code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration _lowerCAmelCase : Optional[int] = '''facebook/wmt19-en-de''' _lowerCAmelCase : Optional[Any] = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model _lowerCAmelCase : int = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) _lowerCAmelCase : int = FSMTForConditionalGeneration(config) print(F'''num of params {tiny_model.num_parameters()}''') # Test _lowerCAmelCase : str = tokenizer(['''Making tiny model'''], return_tensors='''pt''') _lowerCAmelCase : List[Any] = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save _lowerCAmelCase : Optional[int] = '''tiny-wmt19-en-de''' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-de
454
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json', # See all DPT models at https://huggingface.co/models?filter=dpt } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[str] = "dpt" def __init__( self : List[str] ,_snake_case : Union[str, Any]=768 ,_snake_case : int=12 ,_snake_case : int=12 ,_snake_case : List[str]=3_072 ,_snake_case : List[str]="gelu" ,_snake_case : str=0.0 ,_snake_case : int=0.0 ,_snake_case : Optional[Any]=0.02 ,_snake_case : Any=1e-12 ,_snake_case : Tuple=384 ,_snake_case : int=16 ,_snake_case : Tuple=3 ,_snake_case : Optional[int]=False ,_snake_case : int=True ,_snake_case : Optional[int]=[2, 5, 8, 11] ,_snake_case : List[str]="project" ,_snake_case : Any=[4, 2, 1, 0.5] ,_snake_case : Union[str, Any]=[96, 192, 384, 768] ,_snake_case : List[str]=256 ,_snake_case : int=-1 ,_snake_case : Any=False ,_snake_case : List[Any]=True ,_snake_case : Tuple=0.4 ,_snake_case : int=255 ,_snake_case : Dict=0.1 ,_snake_case : Dict=[1, 1_024, 24, 24] ,_snake_case : Optional[Any]=[0, 1] ,_snake_case : List[str]=None ,**_snake_case : Optional[int] ,) -> Optional[int]: """simple docstring""" super().__init__(**_snake_case ) lowercase__ : Union[str, Any] = hidden_size lowercase__ : Union[str, Any] = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) lowercase__ : Union[str, Any] = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } lowercase__ : Dict = BitConfig(**_snake_case ) elif isinstance(_snake_case ,_snake_case ): logger.info('''Initializing the config with a `BiT` backbone.''' ) lowercase__ : Tuple = BitConfig(**_snake_case ) elif isinstance(_snake_case ,_snake_case ): lowercase__ : Optional[int] = backbone_config else: raise ValueError( f"""backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.""" ) lowercase__ : Optional[Any] = backbone_featmap_shape lowercase__ : Tuple = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: lowercase__ : List[str] = None lowercase__ : Any = None lowercase__ : Dict = [] lowercase__ : str = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : List[str] = intermediate_size lowercase__ : List[Any] = hidden_act lowercase__ : Any = hidden_dropout_prob lowercase__ : Union[str, Any] = attention_probs_dropout_prob lowercase__ : Optional[int] = initializer_range lowercase__ : List[str] = layer_norm_eps lowercase__ : Optional[Any] = image_size lowercase__ : Any = patch_size lowercase__ : Any = num_channels lowercase__ : Optional[Any] = qkv_bias lowercase__ : Any = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) lowercase__ : str = readout_type lowercase__ : Union[str, Any] = reassemble_factors lowercase__ : int = neck_hidden_sizes lowercase__ : List[str] = fusion_hidden_size lowercase__ : Optional[int] = head_in_index lowercase__ : Dict = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) lowercase__ : Tuple = use_auxiliary_head lowercase__ : List[str] = auxiliary_loss_weight lowercase__ : Tuple = semantic_loss_ignore_index lowercase__ : Tuple = semantic_classifier_dropout def UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowercase__ : List[Any] = self.backbone_config.to_dict() lowercase__ : List[str] = self.__class__.model_type return output
560
0
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase__ : """simple docstring""" def __init__( self : Any ,_a : str ,_a : List[Any]=13 ,_a : Any=30 ,_a : Optional[Any]=2 ,_a : str=3 ,_a : Tuple=True ,_a : List[Any]=True ,_a : Any=32 ,_a : List[Any]=5 ,_a : List[str]=4 ,_a : int=37 ,_a : str="gelu" ,_a : Tuple=0.1 ,_a : Optional[Any]=0.1 ,_a : Union[str, Any]=10 ,_a : Dict=0.02 ,_a : str=3 ,_a : int=0.6 ,_a : Any=None ,): '''simple docstring''' _a : Any = parent _a : int = batch_size _a : Any = image_size _a : Any = patch_size _a : Optional[int] = num_channels _a : List[Any] = is_training _a : Optional[int] = use_labels _a : Dict = hidden_size _a : int = num_hidden_layers _a : str = num_attention_heads _a : Any = intermediate_size _a : Optional[int] = hidden_act _a : Optional[Any] = hidden_dropout_prob _a : Dict = attention_probs_dropout_prob _a : Any = type_sequence_label_size _a : Optional[int] = initializer_range _a : List[Any] = mask_ratio _a : List[Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _a : List[Any] = (image_size // patch_size) ** 2 _a : int = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __lowercase ( self : Any ): '''simple docstring''' _a : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Tuple = None if self.use_labels: _a : int = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _a : Optional[Any] = self.get_config() return config, pixel_values, labels def __lowercase ( self : int ): '''simple docstring''' return ViTMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_a ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,) def __lowercase ( self : Optional[int] ,_a : Any ,_a : Optional[int] ,_a : str ): '''simple docstring''' _a : Union[str, Any] = ViTMAEModel(config=_a ) model.to(_a ) model.eval() _a : List[str] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : Dict ,_a : Optional[Any] ,_a : Optional[Any] ,_a : Dict ): '''simple docstring''' _a : int = ViTMAEForPreTraining(_a ) model.to(_a ) model.eval() _a : List[Any] = model(_a ) _a : List[Any] = (self.image_size // self.patch_size) ** 2 _a : str = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _a : Any = 1 _a : Union[str, Any] = ViTMAEForPreTraining(_a ) model.to(_a ) model.eval() _a : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a : str = model(_a ) _a : Optional[int] = self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Optional[Any] = self.prepare_config_and_inputs() _a, _a, _a : List[str] = config_and_inputs _a : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[int] = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () __UpperCAmelCase : str = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} __UpperCAmelCase : str = False __UpperCAmelCase : Dict = False __UpperCAmelCase : Optional[int] = False __UpperCAmelCase : int = False def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : List[Any] = ViTMAEModelTester(self ) _a : Tuple = ConfigTester(self ,config_class=_a ,has_text_modality=_a ,hidden_size=37 ) def __lowercase ( self : Optional[int] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def __lowercase ( self : Any ): '''simple docstring''' pass def __lowercase ( self : Dict ): '''simple docstring''' _a, _a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : str = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _a : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a ,nn.Linear ) ) def __lowercase ( self : Tuple ): '''simple docstring''' _a, _a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Tuple = model_class(_a ) _a : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Optional[int] = [*signature.parameters.keys()] _a : str = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_a ) def __lowercase ( self : str ): '''simple docstring''' _a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self : Tuple ): '''simple docstring''' _a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_a ) def __lowercase ( self : List[str] ,_a : Tuple ,_a : List[Any] ,_a : Any ): '''simple docstring''' np.random.seed(2 ) _a : str = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) _a : Any = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _a : Tuple = torch.from_numpy(_a ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _a : Dict = pt_noise super().check_pt_tf_models(_a ,_a ,_a ) def __lowercase ( self : int ): '''simple docstring''' _a, _a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Dict = model_class(_a ) model.to(_a ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _a : Tuple = model(**self._prepare_for_class(_a ,_a ) ) _a : Any = outputs[0].cpu().numpy() _a : Any = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_a ) _a : Tuple = model_class.from_pretrained(_a ) model.to(_a ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _a : List[Any] = model(**self._prepare_for_class(_a ,_a ) ) # Make sure we don't have nans _a : List[Any] = after_outputs[0].cpu().numpy() _a : Optional[int] = 0 _a : List[str] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_a ,1E-5 ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def __lowercase ( self : Tuple ): '''simple docstring''' pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def __lowercase ( self : Dict ): '''simple docstring''' pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def __lowercase ( self : str ): '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __lowercase ( self : Tuple ): '''simple docstring''' pass @slow def __lowercase ( self : List[str] ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : int = ViTMAEModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def UpperCAmelCase_ (): """simple docstring""" _a : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self : Dict ): '''simple docstring''' return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def __lowercase ( self : Any ): '''simple docstring''' np.random.seed(2 ) _a : int = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ).to(_a ) _a : List[str] = self.default_image_processor _a : Tuple = prepare_img() _a : Optional[Any] = image_processor(images=_a ,return_tensors='pt' ).to(_a ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _a : Dict = ViTMAEConfig() _a : Union[str, Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _a : str = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): _a : Optional[int] = model(**_a ,noise=torch.from_numpy(_a ).to(device=_a ) ) # verify the logits _a : Any = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape ,_a ) _a : Union[str, Any] = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,expected_slice.to(_a ) ,atol=1E-4 ) )
319
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: _UpperCamelCase : Union[str, Any] = None _UpperCamelCase : int = logging.get_logger(__name__) _UpperCamelCase : Union[str, Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} _UpperCamelCase : Optional[Any] = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", }, "tokenizer_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json", }, } _UpperCamelCase : Tuple = { "albert-base-v1": 5_12, "albert-large-v1": 5_12, "albert-xlarge-v1": 5_12, "albert-xxlarge-v1": 5_12, "albert-base-v2": 5_12, "albert-large-v2": 5_12, "albert-xlarge-v2": 5_12, "albert-xxlarge-v2": 5_12, } _UpperCamelCase : str = "▁" class UpperCAmelCase_ ( lowerCAmelCase_): lowerCamelCase__ : Union[str, Any] = VOCAB_FILES_NAMES lowerCamelCase__ : str = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Optional[Any] = AlbertTokenizer def __init__( self , a=None , a=None , a=True , a=True , a=False , a="[CLS]" , a="[SEP]" , a="<unk>" , a="[SEP]" , a="<pad>" , a="[CLS]" , a="[MASK]" , **a , ) -> Optional[Any]: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. lowercase__ : List[str] = ( AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase , normalized=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token ) super().__init__( __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , do_lower_case=__lowerCAmelCase , remove_space=__lowerCAmelCase , keep_accents=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , **__lowerCAmelCase , ) lowercase__ : Optional[Any] = do_lower_case lowercase__ : Dict = remove_space lowercase__ : Dict = keep_accents lowercase__ : str = vocab_file lowercase__ : List[str] = False if not self.vocab_file else True def _UpperCAmelCase ( self , a , a = None ) -> Optional[int]: lowercase__ : Optional[int] = [self.sep_token_id] lowercase__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _UpperCAmelCase ( self , a , a = None ) -> Optional[int]: lowercase__ : Union[str, Any] = [self.sep_token_id] lowercase__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self , a , a = None ) -> Tuple: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(__lowerCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : int = os.path.join( __lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ): copyfile(self.vocab_file , __lowerCAmelCase ) return (out_vocab_file,)
599
"""simple docstring""" from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class a ( lowerCAmelCase_ ): _snake_case : Tuple = 'efficientnet' def __init__( self : int , __lowerCAmelCase : int = 3 , __lowerCAmelCase : int = 600 , __lowerCAmelCase : float = 2.0 , __lowerCAmelCase : float = 3.1 , __lowerCAmelCase : int = 8 , __lowerCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , __lowerCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , __lowerCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , __lowerCAmelCase : List[int] = [] , __lowerCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , __lowerCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , __lowerCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , __lowerCAmelCase : float = 0.25 , __lowerCAmelCase : str = "swish" , __lowerCAmelCase : int = 2560 , __lowerCAmelCase : str = "mean" , __lowerCAmelCase : float = 0.02 , __lowerCAmelCase : float = 0.001 , __lowerCAmelCase : float = 0.99 , __lowerCAmelCase : float = 0.5 , __lowerCAmelCase : float = 0.2 , **__lowerCAmelCase : Optional[Any] , ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = width_coefficient _UpperCAmelCase = depth_coefficient _UpperCAmelCase = depth_divisor _UpperCAmelCase = kernel_sizes _UpperCAmelCase = in_channels _UpperCAmelCase = out_channels _UpperCAmelCase = depthwise_padding _UpperCAmelCase = strides _UpperCAmelCase = num_block_repeats _UpperCAmelCase = expand_ratios _UpperCAmelCase = squeeze_expansion_ratio _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dim _UpperCAmelCase = pooling_type _UpperCAmelCase = initializer_range _UpperCAmelCase = batch_norm_eps _UpperCAmelCase = batch_norm_momentum _UpperCAmelCase = dropout_rate _UpperCAmelCase = drop_connect_rate _UpperCAmelCase = sum(__lowerCAmelCase ) * 4 class a ( lowerCAmelCase_ ): _snake_case : Union[str, Any] = version.parse('1.11' ) @property def lowerCAmelCase_ ( self : Any ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase_ ( self : List[Any] ): return 1e-5
277
0
"""simple docstring""" from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean __lowerCAmelCase = 0 __lowerCAmelCase = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowerCAmelCase = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right __lowerCAmelCase = tuple[int, int] class _lowerCAmelCase : def __init__( self : Tuple , a : int , a : int , a : int , a : int , a : int , a : Node | None , ) -> None: """simple docstring""" lowercase = pos_x lowercase = pos_y lowercase = (pos_y, pos_x) lowercase = goal_x lowercase = goal_y lowercase = g_cost lowercase = parent lowercase = self.calculate_heuristic() lowercase = self.g_cost + self.h_cost def _lowerCAmelCase ( self : Tuple ) -> float: """simple docstring""" lowercase = self.pos_x - self.goal_x lowercase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(a ) + abs(a ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : List[Any] , a : Node ) -> bool: """simple docstring""" return self.f_cost < other.f_cost class _lowerCAmelCase : def __init__( self : List[Any] , a : TPosition , a : TPosition ) -> List[Any]: """simple docstring""" lowercase = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , a ) lowercase = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , a ) lowercase = [self.start] lowercase = [] lowercase = False def _lowerCAmelCase ( self : str ) -> list[TPosition]: """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() lowercase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(a ) self.closed_nodes.append(a ) lowercase = self.get_successors(a ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(a ) else: # retrieve the best current path lowercase = self.open_nodes.pop(self.open_nodes.index(a ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(a ) else: self.open_nodes.append(a ) return [self.start.pos] def _lowerCAmelCase ( self : Tuple , a : Node ) -> list[Node]: """simple docstring""" lowercase = [] for action in delta: lowercase = parent.pos_x + action[1] lowercase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(a ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( a , a , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , a , ) ) return successors def _lowerCAmelCase ( self : List[str] , a : Node | None ) -> list[TPosition]: """simple docstring""" lowercase = node lowercase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowercase = current_node.parent path.reverse() return path class _lowerCAmelCase : def __init__( self : str , a : TPosition , a : TPosition ) -> None: """simple docstring""" lowercase = AStar(a , a ) lowercase = AStar(a , a ) lowercase = False def _lowerCAmelCase ( self : int ) -> list[TPosition]: """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() lowercase = self.fwd_astar.open_nodes.pop(0 ) lowercase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( a , a ) self.fwd_astar.closed_nodes.append(a ) self.bwd_astar.closed_nodes.append(a ) lowercase = current_bwd_node lowercase = current_fwd_node lowercase = { self.fwd_astar: self.fwd_astar.get_successors(a ), self.bwd_astar: self.bwd_astar.get_successors(a ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(a ) else: # retrieve the best current path lowercase = astar.open_nodes.pop( astar.open_nodes.index(a ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(a ) else: astar.open_nodes.append(a ) return [self.fwd_astar.start.pos] def _lowerCAmelCase ( self : Dict , a : Node , a : Node ) -> list[TPosition]: """simple docstring""" lowercase = self.fwd_astar.retrace_path(a ) lowercase = self.bwd_astar.retrace_path(a ) bwd_path.pop() bwd_path.reverse() lowercase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] __lowerCAmelCase = (0, 0) __lowerCAmelCase = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __lowerCAmelCase = time.time() __lowerCAmelCase = AStar(init, goal) __lowerCAmelCase = a_star.search() __lowerCAmelCase = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') __lowerCAmelCase = time.time() __lowerCAmelCase = BidirectionalAStar(init, goal) __lowerCAmelCase = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
708
"""simple docstring""" import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class _lowerCAmelCase ( nn.Module ): __lowerCAmelCase : int __lowerCAmelCase : int __lowerCAmelCase : float = 0.0 __lowerCAmelCase : int = 1 __lowerCAmelCase : int = 1 __lowerCAmelCase : bool = True __lowerCAmelCase : bool = False __lowerCAmelCase : bool = False __lowerCAmelCase : bool = False __lowerCAmelCase : jnp.dtype = jnp.floataa def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase = [] lowercase = [] for i in range(self.num_layers ): lowercase = self.in_channels if i == 0 else self.out_channels lowercase = FlaxResnetBlockaD( in_channels=a , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(a ) lowercase = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(a ) lowercase = resnets lowercase = attentions if self.add_downsample: lowercase = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[str] , a : Tuple , a : Union[str, Any] , a : Tuple , a : str=True ) -> Tuple: """simple docstring""" lowercase = () for resnet, attn in zip(self.resnets , self.attentions ): lowercase = resnet(a , a , deterministic=a ) lowercase = attn(a , a , deterministic=a ) output_states += (hidden_states,) if self.add_downsample: lowercase = self.downsamplers_a(a ) output_states += (hidden_states,) return hidden_states, output_states class _lowerCAmelCase ( nn.Module ): __lowerCAmelCase : int __lowerCAmelCase : int __lowerCAmelCase : float = 0.0 __lowerCAmelCase : int = 1 __lowerCAmelCase : bool = True __lowerCAmelCase : jnp.dtype = jnp.floataa def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" lowercase = [] for i in range(self.num_layers ): lowercase = self.in_channels if i == 0 else self.out_channels lowercase = FlaxResnetBlockaD( in_channels=a , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(a ) lowercase = resnets if self.add_downsample: lowercase = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : int , a : Tuple , a : List[Any] , a : Optional[Any]=True ) -> Tuple: """simple docstring""" lowercase = () for resnet in self.resnets: lowercase = resnet(a , a , deterministic=a ) output_states += (hidden_states,) if self.add_downsample: lowercase = self.downsamplers_a(a ) output_states += (hidden_states,) return hidden_states, output_states class _lowerCAmelCase ( nn.Module ): __lowerCAmelCase : int __lowerCAmelCase : int __lowerCAmelCase : int __lowerCAmelCase : float = 0.0 __lowerCAmelCase : int = 1 __lowerCAmelCase : int = 1 __lowerCAmelCase : bool = True __lowerCAmelCase : bool = False __lowerCAmelCase : bool = False __lowerCAmelCase : bool = False __lowerCAmelCase : jnp.dtype = jnp.floataa def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase = [] lowercase = [] for i in range(self.num_layers ): lowercase = self.in_channels if (i == self.num_layers - 1) else self.out_channels lowercase = self.prev_output_channel if i == 0 else self.out_channels lowercase = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(a ) lowercase = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(a ) lowercase = resnets lowercase = attentions if self.add_upsample: lowercase = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : str , a : Optional[int] , a : Optional[int] , a : Optional[int] , a : List[str] , a : Dict=True ) -> List[Any]: """simple docstring""" for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states lowercase = res_hidden_states_tuple[-1] lowercase = res_hidden_states_tuple[:-1] lowercase = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) lowercase = resnet(a , a , deterministic=a ) lowercase = attn(a , a , deterministic=a ) if self.add_upsample: lowercase = self.upsamplers_a(a ) return hidden_states class _lowerCAmelCase ( nn.Module ): __lowerCAmelCase : int __lowerCAmelCase : int __lowerCAmelCase : int __lowerCAmelCase : float = 0.0 __lowerCAmelCase : int = 1 __lowerCAmelCase : bool = True __lowerCAmelCase : jnp.dtype = jnp.floataa def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" lowercase = [] for i in range(self.num_layers ): lowercase = self.in_channels if (i == self.num_layers - 1) else self.out_channels lowercase = self.prev_output_channel if i == 0 else self.out_channels lowercase = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(a ) lowercase = resnets if self.add_upsample: lowercase = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : int , a : Any , a : Any , a : Tuple , a : Dict=True ) -> Optional[Any]: """simple docstring""" for resnet in self.resnets: # pop res hidden states lowercase = res_hidden_states_tuple[-1] lowercase = res_hidden_states_tuple[:-1] lowercase = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) lowercase = resnet(a , a , deterministic=a ) if self.add_upsample: lowercase = self.upsamplers_a(a ) return hidden_states class _lowerCAmelCase ( nn.Module ): __lowerCAmelCase : int __lowerCAmelCase : float = 0.0 __lowerCAmelCase : int = 1 __lowerCAmelCase : int = 1 __lowerCAmelCase : bool = False __lowerCAmelCase : bool = False __lowerCAmelCase : jnp.dtype = jnp.floataa def _lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" # there is always at least one resnet lowercase = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] lowercase = [] for _ in range(self.num_layers ): lowercase = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(a ) lowercase = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(a ) lowercase = resnets lowercase = attentions def __call__( self : List[Any] , a : Optional[int] , a : Tuple , a : List[Any] , a : List[str]=True ) -> Optional[Any]: """simple docstring""" lowercase = self.resnets[0](a , a ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): lowercase = attn(a , a , deterministic=a ) lowercase = resnet(a , a , deterministic=a ) return hidden_states
396
0
"""simple docstring""" import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : def __init__( self: Dict ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: int=13 ,__lowerCAmelCase: List[str]=30 ,__lowerCAmelCase: List[str]=2 ,__lowerCAmelCase: Dict=3 ,__lowerCAmelCase: Tuple=True ,__lowerCAmelCase: List[str]=True ,__lowerCAmelCase: Optional[Any]=32 ,__lowerCAmelCase: List[Any]=5 ,__lowerCAmelCase: int=4 ,__lowerCAmelCase: Optional[int]=37 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: str=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Optional[Any]=10 ,__lowerCAmelCase: List[str]=0.02 ,__lowerCAmelCase: Union[str, Any]=3 ,__lowerCAmelCase: Tuple=0.6 ,__lowerCAmelCase: Dict=None ,): '''simple docstring''' _lowerCamelCase : Optional[int] = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Any = image_size _lowerCamelCase : List[str] = patch_size _lowerCamelCase : Union[str, Any] = num_channels _lowerCamelCase : List[str] = is_training _lowerCamelCase : str = use_labels _lowerCamelCase : List[Any] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Union[str, Any] = hidden_dropout_prob _lowerCamelCase : Any = attention_probs_dropout_prob _lowerCamelCase : str = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : Dict = mask_ratio _lowerCamelCase : List[Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _lowerCamelCase : str = (image_size // patch_size) ** 2 _lowerCamelCase : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : int = None if self.use_labels: _lowerCamelCase : Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCamelCase : str = self.get_config() return config, pixel_values, labels def _lowercase ( self: Union[str, Any] ): '''simple docstring''' return ViTMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__lowerCAmelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,) def _lowercase ( self: Any ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : Any = ViTMAEModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self: List[str] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : List[Any] = ViTMAEForPreTraining(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Dict = model(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = (self.image_size // self.patch_size) ** 2 _lowerCamelCase : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _lowerCamelCase : str = 1 _lowerCamelCase : Tuple = ViTMAEForPreTraining(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ) _lowerCamelCase : Any = self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = config_and_inputs _lowerCamelCase : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): lowerCAmelCase__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowerCAmelCase__ = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = ViTMAEModelTester(self ) _lowerCamelCase : List[str] = ConfigTester(self ,config_class=__lowerCAmelCase ,has_text_modality=__lowerCAmelCase ,hidden_size=37 ) def _lowercase ( self: List[str] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' pass def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Optional[Any] = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _lowerCamelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase ,nn.Linear ) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Dict = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCamelCase : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCAmelCase ) def _lowercase ( self: Any ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : Optional[Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) _lowerCamelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _lowerCamelCase : Union[str, Any] = torch.from_numpy(__lowerCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _lowerCamelCase : Dict = pt_noise super().check_pt_tf_models(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[str] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCamelCase : int = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) _lowerCamelCase : Any = outputs[0].cpu().numpy() _lowerCamelCase : Union[str, Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : str = model_class.from_pretrained(__lowerCAmelCase ) model.to(__lowerCAmelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCamelCase : Dict = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) # Make sure we don't have nans _lowerCamelCase : Union[str, Any] = after_outputs[0].cpu().numpy() _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowerCAmelCase ,1e-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: str ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: Tuple ): '''simple docstring''' pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def _lowercase ( self: int ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowercase ( self: Dict ): '''simple docstring''' pass @slow def _lowercase ( self: Dict ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Optional[Any] = ViTMAEModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def lowerCamelCase_( ) -> str: '''simple docstring''' _lowerCamelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): @cached_property def _lowercase ( self: str ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def _lowercase ( self: int ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : List[str] = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(__lowerCAmelCase ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : int = prepare_img() _lowerCamelCase : Tuple = image_processor(images=__lowerCAmelCase ,return_tensors="pt" ).to(__lowerCAmelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _lowerCamelCase : Tuple = ViTMAEConfig() _lowerCamelCase : Union[str, Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _lowerCamelCase : Optional[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): _lowerCamelCase : Dict = model(**__lowerCAmelCase ,noise=torch.from_numpy(__lowerCAmelCase ).to(device=__lowerCAmelCase ) ) # verify the logits _lowerCamelCase : Any = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape ,__lowerCAmelCase ) _lowerCamelCase : Tuple = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,expected_slice.to(__lowerCAmelCase ) ,atol=1e-4 ) )
46
def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase ) ->list: """simple docstring""" __magic_name__ : Optional[Any] = word.split() def justify(UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) -> str: __magic_name__ : int = max_width - width __magic_name__ : Optional[int] = len(UpperCAmelCase ) if len(UpperCAmelCase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: __magic_name__ : List[Any] = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] __magic_name__ : int = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] __magic_name__ : Optional[int] = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(UpperCAmelCase ): num_spaces_between_words_list[i] += 1 __magic_name__ : List[str] = [] for i in range(UpperCAmelCase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ''' ''' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(UpperCAmelCase ) __magic_name__ : List[Any] = [] __magic_name__ : list[str] = [] __magic_name__ : List[str] = 0 for word in words: if width + len(UpperCAmelCase ) + len(UpperCAmelCase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(UpperCAmelCase ) width += len(UpperCAmelCase ) else: # justify the line and add it to result answer.append(justify(UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) ) # reset new line and new width __magic_name__ , __magic_name__ : Optional[int] = [word], len(UpperCAmelCase ) __magic_name__ : List[str] = max_width - width - len(UpperCAmelCase ) answer.append(''' '''.join(UpperCAmelCase ) + (remaining_spaces + 1) * ''' ''' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
154
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class snake_case ( unittest.TestCase ): """simple docstring""" @slow def snake_case__ ( self ): __lowercase = TFAutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" ) __lowercase = AutoTokenizer.from_pretrained("google/mt5-small" ) __lowercase = tokenizer("Hello there" , return_tensors="tf" ).input_ids __lowercase = tokenizer("Hi I am" , return_tensors="tf" ).input_ids __lowercase = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ).loss __lowercase = -tf.math.reduce_mean(lowerCAmelCase_ ).numpy() __lowercase = -21.22_81_68 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
576
from collections.abc import Sequence def __lowercase ( _UpperCAmelCase = None ) -> int: '''simple docstring''' if nums is None or not nums: raise ValueError("Input sequence should not be empty" ) __lowercase = nums[0] for i in range(1 , len(_UpperCAmelCase ) ): __lowercase = nums[i] __lowercase = max(_UpperCAmelCase , ans + num , _UpperCAmelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user lowerCAmelCase__ = int(input('Enter number of elements : ').strip()) lowerCAmelCase__ = list(map(int, input('\nEnter the numbers : ').strip().split()))[:n] print(max_subsequence_sum(array))
576
1
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. lowercase_ : List[Any] = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class _lowerCamelCase ( unittest.TestCase ): __a = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __a = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: __a = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: __a = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Optional[int]: SCREAMING_SNAKE_CASE__: str= ZeroShotClassificationPipeline( model=lowerCAmelCase , tokenizer=lowerCAmelCase , candidate_labels=['''polics''', '''health'''] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase ) -> int: SCREAMING_SNAKE_CASE__: List[Any]= classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics''' ) self.assertEqual(lowerCAmelCase , {'''sequence''': ANY(lowerCAmelCase ), '''labels''': [ANY(lowerCAmelCase )], '''scores''': [ANY(lowerCAmelCase )]} ) # No kwarg SCREAMING_SNAKE_CASE__: int= classifier('''Who are you voting for in 2020?''' , ['''politics'''] ) self.assertEqual(lowerCAmelCase , {'''sequence''': ANY(lowerCAmelCase ), '''labels''': [ANY(lowerCAmelCase )], '''scores''': [ANY(lowerCAmelCase )]} ) SCREAMING_SNAKE_CASE__: List[Any]= classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics'''] ) self.assertEqual(lowerCAmelCase , {'''sequence''': ANY(lowerCAmelCase ), '''labels''': [ANY(lowerCAmelCase )], '''scores''': [ANY(lowerCAmelCase )]} ) SCREAMING_SNAKE_CASE__: Dict= classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics, public health''' ) self.assertEqual( lowerCAmelCase , {'''sequence''': ANY(lowerCAmelCase ), '''labels''': [ANY(lowerCAmelCase ), ANY(lowerCAmelCase )], '''scores''': [ANY(lowerCAmelCase ), ANY(lowerCAmelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) SCREAMING_SNAKE_CASE__: Optional[Any]= classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health'''] ) self.assertEqual( lowerCAmelCase , {'''sequence''': ANY(lowerCAmelCase ), '''labels''': [ANY(lowerCAmelCase ), ANY(lowerCAmelCase )], '''scores''': [ANY(lowerCAmelCase ), ANY(lowerCAmelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) SCREAMING_SNAKE_CASE__: Optional[Any]= classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''This text is about {}''' ) self.assertEqual(lowerCAmelCase , {'''sequence''': ANY(lowerCAmelCase ), '''labels''': [ANY(lowerCAmelCase )], '''scores''': [ANY(lowerCAmelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 SCREAMING_SNAKE_CASE__: str= classifier(['''I am happy'''] , ['''positive''', '''negative'''] ) self.assertEqual( lowerCAmelCase , [ {'''sequence''': ANY(lowerCAmelCase ), '''labels''': [ANY(lowerCAmelCase ), ANY(lowerCAmelCase )], '''scores''': [ANY(lowerCAmelCase ), ANY(lowerCAmelCase )]} for i in range(1 ) ] , ) SCREAMING_SNAKE_CASE__: Tuple= classifier(['''I am happy''', '''I am sad'''] , ['''positive''', '''negative'''] ) self.assertEqual( lowerCAmelCase , [ {'''sequence''': ANY(lowerCAmelCase ), '''labels''': [ANY(lowerCAmelCase ), ANY(lowerCAmelCase )], '''scores''': [ANY(lowerCAmelCase ), ANY(lowerCAmelCase )]} for i in range(2 ) ] , ) with self.assertRaises(lowerCAmelCase ): classifier('''''' , candidate_labels='''politics''' ) with self.assertRaises(lowerCAmelCase ): classifier(lowerCAmelCase , candidate_labels='''politics''' ) with self.assertRaises(lowerCAmelCase ): classifier('''Who are you voting for in 2020?''' , candidate_labels='''''' ) with self.assertRaises(lowerCAmelCase ): classifier('''Who are you voting for in 2020?''' , candidate_labels=lowerCAmelCase ) with self.assertRaises(lowerCAmelCase ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''Not formatting template''' , ) with self.assertRaises(lowerCAmelCase ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template=lowerCAmelCase , ) self.run_entailment_id(lowerCAmelCase ) def UpperCamelCase_ ( self , lowerCAmelCase ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__: Optional[Any]= zero_shot_classifier.model.config SCREAMING_SNAKE_CASE__: str= config.labelaid SCREAMING_SNAKE_CASE__: int= zero_shot_classifier.entailment_id SCREAMING_SNAKE_CASE__: str= {'''LABEL_0''': 0, '''LABEL_1''': 1, '''LABEL_2''': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) SCREAMING_SNAKE_CASE__: Any= {'''entailment''': 0, '''neutral''': 1, '''contradiction''': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) SCREAMING_SNAKE_CASE__: List[Any]= {'''ENTAIL''': 0, '''NON-ENTAIL''': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) SCREAMING_SNAKE_CASE__: Tuple= {'''ENTAIL''': 2, '''NEUTRAL''': 1, '''CONTR''': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) SCREAMING_SNAKE_CASE__: Dict= original_labelaid self.assertEqual(lowerCAmelCase , zero_shot_classifier.entailment_id ) @require_torch def UpperCamelCase_ ( self ) -> int: SCREAMING_SNAKE_CASE__: Union[str, Any]= pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( '''Who are you voting for in 2020?''' * 100 , candidate_labels=['''politics''', '''public health''', '''science'''] ) @require_torch def UpperCamelCase_ ( self ) -> Dict: SCREAMING_SNAKE_CASE__: Optional[int]= pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) SCREAMING_SNAKE_CASE__: Any= zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(lowerCAmelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.333, 0.333, 0.333], } , ) @require_tf def UpperCamelCase_ ( self ) -> str: SCREAMING_SNAKE_CASE__: Tuple= pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''tf''' , ) SCREAMING_SNAKE_CASE__: List[str]= zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(lowerCAmelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.333, 0.333, 0.333], } , ) @slow @require_torch def UpperCamelCase_ ( self ) -> List[Any]: SCREAMING_SNAKE_CASE__: int= pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''pt''' ) SCREAMING_SNAKE_CASE__: List[Any]= zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(lowerCAmelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.976, 0.015, 0.009], } , ) SCREAMING_SNAKE_CASE__: Dict= zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=lowerCAmelCase , ) self.assertEqual( nested_simplify(lowerCAmelCase ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.817, 0.713, 0.018, 0.018], } , ) @slow @require_tf def UpperCamelCase_ ( self ) -> Tuple: SCREAMING_SNAKE_CASE__: Any= pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''tf''' ) SCREAMING_SNAKE_CASE__: Tuple= zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(lowerCAmelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.976, 0.015, 0.009], } , ) SCREAMING_SNAKE_CASE__: Any= zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=lowerCAmelCase , ) self.assertEqual( nested_simplify(lowerCAmelCase ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.817, 0.713, 0.018, 0.018], } , )
64
'''simple docstring''' from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class a__ ( nn.Module ): def __init__(self : Union[str, Any], __UpperCAmelCase : int = 16, __UpperCAmelCase : int = 88, __UpperCAmelCase : Optional[int] = None, __UpperCAmelCase : int = 1, __UpperCAmelCase : float = 0.0, __UpperCAmelCase : int = 32, __UpperCAmelCase : Optional[int] = None, __UpperCAmelCase : bool = False, __UpperCAmelCase : Optional[int] = None, __UpperCAmelCase : Optional[int] = None, __UpperCAmelCase : str = "geglu", __UpperCAmelCase : Optional[int] = None, ) -> str: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE : Any = nn.ModuleList( [ TransformeraDModel( num_attention_heads=__UpperCAmelCase, attention_head_dim=__UpperCAmelCase, in_channels=__UpperCAmelCase, num_layers=__UpperCAmelCase, dropout=__UpperCAmelCase, norm_num_groups=__UpperCAmelCase, cross_attention_dim=__UpperCAmelCase, attention_bias=__UpperCAmelCase, sample_size=__UpperCAmelCase, num_vector_embeds=__UpperCAmelCase, activation_fn=__UpperCAmelCase, num_embeds_ada_norm=__UpperCAmelCase, ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference SCREAMING_SNAKE_CASE : int = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` SCREAMING_SNAKE_CASE : Dict = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` SCREAMING_SNAKE_CASE : Optional[Any] = [1, 0] def lowercase__ (self : Union[str, Any], __UpperCAmelCase : Dict, __UpperCAmelCase : Union[str, Any], __UpperCAmelCase : List[str]=None, __UpperCAmelCase : List[Any]=None, __UpperCAmelCase : List[str]=None, __UpperCAmelCase : bool = True, ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = hidden_states SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : List[str] = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens SCREAMING_SNAKE_CASE : Tuple = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] SCREAMING_SNAKE_CASE : str = self.transformer_index_for_condition[i] SCREAMING_SNAKE_CASE : Dict = self.transformers[transformer_index]( __UpperCAmelCase, encoder_hidden_states=__UpperCAmelCase, timestep=__UpperCAmelCase, cross_attention_kwargs=__UpperCAmelCase, return_dict=__UpperCAmelCase, )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] SCREAMING_SNAKE_CASE : Union[str, Any] = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) SCREAMING_SNAKE_CASE : Optional[int] = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__UpperCAmelCase )
