE_CASE : Tuple=32 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , __SCREAMING_SNAKE_CASE : str=0.1 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , __SCREAMING_SNAKE_CASE : Any=0.02 , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Dict=10 , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , ): '''simple docstring''' __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = last_hidden_size __a = num_attention_heads __a = hidden_act __a = conv_kernel_size __a = output_stride __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = classifier_dropout_prob __a = use_labels __a = is_training __a = num_labels __a = initializer_range __a = scope def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.num_labels) __a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) __a = self.get_config() return config, pixel_values, labels, pixel_labels def _lowerCamelCase ( self : List[Any]): '''simple docstring''' return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a = MobileViTModel(config=__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = model(__SCREAMING_SNAKE_CASE) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int]): '''simple docstring''' __a = self.num_labels __a = MobileViTForImageClassification(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any): '''simple docstring''' __a = self.num_labels __a = MobileViTForSemanticSegmentation(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() __a = model(__SCREAMING_SNAKE_CASE) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __a = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a = self.prepare_config_and_inputs() __a , __a , __a , __a = config_and_inputs __a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _A ( __UpperCAmelCase ,__UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ : str = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase__ : List[Any] = ( { '''feature-extraction''': MobileViTModel, '''image-classification''': MobileViTForImageClassification, '''image-segmentation''': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase__ : Tuple = False UpperCamelCase__ : Any = False UpperCamelCase__ : Tuple = False UpperCamelCase__ : Optional[Any] = False def _lowerCamelCase ( self : Any): '''simple docstring''' __a = MobileViTModelTester(self) __a = MobileViTConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViT does not use inputs_embeds''') def _lowerCamelCase ( self : Tuple): '''simple docstring''' pass @unittest.skip(reason='''MobileViT does not support input and output embeddings''') def _lowerCamelCase ( self : str): '''simple docstring''' pass @unittest.skip(reason='''MobileViT does not output attentions''') def _lowerCamelCase ( self : int): '''simple docstring''' pass def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(__SCREAMING_SNAKE_CASE) __a = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def _lowerCamelCase ( self : int): '''simple docstring''' pass def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Tuple): '''simple docstring''' def check_hidden_states_output(__SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int]): __a = model_class(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) __a = outputs.hidden_states __a = 5 self.assertEqual(len(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __a = 2 for i in range(len(__SCREAMING_SNAKE_CASE)): self.assertListEqual( list(hidden_states[i].shape[-2:]) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2) __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__SCREAMING_SNAKE_CASE) @slow def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = MobileViTModel.from_pretrained(__SCREAMING_SNAKE_CASE) self.assertIsNotNone(__SCREAMING_SNAKE_CASE) def __snake_case ( ): __a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self : int): '''simple docstring''' return MobileViTImageProcessor.from_pretrained('''apple/mobilevit-xx-small''') if is_vision_available() else None @slow def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = MobileViTForImageClassification.from_pretrained('''apple/mobilevit-xx-small''').to(__SCREAMING_SNAKE_CASE) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''').to(__SCREAMING_SNAKE_CASE) # forward pass with torch.no_grad(): __a = model(**__SCREAMING_SNAKE_CASE) # verify the logits __a = torch.Size((1, 1_000)) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE) __a = torch.tensor([-1.93_64, -1.23_27, -0.46_53]).to(__SCREAMING_SNAKE_CASE) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4)) @slow def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = MobileViTForSemanticSegmentation.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''') __a = model.to(__SCREAMING_SNAKE_CASE) __a = MobileViTImageProcessor.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''') __a = prepare_img() __a = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''').to(__SCREAMING_SNAKE_CASE) # forward pass with torch.no_grad(): __a = model(**__SCREAMING_SNAKE_CASE) __a = outputs.logits # verify the logits __a = torch.Size((1, 21, 32, 32)) self.assertEqual(logits.shape , __SCREAMING_SNAKE_CASE) __a = torch.tensor( [ [[6.97_13, 6.97_86, 7.24_22], [7.28_93, 7.28_25, 7.44_46], [7.65_80, 7.87_97, 7.94_20]], [[-10.68_69, -10.32_50, -10.34_71], [-10.42_28, -9.98_68, -9.71_32], [-11.04_05, -11.02_21, -10.73_18]], [[-3.30_89, -2.85_39, -2.67_40], [-3.27_06, -2.56_21, -2.51_08], [-3.25_34, -2.66_15, -2.66_51]], ] , device=__SCREAMING_SNAKE_CASE , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4)) @slow def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = MobileViTForSemanticSegmentation.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''') __a = model.to(__SCREAMING_SNAKE_CASE) __a = MobileViTImageProcessor.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''') __a = prepare_img() __a = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''').to(__SCREAMING_SNAKE_CASE) # forward pass with torch.no_grad(): __a = model(**__SCREAMING_SNAKE_CASE) __a = outputs.logits.detach().cpu() __a = image_processor.post_process_semantic_segmentation(outputs=__SCREAMING_SNAKE_CASE , target_sizes=[(50, 60)]) __a = torch.Size((50, 60)) self.assertEqual(segmentation[0].shape , __SCREAMING_SNAKE_CASE) __a = image_processor.post_process_semantic_segmentation(outputs=__SCREAMING_SNAKE_CASE) __a = torch.Size((32, 32)) self.assertEqual(segmentation[0].shape , __SCREAMING_SNAKE_CASE)
60
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _A ( unittest.TestCase ): def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int=7 , __SCREAMING_SNAKE_CASE : Tuple=3 , __SCREAMING_SNAKE_CASE : List[Any]=18 , __SCREAMING_SNAKE_CASE : Optional[Any]=30 , __SCREAMING_SNAKE_CASE : int=400 , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE : Any=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE : List[str]=False , ): '''simple docstring''' __a = size if size is not None else {'''height''': 20, '''width''': 20} __a = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __a = parent __a = batch_size __a = num_channels __a = image_size __a = min_resolution __a = max_resolution __a = do_resize __a = size __a = do_center_crop __a = crop_size __a = do_normalize __a = image_mean __a = image_std __a = do_reduce_labels def _lowerCamelCase ( self : str): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def __snake_case ( ): __a = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) __a = Image.open(dataset[0]['''file'''] ) __a = Image.open(dataset[1]['''file'''] ) return image, map def __snake_case ( ): __a = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) __a = Image.open(ds[0]['''file'''] ) __a = Image.open(ds[1]['''file'''] ) __a = Image.open(ds[2]['''file'''] ) __a = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class _A ( __UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ : Union[str, Any] = BeitImageProcessor if is_vision_available() else None def _lowerCamelCase ( self : int): '''simple docstring''' __a = BeitImageProcessingTester(self) @property def _lowerCamelCase ( self : int): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_resize''')) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''size''')) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_center_crop''')) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''center_crop''')) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_normalize''')) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''image_mean''')) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''image_std''')) def _lowerCamelCase ( self : str): '''simple docstring''' __a = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20}) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18}) self.assertEqual(image_processor.do_reduce_labels , __SCREAMING_SNAKE_CASE) __a = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=__SCREAMING_SNAKE_CASE) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42}) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84}) self.assertEqual(image_processor.do_reduce_labels , __SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Dict): '''simple docstring''' pass def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict) # create random PIL images __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image) # Test not batched input __a = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __a = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _lowerCamelCase ( self : int): '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray) # Test not batched input __a = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __a = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor) # Test not batched input __a = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __a = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE) __a = [] for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor) maps.append(torch.zeros(image.shape[-2:]).long()) # Test not batched input __a = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''') self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long) self.assertTrue(encoding['''labels'''].min().item() >= 0) self.assertTrue(encoding['''labels'''].max().item() <= 255) # Test batched __a = image_processing(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_tensors='''pt''') self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long) self.assertTrue(encoding['''labels'''].min().item() >= 0) self.assertTrue(encoding['''labels'''].max().item() <= 255) # Test not batched input (PIL images) __a , __a = prepare_semantic_single_inputs() __a = image_processing(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_tensors='''pt''') self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long) self.assertTrue(encoding['''labels'''].min().item() >= 0) self.assertTrue(encoding['''labels'''].max().item() <= 255) # Test batched input (PIL images) __a , __a = prepare_semantic_batch_inputs() __a = image_processing(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_tensors='''pt''') self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long) self.assertTrue(encoding['''labels'''].min().item() >= 0) self.assertTrue(encoding['''labels'''].max().item() <= 255) def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 __a , __a = prepare_semantic_single_inputs() __a = image_processing(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_tensors='''pt''') self.assertTrue(encoding['''labels'''].min().item() >= 0) self.assertTrue(encoding['''labels'''].max().item() <= 150) __a = True __a = image_processing(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_tensors='''pt''') self.assertTrue(encoding['''labels'''].min().item() >= 0) self.assertTrue(encoding['''labels'''].max().item() <= 255)
60
1
import qiskit def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> qiskit.result.counts.Counts: snake_case : Optional[int] = qiskit.Aer.get_backend("""aer_simulator""" ) snake_case : Any = qiskit.QuantumCircuit(4 ,2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 ,2 ) qc_ha.cx(1 ,2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 ,1 ,3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 ,0 ) # extract XOR value qc_ha.measure(3 ,1 ) # extract AND value # Execute the circuit on the qasm simulator snake_case : Any = qiskit.execute(lowercase ,lowercase ,shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(lowercase ) if __name__ == "__main__": lowerCamelCase : Optional[int] = half_adder(1, 1) print(f"""Half Adder Output Qubit Counts: {counts}""")
587
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase : int = logging.get_logger(__name__) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ["""pixel_values"""] def __init__( self , A = True , A = 3_2 , A=PILImageResampling.BILINEAR , A = True , **A , ) -> None: snake_case : Any = do_resize snake_case : Optional[int] = do_rescale snake_case : str = size_divisor snake_case : Dict = resample super().__init__(**A ) def UpperCAmelCase ( self , A , A , A , A = None , **A ) -> np.ndarray: snake_case , snake_case : Union[str, Any] = get_image_size(A ) # Rounds the height and width down to the closest multiple of size_divisor snake_case : Any = height // size_divisor * size_divisor snake_case : Optional[int] = width // size_divisor * size_divisor snake_case : Union[str, Any] = resize(A , (new_h, new_w) , resample=A , data_format=A , **A ) return image def UpperCAmelCase ( self , A , A , A = None , **A ) -> np.ndarray: return rescale(image=A , scale=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A = None , A = None , A=None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> BatchFeature: snake_case : Optional[int] = do_resize if do_resize is not None else self.do_resize snake_case : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale snake_case : Any = size_divisor if size_divisor is not None else self.size_divisor snake_case : str = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("""size_divisor is required for resizing""" ) snake_case : List[str] = make_list_of_images(A ) if not valid_images(A ): raise ValueError("""Invalid image(s)""" ) # All transformations expect numpy arrays. snake_case : str = [to_numpy_array(A ) for img in images] if do_resize: snake_case : Optional[Any] = [self.resize(A , size_divisor=A , resample=A ) for image in images] if do_rescale: snake_case : List[str] = [self.rescale(A , scale=1 / 2_5_5 ) for image in images] snake_case : Optional[int] = [to_channel_dimension_format(A , A ) for image in images] snake_case : str = {"""pixel_values""": images} return BatchFeature(data=A , tensor_type=A )
587
1
from collections.abc import Generator from math import sin def a ( _UpperCAmelCase : bytes ): '''simple docstring''' if len(_UpperCAmelCase ) != 32: raise ValueError('''Input must be of length 32''' ) __UpperCAmelCase : Optional[Any] = B'''''' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def a ( _UpperCAmelCase : int ): '''simple docstring''' if i < 0: raise ValueError('''Input must be non-negative''' ) __UpperCAmelCase : str = format(_UpperCAmelCase , '''08x''' )[-8:] __UpperCAmelCase : Any = B'''''' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''' ) return little_endian_hex def a ( _UpperCAmelCase : bytes ): '''simple docstring''' __UpperCAmelCase : Optional[int] = B'''''' for char in message: bit_string += format(_UpperCAmelCase , '''08b''' ).encode('''utf-8''' ) __UpperCAmelCase : Union[str, Any] = format(len(_UpperCAmelCase ) , '''064b''' ).encode('''utf-8''' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(_UpperCAmelCase ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def a ( _UpperCAmelCase : bytes ): '''simple docstring''' if len(_UpperCAmelCase ) % 5_12 != 0: raise ValueError('''Input must have length that\'s a multiple of 512''' ) for pos in range(0 , len(_UpperCAmelCase ) , 5_12 ): __UpperCAmelCase : List[Any] = bit_string[pos : pos + 5_12] __UpperCAmelCase : List[Any] = [] for i in range(0 , 5_12 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def a ( _UpperCAmelCase : int ): '''simple docstring''' if i < 0: raise ValueError('''Input must be non-negative''' ) __UpperCAmelCase : str = format(_UpperCAmelCase , '''032b''' ) __UpperCAmelCase : Tuple = '''''' for c in i_str: new_str += "1" if c == "0" else "0" return int(_UpperCAmelCase , 2 ) def a ( _UpperCAmelCase : int , _UpperCAmelCase : int ): '''simple docstring''' return (a + b) % 2**32 def a ( _UpperCAmelCase : int , _UpperCAmelCase : int ): '''simple docstring''' if i < 0: raise ValueError('''Input must be non-negative''' ) if shift < 0: raise ValueError('''Shift must be non-negative''' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def a ( _UpperCAmelCase : bytes ): '''simple docstring''' __UpperCAmelCase : Dict = preprocess(_UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states __UpperCAmelCase : Union[str, Any] = 0x6745_2301 __UpperCAmelCase : Any = 0xEFCD_AB89 __UpperCAmelCase : Optional[int] = 0x98BA_DCFE __UpperCAmelCase : Dict = 0x1032_5476 __UpperCAmelCase : Tuple = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(_UpperCAmelCase ): __UpperCAmelCase : List[str] = aa __UpperCAmelCase : Union[str, Any] = ba __UpperCAmelCase : Optional[int] = ca __UpperCAmelCase : Union[str, Any] = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __UpperCAmelCase : List[str] = d ^ (b & (c ^ d)) __UpperCAmelCase : Any = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __UpperCAmelCase : Tuple = c ^ (d & (b ^ c)) __UpperCAmelCase : Optional[int] = (5 * i + 1) % 16 elif i <= 47: __UpperCAmelCase : Any = b ^ c ^ d __UpperCAmelCase : Optional[Any] = (3 * i + 5) % 16 else: __UpperCAmelCase : Tuple = c ^ (b | not_aa(_UpperCAmelCase )) __UpperCAmelCase : Dict = (7 * i) % 16 __UpperCAmelCase : Dict = (f + a + added_consts[i] + block_words[g]) % 2**32 __UpperCAmelCase : Union[str, Any] = d __UpperCAmelCase : str = c __UpperCAmelCase : Any = b __UpperCAmelCase : Dict = sum_aa(_UpperCAmelCase , left_rotate_aa(_UpperCAmelCase , shift_amounts[i] ) ) # Add hashed chunk to running total __UpperCAmelCase : Optional[int] = sum_aa(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = sum_aa(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = sum_aa(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : Any = sum_aa(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : Tuple = reformat_hex(_UpperCAmelCase ) + reformat_hex(_UpperCAmelCase ) + reformat_hex(_UpperCAmelCase ) + reformat_hex(_UpperCAmelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
704
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def snake_case__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Tuple = TFCamembertModel.from_pretrained('''jplu/tf-camembert-base''' ) __UpperCAmelCase : Dict = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __UpperCAmelCase : int = model(a_ )['''last_hidden_state'''] __UpperCAmelCase : Optional[int] = tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape , a_ ) # compare the actual values for a slice. __UpperCAmelCase : Union[str, Any] = tf.convert_to_tensor( [[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
241
0
import os import pytest from attr import dataclass __A : int = "us-east-1" # defaults region @dataclass class lowerCamelCase: '''simple docstring''' __magic_name__ = 42 __magic_name__ = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' __magic_name__ = { 'task_name': 'mnli', 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 500, 'save_steps': 5_500, } __magic_name__ = {**hyperparameters, 'max_steps': 1_000} @property def lowerCAmelCase__ ( self ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def lowerCAmelCase__ ( self ): return F"{self.framework}-transfromers-test" @property def lowerCAmelCase__ ( self ): return F"./tests/sagemaker/scripts/{self.framework}" @property def lowerCAmelCase__ ( self ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" _A = SageMakerTestEnvironment(framework=request.cls.framework )
27
'''simple docstring''' from math import factorial UpperCamelCase_ = {str(digit): factorial(digit) for digit in range(10)} def _UpperCAmelCase ( _lowerCamelCase : int ) -> int: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("""Parameter number must be int""" ) if number < 0: raise ValueError("""Parameter number must be greater than or equal to 0""" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(_lowerCamelCase ) ) def _UpperCAmelCase ( _lowerCamelCase : int = 60 , _lowerCamelCase : int = 1_00_00_00 ) -> int: if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("""Parameters chain_length and number_limit must be int""" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( """Parameters chain_length and number_limit must be greater than 0""" ) # the counter for the chains with the exact desired length _lowerCAmelCase : Union[str, Any] = 0 # the cached sizes of the previous chains _lowerCAmelCase : dict[int, int] = {} for start_chain_element in range(1 , _lowerCamelCase ): # The temporary set will contain the elements of the chain _lowerCAmelCase : Any = set() _lowerCAmelCase : Dict = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. _lowerCAmelCase : Union[str, Any] = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(_lowerCamelCase ) chain_set_length += 1 _lowerCAmelCase : List[Any] = digit_factorial_sum(_lowerCamelCase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] _lowerCAmelCase : Union[str, Any] = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F'{solution()}')
384
0
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class _lowerCAmelCase : """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=99 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=None , ) -> Union[str, Any]: """simple docstring""" snake_case__ : Dict =parent snake_case__ : int =batch_size snake_case__ : int =seq_length snake_case__ : List[str] =is_training snake_case__ : Optional[Any] =use_input_mask snake_case__ : Optional[int] =use_token_type_ids snake_case__ : Any =use_labels snake_case__ : Union[str, Any] =vocab_size snake_case__ : Union[str, Any] =hidden_size snake_case__ : List[str] =num_hidden_layers snake_case__ : Any =num_attention_heads snake_case__ : Tuple =intermediate_size snake_case__ : List[str] =hidden_act snake_case__ : Optional[Any] =hidden_dropout_prob snake_case__ : Tuple =attention_probs_dropout_prob snake_case__ : Optional[int] =max_position_embeddings snake_case__ : int =type_vocab_size snake_case__ : List[str] =type_sequence_label_size snake_case__ : List[str] =initializer_range snake_case__ : Optional[Any] =num_labels snake_case__ : Union[str, Any] =num_choices snake_case__ : Optional[Any] =scope def UpperCAmelCase ( self ) -> Any: """simple docstring""" snake_case__ : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : List[Any] =None if self.use_input_mask: snake_case__ : Optional[Any] =random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : List[str] =None if self.use_token_type_ids: snake_case__ : int =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ : str =None snake_case__ : List[Any] =None snake_case__ : Dict =None if self.use_labels: snake_case__ : Tuple =ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : Dict =ids_tensor([self.batch_size] , self.num_choices ) snake_case__ : int =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self ) -> List[str]: """simple docstring""" return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" snake_case__ : Optional[Any] =LlamaModel(config=_lowercase ) model.to(_lowercase ) model.eval() snake_case__ : Union[str, Any] =model(_lowercase , attention_mask=_lowercase ) snake_case__ : Optional[int] =model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) -> int: """simple docstring""" snake_case__ : Dict =True snake_case__ : int =LlamaModel(_lowercase ) model.to(_lowercase ) model.eval() snake_case__ : Optional[int] =model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , ) snake_case__ : Any =model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , ) snake_case__ : str =model(_lowercase , attention_mask=_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) -> int: """simple docstring""" snake_case__ : Tuple =LlamaForCausalLM(config=_lowercase ) model.to(_lowercase ) model.eval() snake_case__ : Optional[int] =model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" snake_case__ : Optional[Any] =True snake_case__ : Dict =True snake_case__ : Any =LlamaForCausalLM(config=_lowercase ) model.to(_lowercase ) model.eval() # first forward pass snake_case__ : Tuple =model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , use_cache=_lowercase , ) snake_case__ : str =outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case__ : int =ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ : Any =ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case__ : Tuple =torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ : Dict =torch.cat([input_mask, next_mask] , dim=-1 ) snake_case__ : int =model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , output_hidden_states=_lowercase , )['''hidden_states'''][0] snake_case__ : Dict =model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , past_key_values=_lowercase , output_hidden_states=_lowercase , )['''hidden_states'''][0] # select random slice snake_case__ : List[str] =ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ : List[str] =output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ : int =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1e-3 ) ) def UpperCAmelCase ( self ) -> List[str]: """simple docstring""" snake_case__ : Optional[int] =self.prepare_config_and_inputs() ( ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ) : Tuple =config_and_inputs snake_case__ : Dict ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () lowerCAmelCase__ = (LlamaForCausalLM,) if is_torch_available() else () lowerCAmelCase__ = ( { '''feature-extraction''': LlamaModel, '''text-classification''': LlamaForSequenceClassification, '''text-generation''': LlamaForCausalLM, '''zero-shot''': LlamaForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False def UpperCAmelCase ( self ) -> List[str]: """simple docstring""" snake_case__ : Optional[Any] =LlamaModelTester(self ) snake_case__ : Dict =ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self ) -> List[str]: """simple docstring""" snake_case__ : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def UpperCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" snake_case__ : Optional[int] =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case__ : int =type self.model_tester.create_and_check_model(*_lowercase ) def UpperCAmelCase ( self ) -> Any: """simple docstring""" snake_case__, snake_case__ : List[str] =self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : List[Any] =3 snake_case__ : Dict =input_dict['''input_ids'''] snake_case__ : int =input_ids.ne(1 ).to(_lowercase ) snake_case__ : Dict =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case__ : str =LlamaForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() snake_case__ : List[Any] =model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" snake_case__, snake_case__ : Any =self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Dict =3 snake_case__ : Dict ='''single_label_classification''' snake_case__ : Union[str, Any] =input_dict['''input_ids'''] snake_case__ : Optional[int] =input_ids.ne(1 ).to(_lowercase ) snake_case__ : Optional[int] =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case__ : Tuple =LlamaForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() snake_case__ : Tuple =model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase ( self ) -> List[Any]: """simple docstring""" snake_case__, snake_case__ : int =self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Optional[int] =3 snake_case__ : Optional[int] ='''multi_label_classification''' snake_case__ : Dict =input_dict['''input_ids'''] snake_case__ : Optional[Any] =input_ids.ne(1 ).to(_lowercase ) snake_case__ : Tuple =ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case__ : Union[str, Any] =LlamaForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() snake_case__ : List[Any] =model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''LLaMA buffers include complex numbers, which breaks this test''' ) def UpperCAmelCase ( self ) -> int: """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" snake_case__, snake_case__ : Any =self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Optional[int] =ids_tensor([1, 10] , config.vocab_size ) snake_case__ : Any =ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case__ : List[Any] =LlamaModel(_lowercase ) original_model.to(_lowercase ) original_model.eval() snake_case__ : Any =original_model(_lowercase ).last_hidden_state snake_case__ : str =original_model(_lowercase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case__ : str ={'''type''': scaling_type, '''factor''': 10.0} snake_case__ : Dict =LlamaModel(_lowercase ) scaled_model.to(_lowercase ) scaled_model.eval() snake_case__ : Optional[int] =scaled_model(_lowercase ).last_hidden_state snake_case__ : Tuple =scaled_model(_lowercase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(_lowercase , _lowercase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_lowercase , _lowercase , atol=1e-5 ) ) @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def UpperCAmelCase ( self ) -> Any: """simple docstring""" snake_case__ : Dict =[1, 306, 4658, 278, 6593, 310, 2834, 338] snake_case__ : Tuple =LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-7b-hf''' , device_map='''auto''' ) snake_case__ : Any =model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 snake_case__ : str =torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , _lowercase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ : Tuple =torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _lowercase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def UpperCAmelCase ( self ) -> Any: """simple docstring""" snake_case__ : Tuple =[1, 306, 4658, 278, 6593, 310, 2834, 338] snake_case__ : List[str] =LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-hf''' , device_map='''auto''' ) snake_case__ : Optional[int] =model(torch.tensor(_lowercase ) ) # Expected mean on dim = -1 snake_case__ : Any =torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , _lowercase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ : str =torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _lowercase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" snake_case__ : Optional[Any] =[1, 306, 4658, 278, 6593, 310, 2834, 338] snake_case__ : Dict =LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' , device_map='''auto''' ) snake_case__ : int =model(torch.tensor(_lowercase ) ) # Expected mean on dim = -1 snake_case__ : Optional[Any] =torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , _lowercase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ : Optional[int] =torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , _lowercase , atol=1e-2 , rtol=1e-2 ) @unittest.skip( '''Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test''' ) @slow def UpperCAmelCase ( self ) -> Dict: """simple docstring""" snake_case__ : int =[1, 306, 4658, 278, 6593, 310, 2834, 338] snake_case__ : Optional[Any] =LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-70b-hf''' , device_map='''auto''' ) snake_case__ : Union[str, Any] =model(torch.tensor(_lowercase ) ) snake_case__ : Dict =torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , _lowercase , atol=1e-2 , rtol=1e-2 ) # fmt: off snake_case__ : List[Any] =torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _lowercase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('''Model is curently gated''' ) @slow def UpperCAmelCase ( self ) -> Dict: """simple docstring""" snake_case__ : Union[str, Any] ='''Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi''' snake_case__ : List[str] ='''Simply put, the theory of relativity states that ''' snake_case__ : Any =LlamaTokenizer.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' ) snake_case__ : Union[str, Any] =tokenizer.encode(_lowercase , return_tensors='''pt''' ) snake_case__ : Any =LlamaForCausalLM.from_pretrained( '''meta-llama/Llama-2-13b-chat-hf''' , device_map='''sequential''' , use_safetensors=_lowercase ) # greedy generation outputs snake_case__ : Union[str, Any] =model.generate(_lowercase , max_new_tokens=64 , top_p=_lowercase , temperature=1 , do_sample=_lowercase ) snake_case__ : Optional[int] =tokenizer.decode(generated_ids[0] , skip_special_tokens=_lowercase ) self.assertEqual(_lowercase , _lowercase )
703
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Any: """simple docstring""" snake_case__ : int =torch.nn.Linear(10 , 10 ) snake_case__ : int =torch.optim.SGD(model.parameters() , 0.1 ) snake_case__ : str =Accelerator() snake_case__ : Any =accelerator.prepare(__SCREAMING_SNAKE_CASE ) try: pickle.loads(pickle.dumps(__SCREAMING_SNAKE_CASE ) ) except Exception as e: self.fail(f'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
408
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
88
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path _lowercase : str =( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) _lowercase : list[int] =[ord(letter) for letter in string.ascii_lowercase] _lowercase : set[int] ={ord(char) for char in VALID_CHARS} _lowercase : list[str] =["the", "be", "to", "of", "and", "in", "that", "have"] def A__ ( lowercase: list[int], lowercase: tuple[int, ...] ) -> str | None: A : str ="" A : int A : int A : int for keychar, cipherchar in zip(cycle(lowercase ), lowercase ): A : Tuple =cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(lowercase ) return decoded def A__ ( lowercase: list[int] ) -> list[str]: A : list[str] =[] for key in product(lowercase, repeat=3 ): A : Any =try_key(lowercase, lowercase ) if encoded is not None: possibles.append(lowercase ) return possibles def A__ ( lowercase: list[str], lowercase: str ) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def A__ ( lowercase: str = "p059_cipher.txt" ) -> int: A : list[int] A : list[str] A : str A : str A : str =Path(lowercase ).parent.joinpath(lowercase ).read_text(encoding='utf-8' ) A : Tuple =[int(lowercase ) for number in data.strip().split(',' )] A : Dict =filter_valid_chars(lowercase ) for common_word in COMMON_WORDS: A : List[Any] =filter_common_word(lowercase, lowercase ) if len(lowercase ) == 1: break A : str =possibles[0] return sum(ord(lowercase ) for char in decoded_text ) if __name__ == "__main__": print(f'''{solution() = }''')
305
0
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class A__ ( __A , __A , __A , unittest.TestCase ): """simple docstring""" _lowercase = StableUnCLIPImgaImgPipeline _lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS _lowercase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _lowercase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _lowercase = frozenset([] ) def _UpperCamelCase( self : Any ): a__ : List[Any] = 32 a__ : Optional[Any] = embedder_hidden_size # image encoding components a__ : List[str] = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) a__ : str = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowerCamelCase__ , projection_dim=lowerCamelCase__ , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) a__ : int = StableUnCLIPImageNormalizer(embedding_dim=lowerCamelCase__ ) a__ : Union[str, Any] = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) a__ : str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) a__ : Tuple = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCamelCase__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) a__ : int = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCamelCase__ , layers_per_block=1 , upcast_attention=lowerCamelCase__ , use_linear_projection=lowerCamelCase__ , ) torch.manual_seed(0 ) a__ : int = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=lowerCamelCase__ , steps_offset=1 , ) torch.manual_seed(0 ) a__ : str = AutoencoderKL() a__ : int = { # image encoding components '''feature_extractor''': feature_extractor, '''image_encoder''': image_encoder.eval(), # image noising components '''image_normalizer''': image_normalizer.eval(), '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder.eval(), '''unet''': unet.eval(), '''scheduler''': scheduler, '''vae''': vae.eval(), } return components def _UpperCamelCase( self : Any , lowerCamelCase__ : List[str] , lowerCamelCase__ : List[Any]=0 , lowerCamelCase__ : int=True ): if str(lowerCamelCase__ ).startswith("mps" ): a__ : List[str] = torch.manual_seed(lowerCamelCase__ ) else: a__ : Any = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) a__ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) if pil_image: a__ : str = input_image * 0.5 + 0.5 a__ : Tuple = input_image.clamp(0 , 1 ) a__ : Tuple = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() a__ : Dict = DiffusionPipeline.numpy_to_pil(lowerCamelCase__ )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def _UpperCamelCase( self : Dict ): a__ : Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator a__ : Optional[int] = self.get_dummy_components() a__ : List[Any] = StableUnCLIPImgaImgPipeline(**lowerCamelCase__ ) a__ : str = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) a__ : Optional[Any] = self.get_dummy_inputs(lowerCamelCase__ ) inputs.update({"image_embeds": None} ) a__ : int = sd_pipe(**lowerCamelCase__ ).images a__ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) a__ : str = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _UpperCamelCase( self : Dict ): a__ : Union[str, Any] = torch_device in ['''cpu''', '''mps'''] self._test_attention_slicing_forward_pass(test_max_difference=lowerCamelCase__ ) def _UpperCamelCase( self : List[Any] ): a__ : int = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=lowerCamelCase__ ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _UpperCamelCase( self : Optional[Any] ): self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCamelCase__ ) @slow @require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase( self : Optional[int] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase( self : List[Any] ): a__ : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) a__ : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) a__ : Union[str, Any] = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a__ : Tuple = torch.Generator(device="cpu" ).manual_seed(0 ) a__ : Dict = pipe(lowerCamelCase__ , "anime turle" , generator=lowerCamelCase__ , output_type="np" ) a__ : int = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] ): a__ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) a__ : Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) a__ : Tuple = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a__ : Any = torch.Generator(device="cpu" ).manual_seed(0 ) a__ : Optional[Any] = pipe(lowerCamelCase__ , "anime turle" , generator=lowerCamelCase__ , output_type="np" ) a__ : str = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCamelCase( self : str ): a__ : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() a__ : Any = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) a__ : List[Any] = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a__ : List[str] = pipe( lowerCamelCase__ , "anime turtle" , num_inference_steps=2 , output_type="np" , ) a__ : Dict = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
708
def UpperCamelCase_ ( __a ) -> bool: if num < 0: return False a__ : int = num a__ : int = 0 while num > 0: a__ : str = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
151
0
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets UpperCAmelCase : int = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' UpperCAmelCase : Dict = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' UpperCAmelCase : Tuple = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self : Dict ) -> Any: """simple docstring""" if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""http://www.cs.umd.edu/~snover/tercom/""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#ter"""] , reference_urls=[ """https://github.com/jhclark/tercom""", ] , ) def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = len(references[0] ) if any(len(__SCREAMING_SNAKE_CASE ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) __SCREAMING_SNAKE_CASE = [[refs[i] for refs in references] for i in range(__SCREAMING_SNAKE_CASE )] __SCREAMING_SNAKE_CASE = TER( normalized=__SCREAMING_SNAKE_CASE , no_punct=__SCREAMING_SNAKE_CASE , asian_support=__SCREAMING_SNAKE_CASE , case_sensitive=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = sb_ter.corpus_score(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
627
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = ["image_processor", "tokenizer"] lowerCAmelCase__ = "LayoutLMv2ImageProcessor" lowerCAmelCase__ = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self : Any , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : List[Any]=None , **__SCREAMING_SNAKE_CASE : str ) -> List[str]: """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = kwargs.pop("""feature_extractor""" ) __SCREAMING_SNAKE_CASE = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __call__( self : str , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __SCREAMING_SNAKE_CASE : Union[List[List[int]], List[List[List[int]]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[List[int], List[List[int]]]] = None , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Union[bool, str, PaddingStrategy] = False , __SCREAMING_SNAKE_CASE : Union[bool, str, TruncationStrategy] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : int = 0 , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , **__SCREAMING_SNAKE_CASE : Any , ) -> BatchEncoding: """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( """You cannot provide bounding boxes """ """if you initialized the image processor with apply_ocr set to True.""" ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( """You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""" ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("""You cannot return overflowing tokens without returning the offsets mapping.""" ) # first, apply the image processor __SCREAMING_SNAKE_CASE = self.image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [text] # add batch dimension (as the image processor always adds a batch dimension) __SCREAMING_SNAKE_CASE = features["""words"""] __SCREAMING_SNAKE_CASE = self.tokenizer( text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , stride=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , return_overflowing_tokens=__SCREAMING_SNAKE_CASE , return_special_tokens_mask=__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , return_length=__SCREAMING_SNAKE_CASE , verbose=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) # add pixel values __SCREAMING_SNAKE_CASE = features.pop("""pixel_values""" ) if return_overflowing_tokens is True: __SCREAMING_SNAKE_CASE = self.get_overflowing_images(__SCREAMING_SNAKE_CASE , encoded_inputs["""overflow_to_sample_mapping"""] ) __SCREAMING_SNAKE_CASE = images return encoded_inputs def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): raise ValueError( """Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got""" f' {len(__SCREAMING_SNAKE_CASE )} and {len(__SCREAMING_SNAKE_CASE )}' ) return images_with_overflow def UpperCAmelCase__ ( self : Optional[Any] , *__SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : List[str] ) -> List[str]: """simple docstring""" return self.tokenizer.batch_decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Union[str, Any] , *__SCREAMING_SNAKE_CASE : Dict , **__SCREAMING_SNAKE_CASE : Any ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @property def UpperCAmelCase__ ( self : int ) -> Optional[int]: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def UpperCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __SCREAMING_SNAKE_CASE , ) return self.image_processor_class @property def UpperCAmelCase__ ( self : Optional[int] ) -> Any: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __SCREAMING_SNAKE_CASE , ) return self.image_processor
627
1
'''simple docstring''' # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowerCamelCase_ : int = get_logger(__name__) class _SCREAMING_SNAKE_CASE : '''simple docstring''' __a : Tuple = "dummy_data" __a : Union[str, Any] = "datasets" __a : Any = False def __init__( self : List[str] , lowercase : str , lowercase : str , lowercase : Union[Version, str] , lowercase : Optional[str] = None , lowercase : bool = False , lowercase : bool = True , lowercase : Optional[List[Callable]] = None , ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = 0 UpperCamelCase__ = dataset_name UpperCamelCase__ = cache_dir UpperCamelCase__ = use_local_dummy_data UpperCamelCase__ = config # download_callbacks take a single url as input UpperCamelCase__ = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root UpperCamelCase__ = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general UpperCamelCase__ = str(lowercase ) # to be downloaded UpperCamelCase__ = None UpperCamelCase__ = None @property def A ( self : List[Any] ) -> List[str]: '''simple docstring''' if self._dummy_file is None: UpperCamelCase__ = self.download_dummy_data() return self._dummy_file @property def A ( self : Optional[int] ) -> int: '''simple docstring''' if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("""dummy""" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("""dummy""" , self.version_name ) @property def A ( self : List[str] ) -> Any: '''simple docstring''' return os.path.join(self.dummy_data_folder , """dummy_data.zip""" ) def A ( self : str ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) UpperCamelCase__ = cached_path( lowercase , cache_dir=self.cache_dir , extract_compressed_file=lowercase , force_extract=lowercase ) return os.path.join(lowercase , self.dummy_file_name ) @property def A ( self : Optional[int] ) -> List[Any]: '''simple docstring''' return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def A ( self : List[Any] ) -> List[Any]: '''simple docstring''' if self._bucket_url is None: UpperCamelCase__ = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) ) return self._bucket_url @property def A ( self : int ) -> Tuple: '''simple docstring''' if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] ) def A ( self : Optional[Any] , lowercase : List[str] , *lowercase : int ) -> Any: '''simple docstring''' if self.load_existing_dummy_data: # dummy data is downloaded and tested UpperCamelCase__ = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned UpperCamelCase__ = self.dummy_file_name # special case when data_url is a dict if isinstance(lowercase , lowercase ): return self.create_dummy_data_dict(lowercase , lowercase ) elif isinstance(lowercase , (list, tuple) ): return self.create_dummy_data_list(lowercase , lowercase ) else: return self.create_dummy_data_single(lowercase , lowercase ) def A ( self : Union[str, Any] , lowercase : Optional[Any] , *lowercase : Any ) -> Optional[Any]: '''simple docstring''' return self.download_and_extract(lowercase ) def A ( self : Optional[Any] , lowercase : int , lowercase : Dict ) -> Tuple: '''simple docstring''' return self.download_and_extract(lowercase ) def A ( self : Optional[int] , lowercase : str , *lowercase : Union[str, Any] , **lowercase : Optional[Any] ) -> Tuple: '''simple docstring''' return path def A ( self : Tuple ) -> List[str]: '''simple docstring''' return {} def A ( self : Union[str, Any] , lowercase : Optional[int] , lowercase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(lowercase , lowercase ): for single_url in single_urls: download_callback(lowercase ) else: UpperCamelCase__ = single_urls download_callback(lowercase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(lowercase , lowercase ): UpperCamelCase__ = [os.path.join(lowercase , urllib.parse.quote_plus(Path(lowercase ).name ) ) for x in single_urls] else: UpperCamelCase__ = single_urls UpperCamelCase__ = os.path.join(lowercase , urllib.parse.quote_plus(Path(lowercase ).name ) ) UpperCamelCase__ = value # make sure that values are unique if all(isinstance(lowercase , lowercase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique UpperCamelCase__ = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def A ( self : List[Any] , lowercase : List[str] , lowercase : List[str] ) -> str: '''simple docstring''' UpperCamelCase__ = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one UpperCamelCase__ = all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , lowercase ) ) for url in data_url ) UpperCamelCase__ = all( url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): UpperCamelCase__ = [data_url[0]] * len(lowercase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(lowercase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus UpperCamelCase__ = os.path.join(lowercase , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) ) dummy_data_list.append(lowercase ) return dummy_data_list def A ( self : Optional[int] , lowercase : Optional[Any] , lowercase : Optional[int] ) -> List[Any]: '''simple docstring''' for download_callback in self.download_callbacks: download_callback(lowercase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus UpperCamelCase__ = os.path.join(lowercase , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) ) if os.path.exists(lowercase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def A ( self : str ) -> Union[str, Any]: '''simple docstring''' pass def A ( self : Tuple ) -> Optional[int]: '''simple docstring''' pass def A ( self : int , lowercase : Tuple ) -> Optional[int]: '''simple docstring''' def _iter_archive_members(lowercase : Optional[Any] ): # this preserves the order of the members inside the ZIP archive UpperCamelCase__ = Path(self.dummy_file ).parent UpperCamelCase__ = path.relative_to(lowercase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: UpperCamelCase__ = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(lowercase ) UpperCamelCase__ = Path(lowercase ) UpperCamelCase__ = _iter_archive_members(lowercase ) if self.use_local_dummy_data else path.rglob("""*""" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ): yield file_path.relative_to(lowercase ).as_posix(), file_path.open("""rb""" ) def A ( self : Tuple , lowercase : Tuple ) -> List[str]: '''simple docstring''' if not isinstance(lowercase , lowercase ): UpperCamelCase__ = [paths] for path in paths: if os.path.isfile(lowercase ): if os.path.basename(lowercase ).startswith((""".""", """__""") ): return yield path else: for dirpath, dirnames, filenames in os.walk(lowercase ): if os.path.basename(lowercase ).startswith((""".""", """__""") ): continue dirnames.sort() for filename in sorted(lowercase ): if filename.startswith((""".""", """__""") ): continue yield os.path.join(lowercase , lowercase )
265
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __a : str = field(default="audio-classification" ,metadata={"include_in_asdict_even_if_is_default": True} ) __a : ClassVar[Features] = Features({"audio": Audio()} ) __a : ClassVar[Features] = Features({"labels": ClassLabel} ) __a : str = "audio" __a : str = "labels" def A ( self : List[Any] , lowercase : List[Any] ) -> Any: '''simple docstring''' if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] , lowercase ): raise ValueError(f"Column {self.label_column} is not a ClassLabel." ) UpperCamelCase__ = copy.deepcopy(self ) UpperCamelCase__ = self.label_schema.copy() UpperCamelCase__ = features[self.label_column] UpperCamelCase__ = label_schema return task_template @property def A ( self : int ) -> Dict[str, str]: '''simple docstring''' return { self.audio_column: "audio", self.label_column: "labels", }
265
1
'''simple docstring''' import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class snake_case__ ( UpperCamelCase , UpperCamelCase): @register_to_config def __init__( self : Optional[Any] , *, _A : int = 4 , _A : int = 7_68 , _A : int , _A : Optional[Any] , ) -> List[Any]: super().__init__() UpperCAmelCase_ : Dict = nn.Parameter(torch.zeros(_A ) ) # parameters for additional clip time embeddings UpperCAmelCase_ : Dict = nn.Linear(_A , _A ) UpperCAmelCase_ : str = nn.Linear(_A , _A ) # parameters for encoder hidden states UpperCAmelCase_ : str = clip_extra_context_tokens UpperCAmelCase_ : List[str] = nn.Linear( _A , self.clip_extra_context_tokens * cross_attention_dim ) UpperCAmelCase_ : Tuple = nn.Linear(_A , _A ) UpperCAmelCase_ : Dict = nn.LayerNorm(_A ) def A ( self : Union[str, Any] , *, _A : Union[str, Any] , _A : Optional[int] , _A : Dict , _A : Any ) -> Optional[Any]: if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCAmelCase_ : Tuple = image_embeddings.shape[0] UpperCAmelCase_ : str = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCAmelCase_ : List[str] = classifier_free_guidance_embeddings.expand( _A , -1 ) UpperCAmelCase_ : Any = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCAmelCase_ : Optional[int] = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCAmelCase_ : str = self.embedding_proj(_A ) UpperCAmelCase_ : Optional[Any] = self.clip_image_embeddings_project_to_time_embeddings(_A ) UpperCAmelCase_ : int = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCAmelCase_ : Union[str, Any] = self.clip_extra_context_tokens_proj(_A ) UpperCAmelCase_ : Union[str, Any] = clip_extra_context_tokens.reshape(_A , -1 , self.clip_extra_context_tokens ) UpperCAmelCase_ : Union[str, Any] = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCAmelCase_ : int = self.encoder_hidden_states_proj(_A ) UpperCAmelCase_ : List[str] = self.text_encoder_hidden_states_norm(_A ) UpperCAmelCase_ : Dict = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
541
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class snake_case__ : def __init__( self : Union[str, Any] , _A : Optional[Any] , _A : Dict=2 , _A : Optional[Any]=32 , _A : List[str]=16 , _A : str=3 , _A : List[Any]=True , _A : Optional[int]=True , _A : Optional[int]=32 , _A : Optional[Any]=4 , _A : Optional[int]=[0, 1, 2, 3] , _A : List[Any]=4 , _A : Optional[int]=37 , _A : Optional[Any]="gelu" , _A : Optional[Any]=0.1 , _A : Union[str, Any]=0.1 , _A : Dict=0.02 , _A : Optional[Any]=3 , _A : Union[str, Any]=[1, 3_84, 24, 24] , _A : int=True , _A : int=None , ) -> Tuple: UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : List[str] = batch_size UpperCAmelCase_ : Union[str, Any] = image_size UpperCAmelCase_ : List[Any] = patch_size UpperCAmelCase_ : Dict = num_channels UpperCAmelCase_ : str = is_training UpperCAmelCase_ : List[str] = use_labels UpperCAmelCase_ : Optional[Any] = hidden_size UpperCAmelCase_ : str = num_hidden_layers UpperCAmelCase_ : int = backbone_out_indices UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : Dict = hidden_dropout_prob UpperCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : int = num_labels UpperCAmelCase_ : Union[str, Any] = backbone_featmap_shape UpperCAmelCase_ : List[str] = scope UpperCAmelCase_ : List[str] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ : List[Any] = (image_size // patch_size) ** 2 UpperCAmelCase_ : List[str] = num_patches + 1 def A ( self : Dict ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : List[str] = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase_ : Dict = self.get_config() return config, pixel_values, labels def A ( self : int ) -> Optional[Any]: UpperCAmelCase_ : Optional[Any] = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 1_92, 3_84, 7_68], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=_A , backbone_featmap_shape=self.backbone_featmap_shape , ) def A ( self : Union[str, Any] , _A : List[Any] , _A : Optional[int] , _A : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ : Optional[int] = DPTModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : List[str] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Tuple , _A : str , _A : Tuple , _A : Union[str, Any] ) -> List[str]: UpperCAmelCase_ : List[Any] = self.num_labels UpperCAmelCase_ : Any = DPTForDepthEstimation(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : int = model(_A ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def A ( self : List[str] , _A : str , _A : Union[str, Any] , _A : int ) -> Dict: UpperCAmelCase_ : int = self.num_labels UpperCAmelCase_ : Optional[Any] = DPTForSemanticSegmentation(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Tuple = model(_A , labels=_A ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def A ( self : Dict ) -> Any: UpperCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = config_and_inputs UpperCAmelCase_ : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () a_ = ( { "depth-estimation": DPTForDepthEstimation, "feature-extraction": DPTModel, "image-segmentation": DPTForSemanticSegmentation, } if is_torch_available() else {} ) a_ = False a_ = False a_ = False def A ( self : Tuple ) -> Tuple: UpperCAmelCase_ : Any = DPTModelTester(self ) UpperCAmelCase_ : Dict = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def A ( self : Optional[int] ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def A ( self : Union[str, Any] ) -> str: pass def A ( self : str ) -> Dict: UpperCAmelCase_ , UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Union[str, Any] = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase_ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , nn.Linear ) ) def A ( self : List[Any] ) -> Tuple: UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Dict = model_class(_A ) UpperCAmelCase_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : int = [*signature.parameters.keys()] UpperCAmelCase_ : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def A ( self : List[str] ) -> str: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def A ( self : str ) -> List[str]: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*_A ) def A ( self : str ) -> List[Any]: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_A ) def A ( self : Tuple ) -> str: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Union[str, Any] = True if model_class in get_values(_A ): continue UpperCAmelCase_ : Optional[int] = model_class(_A ) model.to(_A ) model.train() UpperCAmelCase_ : Any = self._prepare_for_class(_A , _A , return_labels=_A ) UpperCAmelCase_ : Tuple = model(**_A ).loss loss.backward() def A ( self : Union[str, Any] ) -> Tuple: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[Any] = False UpperCAmelCase_ : Optional[Any] = True if model_class in get_values(_A ) or not model_class.supports_gradient_checkpointing: continue UpperCAmelCase_ : int = model_class(_A ) model.to(_A ) model.gradient_checkpointing_enable() model.train() UpperCAmelCase_ : int = self._prepare_for_class(_A , _A , return_labels=_A ) UpperCAmelCase_ : List[str] = model(**_A ).loss loss.backward() def A ( self : Optional[Any] ) -> Any: UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[str] = _config_zero_init(_A ) for model_class in self.all_model_classes: UpperCAmelCase_ : int = model_class(config=_A ) # Skip the check for the backbone UpperCAmelCase_ : List[str] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": UpperCAmelCase_ : Union[str, Any] = [F"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A ( self : Tuple ) -> Optional[Any]: pass @slow def A ( self : Any ) -> int: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: UpperCAmelCase_ : Any = DPTModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def A ( self : Union[str, Any] ) -> str: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Optional[int] = '''add''' with self.assertRaises(_A ): UpperCAmelCase_ : Optional[Any] = DPTForDepthEstimation(_A ) def __UpperCAmelCase ( ) -> List[Any]: UpperCAmelCase_ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class snake_case__ ( unittest.TestCase): def A ( self : Union[str, Any] ) -> List[Any]: UpperCAmelCase_ : List[Any] = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) UpperCAmelCase_ : Any = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(_A ) UpperCAmelCase_ : Tuple = prepare_img() UpperCAmelCase_ : Union[str, Any] = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): UpperCAmelCase_ : str = model(**_A ) UpperCAmelCase_ : List[Any] = outputs.predicted_depth # verify the predicted depth UpperCAmelCase_ : str = torch.Size((1, 3_84, 3_84) ) self.assertEqual(predicted_depth.shape , _A ) UpperCAmelCase_ : Tuple = torch.tensor( [[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]] ).to(_A ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_00 , _A , atol=1e-4 ) )
541
1
"""simple docstring""" from importlib import import_module from .logging import get_logger lowerCamelCase : List[Any] =get_logger(__name__) class __snake_case: '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=None ): '''simple docstring''' __A : List[Any] = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('__' ): setattr(self , snake_case_ , getattr(snake_case_ , snake_case_ ) ) __A : str = module._original_module if isinstance(snake_case_ , _PatchedModuleObj ) else module class __snake_case: '''simple docstring''' _UpperCAmelCase = [] def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None ): '''simple docstring''' __A : Tuple = obj __A : Union[str, Any] = target __A : Optional[int] = new __A : Union[str, Any] = target.split('.' )[0] __A : Any = {} __A : Any = attrs or [] def __enter__( self ): '''simple docstring''' *__A , __A : Dict = self.target.split('.' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(snake_case_ ) ): try: __A : Union[str, Any] = import_module('.'.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): __A : str = getattr(self.obj , snake_case_ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(snake_case_ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): __A : Any = obj_attr # patch at top level setattr(self.obj , snake_case_ , _PatchedModuleObj(snake_case_ , attrs=self.attrs ) ) __A : Optional[Any] = getattr(self.obj , snake_case_ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(snake_case_ , snake_case_ , _PatchedModuleObj(getattr(snake_case_ , snake_case_ , snake_case_ ) , attrs=self.attrs ) ) __A : Tuple = getattr(snake_case_ , snake_case_ ) # finally set the target attribute setattr(snake_case_ , snake_case_ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: __A : List[Any] = getattr(import_module('.'.join(snake_case_ ) ) , snake_case_ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , snake_case_ ) is attr_value: __A : Optional[Any] = getattr(self.obj , snake_case_ ) setattr(self.obj , snake_case_ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" __A : List[str] = globals()['__builtins__'][target_attr] setattr(self.obj , snake_case_ , self.new ) else: raise RuntimeError(F'Tried to patch attribute {target_attr} instead of a submodule.' ) def __exit__( self , *__lowerCamelCase ): '''simple docstring''' for attr in list(self.original ): setattr(self.obj , snake_case_ , self.original.pop(snake_case_ ) ) def _a ( self ): '''simple docstring''' self.__enter__() self._active_patches.append(self ) def _a ( self ): '''simple docstring''' try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
720
"""simple docstring""" from __future__ import annotations def _lowercase ( _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float , ) -> tuple[str, float]: '''simple docstring''' if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif stress < 0: raise ValueError('Stress cannot be negative' ) elif tangential_force < 0: raise ValueError('Tangential Force cannot be negative' ) elif area < 0: raise ValueError('Area cannot be negative' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
237
0
'''simple docstring''' import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def __a ( _UpperCamelCase: Union[str, Any] ) -> Tuple: """simple docstring""" return EnvironmentCommand() class _a ( _A ): @staticmethod def _lowercase ( _SCREAMING_SNAKE_CASE ) -> int: _snake_case = parser.add_parser("env" ) download_parser.set_defaults(func=__lowerCamelCase ) def _lowercase ( self ) -> Tuple: _snake_case = huggingface_hub.__version__ _snake_case = "not installed" _snake_case = "NA" if is_torch_available(): import torch _snake_case = torch.__version__ _snake_case = torch.cuda.is_available() _snake_case = "not installed" if is_transformers_available(): import transformers _snake_case = transformers.__version__ _snake_case = "not installed" if is_accelerate_available(): import accelerate _snake_case = accelerate.__version__ _snake_case = "not installed" if is_xformers_available(): import xformers _snake_case = xformers.__version__ _snake_case = { "`diffusers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "PyTorch version (GPU?)": f"""{pt_version} ({pt_cuda_available})""", "Huggingface_hub version": hub_version, "Transformers version": transformers_version, "Accelerate version": accelerate_version, "xFormers version": xformers_version, "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(__lowerCamelCase ) ) return info @staticmethod def _lowercase ( _SCREAMING_SNAKE_CASE ) -> Tuple: return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
185
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def __UpperCAmelCase ( UpperCAmelCase )-> Optional[int]: """simple docstring""" if isinstance(UpperCAmelCase, collections.abc.Iterable ): return x return (x, x) @require_tf class __lowercase : def __a ( self : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple ) -> Optional[int]: '''simple docstring''' pass def __a ( self : Dict ) -> Tuple: '''simple docstring''' pass def __a ( self : str ) -> Optional[int]: '''simple docstring''' pass def __a ( self : int , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Any=None , **__lowerCamelCase : Any ) -> Optional[int]: '''simple docstring''' lowercase = VisionTextDualEncoderConfig.from_vision_text_configs(__lowerCamelCase , __lowerCamelCase ) lowercase = TFVisionTextDualEncoderModel(__lowerCamelCase ) lowercase = model(input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) ) def __a ( self : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any]=None , **__lowerCamelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' lowercase ,lowercase = self.get_vision_text_model(__lowerCamelCase , __lowerCamelCase ) lowercase = TFVisionTextDualEncoderModel(vision_model=__lowerCamelCase , text_model=__lowerCamelCase ) lowercase = model(input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __a ( self : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : str=None , **__lowerCamelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' lowercase ,lowercase = self.get_vision_text_model(__lowerCamelCase , __lowerCamelCase ) lowercase = {'''vision_model''': vision_model, '''text_model''': text_model} lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**__lowerCamelCase ) lowercase = model(input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __a ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any]=None , **__lowerCamelCase : Tuple ) -> Any: '''simple docstring''' lowercase ,lowercase = self.get_vision_text_model(__lowerCamelCase , __lowerCamelCase ) lowercase = TFVisionTextDualEncoderModel(vision_model=__lowerCamelCase , text_model=__lowerCamelCase ) lowercase = model(input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase ) lowercase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCamelCase ) lowercase = TFVisionTextDualEncoderModel.from_pretrained(__lowerCamelCase ) lowercase = model(input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase ) lowercase = after_output[0].numpy() lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowerCamelCase , 1E-5 ) def __a ( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple=None , **__lowerCamelCase : Dict ) -> Union[str, Any]: '''simple docstring''' lowercase ,lowercase = self.get_vision_text_model(__lowerCamelCase , __lowerCamelCase ) lowercase = TFVisionTextDualEncoderModel(vision_model=__lowerCamelCase , text_model=__lowerCamelCase ) lowercase = model( input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase , output_attentions=__lowerCamelCase ) lowercase = output.vision_model_output.attentions self.assertEqual(len(__lowerCamelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase = to_atuple(vision_model.config.image_size ) lowercase = to_atuple(vision_model.config.patch_size ) lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowercase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowercase = output.text_model_output.attentions self.assertEqual(len(__lowerCamelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __a ( self : Any , __lowerCamelCase : np.ndarray , __lowerCamelCase : np.ndarray , __lowerCamelCase : float ) -> Optional[Any]: '''simple docstring''' lowercase = np.abs((a - b) ).max() self.assertLessEqual(__lowerCamelCase , __lowerCamelCase , f'Difference between torch and flax is {diff} (>= {tol}).' ) def __a ( self : str ) -> Dict: '''simple docstring''' lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**__lowerCamelCase ) def __a ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' lowercase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__lowerCamelCase ) def __a ( self : List[Any] ) -> Dict: '''simple docstring''' lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__lowerCamelCase ) def __a ( self : List[Any] ) -> str: '''simple docstring''' lowercase = self.prepare_config_and_inputs() self.check_save_load(**__lowerCamelCase ) def __a ( self : List[Any] ) -> List[str]: '''simple docstring''' lowercase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__lowerCamelCase ) @slow def __a ( self : List[Any] ) -> Dict: '''simple docstring''' lowercase ,lowercase = self.get_pretrained_model_and_inputs() lowercase = model_a(**__lowerCamelCase ) lowercase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__lowerCamelCase ) lowercase = TFVisionTextDualEncoderModel.from_pretrained(__lowerCamelCase ) lowercase = model_a(**__lowerCamelCase ) lowercase = after_outputs[0].numpy() lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowerCamelCase , 1E-5 ) @require_tf class __lowercase ( _A , unittest.TestCase ): def __a ( self : List[str] ) -> Optional[Any]: '''simple docstring''' lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-random-bert''' ) lowercase = 13 lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowercase = random_attention_mask([batch_size, 4] ) lowercase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def __a ( self : int , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] ) -> List[Any]: '''simple docstring''' lowercase = TFViTModel(__lowerCamelCase , name='''vision_model''' ) lowercase = TFBertModel(__lowerCamelCase , name='''text_model''' ) return vision_model, text_model def __a ( self : Optional[int] ) -> Dict: '''simple docstring''' lowercase = TFViTModelTester(self ) lowercase = TFBertModelTester(self ) lowercase = vit_model_tester.prepare_config_and_inputs() lowercase = bert_model_tester.prepare_config_and_inputs() lowercase ,lowercase ,lowercase = vision_config_and_inputs ( ( lowercase ) ,( lowercase ) ,( lowercase ) ,( lowercase ) ,( lowercase ) ,( lowercase ) ,( lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __lowercase ( _A , unittest.TestCase ): def __a ( self : int ) -> str: '''simple docstring''' lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-deit-tf''' , '''hf-internal-testing/tiny-random-roberta''' ) lowercase = 13 lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowercase = random_attention_mask([batch_size, 4] ) lowercase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def __a ( self : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict=None , **__lowerCamelCase : List[str] ) -> Optional[int]: '''simple docstring''' lowercase ,lowercase = self.get_vision_text_model(__lowerCamelCase , __lowerCamelCase ) lowercase = TFVisionTextDualEncoderModel(vision_model=__lowerCamelCase , text_model=__lowerCamelCase ) lowercase = model( input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase , output_attentions=__lowerCamelCase ) lowercase = output.vision_model_output.attentions self.assertEqual(len(__lowerCamelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowercase = to_atuple(vision_model.config.image_size ) lowercase = to_atuple(vision_model.config.patch_size ) lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowercase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowercase = output.text_model_output.attentions self.assertEqual(len(__lowerCamelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __a ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[Any] ) -> str: '''simple docstring''' lowercase = TFDeiTModel(__lowerCamelCase , name='''vision_model''' ) lowercase = TFRobertaModel(__lowerCamelCase , name='''text_model''' ) return vision_model, text_model def __a ( self : Any ) -> str: '''simple docstring''' lowercase = TFDeiTModelTester(self ) lowercase = TFRobertaModelTester(self ) lowercase = vit_model_tester.prepare_config_and_inputs() lowercase = bert_model_tester.prepare_config_and_inputs() lowercase ,lowercase ,lowercase = vision_config_and_inputs ( ( lowercase ) ,( lowercase ) ,( lowercase ) ,( lowercase ) ,( lowercase ) ,( lowercase ) ,( lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __lowercase ( _A , unittest.TestCase ): def __a ( self : Optional[int] ) -> str: '''simple docstring''' lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-clip-tf''' , '''hf-internal-testing/tiny-random-bert''' ) lowercase = 13 lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowercase = random_attention_mask([batch_size, 4] ) lowercase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def __a ( self : List[str] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple ) -> str: '''simple docstring''' lowercase = TFCLIPVisionModel(__lowerCamelCase , name='''vision_model''' ) lowercase = TFBertModel(__lowerCamelCase , name='''text_model''' ) return vision_model, text_model def __a ( self : Tuple ) -> str: '''simple docstring''' lowercase = TFCLIPVisionModelTester(self ) lowercase = TFBertModelTester(self ) lowercase = clip_model_tester.prepare_config_and_inputs() lowercase = bert_model_tester.prepare_config_and_inputs() lowercase ,lowercase = vision_config_and_inputs ( ( lowercase ) ,( lowercase ) ,( lowercase ) ,( lowercase ) ,( lowercase ) ,( lowercase ) ,( lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __lowercase ( unittest.TestCase ): @slow def __a ( self : List[str] ) -> int: '''simple docstring''' lowercase = TFVisionTextDualEncoderModel.from_pretrained( '''clip-italian/clip-italian''' , logit_scale_init_value=1.0 , from_pt=__lowerCamelCase ) lowercase = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowercase = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=__lowerCamelCase , padding=__lowerCamelCase , return_tensors='''np''' ) lowercase = model(**__lowerCamelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowercase = np.array([[1.228_4727, 0.310_4122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , __lowerCamelCase , atol=1E-3 ) )
604
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=lowerCAmelCase ) class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' snake_case__ : str = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) snake_case__ : ClassVar[Features] = Features({'audio': Audio()} ) snake_case__ : ClassVar[Features] = Features({'labels': ClassLabel} ) snake_case__ : str = "audio" snake_case__ : str = "labels" def _UpperCamelCase ( self :int , __magic_name__ :List[Any] ) -> Union[str, Any]: '''simple docstring''' if self.label_column not in features: raise ValueError(F"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] , __magic_name__ ): raise ValueError(F"Column {self.label_column} is not a ClassLabel." ) a__ = copy.deepcopy(self ) a__ = self.label_schema.copy() a__ = features[self.label_column] a__ = label_schema return task_template @property def _UpperCamelCase ( self :Optional[Any] ) -> Dict[str, str]: '''simple docstring''' return { self.audio_column: "audio", self.label_column: "labels", }
158
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__( self :Union[str, Any] , __magic_name__ :Union[str, Any] , __magic_name__ :Union[str, Any]=7 , __magic_name__ :Optional[int]=3 , __magic_name__ :List[Any]=30 , __magic_name__ :Any=400 , __magic_name__ :Optional[int]=True , __magic_name__ :Optional[Any]=None , __magic_name__ :int=True , __magic_name__ :Dict=[0.5, 0.5, 0.5] , __magic_name__ :int=[0.5, 0.5, 0.5] , __magic_name__ :Union[str, Any]=True , __magic_name__ :List[Any]=1 / 255 , __magic_name__ :List[Any]=True , ) -> Optional[int]: '''simple docstring''' a__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} a__ = parent a__ = batch_size a__ = num_channels a__ = min_resolution a__ = max_resolution a__ = do_resize a__ = size a__ = do_normalize a__ = image_mean a__ = image_std a__ = do_rescale a__ = rescale_factor a__ = do_pad def _UpperCamelCase ( self :Any ) -> int: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _UpperCamelCase ( self :Tuple , __magic_name__ :List[Any] , __magic_name__ :Dict=False ) -> Optional[int]: '''simple docstring''' if not batched: a__ = image_inputs[0] if isinstance(__magic_name__ , Image.Image ): a__ , a__ = image.size else: a__ , a__ = image.shape[1], image.shape[2] if w < h: a__ = int(self.size['''shortest_edge'''] * h / w ) a__ = self.size['''shortest_edge'''] elif w > h: a__ = self.size['''shortest_edge'''] a__ = int(self.size['''shortest_edge'''] * w / h ) else: a__ = self.size['''shortest_edge'''] a__ = self.size['''shortest_edge'''] else: a__ = [] for image in image_inputs: a__ , a__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) a__ = max(__magic_name__ , key=lambda __magic_name__ : item[0] )[0] a__ = max(__magic_name__ , key=lambda __magic_name__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE ( lowerCAmelCase , unittest.TestCase ): '''simple docstring''' snake_case__ : Union[str, Any] = YolosImageProcessor if is_vision_available() else None def _UpperCamelCase ( self :Dict ) -> List[Any]: '''simple docstring''' a__ = YolosImageProcessingTester(self ) @property def _UpperCamelCase ( self :List[Any] ) -> Tuple: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _UpperCamelCase ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' a__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__magic_name__ , '''image_mean''' ) ) self.assertTrue(hasattr(__magic_name__ , '''image_std''' ) ) self.assertTrue(hasattr(__magic_name__ , '''do_normalize''' ) ) self.assertTrue(hasattr(__magic_name__ , '''do_resize''' ) ) self.assertTrue(hasattr(__magic_name__ , '''size''' ) ) def _UpperCamelCase ( self :Any ) -> Optional[int]: '''simple docstring''' a__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , __magic_name__ ) a__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__magic_name__ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , __magic_name__ ) def _UpperCamelCase ( self :str ) -> Tuple: '''simple docstring''' pass def _UpperCamelCase ( self :Tuple ) -> str: '''simple docstring''' a__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , Image.Image ) # Test not batched input a__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values a__ , a__ = self.image_processor_tester.get_expected_values(__magic_name__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a__ , a__ = self.image_processor_tester.get_expected_values(__magic_name__ , batched=__magic_name__ ) a__ = image_processing(__magic_name__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCamelCase ( self :Tuple ) -> int: '''simple docstring''' a__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , numpify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , np.ndarray ) # Test not batched input a__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values a__ , a__ = self.image_processor_tester.get_expected_values(__magic_name__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a__ = image_processing(__magic_name__ , return_tensors='''pt''' ).pixel_values a__ , a__ = self.image_processor_tester.get_expected_values(__magic_name__ , batched=__magic_name__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCamelCase ( self :Union[str, Any] ) -> int: '''simple docstring''' a__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , torch.Tensor ) # Test not batched input a__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values a__ , a__ = self.image_processor_tester.get_expected_values(__magic_name__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a__ = image_processing(__magic_name__ , return_tensors='''pt''' ).pixel_values a__ , a__ = self.image_processor_tester.get_expected_values(__magic_name__ , batched=__magic_name__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCamelCase ( self :str ) -> Optional[int]: '''simple docstring''' a__ = self.image_processing_class(**self.image_processor_dict ) a__ = self.image_processing_class(do_resize=__magic_name__ , do_normalize=__magic_name__ , do_rescale=__magic_name__ ) # create random PyTorch tensors a__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors a__ = image_processing_a.pad(__magic_name__ , return_tensors='''pt''' ) a__ = image_processing_a(__magic_name__ , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1e-4 ) ) @slow def _UpperCamelCase ( self :int ) -> int: '''simple docstring''' a__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: a__ = json.loads(f.read() ) a__ = {'''image_id''': 39769, '''annotations''': target} # encode them a__ = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) a__ = image_processing(images=__magic_name__ , annotations=__magic_name__ , return_tensors='''pt''' ) # verify pixel values a__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __magic_name__ ) a__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __magic_name__ , atol=1e-4 ) ) # verify area a__ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __magic_name__ ) ) # verify boxes a__ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __magic_name__ ) a__ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __magic_name__ , atol=1e-3 ) ) # verify image_id a__ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __magic_name__ ) ) # verify is_crowd a__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __magic_name__ ) ) # verify class_labels a__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __magic_name__ ) ) # verify orig_size a__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __magic_name__ ) ) # verify size a__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __magic_name__ ) ) @slow def _UpperCamelCase ( self :Dict ) -> Tuple: '''simple docstring''' a__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: a__ = json.loads(f.read() ) a__ = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target} a__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them a__ = YolosImageProcessor(format='''coco_panoptic''' ) a__ = image_processing(images=__magic_name__ , annotations=__magic_name__ , masks_path=__magic_name__ , return_tensors='''pt''' ) # verify pixel values a__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __magic_name__ ) a__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __magic_name__ , atol=1e-4 ) ) # verify area a__ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __magic_name__ ) ) # verify boxes a__ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __magic_name__ ) a__ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __magic_name__ , atol=1e-3 ) ) # verify image_id a__ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __magic_name__ ) ) # verify is_crowd a__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __magic_name__ ) ) # verify class_labels a__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __magic_name__ ) ) # verify masks a__ = 822873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __magic_name__ ) # verify orig_size a__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __magic_name__ ) ) # verify size a__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __magic_name__ ) )
158
1
def A__ ( snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : str=False ): if isinstance(snake_case_ , snake_case_ ) and isinstance(snake_case_ , snake_case_ ): SCREAMING_SNAKE_CASE__: int= len(set_a.intersection(snake_case_ ) ) if alternative_union: SCREAMING_SNAKE_CASE__: int= len(snake_case_ ) + len(snake_case_ ) else: SCREAMING_SNAKE_CASE__: str= len(set_a.union(snake_case_ ) ) return intersection / union if isinstance(snake_case_ , (list, tuple) ) and isinstance(snake_case_ , (list, tuple) ): SCREAMING_SNAKE_CASE__: Any= [element for element in set_a if element in set_b] if alternative_union: SCREAMING_SNAKE_CASE__: List[str]= len(snake_case_ ) + len(snake_case_ ) return len(snake_case_ ) / union else: SCREAMING_SNAKE_CASE__: Optional[int]= set_a + [element for element in set_b if element not in set_a] return len(snake_case_ ) / len(snake_case_ ) return len(snake_case_ ) / len(snake_case_ ) return None if __name__ == "__main__": lowercase_ : Any = {'a', 'b', 'c', 'd', 'e'} lowercase_ : Optional[Any] = {'c', 'd', 'e', 'f', 'h', 'i'} print(jaccard_similarity(set_a, set_b))
64
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('1.0.0a'): raise Exception('requires fairseq >= 1.0.0a') logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) _lowercase = 'Hello world! cécé herlolip' def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Tuple: '''simple docstring''' lowerCamelCase__: Any = FairseqRobertaModel.from_pretrained(_UpperCamelCase ) roberta.eval() # disable dropout lowerCamelCase__: Any = roberta.model.encoder.sentence_encoder lowerCamelCase__: Any = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: lowerCamelCase__: Union[str, Any] = roberta.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our RoBERTa config:""" , _UpperCamelCase ) lowerCamelCase__: str = XLMRobertaXLForSequenceClassification(_UpperCamelCase ) if classification_head else XLMRobertaXLForMaskedLM(_UpperCamelCase ) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase__: Union[str, Any] = roberta_sent_encoder.embed_tokens.weight lowerCamelCase__: List[str] = roberta_sent_encoder.embed_positions.weight lowerCamelCase__: Optional[int] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. lowerCamelCase__: Any = roberta_sent_encoder.layer_norm.weight lowerCamelCase__: Tuple = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCamelCase__: BertLayer = model.roberta.encoder.layer[i] lowerCamelCase__: TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] lowerCamelCase__: RobertaAttention = layer.attention lowerCamelCase__: Union[str, Any] = roberta_layer.self_attn_layer_norm.weight lowerCamelCase__: Any = roberta_layer.self_attn_layer_norm.bias # self attention lowerCamelCase__: BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) lowerCamelCase__: Tuple = roberta_layer.self_attn.q_proj.weight lowerCamelCase__: Optional[int] = roberta_layer.self_attn.q_proj.bias lowerCamelCase__: Optional[int] = roberta_layer.self_attn.k_proj.weight lowerCamelCase__: int = roberta_layer.self_attn.k_proj.bias lowerCamelCase__: Union[str, Any] = roberta_layer.self_attn.v_proj.weight lowerCamelCase__: List[str] = roberta_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase__: BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape lowerCamelCase__: int = roberta_layer.self_attn.out_proj.weight lowerCamelCase__: Tuple = roberta_layer.self_attn.out_proj.bias # this one is final layer norm lowerCamelCase__: Any = roberta_layer.final_layer_norm.weight lowerCamelCase__: Optional[int] = roberta_layer.final_layer_norm.bias # intermediate lowerCamelCase__: BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape lowerCamelCase__: Tuple = roberta_layer.fca.weight lowerCamelCase__: Tuple = roberta_layer.fca.bias # output lowerCamelCase__: BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape lowerCamelCase__: Any = roberta_layer.fca.weight lowerCamelCase__: Optional[int] = roberta_layer.fca.bias # end of layer if classification_head: lowerCamelCase__: Dict = roberta.model.classification_heads["""mnli"""].dense.weight lowerCamelCase__: Union[str, Any] = roberta.model.classification_heads["""mnli"""].dense.bias lowerCamelCase__: str = roberta.model.classification_heads["""mnli"""].out_proj.weight lowerCamelCase__: List[str] = roberta.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head lowerCamelCase__: List[Any] = roberta.model.encoder.lm_head.dense.weight lowerCamelCase__: List[Any] = roberta.model.encoder.lm_head.dense.bias lowerCamelCase__: Optional[Any] = roberta.model.encoder.lm_head.layer_norm.weight lowerCamelCase__: Optional[int] = roberta.model.encoder.lm_head.layer_norm.bias lowerCamelCase__: List[Any] = roberta.model.encoder.lm_head.weight lowerCamelCase__: Dict = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase__: torch.Tensor = roberta.encode(_UpperCamelCase ).unsqueeze(0 ) # batch of size 1 lowerCamelCase__: Dict = model(_UpperCamelCase )[0] if classification_head: lowerCamelCase__: Optional[int] = roberta.model.classification_heads["""mnli"""](roberta.extract_features(_UpperCamelCase ) ) else: lowerCamelCase__: List[Any] = roberta.model(_UpperCamelCase )[0] print(our_output.shape , their_output.shape ) lowerCamelCase__: Optional[int] = torch.max(torch.abs(our_output - their_output ) ).item() print(f"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 lowerCamelCase__: List[Any] = torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) pathlib.Path(_UpperCamelCase ).mkdir(parents=_UpperCamelCase , exist_ok=_UpperCamelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--roberta_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) _lowercase = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
306
0
'''simple docstring''' from __future__ import annotations from collections import deque class UpperCAmelCase_ : """simple docstring""" def __init__( self , UpperCAmelCase_ ): snake_case_ = [] self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []} ) for keyword in keywords: self.add_keyword(UpperCAmelCase_ ) self.set_fail_transitions() def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ ): for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def _lowercase ( self , UpperCAmelCase_ ): snake_case_ = 0 for character in keyword: snake_case_ = self.find_next_state(UpperCAmelCase_ , UpperCAmelCase_ ) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) snake_case_ = len(self.adlist ) - 1 else: snake_case_ = next_state self.adlist[current_state]["output"].append(UpperCAmelCase_ ) def _lowercase ( self ): snake_case_ = deque() for node in self.adlist[0]["next_states"]: q.append(UpperCAmelCase_ ) snake_case_ = 0 while q: snake_case_ = q.popleft() for child in self.adlist[r]["next_states"]: q.append(UpperCAmelCase_ ) snake_case_ = self.adlist[r]["fail_state"] while ( self.find_next_state(UpperCAmelCase_ , self.adlist[child]["value"] ) is None and state != 0 ): snake_case_ = self.adlist[state]["fail_state"] snake_case_ = self.find_next_state( UpperCAmelCase_ , self.adlist[child]["value"] ) if self.adlist[child]["fail_state"] is None: snake_case_ = 0 snake_case_ = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def _lowercase ( self , UpperCAmelCase_ ): snake_case_ = {} # returns a dict with keywords and list of its occurrences snake_case_ = 0 for i in range(len(UpperCAmelCase_ ) ): while ( self.find_next_state(UpperCAmelCase_ , string[i] ) is None and current_state != 0 ): snake_case_ = self.adlist[current_state]["fail_state"] snake_case_ = self.find_next_state(UpperCAmelCase_ , string[i] ) if next_state is None: snake_case_ = 0 else: snake_case_ = next_state for key in self.adlist[current_state]["output"]: if key not in result: snake_case_ = [] result[key].append(i - len(UpperCAmelCase_ ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
420
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json''', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" snake_case = """gpt_neox""" def __init__( self , UpperCAmelCase_=5_04_32 , UpperCAmelCase_=61_44 , UpperCAmelCase_=44 , UpperCAmelCase_=64 , UpperCAmelCase_=2_45_76 , UpperCAmelCase_="gelu" , UpperCAmelCase_=0.25 , UpperCAmelCase_=1_00_00 , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.1 , UpperCAmelCase_=20_48 , UpperCAmelCase_=0.02 , UpperCAmelCase_=1e-5 , UpperCAmelCase_=True , UpperCAmelCase_=0 , UpperCAmelCase_=2 , UpperCAmelCase_=False , UpperCAmelCase_=True , UpperCAmelCase_=None , **UpperCAmelCase_ , ): super().__init__(bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) snake_case_ = vocab_size snake_case_ = max_position_embeddings snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = rotary_pct snake_case_ = rotary_emb_base snake_case_ = attention_dropout snake_case_ = hidden_dropout snake_case_ = classifier_dropout snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = use_cache snake_case_ = tie_word_embeddings snake_case_ = use_parallel_residual snake_case_ = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( "The hidden size is not divisble by the number of attention heads! Make sure to update them!" ) def _lowercase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , UpperCAmelCase_ ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f'''got {self.rope_scaling}''' ) snake_case_ = self.rope_scaling.get("type" , UpperCAmelCase_ ) snake_case_ = self.rope_scaling.get("factor" , UpperCAmelCase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
420
1
"""simple docstring""" from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def snake_case ( A__ = "isbn/0140328726" ): UpperCAmelCase_ : int = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes if new_olid.count("/" ) != 1: UpperCAmelCase_ : Optional[int] = F"""{olid} is not a valid Open Library olid""" raise ValueError(A__ ) return requests.get(F"""https://openlibrary.org/{new_olid}.json""" ).json() def snake_case ( A__ ): UpperCAmelCase_ : Tuple = { "title": "Title", "publish_date": "Publish date", "authors": "Authors", "number_of_pages": "Number of pages:", "first_sentence": "First sentence", "isbn_10": "ISBN (10)", "isbn_13": "ISBN (13)", } UpperCAmelCase_ : Optional[int] = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} UpperCAmelCase_ : Tuple = [ get_openlibrary_data(author["key"] )["name"] for author in data["Authors"] ] UpperCAmelCase_ : Optional[int] = data["First sentence"]["value"] for key, value in data.items(): if isinstance(A__ ,A__ ): UpperCAmelCase_ : Dict = ", ".join(A__ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: lowerCamelCase_ = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f'Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.') continue print(f'\nSearching Open Library for ISBN: {isbn}...\n') try: lowerCamelCase_ = summarize_book(get_openlibrary_data(f'isbn/{isbn}')) print('''\n'''.join(f'{key}: {value}' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'Sorry, there are no results for ISBN: {isbn}.')