507
0
import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def _a ( lowerCamelCase__ ) -> List[str]: return EnvironmentCommand() def _a ( lowerCamelCase__ ) -> Any: return EnvironmentCommand(args.accelerate_config_file ) class lowerCamelCase__ ( UpperCAmelCase ): @staticmethod def UpperCAmelCase_ (_snake_case : ArgumentParser ) -> Dict: """simple docstring""" lowerCamelCase_ : Optional[int] = parser.add_parser('env' ) download_parser.set_defaults(func=_snake_case ) download_parser.add_argument( '--accelerate-config_file' , default=_snake_case , help='The accelerate config file to use for the default values in the launching script.' , ) download_parser.set_defaults(func=_snake_case ) def __init__(self : Tuple , _snake_case : Optional[Any] , *_snake_case : Any ) -> None: """simple docstring""" lowerCamelCase_ : str = accelerate_config_file def UpperCAmelCase_ (self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : List[Any] = 'not installed' if is_safetensors_available(): import safetensors lowerCamelCase_ : List[str] = safetensors.__version__ elif importlib.util.find_spec('safetensors' ) is not None: import safetensors lowerCamelCase_ : Dict = f'{safetensors.__version__} but is ignored because of PyTorch version too old.' lowerCamelCase_ : List[Any] = 'not installed' lowerCamelCase_ : Dict = 'not found' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file lowerCamelCase_ : Optional[Any] = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(_snake_case ): lowerCamelCase_ : Union[str, Any] = load_config_from_file(self._accelerate_config_file ).to_dict() lowerCamelCase_ : Union[str, Any] = ( '\n'.join([f'\t- {prop}: {val}' for prop, val in accelerate_config.items()] ) if isinstance(_snake_case , _snake_case ) else f'\t{accelerate_config}' ) lowerCamelCase_ : Union[str, Any] = 'not installed' lowerCamelCase_ : Tuple = 'NA' if is_torch_available(): import torch lowerCamelCase_ : Union[str, Any] = torch.__version__ lowerCamelCase_ : Optional[int] = torch.cuda.is_available() lowerCamelCase_ : List[str] = 'not installed' lowerCamelCase_ : List[Any] = 'NA' if is_tf_available(): import tensorflow as tf lowerCamelCase_ : str = tf.__version__ try: # deprecated in v2.1 lowerCamelCase_ : Union[str, Any] = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool lowerCamelCase_ : Dict = bool(tf.config.list_physical_devices('GPU' ) ) lowerCamelCase_ : List[Any] = 'not installed' lowerCamelCase_ : List[str] = 'not installed' lowerCamelCase_ : List[Any] = 'not installed' lowerCamelCase_ : str = 'NA' if is_flax_available(): import flax import jax import jaxlib lowerCamelCase_ : int = flax.__version__ lowerCamelCase_ : List[str] = jax.__version__ lowerCamelCase_ : Optional[Any] = jaxlib.__version__ lowerCamelCase_ : str = jax.lib.xla_bridge.get_backend().platform lowerCamelCase_ : str = { '`transformers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Huggingface_hub version': huggingface_hub.__version__, 'Safetensors version': f'{safetensors_version}', 'Accelerate version': f'{accelerate_version}', 'Accelerate config': f'{accelerate_config_str}', 'PyTorch version (GPU?)': f'{pt_version} ({pt_cuda_available})', 'Tensorflow version (GPU?)': f'{tf_version} ({tf_cuda_available})', 'Flax version (CPU?/GPU?/TPU?)': f'{flax_version} ({jax_backend})', 'Jax version': f'{jax_version}', 'JaxLib version': f'{jaxlib_version}', 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(_snake_case ) ) return info @staticmethod def UpperCAmelCase_ (_snake_case : List[str] ) -> Tuple: """simple docstring""" return "\n".join([f'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
144
import math UpperCamelCase = 1_0 UpperCamelCase = 7 UpperCamelCase = BALLS_PER_COLOUR * NUM_COLOURS def _a ( lowerCamelCase__ = 20 ) -> str: lowerCamelCase_ : List[str] = math.comb(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : int = math.comb(NUM_BALLS - BALLS_PER_COLOUR , lowerCamelCase__ ) lowerCamelCase_ : int = NUM_COLOURS * (1 - missing_colour / total) return F'{result:.9f}' if __name__ == "__main__": print(solution(2_0))
144
1
import copy import random from transformers import CLIPTokenizer class A_ ( UpperCAmelCase ): """simple docstring""" def __init__( self : Optional[Any] ,*__A : Any ,**__A : Tuple ) -> Dict: super().__init__(*__A ,**__A ) _lowercase = {} def __UpperCAmelCase ( self : int ,__A : int ,*__A : List[Any] ,**__A : Any ) -> Union[str, Any]: _lowercase = super().add_tokens(__A ,*__A ,**__A ) if num_added_tokens == 0: raise ValueError( F"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" ' `placeholder_token` that is not already in the tokenizer.' ) def __UpperCAmelCase ( self : Union[str, Any] ,__A : Union[str, Any] ,*__A : Dict ,__A : List[Any]=1 ,**__A : str ) -> Optional[int]: _lowercase = [] if num_vec_per_token == 1: self.try_adding_tokens(__A ,*__A ,**__A ) output.append(__A ) else: _lowercase = [] for i in range(__A ): _lowercase = placeholder_token + F"""_{i}""" self.try_adding_tokens(__A ,*__A ,**__A ) output.append(__A ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F"""The tokenizer already has placeholder token {token} that can get confused with""" F""" {placeholder_token}keep placeholder tokens independent""" ) _lowercase = output def __UpperCAmelCase ( self : str ,__A : int ,__A : Union[str, Any]=False ,__A : Union[str, Any]=1.0 ) -> Union[str, Any]: if isinstance(__A ,__A ): _lowercase = [] for i in range(len(__A ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] ,vector_shuffle=__A ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: _lowercase = self.token_map[placeholder_token] _lowercase = tokens[: 1 + int(len(__A ) * prop_tokens_to_load )] if vector_shuffle: _lowercase = copy.copy(__A ) random.shuffle(__A ) _lowercase = text.replace(__A ,' '.join(__A ) ) return text def __call__( self : Union[str, Any] ,__A : Optional[int] ,*__A : Optional[Any] ,__A : Optional[Any]=False ,__A : int=1.0 ,**__A : Dict ) -> Tuple: return super().__call__( self.replace_placeholder_tokens_in_text( __A ,vector_shuffle=__A ,prop_tokens_to_load=__A ) ,*__A ,**__A ,) def __UpperCAmelCase ( self : int ,__A : Dict ,*__A : Optional[int] ,__A : int=False ,__A : str=1.0 ,**__A : Optional[Any] ) -> List[str]: return super().encode( self.replace_placeholder_tokens_in_text( __A ,vector_shuffle=__A ,prop_tokens_to_load=__A ) ,*__A ,**__A ,)
67
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): """simple docstring""" @property def __UpperCAmelCase ( self : Any ) -> str: torch.manual_seed(0 ) _lowercase = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=('DownBlock2D', 'AttnDownBlock2D') ,up_block_types=('AttnUpBlock2D', 'UpBlock2D') ,) return model def __UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: _lowercase = self.dummy_uncond_unet _lowercase = KarrasVeScheduler() _lowercase = KarrasVePipeline(unet=__A ,scheduler=__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) _lowercase = torch.manual_seed(0 ) _lowercase = pipe(num_inference_steps=2 ,generator=__A ,output_type='numpy' ).images _lowercase = torch.manual_seed(0 ) _lowercase = pipe(num_inference_steps=2 ,generator=__A ,output_type='numpy' ,return_dict=__A )[0] _lowercase = image[0, -3:, -3:, -1] _lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowercase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class A_ ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: _lowercase = 'google/ncsnpp-celebahq-256' _lowercase = UNetaDModel.from_pretrained(__A ) _lowercase = KarrasVeScheduler() _lowercase = KarrasVePipeline(unet=__A ,scheduler=__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) _lowercase = torch.manual_seed(0 ) _lowercase = pipe(num_inference_steps=20 ,generator=__A ,output_type='numpy' ).images _lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _lowercase = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
67
1
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _a( UpperCamelCase__ : NDArray[floataa], UpperCamelCase__ : NDArray[floataa], UpperCamelCase__ : list[int], UpperCamelCase__ : int, ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple =coefficient_matrix.shape SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple =constant_matrix.shape if rowsa != colsa: SCREAMING_SNAKE_CASE__ : Any =f"Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}" raise ValueError(UpperCamelCase__ ) if colsa != 1: SCREAMING_SNAKE_CASE__ : str =f"Constant matrix must be nx1 but received {rowsa}x{colsa}" raise ValueError(UpperCamelCase__ ) if rowsa != rowsa: SCREAMING_SNAKE_CASE__ : str =( '''Coefficient and constant matrices dimensions must be nxn and nx1 but ''' f"received {rowsa}x{colsa} and {rowsa}x{colsa}" ) raise ValueError(UpperCamelCase__ ) if len(UpperCamelCase__ ) != rowsa: SCREAMING_SNAKE_CASE__ : Union[str, Any] =( '''Number of initial values must be equal to number of rows in coefficient ''' f"matrix but received {len(UpperCamelCase__ )} and {rowsa}" ) raise ValueError(UpperCamelCase__ ) if iterations <= 0: raise ValueError('''Iterations must be at least 1''' ) SCREAMING_SNAKE_CASE__ : NDArray[floataa] =np.concatenate( (coefficient_matrix, constant_matrix), axis=1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any =table.shape strictly_diagonally_dominant(UpperCamelCase__ ) # Iterates the whole matrix for given number of times for _ in range(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : List[str] =[] for row in range(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Optional[Any] =0 for col in range(UpperCamelCase__ ): if col == row: SCREAMING_SNAKE_CASE__ : int =table[row][col] elif col == cols - 1: SCREAMING_SNAKE_CASE__ : Any =table[row][col] else: temp += (-1) * table[row][col] * init_val[col] SCREAMING_SNAKE_CASE__ : int =(temp + val) / denom new_val.append(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] =new_val return [float(UpperCamelCase__ ) for i in new_val] def _a( UpperCamelCase__ : NDArray[floataa] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] =table.shape SCREAMING_SNAKE_CASE__ : Any =True for i in range(0, UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : int =0 for j in range(0, cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('''Coefficient matrix is not strictly diagonally dominant''' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
665
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _a( UpperCamelCase__ : NDArray[floataa], UpperCamelCase__ : NDArray[floataa], UpperCamelCase__ : list[int], UpperCamelCase__ : int, ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple =coefficient_matrix.shape SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple =constant_matrix.shape if rowsa != colsa: SCREAMING_SNAKE_CASE__ : Any =f"Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}" raise ValueError(UpperCamelCase__ ) if colsa != 1: SCREAMING_SNAKE_CASE__ : str =f"Constant matrix must be nx1 but received {rowsa}x{colsa}" raise ValueError(UpperCamelCase__ ) if rowsa != rowsa: SCREAMING_SNAKE_CASE__ : str =( '''Coefficient and constant matrices dimensions must be nxn and nx1 but ''' f"received {rowsa}x{colsa} and {rowsa}x{colsa}" ) raise ValueError(UpperCamelCase__ ) if len(UpperCamelCase__ ) != rowsa: SCREAMING_SNAKE_CASE__ : Union[str, Any] =( '''Number of initial values must be equal to number of rows in coefficient ''' f"matrix but received {len(UpperCamelCase__ )} and {rowsa}" ) raise ValueError(UpperCamelCase__ ) if iterations <= 0: raise ValueError('''Iterations must be at least 1''' ) SCREAMING_SNAKE_CASE__ : NDArray[floataa] =np.concatenate( (coefficient_matrix, constant_matrix), axis=1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any =table.shape strictly_diagonally_dominant(UpperCamelCase__ ) # Iterates the whole matrix for given number of times for _ in range(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : List[str] =[] for row in range(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Optional[Any] =0 for col in range(UpperCamelCase__ ): if col == row: SCREAMING_SNAKE_CASE__ : int =table[row][col] elif col == cols - 1: SCREAMING_SNAKE_CASE__ : Any =table[row][col] else: temp += (-1) * table[row][col] * init_val[col] SCREAMING_SNAKE_CASE__ : int =(temp + val) / denom new_val.append(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] =new_val return [float(UpperCamelCase__ ) for i in new_val] def _a( UpperCamelCase__ : NDArray[floataa] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] =table.shape SCREAMING_SNAKE_CASE__ : Any =True for i in range(0, UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : int =0 for j in range(0, cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('''Coefficient matrix is not strictly diagonally dominant''' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
665
1
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def lowerCAmelCase_ ( __a ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] =checkpoints.load_tax_checkpoint(__a ) SCREAMING_SNAKE_CASE : List[Any] =flatten_dict(__a ) return flax_params def lowerCAmelCase_ ( __a ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Dict ={} SCREAMING_SNAKE_CASE : int ={ '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } SCREAMING_SNAKE_CASE : Tuple ={ '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key SCREAMING_SNAKE_CASE : int ='''.'''.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): SCREAMING_SNAKE_CASE : Optional[Any] =new_key.replace(__a , __a ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): SCREAMING_SNAKE_CASE : Dict =new_key.replace(__a , __a ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number SCREAMING_SNAKE_CASE : int =re.sub(r'''layers_(\d+)''' , r'''layer.\1''' , __a ) SCREAMING_SNAKE_CASE : str =new_key.replace('''encoder''' , '''encoder.encoder''' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number SCREAMING_SNAKE_CASE : List[str] =re.sub(r'''layers_(\d+)''' , r'''layer.\1''' , __a ) SCREAMING_SNAKE_CASE : Union[str, Any] =flax_dict[key] SCREAMING_SNAKE_CASE : Any ={} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): SCREAMING_SNAKE_CASE : Optional[Any] =torch.from_numpy(converted_dict[key].T ) else: SCREAMING_SNAKE_CASE : Union[str, Any] =torch.from_numpy(converted_dict[key] ) return converted_torch_dict def lowerCAmelCase_ ( __a , __a , __a=False , __a=False ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] =get_flax_param(__a ) if not use_large: SCREAMING_SNAKE_CASE : Any =PixaStructVisionConfig() SCREAMING_SNAKE_CASE : Dict =PixaStructTextConfig() else: SCREAMING_SNAKE_CASE : Tuple =PixaStructVisionConfig( hidden_size=1536 , d_ff=3968 , num_attention_heads=24 , num_hidden_layers=18 ) SCREAMING_SNAKE_CASE : Tuple =PixaStructTextConfig(hidden_size=1536 , d_ff=3968 , num_heads=24 , num_layers=18 ) SCREAMING_SNAKE_CASE : Optional[Any] =PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=__a ) SCREAMING_SNAKE_CASE : Optional[int] =PixaStructForConditionalGeneration(__a ) SCREAMING_SNAKE_CASE : Optional[Any] =rename_and_convert_flax_params(__a ) model.load_state_dict(__a ) SCREAMING_SNAKE_CASE : Optional[Any] =AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' ) SCREAMING_SNAKE_CASE : List[Any] =PixaStructImageProcessor() SCREAMING_SNAKE_CASE : Optional[Any] =PixaStructProcessor(image_processor=__a , tokenizer=__a ) if use_large: SCREAMING_SNAKE_CASE : List[Any] =4096 SCREAMING_SNAKE_CASE : List[Any] =True # mkdir if needed os.makedirs(__a , exist_ok=__a ) model.save_pretrained(__a ) processor.save_pretrained(__a ) print('''Model saved in {}'''.format(__a ) ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument("""--t5x_checkpoint_path""", default=None, type=str, help="""Path to the original T5x checkpoint.""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--use_large""", action="""store_true""", help="""Use large model.""") parser.add_argument("""--is_vqa""", action="""store_true""", help="""Use large model.""") _A = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
258
def lowerCAmelCase_ ( __a , __a ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : list[list[str]] =[[] for _ in range(__a )] SCREAMING_SNAKE_CASE : Any =key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1 or len(__a ) <= key: return input_string for position, character in enumerate(__a ): SCREAMING_SNAKE_CASE : Any =position % (lowest * 2) # puts it in bounds SCREAMING_SNAKE_CASE : Optional[int] =min(__a , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(__a ) SCREAMING_SNAKE_CASE : int =[''''''.join(__a ) for row in temp_grid] SCREAMING_SNAKE_CASE : List[Any] =''''''.join(__a ) return output_string def lowerCAmelCase_ ( __a , __a ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Any =[] SCREAMING_SNAKE_CASE : Optional[int] =key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1: return input_string SCREAMING_SNAKE_CASE : list[list[str]] =[[] for _ in range(__a )] # generates template for position in range(len(__a ) ): SCREAMING_SNAKE_CASE : Union[str, Any] =position % (lowest * 2) # puts it in bounds SCREAMING_SNAKE_CASE : Optional[int] =min(__a , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('''*''' ) SCREAMING_SNAKE_CASE : Optional[Any] =0 for row in temp_grid: # fills in the characters SCREAMING_SNAKE_CASE : List[Any] =input_string[counter : counter + len(__a )] grid.append(list(__a ) ) counter += len(__a ) SCREAMING_SNAKE_CASE : int ='''''' # reads as zigzag for position in range(len(__a ) ): SCREAMING_SNAKE_CASE : List[str] =position % (lowest * 2) # puts it in bounds SCREAMING_SNAKE_CASE : Union[str, Any] =min(__a , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def lowerCAmelCase_ ( __a ) -> dict[int, str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict ={} for key_guess in range(1 , len(__a ) ): # tries every key SCREAMING_SNAKE_CASE : Optional[Any] =decrypt(__a , __a ) return results if __name__ == "__main__": import doctest doctest.testmod()
258
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : int = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = ['''OwlViTFeatureExtractor'''] __UpperCamelCase : int = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys __UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
417
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp __UpperCamelCase : Optional[Any] = { '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } __UpperCamelCase : Tuple = { '''RUCAIBox/mvp''': 1024, } class lowerCamelCase__ ( snake_case_ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ["""input_ids""", """attention_mask"""] __magic_name__ = MvpTokenizer def __init__( self , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__="replace" , UpperCAmelCase__="<s>" , UpperCAmelCase__="</s>" , UpperCAmelCase__="</s>" , UpperCAmelCase__="<s>" , UpperCAmelCase__="<unk>" , UpperCAmelCase__="<pad>" , UpperCAmelCase__="<mask>" , UpperCAmelCase__=False , UpperCAmelCase__=True , **UpperCAmelCase__ , ) -> List[Any]: super().__init__( UpperCAmelCase__ , UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , errors=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ , **UpperCAmelCase__ , ) _A : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCAmelCase__ ) != add_prefix_space: _A : Dict = getattr(UpperCAmelCase__ , pre_tok_state.pop('''type''' ) ) _A : List[Any] = add_prefix_space _A : Tuple = pre_tok_class(**UpperCAmelCase__ ) _A : List[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _A : Any = '''post_processor''' _A : Union[str, Any] = getattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__ ) if tokenizer_component_instance: _A : Optional[int] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _A : int = tuple(state['''sep'''] ) if "cls" in state: _A : Union[str, Any] = tuple(state['''cls'''] ) _A : int = False if state.get('''add_prefix_space''' , UpperCAmelCase__ ) != add_prefix_space: _A : Optional[int] = add_prefix_space _A : Union[str, Any] = True if state.get('''trim_offsets''' , UpperCAmelCase__ ) != trim_offsets: _A : List[str] = trim_offsets _A : int = True if changes_to_apply: _A : Optional[int] = getattr(UpperCAmelCase__ , state.pop('''type''' ) ) _A : str = component_class(**UpperCAmelCase__ ) setattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__ ) @property def _lowerCamelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def _lowerCamelCase ( self , UpperCAmelCase__ ) -> Tuple: _A : Any = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else value _A : Any = value def _lowerCamelCase ( self , *UpperCAmelCase__ , **UpperCAmelCase__ ) -> BatchEncoding: _A : Optional[int] = kwargs.get('''is_split_into_words''' , UpperCAmelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowerCamelCase ( self , *UpperCAmelCase__ , **UpperCAmelCase__ ) -> BatchEncoding: _A : int = kwargs.get('''is_split_into_words''' , UpperCAmelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ) -> Tuple[str]: _A : List[Any] = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ ) def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__=None ) -> Tuple: _A : Dict = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ) -> List[int]: _A : str = [self.sep_token_id] _A : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
417
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) def __A (_SCREAMING_SNAKE_CASE ) ->YolosConfig: """simple docstring""" lowerCAmelCase__ :List[str] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowerCAmelCase__ :Tuple = 192 lowerCAmelCase__ :List[str] = 768 lowerCAmelCase__ :Optional[int] = 12 lowerCAmelCase__ :int = 3 lowerCAmelCase__ :List[str] = [800, 1333] lowerCAmelCase__ :Optional[Any] = False elif yolos_name == "yolos_s_dWr": lowerCAmelCase__ :List[Any] = 330 lowerCAmelCase__ :str = 14 lowerCAmelCase__ :str = 6 lowerCAmelCase__ :Dict = 1320 elif "yolos_s" in yolos_name: lowerCAmelCase__ :int = 384 lowerCAmelCase__ :int = 1536 lowerCAmelCase__ :int = 12 lowerCAmelCase__ :List[str] = 6 elif "yolos_b" in yolos_name: lowerCAmelCase__ :Tuple = [800, 1344] lowerCAmelCase__ :List[str] = 91 lowerCAmelCase__ :Dict = 'huggingface/label-files' lowerCAmelCase__ :Union[str, Any] = 'coco-detection-id2label.json' lowerCAmelCase__ :List[str] = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase__ :Optional[Any] = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowerCAmelCase__ :int = idalabel lowerCAmelCase__ :List[Any] = {v: k for k, v in idalabel.items()} return config def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ) ->List[str]: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase__ :Optional[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) lowerCAmelCase__ :Union[str, Any] = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ :int = in_proj_weight[: config.hidden_size, :] lowerCAmelCase__ :int = in_proj_bias[: config.hidden_size] lowerCAmelCase__ :Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ :Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase__ :Dict = in_proj_weight[-config.hidden_size :, :] lowerCAmelCase__ :List[str] = in_proj_bias[-config.hidden_size :] def __A (_SCREAMING_SNAKE_CASE ) ->str: """simple docstring""" if "backbone" in name: lowerCAmelCase__ :str = name.replace('backbone' , 'vit' ) if "cls_token" in name: lowerCAmelCase__ :str = name.replace('cls_token' , 'embeddings.cls_token' ) if "det_token" in name: lowerCAmelCase__ :Tuple = name.replace('det_token' , 'embeddings.detection_tokens' ) if "mid_pos_embed" in name: lowerCAmelCase__ :Dict = name.replace('mid_pos_embed' , 'encoder.mid_position_embeddings' ) if "pos_embed" in name: lowerCAmelCase__ :List[str] = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: lowerCAmelCase__ :Optional[Any] = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "blocks" in name: lowerCAmelCase__ :List[Any] = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: lowerCAmelCase__ :str = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowerCAmelCase__ :List[Any] = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowerCAmelCase__ :List[Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowerCAmelCase__ :Union[str, Any] = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowerCAmelCase__ :str = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCAmelCase__ :int = name.replace('mlp.fc2' , 'output.dense' ) if "class_embed" in name: lowerCAmelCase__ :Tuple = name.replace('class_embed' , 'class_labels_classifier' ) if "bbox_embed" in name: lowerCAmelCase__ :Tuple = name.replace('bbox_embed' , 'bbox_predictor' ) if "vit.norm" in name: lowerCAmelCase__ :Tuple = name.replace('vit.norm' , 'vit.layernorm' ) return name def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->dict: """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCAmelCase__ :Any = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "qkv" in key: lowerCAmelCase__ :str = key.split('.' ) lowerCAmelCase__ :Any = int(key_split[2] ) lowerCAmelCase__ :Union[str, Any] = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowerCAmelCase__ :Dict = val[:dim, :] lowerCAmelCase__ :Optional[Any] = val[ dim : dim * 2, : ] lowerCAmelCase__ :Union[str, Any] = val[-dim:, :] else: lowerCAmelCase__ :Dict = val[:dim] lowerCAmelCase__ :List[Any] = val[dim : dim * 2] lowerCAmelCase__ :Any = val[-dim:] else: lowerCAmelCase__ :int = val return orig_state_dict def __A () ->torch.Tensor: """simple docstring""" lowerCAmelCase__ :Any = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase__ :Union[str, Any] = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ) ->Tuple: """simple docstring""" lowerCAmelCase__ :str = get_yolos_config(_SCREAMING_SNAKE_CASE ) # load original state_dict lowerCAmelCase__ :Optional[Any] = torch.load(_SCREAMING_SNAKE_CASE , map_location='cpu' )['model'] # load 🤗 model lowerCAmelCase__ :Optional[Any] = YolosForObjectDetection(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ :str = convert_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by YolosImageProcessor lowerCAmelCase__ :Dict = 800 if yolos_name != 'yolos_ti' else 512 lowerCAmelCase__ :Dict = YolosImageProcessor(format='coco_detection' , size=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Optional[int] = image_processor(images=prepare_img() , return_tensors='pt' ) lowerCAmelCase__ :List[Any] = model(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ , lowerCAmelCase__ :List[str] = outputs.logits, outputs.pred_boxes lowerCAmelCase__ , lowerCAmelCase__ :int = None, None if yolos_name == "yolos_ti": lowerCAmelCase__ :List[str] = torch.tensor( [[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] ) lowerCAmelCase__ :Union[str, Any] = torch.tensor( [[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] ) elif yolos_name == "yolos_s_200_pre": lowerCAmelCase__ :int = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] ) lowerCAmelCase__ :Tuple = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] ) elif yolos_name == "yolos_s_300_pre": lowerCAmelCase__ :List[str] = torch.tensor( [[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] ) lowerCAmelCase__ :Dict = torch.tensor( [[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] ) elif yolos_name == "yolos_s_dWr": lowerCAmelCase__ :Dict = torch.tensor( [[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] ) lowerCAmelCase__ :Optional[int] = torch.tensor( [[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] ) elif yolos_name == "yolos_base": lowerCAmelCase__ :str = torch.tensor( [[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] ) lowerCAmelCase__ :Any = torch.tensor( [[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] ) else: raise ValueError(F"Unknown yolos_name: {yolos_name}" ) assert torch.allclose(logits[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(F"Saving model {yolos_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: lowerCAmelCase__ :Union[str, Any] = { 'yolos_ti': 'yolos-tiny', 'yolos_s_200_pre': 'yolos-small', 'yolos_s_300_pre': 'yolos-small-300', 'yolos_s_dWr': 'yolos-small-dwr', 'yolos_base': 'yolos-base', } print('Pushing to the hub...' ) lowerCAmelCase__ :Union[str, Any] = model_mapping[yolos_name] image_processor.push_to_hub(_SCREAMING_SNAKE_CASE , organization='hustvl' ) model.push_to_hub(_SCREAMING_SNAKE_CASE , organization='hustvl' ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( """--yolos_name""", default="""yolos_s_200_pre""", type=str, help=( """Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre',""" """ 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'.""" ), ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original state dict (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __A = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
93
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version __A = { """<""": operator.lt, """<=""": operator.le, """==""": operator.eq, """!=""": operator.ne, """>=""": operator.ge, """>""": operator.gt, } def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Union[str, Any]: """simple docstring""" if got_ver is None or want_ver is None: raise ValueError( F"Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider" F" reinstalling {pkg}." ) if not ops[op](version.parse(_SCREAMING_SNAKE_CASE ) , version.parse(_SCREAMING_SNAKE_CASE ) ): raise ImportError( F"{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}" ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) ->None: """simple docstring""" lowerCAmelCase__ :List[str] = F"\n{hint}" if hint is not None else '' # non-versioned check if re.match(r'^[\w_\-\d]+$' , _SCREAMING_SNAKE_CASE ): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Any = requirement, None, None else: lowerCAmelCase__ :List[str] = re.findall(r'^([^!=<>\s]+)([\s!=<>]{1,2}.+)' , _SCREAMING_SNAKE_CASE ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but' F" got {requirement}" ) lowerCAmelCase__ , lowerCAmelCase__ :Union[str, Any] = match[0] lowerCAmelCase__ :List[Any] = want_full.split(',' ) # there could be multiple requirements lowerCAmelCase__ :Any = {} for w in want_range: lowerCAmelCase__ :Tuple = re.findall(r'^([\s!=<>]{1,2})(.+)' , _SCREAMING_SNAKE_CASE ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,' F" but got {requirement}" ) lowerCAmelCase__ , lowerCAmelCase__ :int = match[0] lowerCAmelCase__ :str = want_ver if op not in ops: raise ValueError(F"{requirement}: need one of {list(ops.keys() )}, but got {op}" ) # special case if pkg == "python": lowerCAmelCase__ :Any = '.'.join([str(_SCREAMING_SNAKE_CASE ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return # check if any version is installed try: lowerCAmelCase__ :List[Any] = importlib.metadata.version(_SCREAMING_SNAKE_CASE ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F"The '{requirement}' distribution was not found and is required by this application. {hint}" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A (_SCREAMING_SNAKE_CASE ) ->List[Any]: """simple docstring""" lowerCAmelCase__ :Optional[Any] = 'Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main' return require_version(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
93
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCamelCase__ = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCamelCase__ = TaTokenizerFast lowerCamelCase__ = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5Model", "MT5PreTrainedModel", "MT5Stack", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCamelCase__ = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
51
"""simple docstring""" def lowercase__ ( lowercase_ ,lowercase_ ) -> None: """simple docstring""" _UpperCamelCase : List[Any] = len(lowercase_ ) print("The following activities are selected:" ) # The first activity is always selected _UpperCamelCase : List[Any] = 0 print(lowercase_ ,end="," ) # Consider rest of the activities for j in range(lowercase_ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowercase_ ,end="," ) _UpperCamelCase : Optional[Any] = j if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ = [1, 3, 0, 5, 8, 5] lowerCamelCase__ = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
51
1
from typing import List import numpy as np def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> int: SCREAMING_SNAKE_CASE_ : Dict = {key: len(SCREAMING_SNAKE_CASE ) for key, value in gen_kwargs.items() if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( 'Sharding is ambiguous for this dataset: ' + 'we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n' + '\n'.join(f'\t- key {key} has length {length}' for key, length in lists_lengths.items() ) + '\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ' + 'and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.' ) ) SCREAMING_SNAKE_CASE_ : Any = max(lists_lengths.values() , default=0 ) return max(1 , SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[range]: SCREAMING_SNAKE_CASE_ : Dict = [] for group_idx in range(SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break SCREAMING_SNAKE_CASE_ : Optional[Any] = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 SCREAMING_SNAKE_CASE_ : List[Any] = range(SCREAMING_SNAKE_CASE , start + num_shards_to_add ) shards_indices_per_group.append(SCREAMING_SNAKE_CASE ) return shards_indices_per_group def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[dict]: SCREAMING_SNAKE_CASE_ : Optional[Any] = _number_of_shards_in_gen_kwargs(SCREAMING_SNAKE_CASE ) if num_shards == 1: return [dict(SCREAMING_SNAKE_CASE )] else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = _distribute_shards(num_shards=SCREAMING_SNAKE_CASE , max_num_jobs=SCREAMING_SNAKE_CASE ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(SCREAMING_SNAKE_CASE ) ) ] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> dict: return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , SCREAMING_SNAKE_CASE ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> dict: SCREAMING_SNAKE_CASE_ : List[str] = {len(SCREAMING_SNAKE_CASE ) for value in gen_kwargs.values() if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )} SCREAMING_SNAKE_CASE_ : Optional[int] = {} for size in list_sizes: SCREAMING_SNAKE_CASE_ : Tuple = list(range(SCREAMING_SNAKE_CASE ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes SCREAMING_SNAKE_CASE_ : Dict = dict(SCREAMING_SNAKE_CASE ) for key, value in shuffled_kwargs.items(): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Dict = [value[i] for i in indices_per_size[len(SCREAMING_SNAKE_CASE )]] return shuffled_kwargs
345
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCAmelCase__: int = datasets.logging.get_logger(__name__) lowerCAmelCase__: Optional[int] = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" lowerCAmelCase__: Any = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" lowerCAmelCase__: Tuple = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n" def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE="dummy_doc" ) -> Tuple: SCREAMING_SNAKE_CASE_ : Dict = {doc: key_lines} SCREAMING_SNAKE_CASE_ : Dict = {doc: sys_lines} SCREAMING_SNAKE_CASE_ : List[str] = {} SCREAMING_SNAKE_CASE_ : int = 0 SCREAMING_SNAKE_CASE_ : int = 0 SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 SCREAMING_SNAKE_CASE_ : Tuple = 0 SCREAMING_SNAKE_CASE_ : Tuple = 0 SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = reader.get_doc_mentions(SCREAMING_SNAKE_CASE , key_doc_lines[doc] , SCREAMING_SNAKE_CASE ) key_singletons_num += singletons_num if NP_only or min_span: SCREAMING_SNAKE_CASE_ : List[str] = reader.set_annotated_parse_trees(SCREAMING_SNAKE_CASE , key_doc_lines[doc] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = reader.get_doc_mentions(SCREAMING_SNAKE_CASE , sys_doc_lines[doc] , SCREAMING_SNAKE_CASE ) sys_singletons_num += singletons_num if NP_only or min_span: SCREAMING_SNAKE_CASE_ : Optional[Any] = reader.set_annotated_parse_trees(SCREAMING_SNAKE_CASE , key_doc_lines[doc] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if remove_nested: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = reader.remove_nested_coref_mentions(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = reader.remove_nested_coref_mentions(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters SCREAMING_SNAKE_CASE_ : Optional[int] = reader.get_mention_assignments(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = reader.get_mention_assignments(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[Any] = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' f'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( 'Number of resulting singleton clusters in the key ' f'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( f'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' 'files, respectively' ) return doc_coref_infos def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: SCREAMING_SNAKE_CASE_ : Optional[Any] = get_coref_infos(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Dict = {} SCREAMING_SNAKE_CASE_ : int = 0 SCREAMING_SNAKE_CASE_ : List[str] = 0 for name, metric in metrics: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = evaluator.evaluate_documents(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f'{name}/recall': recall, f'{name}/precision': precision, f'{name}/f1': fa} ) logger.info( name.ljust(10 ) , f'Recall: {recall * 100:.2f}' , f' Precision: {precision * 100:.2f}' , f' F1: {fa * 100:.2f}' , ) if conll_subparts_num == 3: SCREAMING_SNAKE_CASE_ : Dict = (conll / 3) * 100 logger.info(f'CoNLL score: {conll:.2f}' ) output_scores.update({'conll_score': conll} ) return output_scores def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> int: SCREAMING_SNAKE_CASE_ : Dict = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: SCREAMING_SNAKE_CASE_ : Dict = line.split()[5] if not parse_col == "-": SCREAMING_SNAKE_CASE_ : int = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): def __A ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Sequence(datasets.Value('string' ) ), } ) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def __A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=False ): SCREAMING_SNAKE_CASE_ : Any = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: SCREAMING_SNAKE_CASE_ : Optional[int] = util.check_gold_parse_annotation(__lowerCAmelCase ) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" SCREAMING_SNAKE_CASE_ : Optional[Any] = evaluate( key_lines=__lowerCAmelCase , sys_lines=__lowerCAmelCase , metrics=__lowerCAmelCase , NP_only=__lowerCAmelCase , remove_nested=__lowerCAmelCase , keep_singletons=__lowerCAmelCase , min_span=__lowerCAmelCase , ) return score
345
1
'''simple docstring''' import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": UpperCAmelCase_ : int = '%20'.join(argv[1:]) if len(argv) > 1 else quote(str(input('Search: '))) print('Googling.....') UpperCAmelCase_ : str = f'''https://www.google.com/search?q={query}&num=100''' UpperCAmelCase_ : int = requests.get( url, headers={'User-Agent': str(UserAgent().random)}, ) try: UpperCAmelCase_ : str = ( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'yuRUbf'}) .find('a') .get('href') ) except AttributeError: UpperCAmelCase_ : Any = parse_qs( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'kCrYT'}) .find('a') .get('href') )['url'][0] webbrowser.open(link)
708
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" if "img_encoder.pos_embed" in name: _lowerCamelCase : List[str] = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: _lowerCamelCase : Dict = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: _lowerCamelCase : Optional[int] = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: _lowerCamelCase : Optional[Any] = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: _lowerCamelCase : List[Any] = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: _lowerCamelCase : str = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: _lowerCamelCase : Tuple = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: _lowerCamelCase : Union[str, Any] = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: _lowerCamelCase : Optional[Any] = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: _lowerCamelCase : Optional[int] = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: _lowerCamelCase : Dict = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: _lowerCamelCase : List[str] = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: _lowerCamelCase : Optional[Any] = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: _lowerCamelCase : Any = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: _lowerCamelCase : str = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: _lowerCamelCase : Optional[int] = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: _lowerCamelCase : List[Any] = name.replace("c_fc" , "fc1" ) if "c_proj" in name: _lowerCamelCase : Tuple = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: _lowerCamelCase : Tuple = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: _lowerCamelCase : Optional[Any] = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: _lowerCamelCase : int = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: _lowerCamelCase : Tuple = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: _lowerCamelCase : Optional[Any] = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: _lowerCamelCase : str = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : str ): """simple docstring""" for key in orig_state_dict.copy().keys(): _lowerCamelCase : Optional[int] = orig_state_dict.pop(_lowerCAmelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Any = key.split("." ) _lowerCamelCase , _lowerCamelCase : List[str] = int(key_split[2] ), int(key_split[4] ) _lowerCamelCase : List[Any] = config.vision_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : int = val[dim : dim * 2, :] _lowerCamelCase : str = val[-dim:, :] else: _lowerCamelCase : Optional[int] = val[:dim] _lowerCamelCase : str = val[dim : dim * 2] _lowerCamelCase : Tuple = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Optional[Any] = key.split("." ) _lowerCamelCase : int = int(key_split[3] ) _lowerCamelCase : Tuple = config.text_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : str = val[ dim : dim * 2, : ] _lowerCamelCase : Optional[int] = val[-dim:, :] else: _lowerCamelCase : str = val[:dim] _lowerCamelCase : Optional[Any] = val[dim : dim * 2] _lowerCamelCase : Optional[int] = val[-dim:] else: _lowerCamelCase : int = rename_key(_lowerCAmelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): _lowerCamelCase : Any = val.squeeze_() else: _lowerCamelCase : Union[str, Any] = val return orig_state_dict def A_ ( ): """simple docstring""" _lowerCamelCase : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Any = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str="groupvit-gcc-yfcc" , _lowerCAmelCase : List[str]=False ): """simple docstring""" _lowerCamelCase : List[str] = GroupViTConfig() _lowerCamelCase : Union[str, Any] = GroupViTModel(_lowerCAmelCase ).eval() _lowerCamelCase : Any = torch.load(_lowerCAmelCase , map_location="cpu" )["model"] _lowerCamelCase : Union[str, Any] = convert_state_dict(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase : Tuple = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(_lowerCAmelCase ) == 0) # verify result _lowerCamelCase : List[Any] = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Any = processor(text=["a photo of a cat", "a photo of a dog"] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) with torch.no_grad(): _lowerCamelCase : List[str] = model(**_lowerCAmelCase ) if model_name == "groupvit-gcc-yfcc": _lowerCamelCase : List[Any] = torch.tensor([[1_3.3_5_2_3, 6.3_6_2_9]] ) elif model_name == "groupvit-gcc-redcaps": _lowerCamelCase : Optional[Any] = torch.tensor([[1_6.1_8_7_3, 8.6_2_3_0]] ) else: raise ValueError(F'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , _lowerCAmelCase , atol=1E-3 ) processor.save_pretrained(_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) print("Successfully saved processor and model to" , _lowerCAmelCase ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(_lowerCAmelCase , organization="nielsr" ) model.push_to_hub(_lowerCAmelCase , organization="nielsr" ) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
11
0
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated _lowercase : Union[str, Any] =collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ _lowercase : Optional[Any] ="https://storage.googleapis.com/cvdf-datasets/mnist/" def A__ ( lowercase: str ) -> Union[str, Any]: A : Optional[int] =numpy.dtype(numpy.uintaa ).newbyteorder('>' ) return numpy.frombuffer(bytestream.read(4 ), dtype=__lowerCamelCase )[0] @deprecated(__lowerCamelCase, 'Please use tf.data to implement this functionality.' ) def A__ ( lowercase: Optional[int] ) -> Union[str, Any]: print('Extracting', f.name ) with gzip.GzipFile(fileobj=__lowerCamelCase ) as bytestream: A : Union[str, Any] =_readaa(__lowerCamelCase ) if magic != 2_051: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, f.name) ) A : Any =_readaa(__lowerCamelCase ) A : Union[str, Any] =_readaa(__lowerCamelCase ) A : List[Any] =_readaa(__lowerCamelCase ) A : Optional[int] =bytestream.read(rows * cols * num_images ) A : Union[str, Any] =numpy.frombuffer(__lowerCamelCase, dtype=numpy.uinta ) A : Union[str, Any] =data.reshape(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, 1 ) return data @deprecated(__lowerCamelCase, 'Please use tf.one_hot on tensors.' ) def A__ ( lowercase: Optional[int], lowercase: List[Any] ) -> Tuple: A : Any =labels_dense.shape[0] A : List[str] =numpy.arange(__lowerCamelCase ) * num_classes A : Union[str, Any] =numpy.zeros((num_labels, num_classes) ) A : List[Any] =1 return labels_one_hot @deprecated(__lowerCamelCase, 'Please use tf.data to implement this functionality.' ) def A__ ( lowercase: Optional[Any], lowercase: Optional[Any]=False, lowercase: Optional[int]=10 ) -> List[str]: print('Extracting', f.name ) with gzip.GzipFile(fileobj=__lowerCamelCase ) as bytestream: A : str =_readaa(__lowerCamelCase ) if magic != 2_049: raise ValueError( 'Invalid magic number %d in MNIST label file: %s' % (magic, f.name) ) A : str =_readaa(__lowerCamelCase ) A : Optional[int] =bytestream.read(__lowerCamelCase ) A : List[Any] =numpy.frombuffer(__lowerCamelCase, dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(__lowerCamelCase, __lowerCamelCase ) return labels class SCREAMING_SNAKE_CASE_ : '''simple docstring''' @deprecated( __lowercase , 'Please use alternatives such as official/mnist/_DataSet.py' ' from tensorflow/models.' , ) def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int=False , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : List[Any]=dtypes.floataa , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , ) -> List[Any]: A : str =random_seed.get_seed(__lowercase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) A : Union[str, Any] =dtypes.as_dtype(__lowercase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype ) if fake_data: A : int =1_00_00 A : Dict =one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'images.shape: {images.shape} labels.shape: {labels.shape}' A : Dict =images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 A : Any =images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. A : Any =images.astype(numpy.floataa ) A : Union[str, Any] =numpy.multiply(__lowercase , 1.0 / 2_5_5.0 ) A : str =images A : Dict =labels A : int =0 A : int =0 @property def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Union[str, Any]: return self._images @property def SCREAMING_SNAKE_CASE_ ( self : Any ) -> List[str]: return self._labels @property def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> str: return self._num_examples @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[Any]: return self._epochs_completed def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : str=True ) -> List[str]: if fake_data: A : Any =[1] * 7_84 A : Any =[1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(__lowercase )], [fake_label for _ in range(__lowercase )], ) A : Dict =self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: A : str =numpy.arange(self._num_examples ) numpy.random.shuffle(__lowercase ) A : int =self.images[perma] A : List[str] =self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch A : Tuple =self._num_examples - start A : int =self._images[start : self._num_examples] A : Optional[int] =self._labels[start : self._num_examples] # Shuffle the data if shuffle: A : Union[str, Any] =numpy.arange(self._num_examples ) numpy.random.shuffle(__lowercase ) A : str =self.images[perm] A : List[str] =self.labels[perm] # Start next epoch A : List[Any] =0 A : Optional[Any] =batch_size - rest_num_examples A : Any =self._index_in_epoch A : List[str] =self._images[start:end] A : Optional[int] =self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size A : Optional[int] =self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(__lowerCamelCase, 'Please write your own downloading logic.' ) def A__ ( lowercase: Tuple, lowercase: List[str], lowercase: int ) -> Dict: if not gfile.Exists(__lowerCamelCase ): gfile.MakeDirs(__lowerCamelCase ) A : List[Any] =os.path.join(__lowerCamelCase, __lowerCamelCase ) if not gfile.Exists(__lowerCamelCase ): urllib.request.urlretrieve(__lowerCamelCase, __lowerCamelCase ) # noqa: S310 with gfile.GFile(__lowerCamelCase ) as f: A : str =f.size() print('Successfully downloaded', __lowerCamelCase, __lowerCamelCase, 'bytes.' ) return filepath @deprecated( __lowerCamelCase, 'Please use alternatives such as:' ' tensorflow_datasets.load(\'mnist\')' ) def A__ ( lowercase: Tuple, lowercase: int=False, lowercase: Any=False, lowercase: Dict=dtypes.floataa, lowercase: Optional[int]=True, lowercase: Union[str, Any]=5_000, lowercase: Dict=None, lowercase: Union[str, Any]=DEFAULT_SOURCE_URL, ) -> Optional[Any]: if fake_data: def fake(): return _DataSet( [], [], fake_data=__lowerCamelCase, one_hot=__lowerCamelCase, dtype=__lowerCamelCase, seed=__lowerCamelCase ) A : Union[str, Any] =fake() A : Optional[Any] =fake() A : Optional[int] =fake() return _Datasets(train=__lowerCamelCase, validation=__lowerCamelCase, test=__lowerCamelCase ) if not source_url: # empty string check A : Tuple =DEFAULT_SOURCE_URL A : Tuple ="""train-images-idx3-ubyte.gz""" A : Union[str, Any] ="""train-labels-idx1-ubyte.gz""" A : Optional[int] ="""t10k-images-idx3-ubyte.gz""" A : List[str] ="""t10k-labels-idx1-ubyte.gz""" A : Optional[int] =_maybe_download( __lowerCamelCase, __lowerCamelCase, source_url + train_images_file ) with gfile.Open(__lowerCamelCase, 'rb' ) as f: A : Dict =_extract_images(__lowerCamelCase ) A : Tuple =_maybe_download( __lowerCamelCase, __lowerCamelCase, source_url + train_labels_file ) with gfile.Open(__lowerCamelCase, 'rb' ) as f: A : Optional[Any] =_extract_labels(__lowerCamelCase, one_hot=__lowerCamelCase ) A : Dict =_maybe_download( __lowerCamelCase, __lowerCamelCase, source_url + test_images_file ) with gfile.Open(__lowerCamelCase, 'rb' ) as f: A : Optional[int] =_extract_images(__lowerCamelCase ) A : Optional[int] =_maybe_download( __lowerCamelCase, __lowerCamelCase, source_url + test_labels_file ) with gfile.Open(__lowerCamelCase, 'rb' ) as f: A : List[str] =_extract_labels(__lowerCamelCase, one_hot=__lowerCamelCase ) if not 0 <= validation_size <= len(__lowerCamelCase ): A : List[Any] =( """Validation size should be between 0 and """ F'{len(__lowerCamelCase )}. Received: {validation_size}.' ) raise ValueError(__lowerCamelCase ) A : Dict =train_images[:validation_size] A : Dict =train_labels[:validation_size] A : Dict =train_images[validation_size:] A : Optional[int] =train_labels[validation_size:] A : Tuple ={"""dtype""": dtype, """reshape""": reshape, """seed""": seed} A : Tuple =_DataSet(__lowerCamelCase, __lowerCamelCase, **__lowerCamelCase ) A : List[str] =_DataSet(__lowerCamelCase, __lowerCamelCase, **__lowerCamelCase ) A : Optional[int] =_DataSet(__lowerCamelCase, __lowerCamelCase, **__lowerCamelCase ) return _Datasets(train=__lowerCamelCase, validation=__lowerCamelCase, test=__lowerCamelCase )
305
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) a : Tuple = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def lowerCamelCase__ ( __lowerCamelCase : Dict ): if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __UpperCAmelCase : Union[str, Any] = k.replace(__lowerCamelCase , __lowerCamelCase ) if k.startswith("""encoder""" ): __UpperCAmelCase : List[str] = k.replace(""".attn""" , """.self_attn""" ) __UpperCAmelCase : Optional[Any] = k.replace("""norm1""" , """self_attn_layer_norm""" ) __UpperCAmelCase : Union[str, Any] = k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): __UpperCAmelCase : Optional[int] = k.replace("""norm1""" , """self_attn_layer_norm""" ) __UpperCAmelCase : List[Any] = k.replace("""norm2""" , """encoder_attn_layer_norm""" ) __UpperCAmelCase : Any = k.replace("""norm3""" , """final_layer_norm""" ) return k def lowerCamelCase__ ( __lowerCamelCase : Optional[int] ): __UpperCAmelCase : Optional[Any] = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: __UpperCAmelCase : Dict = sd.pop(__lowerCamelCase ) __UpperCAmelCase : List[str] = k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd __UpperCAmelCase : List[str] = v a : Optional[int] = ["START"] @torch.no_grad() def lowerCamelCase__ ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : str ): __UpperCAmelCase : str = torch.load(__lowerCamelCase , map_location="""cpu""" ) __UpperCAmelCase : Tuple = model["""model"""] __UpperCAmelCase : int = BlenderbotConfig.from_json_file(__lowerCamelCase ) __UpperCAmelCase : List[str] = BlenderbotForConditionalGeneration(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = m.model.state_dict().keys() __UpperCAmelCase : Any = [] __UpperCAmelCase : Any = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __UpperCAmelCase : int = rename_state_dict_key(__lowerCamelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __UpperCAmelCase : str = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__lowerCamelCase ) m.model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) m.half() m.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) a : Any = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
63
0
def _lowerCAmelCase ( lowerCamelCase__ : int, lowerCamelCase__ : int ) -> bool: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
708
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): A__ = 42 class UpperCamelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self , snake_case__ = 3 , snake_case__ = 3 , snake_case__ = ("DownEncoderBlock2D",) , snake_case__ = ("UpDecoderBlock2D",) , snake_case__ = (64,) , snake_case__ = 1 , snake_case__ = "silu" , snake_case__ = 3 , snake_case__ = 32 , snake_case__ = 256 , snake_case__ = 32 , snake_case__ = None , snake_case__ = 0.18_215 , snake_case__ = "group" , ): """simple docstring""" super().__init__() # pass init params to Encoder _SCREAMING_SNAKE_CASE : Optional[Any] = Encoder( in_channels=snake_case__ , out_channels=snake_case__ , down_block_types=snake_case__ , block_out_channels=snake_case__ , layers_per_block=snake_case__ , act_fn=snake_case__ , norm_num_groups=snake_case__ , double_z=snake_case__ , ) _SCREAMING_SNAKE_CASE : Dict = vq_embed_dim if vq_embed_dim is not None else latent_channels _SCREAMING_SNAKE_CASE : Tuple = nn.Convad(snake_case__ , snake_case__ , 1 ) _SCREAMING_SNAKE_CASE : Optional[int] = VectorQuantizer(snake_case__ , snake_case__ , beta=0.25 , remap=snake_case__ , sane_index_shape=snake_case__ ) _SCREAMING_SNAKE_CASE : List[str] = nn.Convad(snake_case__ , snake_case__ , 1 ) # pass init params to Decoder _SCREAMING_SNAKE_CASE : Optional[int] = Decoder( in_channels=snake_case__ , out_channels=snake_case__ , up_block_types=snake_case__ , block_out_channels=snake_case__ , layers_per_block=snake_case__ , act_fn=snake_case__ , norm_num_groups=snake_case__ , norm_type=snake_case__ , ) @apply_forward_hook def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ = True ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = self.encoder(snake_case__ ) _SCREAMING_SNAKE_CASE : Dict = self.quant_conv(snake_case__ ) if not return_dict: return (h,) return VQEncoderOutput(latents=snake_case__ ) @apply_forward_hook def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ = False , snake_case__ = True ): """simple docstring""" if not force_not_quantize: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = self.quantize(snake_case__ ) else: _SCREAMING_SNAKE_CASE : int = h _SCREAMING_SNAKE_CASE : Dict = self.post_quant_conv(snake_case__ ) _SCREAMING_SNAKE_CASE : int = self.decoder(snake_case__ , quant if self.config.norm_type == "spatial" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=snake_case__ ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ = True ): """simple docstring""" _SCREAMING_SNAKE_CASE : Tuple = sample _SCREAMING_SNAKE_CASE : Union[str, Any] = self.encode(snake_case__ ).latents _SCREAMING_SNAKE_CASE : Any = self.decode(snake_case__ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=snake_case__ )
295
0
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def A (__lowerCamelCase :List[str] ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4e00 and cp <= 0X9fff) or (cp >= 0X3400 and cp <= 0X4dbf) # or (cp >= 0X20000 and cp <= 0X2a6df) # or (cp >= 0X2a700 and cp <= 0X2b73f) # or (cp >= 0X2b740 and cp <= 0X2b81f) # or (cp >= 0X2b820 and cp <= 0X2ceaf) # or (cp >= 0Xf900 and cp <= 0Xfaff) or (cp >= 0X2f800 and cp <= 0X2fa1f) # ): # return True return False def A (__lowerCamelCase :str ): # word like '180' or '身高' or '神' for char in word: _lowerCAmelCase = ord(__lowerCamelCase ) if not _is_chinese_char(__lowerCamelCase ): return 0 return 1 def A (__lowerCamelCase :List[str] ): _lowerCAmelCase = set() for token in tokens: _lowerCAmelCase = len(__lowerCamelCase ) > 1 and is_chinese(__lowerCamelCase ) if chinese_word: word_set.add(__lowerCamelCase ) _lowerCAmelCase = list(__lowerCamelCase ) return word_list def A (__lowerCamelCase :List[str] , __lowerCamelCase :set() ): if not chinese_word_set: return bert_tokens _lowerCAmelCase = max([len(__lowerCamelCase ) for w in chinese_word_set] ) _lowerCAmelCase = bert_tokens _lowerCAmelCase , _lowerCAmelCase = 0, len(__lowerCamelCase ) while start < end: _lowerCAmelCase = True if is_chinese(bert_word[start] ): _lowerCAmelCase = min(end - start , __lowerCamelCase ) for i in range(__lowerCamelCase , 1 , -1 ): _lowerCAmelCase = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _lowerCAmelCase = """##""" + bert_word[j] _lowerCAmelCase = start + i _lowerCAmelCase = False break if single_word: start += 1 return bert_word def A (__lowerCamelCase :List[str] , __lowerCamelCase :LTP , __lowerCamelCase :BertTokenizer ): _lowerCAmelCase = [] for i in range(0 , len(__lowerCamelCase ) , 100 ): _lowerCAmelCase = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["""cws"""] ).cws _lowerCAmelCase = [get_chinese_word(__lowerCamelCase ) for r in res] ltp_res.extend(__lowerCamelCase ) assert len(__lowerCamelCase ) == len(__lowerCamelCase ) _lowerCAmelCase = [] for i in range(0 , len(__lowerCamelCase ) , 100 ): _lowerCAmelCase = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__lowerCamelCase , truncation=__lowerCamelCase , max_length=512 ) bert_res.extend(res["""input_ids"""] ) assert len(__lowerCamelCase ) == len(__lowerCamelCase ) _lowerCAmelCase = [] for input_ids, chinese_word in zip(__lowerCamelCase , __lowerCamelCase ): _lowerCAmelCase = [] for id in input_ids: _lowerCAmelCase = bert_tokenizer._convert_id_to_token(__lowerCamelCase ) input_tokens.append(__lowerCamelCase ) _lowerCAmelCase = add_sub_symbol(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__lowerCamelCase ): if token[:2] == "##": _lowerCAmelCase = token[2:] # save chinese tokens' pos if len(__lowerCamelCase ) == 1 and _is_chinese_char(ord(__lowerCamelCase ) ): ref_id.append(__lowerCamelCase ) ref_ids.append(__lowerCamelCase ) assert len(__lowerCamelCase ) == len(__lowerCamelCase ) return ref_ids def A (__lowerCamelCase :Dict ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: _lowerCAmelCase = f.readlines() _lowerCAmelCase = [line.strip() for line in data if len(__lowerCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _lowerCAmelCase = LTP(args.ltp ) # faster in GPU device _lowerCAmelCase = BertTokenizer.from_pretrained(args.bert ) _lowerCAmelCase = prepare_ref(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: _lowerCAmelCase = [json.dumps(__lowerCamelCase ) + """\n""" for ref in ref_ids] f.writelines(__lowerCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", required=False, type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", required=False, type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""", ) parser.add_argument( """--bert""", required=False, type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""", ) parser.add_argument( """--save_path""", required=False, type=str, default="""./resources/ref.txt""", help="""path to save res""", ) _lowercase = parser.parse_args() main(args)
5
"""simple docstring""" import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) UpperCAmelCase__ = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='relu') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='relu')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='relu')) classifier.add(layers.Dense(units=1, activation='sigmoid')) # Compiling the CNN classifier.compile( optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') UpperCAmelCase__ = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) UpperCAmelCase__ = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) UpperCAmelCase__ = train_datagen.flow_from_directory( 'dataset/training_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) UpperCAmelCase__ = test_datagen.flow_from_directory( 'dataset/test_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('cnn.h5') # Part 3 - Making new predictions UpperCAmelCase__ = tf.keras.preprocessing.image.load_img( 'dataset/single_prediction/image.png', target_size=(64, 64) ) UpperCAmelCase__ = tf.keras.preprocessing.image.img_to_array(test_image) UpperCAmelCase__ = np.expand_dims(test_image, axis=0) UpperCAmelCase__ = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: UpperCAmelCase__ = 'Normal' if result[0][0] == 1: UpperCAmelCase__ = 'Abnormality detected'
224
0
import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def __UpperCamelCase ( _A : str , _A : str , _A : str ) ->Union[str, Any]: """simple docstring""" def get_masked_lm_array(_A : str ): lowerCamelCase_ =f'masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE' lowerCamelCase_ =tf.train.load_variable(__snake_case , __snake_case ) if "kernel" in name: lowerCamelCase_ =array.transpose() return torch.from_numpy(__snake_case ) def get_encoder_array(_A : str ): lowerCamelCase_ =f'encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE' lowerCamelCase_ =tf.train.load_variable(__snake_case , __snake_case ) if "kernel" in name: lowerCamelCase_ =array.transpose() return torch.from_numpy(__snake_case ) def get_encoder_layer_array(_A : int , _A : str ): lowerCamelCase_ =f'encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE' lowerCamelCase_ =tf.train.load_variable(__snake_case , __snake_case ) if "kernel" in name: lowerCamelCase_ =array.transpose() return torch.from_numpy(__snake_case ) def get_encoder_attention_layer_array(_A : int , _A : str , _A : Dict ): lowerCamelCase_ =f'encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE' lowerCamelCase_ =tf.train.load_variable(__snake_case , __snake_case ) lowerCamelCase_ =array.reshape(__snake_case ) if "kernel" in name: lowerCamelCase_ =array.transpose() return torch.from_numpy(__snake_case ) print(f'Loading model based on config from {config_path}...' ) lowerCamelCase_ =BertConfig.from_json_file(__snake_case ) lowerCamelCase_ =BertForMaskedLM(__snake_case ) # Layers for layer_index in range(0 , config.num_hidden_layers ): lowerCamelCase_ =model.bert.encoder.layer[layer_index] # Self-attention lowerCamelCase_ =layer.attention.self lowerCamelCase_ =get_encoder_attention_layer_array( __snake_case , """_query_dense/kernel""" , self_attn.query.weight.data.shape ) lowerCamelCase_ =get_encoder_attention_layer_array( __snake_case , """_query_dense/bias""" , self_attn.query.bias.data.shape ) lowerCamelCase_ =get_encoder_attention_layer_array( __snake_case , """_key_dense/kernel""" , self_attn.key.weight.data.shape ) lowerCamelCase_ =get_encoder_attention_layer_array( __snake_case , """_key_dense/bias""" , self_attn.key.bias.data.shape ) lowerCamelCase_ =get_encoder_attention_layer_array( __snake_case , """_value_dense/kernel""" , self_attn.value.weight.data.shape ) lowerCamelCase_ =get_encoder_attention_layer_array( __snake_case , """_value_dense/bias""" , self_attn.value.bias.data.shape ) # Self-attention Output lowerCamelCase_ =layer.attention.output lowerCamelCase_ =get_encoder_attention_layer_array( __snake_case , """_output_dense/kernel""" , self_output.dense.weight.data.shape ) lowerCamelCase_ =get_encoder_attention_layer_array( __snake_case , """_output_dense/bias""" , self_output.dense.bias.data.shape ) lowerCamelCase_ =get_encoder_layer_array(__snake_case , """_attention_layer_norm/gamma""" ) lowerCamelCase_ =get_encoder_layer_array(__snake_case , """_attention_layer_norm/beta""" ) # Intermediate lowerCamelCase_ =layer.intermediate lowerCamelCase_ =get_encoder_layer_array(__snake_case , """_intermediate_dense/kernel""" ) lowerCamelCase_ =get_encoder_layer_array(__snake_case , """_intermediate_dense/bias""" ) # Output lowerCamelCase_ =layer.output lowerCamelCase_ =get_encoder_layer_array(__snake_case , """_output_dense/kernel""" ) lowerCamelCase_ =get_encoder_layer_array(__snake_case , """_output_dense/bias""" ) lowerCamelCase_ =get_encoder_layer_array(__snake_case , """_output_layer_norm/gamma""" ) lowerCamelCase_ =get_encoder_layer_array(__snake_case , """_output_layer_norm/beta""" ) # Embeddings lowerCamelCase_ =get_encoder_array("""_position_embedding_layer/embeddings""" ) lowerCamelCase_ =get_encoder_array("""_type_embedding_layer/embeddings""" ) lowerCamelCase_ =get_encoder_array("""_embedding_norm_layer/gamma""" ) lowerCamelCase_ =get_encoder_array("""_embedding_norm_layer/beta""" ) # LM Head lowerCamelCase_ =model.cls.predictions.transform lowerCamelCase_ =get_masked_lm_array("""dense/kernel""" ) lowerCamelCase_ =get_masked_lm_array("""dense/bias""" ) lowerCamelCase_ =get_masked_lm_array("""layer_norm/gamma""" ) lowerCamelCase_ =get_masked_lm_array("""layer_norm/beta""" ) lowerCamelCase_ =get_masked_lm_array("""embedding_table""" ) # Pooling lowerCamelCase_ =BertPooler(config=__snake_case ) lowerCamelCase_ =get_encoder_array("""_pooler_layer/kernel""" ) lowerCamelCase_ =get_encoder_array("""_pooler_layer/bias""" ) # Export final model model.save_pretrained(__snake_case ) # Integration test - should load without any errors ;) lowerCamelCase_ =BertForMaskedLM.from_pretrained(__snake_case ) print(new_model.eval() ) print("""Model conversion was done sucessfully!""" ) if __name__ == "__main__": __A : Tuple = argparse.ArgumentParser() parser.add_argument( '--tf_checkpoint_path', type=str, required=True, help='Path to the TensorFlow Token Dropping checkpoint path.' ) parser.add_argument( '--bert_config_file', type=str, required=True, help='The config json file corresponding to the BERT model. This specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', type=str, required=True, help='Path to the output PyTorch model.', ) __A : List[str] = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
713
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __A : Any = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): _UpperCamelCase:Union[str, Any] = ["pixel_values"] def __init__( self , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 1 / 255 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = IMAGENET_DEFAULT_MEAN , _SCREAMING_SNAKE_CASE = IMAGENET_DEFAULT_STD , **_SCREAMING_SNAKE_CASE , )-> None: super().__init__(**_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =size if size is not None else {"""shortest_edge""": 224} lowerCamelCase_ =get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowerCamelCase_ =get_size_dict(_SCREAMING_SNAKE_CASE , param_name="""crop_size""" ) lowerCamelCase_ =do_resize lowerCamelCase_ =size lowerCamelCase_ =resample lowerCamelCase_ =do_center_crop lowerCamelCase_ =crop_size lowerCamelCase_ =do_rescale lowerCamelCase_ =rescale_factor lowerCamelCase_ =do_normalize lowerCamelCase_ =image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowerCamelCase_ =image_std if image_std is not None else IMAGENET_DEFAULT_STD def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )-> np.ndarray: lowerCamelCase_ =get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowerCamelCase_ =int((256 / 224) * size["""shortest_edge"""] ) lowerCamelCase_ =get_resize_output_image_size(_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ ={"""height""": output_size[0], """width""": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}' ) return resize( _SCREAMING_SNAKE_CASE , size=(size_dict["""height"""], size_dict["""width"""]) , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )-> np.ndarray: lowerCamelCase_ =get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f'Size dict must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(_SCREAMING_SNAKE_CASE , size=(size["""height"""], size["""width"""]) , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )-> np.ndarray: return rescale(_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )-> np.ndarray: return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE , )-> BatchFeature: lowerCamelCase_ =do_resize if do_resize is not None else self.do_resize lowerCamelCase_ =resample if resample is not None else self.resample lowerCamelCase_ =do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase_ =do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ =do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ =image_mean if image_mean is not None else self.image_mean lowerCamelCase_ =image_std if image_std is not None else self.image_std lowerCamelCase_ =size if size is not None else self.size lowerCamelCase_ =get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =crop_size if crop_size is not None else self.crop_size lowerCamelCase_ =get_size_dict(_SCREAMING_SNAKE_CASE , param_name="""crop_size""" ) lowerCamelCase_ =make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowerCamelCase_ =[to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if do_resize: lowerCamelCase_ =[self.resize(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: lowerCamelCase_ =[self.center_crop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: lowerCamelCase_ =[self.rescale(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: lowerCamelCase_ =[self.normalize(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] lowerCamelCase_ =[to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] lowerCamelCase_ ={"""pixel_values""": images} return BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE )
75
0
class A : '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : str = "" , _UpperCAmelCase : bool = False ) -> None: """simple docstring""" lowercase__ = {} # A node will be a leaf if the tree contains its word lowercase__ = is_leaf lowercase__ = prefix def lowerCamelCase__ (self : str , _UpperCAmelCase : str ) -> tuple[str, str, str]: """simple docstring""" lowercase__ = 0 for q, w in zip(self.prefix , _UpperCAmelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : list[str] ) -> None: """simple docstring""" for word in words: self.insert(_UpperCAmelCase ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : str ) -> None: """simple docstring""" if self.prefix == word: lowercase__ = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowercase__ = RadixNode(prefix=_UpperCAmelCase , is_leaf=_UpperCAmelCase ) else: lowercase__ = self.nodes[word[0]] lowercase__ , lowercase__ , lowercase__ = incoming_node.match( _UpperCAmelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(_UpperCAmelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowercase__ = remaining_prefix lowercase__ = self.nodes[matching_string[0]] lowercase__ = RadixNode(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = aux_node if remaining_word == "": lowercase__ = True else: self.nodes[matching_string[0]].insert(_UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : str ) -> bool: """simple docstring""" lowercase__ = self.nodes.get(word[0] , _UpperCAmelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( _UpperCAmelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(_UpperCAmelCase ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : str ) -> bool: """simple docstring""" lowercase__ = self.nodes.get(word[0] , _UpperCAmelCase ) if not incoming_node: return False else: lowercase__ , lowercase__ , lowercase__ = incoming_node.match( _UpperCAmelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(_UpperCAmelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowercase__ = list(self.nodes.values() )[0] lowercase__ = merging_node.is_leaf self.prefix += merging_node.prefix lowercase__ = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowercase__ = False # If there is 1 edge, we merge it with its child else: lowercase__ = list(incoming_node.nodes.values() )[0] lowercase__ = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowercase__ = merging_node.nodes return True def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : int = 0 ) -> None: """simple docstring""" if self.prefix != "": print("""-""" * height , self.prefix , """ (leaf)""" if self.is_leaf else """""" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def UpperCamelCase ( ) -> bool: """simple docstring""" lowercase__ = """banana bananas bandana band apple all beast""".split() lowercase__ = RadixNode() root.insert_many(__magic_name__ ) assert all(root.find(__magic_name__ ) for word in words ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def UpperCamelCase ( ) -> None: """simple docstring""" assert test_trie() def UpperCamelCase ( ) -> None: """simple docstring""" lowercase__ = RadixNode() lowercase__ = """banana bananas bandanas bandana band apple all beast""".split() root.insert_many(__magic_name__ ) print("""Words:""" , __magic_name__ ) print("""Tree:""" ) root.print_tree() if __name__ == "__main__": main()
15
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _SCREAMING_SNAKE_CASE : Optional[Any] = get_tests_dir('''fixtures''') class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : Any ) -> Any: # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE__ = mock.Mock() SCREAMING_SNAKE_CASE__ = 500 SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = HTTPError SCREAMING_SNAKE_CASE__ = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=__lowerCamelCase ) as mock_head: SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # This check we did call the fake head request mock_head.assert_called() def lowercase_ ( self : int ) -> Dict: # This test is for deprecated behavior and can be removed in v5 SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' ) @is_staging_test class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @classmethod def lowercase_ ( cls : Union[str, Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = TOKEN HfFolder.save_token(__lowerCamelCase ) @classmethod def lowercase_ ( cls : Optional[int] ) -> Optional[int]: try: delete_repo(token=cls._token , repo_id='''test-feature-extractor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-feature-extractor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-feature-extractor''' ) except HTTPError: pass def lowercase_ ( self : Optional[Any] ) -> int: SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained(__lowerCamelCase ) feature_extractor.push_to_hub('''test-feature-extractor''' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained(f'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __lowerCamelCase , repo_id='''test-feature-extractor''' , push_to_hub=__lowerCamelCase , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained(f'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) ) def lowercase_ ( self : Tuple ) -> Any: SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained(__lowerCamelCase ) feature_extractor.push_to_hub('''valid_org/test-feature-extractor''' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __lowerCamelCase , repo_id='''valid_org/test-feature-extractor-org''' , push_to_hub=__lowerCamelCase , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) ) def lowercase_ ( self : int ) -> int: CustomFeatureExtractor.register_for_auto_class() SCREAMING_SNAKE_CASE__ = CustomFeatureExtractor.from_pretrained(__lowerCamelCase ) feature_extractor.push_to_hub('''test-dynamic-feature-extractor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''} , ) SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained( f'''{USER}/test-dynamic-feature-extractor''' , trust_remote_code=__lowerCamelCase ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , '''CustomFeatureExtractor''' )
493
0
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def __lowerCAmelCase ( __magic_name__ ): _lowercase: Dict = [] _lowercase: List[str] = [] _lowercase: int = [] for rt in rc.restypes: _lowercase: str = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) _lowercase: List[str] = {name: i for i, name in enumerate(__magic_name__ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 1_4 ) restype_atomaa_to_atomaa_list.append([0] * 3_7 ) restype_atomaa_mask_list.append([0.0] * 1_4 ) _lowercase: List[str] = torch.tensor( __magic_name__ , dtype=torch.intaa , device=protein["aatype"].device , ) _lowercase: Union[str, Any] = torch.tensor( __magic_name__ , dtype=torch.intaa , device=protein["aatype"].device , ) _lowercase: Optional[Any] = torch.tensor( __magic_name__ , dtype=torch.floataa , device=protein["aatype"].device , ) _lowercase: List[str] = protein["aatype"].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein _lowercase: Optional[int] = restype_atomaa_to_atomaa[protein_aatype] _lowercase: Any = restype_atomaa_mask[protein_aatype] _lowercase: Dict = residx_atomaa_mask _lowercase: List[str] = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back _lowercase: List[str] = restype_atomaa_to_atomaa[protein_aatype] _lowercase: Tuple = residx_atomaa_to_atomaa.long() # create the corresponding mask _lowercase: Tuple = torch.zeros([2_1, 3_7] , dtype=torch.floataa , device=protein["aatype"].device ) for restype, restype_letter in enumerate(rc.restypes ): _lowercase: Optional[Any] = rc.restype_atoa[restype_letter] _lowercase: Union[str, Any] = rc.residue_atoms[restype_name] for atom_name in atom_names: _lowercase: List[Any] = rc.atom_order[atom_name] _lowercase: Any = 1 _lowercase: Tuple = restype_atomaa_mask[protein_aatype] _lowercase: int = residx_atomaa_mask return protein def __lowerCAmelCase ( __magic_name__ ): _lowercase: Tuple = tree_map(lambda __magic_name__ : torch.tensor(__magic_name__ , device=batch["aatype"].device ) , __magic_name__ , np.ndarray ) _lowercase: Dict = tensor_tree_map(lambda __magic_name__ : np.array(__magic_name__ ) , make_atomaa_masks(__magic_name__ ) ) return out
206
def __lowerCAmelCase ( __magic_name__ ): return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') _SCREAMING_SNAKE_CASE : str = int(input('Enter number: ').strip()) print(f'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''')
206
1
class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Dict ): SCREAMING_SNAKE_CASE : Optional[int] = {} def _A ( self : str ): print(self.vertex ) for i in self.vertex: print(UpperCAmelCase_ , " -> " , " -> ".join([str(UpperCAmelCase_ ) for j in self.vertex[i]] ) ) def _A ( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(UpperCAmelCase_ ) else: # else make a new vertex SCREAMING_SNAKE_CASE : List[str] = [to_vertex] def _A ( self : int ): # visited array for storing already visited nodes SCREAMING_SNAKE_CASE : Any = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(UpperCAmelCase_ , UpperCAmelCase_ ) def _A ( self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : list ): # mark start vertex as visited SCREAMING_SNAKE_CASE : Any = True print(UpperCAmelCase_ , end=" " ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": snake_case = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
62
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments a : Optional[int] = logging.getLogger(__name__) @dataclass class _a ( _lowerCAmelCase ): A = field( default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} ) A = field(default=_lowerCAmelCase , metadata={'''help''': '''Whether to SortishSamler or not.'''} ) A = field( default=_lowerCAmelCase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) A = field(default=_lowerCAmelCase , metadata={'''help''': '''whether to use adafactor'''} ) A = field( default=_lowerCAmelCase , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} ) A = field( default=_lowerCAmelCase , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} ) A = field(default=_lowerCAmelCase , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} ) A = field( default=_lowerCAmelCase , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} ) A = field( default='''linear''' , metadata={'''help''': F'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
556
0
def lowerCAmelCase_ ( __UpperCAmelCase: Optional[Any] ) -> Any: stooge(__UpperCAmelCase , 0 , len(__UpperCAmelCase ) - 1 ) return arr def lowerCAmelCase_ ( __UpperCAmelCase: int , __UpperCAmelCase: str , __UpperCAmelCase: Union[str, Any] ) -> List[Any]: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: UpperCamelCase__ ,UpperCamelCase__ : List[str] = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: UpperCamelCase__ : str = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(__UpperCAmelCase , __UpperCAmelCase , (h - t) ) # Recursively sort last 2/3 elements stooge(__UpperCAmelCase , i + t , (__UpperCAmelCase) ) # Recursively sort first 2/3 elements stooge(__UpperCAmelCase , __UpperCAmelCase , (h - t) ) if __name__ == "__main__": UpperCAmelCase_ = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ = [int(item) for item in user_input.split(',')] print(stooge_sort(unsorted))
369