95
'''simple docstring''' import socket def lowerCAmelCase__ ( ): _A : Dict = socket.socket(socket.AF_INET ,socket.SOCK_STREAM ) _A : List[Any] = socket.gethostname() _A : List[str] = 12312 sock.connect((host, port) ) sock.send(b'Hello server!' ) with open('Received_file' ,'wb' ) as out_file: print('File opened' ) print('Receiving data...' ) while True: _A : Optional[int] = sock.recv(1024 ) if not data: break out_file.write(lowerCamelCase ) print('Successfully received the file' ) sock.close() print('Connection closed' ) if __name__ == "__main__": main()
128
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowerCAmelCase = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', F'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', F'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qpos_proj.weight', F'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kpos_proj.weight', F'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.sa_v_proj.weight', F'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', F'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', F'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kpos_proj.weight', F'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.ca_v_proj.weight', F'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', F'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', F'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', F'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.sa_qpos_proj.bias', F'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.sa_kpos_proj.bias', F'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.sa_v_proj.bias', F'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', F'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', F'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.ca_kpos_proj.bias', F'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.ca_v_proj.bias', F'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', F'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = state_dict.pop(lowercase_ ) __UpperCAmelCase : Tuple = val def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Optional[Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __UpperCAmelCase : Dict = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) __UpperCAmelCase : int = value else: __UpperCAmelCase : List[str] = value return new_state_dict def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=False ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : int = '''''' if is_panoptic: __UpperCAmelCase : List[Any] = '''conditional_detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __UpperCAmelCase : Dict = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) __UpperCAmelCase : Dict = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase : Any = in_proj_weight[:256, :] __UpperCAmelCase : Dict = in_proj_bias[:256] __UpperCAmelCase : str = in_proj_weight[256:512, :] __UpperCAmelCase : Any = in_proj_bias[256:512] __UpperCAmelCase : List[str] = in_proj_weight[-256:, :] __UpperCAmelCase : Tuple = in_proj_bias[-256:] def __SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase : Union[str, Any] = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Dict = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: __UpperCAmelCase : Dict = '''resnet101''' if "dc5" in model_name: __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : Optional[Any] = '''panoptic''' in model_name if is_panoptic: __UpperCAmelCase : Optional[int] = 250 else: __UpperCAmelCase : Dict = 91 __UpperCAmelCase : Optional[Any] = '''huggingface/label-files''' __UpperCAmelCase : int = '''coco-detection-id2label.json''' __UpperCAmelCase : Tuple = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase : Optional[Any] = {int(lowercase_ ): v for k, v in idalabel.items()} __UpperCAmelCase : Tuple = idalabel __UpperCAmelCase : Dict = {v: k for k, v in idalabel.items()} # load image processor __UpperCAmelCase : Any = '''coco_panoptic''' if is_panoptic else '''coco_detection''' __UpperCAmelCase : str = ConditionalDetrImageProcessor(format=lowercase_ ) # prepare image __UpperCAmelCase : Optional[int] = prepare_img() __UpperCAmelCase : Optional[int] = image_processor(images=lowercase_ , return_tensors='''pt''' ) __UpperCAmelCase : List[Any] = encoding['''pixel_values'''] logger.info(f"Converting model {model_name}..." ) # load original model from torch hub __UpperCAmelCase : Optional[Any] = torch.hub.load('''DeppMeng/ConditionalDETR''' , lowercase_ , pretrained=lowercase_ ).eval() __UpperCAmelCase : Any = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: __UpperCAmelCase : str = '''conditional_detr.''' + src rename_key(lowercase_ , lowercase_ , lowercase_ ) __UpperCAmelCase : Any = rename_backbone_keys(lowercase_ ) # query, key and value matrices need special treatment read_in_q_k_v(lowercase_ , is_panoptic=lowercase_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __UpperCAmelCase : Optional[int] = '''conditional_detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): __UpperCAmelCase : Union[str, Any] = state_dict.pop(lowercase_ ) __UpperCAmelCase : str = val elif "class_labels_classifier" in key or "bbox_predictor" in key: __UpperCAmelCase : Tuple = state_dict.pop(lowercase_ ) __UpperCAmelCase : int = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: __UpperCAmelCase : Dict = state_dict.pop(lowercase_ ) __UpperCAmelCase : str = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): __UpperCAmelCase : List[Any] = state_dict.pop(lowercase_ ) __UpperCAmelCase : int = val # finally, create HuggingFace model and load state dict __UpperCAmelCase : str = ConditionalDetrForSegmentation(lowercase_ ) if is_panoptic else ConditionalDetrForObjectDetection(lowercase_ ) model.load_state_dict(lowercase_ ) model.eval() model.push_to_hub(repo_id=lowercase_ , organization='''DepuMeng''' , commit_message='''Add model''' ) # verify our conversion __UpperCAmelCase : List[Any] = conditional_detr(lowercase_ ) __UpperCAmelCase : int = model(lowercase_ ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1e-4 ) # Save model and image processor logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) model.save_pretrained(lowercase_ ) image_processor.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) lowerCAmelCase = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
675
def __SCREAMING_SNAKE_CASE ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCAmelCase = generate_large_matrix() lowerCAmelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: '''simple docstring''' assert all(row == sorted(lowercase_ , reverse=lowercase_ ) for row in grid ) assert all(list(lowercase_ ) == sorted(lowercase_ , reverse=lowercase_ ) for col in zip(*lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = 0 __UpperCAmelCase : List[Any] = len(lowercase_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase : List[Any] = (left + right) // 2 __UpperCAmelCase : Dict = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase : Dict = mid + 1 else: __UpperCAmelCase : Optional[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : Dict = len(grid[0] ) for i in range(len(lowercase_ ) ): __UpperCAmelCase : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase_ ) * len(grid[0] )) - total def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = 0 for row in grid: for i, number in enumerate(lowercase_ ): if number < 0: total += len(lowercase_ ) - i break return total def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCAmelCase : Tuple = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase : Union[str, Any] = timeit(f"{func}(grid=grid)" , setup=lowercase_ , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
675
1
'''simple docstring''' import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def lowerCAmelCase_ ( snake_case_ : dict ) -> tuple: '''simple docstring''' return (data["data"], data["target"]) def lowerCAmelCase_ ( snake_case_ : np.ndarray , snake_case_ : np.ndarray , snake_case_ : np.ndarray ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(snake_case_ , snake_case_ ) # Predict target for test data UpperCAmelCase_ = xgb.predict(snake_case_ ) UpperCAmelCase_ = predictions.reshape(len(snake_case_ ) , 1 ) return predictions def lowerCAmelCase_ ( ) -> None: '''simple docstring''' UpperCAmelCase_ = fetch_california_housing() UpperCAmelCase_ , UpperCAmelCase_ = data_handling(snake_case_ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = train_test_split( snake_case_ , snake_case_ , test_size=0.25 , random_state=1 ) UpperCAmelCase_ = xgboost(snake_case_ , snake_case_ , snake_case_ ) # Error printing print(f"""Mean Absolute Error : {mean_absolute_error(snake_case_ , snake_case_ )}""" ) print(f"""Mean Square Error : {mean_squared_error(snake_case_ , snake_case_ )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
78
"""simple docstring""" import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml SCREAMING_SNAKE_CASE : Union[str, Any] = NewType('''DataClass''', Any) SCREAMING_SNAKE_CASE : Tuple = NewType('''DataClassType''', Any) def __UpperCAmelCase ( snake_case_ : Tuple ) -> List[Any]: """simple docstring""" if isinstance(snake_case_ , snake_case_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" ) def __UpperCAmelCase ( snake_case_ : list ) -> Callable[[str], Any]: """simple docstring""" _lowerCAmelCase = {str(snake_case_ ): choice for choice in choices} return lambda snake_case_ : str_to_choice.get(snake_case_ , snake_case_ ) def __UpperCAmelCase ( *, snake_case_ : Union[str, List[str]] = None , snake_case_ : str = None , snake_case_ : Any = dataclasses.MISSING , snake_case_ : Callable[[], Any] = dataclasses.MISSING , snake_case_ : dict = None , **snake_case_ : Union[str, Any] , ) -> dataclasses.Field: """simple docstring""" if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls _lowerCAmelCase = {} if aliases is not None: _lowerCAmelCase = aliases if help is not None: _lowerCAmelCase = help return dataclasses.field(metadata=snake_case_ , default=snake_case_ , default_factory=snake_case_ , **snake_case_ ) class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 42 def __init__(self , lowerCamelCase , **lowerCamelCase ): '''simple docstring''' if "formatter_class" not in kwargs: _lowerCAmelCase = ArgumentDefaultsHelpFormatter super().__init__(**lowerCamelCase ) if dataclasses.is_dataclass(lowerCamelCase ): _lowerCAmelCase = [dataclass_types] _lowerCAmelCase = list(lowerCamelCase ) for dtype in self.dataclass_types: self._add_dataclass_arguments(lowerCamelCase ) @staticmethod def A__ (lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = f"""--{field.name}""" _lowerCAmelCase = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , lowerCamelCase ): raise RuntimeError( """Unresolved type detected, which should have been done with the help of """ """`typing.get_type_hints` method by default""" ) _lowerCAmelCase = kwargs.pop("""aliases""" , [] ) if isinstance(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = [aliases] _lowerCAmelCase = getattr(field.type , """__origin__""" , field.type ) if origin_type is Union or (hasattr(lowerCamelCase , """UnionType""" ) and isinstance(lowerCamelCase , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(lowerCamelCase ) not in field.type.__args__ ): raise ValueError( """Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because""" """ the argument parser only supports one type per argument.""" f""" Problem encountered in field '{field.name}'.""" ) if type(lowerCamelCase ) not in field.type.__args__: # filter `str` in Union _lowerCAmelCase = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] _lowerCAmelCase = getattr(field.type , """__origin__""" , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) _lowerCAmelCase = ( field.type.__args__[0] if isinstance(lowerCamelCase , field.type.__args__[1] ) else field.type.__args__[1] ) _lowerCAmelCase = getattr(field.type , """__origin__""" , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) _lowerCAmelCase = {} if origin_type is Literal or (isinstance(field.type , lowerCamelCase ) and issubclass(field.type , lowerCamelCase )): if origin_type is Literal: _lowerCAmelCase = field.type.__args__ else: _lowerCAmelCase = [x.value for x in field.type] _lowerCAmelCase = make_choice_type_function(kwargs["""choices"""] ) if field.default is not dataclasses.MISSING: _lowerCAmelCase = field.default else: _lowerCAmelCase = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument _lowerCAmelCase = copy(lowerCamelCase ) # Hack because type=bool in argparse does not behave as we want. _lowerCAmelCase = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. _lowerCAmelCase = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way _lowerCAmelCase = default # This tells argparse we accept 0 or 1 value after --field_name _lowerCAmelCase = """?""" # This is the value that will get picked if we do --field_name (without value) _lowerCAmelCase = True elif isclass(lowerCamelCase ) and issubclass(lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = field.type.__args__[0] _lowerCAmelCase = """+""" if field.default_factory is not dataclasses.MISSING: _lowerCAmelCase = field.default_factory() elif field.default is dataclasses.MISSING: _lowerCAmelCase = True else: _lowerCAmelCase = field.type if field.default is not dataclasses.MISSING: _lowerCAmelCase = field.default elif field.default_factory is not dataclasses.MISSING: _lowerCAmelCase = field.default_factory() else: _lowerCAmelCase = True parser.add_argument(lowerCamelCase , *lowerCamelCase , **lowerCamelCase ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): _lowerCAmelCase = False parser.add_argument(f"""--no_{field.name}""" , action="""store_false""" , dest=field.name , **lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' if hasattr(lowerCamelCase , """_argument_group_name""" ): _lowerCAmelCase = self.add_argument_group(dtype._argument_group_name ) else: _lowerCAmelCase = self try: _lowerCAmelCase = get_type_hints(lowerCamelCase ) except NameError: raise RuntimeError( f"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ """removing line of `from __future__ import annotations` which opts in Postponed """ """Evaluation of Annotations (PEP 563)""" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(lowerCamelCase ): _lowerCAmelCase = """.""".join(map(lowerCamelCase , sys.version_info[:3] ) ) raise RuntimeError( f"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ """line of `from __future__ import annotations` which opts in union types as """ """`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To """ """support Python versions that lower than 3.10, you need to use """ """`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of """ """`X | None`.""" ) from ex raise for field in dataclasses.fields(lowerCamelCase ): if not field.init: continue _lowerCAmelCase = type_hints[field.name] self._parse_dataclass_field(lowerCamelCase , lowerCamelCase ) def A__ (self , lowerCamelCase=None , lowerCamelCase=False , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=None , ): '''simple docstring''' if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): _lowerCAmelCase = [] if args_filename: args_files.append(Path(lowerCamelCase ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(""".args""" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values _lowerCAmelCase = ArgumentParser() args_file_parser.add_argument(lowerCamelCase , type=lowerCamelCase , action="""append""" ) # Use only remaining args for further parsing (remove the args_file_flag) _lowerCAmelCase , _lowerCAmelCase = args_file_parser.parse_known_args(args=lowerCamelCase ) _lowerCAmelCase = vars(lowerCamelCase ).get(args_file_flag.lstrip("""-""" ) , lowerCamelCase ) if cmd_args_file_paths: args_files.extend([Path(lowerCamelCase ) for p in cmd_args_file_paths] ) _lowerCAmelCase = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last _lowerCAmelCase = file_args + args if args is not None else file_args + sys.argv[1:] _lowerCAmelCase , _lowerCAmelCase = self.parse_known_args(args=lowerCamelCase ) _lowerCAmelCase = [] for dtype in self.dataclass_types: _lowerCAmelCase = {f.name for f in dataclasses.fields(lowerCamelCase ) if f.init} _lowerCAmelCase = {k: v for k, v in vars(lowerCamelCase ).items() if k in keys} for k in keys: delattr(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = dtype(**lowerCamelCase ) outputs.append(lowerCamelCase ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(lowerCamelCase ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def A__ (self , lowerCamelCase , lowerCamelCase = False ): '''simple docstring''' _lowerCAmelCase = set(args.keys() ) _lowerCAmelCase = [] for dtype in self.dataclass_types: _lowerCAmelCase = {f.name for f in dataclasses.fields(lowerCamelCase ) if f.init} _lowerCAmelCase = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) _lowerCAmelCase = dtype(**lowerCamelCase ) outputs.append(lowerCamelCase ) if not allow_extra_keys and unused_keys: raise ValueError(f"""Some keys are not used by the HfArgumentParser: {sorted(lowerCamelCase )}""" ) return tuple(lowerCamelCase ) def A__ (self , lowerCamelCase , lowerCamelCase = False ): '''simple docstring''' with open(Path(lowerCamelCase ) , encoding="""utf-8""" ) as open_json_file: _lowerCAmelCase = json.loads(open_json_file.read() ) _lowerCAmelCase = self.parse_dict(lowerCamelCase , allow_extra_keys=lowerCamelCase ) return tuple(lowerCamelCase ) def A__ (self , lowerCamelCase , lowerCamelCase = False ): '''simple docstring''' _lowerCAmelCase = self.parse_dict(yaml.safe_load(Path(lowerCamelCase ).read_text() ) , allow_extra_keys=lowerCamelCase ) return tuple(lowerCamelCase )
156
0
"""simple docstring""" import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger() def UpperCamelCase ( _lowerCAmelCase : int , _lowerCAmelCase : str , _lowerCAmelCase : LevitConfig , _lowerCAmelCase : Path , _lowerCAmelCase : bool = True ): print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": __a = timm.create_model("""levit_128s""" , pretrained=_lowerCAmelCase ) else: __a = timm.create_model("""levit_128""" , pretrained=_lowerCAmelCase ) if hidden_sizes == 192: __a = timm.create_model("""levit_192""" , pretrained=_lowerCAmelCase ) if hidden_sizes == 256: __a = timm.create_model("""levit_256""" , pretrained=_lowerCAmelCase ) if hidden_sizes == 384: __a = timm.create_model("""levit_384""" , pretrained=_lowerCAmelCase ) from_model.eval() __a = LevitForImageClassificationWithTeacher(_lowerCAmelCase ).eval() __a = OrderedDict() __a = from_model.state_dict() __a = list(from_model.state_dict().keys() ) __a = list(our_model.state_dict().keys() ) print(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for i in range(len(_lowerCAmelCase ) ): __a = weights[og_keys[i]] our_model.load_state_dict(_lowerCAmelCase ) __a = torch.randn((2, 3, 224, 224) ) __a = from_model(_lowerCAmelCase ) __a = our_model(_lowerCAmelCase ).logits assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase ), "The model logits don't match the original one." __a = name print(_lowerCAmelCase ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) __a = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def UpperCamelCase ( _lowerCAmelCase : Path , _lowerCAmelCase : str = None , _lowerCAmelCase : bool = True ): __a = """imagenet-1k-id2label.json""" __a = 1000 __a = (1, num_labels) __a = """huggingface/label-files""" __a = num_labels __a = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) __a = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} __a = partial(_lowerCAmelCase , num_labels=_lowerCAmelCase , idalabel=_lowerCAmelCase , labelaid=_lowerCAmelCase ) __a = { """levit-128S""": 128, """levit-128""": 128, """levit-192""": 192, """levit-256""": 256, """levit-384""": 384, } __a = { """levit-128S""": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), """levit-128""": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), """levit-192""": ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), """levit-256""": ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), """levit-384""": ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , _lowerCAmelCase , names_to_config[model_name] , _lowerCAmelCase , _lowerCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return config, expected_shape if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help="""The name of the model you wish to convert, it must be one of the supported Levit* architecture,""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""levit-dump-folder/""", type=Path, required=False, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") parser.add_argument( """--no-push_to_hub""", dest="""push_to_hub""", action="""store_false""", help="""Do not push model and image processor to the hub""", ) __A = parser.parse_args() __A = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
173
"""simple docstring""" def UpperCamelCase ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) __a = (boundary[1] - boundary[0]) / steps __a = boundary[0] __a = boundary[1] __a = make_points(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __a = 0.0 y += (h / 2.0) * f(_lowerCAmelCase ) for i in x_i: # print(i) y += h * f(_lowerCAmelCase ) y += (h / 2.0) * f(_lowerCAmelCase ) return y def UpperCamelCase ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : int ): __a = a + h while x < (b - h): yield x __a = x + h def UpperCamelCase ( _lowerCAmelCase : int ): # enter your function here __a = (x - 0) * (x - 0) return y def UpperCamelCase ( ): __a = 0.0 # Lower bound of integration __a = 1.0 # Upper bound of integration __a = 10.0 # define number of steps or resolution __a = [a, b] # define boundary of integration __a = method_a(_lowerCAmelCase , _lowerCAmelCase ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
173
1
def A ( _lowercase ): SCREAMING_SNAKE_CASE : int = 1 SCREAMING_SNAKE_CASE : Dict = 2 while i * i <= n: SCREAMING_SNAKE_CASE : Optional[int] = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def A ( ): SCREAMING_SNAKE_CASE : List[Any] = 1 SCREAMING_SNAKE_CASE : List[str] = 1 while True: i += 1 t_num += i if count_divisors(_lowercase ) > 500: break return t_num if __name__ == "__main__": print(solution())
248
def A ( _lowercase = 10**9 ): SCREAMING_SNAKE_CASE : int = 1 SCREAMING_SNAKE_CASE : str = 2 SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value SCREAMING_SNAKE_CASE : List[Any] = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"""{solution() = }""")
248
1
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax _lowerCamelCase : Dict = logging.get_logger(__name__) @add_end_docstrings(__UpperCAmelCase) class lowercase ( __UpperCAmelCase): def __init__( self : str , **_lowerCamelCase : Dict ): """simple docstring""" super().__init__(**_lowerCamelCase ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Any , _lowerCamelCase : Union[str, List[str], "Image", List["Image"]] , **_lowerCamelCase : Optional[Any] ): """simple docstring""" return super().__call__(_lowerCamelCase , **_lowerCamelCase ) def a_ ( self : List[str] , **_lowerCamelCase : str ): """simple docstring""" A_ : List[str] = {} if "candidate_labels" in kwargs: A_ : int = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: A_ : List[Any] = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def a_ ( self : int , _lowerCamelCase : Any , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Any="This is a photo of {}." ): """simple docstring""" A_ : Dict = load_image(_lowerCamelCase ) A_ : Union[str, Any] = self.image_processor(images=[image] , return_tensors=self.framework ) A_ : Union[str, Any] = candidate_labels A_ : Optional[Any] = [hypothesis_template.format(_lowerCamelCase ) for x in candidate_labels] A_ : List[Any] = self.tokenizer(_lowerCamelCase , return_tensors=self.framework , padding=_lowerCamelCase ) A_ : int = [text_inputs] return inputs def a_ ( self : Union[str, Any] , _lowerCamelCase : Tuple ): """simple docstring""" A_ : Tuple = model_inputs.pop('''candidate_labels''' ) A_ : Optional[Any] = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , _lowerCamelCase ): A_ : List[Any] = text_inputs[0] else: # Batching case. A_ : int = text_inputs[0][0] A_ : int = self.model(**_lowerCamelCase , **_lowerCamelCase ) A_ : List[str] = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def a_ ( self : Tuple , _lowerCamelCase : Any ): """simple docstring""" A_ : str = model_outputs.pop('''candidate_labels''' ) A_ : List[str] = model_outputs['''logits'''][0] if self.framework == "pt": A_ : List[Any] = logits.softmax(dim=-1 ).squeeze(-1 ) A_ : Tuple = probs.tolist() if not isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : Union[str, Any] = [scores] elif self.framework == "tf": A_ : List[str] = stable_softmax(_lowerCamelCase , axis=-1 ) A_ : List[Any] = probs.numpy().tolist() else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) A_ : Optional[Any] = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(_lowerCamelCase , _lowerCamelCase ) , key=lambda _lowerCamelCase : -x[0] ) ] return result
361
"""simple docstring""" from __future__ import annotations from collections import namedtuple def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : int = namedtuple('''result''' , '''name value''' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('''Only one argument must be 0''' ) elif power < 0: raise ValueError( '''Power cannot be negative in any electrical/electronics system''' ) elif voltage == 0: return result('''voltage''' , power / current ) elif current == 0: return result('''current''' , power / voltage ) elif power == 0: return result('''power''' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
361
1
from collections import deque class a__ : def __init__( self : List[str],_A : str,_A : int,_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = process_name # process name SCREAMING_SNAKE_CASE_ : Optional[Any] = arrival_time # arrival time of the process # completion time of finished process or last interrupted time SCREAMING_SNAKE_CASE_ : Optional[int] = arrival_time SCREAMING_SNAKE_CASE_ : Tuple = burst_time # remaining burst time SCREAMING_SNAKE_CASE_ : Optional[int] = 0 # total time of the process wait in ready queue SCREAMING_SNAKE_CASE_ : int = 0 # time from arrival time to completion time class a__ : def __init__( self : int,_A : int,_A : list[int],_A : deque[Process],_A : int,): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = number_of_queues # time slice of queues that round robin algorithm applied SCREAMING_SNAKE_CASE_ : Dict = time_slices # unfinished process is in this ready_queue SCREAMING_SNAKE_CASE_ : Any = queue # current time SCREAMING_SNAKE_CASE_ : Union[str, Any] = current_time # finished process is in this sequence queue SCREAMING_SNAKE_CASE_ : deque[Process] = deque() def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def __UpperCamelCase ( self : List[str],_A : list[Process] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [] for i in range(len(_A ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def __UpperCamelCase ( self : List[str],_A : list[Process] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [] for i in range(len(_A ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def __UpperCamelCase ( self : Dict,_A : list[Process] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [] for i in range(len(_A ) ): completion_times.append(queue[i].stop_time ) return completion_times def __UpperCamelCase ( self : Any,_A : deque[Process] ): """simple docstring""" return [q.burst_time for q in queue] def __UpperCamelCase ( self : Any,_A : Process ): """simple docstring""" process.waiting_time += self.current_time - process.stop_time return process.waiting_time def __UpperCamelCase ( self : Optional[int],_A : deque[Process] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : deque[Process] = deque() # sequence deque of finished process while len(_A ) != 0: SCREAMING_SNAKE_CASE_ : Optional[Any] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_A ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 SCREAMING_SNAKE_CASE_ : Any = 0 # set the process's turnaround time because it is finished SCREAMING_SNAKE_CASE_ : Optional[int] = self.current_time - cp.arrival_time # set the completion time SCREAMING_SNAKE_CASE_ : str = self.current_time # add the process to queue that has finished queue finished.append(_A ) self.finish_queue.extend(_A ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def __UpperCamelCase ( self : Optional[Any],_A : deque[Process],_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_A ) ): SCREAMING_SNAKE_CASE_ : Any = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_A ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time SCREAMING_SNAKE_CASE_ : int = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_A ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished SCREAMING_SNAKE_CASE_ : List[str] = 0 # set the finish time SCREAMING_SNAKE_CASE_ : int = self.current_time # update the process' turnaround time because it is finished SCREAMING_SNAKE_CASE_ : str = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_A ) self.finish_queue.extend(_A ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def __UpperCamelCase ( self : Dict ): """simple docstring""" for i in range(self.number_of_queues - 1 ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.round_robin( self.ready_queue,self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest __lowerCamelCase : List[Any] = Process('''P1''', 0, 53) __lowerCamelCase : Optional[Any] = Process('''P2''', 0, 17) __lowerCamelCase : Dict = Process('''P3''', 0, 68) __lowerCamelCase : List[Any] = Process('''P4''', 0, 24) __lowerCamelCase : Tuple = 3 __lowerCamelCase : Dict = [17, 25] __lowerCamelCase : str = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) __lowerCamelCase : Any = Process('''P1''', 0, 53) __lowerCamelCase : int = Process('''P2''', 0, 17) __lowerCamelCase : Any = Process('''P3''', 0, 68) __lowerCamelCase : List[str] = Process('''P4''', 0, 24) __lowerCamelCase : Any = 3 __lowerCamelCase : int = [17, 25] __lowerCamelCase : Optional[int] = deque([Pa, Pa, Pa, Pa]) __lowerCamelCase : Optional[Any] = MLFQ(number_of_queues, time_slices, queue, 0) __lowerCamelCase : List[Any] = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( f'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( f'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( f'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
216
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 __lowerCamelCase : Union[str, Any] = data_utils.TransfoXLTokenizer __lowerCamelCase : Union[str, Any] = data_utils.TransfoXLCorpus __lowerCamelCase : Optional[Any] = data_utils __lowerCamelCase : Optional[int] = data_utils def _snake_case ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : Any ): """simple docstring""" if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(lowerCAmelCase , "rb" ) as fp: SCREAMING_SNAKE_CASE_ : str = pickle.load(lowerCAmelCase , encoding="latin1" ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) SCREAMING_SNAKE_CASE_ : Dict = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["pretrained_vocab_file"] print(f'Save vocabulary to {pytorch_vocab_dump_path}' ) SCREAMING_SNAKE_CASE_ : int = corpus.vocab.__dict__ torch.save(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : str = corpus.__dict__ corpus_dict_no_vocab.pop("vocab" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = pytorch_dump_folder_path + "/" + CORPUS_NAME print(f'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(lowerCAmelCase , lowerCAmelCase ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model SCREAMING_SNAKE_CASE_ : List[str] = os.path.abspath(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = os.path.abspath(lowerCAmelCase ) print(f'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": SCREAMING_SNAKE_CASE_ : Union[str, Any] = TransfoXLConfig() else: SCREAMING_SNAKE_CASE_ : Dict = TransfoXLConfig.from_json_file(lowerCAmelCase ) print(f'Building PyTorch model from configuration: {config}' ) SCREAMING_SNAKE_CASE_ : int = TransfoXLLMHeadModel(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = load_tf_weights_in_transfo_xl(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Save pytorch-model SCREAMING_SNAKE_CASE_ : str = os.path.join(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = os.path.join(lowerCAmelCase , lowerCAmelCase ) print(f'Save PyTorch model to {os.path.abspath(lowerCAmelCase )}' ) torch.save(model.state_dict() , lowerCAmelCase ) print(f'Save configuration file to {os.path.abspath(lowerCAmelCase )}' ) with open(lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __lowerCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--tf_checkpoint_path''', default='''''', type=str, help='''An optional path to a TensorFlow checkpoint path to be converted.''', ) parser.add_argument( '''--transfo_xl_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--transfo_xl_dataset_file''', default='''''', type=str, help='''An optional dataset file to be converted in a vocabulary.''', ) __lowerCamelCase : Dict = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
216
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _snake_case = logging.get_logger(__name__) def __snake_case ( SCREAMING_SNAKE_CASE: Optional[int] ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(SCREAMING_SNAKE_CASE ): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""" ) class _SCREAMING_SNAKE_CASE ( UpperCAmelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] = ["pixel_values"] def __init__( self : Dict , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[int, float] = 1 / 255 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , **UpperCAmelCase_ : Optional[int] , ) -> None: """simple docstring""" super().__init__(**UpperCAmelCase_ ) _lowerCAmelCase = size if size is not None else {'shortest_edge': 224} _lowerCAmelCase = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_ ) _lowerCAmelCase = crop_size if crop_size is not None else {'height': 224, 'width': 224} _lowerCAmelCase = get_size_dict(UpperCAmelCase_ , param_name='crop_size' ) _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size _lowerCAmelCase = resample _lowerCAmelCase = do_rescale _lowerCAmelCase = rescale_factor _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCamelCase ( self : str , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[int] , ) -> np.ndarray: """simple docstring""" _lowerCAmelCase = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_ ) if "shortest_edge" in size: _lowerCAmelCase = get_resize_output_image_size(UpperCAmelCase_ , size['shortest_edge'] , default_to_square=UpperCAmelCase_ ) elif "height" in size and "width" in size: _lowerCAmelCase = (size['height'], size['width']) else: raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def __lowerCamelCase ( self : Optional[Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Tuple , ) -> np.ndarray: """simple docstring""" _lowerCAmelCase = get_size_dict(UpperCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(UpperCAmelCase_ , size=(size['height'], size['width']) , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def __lowerCamelCase ( self : Optional[int] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[int, float] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : int , ) -> Any: """simple docstring""" return rescale(UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def __lowerCamelCase ( self : Optional[int] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Union[str, Any] , ) -> np.ndarray: """simple docstring""" return normalize(UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def __lowerCamelCase ( self : Tuple , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : float = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: """simple docstring""" if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. _lowerCAmelCase = to_numpy_array(UpperCAmelCase_ ) if do_resize: _lowerCAmelCase = self.resize(image=UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ ) if do_center_crop: _lowerCAmelCase = self.center_crop(UpperCAmelCase_ , size=UpperCAmelCase_ ) if do_rescale: _lowerCAmelCase = self.rescale(image=UpperCAmelCase_ , scale=UpperCAmelCase_ ) if do_normalize: _lowerCAmelCase = self.normalize(image=UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ ) _lowerCAmelCase = to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_ ) return image def __lowerCamelCase ( self : int , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : float = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase_ : int , ) -> PIL.Image.Image: """simple docstring""" _lowerCAmelCase = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase = resample if resample is not None else self.resample _lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase = image_std if image_std is not None else self.image_std _lowerCAmelCase = size if size is not None else self.size _lowerCAmelCase = get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_ ) _lowerCAmelCase = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase = get_size_dict(UpperCAmelCase_ , param_name='crop_size' ) if not valid_images(UpperCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) _lowerCAmelCase = make_batched(UpperCAmelCase_ ) _lowerCAmelCase = [ [ self._preprocess_image( image=UpperCAmelCase_ , do_resize=UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ , do_center_crop=UpperCAmelCase_ , crop_size=UpperCAmelCase_ , do_rescale=UpperCAmelCase_ , rescale_factor=UpperCAmelCase_ , do_normalize=UpperCAmelCase_ , image_mean=UpperCAmelCase_ , image_std=UpperCAmelCase_ , data_format=UpperCAmelCase_ , ) for img in video ] for video in videos ] _lowerCAmelCase = {'pixel_values': videos} return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_ )
491
"""simple docstring""" from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Dict=99 , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : Any=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : int=512 , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Optional[int]="None" , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : Tuple=None , ) -> Optional[Any]: """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = relative_attention _lowerCAmelCase = position_biased_input _lowerCAmelCase = pos_att_type _lowerCAmelCase = scope def __lowerCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple ) -> int: """simple docstring""" _lowerCAmelCase = TFDebertaVaModel(config=UpperCAmelCase_ ) _lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowerCAmelCase = [input_ids, input_mask] _lowerCAmelCase = model(UpperCAmelCase_ ) _lowerCAmelCase = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ) -> Optional[int]: """simple docstring""" _lowerCAmelCase = TFDebertaVaForMaskedLM(config=UpperCAmelCase_ ) _lowerCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _lowerCAmelCase = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ) -> List[str]: """simple docstring""" _lowerCAmelCase = self.num_labels _lowerCAmelCase = TFDebertaVaForSequenceClassification(config=UpperCAmelCase_ ) _lowerCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _lowerCAmelCase = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ) -> Tuple: """simple docstring""" _lowerCAmelCase = self.num_labels _lowerCAmelCase = TFDebertaVaForTokenClassification(config=UpperCAmelCase_ ) _lowerCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _lowerCAmelCase = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] ) -> List[Any]: """simple docstring""" _lowerCAmelCase = TFDebertaVaForQuestionAnswering(config=UpperCAmelCase_ ) _lowerCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _lowerCAmelCase = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCamelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE_: str = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_: str = False SCREAMING_SNAKE_CASE_: List[str] = False def __lowerCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _lowerCAmelCase = TFDebertaVaModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def __lowerCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def __lowerCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def __lowerCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def __lowerCamelCase ( self : Dict ) -> List[str]: """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def __lowerCamelCase ( self : Any ) -> int: """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def __lowerCamelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def __lowerCamelCase ( self : List[str] ) -> List[Any]: """simple docstring""" _lowerCAmelCase = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason='Model not available yet' ) def __lowerCamelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" pass @slow def __lowerCamelCase ( self : Any ) -> int: """simple docstring""" _lowerCAmelCase = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' ) _lowerCAmelCase = tf.constant([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) _lowerCAmelCase = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _lowerCAmelCase = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _lowerCAmelCase = tf.constant( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 )
491
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
621
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowerCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = StableDiffusionInpaintPipeline SCREAMING_SNAKE_CASE_: List[str] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS SCREAMING_SNAKE_CASE_: Dict = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE_: Any = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess SCREAMING_SNAKE_CASE_: Any = frozenset([] ) def A ( self ) -> Optional[Any]: torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowerCAmelCase_ , ) _SCREAMING_SNAKE_CASE : List[str] = PNDMScheduler(skip_prk_steps=lowerCAmelCase_ ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : Dict = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , ) _SCREAMING_SNAKE_CASE : Dict = CLIPTextModel(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _SCREAMING_SNAKE_CASE : Tuple = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def A ( self , lowerCAmelCase_ , lowerCAmelCase_=0 ) -> Optional[int]: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched _SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] _SCREAMING_SNAKE_CASE : Any = Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert('RGB' ).resize((6_4, 6_4) ) _SCREAMING_SNAKE_CASE : Optional[Any] = Image.fromarray(np.uinta(image + 4 ) ).convert('RGB' ).resize((6_4, 6_4) ) if str(lowerCAmelCase_ ).startswith('mps' ): _SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(lowerCAmelCase_ ) else: _SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Optional[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def A ( self ) -> str: _SCREAMING_SNAKE_CASE : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE : str = self.get_dummy_components() _SCREAMING_SNAKE_CASE : Any = StableDiffusionInpaintPipeline(**lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : List[str] = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe(**lowerCAmelCase_ ).images _SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _SCREAMING_SNAKE_CASE : List[str] = np.array([0.4_727, 0.5_735, 0.3_941, 0.5_446, 0.5_926, 0.4_394, 0.5_062, 0.4_654, 0.4_476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self ) -> str: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): def A ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) _SCREAMING_SNAKE_CASE : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) _SCREAMING_SNAKE_CASE : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy' ) _SCREAMING_SNAKE_CASE : Optional[Any] = 'stabilityai/stable-diffusion-2-inpainting' _SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase_ , safety_checker=lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() _SCREAMING_SNAKE_CASE : List[str] = 'Face of a yellow cat, high resolution, sitting on a park bench' _SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : List[Any] = pipe( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , mask_image=lowerCAmelCase_ , generator=lowerCAmelCase_ , output_type='np' , ) _SCREAMING_SNAKE_CASE : int = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 9e-3 def A ( self ) -> int: _SCREAMING_SNAKE_CASE : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) _SCREAMING_SNAKE_CASE : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) _SCREAMING_SNAKE_CASE : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy' ) _SCREAMING_SNAKE_CASE : Optional[Any] = 'stabilityai/stable-diffusion-2-inpainting' _SCREAMING_SNAKE_CASE : str = StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase_ , torch_dtype=torch.floataa , safety_checker=lowerCAmelCase_ , ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() _SCREAMING_SNAKE_CASE : str = 'Face of a yellow cat, high resolution, sitting on a park bench' _SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : List[Any] = pipe( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , mask_image=lowerCAmelCase_ , generator=lowerCAmelCase_ , output_type='np' , ) _SCREAMING_SNAKE_CASE : Optional[int] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5e-1 def A ( self ) -> List[str]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _SCREAMING_SNAKE_CASE : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) _SCREAMING_SNAKE_CASE : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) _SCREAMING_SNAKE_CASE : str = 'stabilityai/stable-diffusion-2-inpainting' _SCREAMING_SNAKE_CASE : List[Any] = PNDMScheduler.from_pretrained(lowerCAmelCase_ , subfolder='scheduler' ) _SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _SCREAMING_SNAKE_CASE : str = 'Face of a yellow cat, high resolution, sitting on a park bench' _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : Dict = pipe( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , mask_image=lowerCAmelCase_ , generator=lowerCAmelCase_ , num_inference_steps=2 , output_type='np' , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
621
1
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata __snake_case = """""" if version.parse(importlib_metadata.version("""jiwer""")) < version.parse("""2.3.0"""): class _lowerCAmelCase ( tr.AbstractTransform ): def __init__( self , UpperCamelCase__ = " " ) -> Any: '''simple docstring''' snake_case : Optional[Any] = sentence_delimiter def lowerCamelCase ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' return list(UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' snake_case : Dict = [] for sent_idx, sentence in enumerate(UpperCamelCase__ ): chars.extend(self.process_string(UpperCamelCase__ ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(UpperCamelCase__ ) - 1: chars.append(self.sentence_delimiter ) return chars __snake_case = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: __snake_case = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) __snake_case = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ __snake_case = """\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. """ __snake_case = """ Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> cer = datasets.load_metric(\"cer\") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", "https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates", ] , ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ) -> Optional[int]: '''simple docstring''' if concatenate_texts: return jiwer.compute_measures( UpperCamelCase__ , UpperCamelCase__ , truth_transform=UpperCamelCase__ , hypothesis_transform=UpperCamelCase__ , )["wer"] snake_case : Optional[int] = 0 snake_case : int = 0 for prediction, reference in zip(UpperCamelCase__ , UpperCamelCase__ ): snake_case : Dict = jiwer.compute_measures( UpperCamelCase__ , UpperCamelCase__ , truth_transform=UpperCamelCase__ , hypothesis_transform=UpperCamelCase__ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
117
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __snake_case = 16 __snake_case = 32 def __lowerCAmelCase ( lowercase : Accelerator , lowercase : int = 16 ) -> Union[str, Any]: """simple docstring""" snake_case : int = AutoTokenizer.from_pretrained("bert-base-cased" ) snake_case : str = load_dataset("glue" , "mrpc" ) def tokenize_function(lowercase : Tuple ): # max_length=None => use the model max length (it's actually the default) snake_case : List[str] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowercase , max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case : Any = datasets.map( lowercase , batched=lowercase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case : Tuple = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowercase : str ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case : Any = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case : str = 16 elif accelerator.mixed_precision != "no": snake_case : List[Any] = 8 else: snake_case : Union[str, Any] = None return tokenizer.pad( lowercase , padding="longest" , max_length=lowercase , pad_to_multiple_of=lowercase , return_tensors="pt" , ) # Instantiate dataloaders. snake_case : Any = DataLoader( tokenized_datasets["train"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) snake_case : List[str] = DataLoader( tokenized_datasets["validation"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __snake_case = mocked_dataloaders # noqa: F811 def __lowerCAmelCase ( lowercase : Dict , lowercase : int ) -> Tuple: """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowercase ) == "1": snake_case : Union[str, Any] = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: snake_case : str = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: snake_case : Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case : str = config["lr"] snake_case : Dict = int(config["num_epochs"] ) snake_case : int = int(config["seed"] ) snake_case : Tuple = int(config["batch_size"] ) set_seed(lowercase ) snake_case ,snake_case : List[Any] = get_dataloaders(lowercase , lowercase ) snake_case : Optional[Any] = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation snake_case : int = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: snake_case : Any = batch_size // MAX_GPU_BATCH_SIZE snake_case : int = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case : List[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case : str = model.to(accelerator.device ) # Instantiate optimizer snake_case : Tuple = AdamW(params=model.parameters() , lr=lowercase ) # Instantiate scheduler snake_case : Optional[Any] = get_linear_schedule_with_warmup( optimizer=lowercase , num_warmup_steps=100 , num_training_steps=(len(lowercase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case ,snake_case ,snake_case ,snake_case ,snake_case : Union[str, Any] = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: snake_case : str = os.path.split(lowercase )[-1].split("." )[0] accelerator.init_trackers(lowercase , lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: snake_case : Any = 0 for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) snake_case : Dict = model(**lowercase ) snake_case : int = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() snake_case : Union[str, Any] = loss / gradient_accumulation_steps accelerator.backward(lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): snake_case : Optional[int] = model(**lowercase ) snake_case : Tuple = outputs.logits.argmax(dim=-1 ) snake_case ,snake_case : List[str] = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowercase , references=lowercase , ) snake_case : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , lowercase ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { "accuracy": eval_metric["accuracy"], "f1": eval_metric["f1"], "train_loss": total_loss.item() / len(lowercase ), "epoch": epoch, } , step=lowercase , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def __lowerCAmelCase ( ) -> str: """simple docstring""" snake_case : Union[str, Any] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowercase , default=lowercase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=lowercase , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) snake_case : int = parser.parse_args() snake_case : List[str] = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(lowercase , lowercase ) if __name__ == "__main__": main()
117
1
def UpperCamelCase ( _UpperCAmelCase : str ) -> list: '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(_UpperCAmelCase ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("""doctest""").testmod()
461
from dataclasses import dataclass, field from typing import Optional @dataclass class __lowercase : _A = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be trained."} ) _A = field( default="./" , metadata={"help": "Save dir where model repo is cloned and models updates are saved to."} ) _A = field( default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path of training dataset."} ) _A = field( default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."} ) _A = field(default=2 , metadata={"help": "Batch size for training."} ) _A = field(default=2 , metadata={"help": "Batch size for evaluation."} ) _A = field(default=0.1 , metadata={"help": "Value of weight decay."} ) _A = field( default=10000 , metadata={"help": "Size of buffer used to shuffle streaming dataset."} ) _A = field(default=2e-4 , metadata={"help": "Learning rate fo training."} ) _A = field(default="cosine" , metadata={"help": "Learning rate."} ) _A = field( default=750 , metadata={"help": "Number of warmup steps in the learning rate schedule."} ) _A = field( default=16 , metadata={"help": "Number of gradient accumulation steps."} ) _A = field( default=__snake_case , metadata={"help": "Use gradient checkpointing to reduce memory footprint."} ) _A = field(default=50000 , metadata={"help": "Maximum number of training steps."} ) _A = field( default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) _A = field(default=1024 , metadata={"help": "Sequence lengths used for training."} ) _A = field(default=1 , metadata={"help": "Training seed."} ) _A = field( default=1024 , metadata={"help": "Interval to save checkpoints. Measured as number of forward passes not training steps."} , ) _A = field( default=__snake_case , metadata={"help": "States path if the training should continue from a checkpoint folder."} ) _A = field(default=__snake_case , metadata={"help": "If True the data is pretokenized."} ) @dataclass class __lowercase : _A = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."} ) _A = field( default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."} ) _A = field(default=2 , metadata={"help": "Batch size used for evaluation."} ) _A = field( default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) _A = field(default=1024 , metadata={"help": "Length of sequences to be evaluated."} ) _A = field(default=1 , metadata={"help": "Random seed used for evaluation."} ) @dataclass class __lowercase : _A = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."} ) _A = field(default=__snake_case , metadata={"help": "Number of workers used for code evaluation."} ) _A = field( default=__snake_case , metadata={"help": "The number of human-eval tasks to run. If not included all tasks are evaluated."} , ) _A = field( default=__snake_case , metadata={"help": "Sample from the language model's output distribution."} ) _A = field(default=0.2 , metadata={"help": "Sampling temperature used for generation."} ) _A = field(default=256 , metadata={"help": "Maximum number of newly generated tokens."} ) _A = field(default=0 , metadata={"help": "Top-k parameter used for generation."} ) _A = field(default=0.95 , metadata={"help": "Top-p parameter used for nucleus sampling."} ) _A = field(default=10 , metadata={"help": "Number of generations to run in parallel."} ) _A = field( default=200 , metadata={"help": "Number of completions to generate for each sample."} ) _A = field(default=1 , metadata={"help": "Random seed used for evaluation."} ) _A = field( default="eval_results.json" , metadata={"help": "Random seed used for evaluation."} ) _A = field( default="0" , metadata={"help": "Allow `code_eval` to execute Python code on machine"} ) _A = field( default=-1 , metadata={ "help": ( "Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive" " number corresponds to which GPU device id to run on." ) } , ) @dataclass class __lowercase : _A = field( default=__snake_case , metadata={ "help": "The number of CPU cores to use for parallel preprocessing. Default uses the maximum available." } , ) _A = field( default="transformersbook/codeparrot" , metadata={"help": "Folder or name of dataset to process."} ) _A = field( default="codeparrot-clean" , metadata={"help": "Folder to save processed processed dataset."} ) _A = field( default=100000 , metadata={"help": "Number of files to save per JSON output file."} ) _A = field(default="content" , metadata={"help": "Column containing text data to process."} ) _A = field( default=1000 , metadata={"help": "Maximum line length in file, otherwise file is filtered."} ) _A = field( default=100 , metadata={"help": "Maximum mean line length in file, otherwise file is filtered."} ) _A = field( default=0.25 , metadata={"help": "Maximum fraction of non-alphanumeric characters, otherwise file is filtered."} ) _A = field( default=1.5 , metadata={"help": "Minimum character token ratio for the file, otherwise file is filtered."} ) _A = field( default=0.7 , metadata={"help": "Probability for filtering config, test and uncommon files."} ) _A = field( default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} , ) _A = field( default=__snake_case , metadata={"help": "If True, near-duplicate samples are removed."} ) _A = field( default=0.85 , metadata={"help": "Jaccard threshold for near-duplicate samples."} ) @dataclass class __lowercase : _A = field( default="gpt2" , metadata={"help": "Base tokenizer to build new tokenizer from."} ) _A = field( default="transformersbook/codeparrot-train" , metadata={"help": "Dataset to train tokenizer on."} ) _A = field(default="content" , metadata={"help": "Column containing text data to process."} ) _A = field(default=200000 , metadata={"help": "Number of examples to train tokenizer on."} ) _A = field( default=32768 , metadata={"help": "Number of examples to train the tokenizer on."} ) _A = field(default="codeparrot" , metadata={"help": "Name of new tokenizer."} ) _A = field(default=__snake_case , metadata={"help": "Push saved tokenizer to the hub."} ) @dataclass class __lowercase : _A = field( default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} ) _A = field( default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path to the dataset to pretokenize."} ) _A = field( default="tokenized-codeparrot-train" , metadata={"help": "Repo name of the pretokenized data."} ) _A = field(default=__snake_case , metadata={"help": "Number of workers used for code evaluation."} ) @dataclass class __lowercase : _A = field( default="gpt2-large" , metadata={"help": "Configuration to use for model initialization."} ) _A = field( default="codeparrot/codeparrot" , metadata={"help": "Tokenizer attached to model."} ) _A = field(default="codeparrot" , metadata={"help": "Name of the created model."} ) _A = field(default=__snake_case , metadata={"help": "Push saved tokenizer to the hub."} )
461
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __magic_name__ : int = { '''configuration_roberta_prelayernorm''': [ '''ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaPreLayerNormConfig''', '''RobertaPreLayerNormOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Optional[Any] = [ '''ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaPreLayerNormForCausalLM''', '''RobertaPreLayerNormForMaskedLM''', '''RobertaPreLayerNormForMultipleChoice''', '''RobertaPreLayerNormForQuestionAnswering''', '''RobertaPreLayerNormForSequenceClassification''', '''RobertaPreLayerNormForTokenClassification''', '''RobertaPreLayerNormModel''', '''RobertaPreLayerNormPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Dict = [ '''TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaPreLayerNormForCausalLM''', '''TFRobertaPreLayerNormForMaskedLM''', '''TFRobertaPreLayerNormForMultipleChoice''', '''TFRobertaPreLayerNormForQuestionAnswering''', '''TFRobertaPreLayerNormForSequenceClassification''', '''TFRobertaPreLayerNormForTokenClassification''', '''TFRobertaPreLayerNormMainLayer''', '''TFRobertaPreLayerNormModel''', '''TFRobertaPreLayerNormPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Optional[Any] = [ '''FlaxRobertaPreLayerNormForCausalLM''', '''FlaxRobertaPreLayerNormForMaskedLM''', '''FlaxRobertaPreLayerNormForMultipleChoice''', '''FlaxRobertaPreLayerNormForQuestionAnswering''', '''FlaxRobertaPreLayerNormForSequenceClassification''', '''FlaxRobertaPreLayerNormForTokenClassification''', '''FlaxRobertaPreLayerNormModel''', '''FlaxRobertaPreLayerNormPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys __magic_name__ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
602
'''simple docstring''' import argparse import math import traceback import dateutil.parser as date_parser import requests def A__ ( A_ ) -> str: _lowercase = {} _lowercase = job["started_at"] _lowercase = job["completed_at"] _lowercase = date_parser.parse(A_ ) _lowercase = date_parser.parse(A_ ) _lowercase = round((end_datetime - start_datetime).total_seconds() / 60.0 ) _lowercase = start _lowercase = end _lowercase = duration_in_min return job_info def A__ ( A_ , A_=None ) -> int: _lowercase = None if token is not None: _lowercase = {"Accept": "application/vnd.github+json", "Authorization": F"""Bearer {token}"""} _lowercase = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" _lowercase = requests.get(A_ , headers=A_ ).json() _lowercase = {} try: job_time.update({job["name"]: extract_time_from_single_job(A_ ) for job in result["jobs"]} ) _lowercase = math.ceil((result["total_count"] - 100) / 100 ) for i in range(A_ ): _lowercase = requests.get(url + F"""&page={i + 2}""" , headers=A_ ).json() job_time.update({job["name"]: extract_time_from_single_job(A_ ) for job in result["jobs"]} ) return job_time except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} if __name__ == "__main__": __magic_name__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') __magic_name__ : Optional[Any] = parser.parse_args() __magic_name__ : Union[str, Any] = get_job_time(args.workflow_run_id) __magic_name__ : List[Any] = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f'''{k}: {v["duration"]}''')
602
1
lowercase_: Optional[int] = '0.18.2' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
648
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowercase__ :Tuple = TypeVar('T') class snake_case ( Generic[T] ): '''simple docstring''' def __init__( self : Optional[int] , __lowercase : T ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = data __UpperCAmelCase : Node[T] | None = None def __str__( self : int ): '''simple docstring''' return f'''{self.data}''' class snake_case ( Generic[T] ): '''simple docstring''' def __init__( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Node[T] | None = None def __iter__( self : int ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.top while node: yield node.data __UpperCAmelCase : Dict = node.next def __str__( self : Any ): '''simple docstring''' return "->".join([str(__lowercase ) for item in self] ) def __len__( self : int ): '''simple docstring''' return len(tuple(iter(self ) ) ) def A_ ( self : Tuple ): '''simple docstring''' return self.top is None def A_ ( self : List[str] , __lowercase : T ): '''simple docstring''' __UpperCAmelCase : int = Node(__lowercase ) if not self.is_empty(): __UpperCAmelCase : int = self.top __UpperCAmelCase : Tuple = node def A_ ( self : List[str] ): '''simple docstring''' if self.is_empty(): raise IndexError('''pop from empty stack''' ) assert isinstance(self.top , __lowercase ) __UpperCAmelCase : List[str] = self.top __UpperCAmelCase : List[str] = self.top.next return pop_node.data def A_ ( self : str ): '''simple docstring''' if self.is_empty(): raise IndexError('''peek from empty stack''' ) assert self.top is not None return self.top.data def A_ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : str = None if __name__ == "__main__": from doctest import testmod testmod()
522
0
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. a : Tuple = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def _UpperCamelCase ( _A ) -> Dict: """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_A ) def _UpperCamelCase ( _A ) -> int: """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main _UpperCAmelCase = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(_A , id=_A )
19
"""simple docstring""" import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness a : Optional[Any] = '''\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } ''' a : List[str] = '''\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). ''' a : Any = ''' Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric("code_eval") >>> test_cases = ["assert add(2,3)==5"] >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {\'pass@1\': 0.5, \'pass@2\': 1.0} ''' a : int = ''' ################################################################################ !!!WARNING!!! ################################################################################ The "code_eval" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this with: >>> import os >>> os.environ["HF_ALLOW_CODE_EVAL"] = "1" ################################################################################\ ''' a : List[Any] = '''The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): def _snake_case ( self : Tuple ) ->Tuple: '''simple docstring''' return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Value("""string""" ), } ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , ) def _snake_case ( self : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any]=[1, 10, 1_00] , __UpperCamelCase : Dict=4 , __UpperCamelCase : Tuple=3.0 ) ->Union[str, Any]: '''simple docstring''' if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("""This metric is currently not supported on Windows.""" ) with ThreadPoolExecutor(max_workers=__UpperCamelCase ) as executor: _UpperCAmelCase = [] _UpperCAmelCase = Counter() _UpperCAmelCase = 0 _UpperCAmelCase = defaultdict(__UpperCamelCase ) for task_id, (candidates, test_case) in enumerate(zip(__UpperCamelCase , __UpperCamelCase ) ): for candidate in candidates: _UpperCAmelCase = candidate + """\n""" + test_case _UpperCAmelCase = (test_program, timeout, task_id, completion_id[task_id]) _UpperCAmelCase = executor.submit(__UpperCamelCase , *__UpperCamelCase ) futures.append(__UpperCamelCase ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(__UpperCamelCase ): _UpperCAmelCase = future.result() results[result["task_id"]].append((result["""completion_id"""], result) ) _UpperCAmelCase ,_UpperCAmelCase = [], [] for result in results.values(): result.sort() _UpperCAmelCase = [r[1]["""passed"""] for r in result] total.append(len(__UpperCamelCase ) ) correct.append(sum(__UpperCamelCase ) ) _UpperCAmelCase = np.array(__UpperCamelCase ) _UpperCAmelCase = np.array(__UpperCamelCase ) _UpperCAmelCase = k _UpperCAmelCase = {f"""pass@{k}""": estimate_pass_at_k(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def _UpperCamelCase ( _A , _A , _A ) -> Dict: """simple docstring""" def estimator(_A , _A , _A ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(_A , _A ): _UpperCAmelCase = itertools.repeat(_A , len(_A ) ) else: assert len(_A ) == len(_A ) _UpperCAmelCase = iter(_A ) return np.array([estimator(int(_A ) , int(_A ) , _A ) for n, c in zip(_A , _A )] )
19
1
lowerCAmelCase : Dict = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[int] = set() # keep track of all the paths to be checked SCREAMING_SNAKE_CASE_: Union[str, Any] = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue SCREAMING_SNAKE_CASE_: Optional[Any] = queue.pop(0 ) # get the last node from the path SCREAMING_SNAKE_CASE_: List[str] = path[-1] if node not in explored: SCREAMING_SNAKE_CASE_: Dict = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: SCREAMING_SNAKE_CASE_: int = list(__UpperCamelCase ) new_path.append(__UpperCamelCase ) queue.append(__UpperCamelCase ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(__UpperCamelCase ) # in case there's no path between the 2 nodes return [] def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 SCREAMING_SNAKE_CASE_: int = [start] SCREAMING_SNAKE_CASE_: str = set(__UpperCamelCase ) # Keep tab on distances from `start` node. SCREAMING_SNAKE_CASE_: List[str] = {start: 0, target: -1} while queue: SCREAMING_SNAKE_CASE_: Union[str, Any] = queue.pop(0 ) if node == target: SCREAMING_SNAKE_CASE_: str = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(__UpperCamelCase ) queue.append(__UpperCamelCase ) SCREAMING_SNAKE_CASE_: List[Any] = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, """G""", """D""")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, """G""", """D""")) # returns 4
671
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) lowerCAmelCase : Union[str, Any] = _symbol_database.Default() lowerCAmelCase : int = _descriptor_pool.Default().AddSerializedFile( b'''\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03''' ) lowerCAmelCase : List[str] = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, '''sentencepiece_model_pb2''', _globals) if _descriptor._USE_C_DESCRIPTORS is False: lowerCAmelCase : Tuple = None lowerCAmelCase : List[Any] = b'''H\003''' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" lowerCAmelCase : Tuple = 45 lowerCAmelCase : Optional[int] = 1581 lowerCAmelCase : Dict = 1517 lowerCAmelCase : Any = 1570 lowerCAmelCase : Any = 1584 lowerCAmelCase : Optional[Any] = 1793 lowerCAmelCase : Optional[Any] = 1795 lowerCAmelCase : List[str] = 1916 lowerCAmelCase : Any = 1864 lowerCAmelCase : Dict = 1905 lowerCAmelCase : Dict = 1919 lowerCAmelCase : Any = 2429 lowerCAmelCase : List[Any] = 2208 lowerCAmelCase : Tuple = 2418 lowerCAmelCase : List[Any] = 2323 lowerCAmelCase : List[str] = 2407 # @@protoc_insertion_point(module_scope)
214
0
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): _lowerCamelCase = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) _lowerCamelCase = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } _lowerCamelCase = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' _lowerCamelCase = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' _lowerCamelCase = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } _lowerCamelCase = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' _lowerCamelCase = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) _lowerCamelCase = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' _lowerCamelCase = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) _lowerCamelCase = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' _lowerCamelCase = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' _lowerCamelCase = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' _lowerCamelCase = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' _lowerCamelCase = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' _lowerCamelCase = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' _lowerCamelCase = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' _lowerCamelCase = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' _lowerCamelCase = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' _lowerCamelCase = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' _lowerCamelCase = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' _lowerCamelCase = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' _lowerCamelCase = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' _lowerCamelCase = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' _lowerCamelCase = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' _lowerCamelCase = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' _lowerCamelCase = '''''' _lowerCamelCase = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' _lowerCamelCase = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' _lowerCamelCase = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( """readme_md, expected_dict""" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] )-> Union[str, Any]: """simple docstring""" assert ReadMe.from_string(_lowercase , _lowercase ).to_dict() == expected_dict @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] )-> Tuple: """simple docstring""" with pytest.raises(_lowercase , match=re.escape(expected_error.format(path="""root""" ) ) ): a =ReadMe.from_string(_lowercase , _lowercase ) readme.validate() @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] )-> Any: """simple docstring""" with pytest.raises(_lowercase , match=re.escape(expected_error.format(path="""root""" ) ) ): ReadMe.from_string(_lowercase , _lowercase ) @pytest.mark.parametrize( """readme_md,""" , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( UpperCAmelCase_ : Union[str, Any] )-> str: """simple docstring""" ReadMe.from_string(_lowercase , _lowercase , suppress_parsing_errors=_lowercase ) @pytest.mark.parametrize( """readme_md, expected_dict""" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] )-> List[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: a =Path(_lowercase ) / 'README.md' with open(_lowercase , """w+""" ) as readme_file: readme_file.write(_lowercase ) a =ReadMe.from_readme(_lowercase , _lowercase ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : str )-> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: a =Path(_lowercase ) / 'README.md' with open(_lowercase , """w+""" ) as readme_file: readme_file.write(_lowercase ) a =expected_error.format(path=_lowercase ) with pytest.raises(_lowercase , match=re.escape(_lowercase ) ): a =ReadMe.from_readme(_lowercase , _lowercase ) readme.validate() @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any )-> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: a =Path(_lowercase ) / 'README.md' with open(_lowercase , """w+""" ) as readme_file: readme_file.write(_lowercase ) a =expected_error.format(path=_lowercase ) with pytest.raises(_lowercase , match=re.escape(_lowercase ) ): ReadMe.from_readme(_lowercase , _lowercase ) @pytest.mark.parametrize( """readme_md,""" , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( UpperCAmelCase_ : Any )-> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: a =Path(_lowercase ) / 'README.md' with open(_lowercase , """w+""" ) as readme_file: readme_file.write(_lowercase ) ReadMe.from_readme(_lowercase , _lowercase , suppress_parsing_errors=_lowercase )
704
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowerCamelCase = { '''configuration_roberta_prelayernorm''': [ '''ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaPreLayerNormConfig''', '''RobertaPreLayerNormOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ '''ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaPreLayerNormForCausalLM''', '''RobertaPreLayerNormForMaskedLM''', '''RobertaPreLayerNormForMultipleChoice''', '''RobertaPreLayerNormForQuestionAnswering''', '''RobertaPreLayerNormForSequenceClassification''', '''RobertaPreLayerNormForTokenClassification''', '''RobertaPreLayerNormModel''', '''RobertaPreLayerNormPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ '''TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaPreLayerNormForCausalLM''', '''TFRobertaPreLayerNormForMaskedLM''', '''TFRobertaPreLayerNormForMultipleChoice''', '''TFRobertaPreLayerNormForQuestionAnswering''', '''TFRobertaPreLayerNormForSequenceClassification''', '''TFRobertaPreLayerNormForTokenClassification''', '''TFRobertaPreLayerNormMainLayer''', '''TFRobertaPreLayerNormModel''', '''TFRobertaPreLayerNormPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ '''FlaxRobertaPreLayerNormForCausalLM''', '''FlaxRobertaPreLayerNormForMaskedLM''', '''FlaxRobertaPreLayerNormForMultipleChoice''', '''FlaxRobertaPreLayerNormForQuestionAnswering''', '''FlaxRobertaPreLayerNormForSequenceClassification''', '''FlaxRobertaPreLayerNormForTokenClassification''', '''FlaxRobertaPreLayerNormModel''', '''FlaxRobertaPreLayerNormPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
321
0
from math import ceil def a_ ( lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Dict ): __lowerCAmelCase = list(range(0, lowerCAmelCase_ ) ) __lowerCAmelCase = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check __lowerCAmelCase = [] for i in device_map_blocks: if device_map_blocks.count(lowerCAmelCase_ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(lowerCAmelCase_ ) # Missing blocks __lowerCAmelCase = [i for i in blocks if i not in device_map_blocks] __lowerCAmelCase = [i for i in device_map_blocks if i not in blocks] if len(lowerCAmelCase_ ) != 0: raise ValueError( 'Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.' ' These attention blocks were specified more than once: ' + str(lowerCAmelCase_ ) ) if len(lowerCAmelCase_ ) != 0: raise ValueError( 'There are attention blocks for this model that are not specified in the device_map. Add these attention ' 'blocks to a device on the device_map: ' + str(lowerCAmelCase_ ) ) if len(lowerCAmelCase_ ) != 0: raise ValueError( 'The device_map contains more attention blocks than this model has. Remove these from the device_map:' + str(lowerCAmelCase_ ) ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = list(range(lowerCAmelCase_ ) ) __lowerCAmelCase = int(ceil(n_layers / len(lowerCAmelCase_ ) ) ) __lowerCAmelCase = [layers[i : i + n_blocks] for i in range(0, lowerCAmelCase_, lowerCAmelCase_ )] return dict(zip(lowerCAmelCase_, lowerCAmelCase_ ) )
53
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _SCREAMING_SNAKE_CASE ( ): with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__snake_case ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def _SCREAMING_SNAKE_CASE ( ): with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def _SCREAMING_SNAKE_CASE ( ): with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__snake_case ): http_head('https://huggingface.co' )
107
0
import collections import importlib.util import os import re from pathlib import Path snake_case = "src/transformers" # Matches is_xxx_available() snake_case = re.compile(r"is\_([a-z_]*)_available()") # Catches a one-line _import_struct = {xxx} snake_case = re.compile(r"^_import_structure\s+=\s+\{([^\}]+)\}") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] snake_case = re.compile(r"\s+\"\S*\":\s+\[([^\]]*)\]") # Catches a line if not is_foo_available snake_case = re.compile(r"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)") # Catches a line _import_struct["bla"].append("foo") snake_case = re.compile(r"^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] snake_case = re.compile(r"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]") # Catches a line with an object between quotes and a comma: "MyModel", snake_case = re.compile("^\s+\"([^\"]+)\",") # Catches a line with objects between brackets only: ["foo", "bar"], snake_case = re.compile("^\s+\[([^\]]+)\]") # Catches a line with from foo import bar, bla, boo snake_case = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") # Catches a line with try: snake_case = re.compile(r"^\s*try:") # Catches a line with else: snake_case = re.compile(r"^\s*else:") def UpperCamelCase_ ( lowerCAmelCase__ ): """simple docstring""" if _re_test_backend.search(lowerCAmelCase__ ) is None: return None _lowerCAmelCase : Tuple = [b[0] for b in _re_backend.findall(lowerCAmelCase__ )] backends.sort() return "_and_".join(lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ ): """simple docstring""" with open(lowerCAmelCase__ , "r" , encoding="utf-8" , newline="\n" ) as f: _lowerCAmelCase : Optional[int] = f.readlines() _lowerCAmelCase : Optional[int] = 0 while line_index < len(lowerCAmelCase__ ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowerCAmelCase__ ): return None # First grab the objects without a specific backend in _import_structure _lowerCAmelCase : List[str] = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: _lowerCAmelCase : Any = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowerCAmelCase__ ): _lowerCAmelCase : Optional[Any] = _re_one_line_import_struct.search(lowerCAmelCase__ ).groups()[0] _lowerCAmelCase : str = re.findall("\[([^\]]+)\]" , lowerCAmelCase__ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue _lowerCAmelCase : Any = _re_import_struct_key_value.search(lowerCAmelCase__ ) if single_line_import_search is not None: _lowerCAmelCase : Optional[int] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(lowerCAmelCase__ ) > 0] objects.extend(lowerCAmelCase__ ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 _lowerCAmelCase : List[Any] = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. _lowerCAmelCase : List[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _lowerCAmelCase : Optional[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _lowerCAmelCase : Union[str, Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): _lowerCAmelCase : List[Any] = lines[line_index] if _re_import_struct_add_one.search(lowerCAmelCase__ ) is not None: objects.append(_re_import_struct_add_one.search(lowerCAmelCase__ ).groups()[0] ) elif _re_import_struct_add_many.search(lowerCAmelCase__ ) is not None: _lowerCAmelCase : List[Any] = _re_import_struct_add_many.search(lowerCAmelCase__ ).groups()[0].split(", " ) _lowerCAmelCase : Dict = [obj[1:-1] for obj in imports if len(lowerCAmelCase__ ) > 0] objects.extend(lowerCAmelCase__ ) elif _re_between_brackets.search(lowerCAmelCase__ ) is not None: _lowerCAmelCase : List[Any] = _re_between_brackets.search(lowerCAmelCase__ ).groups()[0].split(", " ) _lowerCAmelCase : Optional[int] = [obj[1:-1] for obj in imports if len(lowerCAmelCase__ ) > 0] objects.extend(lowerCAmelCase__ ) elif _re_quote_object.search(lowerCAmelCase__ ) is not None: objects.append(_re_quote_object.search(lowerCAmelCase__ ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 12 + "\"" ): objects.append(line[13:-3] ) line_index += 1 _lowerCAmelCase : Optional[Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _lowerCAmelCase : Tuple = [] while ( line_index < len(lowerCAmelCase__ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): _lowerCAmelCase : Optional[Any] = lines[line_index] _lowerCAmelCase : int = _re_import.search(lowerCAmelCase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 _lowerCAmelCase : List[Any] = {"none": objects} # Let's continue with backend-specific objects while line_index < len(lowerCAmelCase__ ): # If the line is an if is_backend_available, we grab all objects associated. _lowerCAmelCase : Optional[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _lowerCAmelCase : Any = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _lowerCAmelCase : Any = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): _lowerCAmelCase : List[Any] = lines[line_index] _lowerCAmelCase : Optional[int] = _re_import.search(lowerCAmelCase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 12 ): objects.append(line[12:-2] ) line_index += 1 _lowerCAmelCase : List[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" def find_duplicates(lowerCAmelCase__ ): return [k for k, v in collections.Counter(lowerCAmelCase__ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _lowerCAmelCase : List[str] = [] for key in import_dict_objects.keys(): _lowerCAmelCase : List[Any] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) _lowerCAmelCase : List[Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _lowerCAmelCase : Optional[Any] = "base imports" if key == "none" else f"""{key} backend""" errors.append(f"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def UpperCamelCase_ ( ): """simple docstring""" _lowerCAmelCase : Any = [] for root, _, files in os.walk(lowerCAmelCase__ ): if "__init__.py" in files: _lowerCAmelCase : Optional[int] = os.path.join(lowerCAmelCase__ , "__init__.py" ) _lowerCAmelCase : str = parse_init(lowerCAmelCase__ ) if objects is not None: _lowerCAmelCase : List[Any] = analyze_results(*lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: _lowerCAmelCase : List[str] = f"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append("\n".join(lowerCAmelCase__ ) ) if len(lowerCAmelCase__ ) > 0: raise ValueError("\n\n".join(lowerCAmelCase__ ) ) def UpperCamelCase_ ( ): """simple docstring""" _lowerCAmelCase : Optional[int] = [] for path, directories, files in os.walk(lowerCAmelCase__ ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(lowerCAmelCase__ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowerCAmelCase__ ) / folder).glob("*.py" ) ) ) == 0: continue _lowerCAmelCase : Dict = str((Path(lowerCAmelCase__ ) / folder).relative_to(lowerCAmelCase__ ) ) _lowerCAmelCase : Tuple = short_path.replace(os.path.sep , "." ) submodules.append(lowerCAmelCase__ ) for fname in files: if fname == "__init__.py": continue _lowerCAmelCase : Tuple = str((Path(lowerCAmelCase__ ) / fname).relative_to(lowerCAmelCase__ ) ) _lowerCAmelCase : List[Any] = short_path.replace(".py" , "" ).replace(os.path.sep , "." ) if len(submodule.split("." ) ) == 1: submodules.append(lowerCAmelCase__ ) return submodules snake_case = [ "convert_pytorch_checkpoint_to_tf2", "modeling_flax_pytorch_utils", ] def UpperCamelCase_ ( ): """simple docstring""" _lowerCAmelCase : List[Any] = importlib.util.spec_from_file_location( "transformers" , os.path.join(lowerCAmelCase__ , "__init__.py" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) _lowerCAmelCase : Tuple = spec.loader.load_module() _lowerCAmelCase : Optional[int] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(lowerCAmelCase__ ) > 0: _lowerCAmelCase : List[str] = "\n".join(f"""- {module}""" for module in module_not_registered ) raise ValueError( "The following submodules are not properly registered in the main init of Transformers:\n" f"""{list_of_modules}\n""" "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
587
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class __A ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Optional[int] = tempfile.mkdtemp() _lowerCAmelCase : Union[str, Any] = BlipImageProcessor() _lowerCAmelCase : Any = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) _lowerCAmelCase : Optional[int] = BertTokenizerFast.from_pretrained("hf-internal-testing/tiny-random-bert" ) _lowerCAmelCase : int = InstructBlipProcessor(_snake_case , _snake_case , _snake_case ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self , **_snake_case ): return AutoProcessor.from_pretrained(self.tmpdirname , **_snake_case ).tokenizer def SCREAMING_SNAKE_CASE__ ( self , **_snake_case ): return AutoProcessor.from_pretrained(self.tmpdirname , **_snake_case ).image_processor def SCREAMING_SNAKE_CASE__ ( self , **_snake_case ): return AutoProcessor.from_pretrained(self.tmpdirname , **_snake_case ).qformer_tokenizer def SCREAMING_SNAKE_CASE__ ( self ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Any = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _lowerCAmelCase : int = [Image.fromarray(np.moveaxis(_snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Optional[Any] = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) _lowerCAmelCase : List[str] = self.get_image_processor(do_normalize=_snake_case , padding_value=1.0 ) _lowerCAmelCase : int = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=_snake_case , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _snake_case ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _snake_case ) self.assertIsInstance(processor.qformer_tokenizer , _snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : str = self.get_tokenizer() _lowerCAmelCase : str = self.get_qformer_tokenizer() _lowerCAmelCase : Any = InstructBlipProcessor( tokenizer=_snake_case , image_processor=_snake_case , qformer_tokenizer=_snake_case ) _lowerCAmelCase : Any = self.prepare_image_inputs() _lowerCAmelCase : Any = image_processor(_snake_case , return_tensors="np" ) _lowerCAmelCase : List[str] = processor(images=_snake_case , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Optional[int] = self.get_image_processor() _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Tuple = self.get_qformer_tokenizer() _lowerCAmelCase : Dict = InstructBlipProcessor( tokenizer=_snake_case , image_processor=_snake_case , qformer_tokenizer=_snake_case ) _lowerCAmelCase : int = "lower newer" _lowerCAmelCase : Dict = processor(text=_snake_case ) _lowerCAmelCase : Optional[int] = tokenizer(_snake_case , return_token_type_ids=_snake_case ) _lowerCAmelCase : str = qformer_tokenizer(_snake_case , return_token_type_ids=_snake_case ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["qformer_" + key] ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : str = self.get_image_processor() _lowerCAmelCase : int = self.get_tokenizer() _lowerCAmelCase : Dict = self.get_qformer_tokenizer() _lowerCAmelCase : Any = InstructBlipProcessor( tokenizer=_snake_case , image_processor=_snake_case , qformer_tokenizer=_snake_case ) _lowerCAmelCase : Optional[Any] = "lower newer" _lowerCAmelCase : Dict = self.prepare_image_inputs() _lowerCAmelCase : str = processor(text=_snake_case , images=_snake_case ) self.assertListEqual( list(inputs.keys() ) , ["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] , ) # test if it raises when no input is passed with pytest.raises(_snake_case ): processor() def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : List[Any] = self.get_tokenizer() _lowerCAmelCase : Tuple = self.get_qformer_tokenizer() _lowerCAmelCase : List[Any] = InstructBlipProcessor( tokenizer=_snake_case , image_processor=_snake_case , qformer_tokenizer=_snake_case ) _lowerCAmelCase : List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : Optional[int] = processor.batch_decode(_snake_case ) _lowerCAmelCase : str = tokenizer.batch_decode(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : List[Any] = self.get_image_processor() _lowerCAmelCase : List[str] = self.get_tokenizer() _lowerCAmelCase : Any = self.get_qformer_tokenizer() _lowerCAmelCase : Optional[int] = InstructBlipProcessor( tokenizer=_snake_case , image_processor=_snake_case , qformer_tokenizer=_snake_case ) _lowerCAmelCase : str = "lower newer" _lowerCAmelCase : str = self.prepare_image_inputs() _lowerCAmelCase : Tuple = processor(text=_snake_case , images=_snake_case ) self.assertListEqual( list(inputs.keys() ) , ["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] , )