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class lowercase__ : '''simple docstring''' def __init__( self, __magic_name__, __magic_name__ = 13, __magic_name__ = 64, __magic_name__ = 2, __magic_name__ = 3, __magic_name__ = 3, __magic_name__ = True, __magic_name__ = True, __magic_name__ = 128, __magic_name__=[16, 32, 64, 128], __magic_name__ = 7, __magic_name__ = 4, __magic_name__ = 37, __magic_name__ = "gelu", __magic_name__ = 0.1, __magic_name__ = 0.1, __magic_name__ = 10, __magic_name__ = 0.02, __magic_name__ = 2, __magic_name__ = 1, __magic_name__ = 128, __magic_name__ = [2, 2, 2, 2], __magic_name__ = 2, __magic_name__ = 2, ) -> List[str]: """simple docstring""" UpperCamelCase__ : List[str] = parent UpperCamelCase__ : Optional[int] = batch_size UpperCamelCase__ : Optional[Any] = image_size UpperCamelCase__ : Optional[int] = patch_size UpperCamelCase__ : Any = num_channels UpperCamelCase__ : int = is_training UpperCamelCase__ : str = use_labels UpperCamelCase__ : Optional[Any] = hidden_size UpperCamelCase__ : Tuple = num_hidden_layers UpperCamelCase__ : str = num_attention_heads UpperCamelCase__ : Any = intermediate_size UpperCamelCase__ : int = hidden_act UpperCamelCase__ : Dict = hidden_dropout_prob UpperCamelCase__ : str = attention_probs_dropout_prob UpperCamelCase__ : Tuple = type_sequence_label_size UpperCamelCase__ : Optional[Any] = initializer_range UpperCamelCase__ : Optional[int] = encoder_stride UpperCamelCase__ : Any = num_attention_outputs UpperCamelCase__ : Dict = embed_dim UpperCamelCase__ : str = embed_dim + 1 UpperCamelCase__ : int = resolution UpperCamelCase__ : List[str] = depths UpperCamelCase__ : str = hidden_sizes UpperCamelCase__ : Tuple = dim UpperCamelCase__ : Optional[int] = mlp_expansion_ratio def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ : Dict = None if self.use_labels: UpperCamelCase__ : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCamelCase__ : int = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ) -> str: """simple docstring""" return EfficientFormerConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__magic_name__, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, resolution=self.resolution, depths=self.depths, hidden_sizes=self.hidden_sizes, dim=self.dim, mlp_expansion_ratio=self.mlp_expansion_ratio, ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ ) -> Any: """simple docstring""" UpperCamelCase__ : Dict = TFEfficientFormerModel(config=__magic_name__ ) UpperCamelCase__ : str = model(__magic_name__, training=__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : Optional[int] = self.type_sequence_label_size UpperCamelCase__ : Dict = TFEfficientFormerForImageClassification(__magic_name__ ) UpperCamelCase__ : Any = model(__magic_name__, labels=__magic_name__, training=__magic_name__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase__ : Optional[Any] = 1 UpperCamelCase__ : List[str] = TFEfficientFormerForImageClassification(__magic_name__ ) UpperCamelCase__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ : Union[str, Any] = model(__magic_name__, labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : List[str] = self.prepare_config_and_inputs() UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Dict = config_and_inputs UpperCamelCase__ : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowercase__ ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): '''simple docstring''' a : int = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) a : Union[str, Any] = ( { "feature-extraction": TFEfficientFormerModel, "image-classification": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) a : Any = False a : Tuple = False a : Any = False a : int = False a : Tuple = False def UpperCamelCase__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase__ : Optional[Any] = TFEfficientFormerModelTester(self ) UpperCamelCase__ : int = ConfigTester( self, config_class=__magic_name__, has_text_modality=__magic_name__, hidden_size=37 ) def UpperCamelCase__ ( self ) -> str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''EfficientFormer does not use inputs_embeds''' ) def UpperCamelCase__ ( self ) -> Any: """simple docstring""" pass @unittest.skip(reason='''EfficientFormer does not support input and output embeddings''' ) def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" pass def UpperCamelCase__ ( self ) -> int: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[str] = model_class(__magic_name__ ) UpperCamelCase__ : List[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : List[str] = [*signature.parameters.keys()] UpperCamelCase__ : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __magic_name__ ) def UpperCamelCase__ ( self ) -> str: """simple docstring""" def check_hidden_states_output(__magic_name__, __magic_name__, __magic_name__ ): UpperCamelCase__ : Union[str, Any] = model_class(__magic_name__ ) UpperCamelCase__ : str = model(**self._prepare_for_class(__magic_name__, __magic_name__ ), training=__magic_name__ ) UpperCamelCase__ : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase__ : Optional[int] = getattr( self.model_tester, '''expected_num_hidden_layers''', self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__magic_name__ ), __magic_name__ ) if hasattr(self.model_tester, '''encoder_seq_length''' ): UpperCamelCase__ : Dict = self.model_tester.encoder_seq_length if hasattr(self.model_tester, '''chunk_length''' ) and self.model_tester.chunk_length > 1: UpperCamelCase__ : Tuple = seq_length * self.model_tester.chunk_length else: UpperCamelCase__ : Optional[Any] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ), [seq_length, self.model_tester.hidden_size], ) if config.is_encoder_decoder: UpperCamelCase__ : List[str] = outputs.decoder_hidden_states self.asseretIsInstance(__magic_name__, (list, tuple) ) self.assertEqual(len(__magic_name__ ), __magic_name__ ) UpperCamelCase__ : str = getattr(self.model_tester, '''seq_length''', __magic_name__ ) UpperCamelCase__ : Optional[Any] = getattr(self.model_tester, '''decoder_seq_length''', __magic_name__ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ), [decoder_seq_length, self.model_tester.hidden_size], ) UpperCamelCase__ ,UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[str] = True check_hidden_states_output(__magic_name__, __magic_name__, __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ : List[Any] = True check_hidden_states_output(__magic_name__, __magic_name__, __magic_name__ ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__=False ) -> Any: """simple docstring""" UpperCamelCase__ : List[str] = super()._prepare_for_class(__magic_name__, __magic_name__, return_labels=__magic_name__ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) @unittest.skip(reason='''EfficientFormer does not implement masked image modeling yet''' ) def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__magic_name__ ) def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__magic_name__ ) @slow def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Dict = TFEfficientFormerModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def UpperCamelCase__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ : Dict = True UpperCamelCase__ : Optional[Any] = getattr(self.model_tester, '''seq_length''', __magic_name__ ) UpperCamelCase__ : Any = getattr(self.model_tester, '''encoder_seq_length''', __magic_name__ ) UpperCamelCase__ : Tuple = getattr(self.model_tester, '''key_length''', __magic_name__ ) UpperCamelCase__ : Union[str, Any] = getattr(self.model_tester, '''chunk_length''', __magic_name__ ) if chunk_length is not None and hasattr(self.model_tester, '''num_hashes''' ): UpperCamelCase__ : Dict = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: UpperCamelCase__ : Dict = True UpperCamelCase__ : Optional[int] = False UpperCamelCase__ : Any = True UpperCamelCase__ : str = model_class(__magic_name__ ) UpperCamelCase__ : Optional[int] = model(**self._prepare_for_class(__magic_name__, __magic_name__ ), training=__magic_name__ ) UpperCamelCase__ : List[str] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__magic_name__ ), self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCamelCase__ : Optional[int] = True UpperCamelCase__ : int = model_class(__magic_name__ ) UpperCamelCase__ : str = model(**self._prepare_for_class(__magic_name__, __magic_name__ ), training=__magic_name__ ) UpperCamelCase__ : List[str] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__magic_name__ ), self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ), [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length], ) else: self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction UpperCamelCase__ ,UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model UpperCamelCase__ : str = model_class(__magic_name__ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes UpperCamelCase__ : Tuple = { key: tf.keras.Input(shape=val.shape[1:], dtype=val.dtype, name=__magic_name__ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } UpperCamelCase__ : str = model(__magic_name__ ) self.assertTrue(outputs_dict is not None ) def lowerCAmelCase_ ( ) -> List[str]: UpperCamelCase__ : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained('''snap-research/efficientformer-l1-300''' ) if is_vision_available() else None ) @slow def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Optional[Any] = TFEfficientFormerForImageClassification.from_pretrained('''snap-research/efficientformer-l1-300''' ) UpperCamelCase__ : Dict = self.default_image_processor UpperCamelCase__ : List[str] = prepare_img() UpperCamelCase__ : str = image_processor(images=__magic_name__, return_tensors='''tf''' ) # forward pass UpperCamelCase__ : Dict = model(**__magic_name__, training=__magic_name__ ) # verify the logits UpperCamelCase__ : Tuple = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape, __magic_name__ ) UpperCamelCase__ : List[str] = tf.constant([-0.0555, 0.4825, -0.0852] ) self.assertTrue(np.allclose(outputs.logits[0, :3], __magic_name__, atol=1E-4 ) ) @slow def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : str = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( '''snap-research/efficientformer-l1-300''' ) UpperCamelCase__ : List[str] = self.default_image_processor UpperCamelCase__ : Union[str, Any] = prepare_img() UpperCamelCase__ : int = image_processor(images=__magic_name__, return_tensors='''tf''' ) # forward pass UpperCamelCase__ : Tuple = model(**__magic_name__, training=__magic_name__ ) # verify the logits UpperCamelCase__ : Tuple = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape, __magic_name__ ) UpperCamelCase__ : Optional[int] = tf.constant([-0.1312, 0.4353, -1.0499] ) self.assertTrue(np.allclose(outputs.logits[0, :3], __magic_name__, atol=1E-4 ) )
369
1
import sys __A = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def lowercase__ ( A_: str ) -> int: """simple docstring""" __UpperCAmelCase =1 for digit in s: product *= int(A_ ) return product def lowercase__ ( A_: str = N ) -> int: """simple docstring""" __UpperCAmelCase =-sys.maxsize - 1 __UpperCAmelCase =n[:13] __UpperCAmelCase =13 while cur_index < len(A_ ) - 13: if int(n[cur_index] ) >= int(substr[0] ): __UpperCAmelCase =substr[1:] + n[cur_index] cur_index += 1 else: __UpperCAmelCase =max(A_ , str_eval(A_ ) ) __UpperCAmelCase =n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
68
"""simple docstring""" import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''', } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''align_text_model''' def __init__( self , _UpperCAmelCase=30522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : int = vocab_size __a : Optional[int] = hidden_size __a : Dict = num_hidden_layers __a : List[Any] = num_attention_heads __a : Optional[int] = hidden_act __a : List[Any] = intermediate_size __a : List[Any] = hidden_dropout_prob __a : List[str] = attention_probs_dropout_prob __a : Optional[int] = max_position_embeddings __a : List[str] = type_vocab_size __a : Tuple = initializer_range __a : Dict = layer_norm_eps __a : Any = position_embedding_type __a : Dict = use_cache __a : Dict = pad_token_id @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __a , __a : List[str] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": __a : Dict = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''align_vision_model''' def __init__( self , _UpperCAmelCase = 3 , _UpperCAmelCase = 600 , _UpperCAmelCase = 2.0 , _UpperCAmelCase = 3.1 , _UpperCAmelCase = 8 , _UpperCAmelCase = [3, 3, 5, 3, 5, 5, 3] , _UpperCAmelCase = [32, 16, 24, 40, 80, 112, 192] , _UpperCAmelCase = [16, 24, 40, 80, 112, 192, 320] , _UpperCAmelCase = [] , _UpperCAmelCase = [1, 2, 2, 2, 1, 2, 1] , _UpperCAmelCase = [1, 2, 2, 3, 3, 4, 1] , _UpperCAmelCase = [1, 6, 6, 6, 6, 6, 6] , _UpperCAmelCase = 0.2_5 , _UpperCAmelCase = "swish" , _UpperCAmelCase = 2560 , _UpperCAmelCase = "mean" , _UpperCAmelCase = 0.0_2 , _UpperCAmelCase = 0.0_0_1 , _UpperCAmelCase = 0.9_9 , _UpperCAmelCase = 0.2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : Tuple = num_channels __a : str = image_size __a : List[Any] = width_coefficient __a : Optional[int] = depth_coefficient __a : Union[str, Any] = depth_divisor __a : int = kernel_sizes __a : Dict = in_channels __a : List[str] = out_channels __a : Any = depthwise_padding __a : str = strides __a : Optional[Any] = num_block_repeats __a : Optional[Any] = expand_ratios __a : Any = squeeze_expansion_ratio __a : int = hidden_act __a : Union[str, Any] = hidden_dim __a : Union[str, Any] = pooling_type __a : Tuple = initializer_range __a : List[str] = batch_norm_eps __a : List[Any] = batch_norm_momentum __a : Union[str, Any] = drop_connect_rate __a : List[Any] = sum(_UpperCAmelCase ) * 4 @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __a , __a : Optional[Any] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": __a : Optional[Any] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''align''' __lowerCAmelCase = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=640 , _UpperCAmelCase=1.0 , _UpperCAmelCase=0.0_2 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) if text_config is None: __a : Dict = {} logger.info('''text_config is None. Initializing the AlignTextConfig with default values.''' ) if vision_config is None: __a : Any = {} logger.info('''vision_config is None. Initializing the AlignVisionConfig with default values.''' ) __a : Any = AlignTextConfig(**_UpperCAmelCase ) __a : Any = AlignVisionConfig(**_UpperCAmelCase ) __a : Optional[int] = projection_dim __a : Union[str, Any] = temperature_init_value __a : int = initializer_range @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Union[str, Any] = copy.deepcopy(self.__dict__ ) __a : Tuple = self.text_config.to_dict() __a : Union[str, Any] = self.vision_config.to_dict() __a : int = self.__class__.model_type return output
52
0
from collections import deque from .hash_table import HashTable class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self : str , *_lowerCAmelCase : str , **_lowerCAmelCase : Union[str, Any] ): super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) def snake_case__ ( self : Any , _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] ): __snake_case : List[Any] = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_lowerCAmelCase ) __snake_case : Dict = self.values[key] def snake_case__ ( self : Any ): return ( sum(self.charge_factor - len(_lowerCAmelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def snake_case__ ( self : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any]=None ): if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_lowerCAmelCase ) == 0 ): return key return super()._collision_resolution(_lowerCAmelCase , _lowerCAmelCase )
720
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): A : List[Any] = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) A : List[Any] = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) A : List[str] = False A : List[Any] = False def snake_case__ ( self : int , _lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any]=False ): __snake_case : int = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class in get_values(_lowerCAmelCase ): __snake_case : List[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self : Any , _lowerCAmelCase : int , _lowerCAmelCase : int=13 , _lowerCAmelCase : int=7 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Any=True , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Any=True , _lowerCAmelCase : str=99 , _lowerCAmelCase : Any=32 , _lowerCAmelCase : List[Any]=32 , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : Union[str, Any]=4 , _lowerCAmelCase : Any=37 , _lowerCAmelCase : str="gelu" , _lowerCAmelCase : Dict=0.1 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : Dict=5_12 , _lowerCAmelCase : str=16 , _lowerCAmelCase : Union[str, Any]=2 , _lowerCAmelCase : Dict=0.02 , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : Dict=4 , _lowerCAmelCase : Tuple=None , ): __snake_case : int = parent __snake_case : Union[str, Any] = batch_size __snake_case : Dict = seq_length __snake_case : Optional[int] = is_training __snake_case : str = use_input_mask __snake_case : Optional[Any] = use_token_type_ids __snake_case : Dict = use_labels __snake_case : Any = vocab_size __snake_case : List[str] = hidden_size __snake_case : Union[str, Any] = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : Union[str, Any] = intermediate_size __snake_case : Optional[Any] = hidden_act __snake_case : str = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : Any = max_position_embeddings __snake_case : List[str] = type_vocab_size __snake_case : Tuple = type_sequence_label_size __snake_case : Dict = initializer_range __snake_case : List[str] = num_labels __snake_case : str = num_choices __snake_case : Optional[int] = scope __snake_case : Any = embedding_size def snake_case__ ( self : str ): __snake_case : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Dict = None if self.use_input_mask: __snake_case : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Optional[Any] = None if self.use_token_type_ids: __snake_case : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : str = None __snake_case : Tuple = None __snake_case : int = None if self.use_labels: __snake_case : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : str = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : int = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : Dict , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple ): __snake_case : Optional[int] = TFMobileBertModel(config=_lowerCAmelCase ) __snake_case : int = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __snake_case : Optional[Any] = model(_lowerCAmelCase ) __snake_case : Tuple = [input_ids, input_mask] __snake_case : Tuple = model(_lowerCAmelCase ) __snake_case : int = model(_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : List[str] ): __snake_case : Union[str, Any] = TFMobileBertForMaskedLM(config=_lowerCAmelCase ) __snake_case : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __snake_case : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple ): __snake_case : str = TFMobileBertForNextSentencePrediction(config=_lowerCAmelCase ) __snake_case : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __snake_case : str = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def snake_case__ ( self : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] ): __snake_case : Any = TFMobileBertForPreTraining(config=_lowerCAmelCase ) __snake_case : str = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __snake_case : Optional[int] = model(_lowerCAmelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ): __snake_case : List[str] = self.num_labels __snake_case : Optional[int] = TFMobileBertForSequenceClassification(config=_lowerCAmelCase ) __snake_case : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __snake_case : Optional[int] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict ): __snake_case : Any = self.num_choices __snake_case : List[str] = TFMobileBertForMultipleChoice(config=_lowerCAmelCase ) __snake_case : Dict = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) __snake_case : Tuple = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) __snake_case : int = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) __snake_case : Dict = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __snake_case : int = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__ ( self : List[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] ): __snake_case : List[str] = self.num_labels __snake_case : Any = TFMobileBertForTokenClassification(config=_lowerCAmelCase ) __snake_case : int = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __snake_case : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict ): __snake_case : Tuple = TFMobileBertForQuestionAnswering(config=_lowerCAmelCase ) __snake_case : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __snake_case : Tuple = model(_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self : Optional[Any] ): __snake_case : Union[str, Any] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Dict = config_and_inputs __snake_case : List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict def snake_case__ ( self : int ): __snake_case : Optional[Any] = TFMobileBertModelTest.TFMobileBertModelTester(self ) __snake_case : int = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def snake_case__ ( self : List[str] ): self.config_tester.run_common_tests() def snake_case__ ( self : str ): __snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_lowerCAmelCase ) def snake_case__ ( self : Tuple ): __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_lowerCAmelCase ) def snake_case__ ( self : Any ): __snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_lowerCAmelCase ) def snake_case__ ( self : int ): __snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_lowerCAmelCase ) def snake_case__ ( self : Any ): __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_lowerCAmelCase ) def snake_case__ ( self : Dict ): __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_lowerCAmelCase ) def snake_case__ ( self : Any ): __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_lowerCAmelCase ) def snake_case__ ( self : int ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_lowerCAmelCase ) @slow def snake_case__ ( self : Tuple ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: __snake_case : Dict = TFMobileBertModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def snake_case__ ( self : Optional[Any] ): __snake_case : int = TFMobileBertForPreTraining.from_pretrained("""google/mobilebert-uncased""" ) __snake_case : Optional[int] = tf.constant([[0, 1, 2, 3, 4, 5]] ) __snake_case : Optional[int] = model(_lowerCAmelCase )[0] __snake_case : List[str] = [1, 6, 3_05_22] self.assertEqual(output.shape , _lowerCAmelCase ) __snake_case : List[Any] = tf.constant( [ [ [-4.5919547, -9.248295, -9.645256], [-6.7306175, -6.440284, -6.6052837], [-7.2743506, -6.7847915, -6.024673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowerCAmelCase , atol=1e-4 )
390
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) _UpperCAmelCase : Optional[Any] = { '''tanreinama/GPTSAN-2.8B-spout_is_uniform''': ( '''https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json''' ), } class __magic_name__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = 'gptsan-japanese' UpperCamelCase__ = [ 'past_key_values', ] UpperCamelCase__ = { 'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , snake_case_=3_60_00 , snake_case_=12_80 , snake_case_=10_24 , snake_case_=81_92 , snake_case_=40_96 , snake_case_=1_28 , snake_case_=10 , snake_case_=0 , snake_case_=16 , snake_case_=16 , snake_case_=1_28 , snake_case_=0.0 , snake_case_=1E-5 , snake_case_=False , snake_case_=0.0 , snake_case_="float32" , snake_case_=False , snake_case_=False , snake_case_=False , snake_case_=0.0_02 , snake_case_=False , snake_case_=True , snake_case_=3_59_98 , snake_case_=3_59_95 , snake_case_=3_59_99 , **snake_case_ , ): lowercase =vocab_size lowercase =max_position_embeddings lowercase =d_model lowercase =d_ff lowercase =d_ext lowercase =d_spout lowercase =num_switch_layers lowercase =num_ext_layers lowercase =num_switch_layers + num_ext_layers lowercase =num_heads lowercase =num_experts lowercase =expert_capacity lowercase =dropout_rate lowercase =layer_norm_epsilon lowercase =router_bias lowercase =router_jitter_noise lowercase =router_dtype lowercase =router_ignore_padding_tokens lowercase =output_hidden_states lowercase =output_attentions lowercase =initializer_factor lowercase =output_router_logits lowercase =use_cache super().__init__( separator_token_id=snake_case_ , pad_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ , )
72
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) __UpperCAmelCase = logging.getLogger() def snake_case_ (__A : Path , __A : list ) -> List[Any]: __lowerCAmelCase : Any = """\n""".join(__A ) Path(__A ).open("""w""" ).writelines(__A ) __UpperCAmelCase = """patrickvonplaten/t5-tiny-random""" __UpperCAmelCase = """sshleifer/bart-tiny-random""" __UpperCAmelCase = """sshleifer/tiny-mbart""" __UpperCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : Tuple ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Tuple = Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source""" __lowerCAmelCase : str = input_file_name.parent / """utest_output.txt""" assert not output_file_name.exists() __lowerCAmelCase : str = [""" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."""] _dump_articles(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Any = str(Path(self.get_auto_remove_tmp_dir() ) / """scores.json""" ) __lowerCAmelCase : Optional[Any] = """translation_en_to_de""" if model == T5_TINY else """summarization""" __lowerCAmelCase : Any = f''' run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 '''.split() with patch.object(lowerCAmelCase , """argv""" , lowerCAmelCase ): run_generate() assert Path(lowerCAmelCase ).exists() # os.remove(Path(output_file_name)) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: """simple docstring""" self.run_eval_tester(lowerCAmelCase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" self.run_eval_tester(lowerCAmelCase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase : Optional[Any] ) -> Any: """simple docstring""" __lowerCAmelCase : Optional[int] = Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source""" __lowerCAmelCase : List[str] = input_file_name.parent / """utest_output.txt""" assert not output_file_name.exists() __lowerCAmelCase : Union[str, Any] = { """en""": ["""Machine learning is great, isn't it?""", """I like to eat bananas""", """Tomorrow is another great day!"""], """de""": [ """Maschinelles Lernen ist großartig, oder?""", """Ich esse gerne Bananen""", """Morgen ist wieder ein toller Tag!""", ], } __lowerCAmelCase : List[str] = Path(self.get_auto_remove_tmp_dir() ) __lowerCAmelCase : List[str] = str(tmp_dir / """scores.json""" ) __lowerCAmelCase : Dict = str(tmp_dir / """val.target""" ) _dump_articles(lowerCAmelCase , text["""en"""] ) _dump_articles(lowerCAmelCase , text["""de"""] ) __lowerCAmelCase : List[Any] = """translation_en_to_de""" if model == T5_TINY else """summarization""" __lowerCAmelCase : Dict = f''' run_eval_search.py {model} {str(lowerCAmelCase )} {str(lowerCAmelCase )} --score_path {score_path} --reference_path {reference_path} --task {task} '''.split() testargs.extend(["""--search""", """num_beams=1:2 length_penalty=0.9:1.0"""] ) with patch.object(lowerCAmelCase , """argv""" , lowerCAmelCase ): with CaptureStdout() as cs: run_search() __lowerCAmelCase : Any = [""" num_beams | length_penalty""", model, """Best score args"""] __lowerCAmelCase : Tuple = ["""Info"""] if "translation" in task: expected_strings.append("""bleu""" ) else: expected_strings.extend(lowerCAmelCase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(lowerCAmelCase ).exists() os.remove(Path(lowerCAmelCase ) )
651
0
'''simple docstring''' from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _a ( __a ): """simple docstring""" def lowerCamelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowercase_ , """embed_dim""" ) ) self.parent.assertTrue(hasattr(lowercase_ , """num_heads""" ) ) class _a : """simple docstring""" def __init__( self : Any , lowercase_ : int , lowercase_ : List[Any]=13 , lowercase_ : Tuple=64 , lowercase_ : Tuple=3 , lowercase_ : Union[str, Any]=[16, 48, 96] , lowercase_ : Dict=[1, 3, 6] , lowercase_ : Optional[int]=[1, 2, 10] , lowercase_ : Tuple=[7, 3, 3] , lowercase_ : Any=[4, 2, 2] , lowercase_ : Dict=[2, 1, 1] , lowercase_ : int=[2, 2, 2] , lowercase_ : Optional[Any]=[False, False, True] , lowercase_ : Union[str, Any]=[0.0, 0.0, 0.0] , lowercase_ : int=0.0_2 , lowercase_ : Tuple=1e-12 , lowercase_ : str=True , lowercase_ : int=True , lowercase_ : List[str]=2 , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = patch_sizes lowercase_ = patch_stride lowercase_ = patch_padding lowercase_ = is_training lowercase_ = use_labels lowercase_ = num_labels lowercase_ = num_channels lowercase_ = embed_dim lowercase_ = num_heads lowercase_ = stride_kv lowercase_ = depth lowercase_ = cls_token lowercase_ = attention_drop_rate lowercase_ = initializer_range lowercase_ = layer_norm_eps def lowerCamelCase__ ( self : int ): '''simple docstring''' lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None if self.use_labels: # create a random int32 tensor of given shape lowercase_ = ids_tensor([self.batch_size] , self.num_labels ) lowercase_ = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self : Dict ): '''simple docstring''' return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def lowerCamelCase__ ( self : str , lowercase_ : List[Any] , lowercase_ : Tuple , lowercase_ : str ): '''simple docstring''' lowercase_ = TFCvtModel(config=lowercase_ ) lowercase_ = model(lowercase_ , training=lowercase_ ) lowercase_ = (self.image_size, self.image_size) lowercase_ , lowercase_ = image_size[0], image_size[1] for i in range(len(self.depth ) ): lowercase_ = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) lowercase_ = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def lowerCamelCase__ ( self : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : str ): '''simple docstring''' lowercase_ = self.num_labels lowercase_ = TFCvtForImageClassification(lowercase_ ) lowercase_ = model(lowercase_ , labels=lowercase_ , training=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class _a ( __a , __a , unittest.TestCase ): """simple docstring""" A_ = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () A_ = ( {'''feature-extraction''': TFCvtModel, '''image-classification''': TFCvtForImageClassification} if is_tf_available() else {} ) A_ = False A_ = False A_ = False A_ = False A_ = False def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = TFCvtModelTester(self ) lowercase_ = TFCvtConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37 ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="""Cvt does not output attentions""" ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' pass @unittest.skip(reason="""Cvt does not use inputs_embeds""" ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Cvt does not support input and output embeddings""" ) def lowerCamelCase__ ( self : int ): '''simple docstring''' pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) def lowerCamelCase__ ( self : int ): '''simple docstring''' super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def lowerCamelCase__ ( self : str ): '''simple docstring''' super().test_keras_fit() @unittest.skip(reason="""Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8""" ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = tf.keras.mixed_precision.Policy("""mixed_float16""" ) tf.keras.mixed_precision.set_global_policy(lowercase_ ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("""float32""" ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(lowercase_ ) lowercase_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowercase_ ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' def check_hidden_states_output(lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : Dict ): lowercase_ = model_class(lowercase_ ) lowercase_ = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) lowercase_ = outputs.hidden_states lowercase_ = len(self.model_tester.depth ) self.assertEqual(len(lowercase_ ) , lowercase_ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @slow def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = TFCvtModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def A_ ( ) ->Union[str, Any]: lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class _a ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase__ ( self : Any ): '''simple docstring''' return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=lowercase_ , return_tensors="""tf""" ) # forward pass lowercase_ = model(**lowercase_ ) # verify the logits lowercase_ = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowercase_ ) lowercase_ = tf.constant([0.9_2_8_5, 0.9_0_1_5, -0.3_1_5_0] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowercase_ , atol=1e-4 ) )
700
'''simple docstring''' def A_ ( SCREAMING_SNAKE_CASE_ ) ->int: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError("""multiplicative_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""" ) lowercase_ = 0 lowercase_ = str(SCREAMING_SNAKE_CASE_ ) while len(SCREAMING_SNAKE_CASE_ ) != 1: lowercase_ = [int(SCREAMING_SNAKE_CASE_ ) for i in num_string] lowercase_ = 1 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): total *= numbers[i] lowercase_ = str(SCREAMING_SNAKE_CASE_ ) steps += 1 return steps def A_ ( SCREAMING_SNAKE_CASE_ ) ->int: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError("""additive_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""additive_persistence() does not accept negative values""" ) lowercase_ = 0 lowercase_ = str(SCREAMING_SNAKE_CASE_ ) while len(SCREAMING_SNAKE_CASE_ ) != 1: lowercase_ = [int(SCREAMING_SNAKE_CASE_ ) for i in num_string] lowercase_ = 0 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): total += numbers[i] lowercase_ = str(SCREAMING_SNAKE_CASE_ ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
603
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer _lowerCAmelCase = ["""gpt2"""] _lowerCAmelCase = """gpt2""" if is_tf_available(): class _UpperCAmelCase ( tf.Module ): def __init__( self , a__ ): super().__init__() A_ : List[Any] = tokenizer A_ : Optional[Any] = AutoConfig.from_pretrained(lowercase__ ) A_ : str = TFGPTaLMHeadModel.from_config(lowercase__ ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="""text""" ),) ) def _lowerCamelCase ( self , a__ ): A_ : List[str] = self.tokenizer(lowercase__ ) A_ : Any = tokenized["input_ids"].to_tensor() A_ : int = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) A_ : Union[str, Any] = self.model(input_ids=lowercase__ , attention_mask=lowercase__ )["logits"] return outputs @require_tf @require_keras_nlp class _UpperCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self ): super().setUp() A_ : List[Any] = [GPTaTokenizer.from_pretrained(lowercase__ ) for checkpoint in (TOKENIZER_CHECKPOINTS)] A_ : Any = [TFGPTaTokenizer.from_pretrained(lowercase__ ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) A_ : List[str] = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we're going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] A_ : str = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _lowerCamelCase ( self ): for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: A_ : int = tokenizer([test_inputs] , return_tensors="""tf""" ) A_ : str = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors A_ : Optional[Any] = python_outputs[key].numpy() A_ : Union[str, Any] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(lowercase__ , tf.intaa ) == tf_outputs_values ) ) @slow def _lowerCamelCase ( self ): for tf_tokenizer in self.tf_tokenizers: A_ : int = tf.function(lowercase__ ) for test_inputs in self.test_sentences: A_ : Optional[int] = tf.constant(lowercase__ ) A_ : Dict = compiled_tokenizer(lowercase__ ) A_ : Any = tf_tokenizer(lowercase__ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _lowerCamelCase ( self ): for tf_tokenizer in self.tf_tokenizers: A_ : str = ModelToSave(tokenizer=lowercase__ ) A_ : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) A_ : int = model.serving(lowercase__ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: A_ : str = Path(lowercase__ ) / "saved.model" tf.saved_model.save(lowercase__ , lowercase__ , signatures={"""serving_default""": model.serving} ) A_ : Union[str, Any] = tf.saved_model.load(lowercase__ ) A_ : Optional[int] = loaded_model.signatures["serving_default"](lowercase__ )["output_0"] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def _lowerCamelCase ( self ): for tf_tokenizer in self.tf_tokenizers: A_ : List[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) A_ : str = tf_tokenizer(lowercase__ ) # Build model with some sample inputs A_ : int = tf_tokenizer.get_config() A_ : int = TFGPTaTokenizer.from_config(lowercase__ ) A_ : Dict = model_from_config(lowercase__ ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def _lowerCamelCase ( self ): for tf_tokenizer in self.tf_tokenizers: # for the test to run A_ : str = 123123 for max_length in [3, 5, 1024]: A_ : Tuple = tf.convert_to_tensor([self.test_sentences[0]] ) A_ : List[Any] = tf_tokenizer(lowercase__ , max_length=lowercase__ ) A_ : Union[str, Any] = out["input_ids"].numpy().shape[1] assert out_length == max_length
569
'''simple docstring''' import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '--original_config_file', default=None, type=str, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--scheduler_type', default='pndm', type=str, help='Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']', ) parser.add_argument( '--pipeline_type', default=None, type=str, help=( 'The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'' '. If `None` pipeline will be automatically inferred.' ), ) parser.add_argument( '--image_size', default=None, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--prediction_type', default=None, type=str, help=( 'The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable' ' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') parser.add_argument( '--stable_unclip', type=str, default=None, required=False, help='Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.', ) parser.add_argument( '--stable_unclip_prior', type=str, default=None, required=False, help='Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.', ) parser.add_argument( '--clip_stats_path', type=str, help='Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.', required=False, ) parser.add_argument( '--controlnet', action='store_true', default=None, help='Set flag if this is a controlnet checkpoint.' ) parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--vae_path', type=str, default=None, required=False, help='Set to a path, hub id to an already converted vae to not convert it again.', ) snake_case_ = parser.parse_args() snake_case_ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
421
0
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _lowerCAmelCase = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } _lowerCAmelCase = {"allegro/herbert-base-cased": 5_1_4} _lowerCAmelCase = {} class __A ( a ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_INIT_CONFIGURATION A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = HerbertTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase="</s>" , **_lowerCamelCase , )-> Tuple: super().__init__( _lowerCamelCase , _lowerCamelCase , tokenizer_file=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , sep_token=_lowerCamelCase , **_lowerCamelCase , ) def snake_case_( self , _lowerCamelCase , _lowerCamelCase = None )-> List[int]: lowercase__ = [self.cls_token_id] lowercase__ = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def snake_case_( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False )-> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1] + ([0] * len(_lowerCamelCase )) + [1] def snake_case_( self , _lowerCamelCase , _lowerCamelCase = None )-> List[int]: lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case_( self , _lowerCamelCase , _lowerCamelCase = None )-> Tuple[str]: lowercase__ = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase )
710
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor _lowerCAmelCase = logging.get_logger(__name__) class __A ( a ): """simple docstring""" def __init__( self , *_lowerCamelCase , **_lowerCamelCase )-> None: warnings.warn( '''The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use LayoutLMv2ImageProcessor instead.''' , _lowerCamelCase , ) super().__init__(*_lowerCamelCase , **_lowerCamelCase )
318
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( __a , unittest.TestCase ): A__ = DiTPipeline A__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS A__ = PipelineTesterMixin.required_optional_params - { """latents""", """num_images_per_prompt""", """callback""", """callback_steps""", } A__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS A__ = False def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : Tuple = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=a__ , activation_fn="gelu-approximate" , num_embeds_ada_norm=1000 , norm_type="ada_norm_zero" , norm_elementwise_affine=a__ , ) _SCREAMING_SNAKE_CASE : Optional[int] = AutoencoderKL() _SCREAMING_SNAKE_CASE : int = DDIMScheduler() _SCREAMING_SNAKE_CASE : Optional[int] = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__=0 ): """simple docstring""" if str(a__ ).startswith("mps" ): _SCREAMING_SNAKE_CASE : Any = torch.manual_seed(a__ ) else: _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device=a__ ).manual_seed(a__ ) _SCREAMING_SNAKE_CASE : Tuple = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : str = "cpu" _SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() _SCREAMING_SNAKE_CASE : Any = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_inputs(a__ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = pipe(**a__ ).images _SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _SCREAMING_SNAKE_CASE : Any = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) _SCREAMING_SNAKE_CASE : Tuple = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a__ , 1E-3 ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" self._test_inference_batch_single_identical(relax_max_difference=a__ , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class UpperCamelCase ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : Any = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) _SCREAMING_SNAKE_CASE : Optional[int] = ["vase", "umbrella", "white shark", "white wolf"] _SCREAMING_SNAKE_CASE : Dict = pipe.get_label_ids(a__ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = pipe(a__ , generator=a__ , num_inference_steps=40 , output_type="np" ).images for word, image in zip(a__ , a__ ): _SCREAMING_SNAKE_CASE : int = load_numpy( F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-2 def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) _SCREAMING_SNAKE_CASE : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) _SCREAMING_SNAKE_CASE : Optional[int] = ["vase", "umbrella"] _SCREAMING_SNAKE_CASE : str = pipe.get_label_ids(a__ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : Any = pipe(a__ , generator=a__ , num_inference_steps=25 , output_type="np" ).images for word, image in zip(a__ , a__ ): _SCREAMING_SNAKE_CASE : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" F'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-1