587
1
class __magic_name__ : def __init__( self : Optional[Any] ) -> int: '''simple docstring''' UpperCAmelCase = '' UpperCAmelCase = '' UpperCAmelCase = [] def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] ) -> int: '''simple docstring''' if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: UpperCAmelCase = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: UpperCAmelCase = self.__min_dist_top_down_dp(UpperCamelCase__ , n - 1 ) UpperCAmelCase = self.__min_dist_top_down_dp(m - 1 , UpperCamelCase__ ) UpperCAmelCase = self.__min_dist_top_down_dp(m - 1 , n - 1 ) UpperCAmelCase = 1 + min(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return self.dp[m][n] def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str ) -> int: '''simple docstring''' UpperCAmelCase = worda UpperCAmelCase = worda UpperCAmelCase = [[-1 for _ in range(len(UpperCamelCase__ ) )] for _ in range(len(UpperCamelCase__ ) )] return self.__min_dist_top_down_dp(len(UpperCamelCase__ ) - 1 , len(UpperCamelCase__ ) - 1 ) def SCREAMING_SNAKE_CASE_ ( self : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] ) -> int: '''simple docstring''' UpperCAmelCase = worda UpperCAmelCase = worda UpperCAmelCase = len(UpperCamelCase__ ) UpperCAmelCase = len(UpperCamelCase__ ) UpperCAmelCase = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty UpperCAmelCase = j elif j == 0: # second string is empty UpperCAmelCase = i elif worda[i - 1] == worda[j - 1]: # last characters are equal UpperCAmelCase = self.dp[i - 1][j - 1] else: UpperCAmelCase = self.dp[i][j - 1] UpperCAmelCase = self.dp[i - 1][j] UpperCAmelCase = self.dp[i - 1][j - 1] UpperCAmelCase = 1 + min(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return self.dp[m][n] if __name__ == "__main__": __lowerCamelCase : Union[str, Any] = EditDistance() print("****************** Testing Edit Distance DP Algorithm ******************") print() __lowerCamelCase : Any = input("Enter the first string: ").strip() __lowerCamelCase : List[Any] = input("Enter the second string: ").strip() print() print(F'''The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}''') print(F'''The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}''') print() print("*************** End of Testing Edit Distance DP Algorithm ***************")
323
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( lowerCAmelCase ,unittest.TestCase ): UpperCAmelCase =CodeGenTokenizer UpperCAmelCase =CodeGenTokenizerFast UpperCAmelCase =True UpperCAmelCase ={"add_prefix_space": True} UpperCAmelCase =False def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCAmelCase : Optional[Any] =[ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] _UpperCAmelCase : Dict =dict(zip(snake_case , range(len(snake_case)))) _UpperCAmelCase : List[Any] =['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _UpperCAmelCase : List[Any] ={'unk_token': '<unk>'} _UpperCAmelCase : List[Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) _UpperCAmelCase : List[str] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(snake_case) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(snake_case)) def lowerCAmelCase ( self , **snake_case) -> str: '''simple docstring''' kwargs.update(self.special_tokens_map) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **snake_case) def lowerCAmelCase ( self , **snake_case) -> Optional[Any]: '''simple docstring''' kwargs.update(self.special_tokens_map) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **snake_case) def lowerCAmelCase ( self , snake_case) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] ='lower newer' _UpperCAmelCase : int ='lower newer' return input_text, output_text def lowerCAmelCase ( self) -> int: '''simple docstring''' _UpperCAmelCase : Optional[int] =CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) _UpperCAmelCase : str ='lower newer' _UpperCAmelCase : Union[str, Any] =['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] _UpperCAmelCase : Any =tokenizer.tokenize(snake_case , add_prefix_space=snake_case) self.assertListEqual(snake_case , snake_case) _UpperCAmelCase : Any =tokens + [tokenizer.unk_token] _UpperCAmelCase : List[str] =[1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case) , snake_case) def lowerCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' if not self.test_rust_tokenizer: return _UpperCAmelCase : Tuple =self.get_tokenizer() _UpperCAmelCase : Dict =self.get_rust_tokenizer(add_prefix_space=snake_case) _UpperCAmelCase : Union[str, Any] ='lower newer' # Testing tokenization _UpperCAmelCase : List[str] =tokenizer.tokenize(snake_case , add_prefix_space=snake_case) _UpperCAmelCase : Optional[int] =rust_tokenizer.tokenize(snake_case) self.assertListEqual(snake_case , snake_case) # Testing conversion to ids without special tokens _UpperCAmelCase : str =tokenizer.encode(snake_case , add_special_tokens=snake_case , add_prefix_space=snake_case) _UpperCAmelCase : Optional[int] =rust_tokenizer.encode(snake_case , add_special_tokens=snake_case) self.assertListEqual(snake_case , snake_case) # Testing conversion to ids with special tokens _UpperCAmelCase : Dict =self.get_rust_tokenizer(add_prefix_space=snake_case) _UpperCAmelCase : Tuple =tokenizer.encode(snake_case , add_prefix_space=snake_case) _UpperCAmelCase : int =rust_tokenizer.encode(snake_case) self.assertListEqual(snake_case , snake_case) # Testing the unknown token _UpperCAmelCase : List[str] =tokens + [rust_tokenizer.unk_token] _UpperCAmelCase : Union[str, Any] =[1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(snake_case) , snake_case) def lowerCAmelCase ( self , *snake_case , **snake_case) -> Any: '''simple docstring''' # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def lowerCAmelCase ( self , snake_case=1_5) -> Optional[int]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): _UpperCAmelCase : Optional[Any] =self.rust_tokenizer_class.from_pretrained(snake_case , **snake_case) # Simple input _UpperCAmelCase : List[str] ='This is a simple input' _UpperCAmelCase : Optional[Any] =['This is a simple input 1', 'This is a simple input 2'] _UpperCAmelCase : int =('This is a simple input', 'This is a pair') _UpperCAmelCase : Union[str, Any] =[ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(snake_case , tokenizer_r.encode , snake_case , max_length=snake_case , padding='max_length') # Simple input self.assertRaises(snake_case , tokenizer_r.encode_plus , snake_case , max_length=snake_case , padding='max_length') # Simple input self.assertRaises( snake_case , tokenizer_r.batch_encode_plus , snake_case , max_length=snake_case , padding='max_length' , ) # Pair input self.assertRaises(snake_case , tokenizer_r.encode , snake_case , max_length=snake_case , padding='max_length') # Pair input self.assertRaises(snake_case , tokenizer_r.encode_plus , snake_case , max_length=snake_case , padding='max_length') # Pair input self.assertRaises( snake_case , tokenizer_r.batch_encode_plus , snake_case , max_length=snake_case , padding='max_length' , ) def lowerCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Any =CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token='<pad>') # Simple input _UpperCAmelCase : List[Any] ='This is a simple input' _UpperCAmelCase : Any =['This is a simple input looooooooong', 'This is a simple input'] _UpperCAmelCase : List[str] =('This is a simple input', 'This is a pair') _UpperCAmelCase : Optional[int] =[ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] _UpperCAmelCase : List[Any] =tokenizer.pad_token_id _UpperCAmelCase : Union[str, Any] =tokenizer(snake_case , padding='max_length' , max_length=3_0 , return_tensors='np') _UpperCAmelCase : List[Any] =tokenizer(snake_case , padding=snake_case , truncate=snake_case , return_tensors='np') _UpperCAmelCase : Optional[Any] =tokenizer(*snake_case , padding='max_length' , max_length=6_0 , return_tensors='np') _UpperCAmelCase : List[Any] =tokenizer(snake_case , padding=snake_case , truncate=snake_case , return_tensors='np') # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] , 3_0) self.assertTrue(pad_token_id in out_s['input_ids']) self.assertTrue(0 in out_s['attention_mask']) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] , 3_3) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0]) self.assertFalse(0 in out_sa['attention_mask'][0]) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1]) self.assertTrue(0 in out_sa['attention_mask'][1]) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] , 6_0) self.assertTrue(pad_token_id in out_p['input_ids']) self.assertTrue(0 in out_p['attention_mask']) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] , 5_2) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0]) self.assertFalse(0 in out_pa['attention_mask'][0]) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1]) self.assertTrue(0 in out_pa['attention_mask'][1]) def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Any ='$$$' _UpperCAmelCase : Any =CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=snake_case , add_bos_token=snake_case) _UpperCAmelCase : Optional[Any] ='This is a simple input' _UpperCAmelCase : Any =['This is a simple input 1', 'This is a simple input 2'] _UpperCAmelCase : int =tokenizer.bos_token_id _UpperCAmelCase : Optional[Any] =tokenizer(snake_case) _UpperCAmelCase : Tuple =tokenizer(snake_case) self.assertEqual(out_s.input_ids[0] , snake_case) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids)) _UpperCAmelCase : Optional[int] =tokenizer.decode(out_s.input_ids) _UpperCAmelCase : Any =tokenizer.batch_decode(out_sa.input_ids) self.assertEqual(decode_s.split()[0] , snake_case) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa)) @slow def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[Any] =CodeGenTokenizer.from_pretrained('Salesforce/codegen-350M-mono') _UpperCAmelCase : Optional[Any] ='\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#' _UpperCAmelCase : Tuple ='\nif len_a > len_b: result = a\nelse: result = b' _UpperCAmelCase : Optional[int] =tokenizer.encode(snake_case) _UpperCAmelCase : List[str] =['^#', re.escape('<|endoftext|>'), '^\'\'\'', '^"""', '\n\n\n'] _UpperCAmelCase : Dict =tokenizer.decode(snake_case , truncate_before_pattern=snake_case) self.assertEqual(snake_case , snake_case) def lowerCAmelCase ( self) -> Optional[Any]: '''simple docstring''' pass
446
0
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case : List[str] = { 'configuration_mgp_str': ['MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MgpstrConfig'], 'processing_mgp_str': ['MgpstrProcessor'], 'tokenization_mgp_str': ['MgpstrTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : str = [ 'MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST', 'MgpstrModel', 'MgpstrPreTrainedModel', 'MgpstrForSceneTextRecognition', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys snake_case : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
339
'''simple docstring''' from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def lowercase__ ( __UpperCamelCase : float , __UpperCamelCase : float , __UpperCamelCase : bool = False ): '''simple docstring''' if radian_mode: return [magnitude * cos(__UpperCamelCase ), magnitude * sin(__UpperCamelCase )] return [magnitude * cos(radians(__UpperCamelCase ) ), magnitude * sin(radians(__UpperCamelCase ) )] def lowercase__ ( __UpperCamelCase : NDArray[floataa] , __UpperCamelCase : NDArray[floataa] , __UpperCamelCase : float = 10**-1 ): '''simple docstring''' __lowercase = cross(__UpperCamelCase , __UpperCamelCase ) __lowercase = sum(__UpperCamelCase ) return abs(__UpperCamelCase ) < eps if __name__ == "__main__": # Test to check if it works snake_case : List[Any] = array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) snake_case : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg snake_case : List[Any] = array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) snake_case : List[Any] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg snake_case : List[Any] = array([[0, -2_000], [0, -1_200], [0, 15_600], [0, -12_400]]) snake_case : str = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
339
1
"""simple docstring""" from collections.abc import Iterable from typing import Generic, TypeVar A_ = TypeVar("""_T""") class __lowerCamelCase ( Generic[_T] ): def __init__( self , UpperCAmelCase = None ): lowerCamelCase_ = list(iterable or [] ) lowerCamelCase_ = [] def __len__( self ): return len(self._stacka ) + len(self._stacka ) def __repr__( self ): return f"Queue({tuple(self._stacka[::-1] + self._stacka )})" def UpperCAmelCase__ ( self , UpperCAmelCase ): self._stacka.append(UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self._stacka.pop lowerCamelCase_ = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError('''Queue is empty''' ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
29
def A ( _lowercase , _lowercase ): return int((input_a, input_a).count(0 ) == 0 ) def A ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
248
0
import numpy as np import qiskit def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE = 8 , SCREAMING_SNAKE_CASE = None ) -> str: SCREAMING_SNAKE_CASE_ : List[Any] = np.random.default_rng(seed=SCREAMING_SNAKE_CASE_ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. SCREAMING_SNAKE_CASE_ : List[Any] = 6 * key_len # Measurement basis for Alice's qubits. SCREAMING_SNAKE_CASE_ : List[str] = rng.integers(2 , size=SCREAMING_SNAKE_CASE_ ) # The set of states Alice will prepare. SCREAMING_SNAKE_CASE_ : Optional[Any] = rng.integers(2 , size=SCREAMING_SNAKE_CASE_ ) # Measurement basis for Bob's qubits. SCREAMING_SNAKE_CASE_ : List[Any] = rng.integers(2 , size=SCREAMING_SNAKE_CASE_ ) # Quantum Circuit to simulate BB84 SCREAMING_SNAKE_CASE_ : int = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE_ , name='BB84' ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(SCREAMING_SNAKE_CASE_ ): if alice_state[index] == 1: bbaa_circ.x(SCREAMING_SNAKE_CASE_ ) if alice_basis[index] == 1: bbaa_circ.h(SCREAMING_SNAKE_CASE_ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(SCREAMING_SNAKE_CASE_ ): if bob_basis[index] == 1: bbaa_circ.h(SCREAMING_SNAKE_CASE_ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. SCREAMING_SNAKE_CASE_ : str = qiskit.Aer.get_backend('aer_simulator' ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. SCREAMING_SNAKE_CASE_ : int = qiskit.execute(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , shots=1 , seed_simulator=SCREAMING_SNAKE_CASE_ ) # Returns the result of measurement. SCREAMING_SNAKE_CASE_ : Tuple = job.result().get_counts(SCREAMING_SNAKE_CASE_ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. SCREAMING_SNAKE_CASE_ : Tuple = ''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. SCREAMING_SNAKE_CASE_ : str = gen_key[:key_len] if len(SCREAMING_SNAKE_CASE_ ) >= key_len else gen_key.ljust(SCREAMING_SNAKE_CASE_ , '0' ) return key if __name__ == "__main__": print(f'''The generated key is : {bbaa(8, seed=0)}''') from doctest import testmod testmod()
700
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCAmelCase__: Dict = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__: List[str] = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__: Union[str, Any] = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys lowerCAmelCase__: Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
311
0
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) @add_end_docstrings(A ) class __lowercase ( A ): def __init__( self , *a__ , **a__ ) -> Optional[int]: '''simple docstring''' super().__init__(*a__ , **a__ ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == '''tf''' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def lowerCAmelCase_ ( self , a__=None , a__=None , a__=None ) -> Tuple: '''simple docstring''' A_ = {} A_ = {} if prompt is not None: A_ = prompt if generate_kwargs is not None: A_ = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: A_ = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '''\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,''' ''' please use only one''' ) A_ = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , a__ , **a__ ) -> Optional[int]: '''simple docstring''' return super().__call__(a__ , **a__ ) def lowerCAmelCase_ ( self , a__ , a__=None ) -> str: '''simple docstring''' A_ = load_image(a__ ) if prompt is not None: if not isinstance(a__ , a__ ): raise ValueError( F"Received an invalid text input, got - {type(a__ )} - but expected a single string. " '''Note also that one single text can be provided for conditional image to text generation.''' ) A_ = self.model.config.model_type if model_type == "git": A_ = self.image_processor(images=a__ , return_tensors=self.framework ) A_ = self.tokenizer(text=a__ , add_special_tokens=a__ ).input_ids A_ = [self.tokenizer.cls_token_id] + input_ids A_ = torch.tensor(a__ ).unsqueeze(0 ) model_inputs.update({'''input_ids''': input_ids} ) elif model_type == "pix2struct": A_ = self.image_processor(images=a__ , header_text=a__ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation A_ = self.image_processor(images=a__ , return_tensors=self.framework ) A_ = self.tokenizer(a__ , return_tensors=self.framework ) model_inputs.update(a__ ) else: raise ValueError(F"Model type {model_type} does not support conditional text generation" ) else: A_ = self.image_processor(images=a__ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: A_ = None return model_inputs def lowerCAmelCase_ ( self , a__ , a__=None ) -> int: '''simple docstring''' # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['''input_ids'''] , a__ ) and all(x is None for x in model_inputs['''input_ids'''] ) ): A_ = None if generate_kwargs is None: A_ = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. A_ = model_inputs.pop(self.model.main_input_name ) A_ = self.model.generate(a__ , **a__ , **a__ ) return model_outputs def lowerCAmelCase_ ( self , a__ ) -> Any: '''simple docstring''' A_ = [] for output_ids in model_outputs: A_ = { 'generated_text': self.tokenizer.decode( a__ , skip_special_tokens=a__ , ) } records.append(a__ ) return records
141
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin __SCREAMING_SNAKE_CASE = get_tests_dir('fixtures/test_sentencepiece_bpe_char.model') @require_sentencepiece @require_tokenizers class __UpperCamelCase ( UpperCamelCase , unittest.TestCase ): lowercase_ : Optional[int] = SpeechTaTokenizer lowercase_ : Dict = False lowercase_ : Any = True def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase :Union[str, Any] = SpeechTaTokenizer(UpperCAmelCase ) lowerCAmelCase :Any = AddedToken('<mask>' , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) lowerCAmelCase :List[Any] = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : str , UpperCAmelCase : Any ) -> Union[str, Any]: lowerCAmelCase :Tuple = 'this is a test' lowerCAmelCase :Union[str, Any] = 'this is a test' return input_text, output_text def UpperCAmelCase__ ( self : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any=False , UpperCAmelCase : List[Any]=20 , UpperCAmelCase : str=5 ) -> Optional[Any]: lowerCAmelCase , lowerCAmelCase :Dict = self.get_input_output_texts(UpperCAmelCase ) lowerCAmelCase :str = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCAmelCase :Union[str, Any] = tokenizer.decode(UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase ) return text, ids def UpperCAmelCase__ ( self : Any ) -> Optional[Any]: lowerCAmelCase :List[Any] = '<pad>' lowerCAmelCase :Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase ) def UpperCAmelCase__ ( self : Any ) -> Any: lowerCAmelCase :Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-4] , 'œ' ) self.assertEqual(vocab_keys[-2] , '<mask>' ) self.assertEqual(vocab_keys[-1] , '<ctc_blank>' ) self.assertEqual(len(UpperCAmelCase ) , 81 ) def UpperCAmelCase__ ( self : Tuple ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def UpperCAmelCase__ ( self : Any ) -> List[str]: lowerCAmelCase :Any = self.get_tokenizers(do_lower_case=UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): lowerCAmelCase :Optional[int] = tokenizer.vocab_size lowerCAmelCase :Union[str, Any] = len(UpperCAmelCase ) self.assertNotEqual(UpperCAmelCase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) lowerCAmelCase :Optional[Any] = ['aaaaa bbbbbb', 'cccccccccdddddddd'] lowerCAmelCase :Union[str, Any] = tokenizer.add_tokens(UpperCAmelCase ) lowerCAmelCase :str = tokenizer.vocab_size lowerCAmelCase :List[Any] = len(UpperCAmelCase ) self.assertNotEqual(UpperCAmelCase , 0 ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , len(UpperCAmelCase ) ) self.assertEqual(UpperCAmelCase , all_size + len(UpperCAmelCase ) ) lowerCAmelCase :int = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=UpperCAmelCase ) self.assertGreaterEqual(len(UpperCAmelCase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) lowerCAmelCase :List[Any] = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} lowerCAmelCase :str = tokenizer.add_special_tokens(UpperCAmelCase ) lowerCAmelCase :Optional[Any] = tokenizer.vocab_size lowerCAmelCase :Tuple = len(UpperCAmelCase ) self.assertNotEqual(UpperCAmelCase , 0 ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , len(UpperCAmelCase ) ) self.assertEqual(UpperCAmelCase , all_size_a + len(UpperCAmelCase ) ) lowerCAmelCase :List[str] = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=UpperCAmelCase ) self.assertGreaterEqual(len(UpperCAmelCase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[Any]: pass def UpperCAmelCase__ ( self : str ) -> int: pass def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]: lowerCAmelCase :Optional[int] = self.get_tokenizer() lowerCAmelCase :List[str] = tokenizer.tokenize('This is a test' ) # fmt: off self.assertListEqual(UpperCAmelCase , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) lowerCAmelCase :List[str] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) lowerCAmelCase :Optional[int] = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) # fmt: off self.assertListEqual(UpperCAmelCase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on lowerCAmelCase :int = tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) @slow def UpperCAmelCase__ ( self : str ) -> Tuple: # Use custom sequence because this tokenizer does not handle numbers. lowerCAmelCase :Any = [ 'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ' 'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ' 'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ' 'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.', 'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ' 'conditioning on both left and right context in all layers.', 'The quick brown fox jumps over the lazy dog.', ] # fmt: off lowerCAmelCase :List[str] = { 'input_ids': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=UpperCAmelCase , )
553
0
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs _snake_case : Tuple = imread(R"""digital_image_processing/image_data/lena_small.jpg""") _snake_case : str = cvtColor(img, COLOR_BGR2GRAY) def _a ( ): _SCREAMING_SNAKE_CASE = cn.convert_to_negative(_SCREAMING_SNAKE_CASE ) # assert negative_img array for at least one True assert negative_img.any() def _a ( ): with Image.open("digital_image_processing/image_data/lena_small.jpg" ) as img: # Work around assertion for response assert str(cc.change_contrast(_SCREAMING_SNAKE_CASE , 110 ) ).startswith( "<PIL.Image.Image image mode=RGB size=100x100 at" ) def _a ( ): _SCREAMING_SNAKE_CASE = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def _a ( ): _SCREAMING_SNAKE_CASE = imread("digital_image_processing/image_data/lena_small.jpg" , 0 ) # assert ambiguous array for all == True assert canny_img.all() _SCREAMING_SNAKE_CASE = canny.canny(_SCREAMING_SNAKE_CASE ) # assert canny array for at least one True assert canny_array.any() def _a ( ): assert gg.gaussian_filter(_SCREAMING_SNAKE_CASE , 5 , sigma=0.9 ).all() def _a ( ): # laplace diagonals _SCREAMING_SNAKE_CASE = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) _SCREAMING_SNAKE_CASE = conv.img_convolve(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).astype(_SCREAMING_SNAKE_CASE ) assert res.any() def _a ( ): assert med.median_filter(_SCREAMING_SNAKE_CASE , 3 ).any() def _a ( ): _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = sob.sobel_filter(_SCREAMING_SNAKE_CASE ) assert grad.any() and theta.any() def _a ( ): _SCREAMING_SNAKE_CASE = sp.make_sepia(_SCREAMING_SNAKE_CASE , 20 ) assert sepia.all() def _a ( _SCREAMING_SNAKE_CASE : str = "digital_image_processing/image_data/lena_small.jpg" ): _SCREAMING_SNAKE_CASE = bs.Burkes(imread(_SCREAMING_SNAKE_CASE , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def _a ( _SCREAMING_SNAKE_CASE : str = "digital_image_processing/image_data/lena_small.jpg" , ): _SCREAMING_SNAKE_CASE = rs.NearestNeighbour(imread(_SCREAMING_SNAKE_CASE , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def _a ( ): _SCREAMING_SNAKE_CASE = "digital_image_processing/image_data/lena.jpg" # Reading the image and converting it to grayscale. _SCREAMING_SNAKE_CASE = imread(_SCREAMING_SNAKE_CASE , 0 ) # Test for get_neighbors_pixel function() return not None _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = image[x_coordinate][y_coordinate] _SCREAMING_SNAKE_CASE = lbp.get_neighbors_pixel( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image _SCREAMING_SNAKE_CASE = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): _SCREAMING_SNAKE_CASE = lbp.local_binary_value(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert lbp_image.any()
493
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case : int = { """configuration_longformer""": [ """LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongformerConfig""", """LongformerOnnxConfig""", ], """tokenization_longformer""": ["""LongformerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Optional[int] = ["""LongformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : int = [ """LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """LongformerForMaskedLM""", """LongformerForMultipleChoice""", """LongformerForQuestionAnswering""", """LongformerForSequenceClassification""", """LongformerForTokenClassification""", """LongformerModel""", """LongformerPreTrainedModel""", """LongformerSelfAttention""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Tuple = [ """TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFLongformerForMaskedLM""", """TFLongformerForMultipleChoice""", """TFLongformerForQuestionAnswering""", """TFLongformerForSequenceClassification""", """TFLongformerForTokenClassification""", """TFLongformerModel""", """TFLongformerPreTrainedModel""", """TFLongformerSelfAttention""", ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys _snake_case : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
493
1
"""simple docstring""" import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all BART models at https://huggingface.co/models?filter=bart UpperCamelCase = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, } UpperCamelCase = { """facebook/bart-base""": 1024, """facebook/bart-large""": 1024, """facebook/bart-large-mnli""": 1024, """facebook/bart-large-cnn""": 1024, """facebook/bart-large-xsum""": 1024, """yjernite/bart_eli5""": 1024, } @lru_cache() def _lowerCamelCase ( ) -> Tuple: """simple docstring""" A__ = ( list(range(ord("!" ), ord("~" ) + 1 ) ) + list(range(ord("¡" ), ord("¬" ) + 1 ) ) + list(range(ord("®" ), ord("ÿ" ) + 1 ) ) ) A__ = bs[:] A__ = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCAmelCase_ ) cs.append(2**8 + n ) n += 1 A__ = [chr(UpperCAmelCase_ ) for n in cs] return dict(zip(UpperCAmelCase_, UpperCAmelCase_ ) ) def _lowerCamelCase ( UpperCAmelCase_ : str ) -> List[str]: """simple docstring""" A__ = set() A__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A__ = char return pairs class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" A__ : Union[str, Any] = VOCAB_FILES_NAMES A__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Optional[int] = ["input_ids", "attention_mask"] def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="replace" , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="<unk>" , SCREAMING_SNAKE_CASE__="<pad>" , SCREAMING_SNAKE_CASE__="<mask>" , SCREAMING_SNAKE_CASE__=False , **SCREAMING_SNAKE_CASE__ , ) -> Tuple: A__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else bos_token A__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else eos_token A__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else sep_token A__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else cls_token A__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else unk_token A__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it A__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token super().__init__( errors=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) with open(SCREAMING_SNAKE_CASE__ , encoding="utf-8" ) as vocab_handle: A__ = json.load(SCREAMING_SNAKE_CASE__ ) A__ = {v: k for k, v in self.encoder.items()} A__ = errors # how to handle errors in decoding A__ = bytes_to_unicode() A__ = {v: k for k, v in self.byte_encoder.items()} with open(SCREAMING_SNAKE_CASE__ , encoding="utf-8" ) as merges_handle: A__ = merges_handle.read().split("\n" )[1:-1] A__ = [tuple(merge.split() ) for merge in bpe_merges] A__ = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) A__ = {} A__ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions A__ = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def snake_case__ ( self ) -> List[Any]: return len(self.encoder ) def snake_case__ ( self ) -> List[Any]: return dict(self.encoder , **self.added_tokens_encoder ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> Dict: if token in self.cache: return self.cache[token] A__ = tuple(SCREAMING_SNAKE_CASE__ ) A__ = get_pairs(SCREAMING_SNAKE_CASE__ ) if not pairs: return token while True: A__ = min(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break A__ , A__ = bigram A__ = [] A__ = 0 while i < len(SCREAMING_SNAKE_CASE__ ): try: A__ = word.index(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A__ = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A__ = tuple(SCREAMING_SNAKE_CASE__ ) A__ = new_word if len(SCREAMING_SNAKE_CASE__ ) == 1: break else: A__ = get_pairs(SCREAMING_SNAKE_CASE__ ) A__ = " ".join(SCREAMING_SNAKE_CASE__ ) A__ = word return word def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> List[Any]: A__ = [] for token in re.findall(self.pat , SCREAMING_SNAKE_CASE__ ): A__ = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE__ ).split(" " ) ) return bpe_tokens def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> str: return self.encoder.get(SCREAMING_SNAKE_CASE__ , self.encoder.get(self.unk_token ) ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> Any: return self.decoder.get(SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> Dict: A__ = "".join(SCREAMING_SNAKE_CASE__ ) A__ = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return A__ = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) A__ = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(SCREAMING_SNAKE_CASE__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) + "\n" ) A__ = 0 with open(SCREAMING_SNAKE_CASE__ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE__ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) A__ = token_index writer.write(" ".join(SCREAMING_SNAKE_CASE__ ) + "\n" ) index += 1 return vocab_file, merge_file def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ = [self.cls_token_id] A__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> List[int]: A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , **SCREAMING_SNAKE_CASE__ ) -> Optional[int]: A__ = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE__ ) > 0 and not text[0].isspace()): A__ = " " + text return (text, kwargs)
104
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def UpperCamelCase_( snake_case__: int = 3 ) -> qiskit.result.counts.Counts: if isinstance(snake_case__ , snake_case__ ): raise TypeError('number of qubits must be a integer.' ) if number_of_qubits <= 0: raise ValueError('number of qubits must be > 0.' ) if math.floor(snake_case__ ) != number_of_qubits: raise ValueError('number of qubits must be exact integer.' ) if number_of_qubits > 10: raise ValueError('number of qubits too large to simulate(>10).' ) UpperCAmelCase__ = QuantumRegister(snake_case__ , 'qr' ) UpperCAmelCase__ = ClassicalRegister(snake_case__ , 'cr' ) UpperCAmelCase__ = QuantumCircuit(snake_case__ , snake_case__ ) UpperCAmelCase__ = number_of_qubits for i in range(snake_case__ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(snake_case__ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , snake_case__ , snake_case__ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(snake_case__ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(snake_case__ , snake_case__ ) # simulate with 10000 shots UpperCAmelCase__ = Aer.get_backend('qasm_simulator' ) UpperCAmelCase__ = execute(snake_case__ , snake_case__ , shots=1_00_00 ) return job.result().get_counts(snake_case__ ) if __name__ == "__main__": print( F"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
146
0
"""simple docstring""" from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record lowercase__ = "\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n" lowercase__ = "\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n" lowercase__ = "\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for 'record': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'prediction_text': the predicted answer text\n - for 'multirc': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question-answer pair as specified by the dataset\n - 'prediction': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for 'record': list of question-answers dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'answers': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for 'record':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1': F1 score\n - for 'multirc':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1_m': Per-question macro-F1 score\n - 'f1_a': Average F1 score over all answers\n - for 'axb':\n 'matthews_correlation': Matthew Correlation\n - for 'cb':\n - 'accuracy': Accuracy\n - 'f1': F1 score\n - for all others:\n - 'accuracy': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'cb')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'record')\n >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}]\n >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc')\n >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'axb')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def __magic_name__ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[Any] ): return float((preds == labels).mean() ) def __magic_name__ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[Any]="binary" ): __a : Optional[Any] = simple_accuracy(_lowerCamelCase , _lowerCamelCase ) __a : Union[str, Any] = float(fa_score(y_true=_lowerCamelCase , y_pred=_lowerCamelCase , average=_lowerCamelCase ) ) return { "accuracy": acc, "f1": fa, } def __magic_name__ ( _lowerCamelCase : List[str] , _lowerCamelCase : Union[str, Any] ): __a : Dict = {} for id_pred, label in zip(_lowerCamelCase , _lowerCamelCase ): __a : Dict = F'''{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}''' __a : List[Any] = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: __a : Optional[int] = [(pred, label)] __a : Optional[int] = [], [] for question, preds_labels in question_map.items(): __a : Dict = zip(*_lowerCamelCase ) __a : str = fa_score(y_true=_lowerCamelCase , y_pred=_lowerCamelCase , average="""macro""" ) fas.append(_lowerCamelCase ) __a : str = int(sum(pred == label for pred, label in preds_labels ) == len(_lowerCamelCase ) ) ems.append(_lowerCamelCase ) __a : Dict = float(sum(_lowerCamelCase ) / len(_lowerCamelCase ) ) __a : Union[str, Any] = sum(_lowerCamelCase ) / len(_lowerCamelCase ) __a : List[Any] = float(fa_score(y_true=_lowerCamelCase , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def lowerCAmelCase__(self ): '''simple docstring''' if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , ) def lowerCAmelCase__(self ): '''simple docstring''' if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def lowerCAmelCase__(self , _lowercase , _lowercase ): '''simple docstring''' if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_lowercase , _lowercase )} elif self.config_name == "cb": return acc_and_fa(_lowercase , _lowercase , fa_avg="""macro""" ) elif self.config_name == "record": __a : List[str] = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] __a : List[Any] = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(_lowercase , _lowercase )[0] elif self.config_name == "multirc": return evaluate_multirc(_lowercase , _lowercase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_lowercase , _lowercase )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
717
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer lowercase__ = logging.get_logger(__name__) lowercase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowercase__ = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } lowercase__ = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } lowercase__ = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } lowercase__ = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } lowercase__ = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } lowercase__ = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } lowercase__ = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } lowercase__ = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } lowercase__ = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase = DPRContextEncoderTokenizer class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase = DPRQuestionEncoderTokenizer lowercase__ = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) lowercase__ = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) lowercase__ = R"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(__snake_case ) class SCREAMING_SNAKE_CASE__ : def __call__(self , _lowercase , _lowercase = None , _lowercase = None , _lowercase = False , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , **_lowercase , ): '''simple docstring''' if titles is None and texts is None: return super().__call__( _lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , return_tensors=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) elif titles is None or texts is None: __a : str = titles if texts is None else texts return super().__call__( _lowercase , _lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , return_tensors=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) __a : str = titles if not isinstance(_lowercase , _lowercase ) else [titles] __a : Optional[Any] = texts if not isinstance(_lowercase , _lowercase ) else [texts] __a : Tuple = len(_lowercase ) __a : Dict = questions if not isinstance(_lowercase , _lowercase ) else [questions] * n_passages assert len(_lowercase ) == len( _lowercase ), F'''There should be as many titles than texts but got {len(_lowercase )} titles and {len(_lowercase )} texts.''' __a : Optional[Any] = super().__call__(_lowercase , _lowercase , padding=_lowercase , truncation=_lowercase )["""input_ids"""] __a : str = super().__call__(_lowercase , add_special_tokens=_lowercase , padding=_lowercase , truncation=_lowercase )["""input_ids"""] __a : Union[str, Any] = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_lowercase , _lowercase ) ] } if return_attention_mask is not False: __a : Optional[int] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __a : str = attention_mask return self.pad(_lowercase , padding=_lowercase , max_length=_lowercase , return_tensors=_lowercase ) def lowerCAmelCase__(self , _lowercase , _lowercase , _lowercase = 16 , _lowercase = 64 , _lowercase = 4 , ): '''simple docstring''' __a : Union[str, Any] = reader_input["""input_ids"""] __a , __a , __a : Optional[int] = reader_output[:3] __a : int = len(_lowercase ) __a : Any = sorted(range(_lowercase ) , reverse=_lowercase , key=relevance_logits.__getitem__ ) __a : List[DPRReaderOutput] = [] for doc_id in sorted_docs: __a : Optional[int] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __a : Dict = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __a : int = sequence_ids.index(self.pad_token_id ) else: __a : Optional[Any] = len(_lowercase ) __a : List[Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_lowercase , top_spans=_lowercase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_lowercase , start_index=_lowercase , end_index=_lowercase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_lowercase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowerCAmelCase__(self , _lowercase , _lowercase , _lowercase , _lowercase , ): '''simple docstring''' __a : Tuple = [] for start_index, start_score in enumerate(_lowercase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __a : str = sorted(_lowercase , key=lambda _lowercase : x[1] , reverse=_lowercase ) __a : Union[str, Any] = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F'''Wrong span indices: [{start_index}:{end_index}]''' __a : List[str] = end_index - start_index + 1 assert length <= max_answer_length, F'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_lowercase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__snake_case ) class SCREAMING_SNAKE_CASE__ ( __snake_case , __snake_case ): _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = READER_PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = READER_PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase = ["input_ids", "attention_mask"] _lowerCAmelCase = DPRReaderTokenizer
63
0
"""simple docstring""" from math import factorial def __a ( A = 100 ) -> int: '''simple docstring''' return sum(int(A ) for x in str(factorial(A ) ) ) if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
337