572
'''simple docstring''' import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 _lowerCAmelCase = 0B10_11_00_11_11_10_11_00_10_01_00_00_01_11_10_11_10_11_00_01_10_01_11_10 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 _lowerCAmelCase = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class _SCREAMING_SNAKE_CASE : def __init__( self : List[Any] ): __magic_name__ = WATERMARK_BITS __magic_name__ = WatermarkEncoder() self.encoder.set_watermark('''bits''' , self.watermark ) def snake_case__ ( self : Optional[Any] , a__ : torch.FloatTensor ): # can't encode images that are smaller than 256 if images.shape[-1] < 256: return images __magic_name__ = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __magic_name__ = [self.encoder.encode(a__ , '''dwtDct''' ) for image in images] __magic_name__ = torch.from_numpy(np.array(a__ ) ).permute(0 , 3 , 1 , 2 ) __magic_name__ = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
432
0
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file a_ = 'Run commands across TPU VMs for initial setup before running `accelerate launch`.' def __SCREAMING_SNAKE_CASE ( lowercase_=None ) -> Optional[int]: """simple docstring""" if subparsers is not None: __UpperCamelCase = subparsers.add_parser('''tpu-config''' , description=_description ) else: __UpperCamelCase = argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description ) # Core arguments __UpperCamelCase = parser.add_argument_group( '''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' ) config_args.add_argument( '''--config_file''' , type=snake_case_ , default=snake_case_ , help='''Path to the config file to use for accelerate.''' , ) config_args.add_argument( '''--tpu_name''' , default=snake_case_ , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , ) config_args.add_argument( '''--tpu_zone''' , default=snake_case_ , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , ) __UpperCamelCase = parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' ) pod_args.add_argument( '''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , ) pod_args.add_argument( '''--command_file''' , default=snake_case_ , help='''The path to the file containing the commands to run on the pod on startup.''' , ) pod_args.add_argument( '''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , ) pod_args.add_argument( '''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , ) pod_args.add_argument( '''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , ) pod_args.add_argument( '''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' ) if subparsers is not None: parser.set_defaults(func=snake_case_ ) return parser def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: """simple docstring""" __UpperCamelCase = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(snake_case_ ): __UpperCamelCase = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: __UpperCamelCase = defaults.command_file if not args.command and defaults.commands is not None: __UpperCamelCase = defaults.commands if not args.tpu_name: __UpperCamelCase = defaults.tpu_name if not args.tpu_zone: __UpperCamelCase = defaults.tpu_zone if args.accelerate_version == "dev": __UpperCamelCase = '''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": __UpperCamelCase = '''accelerate -U''' elif isinstance(parse(args.accelerate_version ) , snake_case_ ): __UpperCamelCase = F"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError('''You must specify either a command file or a command to run on the pod.''' ) if args.command_file: with open(args.command_file , '''r''' ) as f: __UpperCamelCase = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , snake_case_ ): __UpperCamelCase = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate __UpperCamelCase = ['''cd /usr/share'''] if args.install_accelerate: new_cmd += [F"pip install {args.accelerate_version}"] new_cmd += args.command __UpperCamelCase = '''; '''.join(snake_case_ ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess __UpperCamelCase = ['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"Running {' '.join(snake_case_ )}" ) return subprocess.run(snake_case_ ) print('''Successfully setup pod.''' ) def __SCREAMING_SNAKE_CASE ( ) -> Any: """simple docstring""" __UpperCamelCase = tpu_command_parser() __UpperCamelCase = parser.parse_args() tpu_command_launcher(snake_case_ )
719
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging a_ = logging.get_logger(__name__) class _lowerCamelCase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCAmelCase__ : Dict = ["input_features", "is_longer"] def __init__( self : Dict , snake_case : int=64 , snake_case : Dict=48000 , snake_case : Tuple=480 , snake_case : Optional[Any]=10 , snake_case : Union[str, Any]=1024 , snake_case : Union[str, Any]=0.0 , snake_case : List[str]=False , snake_case : float = 0 , snake_case : float = 14000 , snake_case : int = None , snake_case : str = "fusion" , snake_case : str = "repeatpad" , **snake_case : int , ): super().__init__( feature_size=snake_case , sampling_rate=snake_case , padding_value=snake_case , return_attention_mask=snake_case , **snake_case , ) __UpperCamelCase = top_db __UpperCamelCase = truncation __UpperCamelCase = padding __UpperCamelCase = fft_window_size __UpperCamelCase = (fft_window_size >> 1) + 1 __UpperCamelCase = hop_length __UpperCamelCase = max_length_s __UpperCamelCase = max_length_s * sampling_rate __UpperCamelCase = sampling_rate __UpperCamelCase = frequency_min __UpperCamelCase = frequency_max __UpperCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case , min_frequency=snake_case , max_frequency=snake_case , sampling_rate=snake_case , norm=snake_case , mel_scale='''htk''' , ) __UpperCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case , min_frequency=snake_case , max_frequency=snake_case , sampling_rate=snake_case , norm='''slaney''' , mel_scale='''slaney''' , ) def snake_case ( self : Union[str, Any] ): __UpperCamelCase = copy.deepcopy(self.__dict__ ) __UpperCamelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def snake_case ( self : Tuple , snake_case : np.array , snake_case : Optional[np.array] = None ): __UpperCamelCase = spectrogram( snake_case , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=snake_case , log_mel='''dB''' , ) return log_mel_spectrogram.T def snake_case ( self : Optional[int] , snake_case : Any , snake_case : List[Any] , snake_case : int ): __UpperCamelCase = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk __UpperCamelCase = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk __UpperCamelCase = [0] # randomly choose index for each part __UpperCamelCase = np.random.choice(ranges[0] ) __UpperCamelCase = np.random.choice(ranges[1] ) __UpperCamelCase = np.random.choice(ranges[2] ) __UpperCamelCase = mel[idx_front : idx_front + chunk_frames, :] __UpperCamelCase = mel[idx_middle : idx_middle + chunk_frames, :] __UpperCamelCase = mel[idx_back : idx_back + chunk_frames, :] __UpperCamelCase = torch.tensor(mel[None, None, :] ) __UpperCamelCase = torch.nn.functional.interpolate( snake_case , size=[chunk_frames, 64] , mode='''bilinear''' , align_corners=snake_case ) __UpperCamelCase = mel_shrink[0][0].numpy() __UpperCamelCase = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def snake_case ( self : Optional[Any] , snake_case : np.array , snake_case : Optional[int] , snake_case : Tuple , snake_case : str ): if waveform.shape[0] > max_length: if truncation == "rand_trunc": __UpperCamelCase = True # random crop to max_length (for compatibility) -> this should be handled by self.pad __UpperCamelCase = len(snake_case ) - max_length __UpperCamelCase = np.random.randint(0 , overflow + 1 ) __UpperCamelCase = waveform[idx : idx + max_length] __UpperCamelCase = self._np_extract_fbank_features(snake_case , self.mel_filters_slaney )[None, :] elif truncation == "fusion": __UpperCamelCase = self._np_extract_fbank_features(snake_case , self.mel_filters ) __UpperCamelCase = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed __UpperCamelCase = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. __UpperCamelCase = np.stack([mel, mel, mel, mel] , axis=0 ) __UpperCamelCase = False else: __UpperCamelCase = self._random_mel_fusion(snake_case , snake_case , snake_case ) __UpperCamelCase = True else: raise NotImplementedError(F"data_truncating {truncation} not implemented" ) else: __UpperCamelCase = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": __UpperCamelCase = int(max_length / len(snake_case ) ) __UpperCamelCase = np.stack(np.tile(snake_case , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": __UpperCamelCase = int(max_length / len(snake_case ) ) __UpperCamelCase = np.stack(np.tile(snake_case , snake_case ) ) __UpperCamelCase = np.pad(snake_case , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 ) if truncation == "fusion": __UpperCamelCase = self._np_extract_fbank_features(snake_case , self.mel_filters ) __UpperCamelCase = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: __UpperCamelCase = self._np_extract_fbank_features(snake_case , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : List[str] , snake_case : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , snake_case : str = None , snake_case : Optional[str] = None , snake_case : Optional[int] = None , snake_case : Optional[int] = None , snake_case : Optional[Union[str, TensorType]] = None , **snake_case : Any , ): __UpperCamelCase = truncation if truncation is not None else self.truncation __UpperCamelCase = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" F" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" F" was sampled with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) __UpperCamelCase = isinstance(snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) __UpperCamelCase = is_batched_numpy or ( isinstance(snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __UpperCamelCase = [np.asarray(snake_case , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(snake_case , np.ndarray ): __UpperCamelCase = np.asarray(snake_case , dtype=np.floataa ) elif isinstance(snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __UpperCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __UpperCamelCase = [np.asarray(snake_case )] # convert to mel spectrogram, truncate and pad if needed. __UpperCamelCase = [ self._get_input_mel(snake_case , max_length if max_length else self.nb_max_samples , snake_case , snake_case ) for waveform in raw_speech ] __UpperCamelCase = [] __UpperCamelCase = [] for mel, longer in padded_inputs: input_mel.append(snake_case ) is_longer.append(snake_case ) if truncation == "fusion" and sum(snake_case ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer __UpperCamelCase = np.random.randint(0 , len(snake_case ) ) __UpperCamelCase = True if isinstance(input_mel[0] , snake_case ): __UpperCamelCase = [np.asarray(snake_case , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool __UpperCamelCase = [[longer] for longer in is_longer] __UpperCamelCase = {'''input_features''': input_mel, '''is_longer''': is_longer} __UpperCamelCase = BatchFeature(snake_case ) if return_tensors is not None: __UpperCamelCase = input_features.convert_to_tensors(snake_case ) return input_features
375
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = {'vocab_file': 'sentencepiece.bpe.model'} __snake_case = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } __snake_case = { 'moussaKam/mbarthez': 1024, 'moussaKam/barthez': 1024, 'moussaKam/barthez-orangesum-title': 1024, } __snake_case = '▁' class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): """simple docstring""" _a : Any = VOCAB_FILES_NAMES _a : Any = PRETRAINED_VOCAB_FILES_MAP _a : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : Tuple = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCamelCase__ , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<pad>" , lowerCamelCase__="<mask>" , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> None: # Mask token behave like a normal word, i.e. include the space before it lowercase__ : int = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token lowercase__ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase__ , ) lowercase__ : int = vocab_file lowercase__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase__ ) ) lowercase__ : List[Any] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} lowercase__ : Optional[Any] = len(self.sp_model ) - 1 lowercase__ : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ : Tuple = [self.cls_token_id] lowercase__ : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1, 1] + ([0] * len(lowerCamelCase__ )) + [1] def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]: lowercase__ : Any = [self.sep_token_id] lowercase__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase__( self ) -> List[str]: return len(self.sp_model ) def UpperCAmelCase__( self ) -> Union[str, Any]: lowercase__ : Union[str, Any] = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase__( self , lowerCamelCase__ ) -> List[str]: return self.sp_model.encode(lowerCamelCase__ , out_type=lowerCamelCase__ ) def UpperCAmelCase__( self , lowerCamelCase__ ) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase__ : List[Any] = self.sp_model.PieceToId(lowerCamelCase__ ) return spm_id if spm_id else self.unk_token_id def UpperCAmelCase__( self , lowerCamelCase__ ) -> Optional[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(lowerCamelCase__ ) def UpperCAmelCase__( self , lowerCamelCase__ ) -> Optional[Any]: lowercase__ : str = [] lowercase__ : str = """""" lowercase__ : Any = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCamelCase__ ) + token lowercase__ : Any = True lowercase__ : Optional[Any] = [] else: current_sub_tokens.append(lowerCamelCase__ ) lowercase__ : Any = False out_string += self.sp_model.decode(lowerCamelCase__ ) return out_string.strip() def __getstate__( self ) -> Any: lowercase__ : List[str] = self.__dict__.copy() lowercase__ : str = None return state def __setstate__( self , lowerCamelCase__ ) -> Optional[Any]: lowercase__ : Union[str, Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowercase__ : List[str] = {} lowercase__ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase__ : Any = os.path.join( lowerCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase__ , """wb""" ) as fi: lowercase__ : List[Any] = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) return (out_vocab_file,)
200
"""simple docstring""" import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py __snake_case = 'src/transformers' __snake_case = 'docs/source/en' __snake_case = '.' def _lowerCamelCase ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Any ): with open(lowerCamelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase__ : List[str] = f.readlines() # Find the start prompt. lowercase__ : str = 0 while not lines[start_index].startswith(lowerCamelCase__ ): start_index += 1 start_index += 1 lowercase__ : Optional[Any] = start_index while not lines[end_index].startswith(lowerCamelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | __snake_case = 'Model|Encoder|Decoder|ForConditionalGeneration' # Regexes that match TF/Flax/PT model names. __snake_case = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') __snake_case = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __snake_case = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # This is to make sure the transformers module imported is the one in the repo. __snake_case = direct_transformers_import(TRANSFORMERS_PATH) def _lowerCamelCase ( lowerCamelCase__ : List[Any] ): lowercase__ : Union[str, Any] = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , lowerCamelCase__ ) return [m.group(0 ) for m in matches] def _lowerCamelCase ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : int ): lowercase__ : Any = 2 if text == """✅""" or text == """❌""" else len(lowerCamelCase__ ) lowercase__ : int = (width - text_length) // 2 lowercase__ : List[str] = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def _lowerCamelCase ( ): lowercase__ : List[str] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowercase__ : Optional[int] = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } lowercase__ : str = {name: config.replace("""Config""" , """""" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. lowercase__ : Tuple = collections.defaultdict(lowerCamelCase__ ) lowercase__ : Optional[Any] = collections.defaultdict(lowerCamelCase__ ) lowercase__ : Optional[int] = collections.defaultdict(lowerCamelCase__ ) lowercase__ : Dict = collections.defaultdict(lowerCamelCase__ ) lowercase__ : Union[str, Any] = collections.defaultdict(lowerCamelCase__ ) # Let's lookup through all transformers object (once). for attr_name in dir(lowerCamelCase__ ): lowercase__ : Optional[Any] = None if attr_name.endswith("""Tokenizer""" ): lowercase__ : List[Any] = slow_tokenizers lowercase__ : List[str] = attr_name[:-9] elif attr_name.endswith("""TokenizerFast""" ): lowercase__ : Tuple = fast_tokenizers lowercase__ : str = attr_name[:-13] elif _re_tf_models.match(lowerCamelCase__ ) is not None: lowercase__ : Tuple = tf_models lowercase__ : List[Any] = _re_tf_models.match(lowerCamelCase__ ).groups()[0] elif _re_flax_models.match(lowerCamelCase__ ) is not None: lowercase__ : List[Any] = flax_models lowercase__ : List[Any] = _re_flax_models.match(lowerCamelCase__ ).groups()[0] elif _re_pt_models.match(lowerCamelCase__ ) is not None: lowercase__ : Union[str, Any] = pt_models lowercase__ : Optional[int] = _re_pt_models.match(lowerCamelCase__ ).groups()[0] if lookup_dict is not None: while len(lowerCamelCase__ ) > 0: if attr_name in model_name_to_prefix.values(): lowercase__ : Tuple = True break # Try again after removing the last word in the name lowercase__ : Union[str, Any] = """""".join(camel_case_split(lowerCamelCase__ )[:-1] ) # Let's build that table! lowercase__ : Union[str, Any] = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) lowercase__ : List[Any] = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). lowercase__ : str = [len(lowerCamelCase__ ) + 2 for c in columns] lowercase__ : Tuple = max([len(lowerCamelCase__ ) for name in model_names] ) + 2 # Build the table per se lowercase__ : List[Any] = """|""" + """|""".join([_center_text(lowerCamelCase__ , lowerCamelCase__ ) for c, w in zip(lowerCamelCase__ , lowerCamelCase__ )] ) + """|\n""" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n" lowercase__ : List[Any] = {True: """✅""", False: """❌"""} for name in model_names: lowercase__ : int = model_name_to_prefix[name] lowercase__ : List[str] = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(lowerCamelCase__ , lowerCamelCase__ ) for l, w in zip(lowerCamelCase__ , lowerCamelCase__ )] ) + "|\n" return table def _lowerCamelCase ( lowerCamelCase__ : Union[str, Any]=False ): lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = _find_text_in_file( filename=os.path.join(lowerCamelCase__ , """index.md""" ) , start_prompt="""<!--This table is updated automatically from the auto modules""" , end_prompt="""<!-- End table-->""" , ) lowercase__ : Union[str, Any] = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(lowerCamelCase__ , """index.md""" ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( """The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') __snake_case = parser.parse_args() check_model_table(args.fix_and_overwrite)
200
1
"""simple docstring""" from string import ascii_lowercase, ascii_uppercase def __lowerCamelCase ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" if not sentence: return "" _UpperCAmelCase = dict(zip(lowerCAmelCase_,lowerCAmelCase_ ) ) return lower_to_upper.get(sentence[0],sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
703
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = {'''configuration_timm_backbone''': ['''TimmBackboneConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''TimmBackbone'''] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
494
0
import functools def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> int: # Validation if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(__lowerCAmelCase ) != 3 or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(__lowerCAmelCase ) == 0: return 0 if min(__lowerCAmelCase ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(__lowerCAmelCase ) >= 366: raise ValueError('''All days elements should be less than 366''' ) snake_case__ = set(__lowerCAmelCase ) @functools.cache def dynamic_programming(__lowerCAmelCase ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
33
"""simple docstring""" import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor __A = logging.get_logger(__name__) class lowerCamelCase__ ( lowerCamelCase_ ): def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" warnings.warn( "The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use LayoutLMv2ImageProcessor instead." , SCREAMING_SNAKE_CASE , ) super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
134
0
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def a_ ( lowerCamelCase : Union[dict, list, tuple, torch.Tensor] ): lowerCAmelCase = [] if isinstance(lowerCamelCase , lowerCamelCase ): for v in tree.values(): shapes.extend(_fetch_dims(lowerCamelCase ) ) elif isinstance(lowerCamelCase , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(lowerCamelCase ) ) elif isinstance(lowerCamelCase , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('Not supported' ) return shapes @torch.jit.ignore def a_ ( lowerCamelCase : int , lowerCamelCase : Tuple[int, ...] ): lowerCAmelCase = [] for d in reversed(lowerCamelCase ): idx.append(flat_idx % d ) lowerCAmelCase = flat_idx // d return tuple(reversed(lowerCamelCase ) ) @torch.jit.ignore def a_ ( lowerCamelCase : Sequence[int] , lowerCamelCase : Sequence[int] , lowerCamelCase : Sequence[int] , lowerCamelCase : Optional[Sequence[bool]] = None , lowerCamelCase : Optional[Sequence[bool]] = None , ): # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(lowerCamelCase : List[bool] ) -> None: lowerCAmelCase = True for i in range(len(lowerCamelCase ) ): lowerCAmelCase = -1 * (i + 1) l[reversed_idx] &= tally lowerCAmelCase = l[reversed_idx] if start_edges is None: lowerCAmelCase = [s == 0 for s in start] reduce_edge_list(lowerCamelCase ) if end_edges is None: lowerCAmelCase = [e == (d - 1) for e, d in zip(lowerCamelCase , lowerCamelCase )] reduce_edge_list(lowerCamelCase ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(lowerCamelCase ) == 0: return [()] elif len(lowerCamelCase ) == 1: return [(slice(start[0] , end[0] + 1 ),)] lowerCAmelCase = [] lowerCAmelCase = [] # Dimensions common to start and end can be selected directly for s, e in zip(lowerCamelCase , lowerCamelCase ): if s == e: path_list.append(slice(lowerCamelCase , s + 1 ) ) else: break lowerCAmelCase = tuple(lowerCamelCase ) lowerCAmelCase = len(lowerCamelCase ) # start == end, and we're done if divergence_idx == len(lowerCamelCase ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None lowerCAmelCase = start[divergence_idx] return tuple( path + (slice(lowerCamelCase , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None lowerCAmelCase = end[divergence_idx] return tuple( path + (slice(lowerCamelCase , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) lowerCAmelCase = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def a_ ( lowerCamelCase : torch.Tensor , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int ): lowerCAmelCase = t.shape[:no_batch_dims] lowerCAmelCase = list(_flat_idx_to_idx(lowerCamelCase , lowerCamelCase ) ) # _get_minimal_slice_set is inclusive lowerCAmelCase = list(_flat_idx_to_idx(flat_end - 1 , lowerCamelCase ) ) # Get an ordered list of slices to perform lowerCAmelCase = _get_minimal_slice_set( lowerCamelCase , lowerCamelCase , lowerCamelCase , ) lowerCAmelCase = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def a_ ( lowerCamelCase : Callable , lowerCamelCase : Dict[str, Any] , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : bool = False , lowerCamelCase : Any = None , lowerCamelCase : bool = False , ): if not (len(lowerCamelCase ) > 0): raise ValueError('Must provide at least one input' ) lowerCAmelCase = [shape[:no_batch_dims] for shape in _fetch_dims(lowerCamelCase )] lowerCAmelCase = tuple([max(lowerCamelCase ) for s in zip(*lowerCamelCase )] ) def _prep_inputs(lowerCamelCase : torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: lowerCAmelCase = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) lowerCAmelCase = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: lowerCAmelCase = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t lowerCAmelCase = tensor_tree_map(_prep_inputs , lowerCamelCase ) lowerCAmelCase = None if _out is not None: lowerCAmelCase = tensor_tree_map(lambda lowerCamelCase : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) lowerCAmelCase = 1 for d in orig_batch_dims: flat_batch_dim *= d lowerCAmelCase = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowerCamelCase : torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t lowerCAmelCase = 0 lowerCAmelCase = prepped_outputs for _ in range(lowerCamelCase ): # Chunk the input if not low_mem: lowerCAmelCase = _select_chunk else: lowerCAmelCase = partial( _chunk_slice , flat_start=lowerCamelCase , flat_end=min(lowerCamelCase , i + chunk_size ) , no_batch_dims=len(lowerCamelCase ) , ) lowerCAmelCase = tensor_tree_map(lowerCamelCase , lowerCamelCase ) # Run the layer on the chunk lowerCAmelCase = layer(**lowerCamelCase ) # Allocate space for the output if out is None: lowerCAmelCase = tensor_tree_map(lambda lowerCamelCase : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , lowerCamelCase ) # Put the chunk in its pre-allocated space if isinstance(lowerCamelCase , lowerCamelCase ): def assign(lowerCamelCase : dict , lowerCamelCase : dict ) -> None: for k, v in da.items(): if isinstance(lowerCamelCase , lowerCamelCase ): assign(lowerCamelCase , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: lowerCAmelCase = da[k] assign(lowerCamelCase , lowerCamelCase ) elif isinstance(lowerCamelCase , lowerCamelCase ): for xa, xa in zip(lowerCamelCase , lowerCamelCase ): if _add_into_out: xa[i : i + chunk_size] += xa else: lowerCAmelCase = xa elif isinstance(lowerCamelCase , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: lowerCAmelCase = output_chunk else: raise ValueError('Not supported' ) i += chunk_size lowerCAmelCase = tensor_tree_map(lambda lowerCamelCase : t.view(orig_batch_dims + t.shape[1:] ) , lowerCamelCase ) return out class UpperCAmelCase_ : def __init__( self : Optional[Any] , UpperCAmelCase__ : int = 5_1_2 , ) -> int: lowerCAmelCase = max_chunk_size lowerCAmelCase = None lowerCAmelCase = None def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : Callable , UpperCAmelCase__ : tuple , UpperCAmelCase__ : int ) -> int: logging.info('Tuning chunk size...' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size lowerCAmelCase = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] lowerCAmelCase = [c for c in candidates if c > min_chunk_size] lowerCAmelCase = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(UpperCAmelCase__ : int ) -> bool: try: with torch.no_grad(): fn(*UpperCAmelCase__ , chunk_size=UpperCAmelCase__ ) return True except RuntimeError: return False lowerCAmelCase = 0 lowerCAmelCase = len(UpperCAmelCase__ ) - 1 while i > min_viable_chunk_size_index: lowerCAmelCase = test_chunk_size(candidates[i] ) if not viable: lowerCAmelCase = (min_viable_chunk_size_index + i) // 2 else: lowerCAmelCase = i lowerCAmelCase = (i + len(UpperCAmelCase__ ) - 1) // 2 return candidates[min_viable_chunk_size_index] def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : Iterable , UpperCAmelCase__ : Iterable ) -> bool: lowerCAmelCase = True for aa, aa in zip(UpperCAmelCase__ , UpperCAmelCase__ ): assert type(UpperCAmelCase__ ) == type(UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , (list, tuple) ): consistent &= self._compare_arg_caches(UpperCAmelCase__ , UpperCAmelCase__ ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase__ : x[0] )] lowerCAmelCase = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase__ : x[0] )] consistent &= self._compare_arg_caches(UpperCAmelCase__ , UpperCAmelCase__ ) else: consistent &= aa == aa return consistent def __UpperCAmelCase ( self : Tuple , UpperCAmelCase__ : Callable , UpperCAmelCase__ : tuple , UpperCAmelCase__ : int , ) -> int: lowerCAmelCase = True lowerCAmelCase = tree_map(lambda UpperCAmelCase__ : a.shape if isinstance(UpperCAmelCase__ , torch.Tensor ) else a , UpperCAmelCase__ , UpperCAmelCase__ ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(UpperCAmelCase__ ) lowerCAmelCase = self._compare_arg_caches(self.cached_arg_data , UpperCAmelCase__ ) else: # Otherwise, we can reuse the precomputed value lowerCAmelCase = False if not consistent: lowerCAmelCase = self._determine_favorable_chunk_size( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) lowerCAmelCase = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
513
'''simple docstring''' import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput __snake_case ="""scheduler_config.json""" class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Optional[int] = 1 lowerCamelCase : Optional[int] = 2 lowerCamelCase : Union[str, Any] = 3 lowerCamelCase : Optional[Any] = 4 lowerCamelCase : Optional[int] = 5 lowerCamelCase : Dict = 6 lowerCamelCase : List[Any] = 7 lowerCamelCase : Dict = 8 lowerCamelCase : str = 9 lowerCamelCase : Optional[Any] = 10 lowerCamelCase : Optional[Any] = 11 lowerCamelCase : int = 12 lowerCamelCase : List[Any] = 13 lowerCamelCase : List[str] = 14 @dataclass class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : torch.FloatTensor class UpperCAmelCase_ : lowerCamelCase : Optional[int] = SCHEDULER_CONFIG_NAME lowerCamelCase : Optional[Any] = [] lowerCamelCase : Optional[int] = True @classmethod def __UpperCAmelCase ( cls : List[str] , UpperCAmelCase__ : Dict[str, Any] = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Tuple=False , **UpperCAmelCase__ : str , ) -> Any: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = cls.load_config( pretrained_model_name_or_path=UpperCAmelCase__ , subfolder=UpperCAmelCase__ , return_unused_kwargs=UpperCAmelCase__ , return_commit_hash=UpperCAmelCase__ , **UpperCAmelCase__ , ) return cls.from_config(UpperCAmelCase__ , return_unused_kwargs=UpperCAmelCase__ , **UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : Union[str, os.PathLike] , UpperCAmelCase__ : bool = False , **UpperCAmelCase__ : Optional[int] ) -> Optional[Any]: self.save_config(save_directory=UpperCAmelCase__ , push_to_hub=UpperCAmelCase__ , **UpperCAmelCase__ ) @property def __UpperCAmelCase ( self : List[Any] ) -> List[str]: return self._get_compatibles() @classmethod def __UpperCAmelCase ( cls : List[str] ) -> Dict: lowerCAmelCase = list(set([cls.__name__] + cls._compatibles ) ) lowerCAmelCase = importlib.import_module(__name__.split('.' )[0] ) lowerCAmelCase = [ getattr(UpperCAmelCase__ , UpperCAmelCase__ ) for c in compatible_classes_str if hasattr(UpperCAmelCase__ , UpperCAmelCase__ ) ] return compatible_classes
513
1
import requests from bsa import BeautifulSoup def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = BeautifulSoup(requests.get(__SCREAMING_SNAKE_CASE , params=__SCREAMING_SNAKE_CASE ).content , 'html.parser' ) lowercase = soup.find('div' , attrs={'class': 'gs_ri'} ) lowercase = div.find('div' , attrs={'class': 'gs_fl'} ).find_all('a' ) return anchors[2].get_text() if __name__ == "__main__": UpperCAmelCase = { '''title''': ( '''Precisely geometry controlled microsupercapacitors for ultrahigh areal ''' '''capacitance, volumetric capacitance, and energy density''' ), '''journal''': '''Chem. Mater.''', '''volume''': 30, '''pages''': '''3979-3990''', '''year''': 2018, '''hl''': '''en''', } print(get_citation('''https://scholar.google.com/scholar_lookup''', params=params))
84
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
108
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class _lowerCAmelCase ( A__ ): """simple docstring""" def __init__( self : List[str] , __snake_case : List[str] )-> int: snake_case = data def __iter__( self : str )-> Dict: for element in self.data: yield element def __lowerCamelCase ( __lowerCAmelCase : int=True ) -> Dict: snake_case = Accelerator(even_batches=__lowerCAmelCase ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def __lowerCamelCase ( __lowerCAmelCase : Accelerator , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : bool = False ) -> Dict: if iterable: snake_case = DummyIterableDataset(torch.as_tensor(range(__lowerCAmelCase ) ) ) else: snake_case = TensorDataset(torch.as_tensor(range(__lowerCAmelCase ) ) ) snake_case = DataLoader(__lowerCAmelCase , batch_size=__lowerCAmelCase ) snake_case = accelerator.prepare(__lowerCAmelCase ) return dl def __lowerCamelCase ( __lowerCAmelCase : Accelerator , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : List[int] , __lowerCAmelCase : List[int] , ) -> Dict: snake_case = create_dataloader(accelerator=__lowerCAmelCase , dataset_size=__lowerCAmelCase , batch_size=__lowerCAmelCase ) snake_case = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def __lowerCamelCase ( ) -> Dict: snake_case = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( __lowerCAmelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( __lowerCAmelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def __lowerCamelCase ( ) -> Union[str, Any]: snake_case = create_accelerator(even_batches=__lowerCAmelCase ) verify_dataloader_batch_sizes( __lowerCAmelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( __lowerCAmelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def __lowerCamelCase ( ) -> str: snake_case = create_accelerator(even_batches=__lowerCAmelCase ) snake_case = torch.nn.Linear(1 , 1 ) snake_case = accelerator.prepare(__lowerCAmelCase ) snake_case = create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 ) snake_case = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(__lowerCAmelCase ): snake_case = ddp_model(batch[0].float() ) snake_case = output.sum() loss.backward() batch_idxs.append(__lowerCAmelCase ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def __lowerCamelCase ( __lowerCAmelCase : Dict ) -> str: with warnings.catch_warnings(record=__lowerCAmelCase ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , __lowerCAmelCase ) assert "only supported for multi-GPU" in str(w[-1].message ) def __lowerCamelCase ( ) -> Optional[int]: snake_case = True snake_case = False snake_case = create_accelerator(even_batches=__lowerCAmelCase ) snake_case = torch.nn.Linear(1 , 1 ) snake_case = accelerator.prepare(__lowerCAmelCase ) snake_case = create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 ) snake_case = create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCAmelCase ): snake_case = train_dl.batch_sampler.even_batches snake_case = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def __lowerCamelCase ( ) -> Union[str, Any]: snake_case = True snake_case = False snake_case = create_accelerator(even_batches=__lowerCAmelCase ) snake_case = torch.nn.Linear(1 , 1 ) snake_case = accelerator.prepare(__lowerCAmelCase ) create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 , iterable=__lowerCAmelCase ) snake_case = create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("""ignore""" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCAmelCase ): snake_case = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def __lowerCamelCase ( ) -> Dict: snake_case = create_accelerator() snake_case = torch.nn.Linear(1 , 1 ) snake_case = accelerator.prepare(__lowerCAmelCase ) create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 , iterable=__lowerCAmelCase ) with warnings.catch_warnings(record=__lowerCAmelCase ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCAmelCase ): pass assert issubclass(w[-1].category , __lowerCAmelCase ) assert "only supported for map-style datasets" in str(w[-1].message ) def __lowerCamelCase ( ) -> Dict: snake_case = create_accelerator() accelerator.print("""Test that even_batches variable ensures uniform batches across processes""" ) test_default_ensures_even_batch_sizes() accelerator.print("""Run tests with even_batches disabled""" ) test_can_disable_even_batches() accelerator.print("""Test joining uneven inputs""" ) test_can_join_uneven_inputs() accelerator.print("""Test overriding even_batches when joining uneven inputs""" ) test_join_can_override_even_batches() accelerator.print("""Test overriding even_batches for mixed dataloader types""" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("""Test overriding even_batches raises a warning for iterable dataloaders""" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("""Test join with non DDP distributed raises warning""" ) snake_case = accelerator.state.distributed_type snake_case = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(__lowerCAmelCase ) snake_case = original_state if __name__ == "__main__": main()
517
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device _SCREAMING_SNAKE_CASE = False class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Union[str, Any] )-> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : Optional[Any] )-> Tuple: snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) # remove text_unet pipe.remove_unused_weights() pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case = """A painting of a squirrel eating a burger """ snake_case = torch.manual_seed(0 ) snake_case = pipe( prompt=__snake_case , generator=__snake_case , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__snake_case ) snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained(__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case = generator.manual_seed(0 ) snake_case = pipe( prompt=__snake_case , generator=__snake_case , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def lowerCAmelCase ( self : int )-> List[str]: snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained( """shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case = """A painting of a squirrel eating a burger """ snake_case = torch.manual_seed(0 ) snake_case = pipe( prompt=__snake_case , generator=__snake_case , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images snake_case = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) snake_case = np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
517
1
def UpperCAmelCase ( UpperCAmelCase )-> int: '''simple docstring''' if not isinstance(UpperCAmelCase ,UpperCAmelCase ): raise TypeError('''Input value must be an \'int\' type''' ) SCREAMING_SNAKE_CASE_ = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
393
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def UpperCAmelCase ( UpperCAmelCase )-> int: '''simple docstring''' if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , lowerCAmelCase_ : nn.Module , lowerCAmelCase_ : int ) -> Optional[Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ = module SCREAMING_SNAKE_CASE_ = nn.Sequential( nn.Linear(module.in_features , lowerCAmelCase_ , bias=lowerCAmelCase_ ) , nn.Linear(lowerCAmelCase_ , module.out_features , bias=lowerCAmelCase_ ) , ) SCREAMING_SNAKE_CASE_ = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=lowerCAmelCase_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def _lowercase ( self : List[Any] , lowerCAmelCase_ : Any , *lowerCAmelCase_ : int , **lowerCAmelCase_ : Optional[int] ) -> Dict: """simple docstring""" return self.module(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) + self.adapter(lowerCAmelCase_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class snake_case ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase : int = """bigscience/bloom-1b7""" # Constant values UpperCAmelCase : List[Any] = 2.1_0_9_6_5_9_5_5_2_6_9_2_5_7_4 UpperCAmelCase : int = """Hello my name is""" UpperCAmelCase : List[str] = set() EXPECTED_OUTPUTS.add("""Hello my name is John and I am a professional photographer. I""" ) EXPECTED_OUTPUTS.add("""Hello my name is John.\nI am a friend of your father.\n""" ) EXPECTED_OUTPUTS.add("""Hello my name is John Doe, I am a student at the University""" ) UpperCAmelCase : Dict = 10 def _lowercase ( self : Optional[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(self.model_name ) class snake_case ( lowerCAmelCase__ ): '''simple docstring''' def _lowercase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" super().setUp() # Models and tokenizer SCREAMING_SNAKE_CASE_ = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) SCREAMING_SNAKE_CASE_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map='''auto''' ) def _lowercase ( self : Optional[int] ) -> Dict: """simple docstring""" del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def _lowercase ( self : int ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.model_abit.config self.assertTrue(hasattr(lowerCAmelCase_ , '''quantization_config''' ) ) SCREAMING_SNAKE_CASE_ = config.to_dict() SCREAMING_SNAKE_CASE_ = config.to_diff_dict() SCREAMING_SNAKE_CASE_ = config.to_json_string() def _lowercase ( self : int ) -> List[Any]: """simple docstring""" from bitsandbytes.nn import Paramsabit SCREAMING_SNAKE_CASE_ = self.model_fpaa.get_memory_footprint() SCREAMING_SNAKE_CASE_ = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) SCREAMING_SNAKE_CASE_ = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def _lowercase ( self : List[Any] ) -> str: """simple docstring""" from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(lowerCAmelCase_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def _lowercase ( self : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE_ = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) def _lowercase ( self : List[str] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ = BitsAndBytesConfig() SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase_ , device_map='''auto''' ) SCREAMING_SNAKE_CASE_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE_ = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) def _lowercase ( self : Optional[int] ) -> str: """simple docstring""" with self.assertRaises(lowerCAmelCase_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(lowerCAmelCase_ ) def _lowercase ( self : Optional[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ = BitsAndBytesConfig() with self.assertRaises(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE_ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase_ , load_in_abit=lowerCAmelCase_ , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def _lowercase ( self : Dict ) -> Optional[int]: """simple docstring""" with self.assertRaises(lowerCAmelCase_ ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything SCREAMING_SNAKE_CASE_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE_ = self.model_fpaa.to(torch.floataa ) SCREAMING_SNAKE_CASE_ = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error SCREAMING_SNAKE_CASE_ = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error SCREAMING_SNAKE_CASE_ = self.model_fpaa.half() # Check this does not throw an error SCREAMING_SNAKE_CASE_ = self.model_fpaa.float() def _lowercase ( self : List[str] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=lowerCAmelCase_ , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class snake_case ( unittest.TestCase ): '''simple docstring''' @classmethod def _lowercase ( cls : Dict ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ = '''t5-small''' SCREAMING_SNAKE_CASE_ = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(cls.model_name ) SCREAMING_SNAKE_CASE_ = '''Translate in German: Hello, my dog is cute''' def _lowercase ( self : Any ) -> str: """simple docstring""" gc.collect() torch.cuda.empty_cache() def _lowercase ( self : Tuple ) -> List[str]: """simple docstring""" from transformers import TaForConditionalGeneration SCREAMING_SNAKE_CASE_ = TaForConditionalGeneration._keep_in_fpaa_modules SCREAMING_SNAKE_CASE_ = None # test with `t5-small` SCREAMING_SNAKE_CASE_ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map='''auto''' ) SCREAMING_SNAKE_CASE_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) SCREAMING_SNAKE_CASE_ = model.generate(**lowerCAmelCase_ ) # test with `flan-t5-small` SCREAMING_SNAKE_CASE_ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map='''auto''' ) SCREAMING_SNAKE_CASE_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) SCREAMING_SNAKE_CASE_ = model.generate(**lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = modules def _lowercase ( self : Optional[Any] ) -> int: """simple docstring""" import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` SCREAMING_SNAKE_CASE_ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) SCREAMING_SNAKE_CASE_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) SCREAMING_SNAKE_CASE_ = model.generate(**lowerCAmelCase_ ) # test with `flan-t5-small` SCREAMING_SNAKE_CASE_ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map='''auto''' ) SCREAMING_SNAKE_CASE_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) SCREAMING_SNAKE_CASE_ = model.generate(**lowerCAmelCase_ ) class snake_case ( lowerCAmelCase__ ): '''simple docstring''' def _lowercase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" super().setUp() # model_name SCREAMING_SNAKE_CASE_ = '''bigscience/bloom-560m''' SCREAMING_SNAKE_CASE_ = '''t5-small''' # Different types of model SCREAMING_SNAKE_CASE_ = AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map='''auto''' ) # Sequence classification model SCREAMING_SNAKE_CASE_ = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase_ , device_map='''auto''' ) # CausalLM model SCREAMING_SNAKE_CASE_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map='''auto''' ) # Seq2seq model SCREAMING_SNAKE_CASE_ = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=lowerCAmelCase_ , device_map='''auto''' ) def _lowercase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def _lowercase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class snake_case ( lowerCAmelCase__ ): '''simple docstring''' def _lowercase ( self : Tuple ) -> List[Any]: """simple docstring""" super().setUp() def _lowercase ( self : List[str] ) -> Dict: """simple docstring""" del self.pipe gc.collect() torch.cuda.empty_cache() def _lowercase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass SCREAMING_SNAKE_CASE_ = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class snake_case ( lowerCAmelCase__ ): '''simple docstring''' def _lowercase ( self : List[Any] ) -> Optional[int]: """simple docstring""" super().setUp() def _lowercase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase_ , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model SCREAMING_SNAKE_CASE_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch SCREAMING_SNAKE_CASE_ = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) class snake_case ( lowerCAmelCase__ ): '''simple docstring''' def _lowercase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ = '''facebook/opt-350m''' super().setUp() def _lowercase ( self : Optional[Any] ) -> List[str]: """simple docstring""" if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters SCREAMING_SNAKE_CASE_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): SCREAMING_SNAKE_CASE_ = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability SCREAMING_SNAKE_CASE_ = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(lowerCAmelCase_ ) ): SCREAMING_SNAKE_CASE_ = LoRALayer(module.q_proj , rank=16 ) SCREAMING_SNAKE_CASE_ = LoRALayer(module.k_proj , rank=16 ) SCREAMING_SNAKE_CASE_ = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch SCREAMING_SNAKE_CASE_ = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): SCREAMING_SNAKE_CASE_ = model.forward(**lowerCAmelCase_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(lowerCAmelCase_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class snake_case ( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase : Tuple = """gpt2-xl""" UpperCAmelCase : str = 3.3_1_9_1_8_5_4_8_5_4_1_5_2_1_8_7
393
1
'''simple docstring''' import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def lowerCamelCase( a__): _SCREAMING_SNAKE_CASE =[ '''decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(a__ ,a__) def lowerCamelCase( a__): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =emb.weight.shape _SCREAMING_SNAKE_CASE =nn.Linear(a__ ,a__ ,bias=a__) _SCREAMING_SNAKE_CASE =emb.weight.data return lin_layer def lowerCamelCase( a__): _SCREAMING_SNAKE_CASE =torch.load(a__ ,map_location='''cpu''') _SCREAMING_SNAKE_CASE =Namespace(**checkpoint['''cfg''']['''model''']) _SCREAMING_SNAKE_CASE =checkpoint['''model'''] remove_ignore_keys_(a__) _SCREAMING_SNAKE_CASE =state_dict['''decoder.embed_tokens.weight'''].shape[0] _SCREAMING_SNAKE_CASE ={key.replace('''decoder''' ,'''model'''): val for key, val in state_dict.items()} _SCREAMING_SNAKE_CASE =XGLMConfig( vocab_size=a__ ,max_position_embeddings=args.max_target_positions ,num_layers=args.decoder_layers ,attention_heads=args.decoder_attention_heads ,ffn_dim=args.decoder_ffn_embed_dim ,d_model=args.decoder_embed_dim ,layerdrop=args.decoder_layerdrop ,dropout=args.dropout ,attention_dropout=args.attention_dropout ,activation_dropout=args.activation_dropout ,activation_function='''gelu''' ,scale_embedding=not args.no_scale_embedding ,tie_word_embeddings=args.share_decoder_input_output_embed ,) _SCREAMING_SNAKE_CASE =XGLMForCausalLM(a__) _SCREAMING_SNAKE_CASE =model.load_state_dict(a__ ,strict=a__) print(a__) _SCREAMING_SNAKE_CASE =make_linear_from_emb(model.model.embed_tokens) return model if __name__ == "__main__": snake_case_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') snake_case_ : List[Any] = parser.parse_args() snake_case_ : Dict = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
712
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def lowerCamelCase( a__ ,a__=() ,a__=None ,a__="no" ,a__="29500"): _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =False if any(key.startswith('''KAGGLE''') for key in os.environ.keys()): _SCREAMING_SNAKE_CASE =True elif "IPython" in sys.modules: _SCREAMING_SNAKE_CASE ='''google.colab''' in str(sys.modules['''IPython'''].get_ipython()) try: _SCREAMING_SNAKE_CASE =PrecisionType(mixed_precision.lower()) except ValueError: raise ValueError( f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.") if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' ,a__) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''') if num_processes is None: _SCREAMING_SNAKE_CASE =8 _SCREAMING_SNAKE_CASE =PrepareForLaunch(a__ ,distributed_type='''TPU''') print(f"Launching a training on {num_processes} TPU cores.") xmp.spawn(a__ ,args=a__ ,nprocs=a__ ,start_method='''fork''') elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''') else: print('''Launching training on one CPU.''') function(*a__) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''') if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''') if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''') # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=a__ ,master_addr='''127.0.01''' ,master_port=a__ ,mixed_precision=a__): _SCREAMING_SNAKE_CASE =PrepareForLaunch(a__ ,distributed_type='''MULTI_GPU''') print(f"Launching training on {num_processes} GPUs.") try: start_processes(a__ ,args=a__ ,nprocs=a__ ,start_method='''fork''') except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''') from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): _SCREAMING_SNAKE_CASE ='''1''' print('''Launching training on MPS.''') elif torch.cuda.is_available(): print('''Launching training on one GPU.''') else: print('''Launching training on CPU.''') function(*a__) def lowerCamelCase( a__ ,a__=() ,a__=2): from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=a__ ,master_addr='''127.0.01''' ,master_port='''29500''' ,accelerate_mixed_precision='''no''' ,accelerate_debug_rdv_file=tmp_file.name ,accelerate_use_cpu='''yes''' ,): _SCREAMING_SNAKE_CASE =PrepareForLaunch(a__ ,debug=a__) start_processes(a__ ,args=a__ ,nprocs=a__ ,start_method='''fork''')
191
0
'''simple docstring''' import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def _a ( __lowerCAmelCase : List[Any] ): """simple docstring""" snake_case__ : Any = VideoMAEConfig() set_architecture_configs(__lowerCAmelCase , __lowerCAmelCase ) if "finetuned" not in model_name: snake_case__ : List[Any] = False if "finetuned" in model_name: snake_case__ : Optional[Any] = '''huggingface/label-files''' if "kinetics" in model_name: snake_case__ : int = 4_00 snake_case__ : List[Any] = '''kinetics400-id2label.json''' elif "ssv2" in model_name: snake_case__ : Tuple = 1_74 snake_case__ : int = '''something-something-v2-id2label.json''' else: raise ValueError('''Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.''' ) snake_case__ : Optional[Any] = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) snake_case__ : str = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ : Dict = idalabel snake_case__ : int = {v: k for k, v in idalabel.items()} return config def _a ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any ): """simple docstring""" if "small" in model_name: snake_case__ : List[str] = 3_84 snake_case__ : Optional[Any] = 15_36 snake_case__ : Optional[Any] = 12 snake_case__ : List[str] = 16 snake_case__ : List[str] = 12 snake_case__ : str = 3 snake_case__ : Optional[int] = 1_92 snake_case__ : Optional[Any] = 7_68 elif "large" in model_name: snake_case__ : List[Any] = 10_24 snake_case__ : List[str] = 40_96 snake_case__ : Tuple = 24 snake_case__ : Tuple = 16 snake_case__ : str = 12 snake_case__ : Union[str, Any] = 8 snake_case__ : int = 5_12 snake_case__ : Dict = 20_48 elif "huge" in model_name: snake_case__ : Optional[int] = 12_80 snake_case__ : Tuple = 51_20 snake_case__ : Union[str, Any] = 32 snake_case__ : Union[str, Any] = 16 snake_case__ : Dict = 12 snake_case__ : Optional[int] = 8 snake_case__ : Tuple = 6_40 snake_case__ : Dict = 25_60 elif "base" not in model_name: raise ValueError('''Model name should include either "small", "base", "large", or "huge"''' ) def _a ( __lowerCAmelCase : List[str] ): """simple docstring""" if "encoder." in name: snake_case__ : Optional[int] = name.replace('''encoder.''' , '''''' ) if "cls_token" in name: snake_case__ : Dict = name.replace('''cls_token''' , '''videomae.embeddings.cls_token''' ) if "decoder_pos_embed" in name: snake_case__ : Optional[Any] = name.replace('''decoder_pos_embed''' , '''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: snake_case__ : Union[str, Any] = name.replace('''pos_embed''' , '''videomae.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: snake_case__ : Tuple = name.replace('''patch_embed.proj''' , '''videomae.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: snake_case__ : List[str] = name.replace('''patch_embed.norm''' , '''videomae.embeddings.norm''' ) if "decoder.blocks" in name: snake_case__ : List[str] = name.replace('''decoder.blocks''' , '''decoder.decoder_layers''' ) if "blocks" in name: snake_case__ : List[Any] = name.replace('''blocks''' , '''videomae.encoder.layer''' ) if "attn.proj" in name: snake_case__ : Optional[Any] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "bias" not in name: snake_case__ : Dict = name.replace('''attn''' , '''attention.self''' ) if "attn" in name: snake_case__ : Tuple = name.replace('''attn''' , '''attention.attention''' ) if "norm1" in name: snake_case__ : List[Any] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: snake_case__ : Optional[int] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: snake_case__ : int = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: snake_case__ : Union[str, Any] = name.replace('''mlp.fc2''' , '''output.dense''' ) if "decoder_embed" in name: snake_case__ : List[Any] = name.replace('''decoder_embed''' , '''decoder.decoder_embed''' ) if "decoder_norm" in name: snake_case__ : Optional[int] = name.replace('''decoder_norm''' , '''decoder.decoder_norm''' ) if "decoder_pred" in name: snake_case__ : Any = name.replace('''decoder_pred''' , '''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: snake_case__ : Optional[int] = name.replace('''norm.weight''' , '''videomae.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: snake_case__ : int = name.replace('''norm.bias''' , '''videomae.layernorm.bias''' ) if "head" in name and "decoder" not in name: snake_case__ : int = name.replace('''head''' , '''classifier''' ) return name def _a ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple ): """simple docstring""" for key in orig_state_dict.copy().keys(): snake_case__ : Optional[int] = orig_state_dict.pop(__lowerCAmelCase ) if key.startswith('''encoder.''' ): snake_case__ : Dict = key.replace('''encoder.''' , '''''' ) if "qkv" in key: snake_case__ : Union[str, Any] = key.split('''.''' ) if key.startswith('''decoder.blocks''' ): snake_case__ : Any = config.decoder_hidden_size snake_case__ : Optional[Any] = int(key_split[2] ) snake_case__ : Any = '''decoder.decoder_layers.''' if "weight" in key: snake_case__ : List[Any] = val[:dim, :] snake_case__ : Dict = val[dim : dim * 2, :] snake_case__ : str = val[-dim:, :] else: snake_case__ : Optional[int] = config.hidden_size snake_case__ : Any = int(key_split[1] ) snake_case__ : Any = '''videomae.encoder.layer.''' if "weight" in key: snake_case__ : int = val[:dim, :] snake_case__ : Optional[Any] = val[dim : dim * 2, :] snake_case__ : Dict = val[-dim:, :] else: snake_case__ : Tuple = val return orig_state_dict def _a ( ): """simple docstring""" snake_case__ : List[str] = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) snake_case__ : Dict = np.load(__lowerCAmelCase ) return list(__lowerCAmelCase ) def _a ( __lowerCAmelCase : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] ): """simple docstring""" snake_case__ : Optional[Any] = get_videomae_config(__lowerCAmelCase ) if "finetuned" in model_name: snake_case__ : Optional[Any] = VideoMAEForVideoClassification(__lowerCAmelCase ) else: snake_case__ : Union[str, Any] = VideoMAEForPreTraining(__lowerCAmelCase ) # download original checkpoint, hosted on Google Drive snake_case__ : Optional[int] = '''pytorch_model.bin''' gdown.cached_download(__lowerCAmelCase , __lowerCAmelCase , quiet=__lowerCAmelCase ) snake_case__ : str = torch.load(__lowerCAmelCase , map_location='''cpu''' ) if "model" in files: snake_case__ : Tuple = files['''model'''] else: snake_case__ : int = files['''module'''] snake_case__ : int = convert_state_dict(__lowerCAmelCase , __lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() # verify model on basic input snake_case__ : Tuple = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) snake_case__ : Any = prepare_video() snake_case__ : Tuple = image_processor(__lowerCAmelCase , return_tensors='''pt''' ) if "finetuned" not in model_name: snake_case__ : Any = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' ) snake_case__ : Any = torch.load(__lowerCAmelCase ) snake_case__ : Any = model(**__lowerCAmelCase ) snake_case__ : Union[str, Any] = outputs.logits snake_case__ : List[str] = [ '''videomae-small-finetuned-kinetics''', '''videomae-small-finetuned-ssv2''', # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) '''videomae-base-short''', '''videomae-base-short-finetuned-kinetics''', '''videomae-base''', '''videomae-base-finetuned-kinetics''', '''videomae-large''', '''videomae-large-finetuned-kinetics''', '''videomae-huge-finetuned-kinetics''', # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) '''videomae-base-short-ssv2''', '''videomae-base-short-finetuned-ssv2''', '''videomae-base-ssv2''', '''videomae-base-finetuned-ssv2''', ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": snake_case__ : Union[str, Any] = torch.Size([1, 4_00] ) snake_case__ : str = torch.tensor([-0.9291, -0.4061, -0.9307] ) elif model_name == "videomae-small-finetuned-ssv2": snake_case__ : Union[str, Any] = torch.Size([1, 1_74] ) snake_case__ : Dict = torch.tensor([0.2671, -0.4689, -0.8235] ) elif model_name == "videomae-base": snake_case__ : Optional[int] = torch.Size([1, 14_08, 15_36] ) snake_case__ : List[str] = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] ) elif model_name == "videomae-base-short": snake_case__ : Union[str, Any] = torch.Size([1, 14_08, 15_36] ) snake_case__ : List[str] = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] ) # we verified the loss both for normalized and unnormalized targets for this one snake_case__ : List[Any] = torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] ) elif model_name == "videomae-large": snake_case__ : List[Any] = torch.Size([1, 14_08, 15_36] ) snake_case__ : List[str] = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] ) elif model_name == "videomae-large-finetuned-kinetics": snake_case__ : int = torch.Size([1, 4_00] ) snake_case__ : Dict = torch.tensor([0.0771, 0.0011, -0.3625] ) elif model_name == "videomae-huge-finetuned-kinetics": snake_case__ : Union[str, Any] = torch.Size([1, 4_00] ) snake_case__ : List[str] = torch.tensor([0.2433, 0.1632, -0.4894] ) elif model_name == "videomae-base-short-finetuned-kinetics": snake_case__ : str = torch.Size([1, 4_00] ) snake_case__ : Tuple = torch.tensor([0.6588, 0.0990, -0.2493] ) elif model_name == "videomae-base-finetuned-kinetics": snake_case__ : Dict = torch.Size([1, 4_00] ) snake_case__ : List[str] = torch.tensor([0.3669, -0.0688, -0.2421] ) elif model_name == "videomae-base-short-ssv2": snake_case__ : Tuple = torch.Size([1, 14_08, 15_36] ) snake_case__ : Union[str, Any] = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": snake_case__ : int = torch.Size([1, 1_74] ) snake_case__ : List[Any] = torch.tensor([-0.0537, -0.1539, -0.3266] ) elif model_name == "videomae-base-ssv2": snake_case__ : Optional[Any] = torch.Size([1, 14_08, 15_36] ) snake_case__ : List[str] = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] ) elif model_name == "videomae-base-finetuned-ssv2": snake_case__ : str = torch.Size([1, 1_74] ) snake_case__ : List[str] = torch.tensor([0.1961, -0.8337, -0.6389] ) else: raise ValueError(F"""Model name not supported. Should be one of {model_names}""" ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , __lowerCAmelCase , atol=1e-4 ) else: print('''Logits:''' , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , __lowerCAmelCase , atol=1e-4 ) print('''Logits ok!''' ) # verify loss, if applicable if model_name == "videomae-base-short": snake_case__ : List[str] = outputs.loss assert torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1e-4 ) print('''Loss ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) if push_to_hub: print('''Pushing to the hub...''' ) model.push_to_hub(__lowerCAmelCase , organization='''nielsr''' ) if __name__ == "__main__": lowerCAmelCase__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCAmelCase__ : int = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
347
'''simple docstring''' def _a ( __lowerCAmelCase : int , __lowerCAmelCase : int ): """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
347
1
"""simple docstring""" import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class a : def __init__( self : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : str=13 , __lowerCAmelCase : List[str]=7 , __lowerCAmelCase : str=True , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : int=True , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : str=False , __lowerCAmelCase : Tuple=False , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : List[Any]=2 , __lowerCAmelCase : Union[str, Any]=99 , __lowerCAmelCase : Union[str, Any]=0 , __lowerCAmelCase : int=32 , __lowerCAmelCase : Optional[int]=5 , __lowerCAmelCase : Union[str, Any]=4 , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : Union[str, Any]=512 , __lowerCAmelCase : Any=2 , __lowerCAmelCase : int=0.02 , __lowerCAmelCase : str=2 , __lowerCAmelCase : Dict=4 , __lowerCAmelCase : Dict="last" , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Optional[Any]=0 , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_lengths _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = gelu_activation _UpperCAmelCase = sinusoidal_embeddings _UpperCAmelCase = causal _UpperCAmelCase = asm _UpperCAmelCase = n_langs _UpperCAmelCase = vocab_size _UpperCAmelCase = n_special _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = summary_type _UpperCAmelCase = use_proj _UpperCAmelCase = scope _UpperCAmelCase = bos_token_id def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_input_lengths: _UpperCAmelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , 2 ).float() _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCAmelCase_ ( self : Union[str, Any] ): return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : str , ): _UpperCAmelCase = XLMModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = model(__lowerCAmelCase , lengths=__lowerCAmelCase , langs=__lowerCAmelCase ) _UpperCAmelCase = model(__lowerCAmelCase , langs=__lowerCAmelCase ) _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str , ): _UpperCAmelCase = XLMWithLMHeadModel(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict , ): _UpperCAmelCase = XLMForQuestionAnsweringSimple(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = model(__lowerCAmelCase ) _UpperCAmelCase = model(__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase ) _UpperCAmelCase = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , ): _UpperCAmelCase = XLMForQuestionAnswering(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = model(__lowerCAmelCase ) _UpperCAmelCase = model( __lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase , cls_index=__lowerCAmelCase , is_impossible=__lowerCAmelCase , p_mask=__lowerCAmelCase , ) _UpperCAmelCase = model( __lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase , cls_index=__lowerCAmelCase , is_impossible=__lowerCAmelCase , ) ((_UpperCAmelCase ) , ) = result_with_labels.to_tuple() _UpperCAmelCase = model(__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase ) ((_UpperCAmelCase ) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : str , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[int] , ): _UpperCAmelCase = XLMForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = model(__lowerCAmelCase ) _UpperCAmelCase = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = XLMForTokenClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple , ): _UpperCAmelCase = self.num_choices _UpperCAmelCase = XLMForMultipleChoice(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths} return config, inputs_dict @require_torch class a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : List[Any] = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _snake_case : Dict = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _snake_case : Dict = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Dict , __lowerCAmelCase : Any ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any]=False ): _UpperCAmelCase = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": _UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCAmelCase ) _UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCAmelCase ) return inputs_dict def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = XLMModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__lowerCAmelCase , emb_dim=37 ) def lowerCAmelCase_ ( self : Dict ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : List[str]=False , __lowerCAmelCase : List[Any]=1 ): self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) self.assertListEqual( [isinstance(__lowerCAmelCase , __lowerCAmelCase ) for iter_attentions in attentions] , [True] * len(__lowerCAmelCase ) ) self.assertEqual(len(__lowerCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__lowerCAmelCase ): # adds PAD dummy token _UpperCAmelCase = min_length + idx + 1 _UpperCAmelCase = min_length + idx + 1 _UpperCAmelCase = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__lowerCAmelCase ) ) def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : List[str]=1 ): self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) self.assertListEqual( [isinstance(__lowerCAmelCase , __lowerCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(__lowerCAmelCase ) , ) self.assertEqual(len(__lowerCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__lowerCAmelCase ): # adds PAD dummy token _UpperCAmelCase = min_length + idx + 1 _UpperCAmelCase = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__lowerCAmelCase ) , ) pass @slow def lowerCAmelCase_ ( self : List[Any] ): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = XLMModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @require_torch class a ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" ) model.to(__lowerCAmelCase ) _UpperCAmelCase = torch.tensor([[14, 447]] , dtype=torch.long , device=__lowerCAmelCase ) # the president _UpperCAmelCase = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference _UpperCAmelCase = model.generate(__lowerCAmelCase , do_sample=__lowerCAmelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __lowerCAmelCase )
709
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. UpperCAmelCase__ = abspath(join(dirname(dirname(__file__)), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def __UpperCAmelCase ( lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowercase ) def __UpperCAmelCase ( lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main _UpperCAmelCase = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(lowercase ,id=lowercase )
275
0
def _UpperCAmelCase (UpperCamelCase__ : List[Any] = 1000000 ): _A : Any = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , UpperCamelCase__ ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
503
'''simple docstring''' import numpy as np def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str: __lowerCamelCase = int(np.ceil((x_end - xa) / h ) ) __lowerCamelCase = np.zeros((n + 1,) ) __lowerCamelCase = ya __lowerCamelCase = xa for k in range(UpperCamelCase__ ): __lowerCamelCase = f(UpperCamelCase__ , y[k] ) __lowerCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) __lowerCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) __lowerCamelCase = f(x + h , y[k] + h * ka ) __lowerCamelCase = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
546
0
'''simple docstring''' def __lowerCamelCase ( __snake_case : int = 3, __snake_case : int = 7, __snake_case : int = 1_000_000 ) -> int: """simple docstring""" A__ : int =0 A__ : Tuple =1 for current_denominator in range(1, limit + 1 ): A__ : Union[str, Any] =current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: A__ : Optional[Any] =current_numerator A__ : int =current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=100_0000))
687
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 42 class lowerCamelCase ( lowercase_ , lowercase_ ): '''simple docstring''' @register_to_config def __init__( self : List[str] , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : Tuple[str] = ("DownEncoderBlock2D",) , lowerCAmelCase_ : Tuple[str] = ("UpDecoderBlock2D",) , lowerCAmelCase_ : Tuple[int] = (64,) , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : str = "silu" , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : int = 2_56 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : float = 0.18215 , lowerCAmelCase_ : str = "group" , ) -> List[str]: '''simple docstring''' super().__init__() # pass init params to Encoder A__ : Optional[Any] =Encoder( in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , down_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , double_z=lowerCAmelCase_ , ) A__ : Dict =vq_embed_dim if vq_embed_dim is not None else latent_channels A__ : Union[str, Any] =nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 ) A__ : Optional[int] =VectorQuantizer(lowerCAmelCase_ , lowerCAmelCase_ , beta=0.25 , remap=lowerCAmelCase_ , sane_index_shape=lowerCAmelCase_ ) A__ : Tuple =nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 ) # pass init params to Decoder A__ : Optional[Any] =Decoder( in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , up_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , norm_type=lowerCAmelCase_ , ) @apply_forward_hook def lowercase__ ( self : List[str] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> VQEncoderOutput: '''simple docstring''' A__ : Dict =self.encoder(lowerCAmelCase_ ) A__ : Union[str, Any] =self.quant_conv(lowerCAmelCase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowerCAmelCase_ ) @apply_forward_hook def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' # also go through quantization layer if not force_not_quantize: A__ , A__ , A__ : Tuple =self.quantize(lowerCAmelCase_ ) else: A__ : List[str] =h A__ : Dict =self.post_quant_conv(lowerCAmelCase_ ) A__ : List[Any] =self.decoder(lowerCAmelCase_ , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase_ ) def lowercase__ ( self : str , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' A__ : Optional[int] =sample A__ : Union[str, Any] =self.encode(lowerCAmelCase_ ).latents A__ : Tuple =self.decode(lowerCAmelCase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase_ )
687
1
'''simple docstring''' from collections.abc import Callable import numpy as np def a_ ( __snake_case : Callable , __snake_case : float , __snake_case : float , __snake_case : float , __snake_case : float ) -> np.ndarray: """simple docstring""" lowerCamelCase_ =int(np.ceil((x_end - xa) / step_size ) ) lowerCamelCase_ =np.zeros((n + 1,) ) lowerCamelCase_ =ya lowerCamelCase_ =xa for k in range(__snake_case ): lowerCamelCase_ =y[k] + step_size * ode_func(__snake_case , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
676
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging a_ : List[Any] = logging.get_logger(__name__) def a_ ( __snake_case : Optional[int] , __snake_case : str , __snake_case : List[Any] , __snake_case : int=False ) -> List[str]: """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise if not is_sharded: lowerCamelCase_ =os.path.abspath(__snake_case ) logger.info(F'''Loading PyTorch weights from {pt_path}''' ) lowerCamelCase_ =torch.load(__snake_case , map_location='''cpu''' ) logger.info(F'''PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.''' ) lowerCamelCase_ =convert_pytorch_state_dict_to_flax(__snake_case , __snake_case ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files lowerCamelCase_ =convert_pytorch_sharded_state_dict_to_flax(__snake_case , __snake_case ) return flax_state_dict def a_ ( __snake_case : Tuple[str] , __snake_case : np.ndarray , __snake_case : Dict[str, jnp.ndarray] , __snake_case : str , ) -> (Tuple[str], np.ndarray): """simple docstring""" def is_key_or_prefix_key_in_dict(__snake_case : Tuple[str] ) -> bool: return len(set(__snake_case ) & {key, (model_prefix,) + key} ) > 0 # layer norm lowerCamelCase_ =pt_tuple_key[:-1] + ('''scale''',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__snake_case ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean lowerCamelCase_ =pt_tuple_key[:-1] + ('''mean''',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__snake_case ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var lowerCamelCase_ =pt_tuple_key[:-1] + ('''var''',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__snake_case ): return renamed_pt_tuple_key, pt_tensor # embedding lowerCamelCase_ =pt_tuple_key[:-1] + ('''embedding''',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__snake_case ): return renamed_pt_tuple_key, pt_tensor # conv layer lowerCamelCase_ =pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__snake_case ): lowerCamelCase_ =pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCamelCase_ =pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__snake_case ): lowerCamelCase_ =pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCamelCase_ =pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCamelCase_ =pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 lowerCamelCase_ =None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): lowerCamelCase_ =pt_tuple_key[-2] + '''_g''' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): lowerCamelCase_ =pt_tuple_key[-2] + '''_v''' if name is not None: lowerCamelCase_ =pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def a_ ( __snake_case : Union[str, Any] , __snake_case : str ) -> str: """simple docstring""" # convert pytorch tensor to numpy lowerCamelCase_ ={k: v.numpy() for k, v in pt_state_dict.items()} lowerCamelCase_ =flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: lowerCamelCase_ =flax_model.params['''params'''] else: lowerCamelCase_ =flax_model.params lowerCamelCase_ =flatten_dict(__snake_case ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowerCamelCase_ =flatten_dict(flax_model.params['''batch_stats'''] ) random_flax_state_dict.update(__snake_case ) lowerCamelCase_ ={} lowerCamelCase_ =(model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) lowerCamelCase_ =(model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCamelCase_ =tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary lowerCamelCase_ =pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowerCamelCase_ =pt_tuple_key[1:] # Correctly rename weight parameters lowerCamelCase_, lowerCamelCase_ =rename_key_and_reshape_tensor( __snake_case , __snake_case , __snake_case , __snake_case ) # add model prefix if necessary lowerCamelCase_ =(model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowerCamelCase_ =(model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: lowerCamelCase_ =jnp.asarray(__snake_case ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__snake_case , __snake_case ) continue # also add unexpected weight so that warning is thrown lowerCamelCase_ =jnp.asarray(__snake_case ) else: # also add unexpected weight so that warning is thrown lowerCamelCase_ =jnp.asarray(__snake_case ) return unflatten_dict(__snake_case ) def a_ ( __snake_case : Union[str, Any] , __snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" import torch # Load the index lowerCamelCase_ ={} for shard_file in shard_filenames: # load using msgpack utils lowerCamelCase_ =torch.load(__snake_case ) lowerCamelCase_ ={k: v.numpy() for k, v in pt_state_dict.items()} lowerCamelCase_ =flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowerCamelCase_ =flax_model.params['''params'''] lowerCamelCase_ =flatten_dict(__snake_case ) random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) ) else: lowerCamelCase_ =flax_model.params lowerCamelCase_ =flatten_dict(__snake_case ) lowerCamelCase_ =(model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) lowerCamelCase_ =(model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCamelCase_ =tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary lowerCamelCase_ =pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowerCamelCase_ =pt_tuple_key[1:] # Correctly rename weight parameters lowerCamelCase_, lowerCamelCase_ =rename_key_and_reshape_tensor( __snake_case , __snake_case , __snake_case , __snake_case ) # add model prefix if necessary lowerCamelCase_ =(model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowerCamelCase_ =(model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: lowerCamelCase_ =jnp.asarray(__snake_case ) continue if "var" in flax_key[-1]: lowerCamelCase_ =jnp.asarray(__snake_case ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__snake_case , __snake_case ) continue # also add unexpected weight so that warning is thrown lowerCamelCase_ =jnp.asarray(__snake_case ) else: # also add unexpected weight so that warning is thrown lowerCamelCase_ =jnp.asarray(__snake_case ) return unflatten_dict(__snake_case ) def a_ ( __snake_case : List[str] , __snake_case : Dict ) -> str: """simple docstring""" lowerCamelCase_ =os.path.abspath(__snake_case ) logger.info(F'''Loading Flax weights from {flax_checkpoint_path}''' ) # import correct flax class lowerCamelCase_ =getattr(__snake_case , '''Flax''' + model.__class__.__name__ ) # load flax weight dict with open(__snake_case , '''rb''' ) as state_f: try: lowerCamelCase_ =from_bytes(__snake_case , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'''Unable to convert {flax_checkpoint_path} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(__snake_case , __snake_case ) def a_ ( __snake_case : Optional[Any] , __snake_case : Union[str, Any] ) -> Optional[int]: """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights lowerCamelCase_ =flatten_dict(jax.tree_util.tree_map(lambda __snake_case : x.dtype == jnp.bfloataa , __snake_case ) ).values() if any(__snake_case ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) lowerCamelCase_ =jax.tree_util.tree_map( lambda __snake_case : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __snake_case ) lowerCamelCase_ =flatten_dict(__snake_case ) lowerCamelCase_ =pt_model.state_dict() lowerCamelCase_ =(pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) lowerCamelCase_ =(pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys lowerCamelCase_ =[] lowerCamelCase_ =set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowerCamelCase_ =flax_key_tuple[0] == pt_model.base_model_prefix lowerCamelCase_ ='''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: lowerCamelCase_ =flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: lowerCamelCase_ =(pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__snake_case ) not in pt_model_dict: # conv layer lowerCamelCase_ =flax_key_tuple[:-1] + ('''weight''',) lowerCamelCase_ =jnp.transpose(__snake_case , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__snake_case ) not in pt_model_dict: # linear layer lowerCamelCase_ =flax_key_tuple[:-1] + ('''weight''',) lowerCamelCase_ =flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: lowerCamelCase_ =flax_key_tuple[:-1] + ('''weight''',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: lowerCamelCase_ =flax_key_tuple[:-1] + ('''running_mean''',) elif "var" in flax_key_tuple[-1]: lowerCamelCase_ =flax_key_tuple[:-1] + ('''running_var''',) if "batch_stats" in flax_state: lowerCamelCase_ ='''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: lowerCamelCase_ ='''.'''.join(__snake_case ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. lowerCamelCase_ ={} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: lowerCamelCase_ =key.split('''.''' ) lowerCamelCase_ =None if key_components[-3::2] == ["parametrizations", "original0"]: lowerCamelCase_ =key_components[-2] + '''_g''' elif key_components[-3::2] == ["parametrizations", "original1"]: lowerCamelCase_ =key_components[-2] + '''_v''' if name is not None: lowerCamelCase_ =key_components[:-3] + [name] lowerCamelCase_ ='''.'''.join(__snake_case ) lowerCamelCase_ =key if flax_key in special_pt_names: lowerCamelCase_ =special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' F'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict lowerCamelCase_ =np.asarray(__snake_case ) if not isinstance(__snake_case , np.ndarray ) else flax_tensor lowerCamelCase_ =torch.from_numpy(__snake_case ) # remove from missing keys missing_keys.remove(__snake_case ) else: # weight is not expected by PyTorch model unexpected_keys.append(__snake_case ) pt_model.load_state_dict(__snake_case ) # re-transform missing_keys to list lowerCamelCase_ =list(__snake_case ) if len(__snake_case ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' F''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' F''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' F''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) else: logger.warning(F'''All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n''' ) if len(__snake_case ) > 0: logger.warning( F'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' F''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' ''' use it for predictions and inference.''' ) else: logger.warning( F'''All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n''' '''If your task is similar to the task the model of the checkpoint was trained on, ''' F'''you can already use {pt_model.__class__.__name__} for predictions without further training.''' ) return pt_model