"""simple docstring""" def __a ( A ) -> List[str]: '''simple docstring''' A__ = [0] * len(A ) A__ = [] A__ = [] A__ = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(A ) ): if indegree[i] == 0: queue.append(A ) while queue: A__ = queue.pop(0 ) cnt += 1 topo.append(A ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(A ) if cnt != len(A ): print("Cycle exists" ) else: print(A ) # Adjacency List of Graph __UpperCAmelCase ={0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
337
1
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class __lowercase : def __init__( self : Union[str, Any] ,A : str ,A : int=13 ,A : Union[str, Any]=7 ,A : str=False ,A : Union[str, Any]=True ,A : Optional[Any]=False ,A : str=False ,A : List[str]=19 ,A : str=32 ,A : str=5 ,A : str=4 ,A : Optional[int]=37 ,A : Any="gelu" ,A : Optional[int]=0.1 ,A : Optional[Any]=0.1 ,A : Tuple=512 ,A : str=16 ,A : int=2 ,A : Union[str, Any]=0.0_2 ,A : Union[str, Any]=3 ,A : str=4 ,A : List[str]=None ,): '''simple docstring''' UpperCAmelCase__ : Any = parent UpperCAmelCase__ : Tuple = batch_size UpperCAmelCase__ : Tuple = seq_length UpperCAmelCase__ : Any = is_training UpperCAmelCase__ : Optional[int] = use_input_mask UpperCAmelCase__ : Any = use_token_type_ids UpperCAmelCase__ : Tuple = use_labels UpperCAmelCase__ : Optional[Any] = vocab_size UpperCAmelCase__ : str = hidden_size UpperCAmelCase__ : Optional[Any] = num_hidden_layers UpperCAmelCase__ : Optional[Any] = num_attention_heads UpperCAmelCase__ : List[Any] = intermediate_size UpperCAmelCase__ : Tuple = hidden_act UpperCAmelCase__ : List[str] = hidden_dropout_prob UpperCAmelCase__ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase__ : List[str] = max_position_embeddings UpperCAmelCase__ : Any = type_vocab_size UpperCAmelCase__ : List[Any] = type_sequence_label_size UpperCAmelCase__ : str = initializer_range UpperCAmelCase__ : List[Any] = num_labels UpperCAmelCase__ : List[str] = num_choices UpperCAmelCase__ : List[Any] = scope def __lowercase ( self : int ): '''simple docstring''' UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase__ : Dict = None if self.use_input_mask: UpperCAmelCase__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Optional[Any] = None UpperCAmelCase__ : List[Any] = None if self.use_labels: UpperCAmelCase__ : Optional[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase__ : str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase__ : str = ids_tensor([self.batch_size] ,self.num_choices ) UpperCAmelCase__ : Optional[int] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : str = EsmConfig( vocab_size=33 ,hidden_size=self.hidden_size ,pad_token_id=1 ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,is_folding_model=A ,esmfold_config={"""trunk""": {"""num_blocks""": 2}, """fp16_esm""": False} ,) return config def __lowercase ( self : Union[str, Any] ,A : Tuple ,A : int ,A : Tuple ,A : Optional[Any] ,A : Optional[Any] ,A : Tuple ): '''simple docstring''' UpperCAmelCase__ : Tuple = EsmForProteinFolding(config=A ).float() model.to(A ) model.eval() UpperCAmelCase__ : Dict = model(A ,attention_mask=A ) UpperCAmelCase__ : List[Any] = model(A ) UpperCAmelCase__ : int = model(A ) self.parent.assertEqual(result.positions.shape ,(8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape ,(8, self.batch_size, self.seq_length, 7, 2) ) def __lowercase ( self : str ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase__ : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __lowercase ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): snake_case_ = False snake_case_ = (EsmForProteinFolding,) if is_torch_available() else () snake_case_ = () snake_case_ = {} if is_torch_available() else {} snake_case_ = False def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = EsmFoldModelTester(self ) UpperCAmelCase__ : int = ConfigTester(self ,config_class=A ,hidden_size=37 ) def __lowercase ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) @unittest.skip("""Does not support attention outputs""" ) def __lowercase ( self : str ): '''simple docstring''' pass @unittest.skip def __lowercase ( self : Any ): '''simple docstring''' pass @unittest.skip("""Esm does not support embedding resizing""" ) def __lowercase ( self : Tuple ): '''simple docstring''' pass @unittest.skip("""Esm does not support embedding resizing""" ) def __lowercase ( self : List[str] ): '''simple docstring''' pass @unittest.skip("""ESMFold does not support passing input embeds!""" ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip("""ESMFold does not support head pruning.""" ) def __lowercase ( self : str ): '''simple docstring''' pass @unittest.skip("""ESMFold does not support head pruning.""" ) def __lowercase ( self : str ): '''simple docstring''' pass @unittest.skip("""ESMFold does not support head pruning.""" ) def __lowercase ( self : int ): '''simple docstring''' pass @unittest.skip("""ESMFold does not support head pruning.""" ) def __lowercase ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip("""ESMFold does not support head pruning.""" ) def __lowercase ( self : Any ): '''simple docstring''' pass @unittest.skip("""ESMFold does not output hidden states in the normal way.""" ) def __lowercase ( self : str ): '''simple docstring''' pass @unittest.skip("""ESMfold does not output hidden states in the normal way.""" ) def __lowercase ( self : List[str] ): '''simple docstring''' pass @unittest.skip("""ESMFold only has one output format.""" ) def __lowercase ( self : str ): '''simple docstring''' pass @unittest.skip("""This test doesn't work for ESMFold and doesn't test core functionality""" ) def __lowercase ( self : int ): '''simple docstring''' pass @unittest.skip("""ESMFold does not support input chunking.""" ) def __lowercase ( self : int ): '''simple docstring''' pass @unittest.skip("""ESMFold doesn't respect you and it certainly doesn't respect your initialization arguments.""" ) def __lowercase ( self : List[str] ): '''simple docstring''' pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def __lowercase ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def __lowercase ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def __lowercase ( self : List[str] ): '''simple docstring''' pass @unittest.skip("""ESMFold doesn't support data parallel.""" ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __lowercase ( self : int ): '''simple docstring''' pass @require_torch class __lowercase ( __lowerCamelCase ): @slow def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Any = EsmForProteinFolding.from_pretrained("""facebook/esmfold_v1""" ).float() model.eval() UpperCAmelCase__ : Optional[Any] = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) UpperCAmelCase__ : Tuple = model(A )["""positions"""] UpperCAmelCase__ : Optional[int] = torch.tensor([2.5_8_2_8, 0.7_9_9_3, -1_0.9_3_3_4] ,dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] ,A ,atol=1e-4 ) )
194
"""simple docstring""" from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name __UpperCAmelCase = '\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior")\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1")\n >>> pipe.to("cuda")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save("cat.png")\n ```\n' def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=8 ): '''simple docstring''' UpperCAmelCase__ : Tuple = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 UpperCAmelCase__ : Any = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class __lowercase ( __lowerCamelCase ): def __init__( self : str ,A : MultilingualCLIP ,A : XLMRobertaTokenizer ,A : UNetaDConditionModel ,A : Union[DDIMScheduler, DDPMScheduler] ,A : VQModel ,): '''simple docstring''' super().__init__() self.register_modules( text_encoder=A ,tokenizer=A ,unet=A ,scheduler=A ,movq=A ,) UpperCAmelCase__ : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __lowercase ( self : Dict ,A : Any ,A : Tuple ,A : Dict ,A : int ,A : str ,A : List[str] ): '''simple docstring''' if latents is None: UpperCAmelCase__ : Any = randn_tensor(A ,generator=A ,device=A ,dtype=A ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) UpperCAmelCase__ : int = latents.to(A ) UpperCAmelCase__ : Any = latents * scheduler.init_noise_sigma return latents def __lowercase ( self : Optional[int] ,A : List[Any] ,A : Optional[Any] ,A : str ,A : Optional[Any] ,A : str=None ,): '''simple docstring''' UpperCAmelCase__ : List[Any] = len(A ) if isinstance(A ,A ) else 1 # get prompt text embeddings UpperCAmelCase__ : List[Any] = self.tokenizer( A ,padding="""max_length""" ,truncation=A ,max_length=77 ,return_attention_mask=A ,add_special_tokens=A ,return_tensors="""pt""" ,) UpperCAmelCase__ : List[str] = text_inputs.input_ids UpperCAmelCase__ : Any = self.tokenizer(A ,padding="""longest""" ,return_tensors="""pt""" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(A ,A ): UpperCAmelCase__ : List[str] = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) UpperCAmelCase__ : str = text_input_ids.to(A ) UpperCAmelCase__ : Optional[Any] = text_inputs.attention_mask.to(A ) UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.text_encoder( input_ids=A ,attention_mask=A ) UpperCAmelCase__ : Optional[int] = prompt_embeds.repeat_interleave(A ,dim=0 ) UpperCAmelCase__ : Optional[int] = text_encoder_hidden_states.repeat_interleave(A ,dim=0 ) UpperCAmelCase__ : List[str] = text_mask.repeat_interleave(A ,dim=0 ) if do_classifier_free_guidance: UpperCAmelCase__ : List[str] if negative_prompt is None: UpperCAmelCase__ : List[Any] = [""""""] * batch_size elif type(A ) is not type(A ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(A )} !=" f" {type(A )}." ) elif isinstance(A ,A ): UpperCAmelCase__ : Any = [negative_prompt] elif batch_size != len(A ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(A )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" """ the batch size of `prompt`.""" ) else: UpperCAmelCase__ : List[Any] = negative_prompt UpperCAmelCase__ : Any = self.tokenizer( A ,padding="""max_length""" ,max_length=77 ,truncation=A ,return_attention_mask=A ,add_special_tokens=A ,return_tensors="""pt""" ,) UpperCAmelCase__ : Optional[int] = uncond_input.input_ids.to(A ) UpperCAmelCase__ : str = uncond_input.attention_mask.to(A ) UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.text_encoder( input_ids=A ,attention_mask=A ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase__ : Any = negative_prompt_embeds.shape[1] UpperCAmelCase__ : Any = negative_prompt_embeds.repeat(1 ,A ) UpperCAmelCase__ : str = negative_prompt_embeds.view(batch_size * num_images_per_prompt ,A ) UpperCAmelCase__ : Dict = uncond_text_encoder_hidden_states.shape[1] UpperCAmelCase__ : Any = uncond_text_encoder_hidden_states.repeat(1 ,A ,1 ) UpperCAmelCase__ : Any = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt ,A ,-1 ) UpperCAmelCase__ : List[Any] = uncond_text_mask.repeat_interleave(A ,dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase__ : Any = torch.cat([negative_prompt_embeds, prompt_embeds] ) UpperCAmelCase__ : int = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) UpperCAmelCase__ : str = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def __lowercase ( self : Tuple ,A : Dict=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) UpperCAmelCase__ : str = torch.device(f"cuda:{gpu_id}" ) UpperCAmelCase__ : Tuple = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A ,A ) def __lowercase ( self : int ,A : Optional[Any]=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(""">=""" ,"""0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) UpperCAmelCase__ : List[str] = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("""cpu""" ,silence_dtype_warnings=A ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase__ : List[str] = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = cpu_offload_with_hook(A ,A ,prev_module_hook=A ) if self.safety_checker is not None: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = cpu_offload_with_hook(self.safety_checker ,A ,prev_module_hook=A ) # We'll offload the last model manually. UpperCAmelCase__ : Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowercase ( self : List[Any] ): '''simple docstring''' if not hasattr(self.unet ,"""_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(A ,"""_hf_hook""" ) and hasattr(module._hf_hook ,"""execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(A ) def __call__( self : Union[str, Any] ,A : Union[str, List[str]] ,A : Union[torch.FloatTensor, List[torch.FloatTensor]] ,A : Union[torch.FloatTensor, List[torch.FloatTensor]] ,A : Optional[Union[str, List[str]]] = None ,A : int = 512 ,A : int = 512 ,A : int = 100 ,A : float = 4.0 ,A : int = 1 ,A : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,A : Optional[torch.FloatTensor] = None ,A : Optional[str] = "pil" ,A : bool = True ,): '''simple docstring''' if isinstance(A ,A ): UpperCAmelCase__ : str = 1 elif isinstance(A ,A ): UpperCAmelCase__ : Tuple = len(A ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(A )}" ) UpperCAmelCase__ : Optional[int] = self._execution_device UpperCAmelCase__ : Dict = batch_size * num_images_per_prompt UpperCAmelCase__ : Union[str, Any] = guidance_scale > 1.0 UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self._encode_prompt( A ,A ,A ,A ,A ) if isinstance(A ,A ): UpperCAmelCase__ : Dict = torch.cat(A ,dim=0 ) if isinstance(A ,A ): UpperCAmelCase__ : Dict = torch.cat(A ,dim=0 ) if do_classifier_free_guidance: UpperCAmelCase__ : Optional[int] = image_embeds.repeat_interleave(A ,dim=0 ) UpperCAmelCase__ : Tuple = negative_image_embeds.repeat_interleave(A ,dim=0 ) UpperCAmelCase__ : List[str] = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to( dtype=prompt_embeds.dtype ,device=A ) self.scheduler.set_timesteps(A ,device=A ) UpperCAmelCase__ : int = self.scheduler.timesteps UpperCAmelCase__ : Union[str, Any] = self.unet.config.in_channels UpperCAmelCase__ , UpperCAmelCase__ : Dict = get_new_h_w(A ,A ,self.movq_scale_factor ) # create initial latent UpperCAmelCase__ : Dict = self.prepare_latents( (batch_size, num_channels_latents, height, width) ,text_encoder_hidden_states.dtype ,A ,A ,A ,self.scheduler ,) for i, t in enumerate(self.progress_bar(A ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase__ : Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase__ : Optional[Any] = {"""text_embeds""": prompt_embeds, """image_embeds""": image_embeds} UpperCAmelCase__ : Any = self.unet( sample=A ,timestep=A ,encoder_hidden_states=A ,added_cond_kwargs=A ,return_dict=A ,)[0] if do_classifier_free_guidance: UpperCAmelCase__ , UpperCAmelCase__ : List[str] = noise_pred.split(latents.shape[1] ,dim=1 ) UpperCAmelCase__ , UpperCAmelCase__ : Any = noise_pred.chunk(2 ) UpperCAmelCase__ , UpperCAmelCase__ : str = variance_pred.chunk(2 ) UpperCAmelCase__ : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase__ : List[Any] = torch.cat([noise_pred, variance_pred_text] ,dim=1 ) if not ( hasattr(self.scheduler.config ,"""variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = noise_pred.split(latents.shape[1] ,dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase__ : Optional[Any] = self.scheduler.step( A ,A ,A ,generator=A ,).prev_sample # post-processing UpperCAmelCase__ : List[Any] = self.movq.decode(A ,force_not_quantize=A )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: UpperCAmelCase__ : Union[str, Any] = image * 0.5 + 0.5 UpperCAmelCase__ : Optional[Any] = image.clamp(0 ,1 ) UpperCAmelCase__ : Dict = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": UpperCAmelCase__ : List[str] = self.numpy_to_pil(A ) if not return_dict: return (image,) return ImagePipelineOutput(images=A )
194
1
_lowercase = '0.18.2' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
306
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowerCamelCase__ ( A__ ): def __init__( self : Tuple , *__a : Tuple , __a : Dict=None , __a : List[str]=None , **__a : Dict ): '''simple docstring''' super().__init__(*__a , **__a ) lowerCamelCase__: str = eval_examples lowerCamelCase__: Optional[int] = post_process_function def lowerCamelCase_ ( self : str , __a : Optional[Dataset] = None , __a : List[Any]=None , __a : Optional[List[str]] = None , __a : str = "eval" , **__a : Tuple , ): '''simple docstring''' lowerCamelCase__: Tuple = gen_kwargs.copy() lowerCamelCase__: Union[str, Any] = ( gen_kwargs["""max_length"""] if gen_kwargs.get("""max_length""" ) is not None else self.args.generation_max_length ) lowerCamelCase__: Tuple = ( gen_kwargs["""num_beams"""] if gen_kwargs.get("""num_beams""" ) is not None else self.args.generation_num_beams ) lowerCamelCase__: Optional[Any] = gen_kwargs lowerCamelCase__: List[Any] = self.eval_dataset if eval_dataset is None else eval_dataset lowerCamelCase__: Union[str, Any] = self.get_eval_dataloader(__a ) lowerCamelCase__: Union[str, Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowerCamelCase__: Optional[int] = self.compute_metrics lowerCamelCase__: Union[str, Any] = None lowerCamelCase__: Dict = time.time() lowerCamelCase__: Optional[int] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCamelCase__: Any = eval_loop( __a , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , ) finally: lowerCamelCase__: Any = compute_metrics lowerCamelCase__: int = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( __a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowerCamelCase__: Tuple = self.post_process_function(__a , __a , __a ) lowerCamelCase__: List[Any] = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): lowerCamelCase__: Dict = metrics.pop(__a ) metrics.update(output.metrics ) else: lowerCamelCase__: int = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__a ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowerCamelCase__: List[Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , __a ) return metrics def lowerCamelCase_ ( self : str , __a : List[str] , __a : List[Any] , __a : Tuple=None , __a : str = "test" , **__a : Optional[int] ): '''simple docstring''' lowerCamelCase__: List[Any] = gen_kwargs.copy() lowerCamelCase__: Optional[Any] = self.get_test_dataloader(__a ) # Temporarily disable metric computation, we will do it in the loop here. lowerCamelCase__: Any = self.compute_metrics lowerCamelCase__: Optional[int] = None lowerCamelCase__: int = time.time() lowerCamelCase__: Tuple = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCamelCase__: List[str] = eval_loop( __a , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , ) finally: lowerCamelCase__: Any = compute_metrics lowerCamelCase__: Optional[int] = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( __a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowerCamelCase__: str = self.post_process_function(__a , __a , __a , """predict""" ) lowerCamelCase__: str = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): lowerCamelCase__: Dict = metrics.pop(__a ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__a )
306
1
'''simple docstring''' def a_ ( __UpperCAmelCase ) -> bool: """simple docstring""" snake_case: set[int] =set() # To detect a back edge, keep track of vertices currently in the recursion stack snake_case: set[int] =set() return any( node not in visited and depth_first_search(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) for node in graph ) def a_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> bool: """simple docstring""" visited.add(__UpperCAmelCase ) rec_stk.add(__UpperCAmelCase ) for node in graph[vertex]: if node not in visited: if depth_first_search(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(__UpperCAmelCase ) return False if __name__ == "__main__": from doctest import testmod testmod()
347
'''simple docstring''' def a_ ( __UpperCAmelCase ) -> int: """simple docstring""" if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): snake_case: Any =f'''Input value of [number={number}] must be an integer''' raise TypeError(__UpperCAmelCase ) if number < 1: snake_case: Tuple =f'''Input value of [number={number}] must be > 0''' raise ValueError(__UpperCAmelCase ) snake_case: int =1 for i in range(1 , __UpperCAmelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
347
1
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _lowercase : Tuple = {"""LayoutLMv2Config""", """LayoutLMv3Config"""} @is_pipeline_test class UpperCamelCase__( unittest.TestCase ): __magic_name__ : str = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __magic_name__ : List[Any] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: __magic_name__ : Tuple = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: __magic_name__ : Optional[Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def a__( self : int )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = pipeline( task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''pt''' ) UpperCAmelCase = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(lowerCAmelCase ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) UpperCAmelCase = text_classifier('''This is great !''' , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}] ) UpperCAmelCase = text_classifier(['''This is great !''', '''This is bad'''] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase ) , [ [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], ] , ) UpperCAmelCase = text_classifier('''This is great !''' , top_k=1 ) self.assertEqual(nested_simplify(lowerCAmelCase ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) # Legacy behavior UpperCAmelCase = text_classifier('''This is great !''' , return_all_scores=lowerCAmelCase ) self.assertEqual(nested_simplify(lowerCAmelCase ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) UpperCAmelCase = text_classifier('''This is great !''' , return_all_scores=lowerCAmelCase ) self.assertEqual( nested_simplify(lowerCAmelCase ) , [[{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}]] ) UpperCAmelCase = text_classifier(['''This is great !''', '''Something else'''] , return_all_scores=lowerCAmelCase ) self.assertEqual( nested_simplify(lowerCAmelCase ) , [ [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], ] , ) UpperCAmelCase = text_classifier(['''This is great !''', '''Something else'''] , return_all_scores=lowerCAmelCase ) self.assertEqual( nested_simplify(lowerCAmelCase ) , [ {'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_0''', '''score''': 0.504}, ] , ) @require_torch def a__( self : List[Any] )-> int: """simple docstring""" import torch UpperCAmelCase = pipeline( task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''pt''' , device=torch.device('''cpu''' ) , ) UpperCAmelCase = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(lowerCAmelCase ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) @require_tf def a__( self : List[str] )-> Dict: """simple docstring""" UpperCAmelCase = pipeline( task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''tf''' ) UpperCAmelCase = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(lowerCAmelCase ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) @slow @require_torch def a__( self : Union[str, Any] )-> int: """simple docstring""" UpperCAmelCase = pipeline('''text-classification''' ) UpperCAmelCase = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(lowerCAmelCase ) , [{'''label''': '''POSITIVE''', '''score''': 1.0}] ) UpperCAmelCase = text_classifier('''This is bad !''' ) self.assertEqual(nested_simplify(lowerCAmelCase ) , [{'''label''': '''NEGATIVE''', '''score''': 1.0}] ) UpperCAmelCase = text_classifier('''Birds are a type of animal''' ) self.assertEqual(nested_simplify(lowerCAmelCase ) , [{'''label''': '''POSITIVE''', '''score''': 0.988}] ) @slow @require_tf def a__( self : List[str] )-> Dict: """simple docstring""" UpperCAmelCase = pipeline('''text-classification''' , framework='''tf''' ) UpperCAmelCase = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(lowerCAmelCase ) , [{'''label''': '''POSITIVE''', '''score''': 1.0}] ) UpperCAmelCase = text_classifier('''This is bad !''' ) self.assertEqual(nested_simplify(lowerCAmelCase ) , [{'''label''': '''NEGATIVE''', '''score''': 1.0}] ) UpperCAmelCase = text_classifier('''Birds are a type of animal''' ) self.assertEqual(nested_simplify(lowerCAmelCase ) , [{'''label''': '''POSITIVE''', '''score''': 0.988}] ) def a__( self : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : Any )-> List[Any]: """simple docstring""" UpperCAmelCase = TextClassificationPipeline(model=lowerCAmelCase , tokenizer=lowerCAmelCase ) return text_classifier, ["HuggingFace is in", "This is another test"] def a__( self : Tuple , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 UpperCAmelCase = '''HuggingFace is in''' UpperCAmelCase = text_classifier(lowerCAmelCase ) self.assertEqual(nested_simplify(lowerCAmelCase ) , [{'''label''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase )}] ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() ) UpperCAmelCase = ['''HuggingFace is in ''', '''Paris is in France'''] UpperCAmelCase = text_classifier(lowerCAmelCase ) self.assertEqual( nested_simplify(lowerCAmelCase ) , [{'''label''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase )}, {'''label''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase )}] , ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() ) self.assertTrue(outputs[1]['''label'''] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format UpperCAmelCase = text_classifier(lowerCAmelCase , top_k=lowerCAmelCase ) UpperCAmelCase = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(lowerCAmelCase ) , [[{'''label''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase )}] * N, [{'''label''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase )}] * N] , ) UpperCAmelCase = {'''text''': '''HuggingFace is in ''', '''text_pair''': '''Paris is in France'''} UpperCAmelCase = text_classifier(lowerCAmelCase ) self.assertEqual( nested_simplify(lowerCAmelCase ) , {'''label''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase )} , ) self.assertTrue(outputs['''label'''] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. UpperCAmelCase = [['''HuggingFace is in ''', '''Paris is in France''']] with self.assertRaises(lowerCAmelCase ): text_classifier(lowerCAmelCase ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility UpperCAmelCase = text_classifier([[['''HuggingFace is in ''', '''Paris is in France''']]] ) self.assertEqual( nested_simplify(lowerCAmelCase ) , [{'''label''': ANY(lowerCAmelCase ), '''score''': ANY(lowerCAmelCase )}] , ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() )
210
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase : List[Any] = logging.get_logger(__name__) _lowercase : Union[str, Any] = { """xlm-mlm-en-2048""": """https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json""", """xlm-mlm-ende-1024""": """https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json""", """xlm-mlm-enfr-1024""": """https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json""", """xlm-mlm-enro-1024""": """https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json""", """xlm-mlm-tlm-xnli15-1024""": """https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json""", """xlm-mlm-xnli15-1024""": """https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json""", """xlm-clm-enfr-1024""": """https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json""", """xlm-clm-ende-1024""": """https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json""", """xlm-mlm-17-1280""": """https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json""", """xlm-mlm-100-1280""": """https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json""", } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Dict = "xlm" __magic_name__ : str = { "hidden_size": "emb_dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", "n_words": "vocab_size", # For backward compatibility } def __init__( self : List[Any] , lowerCAmelCase : str=30145 , lowerCAmelCase : List[str]=2048 , lowerCAmelCase : Tuple=12 , lowerCAmelCase : str=16 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=False , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : str=False , lowerCAmelCase : Dict=1 , lowerCAmelCase : Dict=True , lowerCAmelCase : Optional[Any]=512 , lowerCAmelCase : Optional[Any]=2048**-0.5 , lowerCAmelCase : Tuple=1E-12 , lowerCAmelCase : List[Any]=0.02 , lowerCAmelCase : Dict=0 , lowerCAmelCase : Optional[int]=1 , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : Dict=5 , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : List[Any]="first" , lowerCAmelCase : Tuple=True , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : List[str]=True , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : int=5 , lowerCAmelCase : Tuple=5 , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Any=0 , lowerCAmelCase : int=2 , lowerCAmelCase : List[Any]=0 , **lowerCAmelCase : List[Any] , )-> Any: """simple docstring""" UpperCAmelCase = vocab_size UpperCAmelCase = emb_dim UpperCAmelCase = n_layers UpperCAmelCase = n_heads UpperCAmelCase = dropout UpperCAmelCase = attention_dropout UpperCAmelCase = gelu_activation UpperCAmelCase = sinusoidal_embeddings UpperCAmelCase = causal UpperCAmelCase = asm UpperCAmelCase = n_langs UpperCAmelCase = use_lang_emb UpperCAmelCase = layer_norm_eps UpperCAmelCase = bos_index UpperCAmelCase = eos_index UpperCAmelCase = pad_index UpperCAmelCase = unk_index UpperCAmelCase = mask_index UpperCAmelCase = is_encoder UpperCAmelCase = max_position_embeddings UpperCAmelCase = embed_init_std UpperCAmelCase = init_std UpperCAmelCase = summary_type UpperCAmelCase = summary_use_proj UpperCAmelCase = summary_activation UpperCAmelCase = summary_proj_to_labels UpperCAmelCase = summary_first_dropout UpperCAmelCase = start_n_top UpperCAmelCase = end_n_top UpperCAmelCase = mask_token_id UpperCAmelCase = lang_id if "n_words" in kwargs: UpperCAmelCase = kwargs['''n_words'''] super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , **lowerCAmelCase ) class UpperCamelCase__( lowerCAmelCase ): @property def a__( self : List[str] )-> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
210
1
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class SCREAMING_SNAKE_CASE__ : _lowerCAmelCase = 42 _lowerCAmelCase = None _lowerCAmelCase = None def __magic_name__ ( ): __a : Optional[Any] = Node(1 ) __a : List[str] = Node(2 ) __a : Union[str, Any] = Node(3 ) __a : Tuple = Node(4 ) __a : int = Node(5 ) return tree def __magic_name__ ( _lowerCamelCase : Node | None ): return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def __magic_name__ ( _lowerCamelCase : Node | None ): return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def __magic_name__ ( _lowerCamelCase : Node | None ): return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def __magic_name__ ( _lowerCamelCase : Node | None ): return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def __magic_name__ ( _lowerCamelCase : Node | None ): __a : list[Any] = [] if root is None: return output __a : Tuple = deque([root] ) while process_queue: __a : Optional[Any] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def __magic_name__ ( _lowerCamelCase : Node | None , _lowerCamelCase : int ): __a : list[Any] = [] def populate_output(_lowerCamelCase : Node | None , _lowerCamelCase : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(_lowerCamelCase , _lowerCamelCase ) return output def __magic_name__ ( _lowerCamelCase : Node | None , _lowerCamelCase : int ): __a : list[Any] = [] def populate_output(_lowerCamelCase : Node | None , _lowerCamelCase : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(_lowerCamelCase , _lowerCamelCase ) return output def __magic_name__ ( _lowerCamelCase : Node | None ): if root is None: return [] __a : list[Sequence[Node | None]] = [] __a : List[str] = 0 __a : Optional[Any] = height(_lowerCamelCase ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(_lowerCamelCase , _lowerCamelCase ) ) __a : Any = 1 else: output.append(get_nodes_from_right_to_left(_lowerCamelCase , _lowerCamelCase ) ) __a : Optional[Any] = 0 return output def __magic_name__ ( ): # Main function for testing. __a : Union[str, Any] = make_tree() print(F'''In-order Traversal: {inorder(_lowerCamelCase )}''' ) print(F'''Pre-order Traversal: {preorder(_lowerCamelCase )}''' ) print(F'''Post-order Traversal: {postorder(_lowerCamelCase )}''' , """\n""" ) print(F'''Height of Tree: {height(_lowerCamelCase )}''' , """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(_lowerCamelCase ) , """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 , height(_lowerCamelCase ) + 1 ): print(F'''Level {level}:''' , get_nodes_from_left_to_right(_lowerCamelCase , level=_lowerCamelCase ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(_lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
63
"""simple docstring""" import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging lowercase__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = "linear" _lowerCAmelCase = "cosine" _lowerCAmelCase = "cosine_with_restarts" _lowerCAmelCase = "polynomial" _lowerCAmelCase = "constant" _lowerCAmelCase = "constant_with_warmup" _lowerCAmelCase = "piecewise_constant" def __magic_name__ ( _lowerCamelCase : Optimizer , _lowerCamelCase : int = -1 ): return LambdaLR(_lowerCamelCase , lambda _lowerCamelCase : 1 , last_epoch=_lowerCamelCase ) def __magic_name__ ( _lowerCamelCase : Optimizer , _lowerCamelCase : int , _lowerCamelCase : int = -1 ): def lr_lambda(_lowerCamelCase : int ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1.0 , _lowerCamelCase ) ) return 1.0 return LambdaLR(_lowerCamelCase , _lowerCamelCase , last_epoch=_lowerCamelCase ) def __magic_name__ ( _lowerCamelCase : Optimizer , _lowerCamelCase : str , _lowerCamelCase : int = -1 ): __a : Optional[int] = {} __a : Any = step_rules.split(""",""" ) for rule_str in rule_list[:-1]: __a , __a : int = rule_str.split(""":""" ) __a : Optional[int] = int(_lowerCamelCase ) __a : str = float(_lowerCamelCase ) __a : int = value __a : Dict = float(rule_list[-1] ) def create_rules_function(_lowerCamelCase : str , _lowerCamelCase : Tuple ): def rule_func(_lowerCamelCase : int ) -> float: __a : Optional[Any] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(_lowerCamelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __a : Optional[int] = create_rules_function(_lowerCamelCase , _lowerCamelCase ) return LambdaLR(_lowerCamelCase , _lowerCamelCase , last_epoch=_lowerCamelCase ) def __magic_name__ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Any , _lowerCamelCase : List[str] , _lowerCamelCase : str=-1 ): def lr_lambda(_lowerCamelCase : int ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __magic_name__ ( _lowerCamelCase : Optimizer , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : float = 0.5 , _lowerCamelCase : int = -1 ): def lr_lambda(_lowerCamelCase : Any ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) ) __a : Dict = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_lowerCamelCase ) * 2.0 * progress )) ) return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __magic_name__ ( _lowerCamelCase : Optimizer , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int = 1 , _lowerCamelCase : int = -1 ): def lr_lambda(_lowerCamelCase : Optional[int] ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) ) __a : Dict = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_lowerCamelCase ) * progress) % 1.0) )) ) return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __magic_name__ ( _lowerCamelCase : Any , _lowerCamelCase : Any , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any]=1E-7 , _lowerCamelCase : Optional[int]=1.0 , _lowerCamelCase : Optional[int]=-1 ): __a : Union[str, Any] = optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(F'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(_lowerCamelCase : int ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __a : Tuple = lr_init - lr_end __a : int = num_training_steps - num_warmup_steps __a : Optional[int] = 1 - (current_step - num_warmup_steps) / decay_steps __a : List[str] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowercase__ = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __magic_name__ ( _lowerCamelCase : Union[str, SchedulerType] , _lowerCamelCase : Optimizer , _lowerCamelCase : Optional[str] = None , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : int = 1 , _lowerCamelCase : float = 1.0 , _lowerCamelCase : int = -1 , ): __a : int = SchedulerType(_lowerCamelCase ) __a : Optional[int] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(_lowerCamelCase , last_epoch=_lowerCamelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(_lowerCamelCase , step_rules=_lowerCamelCase , last_epoch=_lowerCamelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(_lowerCamelCase , num_warmup_steps=_lowerCamelCase , last_epoch=_lowerCamelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( _lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , num_cycles=_lowerCamelCase , last_epoch=_lowerCamelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( _lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , power=_lowerCamelCase , last_epoch=_lowerCamelCase , ) return schedule_func( _lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , last_epoch=_lowerCamelCase )
63
1
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowerCAmelCase__ = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } lowerCAmelCase__ = {'facebook/blenderbot-3B': 128} class snake_case ( __lowercase ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__ = BlenderbotTokenizer def __init__(self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="replace" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ): """simple docstring""" super().__init__( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , errors=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) SCREAMING_SNAKE_CASE_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , SCREAMING_SNAKE_CASE_ ) != add_prefix_space: SCREAMING_SNAKE_CASE_ = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE_ = add_prefix_space SCREAMING_SNAKE_CASE_ = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = add_prefix_space SCREAMING_SNAKE_CASE_ = '''post_processor''' SCREAMING_SNAKE_CASE_ = getattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE_ = tuple(state['''sep'''] ) if "cls" in state: SCREAMING_SNAKE_CASE_ = tuple(state['''cls'''] ) SCREAMING_SNAKE_CASE_ = False if state.get('''add_prefix_space''' , SCREAMING_SNAKE_CASE_ ) != add_prefix_space: SCREAMING_SNAKE_CASE_ = add_prefix_space SCREAMING_SNAKE_CASE_ = True if state.get('''trim_offsets''' , SCREAMING_SNAKE_CASE_ ) != trim_offsets: SCREAMING_SNAKE_CASE_ = trim_offsets SCREAMING_SNAKE_CASE_ = True if changes_to_apply: SCREAMING_SNAKE_CASE_ = getattr(SCREAMING_SNAKE_CASE_ , state.pop('''type''' ) ) SCREAMING_SNAKE_CASE_ = component_class(**SCREAMING_SNAKE_CASE_ ) setattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def _lowercase (self ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def _lowercase (self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else value SCREAMING_SNAKE_CASE_ = value def _lowercase (self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = kwargs.get('''is_split_into_words''' , SCREAMING_SNAKE_CASE_ ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _lowercase (self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = kwargs.get('''is_split_into_words''' , SCREAMING_SNAKE_CASE_ ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ): """simple docstring""" return token_ids_a + [self.eos_token_id] def _lowercase (self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = ''' '''.join(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = self.encode(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > self.model_max_length: SCREAMING_SNAKE_CASE_ = input_ids[-self.model_max_length :] logger.warning(f'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
626
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class snake_case ( unittest.TestCase ): @slow def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = TFCamembertModel.from_pretrained('''jplu/tf-camembert-base''' ) SCREAMING_SNAKE_CASE_ = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" SCREAMING_SNAKE_CASE_ = model(SCREAMING_SNAKE_CASE_ )['''last_hidden_state'''] SCREAMING_SNAKE_CASE_ = tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) # compare the actual values for a slice. SCREAMING_SNAKE_CASE_ = tf.convert_to_tensor( [[[-0.02_54, 0.02_35, 0.10_27], [0.06_06, -0.18_11, -0.04_18], [-0.15_61, -0.11_27, 0.26_87]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
626
1
"""simple docstring""" from collections import deque class snake_case : """simple docstring""" def __init__( self : str ,lowerCamelCase__ : Any ,lowerCamelCase__ : str ,lowerCamelCase__ : List[str] ): UpperCAmelCase__ = process_name # process name UpperCAmelCase__ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time UpperCAmelCase__ = arrival_time UpperCAmelCase__ = burst_time # remaining burst time UpperCAmelCase__ = 0 # total time of the process wait in ready queue UpperCAmelCase__ = 0 # time from arrival time to completion time class snake_case : """simple docstring""" def __init__( self : List[Any] ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Any ,lowerCamelCase__ : Dict ,lowerCamelCase__ : List[Any] ,): # total number of mlfq's queues UpperCAmelCase__ = number_of_queues # time slice of queues that round robin algorithm applied UpperCAmelCase__ = time_slices # unfinished process is in this ready_queue UpperCAmelCase__ = queue # current time UpperCAmelCase__ = current_time # finished process is in this sequence queue UpperCAmelCase__ = deque() def __lowerCAmelCase ( self : Optional[int] ): UpperCAmelCase__ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def __lowerCAmelCase ( self : Tuple ,lowerCamelCase__ : Tuple ): UpperCAmelCase__ = [] for i in range(len(_lowercase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def __lowerCAmelCase ( self : str ,lowerCamelCase__ : Any ): UpperCAmelCase__ = [] for i in range(len(_lowercase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def __lowerCAmelCase ( self : int ,lowerCamelCase__ : str ): UpperCAmelCase__ = [] for i in range(len(_lowercase ) ): completion_times.append(queue[i].stop_time ) return completion_times def __lowerCAmelCase ( self : Union[str, Any] ,lowerCamelCase__ : Dict ): return [q.burst_time for q in queue] def __lowerCAmelCase ( self : Optional[int] ,lowerCamelCase__ : Union[str, Any] ): process.waiting_time += self.current_time - process.stop_time return process.waiting_time def __lowerCAmelCase ( self : str ,lowerCamelCase__ : List[str] ): UpperCAmelCase__ = deque() # sequence deque of finished process while len(_lowercase ) != 0: UpperCAmelCase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_lowercase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 UpperCAmelCase__ = 0 # set the process's turnaround time because it is finished UpperCAmelCase__ = self.current_time - cp.arrival_time # set the completion time UpperCAmelCase__ = self.current_time # add the process to queue that has finished queue finished.append(_lowercase ) self.finish_queue.extend(_lowercase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Dict ): UpperCAmelCase__ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_lowercase ) ): UpperCAmelCase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_lowercase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time UpperCAmelCase__ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_lowercase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished UpperCAmelCase__ = 0 # set the finish time UpperCAmelCase__ = self.current_time # update the process' turnaround time because it is finished UpperCAmelCase__ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_lowercase ) self.finish_queue.extend(_lowercase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def __lowerCAmelCase ( self : List[str] ): # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): UpperCAmelCase__ = self.round_robin( self.ready_queue ,self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest lowerCAmelCase__ : List[str] = Process('P1', 0, 53) lowerCAmelCase__ : List[str] = Process('P2', 0, 17) lowerCAmelCase__ : Dict = Process('P3', 0, 68) lowerCAmelCase__ : Union[str, Any] = Process('P4', 0, 24) lowerCAmelCase__ : Any = 3 lowerCAmelCase__ : Optional[Any] = [17, 25] lowerCAmelCase__ : List[str] = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'queue': deque([Pa, Pa, Pa, Pa])}) lowerCAmelCase__ : Optional[Any] = Process('P1', 0, 53) lowerCAmelCase__ : Tuple = Process('P2', 0, 17) lowerCAmelCase__ : Optional[int] = Process('P3', 0, 68) lowerCAmelCase__ : int = Process('P4', 0, 24) lowerCAmelCase__ : int = 3 lowerCAmelCase__ : Any = [17, 25] lowerCAmelCase__ : Any = deque([Pa, Pa, Pa, Pa]) lowerCAmelCase__ : Tuple = MLFQ(number_of_queues, time_slices, queue, 0) lowerCAmelCase__ : List[str] = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F"""waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print completion times of processes(P1, P2, P3, P4) print( F"""completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print total turnaround times of processes(P1, P2, P3, P4) print( F"""turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print sequence of finished processes print( F"""sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}""" )