676
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json", "funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json", "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json", "funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json", } class __A ( __a ): '''simple docstring''' lowerCAmelCase_ = """funnel""" lowerCAmelCase_ = { """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", } def __init__( self , __lowerCAmelCase=3_0_5_2_2 , __lowerCAmelCase=[4, 4, 4] , __lowerCAmelCase=None , __lowerCAmelCase=2 , __lowerCAmelCase=7_6_8 , __lowerCAmelCase=1_2 , __lowerCAmelCase=6_4 , __lowerCAmelCase=3_0_7_2 , __lowerCAmelCase="gelu_new" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.1 , __lowerCAmelCase=None , __lowerCAmelCase=1E-9 , __lowerCAmelCase="mean" , __lowerCAmelCase="relative_shift" , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , **__lowerCAmelCase , ): '''simple docstring''' lowerCamelCase__ = vocab_size lowerCamelCase__ = block_sizes lowerCamelCase__ = [1] * len(A__ ) if block_repeats is None else block_repeats assert len(A__ ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." lowerCamelCase__ = num_decoder_layers lowerCamelCase__ = d_model lowerCamelCase__ = n_head lowerCamelCase__ = d_head lowerCamelCase__ = d_inner lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout lowerCamelCase__ = attention_dropout lowerCamelCase__ = activation_dropout lowerCamelCase__ = initializer_range lowerCamelCase__ = initializer_std lowerCamelCase__ = layer_norm_eps assert pooling_type in [ "mean", "max", ], F'Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.' lowerCamelCase__ = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F'Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.' lowerCamelCase__ = attention_type lowerCamelCase__ = separate_cls lowerCamelCase__ = truncate_seq lowerCamelCase__ = pool_q_only super().__init__(**A__ ) @property def __lowerCamelCase ( self ): '''simple docstring''' return sum(self.block_sizes ) @num_hidden_layers.setter def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' ) @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.block_sizes ) @num_blocks.setter def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
721
from queue import PriorityQueue from typing import Any import numpy as np def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,) -> float | int: '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue lowerCamelCase__ = cst_fwd.get(__snake_case ,np.inf ) lowerCamelCase__ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) lowerCamelCase__ = new_cost_f lowerCamelCase__ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: lowerCamelCase__ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> int: '''simple docstring''' lowerCamelCase__ = -1 lowerCamelCase__ = set() lowerCamelCase__ = set() lowerCamelCase__ = {source: 0} lowerCamelCase__ = {destination: 0} lowerCamelCase__ = {source: None} lowerCamelCase__ = {destination: None} lowerCamelCase__ = PriorityQueue() lowerCamelCase__ = PriorityQueue() lowerCamelCase__ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): lowerCamelCase__ , lowerCamelCase__ = queue_forward.get() visited_forward.add(__snake_case ) lowerCamelCase__ , lowerCamelCase__ = queue_backward.get() visited_backward.add(__snake_case ) lowerCamelCase__ = pass_and_relaxation( __snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,) lowerCamelCase__ = pass_and_relaxation( __snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: lowerCamelCase__ = shortest_distance return shortest_path_distance _a = { "B": [["C", 1]], "C": [["D", 1]], "D": [["F", 1]], "E": [["B", 1], ["G", 2]], "F": [], "G": [["F", 1]], } _a = { "B": [["E", 1]], "C": [["B", 1]], "D": [["C", 1]], "F": [["D", 1], ["G", 1]], "E": [[None, np.inf]], "G": [["E", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
29
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase : Optional[int] = { 'configuration_blenderbot_small': [ 'BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotSmallConfig', 'BlenderbotSmallOnnxConfig', ], 'tokenization_blenderbot_small': ['BlenderbotSmallTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Tuple = ['BlenderbotSmallTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ 'BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotSmallForCausalLM', 'BlenderbotSmallForConditionalGeneration', 'BlenderbotSmallModel', 'BlenderbotSmallPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Tuple = [ 'TFBlenderbotSmallForConditionalGeneration', 'TFBlenderbotSmallModel', 'TFBlenderbotSmallPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] = [ 'FlaxBlenderbotSmallForConditionalGeneration', 'FlaxBlenderbotSmallModel', 'FlaxBlenderbotSmallPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys _lowercase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __A : Optional[Any] = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> Tuple: '''simple docstring''' UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = '''imagenet-1k-id2label.json''' UpperCAmelCase = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} UpperCAmelCase = {v: k for k, v in idalabel.items()} UpperCAmelCase = '''std_conv''' if '''bit''' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" UpperCAmelCase = BitConfig( conv_layer=UpperCamelCase__ , num_labels=1000 , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ , ) return config def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> Tuple: '''simple docstring''' if "stem.conv" in name: UpperCAmelCase = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: UpperCAmelCase = name.replace('''blocks''' , '''layers''' ) if "head.fc" in name: UpperCAmelCase = name.replace('''head.fc''' , '''classifier.1''' ) if name.startswith('''norm''' ): UpperCAmelCase = '''bit.''' + name if "bit" not in name and "classifier" not in name: UpperCAmelCase = '''bit.encoder.''' + name return name def __SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ) -> str: '''simple docstring''' UpperCAmelCase = get_config(UpperCamelCase__ ) # load original model from timm UpperCAmelCase = create_model(UpperCamelCase__ , pretrained=UpperCamelCase__ ) timm_model.eval() # load state_dict of original model UpperCAmelCase = timm_model.state_dict() for key in state_dict.copy().keys(): UpperCAmelCase = state_dict.pop(UpperCamelCase__ ) UpperCAmelCase = val.squeeze() if '''head''' in key else val # load HuggingFace model UpperCAmelCase = BitForImageClassification(UpperCamelCase__ ) model.eval() model.load_state_dict(UpperCamelCase__ ) # create image processor UpperCAmelCase = create_transform(**resolve_data_config({} , model=UpperCamelCase__ ) ) UpperCAmelCase = transform.transforms UpperCAmelCase = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } UpperCAmelCase = BitImageProcessor( do_resize=UpperCamelCase__ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=UpperCamelCase__ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=UpperCamelCase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) UpperCAmelCase = prepare_img() UpperCAmelCase = transform(UpperCamelCase__ ).unsqueeze(0 ) UpperCAmelCase = processor(UpperCamelCase__ , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ ) # verify logits with torch.no_grad(): UpperCAmelCase = model(UpperCamelCase__ ) UpperCAmelCase = outputs.logits print('''Logits:''' , logits[0, :3] ) print('''Predicted class:''' , model.config.idalabel[logits.argmax(-1 ).item()] ) UpperCAmelCase = timm_model(UpperCamelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(UpperCamelCase__ , outputs.logits , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(F"""Saving model {model_name} and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: print(F"""Pushing model {model_name} and processor to the hub""" ) model.push_to_hub(F"""ybelkada/{model_name}""" ) processor.push_to_hub(F"""ybelkada/{model_name}""" ) if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="resnetv2_50x1_bitm", type=str, help="Name of the BiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model to the hub.", ) __A : Union[str, Any] = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
130
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ =logging.get_logger(__name__) UpperCAmelCase__ ={ "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class lowerCamelCase__ ( _a ): a : List[Any] = """swinv2""" a : Any = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : List[str] , A_ : Any=2_2_4 , A_ : int=4 , A_ : Optional[int]=3 , A_ : List[Any]=9_6 , A_ : List[Any]=[2, 2, 6, 2] , A_ : List[str]=[3, 6, 1_2, 2_4] , A_ : Union[str, Any]=7 , A_ : int=4.0 , A_ : List[str]=True , A_ : str=0.0 , A_ : Any=0.0 , A_ : Union[str, Any]=0.1 , A_ : Optional[Any]="gelu" , A_ : int=False , A_ : List[Any]=0.02 , A_ : Tuple=1e-5 , A_ : Tuple=3_2 , **A_ : int , ): '''simple docstring''' super().__init__(**A_ ) __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = embed_dim __lowercase = depths __lowercase = len(A_ ) __lowercase = num_heads __lowercase = window_size __lowercase = mlp_ratio __lowercase = qkv_bias __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = drop_path_rate __lowercase = hidden_act __lowercase = use_absolute_embeddings __lowercase = layer_norm_eps __lowercase = initializer_range __lowercase = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowercase = int(embed_dim * 2 ** (len(A_ ) - 1) ) __lowercase = (0, 0, 0, 0)
708
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class lowerCamelCase__ ( unittest.TestCase ): def __init__( self : List[Any] , A_ : List[str] , A_ : str=7 , A_ : Optional[int]=3 , A_ : str=1_8 , A_ : Tuple=3_0 , A_ : Optional[Any]=4_0_0 , A_ : Union[str, Any]=True , A_ : str=None , A_ : str=True , A_ : Optional[Any]=None , A_ : List[Any]=True , A_ : Union[str, Any]=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , A_ : str=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , A_ : List[str]=True , ): '''simple docstring''' __lowercase = size if size is not None else {"""height""": 2_2_4, """width""": 2_2_4} __lowercase = crop_size if crop_size is not None else {"""height""": 1_8, """width""": 1_8} __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size __lowercase = do_center_crop __lowercase = crop_size __lowercase = do_normalize __lowercase = image_mean __lowercase = image_std __lowercase = do_convert_rgb def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def SCREAMING_SNAKE_CASE_ ( self : str , A_ : List[Any]=False , A_ : List[Any]=False , A_ : Optional[Any]=False ): '''simple docstring''' assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: __lowercase = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 2_5_5 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: __lowercase = [] for i in range(self.batch_size ): __lowercase , __lowercase = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(2_5_5 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension __lowercase = [Image.fromarray(np.moveaxis(A_ , 0 , -1 ) ) for x in image_inputs] if torchify: __lowercase = [torch.from_numpy(A_ ) for x in image_inputs] return image_inputs @require_torch @require_vision class lowerCamelCase__ ( _a , unittest.TestCase ): a : Union[str, Any] = ChineseCLIPImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' __lowercase = ChineseCLIPImageProcessingTester(self , do_center_crop=A_ ) @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , """do_resize""" ) ) self.assertTrue(hasattr(A_ , """size""" ) ) self.assertTrue(hasattr(A_ , """do_center_crop""" ) ) self.assertTrue(hasattr(A_ , """center_crop""" ) ) self.assertTrue(hasattr(A_ , """do_normalize""" ) ) self.assertTrue(hasattr(A_ , """image_mean""" ) ) self.assertTrue(hasattr(A_ , """image_std""" ) ) self.assertTrue(hasattr(A_ , """do_convert_rgb""" ) ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 2_2_4, """width""": 2_2_4} ) self.assertEqual(image_processor.crop_size , {"""height""": 1_8, """width""": 1_8} ) __lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 4_2} ) self.assertEqual(image_processor.crop_size , {"""height""": 8_4, """width""": 8_4} ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = self.image_processor_tester.prepare_inputs(equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowercase = image_processing(A_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = self.image_processor_tester.prepare_inputs(equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowercase = image_processing(A_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = self.image_processor_tester.prepare_inputs(equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowercase = image_processing(A_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) @require_torch @require_vision class lowerCamelCase__ ( _a , unittest.TestCase ): a : Optional[Any] = ChineseCLIPImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' __lowercase = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=A_ ) __lowercase = 3 @property def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , """do_resize""" ) ) self.assertTrue(hasattr(A_ , """size""" ) ) self.assertTrue(hasattr(A_ , """do_center_crop""" ) ) self.assertTrue(hasattr(A_ , """center_crop""" ) ) self.assertTrue(hasattr(A_ , """do_normalize""" ) ) self.assertTrue(hasattr(A_ , """image_mean""" ) ) self.assertTrue(hasattr(A_ , """image_std""" ) ) self.assertTrue(hasattr(A_ , """do_convert_rgb""" ) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = self.image_processor_tester.prepare_inputs(equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowercase = image_processing(A_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
442
0
'''simple docstring''' def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> bool: UpperCAmelCase__ : Dict = len(lowerCAmelCase__ ) + 1 UpperCAmelCase__ : Union[str, Any] = len(lowerCAmelCase__ ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase__ : int = [[0 for i in range(lowerCAmelCase__ )] for j in range(lowerCAmelCase__ )] # since string of zero length match pattern of zero length UpperCAmelCase__ : Any = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , lowerCAmelCase__ ): UpperCAmelCase__ : Dict = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , lowerCAmelCase__ ): UpperCAmelCase__ : Tuple = dp[0][j - 2] if pattern[j - 1] == '''*''' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , lowerCAmelCase__ ): for j in range(1 , lowerCAmelCase__ ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase__ : Union[str, Any] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase__ : int = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase__ : int = dp[i - 1][j] else: UpperCAmelCase__ : Union[str, Any] = 0 else: UpperCAmelCase__ : int = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") UpperCamelCase__ = '''aab''' UpperCamelCase__ = '''c*a*b''' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F"""{input_string} matches the given pattern {pattern}""") else: print(F"""{input_string} does not match with the given pattern {pattern}""")
75
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _lowercase = logging.get_logger(__name__) def __UpperCamelCase ( a : Union[tf.Tensor, np.ndarray] ) ->List[int]: if isinstance(a , np.ndarray ): return list(tensor.shape ) snake_case = tf.shape(a ) if tensor.shape == tf.TensorShape(a ): return dynamic snake_case = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(a )] def __UpperCamelCase ( a : tf.Tensor , a : Optional[int] = None , a : Optional[str] = None ) ->tf.Tensor: return tf.nn.softmax(logits=logits + 1e-9 , axis=a , name=a ) def __UpperCamelCase ( a : List[str] , a : Union[str, Any] , a : Tuple , a : List[str]=1e-5 , a : Any=-1 ) ->Dict: # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(a , a ): raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' ) # Get mean and variance on the axis to be normalized snake_case , snake_case = tf.nn.moments(a , axes=[axis] , keepdims=a ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis snake_case = [1] * inputs.shape.rank snake_case = shape_list(a )[axis] snake_case = tf.reshape(a , a ) snake_case = tf.reshape(a , a ) # Compute layer normalization using the batch_normalization # function. snake_case = tf.nn.batch_normalization( a , a , a , offset=a , scale=a , variance_epsilon=a , ) return outputs def __UpperCamelCase ( a : Tuple , a : Union[str, Any]=0 , a : List[str]=-1 ) ->int: # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input snake_case = tf.shape(a ) snake_case = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) snake_case = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(a , a ) def __UpperCamelCase ( a : tf.Tensor ) ->tf.Tensor: if not isinstance(a , tf.Tensor ): snake_case = tf.convert_to_tensor(a ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: snake_case = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: snake_case = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) snake_case = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def __UpperCamelCase ( a : tf.Tensor , a : int , a : str = "input_ids" ) ->None: tf.debugging.assert_less( a , tf.cast(a , dtype=tensor.dtype ) , message=( f"""The maximum value of {tensor_name} ({tf.math.reduce_max(a )}) must be smaller than the embedding """ f"""layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time.""" ) , ) def __UpperCamelCase ( a : Tuple , a : List[str] , a : Tuple ) ->Dict: snake_case = 6_4512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. snake_case = [x for x in data if len(a ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( '''The following attributes cannot be saved to HDF5 file because ''' f"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """ f"""bytes: {bad_attributes}""" ) snake_case = np.asarray(a ) snake_case = 1 snake_case = np.array_split(a , a ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 snake_case = np.array_split(a , a ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(a ): snake_case = chunk_data else: snake_case = data def __UpperCamelCase ( a : Optional[int] , a : Tuple ) ->Tuple: if name in group.attrs: snake_case = [n.decode('''utf8''' ) if hasattr(a , '''decode''' ) else n for n in group.attrs[name]] else: snake_case = [] snake_case = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('''utf8''' ) if hasattr(a , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] ) chunk_id += 1 return data def __UpperCamelCase ( a : Any ) ->List[Any]: def _expand_single_ad_tensor(a : List[Any] ): if isinstance(a , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(a , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , a )
342
0
"""simple docstring""" from collections.abc import Sequence from queue import Queue class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None ): __a : List[Any] = start __a : Tuple = end __a : Dict = val __a : List[str] = (start + end) // 2 __a : Optional[int] = left __a : Union[str, Any] = right def __repr__( self ): return f"""SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})""" class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __a : Dict = collection __a : Tuple = function if self.collection: __a : Optional[int] = self._build_tree(0 , len(_UpperCAmelCase ) - 1 ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): self._update_tree(self.root , _UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): return self._query_range(self.root , _UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): if start == end: return SegmentTreeNode(_UpperCAmelCase , _UpperCAmelCase , self.collection[start] ) __a : List[Any] = (start + end) // 2 __a : Union[str, Any] = self._build_tree(_UpperCAmelCase , _UpperCAmelCase ) __a : Tuple = self._build_tree(mid + 1 , _UpperCAmelCase ) return SegmentTreeNode(_UpperCAmelCase , _UpperCAmelCase , self.fn(left.val , right.val ) , _UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if node.start == i and node.end == i: __a : Optional[Any] = val return if i <= node.mid: self._update_tree(node.left , _UpperCAmelCase , _UpperCAmelCase ) else: self._update_tree(node.right , _UpperCAmelCase , _UpperCAmelCase ) __a : Dict = self.fn(node.left.val , node.right.val ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , _UpperCAmelCase , _UpperCAmelCase ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , _UpperCAmelCase , node.mid ) , self._query_range(node.right , node.mid + 1 , _UpperCAmelCase ) , ) else: # range in right child tree return self._query_range(node.right , _UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): if self.root is not None: __a : List[str] = Queue() queue.put(self.root ) while not queue.empty(): __a : Tuple = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 50) A = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
101
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCamelCase ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) __lowerCAmelCase = Features({'''text''': Value('''string''' )} ) __lowerCAmelCase = Features({} ) __lowerCAmelCase = "text" @property def _lowerCamelCase ( self ): return {self.text_column: "text"}
101
1
'''simple docstring''' def a_ ( UpperCamelCase_ , UpperCamelCase_ ): return 1 if input_a == input_a else 0 def a_ ( ): assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
452
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def a_ ( ): with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(UpperCamelCase_ ): requests.request("GET" , "https://huggingface.co" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("GET" , "https://huggingface.co" , timeout=1.0 ) @pytest.mark.integration def a_ ( ): with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("GET" , "https://huggingface.co" ) def a_ ( ): with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(UpperCamelCase_ ): http_head("https://huggingface.co" )
452
1
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowerCamelCase_ : Tuple = logging.get_logger(__name__) lowerCamelCase_ : Union[str, Any] = OrderedDict( [ ('audio-spectrogram-transformer', 'ASTFeatureExtractor'), ('beit', 'BeitFeatureExtractor'), ('chinese_clip', 'ChineseCLIPFeatureExtractor'), ('clap', 'ClapFeatureExtractor'), ('clip', 'CLIPFeatureExtractor'), ('clipseg', 'ViTFeatureExtractor'), ('conditional_detr', 'ConditionalDetrFeatureExtractor'), ('convnext', 'ConvNextFeatureExtractor'), ('cvt', 'ConvNextFeatureExtractor'), ('data2vec-audio', 'Wav2Vec2FeatureExtractor'), ('data2vec-vision', 'BeitFeatureExtractor'), ('deformable_detr', 'DeformableDetrFeatureExtractor'), ('deit', 'DeiTFeatureExtractor'), ('detr', 'DetrFeatureExtractor'), ('dinat', 'ViTFeatureExtractor'), ('donut-swin', 'DonutFeatureExtractor'), ('dpt', 'DPTFeatureExtractor'), ('encodec', 'EncodecFeatureExtractor'), ('flava', 'FlavaFeatureExtractor'), ('glpn', 'GLPNFeatureExtractor'), ('groupvit', 'CLIPFeatureExtractor'), ('hubert', 'Wav2Vec2FeatureExtractor'), ('imagegpt', 'ImageGPTFeatureExtractor'), ('layoutlmv2', 'LayoutLMv2FeatureExtractor'), ('layoutlmv3', 'LayoutLMv3FeatureExtractor'), ('levit', 'LevitFeatureExtractor'), ('maskformer', 'MaskFormerFeatureExtractor'), ('mctct', 'MCTCTFeatureExtractor'), ('mobilenet_v1', 'MobileNetV1FeatureExtractor'), ('mobilenet_v2', 'MobileNetV2FeatureExtractor'), ('mobilevit', 'MobileViTFeatureExtractor'), ('nat', 'ViTFeatureExtractor'), ('owlvit', 'OwlViTFeatureExtractor'), ('perceiver', 'PerceiverFeatureExtractor'), ('poolformer', 'PoolFormerFeatureExtractor'), ('regnet', 'ConvNextFeatureExtractor'), ('resnet', 'ConvNextFeatureExtractor'), ('segformer', 'SegformerFeatureExtractor'), ('sew', 'Wav2Vec2FeatureExtractor'), ('sew-d', 'Wav2Vec2FeatureExtractor'), ('speech_to_text', 'Speech2TextFeatureExtractor'), ('speecht5', 'SpeechT5FeatureExtractor'), ('swiftformer', 'ViTFeatureExtractor'), ('swin', 'ViTFeatureExtractor'), ('swinv2', 'ViTFeatureExtractor'), ('table-transformer', 'DetrFeatureExtractor'), ('timesformer', 'VideoMAEFeatureExtractor'), ('tvlt', 'TvltFeatureExtractor'), ('unispeech', 'Wav2Vec2FeatureExtractor'), ('unispeech-sat', 'Wav2Vec2FeatureExtractor'), ('van', 'ConvNextFeatureExtractor'), ('videomae', 'VideoMAEFeatureExtractor'), ('vilt', 'ViltFeatureExtractor'), ('vit', 'ViTFeatureExtractor'), ('vit_mae', 'ViTFeatureExtractor'), ('vit_msn', 'ViTFeatureExtractor'), ('wav2vec2', 'Wav2Vec2FeatureExtractor'), ('wav2vec2-conformer', 'Wav2Vec2FeatureExtractor'), ('wavlm', 'Wav2Vec2FeatureExtractor'), ('whisper', 'WhisperFeatureExtractor'), ('xclip', 'CLIPFeatureExtractor'), ('yolos', 'YolosFeatureExtractor'), ] ) lowerCamelCase_ : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: A_ : Optional[Any] = model_type_to_module_name(_UpperCAmelCase ) A_ : Optional[int] = importlib.import_module(f""".{module_name}""" , 'transformers.models' ) try: return getattr(_UpperCAmelCase , _UpperCAmelCase ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(_UpperCAmelCase , '__name__' , _UpperCAmelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. A_ : Optional[Any] = importlib.import_module('transformers' ) if hasattr(_UpperCAmelCase , _UpperCAmelCase ): return getattr(_UpperCAmelCase , _UpperCAmelCase ) return None def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , **_UpperCAmelCase , ): """simple docstring""" A_ : List[Any] = get_file_from_repo( _UpperCAmelCase , _UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , resume_download=_UpperCAmelCase , proxies=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , local_files_only=_UpperCAmelCase , ) if resolved_config_file is None: logger.info( 'Could not locate the feature extractor configuration file, will try to use the model config instead.' ) return {} with open(_UpperCAmelCase , encoding='utf-8' ) as reader: return json.load(_UpperCAmelCase ) class _UpperCAmelCase : '''simple docstring''' def __init__( self ): """simple docstring""" raise EnvironmentError( 'AutoFeatureExtractor is designed to be instantiated ' 'using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(snake_case_ ) def lowerCamelCase_ ( cls , snake_case_ , **snake_case_ ): """simple docstring""" A_ : str = kwargs.pop('config' , snake_case_ ) A_ : Optional[Any] = kwargs.pop('trust_remote_code' , snake_case_ ) A_ : Any = True A_ : List[Any] = FeatureExtractionMixin.get_feature_extractor_dict(snake_case_ , **snake_case_ ) A_ : List[Any] = config_dict.get('feature_extractor_type' , snake_case_ ) A_ : Optional[int] = None if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): A_ : Optional[Any] = config_dict['auto_map']['AutoFeatureExtractor'] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(snake_case_ , snake_case_ ): A_ : Any = AutoConfig.from_pretrained(snake_case_ , **snake_case_ ) # It could be in `config.feature_extractor_type`` A_ : str = getattr(snake_case_ , 'feature_extractor_type' , snake_case_ ) if hasattr(snake_case_ , 'auto_map' ) and "AutoFeatureExtractor" in config.auto_map: A_ : List[str] = config.auto_map['AutoFeatureExtractor'] if feature_extractor_class is not None: A_ : Union[str, Any] = feature_extractor_class_from_name(snake_case_ ) A_ : Dict = feature_extractor_auto_map is not None A_ : Tuple = feature_extractor_class is not None or type(snake_case_ ) in FEATURE_EXTRACTOR_MAPPING A_ : Optional[int] = resolve_trust_remote_code( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) if has_remote_code and trust_remote_code: A_ : Optional[int] = get_class_from_dynamic_module( snake_case_ , snake_case_ , **snake_case_ ) A_ : str = kwargs.pop('code_revision' , snake_case_ ) if os.path.isdir(snake_case_ ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(snake_case_ , **snake_case_ ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(snake_case_ , **snake_case_ ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(snake_case_ ) in FEATURE_EXTRACTOR_MAPPING: A_ : List[str] = FEATURE_EXTRACTOR_MAPPING[type(snake_case_ )] return feature_extractor_class.from_dict(snake_case_ , **snake_case_ ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def lowerCamelCase_ ( snake_case_ , snake_case_ ): """simple docstring""" FEATURE_EXTRACTOR_MAPPING.register(snake_case_ , snake_case_ )
707
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): A_ , A_ : Union[str, Any] = array[indexa], array[indexa] def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" if length > 1: A_ : Any = int(length / 2 ) for i in range(_UpperCAmelCase , low + middle ): comp_and_swap(_UpperCAmelCase , _UpperCAmelCase , i + middle , _UpperCAmelCase ) bitonic_merge(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) bitonic_merge(_UpperCAmelCase , low + middle , _UpperCAmelCase , _UpperCAmelCase ) def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" if length > 1: A_ : str = int(length / 2 ) bitonic_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , 1 ) bitonic_sort(_UpperCAmelCase , low + middle , _UpperCAmelCase , 0 ) bitonic_merge(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": lowerCamelCase_ : Dict = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase_ : List[str] = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
302
0
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys __snake_case : Dict ='3' print('Python version:', sys.version) print('OS platform:', platform.platform()) print('OS architecture:', platform.machine()) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) except ImportError: print('Torch version:', None) try: import transformers print('transformers version:', transformers.__version__) except ImportError: print('transformers version:', None)
647
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger __snake_case : Optional[int] =get_logger(__name__) class lowerCamelCase__ : '''simple docstring''' def __init__(self ,__lowerCamelCase = None ) -> Any: """simple docstring""" lowerCAmelCase__ : List[Any] = ( os.path.join(__lowerCamelCase ,config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) lowerCAmelCase__ : Tuple = Extractor def lowerCAmelCase__ (self ,__lowerCamelCase ) -> str: """simple docstring""" from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" lowerCAmelCase__ : List[Any] = os.path.abspath(__lowerCamelCase ) return os.path.join(self.extract_dir ,hash_url_to_filename(__lowerCamelCase ) ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ) -> bool: """simple docstring""" return force_extract or ( not os.path.isfile(__lowerCamelCase ) and not (os.path.isdir(__lowerCamelCase ) and os.listdir(__lowerCamelCase )) ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = False ) -> str: """simple docstring""" lowerCAmelCase__ : List[str] = self.extractor.infer_extractor_format(__lowerCamelCase ) if not extractor_format: return input_path lowerCAmelCase__ : Optional[int] = self._get_output_path(__lowerCamelCase ) if self._do_extract(__lowerCamelCase ,__lowerCamelCase ): self.extractor.extract(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) return output_path class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' @classmethod @abstractmethod def lowerCAmelCase__ (cls ,__lowerCamelCase ,**__lowerCamelCase ) -> bool: """simple docstring""" ... @staticmethod @abstractmethod def lowerCAmelCase__ (__lowerCamelCase ,__lowerCamelCase ) -> None: """simple docstring""" ... class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__): '''simple docstring''' snake_case_ =[] @staticmethod def lowerCAmelCase__ (__lowerCamelCase ,__lowerCamelCase ) -> List[str]: """simple docstring""" with open(__lowerCamelCase ,'''rb''' ) as f: return f.read(__lowerCamelCase ) @classmethod def lowerCAmelCase__ (cls ,__lowerCamelCase ,__lowerCamelCase = b"" ) -> bool: """simple docstring""" if not magic_number: lowerCAmelCase__ : Optional[Any] = max(len(__lowerCamelCase ) for cls_magic_number in cls.magic_numbers ) try: lowerCAmelCase__ : Optional[Any] = cls.read_magic_number(__lowerCamelCase ,__lowerCamelCase ) except OSError: return False return any(magic_number.startswith(__lowerCamelCase ) for cls_magic_number in cls.magic_numbers ) class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' @classmethod def lowerCAmelCase__ (cls ,__lowerCamelCase ,**__lowerCamelCase ) -> bool: """simple docstring""" return tarfile.is_tarfile(__lowerCamelCase ) @staticmethod def lowerCAmelCase__ (__lowerCamelCase ,__lowerCamelCase ) -> Any: """simple docstring""" def resolved(__lowerCamelCase ) -> str: return os.path.realpath(os.path.abspath(__lowerCamelCase ) ) def badpath(__lowerCamelCase ,__lowerCamelCase ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(__lowerCamelCase ,__lowerCamelCase ) ).startswith(__lowerCamelCase ) def badlink(__lowerCamelCase ,__lowerCamelCase ) -> bool: # Links are interpreted relative to the directory containing the link lowerCAmelCase__ : Dict = resolved(os.path.join(__lowerCamelCase ,os.path.dirname(info.name ) ) ) return badpath(info.linkname ,base=__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = resolved(__lowerCamelCase ) for finfo in members: if badpath(finfo.name ,__lowerCamelCase ): logger.error(f"""Extraction of {finfo.name} is blocked (illegal path)""" ) elif finfo.issym() and badlink(__lowerCamelCase ,__lowerCamelCase ): logger.error(f"""Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}""" ) elif finfo.islnk() and badlink(__lowerCamelCase ,__lowerCamelCase ): logger.error(f"""Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}""" ) else: yield finfo @staticmethod def lowerCAmelCase__ (__lowerCamelCase ,__lowerCamelCase ) -> None: """simple docstring""" os.makedirs(__lowerCamelCase ,exist_ok=__lowerCamelCase ) lowerCAmelCase__ : int = tarfile.open(__lowerCamelCase ) tar_file.extractall(__lowerCamelCase ,members=TarExtractor.safemembers(__lowerCamelCase ,__lowerCamelCase ) ) tar_file.close() class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =[b"""\x1F\x8B"""] @staticmethod def lowerCAmelCase__ (__lowerCamelCase ,__lowerCamelCase ) -> None: """simple docstring""" with gzip.open(__lowerCamelCase ,'''rb''' ) as gzip_file: with open(__lowerCamelCase ,'''wb''' ) as extracted_file: shutil.copyfileobj(__lowerCamelCase ,__lowerCamelCase ) class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =[ b"""PK\x03\x04""", b"""PK\x05\x06""", # empty archive b"""PK\x07\x08""", # spanned archive ] @classmethod def lowerCAmelCase__ (cls ,__lowerCamelCase ,__lowerCamelCase = b"" ) -> bool: """simple docstring""" if super().is_extractable(__lowerCamelCase ,magic_number=__lowerCamelCase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(__lowerCamelCase ,'''rb''' ) as fp: lowerCAmelCase__ : Optional[int] = _EndRecData(__lowerCamelCase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: lowerCAmelCase__ : Optional[int] = fp.read(__lowerCamelCase ) # CD is where we expect it to be if len(__lowerCamelCase ) == sizeCentralDir: lowerCAmelCase__ : List[str] = struct.unpack(__lowerCamelCase ,__lowerCamelCase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def lowerCAmelCase__ (__lowerCamelCase ,__lowerCamelCase ) -> None: """simple docstring""" os.makedirs(__lowerCamelCase ,exist_ok=__lowerCamelCase ) with zipfile.ZipFile(__lowerCamelCase ,'''r''' ) as zip_file: zip_file.extractall(__lowerCamelCase ) zip_file.close() class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =[b"""\xFD\x37\x7A\x58\x5A\x00"""] @staticmethod def lowerCAmelCase__ (__lowerCamelCase ,__lowerCamelCase ) -> None: """simple docstring""" with lzma.open(__lowerCamelCase ) as compressed_file: with open(__lowerCamelCase ,'''wb''' ) as extracted_file: shutil.copyfileobj(__lowerCamelCase ,__lowerCamelCase ) class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =[b"""Rar!\x1a\x07\x00""", b"""Rar!\x1a\x07\x01\x00"""] # RAR_ID # RAR5_ID @staticmethod def lowerCAmelCase__ (__lowerCamelCase ,__lowerCamelCase ) -> None: """simple docstring""" if not config.RARFILE_AVAILABLE: raise ImportError('''Please pip install rarfile''' ) import rarfile os.makedirs(__lowerCamelCase ,exist_ok=__lowerCamelCase ) lowerCAmelCase__ : Dict = rarfile.RarFile(__lowerCamelCase ) rf.extractall(__lowerCamelCase ) rf.close() class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =[b"""\x28\xb5\x2F\xFD"""] @staticmethod def lowerCAmelCase__ (__lowerCamelCase ,__lowerCamelCase ) -> None: """simple docstring""" if not config.ZSTANDARD_AVAILABLE: raise ImportError('''Please pip install zstandard''' ) import zstandard as zstd lowerCAmelCase__ : Dict = zstd.ZstdDecompressor() with open(__lowerCamelCase ,'''rb''' ) as ifh, open(__lowerCamelCase ,'''wb''' ) as ofh: dctx.copy_stream(__lowerCamelCase ,__lowerCamelCase ) class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =[b"""\x42\x5A\x68"""] @staticmethod def lowerCAmelCase__ (__lowerCamelCase ,__lowerCamelCase ) -> None: """simple docstring""" with bza.open(__lowerCamelCase ,'''rb''' ) as compressed_file: with open(__lowerCamelCase ,'''wb''' ) as extracted_file: shutil.copyfileobj(__lowerCamelCase ,__lowerCamelCase ) class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =[b"""\x37\x7A\xBC\xAF\x27\x1C"""] @staticmethod def lowerCAmelCase__ (__lowerCamelCase ,__lowerCamelCase ) -> None: """simple docstring""" if not config.PY7ZR_AVAILABLE: raise ImportError('''Please pip install py7zr''' ) import pyazr os.makedirs(__lowerCamelCase ,exist_ok=__lowerCamelCase ) with pyazr.SevenZipFile(__lowerCamelCase ,'''r''' ) as archive: archive.extractall(__lowerCamelCase ) class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =[b"""\x04\x22\x4D\x18"""] @staticmethod def lowerCAmelCase__ (__lowerCamelCase ,__lowerCamelCase ) -> None: """simple docstring""" if not config.LZ4_AVAILABLE: raise ImportError('''Please pip install lz4''' ) import lza.frame with lza.frame.open(__lowerCamelCase ,'''rb''' ) as compressed_file: with open(__lowerCamelCase ,'''wb''' ) as extracted_file: shutil.copyfileobj(__lowerCamelCase ,__lowerCamelCase ) class lowerCamelCase__ : '''simple docstring''' snake_case_ ={ "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def lowerCAmelCase__ (cls ) -> str: """simple docstring""" return max( len(__lowerCamelCase ) for extractor in cls.extractors.values() if issubclass(__lowerCamelCase ,__lowerCamelCase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def lowerCAmelCase__ (__lowerCamelCase ,__lowerCamelCase ) -> Tuple: """simple docstring""" try: return MagicNumberBaseExtractor.read_magic_number(__lowerCamelCase ,magic_number_length=__lowerCamelCase ) except OSError: return b"" @classmethod def lowerCAmelCase__ (cls ,__lowerCamelCase ,__lowerCamelCase = False ) -> bool: """simple docstring""" warnings.warn( '''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'infer_extractor_format\' instead.''' ,category=__lowerCamelCase ,) lowerCAmelCase__ : int = cls.infer_extractor_format(__lowerCamelCase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def lowerCAmelCase__ (cls ,__lowerCamelCase ) -> str: # <Added version="2.4.0"/> """simple docstring""" lowerCAmelCase__ : Dict = cls._get_magic_number_max_length() lowerCAmelCase__ : Any = cls._read_magic_number(__lowerCamelCase ,__lowerCamelCase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(__lowerCamelCase ,magic_number=__lowerCamelCase ): return extractor_format @classmethod def lowerCAmelCase__ (cls ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = None ,__lowerCamelCase = "deprecated" ,) -> None: """simple docstring""" os.makedirs(os.path.dirname(__lowerCamelCase ) ,exist_ok=__lowerCamelCase ) # Prevent parallel extractions lowerCAmelCase__ : Dict = str(Path(__lowerCamelCase ).with_suffix('''.lock''' ) ) with FileLock(__lowerCamelCase ): shutil.rmtree(__lowerCamelCase ,ignore_errors=__lowerCamelCase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(__lowerCamelCase ,__lowerCamelCase ): # passed as positional arg warnings.warn( '''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'extractor_format\' instead.''' ,category=__lowerCamelCase ,) lowerCAmelCase__ : Dict = extractor if extractor != '''deprecated''' else extractor_format else: lowerCAmelCase__ : str = cls.extractors[extractor_format] return extractor.extract(__lowerCamelCase ,__lowerCamelCase ) else: warnings.warn( '''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ''' '''exception in 3.0.0.''' ,category=__lowerCamelCase ,) for extractor in cls.extractors.values(): if extractor.is_extractable(__lowerCamelCase ): return extractor.extract(__lowerCamelCase ,__lowerCamelCase )
647
1