707
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device lowerCAmelCase__ : Optional[int] = False class snake_case ( unittest.TestCase ): """simple docstring""" pass @slow @require_torch_gpu class snake_case ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Tuple ): UpperCAmelCase__ = VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCAmelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) UpperCAmelCase__ = torch.manual_seed(0 ) UpperCAmelCase__ = pipe( image=lowerCamelCase__ ,generator=lowerCamelCase__ ,guidance_scale=7.5 ,num_inference_steps=50 ,output_type='numpy' ,).images UpperCAmelCase__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase__ = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
632
0
import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __UpperCamelCase ( unittest.TestCase ): '''simple docstring''' __magic_name__ = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING __magic_name__ = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def _UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): UpperCAmelCase__: Tuple = AudioClassificationPipeline(model=lowerCamelCase__ , feature_extractor=lowerCamelCase__ ) # test with a raw waveform UpperCAmelCase__: Union[str, Any] = np.zeros((3_4_0_0_0,) ) UpperCAmelCase__: Tuple = np.zeros((1_4_0_0_0,) ) return audio_classifier, [audioa, audio] def _UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ ): UpperCAmelCase__ , UpperCAmelCase__: Optional[Any] = examples UpperCAmelCase__: List[Any] = audio_classifier(lowerCamelCase__ ) # by default a model is initialized with num_labels=2 self.assertEqual( lowerCamelCase__ , [ {"score": ANY(lowerCamelCase__ ), "label": ANY(lowerCamelCase__ )}, {"score": ANY(lowerCamelCase__ ), "label": ANY(lowerCamelCase__ )}, ] , ) UpperCAmelCase__: Optional[int] = audio_classifier(lowerCamelCase__ , top_k=1 ) self.assertEqual( lowerCamelCase__ , [ {"score": ANY(lowerCamelCase__ ), "label": ANY(lowerCamelCase__ )}, ] , ) self.run_torchaudio(lowerCamelCase__ ) @require_torchaudio def _UpperCAmelCase ( self , lowerCamelCase__ ): import datasets # test with a local file UpperCAmelCase__: Dict = datasets.load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) UpperCAmelCase__: Tuple = dataset[0]["audio"]["array"] UpperCAmelCase__: Dict = audio_classifier(lowerCamelCase__ ) self.assertEqual( lowerCamelCase__ , [ {"score": ANY(lowerCamelCase__ ), "label": ANY(lowerCamelCase__ )}, {"score": ANY(lowerCamelCase__ ), "label": ANY(lowerCamelCase__ )}, ] , ) @require_torch def _UpperCAmelCase ( self ): UpperCAmelCase__: List[Any] = "anton-l/wav2vec2-random-tiny-classifier" UpperCAmelCase__: Optional[Any] = pipeline("audio-classification" , model=lowerCamelCase__ ) UpperCAmelCase__: str = np.ones((8_0_0_0,) ) UpperCAmelCase__: Any = audio_classifier(lowerCamelCase__ , top_k=4 ) UpperCAmelCase__: Optional[int] = [ {"score": 0.0_842, "label": "no"}, {"score": 0.0_838, "label": "up"}, {"score": 0.0_837, "label": "go"}, {"score": 0.0_834, "label": "right"}, ] UpperCAmelCase__: int = [ {"score": 0.0_845, "label": "stop"}, {"score": 0.0_844, "label": "on"}, {"score": 0.0_841, "label": "right"}, {"score": 0.0_834, "label": "left"}, ] self.assertIn(nested_simplify(lowerCamelCase__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) UpperCAmelCase__: Any = {"array": np.ones((8_0_0_0,) ), "sampling_rate": audio_classifier.feature_extractor.sampling_rate} UpperCAmelCase__: Optional[Any] = audio_classifier(lowerCamelCase__ , top_k=4 ) self.assertIn(nested_simplify(lowerCamelCase__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def _UpperCAmelCase ( self ): import datasets UpperCAmelCase__: Tuple = "superb/wav2vec2-base-superb-ks" UpperCAmelCase__: Dict = pipeline("audio-classification" , model=lowerCamelCase__ ) UpperCAmelCase__: Tuple = datasets.load_dataset("anton-l/superb_dummy" , "ks" , split="test" ) UpperCAmelCase__: Dict = np.array(dataset[3]["speech"] , dtype=np.floataa ) UpperCAmelCase__: List[str] = audio_classifier(lowerCamelCase__ , top_k=4 ) self.assertEqual( nested_simplify(lowerCamelCase__ , decimals=3 ) , [ {"score": 0.981, "label": "go"}, {"score": 0.007, "label": "up"}, {"score": 0.006, "label": "_unknown_"}, {"score": 0.001, "label": "down"}, ] , ) @require_tf @unittest.skip("Audio classification is not implemented for TF" ) def _UpperCAmelCase ( self ): pass
113
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _lowerCAmelCase : List[str] =get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") _lowerCAmelCase : List[str] =get_tests_dir("""fixtures/vocab.json""") _lowerCAmelCase : Dict =get_tests_dir("""fixtures""") class __UpperCamelCase ( unittest.TestCase ): '''simple docstring''' __magic_name__ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def _UpperCAmelCase ( self ): UpperCAmelCase__: Union[str, Any] = 0 def _UpperCAmelCase ( self ): UpperCAmelCase__: Optional[int] = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h" ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCAmelCase ( self ): with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase__: Any = WavaVecaConfig() UpperCAmelCase__: Tuple = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h" ) # save in new folder model_config.save_pretrained(lowerCamelCase__ ) processor.save_pretrained(lowerCamelCase__ ) UpperCAmelCase__: int = AutoProcessor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCAmelCase ( self ): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(lowerCamelCase__ , os.path.join(lowerCamelCase__ , lowerCamelCase__ ) ) copyfile(lowerCamelCase__ , os.path.join(lowerCamelCase__ , "vocab.json" ) ) UpperCAmelCase__: Tuple = AutoProcessor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCAmelCase ( self ): with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase__: Optional[Any] = WavaVecaFeatureExtractor() UpperCAmelCase__: List[Any] = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h" ) UpperCAmelCase__: Dict = WavaVecaProcessor(lowerCamelCase__ , lowerCamelCase__ ) # save in new folder processor.save_pretrained(lowerCamelCase__ ) # drop `processor_class` in tokenizer with open(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) , "r" ) as f: UpperCAmelCase__: Optional[int] = json.load(lowerCamelCase__ ) config_dict.pop("processor_class" ) with open(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) , "w" ) as f: f.write(json.dumps(lowerCamelCase__ ) ) UpperCAmelCase__: Any = AutoProcessor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCAmelCase ( self ): with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase__: str = WavaVecaFeatureExtractor() UpperCAmelCase__: Tuple = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h" ) UpperCAmelCase__: List[Any] = WavaVecaProcessor(lowerCamelCase__ , lowerCamelCase__ ) # save in new folder processor.save_pretrained(lowerCamelCase__ ) # drop `processor_class` in feature extractor with open(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) , "r" ) as f: UpperCAmelCase__: str = json.load(lowerCamelCase__ ) config_dict.pop("processor_class" ) with open(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) , "w" ) as f: f.write(json.dumps(lowerCamelCase__ ) ) UpperCAmelCase__: Tuple = AutoProcessor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCAmelCase ( self ): with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase__: Union[str, Any] = WavaVecaConfig(processor_class="Wav2Vec2Processor" ) model_config.save_pretrained(lowerCamelCase__ ) # copy relevant files copyfile(lowerCamelCase__ , os.path.join(lowerCamelCase__ , "vocab.json" ) ) # create emtpy sample processor with open(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) , "w" ) as f: f.write("{}" ) UpperCAmelCase__: Union[str, Any] = AutoProcessor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCAmelCase ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCamelCase__ ): UpperCAmelCase__: Optional[Any] = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase__ ): UpperCAmelCase__: Optional[int] = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=lowerCamelCase__ ) UpperCAmelCase__: Union[str, Any] = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" , trust_remote_code=lowerCamelCase__ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) UpperCAmelCase__: Dict = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) UpperCAmelCase__: Any = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) # Test we can also load the slow version UpperCAmelCase__: Dict = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=lowerCamelCase__ , use_fast=lowerCamelCase__ ) UpperCAmelCase__: str = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , "NewTokenizer" ) else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) def _UpperCAmelCase ( self ): try: AutoConfig.register("custom" , lowerCamelCase__ ) AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) AutoTokenizer.register(lowerCamelCase__ , slow_tokenizer_class=lowerCamelCase__ ) AutoProcessor.register(lowerCamelCase__ , lowerCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase__ ): AutoProcessor.register(lowerCamelCase__ , lowerCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase__: Dict = CustomFeatureExtractor.from_pretrained(lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__: Tuple = os.path.join(lowerCamelCase__ , "vocab.txt" ) with open(lowerCamelCase__ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) UpperCAmelCase__: str = CustomTokenizer(lowerCamelCase__ ) UpperCAmelCase__: Optional[int] = CustomProcessor(lowerCamelCase__ , lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(lowerCamelCase__ ) UpperCAmelCase__: Tuple = AutoProcessor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _UpperCAmelCase ( self ): class __UpperCamelCase ( _a ): '''simple docstring''' __magic_name__ = False class __UpperCamelCase ( _a ): '''simple docstring''' __magic_name__ = False class __UpperCamelCase ( _a ): '''simple docstring''' __magic_name__ = "AutoFeatureExtractor" __magic_name__ = "AutoTokenizer" __magic_name__ = False try: AutoConfig.register("custom" , lowerCamelCase__ ) AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) AutoTokenizer.register(lowerCamelCase__ , slow_tokenizer_class=lowerCamelCase__ ) AutoProcessor.register(lowerCamelCase__ , lowerCamelCase__ ) # If remote code is not set, the default is to use local classes. UpperCAmelCase__: Any = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. UpperCAmelCase__: Union[str, Any] = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. UpperCAmelCase__: Tuple = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _UpperCAmelCase ( self ): UpperCAmelCase__: Union[str, Any] = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(processor.__class__.__name__ , "BertTokenizerFast" ) def _UpperCAmelCase ( self ): UpperCAmelCase__: Tuple = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-convnext" ) self.assertEqual(processor.__class__.__name__ , "ConvNextImageProcessor" ) @is_staging_test class __UpperCamelCase ( unittest.TestCase ): '''simple docstring''' __magic_name__ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def _UpperCAmelCase ( cls ): UpperCAmelCase__: Dict = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def _UpperCAmelCase ( cls ): try: delete_repo(token=cls._token , repo_id="test-processor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-processor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-processor" ) except HTTPError: pass def _UpperCAmelCase ( self ): UpperCAmelCase__: Optional[Any] = WavaVecaProcessor.from_pretrained(lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowerCamelCase__ , "test-processor" ) , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) UpperCAmelCase__: Union[str, Any] = WavaVecaProcessor.from_pretrained(F"{USER}/test-processor" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowerCamelCase__ , getattr(new_processor.feature_extractor , lowerCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def _UpperCAmelCase ( self ): UpperCAmelCase__: Dict = WavaVecaProcessor.from_pretrained(lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowerCamelCase__ , "test-processor-org" ) , push_to_hub=lowerCamelCase__ , use_auth_token=self._token , organization="valid_org" , ) UpperCAmelCase__: Optional[int] = WavaVecaProcessor.from_pretrained("valid_org/test-processor-org" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowerCamelCase__ , getattr(new_processor.feature_extractor , lowerCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def _UpperCAmelCase ( self ): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() UpperCAmelCase__: List[str] = CustomFeatureExtractor.from_pretrained(lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__: Optional[int] = os.path.join(lowerCamelCase__ , "vocab.txt" ) with open(lowerCamelCase__ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) UpperCAmelCase__: Optional[Any] = CustomTokenizer(lowerCamelCase__ ) UpperCAmelCase__: str = CustomProcessor(lowerCamelCase__ , lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F"{USER}/test-dynamic-processor" , token=self._token ) UpperCAmelCase__: int = Repository(lowerCamelCase__ , clone_from=F"{USER}/test-dynamic-processor" , token=self._token ) processor.save_pretrained(lowerCamelCase__ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { "AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor", "AutoProcessor": "custom_processing.CustomProcessor", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(lowerCamelCase__ , "tokenizer_config.json" ) ) as f: UpperCAmelCase__: Tuple = json.load(lowerCamelCase__ ) self.assertDictEqual( tokenizer_config["auto_map"] , { "AutoTokenizer": ["custom_tokenization.CustomTokenizer", None], "AutoProcessor": "custom_processing.CustomProcessor", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(lowerCamelCase__ , "custom_feature_extraction.py" ) ) ) self.assertTrue(os.path.isfile(os.path.join(lowerCamelCase__ , "custom_tokenization.py" ) ) ) self.assertTrue(os.path.isfile(os.path.join(lowerCamelCase__ , "custom_processing.py" ) ) ) repo.push_to_hub() UpperCAmelCase__: Union[str, Any] = AutoProcessor.from_pretrained(F"{USER}/test-dynamic-processor" , trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , "CustomProcessor" )
113
1
def UpperCamelCase ( _a = 1_0_0_0_0_0_0 ) -> int: '''simple docstring''' lowercase_ :Tuple = limit + 1 lowercase_ :Dict = [0] * limit for first_term in range(1 , _a ): for n in range(_a , _a , _a ): lowercase_ :Any = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowercase_ :Tuple = sum(1 for x in frequency[1:limit] if x == 1_0 ) return count if __name__ == "__main__": print(f"{solution() = }")
441
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class UpperCamelCase : '''simple docstring''' def __init__( self , UpperCamelCase_ , ): lowercase_ :Dict = parent lowercase_ :Optional[Any] = 13 lowercase_ :Optional[Any] = 7 lowercase_ :List[Any] = 30 lowercase_ :int = self.seq_length + self.mem_len lowercase_ :Any = 15 lowercase_ :Optional[Any] = True lowercase_ :List[Any] = True lowercase_ :Any = 99 lowercase_ :Optional[int] = [10, 50, 80] lowercase_ :Union[str, Any] = 32 lowercase_ :List[Any] = 32 lowercase_ :Tuple = 4 lowercase_ :Tuple = 8 lowercase_ :List[Any] = 128 lowercase_ :Any = 2 lowercase_ :Tuple = 2 lowercase_ :Dict = None lowercase_ :Optional[Any] = 1 lowercase_ :Optional[int] = 0 lowercase_ :List[str] = 3 lowercase_ :Optional[int] = self.vocab_size - 1 lowercase_ :List[Any] = 0.01 def UpperCamelCase ( self ): lowercase_ :str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ :int = None if self.use_labels: lowercase_ :str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ :int = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def UpperCamelCase ( self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :Any = TFTransfoXLModel(UpperCamelCase_ ) lowercase_ , lowercase_ :List[Any] = model(UpperCamelCase_ ).to_tuple() lowercase_ :Dict = {'''input_ids''': input_ids_a, '''mems''': mems_a} lowercase_ , lowercase_ :int = model(UpperCamelCase_ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :Any = TFTransfoXLLMHeadModel(UpperCamelCase_ ) lowercase_ , lowercase_ :int = model(UpperCamelCase_ ).to_tuple() lowercase_ :Optional[int] = {'''input_ids''': input_ids_a, '''labels''': lm_labels} lowercase_ , lowercase_ :Optional[int] = model(UpperCamelCase_ ).to_tuple() lowercase_ , lowercase_ :Tuple = model([input_ids_a, mems_a] ).to_tuple() lowercase_ :Union[str, Any] = {'''input_ids''': input_ids_a, '''mems''': mems_a, '''labels''': lm_labels} lowercase_ , lowercase_ :Union[str, Any] = model(UpperCamelCase_ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :int = TFTransfoXLForSequenceClassification(UpperCamelCase_ ) lowercase_ :int = model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self ): lowercase_ :str = self.prepare_config_and_inputs() ((lowercase_) , (lowercase_) , (lowercase_) , (lowercase_)) :Tuple = config_and_inputs lowercase_ :Dict = {'''input_ids''': input_ids_a} return config, inputs_dict @require_tf class UpperCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' lowercase : str =( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) lowercase : Dict =() if is_tf_available() else () lowercase : List[str] =( { """feature-extraction""": TFTransfoXLModel, """text-classification""": TFTransfoXLForSequenceClassification, """text-generation""": TFTransfoXLLMHeadModel, """zero-shot""": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented lowercase : Optional[int] =False lowercase : Tuple =False lowercase : Dict =False lowercase : Dict =False def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def UpperCamelCase ( self ): lowercase_ :Union[str, Any] = TFTransfoXLModelTester(self ) lowercase_ :str = ConfigTester(self , config_class=UpperCamelCase_ , d_embed=37 ) def UpperCamelCase ( self ): self.config_tester.run_common_tests() def UpperCamelCase ( self ): self.model_tester.set_seed() lowercase_ :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*UpperCamelCase_ ) def UpperCamelCase ( self ): self.model_tester.set_seed() lowercase_ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*UpperCamelCase_ ) def UpperCamelCase ( self ): lowercase_ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*UpperCamelCase_ ) def UpperCamelCase ( self ): lowercase_ , lowercase_ :Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ :List[str] = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: lowercase_ :Dict = model_class(UpperCamelCase_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: lowercase_ :str = model.get_output_embeddings() assert isinstance(UpperCamelCase_ , tf.keras.layers.Layer ) lowercase_ :Optional[int] = model.get_bias() assert name is None else: lowercase_ :List[Any] = model.get_output_embeddings() assert x is None lowercase_ :Dict = model.get_bias() assert name is None def UpperCamelCase ( self ): # TODO JP: Make TransfoXL XLA compliant pass @slow def UpperCamelCase ( self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ :Dict = TFTransfoXLModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @unittest.skip(reason='''This model doesn\'t play well with fit() due to not returning a single loss.''' ) def UpperCamelCase ( self ): pass @require_tf class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip('''Skip test until #12651 is resolved.''' ) @slow def UpperCamelCase ( self ): lowercase_ :Any = TFTransfoXLLMHeadModel.from_pretrained('''transfo-xl-wt103''' ) # fmt: off lowercase_ :List[str] = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off lowercase_ :List[Any] = [33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0,33,1,1857,2,1,1009,4,1109,1_1739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> lowercase_ :Any = model.generate(UpperCamelCase_ , max_length=200 , do_sample=UpperCamelCase_ ) self.assertListEqual(output_ids[0].numpy().tolist() , UpperCamelCase_ )
441
1
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" if upper_limit < 0: raise ValueError("Limit for the Catalan sequence must be ≥ 0" ) _lowerCamelCase : Optional[int] = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 _lowerCamelCase : Any = 1 if upper_limit > 0: _lowerCamelCase : List[str] = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(_lowerCAmelCase ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('\n********* Catalan Numbers Using Dynamic Programming ************\n') print('\n*** Enter -1 at any time to quit ***') print('\nEnter the upper limit (≥ 0) for the Catalan number sequence: ', end='') try: while True: UpperCAmelCase_ : Optional[Any] = int(input().strip()) if N < 0: print('\n********* Goodbye!! ************') break else: print(f'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print('Try another upper limit for the sequence: ', end='') except (NameError, ValueError): print('\n********* Invalid input, goodbye! ************\n') import doctest doctest.testmod()
44
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100]) SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_activation('''gelu''') self.assertTrue(torch.allclose(gelu_python(lowercase_) , torch_builtin(lowercase_))) self.assertFalse(torch.allclose(gelu_python(lowercase_) , gelu_new(lowercase_))) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100]) SCREAMING_SNAKE_CASE_ : Dict = get_activation('''gelu''') SCREAMING_SNAKE_CASE_ : Tuple = get_activation('''gelu_10''') SCREAMING_SNAKE_CASE_ : Any = torch_builtin(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = geluaa(lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.where(y_gelu_aa < 10.0 , 1 , 0) self.assertTrue(torch.max(lowercase_).item() == 10.0) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask)) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' get_activation('''gelu''') get_activation('''gelu_10''') get_activation('''gelu_fast''') get_activation('''gelu_new''') get_activation('''gelu_python''') get_activation('''gelu_pytorch_tanh''') get_activation('''linear''') get_activation('''mish''') get_activation('''quick_gelu''') get_activation('''relu''') get_activation('''sigmoid''') get_activation('''silu''') get_activation('''swish''') get_activation('''tanh''') with self.assertRaises(lowercase_): get_activation('''bogus''') with self.assertRaises(lowercase_): get_activation(lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = get_activation('''gelu''') SCREAMING_SNAKE_CASE_ : int = 1 SCREAMING_SNAKE_CASE_ : List[Any] = get_activation('''gelu''') self.assertEqual(acta.a , 1) with self.assertRaises(lowercase_): SCREAMING_SNAKE_CASE_ : Dict = acta.a
512
0
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path UpperCAmelCase = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) UpperCAmelCase = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} UpperCAmelCase = 'zero2' UpperCAmelCase = 'zero3' UpperCAmelCase = [ZEROa, ZEROa] def lowerCamelCase (a_ :Union[str, Any] , a_ :Tuple , a_ :Any) -> str: lowercase :Union[str, Any] = parameterized.to_safe_name('''_'''.join(str(lowerCamelCase_) for x in param.args)) return F"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test UpperCAmelCase = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __magic_name__ ( lowerCamelCase__ ): @parameterized.expand(__lowerCamelCase , name_func=__lowerCamelCase ) def __snake_case ( self : str , snake_case__ : Optional[int] , snake_case__ : List[str] ): '''simple docstring''' self.run_and_check( stage=__lowerCamelCase , model=__lowerCamelCase , distributed=__lowerCamelCase , fpaa=__lowerCamelCase , ) @require_torch_multi_gpu @parameterized.expand(__lowerCamelCase , name_func=__lowerCamelCase ) def __snake_case ( self : Optional[int] , snake_case__ : Tuple , snake_case__ : Dict ): '''simple docstring''' self.run_and_check( stage=__lowerCamelCase , model=__lowerCamelCase , distributed=__lowerCamelCase , fpaa=__lowerCamelCase , ) @parameterized.expand(__lowerCamelCase , name_func=__lowerCamelCase ) def __snake_case ( self : Optional[Any] , snake_case__ : str , snake_case__ : Dict ): '''simple docstring''' self.run_and_check( stage=__lowerCamelCase , model=__lowerCamelCase , distributed=__lowerCamelCase , fpaa=__lowerCamelCase , ) @require_torch_multi_gpu @parameterized.expand(__lowerCamelCase , name_func=__lowerCamelCase ) def __snake_case ( self : str , snake_case__ : Union[str, Any] , snake_case__ : Tuple ): '''simple docstring''' self.run_and_check( stage=__lowerCamelCase , model=__lowerCamelCase , distributed=__lowerCamelCase , fpaa=__lowerCamelCase , ) def __snake_case ( self : Optional[Any] , snake_case__ : int ): '''simple docstring''' pass def __snake_case ( self : Optional[int] , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : Optional[int] = 1_0 , snake_case__ : List[Any] = True , snake_case__ : List[Any] = True , snake_case__ : List[str] = True , ): '''simple docstring''' lowercase :Tuple = models[model] lowercase :Optional[Any] = self.run_trainer( stage=__lowerCamelCase , model_name=__lowerCamelCase , eval_steps=__lowerCamelCase , num_train_epochs=1 , distributed=__lowerCamelCase , fpaa=__lowerCamelCase , ) self.do_checks(__lowerCamelCase ) return output_dir def __snake_case ( self : Optional[int] , snake_case__ : Any , snake_case__ : Dict , snake_case__ : str = 1_0 , snake_case__ : Union[str, Any] = 1 , snake_case__ : Optional[int] = True , snake_case__ : Optional[int] = True , ): '''simple docstring''' lowercase :Union[str, Any] = self.get_auto_remove_tmp_dir('''./xxx''' , after=__lowerCamelCase ) lowercase :Tuple = f""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(__lowerCamelCase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(['''--fp16'''] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files lowercase :Optional[int] = f"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() lowercase :Tuple = [f"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] lowercase :Optional[Any] = self.get_launcher(__lowerCamelCase ) lowercase :Optional[int] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(__lowerCamelCase , env=self.get_env() ) return output_dir def __snake_case ( self : Optional[int] , snake_case__ : Optional[Any]=False ): '''simple docstring''' lowercase :Dict = min(2 , get_gpu_count() ) if distributed else 1 return f"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
702
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
475
0
"""simple docstring""" import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration lowercase__ = 50000 lowercase__ = 5000 lowercase__ , lowercase__ = os.path.split(__file__) lowercase__ = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def __magic_name__ ( _lowerCamelCase : datasets.Dataset , _lowerCamelCase : int ): for i in range(_lowerCamelCase ): __a : Any = dataset[i] @get_duration def __magic_name__ ( _lowerCamelCase : datasets.Dataset , _lowerCamelCase : List[str] , _lowerCamelCase : Any ): for i in range(0 , len(_lowerCamelCase ) , _lowerCamelCase ): __a : Optional[Any] = dataset[i : i + batch_size] @get_duration def __magic_name__ ( _lowerCamelCase : datasets.Dataset , _lowerCamelCase : int , _lowerCamelCase : Optional[int] ): with dataset.formatted_as(type=_lowerCamelCase ): for i in range(_lowerCamelCase ): __a : Union[str, Any] = dataset[i] @get_duration def __magic_name__ ( _lowerCamelCase : datasets.Dataset , _lowerCamelCase : List[Any] , _lowerCamelCase : Dict , _lowerCamelCase : int ): with dataset.formatted_as(type=_lowerCamelCase ): for i in range(0 , _lowerCamelCase , _lowerCamelCase ): __a : str = dataset[i : i + batch_size] def __magic_name__ ( ): __a : Dict = {"""num examples""": SPEED_TEST_N_EXAMPLES} __a : Optional[Any] = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_0}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_0_0}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_0_0_0}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """pandas""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """torch""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """tensorflow""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1_0}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1_0_0_0}), ] __a : int = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_0}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_0_0}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_0_0_0}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1_0}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1_0_0_0}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("""generating dataset""" ) __a : Dict = datasets.Features( {"""list""": datasets.Sequence(datasets.Value("""float32""" ) ), """numbers""": datasets.Value("""float32""" )} ) __a : Tuple = generate_example_dataset( os.path.join(_lowerCamelCase , """dataset.arrow""" ) , _lowerCamelCase , num_examples=_lowerCamelCase , seq_shapes={"""list""": (1_0_0,)} , ) print("""first set of iterations""" ) for func, kwargs in functions: print(func.__name__ , str(_lowerCamelCase ) ) __a : str = func(_lowerCamelCase , **_lowerCamelCase ) print("""shuffling dataset""" ) __a : Optional[Any] = dataset.shuffle() print("""Second set of iterations (after shuffling""" ) for func, kwargs in functions_shuffled: print("""shuffled """ , func.__name__ , str(_lowerCamelCase ) ) __a : int = func( _lowerCamelCase , **_lowerCamelCase ) with open(_lowerCamelCase , """wb""" ) as f: f.write(json.dumps(_lowerCamelCase ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
581
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType lowercase__ = logging.get_logger(__name__) lowercase__ = { "openai/imagegpt-small": "", "openai/imagegpt-medium": "", "openai/imagegpt-large": "", } class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = "imagegpt" _lowerCAmelCase = ["past_key_values"] _lowerCAmelCase = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__(self , _lowercase=512 + 1 , _lowercase=32 * 32 , _lowercase=512 , _lowercase=24 , _lowercase=8 , _lowercase=None , _lowercase="quick_gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1e-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=False , _lowercase=False , _lowercase=False , **_lowercase , ): '''simple docstring''' __a : int = vocab_size __a : Union[str, Any] = n_positions __a : List[str] = n_embd __a : Union[str, Any] = n_layer __a : List[str] = n_head __a : int = n_inner __a : Any = activation_function __a : List[str] = resid_pdrop __a : str = embd_pdrop __a : str = attn_pdrop __a : Tuple = layer_norm_epsilon __a : str = initializer_range __a : Dict = scale_attn_weights __a : Optional[int] = use_cache __a : Optional[Any] = scale_attn_by_inverse_layer_idx __a : Optional[Any] = reorder_and_upcast_attn __a : Union[str, Any] = tie_word_embeddings super().__init__(tie_word_embeddings=_lowercase , **_lowercase ) class SCREAMING_SNAKE_CASE__ ( __snake_case ): @property def lowerCAmelCase__(self ): '''simple docstring''' return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ] ) def lowerCAmelCase__(self , _lowercase , _lowercase = 1 , _lowercase = -1 , _lowercase = False , _lowercase = None , _lowercase = 3 , _lowercase = 32 , _lowercase = 32 , ): '''simple docstring''' __a : Any = self._generate_dummy_images(_lowercase , _lowercase , _lowercase , _lowercase ) __a : Union[str, Any] = dict(preprocessor(images=_lowercase , return_tensors=_lowercase ) ) return inputs
581
1
a__ : List[str] = '''Input must be a string of 8 numbers plus letter''' a__ : int = '''TRWAGMYFPDXBNJZSQVHLCKE''' def UpperCAmelCase_( a__ ): """simple docstring""" if not isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : Optional[Any] = F"""Expected string as input, found {type(a__ ).__name__}""" raise TypeError(a__ ) SCREAMING_SNAKE_CASE : Dict = spanish_id.replace('''-''' , '''''' ).upper() if len(a__ ) != 9: raise ValueError(a__ ) try: SCREAMING_SNAKE_CASE : Union[str, Any] = int(spanish_id_clean[0:8] ) SCREAMING_SNAKE_CASE : Optional[int] = spanish_id_clean[8] except ValueError as ex: raise ValueError(a__ ) from ex if letter.isdigit(): raise ValueError(a__ ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
333
from numpy import exp, pi, sqrt def UpperCAmelCase_( a__ , a__ = 0.0 , a__ = 1.0 ): """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
333
1
from argparse import ArgumentParser from .env import EnvironmentCommand def A ( ) -> Optional[Any]: lowerCamelCase : List[Any] = ArgumentParser("Diffusers CLI tool" ,usage="diffusers-cli <command> [<args>]" ) lowerCamelCase : str = parser.add_subparsers(help="diffusers-cli command helpers" ) # Register commands EnvironmentCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) # Let's go lowerCamelCase : Dict = parser.parse_args() if not hasattr(_SCREAMING_SNAKE_CASE ,"func" ): parser.print_help() exit(1 ) # Run lowerCamelCase : str = args.func(_SCREAMING_SNAKE_CASE ) service.run() if __name__ == "__main__": main()
311
from manim import * class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' def _lowercase ( self ) -> List[Any]: lowerCamelCase : Any = Rectangle(height=0.5 , width=0.5 ) lowerCamelCase : Optional[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCamelCase : Optional[Any] = Rectangle(height=0.25 , width=0.25 ) lowerCamelCase : str = [mem.copy() for i in range(6 )] lowerCamelCase : List[Any] = [mem.copy() for i in range(6 )] lowerCamelCase : Optional[int] = VGroup(*UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) lowerCamelCase : Dict = VGroup(*UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) lowerCamelCase : Union[str, Any] = VGroup(UpperCamelCase__ , UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) lowerCamelCase : Union[str, Any] = Text("CPU" , font_size=24 ) lowerCamelCase : str = Group(UpperCamelCase__ , UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0.5 , aligned_edge=UpperCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCamelCase__ ) lowerCamelCase : int = [mem.copy() for i in range(4 )] lowerCamelCase : int = VGroup(*UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) lowerCamelCase : List[Any] = Text("GPU" , font_size=24 ) lowerCamelCase : int = Group(UpperCamelCase__ , UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0.5 , aligned_edge=UpperCamelCase__ ) gpu.move_to([-1, -1, 0] ) self.add(UpperCamelCase__ ) lowerCamelCase : Optional[Any] = [mem.copy() for i in range(6 )] lowerCamelCase : int = VGroup(*UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) lowerCamelCase : Any = Text("Model" , font_size=24 ) lowerCamelCase : Tuple = Group(UpperCamelCase__ , UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0.5 , aligned_edge=UpperCamelCase__ ) model.move_to([3, -1.0, 0] ) self.add(UpperCamelCase__ ) lowerCamelCase : Optional[int] = [] lowerCamelCase : Optional[Any] = [] for i, rect in enumerate(UpperCamelCase__ ): lowerCamelCase : Dict = fill.copy().set_fill(UpperCamelCase__ , opacity=0.8 ) target.move_to(UpperCamelCase__ ) model_arr.append(UpperCamelCase__ ) lowerCamelCase : Tuple = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(UpperCamelCase__ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(UpperCamelCase__ ) self.add(*UpperCamelCase__ , *UpperCamelCase__ ) lowerCamelCase : Dict = [meta_mem.copy() for i in range(6 )] lowerCamelCase : Dict = [meta_mem.copy() for i in range(6 )] lowerCamelCase : Optional[Any] = VGroup(*UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) lowerCamelCase : Optional[int] = VGroup(*UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) lowerCamelCase : List[str] = VGroup(UpperCamelCase__ , UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) lowerCamelCase : str = Text("Disk" , font_size=24 ) lowerCamelCase : Tuple = Group(UpperCamelCase__ , UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0.5 , aligned_edge=UpperCamelCase__ ) disk.move_to([-4, -1.25, 0] ) self.add(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Tuple = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase : str = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Dict = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(UpperCamelCase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(UpperCamelCase__ ) lowerCamelCase : List[Any] = MarkupText( F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCamelCase__ ) ) lowerCamelCase : int = Square(0.3 ) input.set_fill(UpperCamelCase__ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , UpperCamelCase__ , buff=0.5 ) self.play(Write(UpperCamelCase__ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=UpperCamelCase__ , buff=0.02 ) self.play(MoveToTarget(UpperCamelCase__ ) ) self.play(FadeOut(UpperCamelCase__ ) ) lowerCamelCase : Optional[int] = Arrow(start=UpperCamelCase__ , end=UpperCamelCase__ , color=UpperCamelCase__ , buff=0.5 ) a.next_to(model_arr[0].get_left() , UpperCamelCase__ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCamelCase : Union[str, Any] = MarkupText( F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCamelCase__ , run_time=3 ) ) lowerCamelCase : Any = {"run_time": 1, "fade_in": True, "fade_out": True, "buff": 0.02} self.play( Write(UpperCamelCase__ ) , Circumscribe(model_arr[0] , color=UpperCamelCase__ , **UpperCamelCase__ ) , Circumscribe(model_cpu_arr[0] , color=UpperCamelCase__ , **UpperCamelCase__ ) , Circumscribe(gpu_rect[0] , color=UpperCamelCase__ , **UpperCamelCase__ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCamelCase : List[str] = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , UpperCamelCase__ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCamelCase : Tuple = AnimationGroup( FadeOut(UpperCamelCase__ , run_time=0.5 ) , MoveToTarget(UpperCamelCase__ , run_time=0.5 ) , FadeIn(UpperCamelCase__ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(UpperCamelCase__ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCamelCase : str = 0.7 self.play( Circumscribe(model_arr[i] , **UpperCamelCase__ ) , Circumscribe(cpu_left_col_base[i] , **UpperCamelCase__ ) , Circumscribe(cpu_left_col_base[i + 1] , color=UpperCamelCase__ , **UpperCamelCase__ ) , Circumscribe(gpu_rect[0] , color=UpperCamelCase__ , **UpperCamelCase__ ) , Circumscribe(model_arr[i + 1] , color=UpperCamelCase__ , **UpperCamelCase__ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=UpperCamelCase__ , **UpperCamelCase__ ) , Circumscribe(cpu_left_col_base[-1] , color=UpperCamelCase__ , **UpperCamelCase__ ) , Circumscribe(gpu_rect[0] , color=UpperCamelCase__ , **UpperCamelCase__ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCamelCase : List[Any] = a_c lowerCamelCase : List[str] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(UpperCamelCase__ ) , FadeOut(UpperCamelCase__ , run_time=0.5 ) , ) lowerCamelCase : List[str] = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCamelCase__ , run_time=3 ) , MoveToTarget(UpperCamelCase__ ) ) self.wait()
311
1
"""simple docstring""" import math class __lowerCAmelCase : '''simple docstring''' def __UpperCAmelCase ( self , _a , _a ): __a = 0.0 __a = 0.0 for i in range(len(_a ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def __UpperCAmelCase ( self , _a , _a , _a , _a ): for i in range(len(_a ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def lowercase ( ) -> None: # Training Examples ( m, n ) __a = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) __a = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training __a = SelfOrganizingMap() __a = 3 __a = 0.5 for _ in range(lowerCAmelCase__ ): for j in range(len(lowerCAmelCase__ ) ): # training sample __a = training_samples[j] # Compute the winning vector __a = self_organizing_map.get_winner(lowerCAmelCase__ , lowerCAmelCase__ ) # Update the winning vector __a = self_organizing_map.update(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # classify test sample __a = [0, 0, 0, 1] __a = self_organizing_map.get_winner(lowerCAmelCase__ , lowerCAmelCase__ ) # results print(f'''Clusters that the test sample belongs to : {winner}''' ) print(f'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
65
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = 'lxmert' __UpperCAmelCase : str = {} def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=9_500 , _a=1_600 , _a=400 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1E-12 , _a=9 , _a=5 , _a=5 , _a=2_048 , _a=4 , _a=6.67 , _a=True , _a=True , _a=True , _a=True , _a=True , _a=True , _a=True , **_a , ): __a = vocab_size __a = hidden_size __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = num_qa_labels __a = num_object_labels __a = num_attr_labels __a = l_layers __a = x_layers __a = r_layers __a = visual_feat_dim __a = visual_pos_dim __a = visual_loss_normalizer __a = task_matched __a = task_mask_lm __a = task_obj_predict __a = task_qa __a = visual_obj_loss __a = visual_attr_loss __a = visual_feat_loss __a = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**_a )
65
1
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class _A ( a_ ): SCREAMING_SNAKE_CASE_ : str =(PNDMScheduler,) SCREAMING_SNAKE_CASE_ : str =(("num_inference_steps", 50),) def _a (self , **SCREAMING_SNAKE_CASE_ ) -> int: '''simple docstring''' UpperCamelCase__ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**__UpperCamelCase ) return config def _a (self , SCREAMING_SNAKE_CASE_=0 , **SCREAMING_SNAKE_CASE_ ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = dict(self.forward_default_kwargs ) UpperCamelCase__ = kwargs.pop('''num_inference_steps''' , __UpperCamelCase ) UpperCamelCase__ = self.dummy_sample UpperCamelCase__ = 0.1 * sample UpperCamelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCamelCase__ = self.get_scheduler_config(**__UpperCamelCase ) UpperCamelCase__ = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals UpperCamelCase__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCamelCase ) UpperCamelCase__ = scheduler_class.from_pretrained(__UpperCamelCase ) new_scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals UpperCamelCase__ = dummy_past_residuals[:] UpperCamelCase__ = scheduler.step_prk(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample UpperCamelCase__ = new_scheduler.step_prk(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCamelCase__ = scheduler.step_plms(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample UpperCamelCase__ = new_scheduler.step_plms(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _a (self ) -> Dict: '''simple docstring''' pass def _a (self , SCREAMING_SNAKE_CASE_=0 , **SCREAMING_SNAKE_CASE_ ) -> Dict: '''simple docstring''' UpperCamelCase__ = dict(self.forward_default_kwargs ) UpperCamelCase__ = kwargs.pop('''num_inference_steps''' , __UpperCamelCase ) UpperCamelCase__ = self.dummy_sample UpperCamelCase__ = 0.1 * sample UpperCamelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals (must be after setting timesteps) UpperCamelCase__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCamelCase ) UpperCamelCase__ = scheduler_class.from_pretrained(__UpperCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residual (must be after setting timesteps) UpperCamelCase__ = dummy_past_residuals[:] UpperCamelCase__ = scheduler.step_prk(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample UpperCamelCase__ = new_scheduler.step_prk(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCamelCase__ = scheduler.step_plms(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample UpperCamelCase__ = new_scheduler.step_plms(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _a (self , **SCREAMING_SNAKE_CASE_ ) -> Tuple: '''simple docstring''' UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config(**__UpperCamelCase ) UpperCamelCase__ = scheduler_class(**__UpperCamelCase ) UpperCamelCase__ = 10 UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter scheduler.set_timesteps(__UpperCamelCase ) for i, t in enumerate(scheduler.prk_timesteps ): UpperCamelCase__ = model(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase__ = scheduler.step_prk(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): UpperCamelCase__ = model(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase__ = scheduler.step_plms(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample return sample def _a (self ) -> int: '''simple docstring''' UpperCamelCase__ = dict(self.forward_default_kwargs ) UpperCamelCase__ = kwargs.pop('''num_inference_steps''' , __UpperCamelCase ) for scheduler_class in self.scheduler_classes: UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**__UpperCamelCase ) UpperCamelCase__ = self.dummy_sample UpperCamelCase__ = 0.1 * sample if num_inference_steps is not None and hasattr(__UpperCamelCase , '''set_timesteps''' ): scheduler.set_timesteps(__UpperCamelCase ) elif num_inference_steps is not None and not hasattr(__UpperCamelCase , '''set_timesteps''' ): UpperCamelCase__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCamelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCamelCase__ = dummy_past_residuals[:] UpperCamelCase__ = scheduler.step_prk(__UpperCamelCase , 0 , __UpperCamelCase , **__UpperCamelCase ).prev_sample UpperCamelCase__ = scheduler.step_prk(__UpperCamelCase , 1 , __UpperCamelCase , **__UpperCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCamelCase__ = scheduler.step_plms(__UpperCamelCase , 0 , __UpperCamelCase , **__UpperCamelCase ).prev_sample UpperCamelCase__ = scheduler.step_plms(__UpperCamelCase , 1 , __UpperCamelCase , **__UpperCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _a (self ) -> List[str]: '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=__UpperCamelCase ) def _a (self ) -> Any: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__UpperCamelCase ) UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config(steps_offset=1 ) UpperCamelCase__ = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def _a (self ) -> int: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=__UpperCamelCase , beta_end=__UpperCamelCase ) def _a (self ) -> Optional[int]: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__UpperCamelCase ) def _a (self ) -> Dict: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCamelCase ) def _a (self ) -> List[Any]: '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=__UpperCamelCase ) def _a (self ) -> Optional[Any]: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=__UpperCamelCase ) def _a (self ) -> int: '''simple docstring''' UpperCamelCase__ = 27 for scheduler_class in self.scheduler_classes: UpperCamelCase__ = self.dummy_sample UpperCamelCase__ = 0.1 * sample UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(__UpperCamelCase ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): UpperCamelCase__ = scheduler.step_prk(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample def _a (self ) -> Dict: '''simple docstring''' with self.assertRaises(__UpperCamelCase ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**__UpperCamelCase ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def _a (self ) -> Any: '''simple docstring''' UpperCamelCase__ = self.full_loop() UpperCamelCase__ = torch.sum(torch.abs(__UpperCamelCase ) ) UpperCamelCase__ = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 198.1318 ) < 1E-2 assert abs(result_mean.item() - 0.2580 ) < 1E-3 def _a (self ) -> str: '''simple docstring''' UpperCamelCase__ = self.full_loop(prediction_type='''v_prediction''' ) UpperCamelCase__ = torch.sum(torch.abs(__UpperCamelCase ) ) UpperCamelCase__ = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 67.3986 ) < 1E-2 assert abs(result_mean.item() - 0.0878 ) < 1E-3 def _a (self ) -> Any: '''simple docstring''' UpperCamelCase__ = self.full_loop(set_alpha_to_one=__UpperCamelCase , beta_start=0.01 ) UpperCamelCase__ = torch.sum(torch.abs(__UpperCamelCase ) ) UpperCamelCase__ = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 230.0399 ) < 1E-2 assert abs(result_mean.item() - 0.2995 ) < 1E-3 def _a (self ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = self.full_loop(set_alpha_to_one=__UpperCamelCase , beta_start=0.01 ) UpperCamelCase__ = torch.sum(torch.abs(__UpperCamelCase ) ) UpperCamelCase__ = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 186.9482 ) < 1E-2 assert abs(result_mean.item() - 0.2434 ) < 1E-3
415
import os # Precomputes a list of the 100 first triangular numbers lowerCamelCase : str = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def __lowerCAmelCase ( ): __lowerCAmelCase = os.path.dirname(os.path.realpath(__snake_case ) ) __lowerCAmelCase = os.path.join(__snake_case , "words.txt" ) __lowerCAmelCase = "" with open(__snake_case ) as f: __lowerCAmelCase = f.readline() __lowerCAmelCase = [word.strip("\"" ) for word in words.strip("\r\n" ).split("," )] __lowerCAmelCase = [ word for word in [sum(ord(__snake_case ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__snake_case ) if __name__ == "__main__": print(solution())
367
0
"""simple docstring""" from datetime import datetime as dt import os from github import Github __UpperCAmelCase = [ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ : str = Github(os.environ["""GITHUB_TOKEN"""] ) UpperCAmelCase__ : int = g.get_repo("""huggingface/transformers""" ) UpperCAmelCase__ : Optional[int] = repo.get_issues(state="""open""" ) for issue in open_issues: UpperCAmelCase__ : Any = sorted([comment for comment in issue.get_comments()] , key=lambda __UpperCamelCase : i.created_at , reverse=__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = comments[0] if len(__UpperCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
721
"""simple docstring""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED __UpperCAmelCase = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } __UpperCAmelCase = { 'allenai/led-base-16384': 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ : Tuple = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) UpperCAmelCase__ : int = bs[:] UpperCAmelCase__ : Union[str, Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(__UpperCamelCase ) cs.append(2**8 + n ) n += 1 UpperCAmelCase__ : Tuple = [chr(__UpperCamelCase ) for n in cs] return dict(zip(__UpperCamelCase , __UpperCamelCase ) ) def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : int = set() UpperCAmelCase__ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase__ : Optional[Any] = char return pairs class __lowercase ( __lowerCamelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["""input_ids""", """attention_mask"""] def __init__( self : Union[str, Any] ,A : Any ,A : Dict ,A : Optional[Any]="replace" ,A : Dict="<s>" ,A : str="</s>" ,A : str="</s>" ,A : Dict="<s>" ,A : List[str]="<unk>" ,A : Union[str, Any]="<pad>" ,A : Any="<mask>" ,A : str=False ,**A : Optional[Any] ,): '''simple docstring''' UpperCAmelCase__ : List[str] = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else bos_token UpperCAmelCase__ : Any = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else eos_token UpperCAmelCase__ : List[str] = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else sep_token UpperCAmelCase__ : Tuple = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else cls_token UpperCAmelCase__ : Tuple = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else unk_token UpperCAmelCase__ : List[str] = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase__ : Union[str, Any] = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else mask_token super().__init__( errors=A ,bos_token=A ,eos_token=A ,unk_token=A ,sep_token=A ,cls_token=A ,pad_token=A ,mask_token=A ,add_prefix_space=A ,**A ,) with open(A ,encoding="""utf-8""" ) as vocab_handle: UpperCAmelCase__ : Tuple = json.load(A ) UpperCAmelCase__ : Any = {v: k for k, v in self.encoder.items()} UpperCAmelCase__ : List[Any] = errors # how to handle errors in decoding UpperCAmelCase__ : List[str] = bytes_to_unicode() UpperCAmelCase__ : int = {v: k for k, v in self.byte_encoder.items()} with open(A ,encoding="""utf-8""" ) as merges_handle: UpperCAmelCase__ : List[Any] = merges_handle.read().split("""\n""" )[1:-1] UpperCAmelCase__ : Tuple = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase__ : Any = dict(zip(A ,range(len(A ) ) ) ) UpperCAmelCase__ : Optional[Any] = {} UpperCAmelCase__ : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase__ : Union[str, Any] = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def __lowercase ( self : List[Any] ): '''simple docstring''' return len(self.encoder ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def __lowercase ( self : Optional[int] ,A : Union[str, Any] ): '''simple docstring''' if token in self.cache: return self.cache[token] UpperCAmelCase__ : Optional[Any] = tuple(A ) UpperCAmelCase__ : int = get_pairs(A ) if not pairs: return token while True: UpperCAmelCase__ : str = min(A ,key=lambda A : self.bpe_ranks.get(A ,float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase__ , UpperCAmelCase__ : Tuple = bigram UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : Any = 0 while i < len(A ): try: UpperCAmelCase__ : Optional[Any] = word.index(A ,A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase__ : int = j if word[i] == first and i < len(A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase__ : List[str] = tuple(A ) UpperCAmelCase__ : str = new_word if len(A ) == 1: break else: UpperCAmelCase__ : str = get_pairs(A ) UpperCAmelCase__ : int = """ """.join(A ) UpperCAmelCase__ : List[str] = word return word def __lowercase ( self : Optional[Any] ,A : Any ): '''simple docstring''' UpperCAmelCase__ : Any = [] for token in re.findall(self.pat ,A ): UpperCAmelCase__ : Any = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A ).split(""" """ ) ) return bpe_tokens def __lowercase ( self : Dict ,A : int ): '''simple docstring''' return self.encoder.get(A ,self.encoder.get(self.unk_token ) ) def __lowercase ( self : Dict ,A : Optional[Any] ): '''simple docstring''' return self.decoder.get(A ) def __lowercase ( self : Optional[Any] ,A : int ): '''simple docstring''' UpperCAmelCase__ : int = """""".join(A ) UpperCAmelCase__ : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" ,errors=self.errors ) return text def __lowercase ( self : Optional[int] ,A : str ,A : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(A ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase__ : Any = os.path.join( A ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase__ : List[str] = os.path.join( A ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(A ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=A ,ensure_ascii=A ) + """\n""" ) UpperCAmelCase__ : Any = 0 with open(A ,"""w""" ,encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda A : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." """ Please check that the tokenizer is not corrupted!""" ) UpperCAmelCase__ : Optional[int] = token_index writer.write(""" """.join(A ) + """\n""" ) index += 1 return vocab_file, merge_file def __lowercase ( self : Union[str, Any] ,A : List[int] ,A : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase__ : Dict = [self.cls_token_id] UpperCAmelCase__ : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowercase ( self : int ,A : List[int] ,A : Optional[List[int]] = None ,A : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A ,token_ids_a=A ,already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def __lowercase ( self : Tuple ,A : List[int] ,A : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : str = [self.sep_token_id] UpperCAmelCase__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowercase ( self : Any ,A : str ,A : List[Any]=False ,**A : Tuple ): '''simple docstring''' UpperCAmelCase__ : Any = kwargs.pop("""add_prefix_space""" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A ) > 0 and not text[0].isspace()): UpperCAmelCase__ : Dict = """ """ + text return (text, kwargs) def __lowercase ( self : Dict ,A : Union[Dict[str, EncodedInput], BatchEncoding] ,A : Optional[int] = None ,A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD ,A : Optional[int] = None ,A : Optional[bool] = None ,): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = super()._pad( encoded_inputs=A ,max_length=A ,padding_strategy=A ,pad_to_multiple_of=A ,return_attention_mask=A ,) # Load from model defaults if return_attention_mask is None: UpperCAmelCase__ : str = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCAmelCase__ : Optional[int] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCAmelCase__ : Tuple = len(encoded_inputs["""global_attention_mask"""] ) != len(A ) if needs_to_be_padded: UpperCAmelCase__ : List[Any] = len(A ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCAmelCase__ : Tuple = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": UpperCAmelCase__ : Dict = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
194
0
import qiskit def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int ): '''simple docstring''' lowerCamelCase_ = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register lowerCamelCase_ = qiskit.QuantumCircuit(lowercase , lowercase ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator lowerCamelCase_ = qiskit.execute(lowercase , lowercase , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowercase ) if __name__ == "__main__": print(F"""Total count for various states are: {single_qubit_measure(1, 1)}""")
70
'''simple docstring''' from __future__ import annotations def lowerCamelCase_ ( __UpperCamelCase : list , __UpperCamelCase : int | None = None , __UpperCamelCase : int | None = None ) -> None: """simple docstring""" if start is None: _A = 0 if end is None: _A = len(__UpperCamelCase ) - 1 if start >= end: return _A = (start + end) // 2 slowsort(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) slowsort(__UpperCamelCase , mid + 1 , __UpperCamelCase ) if sequence[end] < sequence[mid]: _A , _A = sequence[mid], sequence[end] slowsort(__UpperCamelCase , __UpperCamelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
292
0
"""simple docstring""" def __UpperCamelCase ( snake_case__ , snake_case__ ): _validate_point(snake_case__ ) _validate_point(snake_case__ ) if len(snake_case__ ) != len(snake_case__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(snake_case__ , snake_case__ ) ) ) def __UpperCamelCase ( snake_case__ ): if point: if isinstance(snake_case__ , snake_case__ ): for item in point: if not isinstance(snake_case__ , (int, float) ): A_ : Optional[int] = ( """Expected a list of numbers as input, found """ F"""{type(snake_case__ ).__name__}""" ) raise TypeError(snake_case__ ) else: A_ : Any = F"""Expected a list of numbers as input, found {type(snake_case__ ).__name__}""" raise TypeError(snake_case__ ) else: raise ValueError("""Missing an input""" ) def __UpperCamelCase ( snake_case__ , snake_case__ ): _validate_point(snake_case__ ) _validate_point(snake_case__ ) if len(snake_case__ ) != len(snake_case__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(snake_case__ , snake_case__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
700
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): """simple docstring""" _A : Optional[int] = """facebook/bart-large-mnli""" _A : str = ( """This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which """ """should be the text to classify, and `labels`, which should be the list of labels to use for classification. """ """It returns the most likely label in the list of provided `labels` for the input text.""" ) _A : List[str] = """text_classifier""" _A : Optional[int] = AutoTokenizer _A : Optional[Any] = AutoModelForSequenceClassification _A : List[str] = ["""text""", ["""text"""]] _A : Dict = ["""text"""] def lowerCamelCase(self ): super().setup() A_ : int = self.model.config A_ : List[str] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("""entail""" ): A_ : List[Any] = int(lowerCAmelCase_ ) if self.entailment_id == -1: raise ValueError("""Could not determine the entailment ID from the model config, please pass it at init.""" ) def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ ): A_ : List[Any] = labels return self.pre_processor( [text] * len(lowerCAmelCase_ ) , [f"""This example is {label}""" for label in labels] , return_tensors="""pt""" , padding="""max_length""" , ) def lowerCamelCase(self , lowerCAmelCase_ ): A_ : str = outputs.logits A_ : Optional[int] = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
480
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __snake_case = logging.get_logger(__name__) __snake_case = { '''openai/whisper-base''': '''https://huggingface.co/openai/whisper-base/resolve/main/config.json''', } # fmt: off __snake_case = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] __snake_case = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class __lowerCamelCase (_a ): _lowercase = """whisper""" _lowercase = ["""past_key_values"""] _lowercase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self: Union[str, Any],A_: List[str]=5_1865,A_: Tuple=80,A_: List[Any]=6,A_: Dict=4,A_: Dict=6,A_: List[str]=4,A_: List[str]=1536,A_: int=1536,A_: List[str]=0.0,A_: Any=0.0,A_: List[str]=5_0257,A_: Tuple=True,A_: Dict=True,A_: Optional[Any]="gelu",A_: Tuple=256,A_: Dict=0.0,A_: List[Any]=0.0,A_: Dict=0.0,A_: int=0.0_2,A_: List[Any]=False,A_: List[str]=1500,A_: int=448,A_: Dict=5_0256,A_: Dict=5_0256,A_: List[str]=5_0256,A_: Dict=None,A_: List[Any]=[220, 5_0256],A_: Dict=False,A_: str=256,A_: Tuple=False,A_: List[Any]=0.0_5,A_: Dict=10,A_: Optional[int]=2,A_: List[str]=0.0,A_: Optional[Any]=10,A_: Union[str, Any]=0,A_: Dict=7,**A_: List[Any],): '''simple docstring''' __UpperCamelCase = vocab_size __UpperCamelCase = num_mel_bins __UpperCamelCase = d_model __UpperCamelCase = encoder_layers __UpperCamelCase = encoder_attention_heads __UpperCamelCase = decoder_layers __UpperCamelCase = decoder_attention_heads __UpperCamelCase = decoder_ffn_dim __UpperCamelCase = encoder_ffn_dim __UpperCamelCase = dropout __UpperCamelCase = attention_dropout __UpperCamelCase = activation_dropout __UpperCamelCase = activation_function __UpperCamelCase = init_std __UpperCamelCase = encoder_layerdrop __UpperCamelCase = decoder_layerdrop __UpperCamelCase = use_cache __UpperCamelCase = encoder_layers __UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCamelCase = max_source_positions __UpperCamelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __UpperCamelCase = classifier_proj_size __UpperCamelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCamelCase = apply_spec_augment __UpperCamelCase = mask_time_prob __UpperCamelCase = mask_time_length __UpperCamelCase = mask_time_min_masks __UpperCamelCase = mask_feature_prob __UpperCamelCase = mask_feature_length __UpperCamelCase = mask_feature_min_masks __UpperCamelCase = median_filter_width super().__init__( pad_token_id=A_,bos_token_id=A_,eos_token_id=A_,is_encoder_decoder=A_,decoder_start_token_id=A_,suppress_tokens=A_,begin_suppress_tokens=A_,**A_,) class __lowerCamelCase (_a ): @property def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: __UpperCamelCase = {0: 'batch'} else: __UpperCamelCase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(A_,direction='inputs' ) return common_inputs def snake_case_ ( self: Tuple,A_: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"],A_: int = -1,A_: int = -1,A_: bool = False,A_: Optional["TensorType"] = None,A_: int = 2_2050,A_: float = 5.0,A_: int = 220,): '''simple docstring''' __UpperCamelCase = OrderedDict() __UpperCamelCase = OnnxConfig.generate_dummy_inputs( self,preprocessor=preprocessor.feature_extractor,batch_size=A_,framework=A_,sampling_rate=A_,time_duration=A_,frequency=A_,) __UpperCamelCase = encoder_inputs['input_features'].shape[2] __UpperCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length __UpperCamelCase = super().generate_dummy_inputs( preprocessor.tokenizer,A_,A_,A_,A_ ) __UpperCamelCase = encoder_inputs.pop('input_features' ) __UpperCamelCase = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: __UpperCamelCase = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' return 1E-3
1
"""simple docstring""" import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase = 13 ,__UpperCamelCase = 64 ,__UpperCamelCase = 2 ,__UpperCamelCase = 3 ,__UpperCamelCase = 3 ,__UpperCamelCase = True ,__UpperCamelCase = True ,__UpperCamelCase = 128 ,__UpperCamelCase=[16, 32, 64, 128] ,__UpperCamelCase = 7 ,__UpperCamelCase = 4 ,__UpperCamelCase = 37 ,__UpperCamelCase = "gelu" ,__UpperCamelCase = 0.1 ,__UpperCamelCase = 0.1 ,__UpperCamelCase = 10 ,__UpperCamelCase = 0.02 ,__UpperCamelCase = 2 ,__UpperCamelCase = 1 ,__UpperCamelCase = 128 ,__UpperCamelCase = [2, 2, 2, 2] ,__UpperCamelCase = 2 ,__UpperCamelCase = 2 ,) -> List[Any]: '''simple docstring''' lowercase_ : List[str] = parent lowercase_ : str = batch_size lowercase_ : List[Any] = image_size lowercase_ : Union[str, Any] = patch_size lowercase_ : Optional[int] = num_channels lowercase_ : List[Any] = is_training lowercase_ : Dict = use_labels lowercase_ : Tuple = hidden_size lowercase_ : List[Any] = num_hidden_layers lowercase_ : Any = num_attention_heads lowercase_ : List[str] = intermediate_size lowercase_ : Optional[Any] = hidden_act lowercase_ : Optional[int] = hidden_dropout_prob lowercase_ : Optional[Any] = attention_probs_dropout_prob lowercase_ : Tuple = type_sequence_label_size lowercase_ : List[str] = initializer_range lowercase_ : Tuple = encoder_stride lowercase_ : Any = num_attention_outputs lowercase_ : Dict = embed_dim lowercase_ : Tuple = embed_dim + 1 lowercase_ : Union[str, Any] = resolution lowercase_ : str = depths lowercase_ : Optional[Any] = hidden_sizes lowercase_ : Dict = dim lowercase_ : str = mlp_expansion_ratio def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : Dict = None if self.use_labels: lowercase_ : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase_ : List[Any] = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> int: '''simple docstring''' return EfficientFormerConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__UpperCamelCase ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,resolution=self.resolution ,depths=self.depths ,hidden_sizes=self.hidden_sizes ,dim=self.dim ,mlp_expansion_ratio=self.mlp_expansion_ratio ,) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Dict: '''simple docstring''' lowercase_ : List[Any] = TFEfficientFormerModel(config=__UpperCamelCase ) lowercase_ : str = model(__UpperCamelCase ,training=__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' lowercase_ : Optional[Any] = self.type_sequence_label_size lowercase_ : List[Any] = TFEfficientFormerForImageClassification(__UpperCamelCase ) lowercase_ : Dict = model(__UpperCamelCase ,labels=__UpperCamelCase ,training=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ : List[Any] = 1 lowercase_ : List[str] = TFEfficientFormerForImageClassification(__UpperCamelCase ) lowercase_ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ : Union[str, Any] = model(__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : int = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ : Optional[int] = config_and_inputs lowercase_ : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class UpperCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ): lowercase = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) lowercase = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Any = TFEfficientFormerModelTester(self ) lowercase_ : Optional[int] = ConfigTester( self ,config_class=__UpperCamelCase ,has_text_modality=__UpperCamelCase ,hidden_size=37 ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='EfficientFormer does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='EfficientFormer does not support input and output embeddings' ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' pass def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ , lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Optional[Any] = model_class(__UpperCamelCase ) lowercase_ : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : List[Any] = [*signature.parameters.keys()] lowercase_ : Optional[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' def check_hidden_states_output(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ): lowercase_ : List[str] = model_class(__UpperCamelCase ) lowercase_ : Optional[Any] = model(**self._prepare_for_class(__UpperCamelCase ,__UpperCamelCase ) ,training=__UpperCamelCase ) lowercase_ : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase_ : Tuple = getattr( self.model_tester ,'expected_num_hidden_layers' ,self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__UpperCamelCase ) ,__UpperCamelCase ) if hasattr(self.model_tester ,'encoder_seq_length' ): lowercase_ : int = self.model_tester.encoder_seq_length if hasattr(self.model_tester ,'chunk_length' ) and self.model_tester.chunk_length > 1: lowercase_ : List[str] = seq_length * self.model_tester.chunk_length else: lowercase_ : Dict = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) ,[seq_length, self.model_tester.hidden_size] ,) if config.is_encoder_decoder: lowercase_ : str = outputs.decoder_hidden_states self.asseretIsInstance(__UpperCamelCase ,(list, tuple) ) self.assertEqual(len(__UpperCamelCase ) ,__UpperCamelCase ) lowercase_ : Union[str, Any] = getattr(self.model_tester ,'seq_length' ,__UpperCamelCase ) lowercase_ : Optional[Any] = getattr(self.model_tester ,'decoder_seq_length' ,__UpperCamelCase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) ,[decoder_seq_length, self.model_tester.hidden_size] ,) lowercase_ , lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Dict = True check_hidden_states_output(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ : Union[str, Any] = True check_hidden_states_output(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=False ) -> Dict: '''simple docstring''' lowercase_ : Dict = super()._prepare_for_class(__UpperCamelCase ,__UpperCamelCase ,return_labels=__UpperCamelCase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) @unittest.skip(reason='EfficientFormer does not implement masked image modeling yet' ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) @slow def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Union[str, Any] = TFEfficientFormerModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ , lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : List[str] = True lowercase_ : List[Any] = getattr(self.model_tester ,'seq_length' ,__UpperCamelCase ) lowercase_ : Optional[int] = getattr(self.model_tester ,'encoder_seq_length' ,__UpperCamelCase ) lowercase_ : List[str] = getattr(self.model_tester ,'key_length' ,__UpperCamelCase ) lowercase_ : List[str] = getattr(self.model_tester ,'chunk_length' ,__UpperCamelCase ) if chunk_length is not None and hasattr(self.model_tester ,'num_hashes' ): lowercase_ : Union[str, Any] = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: lowercase_ : Union[str, Any] = True lowercase_ : str = False lowercase_ : Union[str, Any] = True lowercase_ : Union[str, Any] = model_class(__UpperCamelCase ) lowercase_ : List[str] = model(**self._prepare_for_class(__UpperCamelCase ,__UpperCamelCase ) ,training=__UpperCamelCase ) lowercase_ : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__UpperCamelCase ) ,self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase_ : Optional[Any] = True lowercase_ : Optional[int] = model_class(__UpperCamelCase ) lowercase_ : int = model(**self._prepare_for_class(__UpperCamelCase ,__UpperCamelCase ) ,training=__UpperCamelCase ) lowercase_ : List[str] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__UpperCamelCase ) ,self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) ,[self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] ,) else: self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] ,) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ , lowercase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model lowercase_ : Tuple = model_class(__UpperCamelCase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes lowercase_ : Optional[int] = { key: tf.keras.Input(shape=val.shape[1:] ,dtype=val.dtype ,name=__UpperCamelCase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } lowercase_ : Optional[Any] = model(__UpperCamelCase ) self.assertTrue(outputs_dict is not None ) def lowercase__( ): lowercase_ : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class UpperCamelCase ( unittest.TestCase ): @cached_property def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' return ( EfficientFormerImageProcessor.from_pretrained('snap-research/efficientformer-l1-300' ) if is_vision_available() else None ) @slow def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Dict = TFEfficientFormerForImageClassification.from_pretrained('snap-research/efficientformer-l1-300' ) lowercase_ : Dict = self.default_image_processor lowercase_ : str = prepare_img() lowercase_ : Optional[int] = image_processor(images=__UpperCamelCase ,return_tensors='tf' ) # forward pass lowercase_ : List[str] = model(**__UpperCamelCase ,training=__UpperCamelCase ) # verify the logits lowercase_ : Optional[int] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape ,__UpperCamelCase ) lowercase_ : Optional[Any] = tf.constant([-0.0555, 0.4825, -0.0852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] ,__UpperCamelCase ,atol=1e-4 ) ) @slow def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : int = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( 'snap-research/efficientformer-l1-300' ) lowercase_ : Optional[Any] = self.default_image_processor lowercase_ : Optional[Any] = prepare_img() lowercase_ : str = image_processor(images=__UpperCamelCase ,return_tensors='tf' ) # forward pass lowercase_ : Union[str, Any] = model(**__UpperCamelCase ,training=__UpperCamelCase ) # verify the logits lowercase_ : List[str] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape ,__UpperCamelCase ) lowercase_ : List[Any] = tf.constant([-0.1312, 0.4353, -1.0499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] ,__UpperCamelCase ,atol=1e-4 ) )
425
0
'''simple docstring''' def snake_case__ ( UpperCAmelCase : str ): return "".join(chr(ord(UpperCAmelCase ) - 3_2 ) if "a" <= char <= "z" else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
716
from __future__ import annotations import math from collections.abc import Callable def snake_case__ ( UpperCAmelCase : Callable[[int | float], int | float] , UpperCAmelCase : int | float , UpperCAmelCase : int | float , UpperCAmelCase : int = 1_0_0 , ): lowerCAmelCase__ :int = x_start lowerCAmelCase__ :int = fnc(UpperCAmelCase ) lowerCAmelCase__ :List[Any] = 0.0 for _ in range(UpperCAmelCase ): # Approximates curve as a sequence of linear lines and sums their length lowerCAmelCase__ :Dict = (x_end - x_start) / steps + xa lowerCAmelCase__ :Optional[Any] = fnc(UpperCAmelCase ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step lowerCAmelCase__ :Union[str, Any] = xa lowerCAmelCase__ :str = fxa return length if __name__ == "__main__": def snake_case__ ( UpperCAmelCase : int ): return math.sin(1_0 * x ) print("""f(x) = sin(10 * x)""") print("""The length of the curve from x = -10 to x = 10 is:""") _a : Any = 10 while i <= 10_0000: print(f"""With {i} steps: {line_length(f, -10, 10, i)}""") i *= 10
111
0
'''simple docstring''' import requests A_ = "" # <-- Put your OpenWeatherMap appid here! A_ = "https://api.openweathermap.org/data/2.5/" def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE = "Chicago" , __SCREAMING_SNAKE_CASE = APPID ) -> Optional[Any]: return requests.get(URL_BASE + 'weather' , params=locals() ).json() def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE = "Kolkata, India" , __SCREAMING_SNAKE_CASE = APPID ) -> Dict: return requests.get(URL_BASE + 'forecast' , params=locals() ).json() def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE = 55.68 , __SCREAMING_SNAKE_CASE = 12.57 , __SCREAMING_SNAKE_CASE = APPID ) -> Any: return requests.get(URL_BASE + 'onecall' , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: A_ = input("Enter a location:").strip() if location: pprint(current_weather(location)) else: break
270
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A__ = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
166
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class a ( unittest.TestCase ): def __init__( self : str, SCREAMING_SNAKE_CASE_ : int, SCREAMING_SNAKE_CASE_ : Optional[Any]=7, SCREAMING_SNAKE_CASE_ : List[Any]=3, SCREAMING_SNAKE_CASE_ : Tuple=18, SCREAMING_SNAKE_CASE_ : Dict=30, SCREAMING_SNAKE_CASE_ : Optional[int]=4_00, SCREAMING_SNAKE_CASE_ : List[Any]=True, SCREAMING_SNAKE_CASE_ : Optional[int]=None, SCREAMING_SNAKE_CASE_ : Optional[int]=True, SCREAMING_SNAKE_CASE_ : Dict=False, SCREAMING_SNAKE_CASE_ : List[Any]=True, SCREAMING_SNAKE_CASE_ : int=True, SCREAMING_SNAKE_CASE_ : Any=[0.5, 0.5, 0.5], SCREAMING_SNAKE_CASE_ : Any=[0.5, 0.5, 0.5], ): snake_case : Dict = parent snake_case : Union[str, Any] = batch_size snake_case : Optional[Any] = num_channels snake_case : int = image_size snake_case : Dict = min_resolution snake_case : Optional[Any] = max_resolution snake_case : Dict = do_resize snake_case : Optional[int] = size if size is not None else {'''height''': 18, '''width''': 20} snake_case : Dict = do_thumbnail snake_case : Dict = do_align_axis snake_case : List[str] = do_pad snake_case : Optional[int] = do_normalize snake_case : Optional[Any] = image_mean snake_case : List[Any] = image_std def __snake_case ( self : Optional[int] ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class a ( __SCREAMING_SNAKE_CASE ,unittest.TestCase ): _snake_case = DonutImageProcessor if is_vision_available() else None def __snake_case ( self : Tuple ): snake_case : List[Any] = DonutImageProcessingTester(self ) @property def __snake_case ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def __snake_case ( self : Optional[int] ): snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a, '''do_resize''' ) ) self.assertTrue(hasattr(_a, '''size''' ) ) self.assertTrue(hasattr(_a, '''do_thumbnail''' ) ) self.assertTrue(hasattr(_a, '''do_align_long_axis''' ) ) self.assertTrue(hasattr(_a, '''do_pad''' ) ) self.assertTrue(hasattr(_a, '''do_normalize''' ) ) self.assertTrue(hasattr(_a, '''image_mean''' ) ) self.assertTrue(hasattr(_a, '''image_std''' ) ) def __snake_case ( self : Dict ): snake_case : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''height''': 18, '''width''': 20} ) snake_case : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict, size=42 ) self.assertEqual(image_processor.size, {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order snake_case : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict, size=(42, 84) ) self.assertEqual(image_processor.size, {'''height''': 84, '''width''': 42} ) def __snake_case ( self : Dict ): pass @is_flaky() def __snake_case ( self : Optional[Any] ): # Initialize image_processing snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case : Tuple = prepare_image_inputs(self.image_processor_tester, equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a, Image.Image ) # Test not batched input snake_case : Any = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) # Test batched snake_case : List[Any] = image_processing(_a, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) @is_flaky() def __snake_case ( self : List[Any] ): # Initialize image_processing snake_case : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=_a, numpify=_a ) for image in image_inputs: self.assertIsInstance(_a, np.ndarray ) # Test not batched input snake_case : List[str] = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) # Test batched snake_case : str = image_processing(_a, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) @is_flaky() def __snake_case ( self : Tuple ): # Initialize image_processing snake_case : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case : Tuple = prepare_image_inputs(self.image_processor_tester, equal_resolution=_a, torchify=_a ) for image in image_inputs: self.assertIsInstance(_a, torch.Tensor ) # Test not batched input snake_case : Union[str, Any] = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) # Test batched snake_case : Tuple = image_processing(_a, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), )
721
'''simple docstring''' import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = "The Nymphenburg Palace is a beautiful palace in Munich!" def A ( A_ : str , A_ : str ): snake_case : str = { '''attention_cell''': '''multi_head''', '''num_layers''': 4, '''units''': 1024, '''hidden_size''': 768, '''max_length''': 512, '''num_heads''': 8, '''scaled''': True, '''dropout''': 0.1, '''use_residual''': True, '''embed_size''': 1024, '''embed_dropout''': 0.1, '''word_embed''': None, '''layer_norm_eps''': 1e-5, '''token_type_vocab_size''': 2, } snake_case : int = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py snake_case : int = BERTEncoder( attention_cell=predefined_args['''attention_cell'''] , num_layers=predefined_args['''num_layers'''] , units=predefined_args['''units'''] , hidden_size=predefined_args['''hidden_size'''] , max_length=predefined_args['''max_length'''] , num_heads=predefined_args['''num_heads'''] , scaled=predefined_args['''scaled'''] , dropout=predefined_args['''dropout'''] , output_attention=A_ , output_all_encodings=A_ , use_residual=predefined_args['''use_residual'''] , activation=predefined_args.get('''activation''' , '''gelu''' ) , layer_norm_eps=predefined_args.get('''layer_norm_eps''' , A_ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later snake_case : List[Any] = '''openwebtext_ccnews_stories_books_cased''' # Specify download folder to Gluonnlp's vocab snake_case : Optional[Any] = os.path.join(get_home_dir() , '''models''' ) snake_case : Dict = _load_vocab(A_ , A_ , A_ , cls=A_ ) snake_case : Tuple = nlp.model.BERTModel( A_ , len(A_ ) , units=predefined_args['''units'''] , embed_size=predefined_args['''embed_size'''] , embed_dropout=predefined_args['''embed_dropout'''] , word_embed=predefined_args['''word_embed'''] , use_pooler=A_ , use_token_type_embed=A_ , token_type_vocab_size=predefined_args['''token_type_vocab_size'''] , use_classifier=A_ , use_decoder=A_ , ) original_bort.load_parameters(A_ , cast_dtype=A_ , ignore_extra=A_ ) snake_case : Union[str, Any] = original_bort._collect_params_with_prefix() # Build our config 🤗 snake_case : Optional[int] = { '''architectures''': ['''BertForMaskedLM'''], '''attention_probs_dropout_prob''': predefined_args['''dropout'''], '''hidden_act''': '''gelu''', '''hidden_dropout_prob''': predefined_args['''dropout'''], '''hidden_size''': predefined_args['''embed_size'''], '''initializer_range''': 0.02, '''intermediate_size''': predefined_args['''hidden_size'''], '''layer_norm_eps''': predefined_args['''layer_norm_eps'''], '''max_position_embeddings''': predefined_args['''max_length'''], '''model_type''': '''bort''', '''num_attention_heads''': predefined_args['''num_heads'''], '''num_hidden_layers''': predefined_args['''num_layers'''], '''pad_token_id''': 1, # 2 = BERT, 1 = RoBERTa '''type_vocab_size''': 1, # 2 = BERT, 1 = RoBERTa '''vocab_size''': len(A_ ), } snake_case : Optional[int] = BertConfig.from_dict(A_ ) snake_case : int = BertForMaskedLM(A_ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(A_ : List[str] ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(A_ : Tuple , A_ : Dict ): snake_case : Tuple = hf_param.shape snake_case : List[Any] = to_torch(params[gluon_param] ) snake_case : int = gluon_param.shape assert ( shape_hf == shape_gluon ), F"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers""" return gluon_param snake_case : List[str] = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , '''word_embed.0.weight''' ) snake_case : Optional[Any] = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , '''encoder.position_weight''' ) snake_case : Dict = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , '''encoder.layer_norm.beta''' ) snake_case : Tuple = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , '''encoder.layer_norm.gamma''' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) snake_case : str = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): snake_case : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention snake_case : BertSelfAttention = layer.attention.self snake_case : Optional[int] = check_and_map_params( self_attn.key.bias.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" ) snake_case : Any = check_and_map_params( self_attn.key.weight.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" ) snake_case : Tuple = check_and_map_params( self_attn.query.bias.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" ) snake_case : Dict = check_and_map_params( self_attn.query.weight.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" ) snake_case : int = check_and_map_params( self_attn.value.bias.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" ) snake_case : int = check_and_map_params( self_attn.value.weight.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" ) # self attention output snake_case : BertSelfOutput = layer.attention.output snake_case : Optional[Any] = check_and_map_params( self_output.dense.bias , F"""encoder.transformer_cells.{i}.proj.bias""" ) snake_case : Tuple = check_and_map_params( self_output.dense.weight , F"""encoder.transformer_cells.{i}.proj.weight""" ) snake_case : int = check_and_map_params( self_output.LayerNorm.bias , F"""encoder.transformer_cells.{i}.layer_norm.beta""" ) snake_case : Optional[int] = check_and_map_params( self_output.LayerNorm.weight , F"""encoder.transformer_cells.{i}.layer_norm.gamma""" ) # intermediate snake_case : BertIntermediate = layer.intermediate snake_case : Optional[Any] = check_and_map_params( intermediate.dense.bias , F"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" ) snake_case : Optional[int] = check_and_map_params( intermediate.dense.weight , F"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" ) # output snake_case : BertOutput = layer.output snake_case : List[Any] = check_and_map_params( bert_output.dense.bias , F"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" ) snake_case : int = check_and_map_params( bert_output.dense.weight , F"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" ) snake_case : List[str] = check_and_map_params( bert_output.LayerNorm.bias , F"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" ) snake_case : List[str] = check_and_map_params( bert_output.LayerNorm.weight , F"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models snake_case : Dict = RobertaTokenizer.from_pretrained('''roberta-base''' ) snake_case : Any = tokenizer.encode_plus(A_ )['''input_ids'''] # Get gluon output snake_case : Dict = mx.nd.array([input_ids] ) snake_case : Optional[int] = original_bort(inputs=A_ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(A_ ) snake_case : Optional[int] = BertModel.from_pretrained(A_ ) hf_bort_model.eval() snake_case : Any = tokenizer.encode_plus(A_ , return_tensors='''pt''' ) snake_case : Any = hf_bort_model(**A_ )[0] snake_case : Optional[Any] = output_gluon[0].asnumpy() snake_case : Union[str, Any] = output_hf[0].detach().numpy() snake_case : Tuple = np.max(np.abs(hf_layer - gluon_layer ) ).item() snake_case : Tuple = np.allclose(A_ , A_ , atol=1e-3 ) if success: print('''✔️ Both model do output the same tensors''' ) else: print('''❌ Both model do **NOT** output the same tensors''' ) print('''Absolute difference is:''' , A_ ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
555
0