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase__ ) class A__ ( lowerCAmelCase__ ): def __init__( self : str , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : str ) -> str: """simple docstring""" super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def a__ ( self : str , _UpperCAmelCase : List[str]=None ) -> Tuple: """simple docstring""" __lowercase = {} if top_k is not None: __lowercase = top_k return {}, {}, postprocess_params def __call__( self : Tuple , _UpperCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" return super().__call__(_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : int , _UpperCAmelCase : List[Any] ) -> Tuple: """simple docstring""" __lowercase = load_image(_UpperCAmelCase ) __lowercase = self.image_processor(images=_UpperCAmelCase , return_tensors=self.framework ) return model_inputs def a__ ( self : Tuple , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model(**_UpperCAmelCase ) return model_outputs def a__ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Tuple=5 ) -> Any: """simple docstring""" if top_k > self.model.config.num_labels: __lowercase = self.model.config.num_labels if self.framework == "pt": __lowercase = model_outputs.logits.softmax(-1 )[0] __lowercase , __lowercase = probs.topk(_UpperCAmelCase ) elif self.framework == "tf": __lowercase = stable_softmax(model_outputs.logits , axis=-1 )[0] __lowercase = tf.math.top_k(_UpperCAmelCase , k=_UpperCAmelCase ) __lowercase , __lowercase = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) __lowercase = scores.tolist() __lowercase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCAmelCase , _UpperCAmelCase )]
703
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
688
0
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Any , UpperCAmelCase__ : UNetaDModel , UpperCAmelCase__ : UNetaDModel , UpperCAmelCase__ : DDPMScheduler , UpperCAmelCase__ : Optional[int] , ) ->int: '''simple docstring''' super().__init__() A__ = value_function A__ = unet A__ = scheduler A__ = env A__ = env.get_dataset() A__ = {} for key in self.data.keys(): try: A__ = self.data[key].mean() except: # noqa: E722 pass A__ = {} for key in self.data.keys(): try: A__ = self.data[key].std() except: # noqa: E722 pass A__ = env.observation_space.shape[0] A__ = env.action_space.shape[0] def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : int) ->List[str]: '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : str , UpperCAmelCase__ : List[Any]) ->Any: '''simple docstring''' return x_in * self.stds[key] + self.means[key] def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : Union[str, Any]) ->Dict: '''simple docstring''' if type(UpperCAmelCase__) is dict: return {k: self.to_torch(UpperCAmelCase__) for k, v in x_in.items()} elif torch.is_tensor(UpperCAmelCase__): return x_in.to(self.unet.device) return torch.tensor(UpperCAmelCase__ , device=self.unet.device) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any]) ->Any: '''simple docstring''' for key, val in cond.items(): A__ = val.clone() return x_in def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str) ->List[Any]: '''simple docstring''' A__ = x.shape[0] A__ = None for i in tqdm.tqdm(self.scheduler.timesteps): # create batch of timesteps to pass into model A__ = torch.full((batch_size,) , UpperCAmelCase__ , device=self.unet.device , dtype=torch.long) for _ in range(UpperCAmelCase__): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models A__ = self.value_function(x.permute(0 , 2 , 1) , UpperCAmelCase__).sample A__ = torch.autograd.grad([y.sum()] , [x])[0] A__ = self.scheduler._get_variance(UpperCAmelCase__) A__ = torch.exp(0.5 * posterior_variance) A__ = model_std * grad A__ = 0 A__ = x.detach() A__ = x + scale * grad A__ = self.reset_xa(UpperCAmelCase__ , UpperCAmelCase__ , self.action_dim) A__ = self.unet(x.permute(0 , 2 , 1) , UpperCAmelCase__).sample.permute(0 , 2 , 1) # TODO: verify deprecation of this kwarg A__ = self.scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , predict_epsilon=UpperCAmelCase__)['''prev_sample'''] # apply conditions to the trajectory (set the initial state) A__ = self.reset_xa(UpperCAmelCase__ , UpperCAmelCase__ , self.action_dim) A__ = self.to_torch(UpperCAmelCase__) return x, y def __call__( self : Tuple , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[Any]=64 , UpperCAmelCase__ : Dict=32 , UpperCAmelCase__ : int=2 , UpperCAmelCase__ : Dict=0.1) ->List[str]: '''simple docstring''' A__ = self.normalize(UpperCAmelCase__ , '''observations''') A__ = obs[None].repeat(UpperCAmelCase__ , axis=0) A__ = {0: self.to_torch(UpperCAmelCase__)} A__ = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) A__ = randn_tensor(UpperCAmelCase__ , device=self.unet.device) A__ = self.reset_xa(UpperCAmelCase__ , UpperCAmelCase__ , self.action_dim) A__ = self.to_torch(UpperCAmelCase__) # run the diffusion process A__ , A__ = self.run_diffusion(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) # sort output trajectories by value A__ = y.argsort(0 , descending=UpperCAmelCase__).squeeze() A__ = x[sorted_idx] A__ = sorted_values[:, :, : self.action_dim] A__ = actions.detach().cpu().numpy() A__ = self.de_normalize(UpperCAmelCase__ , key='''actions''') # select the action with the highest value if y is not None: A__ = 0 else: # if we didn't run value guiding, select a random action A__ = np.random.randint(0 , UpperCAmelCase__) A__ = denorm_actions[selected_index, 0] return denorm_actions
87
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("""Googling.....""") A_ : List[str] ="""https://www.google.com/search?q=""" + """ """.join(sys.argv[1:]) A_ : int =requests.get(url, headers={"""UserAgent""": UserAgent().random}) # res.raise_for_status() with open("""project1a.html""", """wb""") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) A_ : Tuple =BeautifulSoup(res.text, """html.parser""") A_ : Optional[Any] =list(soup.select(""".eZt8xd"""))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("""href""")) else: webbrowser.open(F'''https://google.com{link.get('href')}''')
483
0
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def lowerCamelCase__ ( a : Tuple ) -> Union[str, Any]: """simple docstring""" a__ :List[Any] = [] if isinstance(__lowerCAmelCase , __lowerCAmelCase ): for v in tree.values(): shapes.extend(_fetch_dims(__lowerCAmelCase ) ) elif isinstance(__lowerCAmelCase , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(__lowerCAmelCase ) ) elif isinstance(__lowerCAmelCase , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError("Not supported" ) return shapes @torch.jit.ignore def lowerCamelCase__ ( a : int , a : List[str] ) -> List[str]: """simple docstring""" a__ :List[Any] = [] for d in reversed(__lowerCAmelCase ): idx.append(flat_idx % d ) a__ :Dict = flat_idx // d return tuple(reversed(__lowerCAmelCase ) ) @torch.jit.ignore def lowerCamelCase__ ( a : Any , a : List[str] , a : List[str] , a : str = None , a : Tuple = None , ) -> Any: """simple docstring""" # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(a : Optional[int] ) -> None: a__ :List[Any] = True for i in range(len(__lowerCAmelCase ) ): a__ :Tuple = -1 * (i + 1) l[reversed_idx] &= tally a__ :str = l[reversed_idx] if start_edges is None: a__ :Union[str, Any] = [s == 0 for s in start] reduce_edge_list(__lowerCAmelCase ) if end_edges is None: a__ :List[str] = [e == (d - 1) for e, d in zip(__lowerCAmelCase , __lowerCAmelCase )] reduce_edge_list(__lowerCAmelCase ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(__lowerCAmelCase ) == 0: return [()] elif len(__lowerCAmelCase ) == 1: return [(slice(start[0] , end[0] + 1 ),)] a__ :List[Tuple[slice, ...]] = [] a__ :List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(__lowerCAmelCase , __lowerCAmelCase ): if s == e: path_list.append(slice(__lowerCAmelCase , s + 1 ) ) else: break a__ :Tuple[slice, ...] = tuple(__lowerCAmelCase ) a__ :Tuple = len(__lowerCAmelCase ) # start == end, and we're done if divergence_idx == len(__lowerCAmelCase ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None a__ :List[str] = start[divergence_idx] return tuple( path + (slice(__lowerCAmelCase , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None a__ :int = end[divergence_idx] return tuple( path + (slice(__lowerCAmelCase , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) a__ :str = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def lowerCamelCase__ ( a : Dict , a : Union[str, Any] , a : List[str] , a : Any ) -> Union[str, Any]: """simple docstring""" a__ :Any = t.shape[:no_batch_dims] a__ :Dict = list(_flat_idx_to_idx(__lowerCAmelCase , __lowerCAmelCase ) ) # _get_minimal_slice_set is inclusive a__ :Optional[int] = list(_flat_idx_to_idx(flat_end - 1 , __lowerCAmelCase ) ) # Get an ordered list of slices to perform a__ :Union[str, Any] = _get_minimal_slice_set( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) a__ :Optional[Any] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def lowerCamelCase__ ( a : List[Any] , a : List[Any] , a : Any , a : int , a : List[Any] = False , a : List[str] = None , a : str = False , ) -> Optional[Any]: """simple docstring""" if not (len(__lowerCAmelCase ) > 0): raise ValueError("Must provide at least one input" ) a__ :int = [shape[:no_batch_dims] for shape in _fetch_dims(__lowerCAmelCase )] a__ :Optional[int] = tuple([max(__lowerCAmelCase ) for s in zip(*__lowerCAmelCase )] ) def _prep_inputs(a : Dict ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: a__ :Optional[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) a__ :str = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: a__ :List[str] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t a__ :Dict[str, Any] = tensor_tree_map(_prep_inputs , __lowerCAmelCase ) a__ :List[Any] = None if _out is not None: a__ :Optional[int] = tensor_tree_map(lambda a : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) a__ :List[Any] = 1 for d in orig_batch_dims: flat_batch_dim *= d a__ :List[Any] = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(a : Dict ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t a__ :Tuple = 0 a__ :Any = prepped_outputs for _ in range(__lowerCAmelCase ): # Chunk the input if not low_mem: a__ :Optional[int] = _select_chunk else: a__ :Tuple = partial( _chunk_slice , flat_start=__lowerCAmelCase , flat_end=min(__lowerCAmelCase , i + chunk_size ) , no_batch_dims=len(__lowerCAmelCase ) , ) a__ :Dict[str, Any] = tensor_tree_map(__lowerCAmelCase , __lowerCAmelCase ) # Run the layer on the chunk a__ :Optional[int] = layer(**__lowerCAmelCase ) # Allocate space for the output if out is None: a__ :Optional[Any] = tensor_tree_map(lambda a : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , __lowerCAmelCase ) # Put the chunk in its pre-allocated space if isinstance(__lowerCAmelCase , __lowerCAmelCase ): def assign(a : Dict , a : Optional[Any] ) -> None: for k, v in da.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): assign(__lowerCAmelCase , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: a__ :str = da[k] assign(__lowerCAmelCase , __lowerCAmelCase ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): for xa, xa in zip(__lowerCAmelCase , __lowerCAmelCase ): if _add_into_out: xa[i : i + chunk_size] += xa else: a__ :Any = xa elif isinstance(__lowerCAmelCase , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: a__ :int = output_chunk else: raise ValueError("Not supported" ) i += chunk_size a__ :Union[str, Any] = tensor_tree_map(lambda a : t.view(orig_batch_dims + t.shape[1:] ) , __lowerCAmelCase ) return out class lowerCAmelCase_ : def __init__( self : Tuple , __A : int = 512 , ) ->str: """simple docstring""" a__ :str = max_chunk_size a__ :Optional[int] = None a__ :Optional[tuple] = None def _snake_case ( self : Union[str, Any] , __A : Callable , __A : tuple , __A : int ) ->int: """simple docstring""" logging.info("Tuning chunk size..." ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size a__ :List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] a__ :List[str] = [c for c in candidates if c > min_chunk_size] a__ :int = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(__A : int ) -> bool: try: with torch.no_grad(): fn(*lowerCamelCase__ , chunk_size=lowerCamelCase__ ) return True except RuntimeError: return False a__ :List[Any] = 0 a__ :Tuple = len(lowerCamelCase__ ) - 1 while i > min_viable_chunk_size_index: a__ :List[Any] = test_chunk_size(candidates[i] ) if not viable: a__ :Union[str, Any] = (min_viable_chunk_size_index + i) // 2 else: a__ :Optional[Any] = i a__ :int = (i + len(lowerCamelCase__ ) - 1) // 2 return candidates[min_viable_chunk_size_index] def _snake_case ( self : Union[str, Any] , __A : Iterable , __A : Iterable ) ->bool: """simple docstring""" a__ :List[str] = True for aa, aa in zip(lowerCamelCase__ , lowerCamelCase__ ): assert type(lowerCamelCase__ ) == type(lowerCamelCase__ ) if isinstance(lowerCamelCase__ , (list, tuple) ): consistent &= self._compare_arg_caches(lowerCamelCase__ , lowerCamelCase__ ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): a__ :str = [v for _, v in sorted(aa.items() , key=lambda __A : x[0] )] a__ :List[Any] = [v for _, v in sorted(aa.items() , key=lambda __A : x[0] )] consistent &= self._compare_arg_caches(lowerCamelCase__ , lowerCamelCase__ ) else: consistent &= aa == aa return consistent def _snake_case ( self : List[str] , __A : Callable , __A : tuple , __A : int , ) ->int: """simple docstring""" a__ :Optional[Any] = True a__ :tuple = tree_map(lambda __A : a.shape if isinstance(lowerCamelCase__ , torch.Tensor ) else a , lowerCamelCase__ , lowerCamelCase__ ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(lowerCamelCase__ ) a__ :Dict = self._compare_arg_caches(self.cached_arg_data , lowerCamelCase__ ) else: # Otherwise, we can reuse the precomputed value a__ :int = False if not consistent: a__ :Any = self._determine_favorable_chunk_size( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) a__ :str = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
718
import datasets from .evaluate import evaluate snake_case__ = '''\ @inproceedings{Rajpurkar2016SQuAD10, title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, booktitle={EMNLP}, year={2016} } ''' snake_case__ = ''' This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD). Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. ''' snake_case__ = ''' Computes SQuAD scores (F1 and EM). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': the text of the answer references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the SQuAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer Examples: >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}] >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}] >>> squad_metric = datasets.load_metric("squad") >>> results = squad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION) class lowerCAmelCase_ ( datasets.Metric): def _snake_case ( self : List[str] ) ->Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": {"id": datasets.Value("string" ), "prediction_text": datasets.Value("string" )}, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , ) def _snake_case ( self : Dict , __A : List[Any] , __A : Optional[int] ) ->str: """simple docstring""" a__ :Optional[int] = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} a__ :Optional[Any] = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] a__ :Union[str, Any] = evaluate(dataset=__A , predictions=__A ) return score
373
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer a__ : int = logging.get_logger(__name__) a__ : int = {'vocab_file': 'vocab.txt'} a__ : Optional[Any] = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } a__ : Optional[Any] = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } a__ : Dict = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES __lowerCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : str = PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : List[Any] = ConvBertTokenizer def __init__( self ,__snake_case=None ,__snake_case=None ,__snake_case=True ,__snake_case="[UNK]" ,__snake_case="[SEP]" ,__snake_case="[PAD]" ,__snake_case="[CLS]" ,__snake_case="[MASK]" ,__snake_case=True ,__snake_case=None ,**__snake_case ,): """simple docstring""" super().__init__( __snake_case ,tokenizer_file=__snake_case ,do_lower_case=__snake_case ,unk_token=__snake_case ,sep_token=__snake_case ,pad_token=__snake_case ,cls_token=__snake_case ,mask_token=__snake_case ,tokenize_chinese_chars=__snake_case ,strip_accents=__snake_case ,**__snake_case ,) A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' ,__snake_case ) != do_lower_case or normalizer_state.get('''strip_accents''' ,__snake_case ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' ,__snake_case ) != tokenize_chinese_chars ): A_ = getattr(__snake_case ,normalizer_state.pop('''type''' ) ) A_ = do_lower_case A_ = strip_accents A_ = tokenize_chinese_chars A_ = normalizer_class(**__snake_case ) A_ = do_lower_case def __UpperCAmelCase ( self ,__snake_case ,__snake_case=None ): """simple docstring""" A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCAmelCase ( self ,__snake_case ,__snake_case = None ): """simple docstring""" A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCAmelCase ( self ,__snake_case ,__snake_case = None ): """simple docstring""" A_ = self._tokenizer.model.save(__snake_case ,name=__snake_case ) return tuple(__snake_case )
188
# Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar a__ : Optional[int] = TypeVar('T') class UpperCAmelCase_ ( Generic[T] ): def __init__( self ,__snake_case = True ): """simple docstring""" A_ = {} # dictionary of lists A_ = directed def __UpperCAmelCase ( self ,__snake_case ,__snake_case ): """simple docstring""" if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(__snake_case ) self.adj_list[destination_vertex].append(__snake_case ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(__snake_case ) A_ = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(__snake_case ) A_ = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: A_ = [destination_vertex] A_ = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(__snake_case ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(__snake_case ) A_ = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: A_ = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: A_ = [destination_vertex] A_ = [] return self def __repr__( self ): """simple docstring""" return pformat(self.adj_list )
188
1
"""simple docstring""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("""0.8.3"""): raise Exception("""requires gluonnlp == 0.8.3""") if version.parse(mx.__version__) != version.parse("""1.5.0"""): raise Exception("""requires mxnet == 1.5.0""") logging.set_verbosity_info() __lowercase = logging.get_logger(__name__) __lowercase = """The Nymphenburg Palace is a beautiful palace in Munich!""" def lowercase ( A_ , A_ )-> List[Any]: '''simple docstring''' a : Union[str, Any] = { "attention_cell": "multi_head", "num_layers": 4, "units": 1_024, "hidden_size": 768, "max_length": 512, "num_heads": 8, "scaled": True, "dropout": 0.1, "use_residual": True, "embed_size": 1_024, "embed_dropout": 0.1, "word_embed": None, "layer_norm_eps": 1e-5, "token_type_vocab_size": 2, } a : Optional[int] = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py a : str = BERTEncoder( attention_cell=predefined_args["attention_cell"] , num_layers=predefined_args["num_layers"] , units=predefined_args["units"] , hidden_size=predefined_args["hidden_size"] , max_length=predefined_args["max_length"] , num_heads=predefined_args["num_heads"] , scaled=predefined_args["scaled"] , dropout=predefined_args["dropout"] , output_attention=A_ , output_all_encodings=A_ , use_residual=predefined_args["use_residual"] , activation=predefined_args.get("activation" , "gelu" ) , layer_norm_eps=predefined_args.get("layer_norm_eps" , A_ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later a : List[Any] = "openwebtext_ccnews_stories_books_cased" # Specify download folder to Gluonnlp's vocab a : Optional[Any] = os.path.join(get_home_dir() , "models" ) a : Tuple = _load_vocab(A_ , A_ , A_ , cls=A_ ) a : str = nlp.model.BERTModel( A_ , len(A_ ) , units=predefined_args["units"] , embed_size=predefined_args["embed_size"] , embed_dropout=predefined_args["embed_dropout"] , word_embed=predefined_args["word_embed"] , use_pooler=A_ , use_token_type_embed=A_ , token_type_vocab_size=predefined_args["token_type_vocab_size"] , use_classifier=A_ , use_decoder=A_ , ) original_bort.load_parameters(A_ , cast_dtype=A_ , ignore_extra=A_ ) a : Tuple = original_bort._collect_params_with_prefix() # Build our config 🤗 a : Optional[Any] = { "architectures": ["BertForMaskedLM"], "attention_probs_dropout_prob": predefined_args["dropout"], "hidden_act": "gelu", "hidden_dropout_prob": predefined_args["dropout"], "hidden_size": predefined_args["embed_size"], "initializer_range": 0.0_2, "intermediate_size": predefined_args["hidden_size"], "layer_norm_eps": predefined_args["layer_norm_eps"], "max_position_embeddings": predefined_args["max_length"], "model_type": "bort", "num_attention_heads": predefined_args["num_heads"], "num_hidden_layers": predefined_args["num_layers"], "pad_token_id": 1, # 2 = BERT, 1 = RoBERTa "type_vocab_size": 1, # 2 = BERT, 1 = RoBERTa "vocab_size": len(A_ ), } a : Tuple = BertConfig.from_dict(A_ ) a : Any = BertForMaskedLM(A_ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(A_ ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(A_ , A_ ): a : Tuple = hf_param.shape a : List[Any] = to_torch(params[gluon_param] ) a : int = gluon_param.shape assert ( shape_hf == shape_gluon ), F'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param a : int = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , "word_embed.0.weight" ) a : Optional[int] = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , "encoder.position_weight" ) a : Any = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , "encoder.layer_norm.beta" ) a : Union[str, Any] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , "encoder.layer_norm.gamma" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) a : Dict = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): a : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention a : BertSelfAttention = layer.attention.self a : int = check_and_map_params( self_attn.key.bias.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) a : Optional[Any] = check_and_map_params( self_attn.key.weight.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) a : Dict = check_and_map_params( self_attn.query.bias.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) a : List[Any] = check_and_map_params( self_attn.query.weight.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) a : Any = check_and_map_params( self_attn.value.bias.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) a : int = check_and_map_params( self_attn.value.weight.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output a : BertSelfOutput = layer.attention.output a : List[str] = check_and_map_params( self_output.dense.bias , F'''encoder.transformer_cells.{i}.proj.bias''' ) a : int = check_and_map_params( self_output.dense.weight , F'''encoder.transformer_cells.{i}.proj.weight''' ) a : List[Any] = check_and_map_params( self_output.LayerNorm.bias , F'''encoder.transformer_cells.{i}.layer_norm.beta''' ) a : Optional[Any] = check_and_map_params( self_output.LayerNorm.weight , F'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate a : BertIntermediate = layer.intermediate a : Optional[int] = check_and_map_params( intermediate.dense.bias , F'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) a : Dict = check_and_map_params( intermediate.dense.weight , F'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output a : BertOutput = layer.output a : Tuple = check_and_map_params( bert_output.dense.bias , F'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) a : Union[str, Any] = check_and_map_params( bert_output.dense.weight , F'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) a : Tuple = check_and_map_params( bert_output.LayerNorm.bias , F'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) a : Any = check_and_map_params( bert_output.LayerNorm.weight , F'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models a : List[Any] = RobertaTokenizer.from_pretrained("roberta-base" ) a : Optional[int] = tokenizer.encode_plus(A_ )["input_ids"] # Get gluon output a : int = mx.nd.array([input_ids] ) a : str = original_bort(inputs=A_ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(A_ ) a : Dict = BertModel.from_pretrained(A_ ) hf_bort_model.eval() a : Optional[int] = tokenizer.encode_plus(A_ , return_tensors="pt" ) a : Dict = hf_bort_model(**A_ )[0] a : List[str] = output_gluon[0].asnumpy() a : Dict = output_hf[0].detach().numpy() a : Dict = np.max(np.abs(hf_layer - gluon_layer ) ).item() a : Union[str, Any] = np.allclose(A_ , A_ , atol=1e-3 ) if success: print("✔️ Both model do output the same tensors" ) else: print("❌ Both model do **NOT** output the same tensors" ) print("Absolute difference is:" , A_ ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--bort_checkpoint_path""", default=None, type=str, required=True, help="""Path the official Bort params file.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __lowercase = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
720
"""simple docstring""" from __future__ import annotations from math import pow, sqrt def lowercase ( A_ , A_ , A_ )-> dict[str, float]: '''simple docstring''' if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance == 0: return {"resistance": sqrt(pow(A_ , 2 ) - pow(A_ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(A_ , 2 ) - pow(A_ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(A_ , 2 ) + pow(A_ , 2 ) )} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
135
0
from __future__ import annotations class _a : """simple docstring""" def __init__( self : Dict , UpperCAmelCase : int ): A_ = order # a_{0} ... a_{k} A_ = [1.0] + [0.0] * order # b_{0} ... b_{k} A_ = [1.0] + [0.0] * order # x[n-1] ... x[n-k] A_ = [0.0] * self.order # y[n-1] ... y[n-k] A_ = [0.0] * self.order def __A ( self : Union[str, Any] , UpperCAmelCase : list[float] , UpperCAmelCase : list[float] ): if len(UpperCAmelCase ) < self.order: A_ = [1.0, *a_coeffs] if len(UpperCAmelCase ) != self.order + 1: A_ = ( f'''Expected a_coeffs to have {self.order + 1} elements ''' f'''for {self.order}-order filter, got {len(UpperCAmelCase )}''' ) raise ValueError(UpperCAmelCase ) if len(UpperCAmelCase ) != self.order + 1: A_ = ( f'''Expected b_coeffs to have {self.order + 1} elements ''' f'''for {self.order}-order filter, got {len(UpperCAmelCase )}''' ) raise ValueError(UpperCAmelCase ) A_ = a_coeffs A_ = b_coeffs def __A ( self : Tuple , UpperCAmelCase : float ): A_ = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) A_ = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] A_ = self.input_history[:-1] A_ = self.output_history[:-1] A_ = sample A_ = result return result
86
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __snake_case ( __UpperCamelCase : Dict ): """simple docstring""" A_ , A_ = image.size A_ , A_ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 A_ = image.resize((w, h) ,resample=PIL_INTERPOLATION["lanczos"] ) A_ = np.array(__UpperCamelCase ).astype(np.floataa ) / 255.0 A_ = image[None].transpose(0 ,3 ,1 ,2 ) A_ = torch.from_numpy(__UpperCamelCase ) return 2.0 * image - 1.0 class _a ( snake_case_ ): """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase : VQModel , UpperCAmelCase : UNetaDModel , UpperCAmelCase : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ): super().__init__() self.register_modules(vqvae=UpperCAmelCase , unet=UpperCAmelCase , scheduler=UpperCAmelCase ) @torch.no_grad() def __call__( self : int , UpperCAmelCase : Union[torch.Tensor, PIL.Image.Image] = None , UpperCAmelCase : Optional[int] = 1 , UpperCAmelCase : Optional[int] = 100 , UpperCAmelCase : Optional[float] = 0.0 , UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase : Optional[str] = "pil" , UpperCAmelCase : bool = True , ): if isinstance(UpperCAmelCase , PIL.Image.Image ): A_ = 1 elif isinstance(UpperCAmelCase , torch.Tensor ): A_ = image.shape[0] else: raise ValueError(f'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(UpperCAmelCase )}''' ) if isinstance(UpperCAmelCase , PIL.Image.Image ): A_ = preprocess(UpperCAmelCase ) A_ , A_ = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image A_ = (batch_size, self.unet.config.in_channels // 2, height, width) A_ = next(self.unet.parameters() ).dtype A_ = randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=self.device , dtype=UpperCAmelCase ) A_ = image.to(device=self.device , dtype=UpperCAmelCase ) # set timesteps and move to the correct device self.scheduler.set_timesteps(UpperCAmelCase , device=self.device ) A_ = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler A_ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A_ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A_ = {} if accepts_eta: A_ = eta for t in self.progress_bar(UpperCAmelCase ): # concat latents and low resolution image in the channel dimension. A_ = torch.cat([latents, image] , dim=1 ) A_ = self.scheduler.scale_model_input(UpperCAmelCase , UpperCAmelCase ) # predict the noise residual A_ = self.unet(UpperCAmelCase , UpperCAmelCase ).sample # compute the previous noisy sample x_t -> x_t-1 A_ = self.scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample # decode the image latents with the VQVAE A_ = self.vqvae.decode(UpperCAmelCase ).sample A_ = torch.clamp(UpperCAmelCase , -1.0 , 1.0 ) A_ = image / 2 + 0.5 A_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A_ = self.numpy_to_pil(UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase )
86
1
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : List[str] = F"""{sampling_rate}""" lowercase__ : List[Any] = "1" lowercase__ : List[str] = "f32le" lowercase__ : Optional[int] = [ "ffmpeg", "-i", "pipe:0", "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-hide_banner", "-loglevel", "quiet", "pipe:1", ] try: with subprocess.Popen(a__ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: lowercase__ : Union[str, Any] = ffmpeg_process.communicate(a__ ) except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to load audio files from filename" ) from error lowercase__ : Optional[int] = output_stream[0] lowercase__ : Any = np.frombuffer(a__ , np.floataa ) if audio.shape[0] == 0: raise ValueError("Malformed soundfile" ) return audio def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = "f32le" , ): """simple docstring""" lowercase__ : List[Any] = F"""{sampling_rate}""" lowercase__ : Optional[int] = "1" if format_for_conversion == "s16le": lowercase__ : Union[str, Any] = 2 elif format_for_conversion == "f32le": lowercase__ : Optional[Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) lowercase__ : List[Any] = platform.system() if system == "Linux": lowercase__ : Union[str, Any] = "alsa" lowercase__ : Any = "default" elif system == "Darwin": lowercase__ : int = "avfoundation" lowercase__ : Any = ":0" elif system == "Windows": lowercase__ : List[str] = "dshow" lowercase__ : List[str] = "default" lowercase__ : Union[str, Any] = [ "ffmpeg", "-f", format_, "-i", input_, "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-fflags", "nobuffer", "-hide_banner", "-loglevel", "quiet", "pipe:1", ] lowercase__ : Dict = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample lowercase__ : Tuple = _ffmpeg_stream(a__ , a__ ) for item in iterator: yield item def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "f32le" , ): """simple docstring""" if stream_chunk_s is not None: lowercase__ : List[Any] = stream_chunk_s else: lowercase__ : Tuple = chunk_length_s lowercase__ : int = ffmpeg_microphone(a__ , a__ , format_for_conversion=a__ ) if format_for_conversion == "s16le": lowercase__ : Optional[int] = np.intaa lowercase__ : List[str] = 2 elif format_for_conversion == "f32le": lowercase__ : Any = np.floataa lowercase__ : Dict = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: lowercase__ : Tuple = chunk_length_s / 6 lowercase__ : Any = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(a__ , (int, float) ): lowercase__ : List[str] = [stride_length_s, stride_length_s] lowercase__ : Tuple = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample lowercase__ : List[str] = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample lowercase__ : Optional[int] = datetime.datetime.now() lowercase__ : Union[str, Any] = datetime.timedelta(seconds=a__ ) for item in chunk_bytes_iter(a__ , a__ , stride=(stride_left, stride_right) , stream=a__ ): # Put everything back in numpy scale lowercase__ : List[Any] = np.frombuffer(item["raw"] , dtype=a__ ) lowercase__ : List[Any] = ( item["stride"][0] // size_of_sample, item["stride"][1] // size_of_sample, ) lowercase__ : int = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ): """simple docstring""" lowercase__ : List[str] = b"" lowercase__ , lowercase__ : Any = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) lowercase__ : Tuple = 0 for raw in iterator: acc += raw if stream and len(a__ ) < chunk_len: lowercase__ : str = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(a__ ) >= chunk_len: # We are flushing the accumulator lowercase__ : List[Any] = (_stride_left, stride_right) lowercase__ : Dict = {"raw": acc[:chunk_len], "stride": stride} if stream: lowercase__ : str = False yield item lowercase__ : Tuple = stride_left lowercase__ : Union[str, Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(a__ ) > stride_left: lowercase__ : Optional[Any] = {"raw": acc, "stride": (_stride_left, 0)} if stream: lowercase__ : List[Any] = False yield item def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : str = 2**24 # 16Mo try: with subprocess.Popen(a__ , stdout=subprocess.PIPE , bufsize=a__ ) as ffmpeg_process: while True: lowercase__ : Tuple = ffmpeg_process.stdout.read(a__ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to stream audio files from filename" ) from error
715
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class snake_case__(_UpperCamelCase ): """simple docstring""" lowercase_ = """informer""" lowercase_ = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : int , SCREAMING_SNAKE_CASE : Optional[int] = None , SCREAMING_SNAKE_CASE : Optional[int] = None , SCREAMING_SNAKE_CASE : str = "student_t" , SCREAMING_SNAKE_CASE : str = "nll" , SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : List[int] = None , SCREAMING_SNAKE_CASE : Optional[Union[str, bool]] = "mean" , SCREAMING_SNAKE_CASE : int = 0 , SCREAMING_SNAKE_CASE : int = 0 , SCREAMING_SNAKE_CASE : int = 0 , SCREAMING_SNAKE_CASE : int = 0 , SCREAMING_SNAKE_CASE : Optional[List[int]] = None , SCREAMING_SNAKE_CASE : Optional[List[int]] = None , SCREAMING_SNAKE_CASE : int = 64 , SCREAMING_SNAKE_CASE : int = 32 , SCREAMING_SNAKE_CASE : int = 32 , SCREAMING_SNAKE_CASE : int = 2 , SCREAMING_SNAKE_CASE : int = 2 , SCREAMING_SNAKE_CASE : int = 2 , SCREAMING_SNAKE_CASE : int = 2 , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : str = "gelu" , SCREAMING_SNAKE_CASE : float = 0.05 , SCREAMING_SNAKE_CASE : float = 0.1 , SCREAMING_SNAKE_CASE : float = 0.1 , SCREAMING_SNAKE_CASE : float = 0.1 , SCREAMING_SNAKE_CASE : float = 0.1 , SCREAMING_SNAKE_CASE : int = 100 , SCREAMING_SNAKE_CASE : float = 0.02 , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : str = "prob" , SCREAMING_SNAKE_CASE : int = 5 , SCREAMING_SNAKE_CASE : bool = True , **SCREAMING_SNAKE_CASE : List[Any] , ): # time series specific configuration lowercase__ : Any = prediction_length lowercase__ : List[str] = context_length or prediction_length lowercase__ : Tuple = distribution_output lowercase__ : Union[str, Any] = loss lowercase__ : Union[str, Any] = input_size lowercase__ : List[str] = num_time_features lowercase__ : Optional[Any] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] lowercase__ : List[str] = scaling lowercase__ : str = num_dynamic_real_features lowercase__ : Tuple = num_static_real_features lowercase__ : List[str] = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(SCREAMING_SNAKE_CASE ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) lowercase__ : Dict = cardinality else: lowercase__ : Dict = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(SCREAMING_SNAKE_CASE ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) lowercase__ : Union[str, Any] = embedding_dimension else: lowercase__ : Optional[int] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowercase__ : Dict = num_parallel_samples # Transformer architecture configuration lowercase__ : Tuple = input_size * len(self.lags_sequence ) + self._number_of_features lowercase__ : Optional[Any] = d_model lowercase__ : int = encoder_attention_heads lowercase__ : Tuple = decoder_attention_heads lowercase__ : List[Any] = encoder_ffn_dim lowercase__ : List[str] = decoder_ffn_dim lowercase__ : List[str] = encoder_layers lowercase__ : Tuple = decoder_layers lowercase__ : Union[str, Any] = dropout lowercase__ : List[Any] = attention_dropout lowercase__ : str = activation_dropout lowercase__ : int = encoder_layerdrop lowercase__ : Union[str, Any] = decoder_layerdrop lowercase__ : Tuple = activation_function lowercase__ : str = init_std lowercase__ : Tuple = use_cache # Informer lowercase__ : Union[str, Any] = attention_type lowercase__ : Union[str, Any] = sampling_factor lowercase__ : Tuple = distil super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) @property def snake_case ( self : str ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
81
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : List[str] = 'open-llama' def __init__( self : Union[str, Any] , UpperCamelCase__ : str=100_000 , UpperCamelCase__ : str=4_096 , UpperCamelCase__ : Tuple=11_008 , UpperCamelCase__ : Dict=32 , UpperCamelCase__ : List[str]=32 , UpperCamelCase__ : int="silu" , UpperCamelCase__ : Optional[Any]=2_048 , UpperCamelCase__ : Optional[Any]=0.02 , UpperCamelCase__ : List[str]=1e-6 , UpperCamelCase__ : int=True , UpperCamelCase__ : Dict=0 , UpperCamelCase__ : Optional[Any]=1 , UpperCamelCase__ : str=2 , UpperCamelCase__ : int=False , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : str=True , UpperCamelCase__ : int=True , UpperCamelCase__ : Optional[Any]=None , **UpperCamelCase__ : List[str] , ): '''simple docstring''' lowercase_ = vocab_size lowercase_ = max_position_embeddings lowercase_ = hidden_size lowercase_ = intermediate_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = hidden_act lowercase_ = initializer_range lowercase_ = rms_norm_eps lowercase_ = use_cache lowercase_ = kwargs.pop( """use_memorry_efficient_attention""" , UpperCamelCase__ ) lowercase_ = hidden_dropout_prob lowercase_ = attention_dropout_prob lowercase_ = use_stable_embedding lowercase_ = shared_input_output_embedding lowercase_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , tie_word_embeddings=UpperCamelCase__ , **UpperCamelCase__ , ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , UpperCamelCase__ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ F'''got {self.rope_scaling}''' ) lowercase_ = self.rope_scaling.get("""type""" , UpperCamelCase__ ) lowercase_ = self.rope_scaling.get("""factor""" , UpperCamelCase__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or rope_scaling_factor <= 1.0: raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
412
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
412
1
"""simple docstring""" from __future__ import annotations import pandas as pd def __snake_case ( SCREAMING_SNAKE_CASE: list[int] , SCREAMING_SNAKE_CASE: list[int] , SCREAMING_SNAKE_CASE: int ): """simple docstring""" _lowerCAmelCase = [0] * no_of_processes _lowerCAmelCase = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(SCREAMING_SNAKE_CASE ): _lowerCAmelCase = burst_time[i] _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = 9_9999_9999 _lowerCAmelCase = 0 _lowerCAmelCase = False # Process until all processes are completed while complete != no_of_processes: for j in range(SCREAMING_SNAKE_CASE ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: _lowerCAmelCase = remaining_time[j] _lowerCAmelCase = j _lowerCAmelCase = True if not check: increment_time += 1 continue remaining_time[short] -= 1 _lowerCAmelCase = remaining_time[short] if minm == 0: _lowerCAmelCase = 9_9999_9999 if remaining_time[short] == 0: complete += 1 _lowerCAmelCase = False # Find finish time of current process _lowerCAmelCase = increment_time + 1 # Calculate waiting time _lowerCAmelCase = finish_time - arrival_time[short] _lowerCAmelCase = finar - burst_time[short] if waiting_time[short] < 0: _lowerCAmelCase = 0 # Increment time increment_time += 1 return waiting_time def __snake_case ( SCREAMING_SNAKE_CASE: list[int] , SCREAMING_SNAKE_CASE: int , SCREAMING_SNAKE_CASE: list[int] ): """simple docstring""" _lowerCAmelCase = [0] * no_of_processes for i in range(SCREAMING_SNAKE_CASE ): _lowerCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time def __snake_case ( SCREAMING_SNAKE_CASE: list[int] , SCREAMING_SNAKE_CASE: list[int] , SCREAMING_SNAKE_CASE: int ): """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = 0 for i in range(SCREAMING_SNAKE_CASE ): _lowerCAmelCase = total_waiting_time + waiting_time[i] _lowerCAmelCase = total_turn_around_time + turn_around_time[i] print(f"""Average waiting time = {total_waiting_time / no_of_processes:.5f}""" ) print('Average turn around time =' , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('''Enter how many process you want to analyze''') _snake_case = int(input()) _snake_case = [0] * no_of_processes _snake_case = [0] * no_of_processes _snake_case = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('''Enter the arrival time and burst time for process:--''' + str(i + 1)) _snake_case , _snake_case = map(int, input().split()) _snake_case = calculate_waitingtime(arrival_time, burst_time, no_of_processes) _snake_case = burst_time _snake_case = no_of_processes _snake_case = waiting_time _snake_case = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) _snake_case = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ '''Process''', '''BurstTime''', '''ArrivalTime''', '''WaitingTime''', '''TurnAroundTime''', ], ) # Printing the dataFrame pd.set_option('''display.max_rows''', fcfs.shape[0] + 1) print(fcfs)
491
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Tuple=18 , UpperCAmelCase_ : List[str]=30 , UpperCAmelCase_ : Union[str, Any]=400 , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : List[Any]=[0.48145466, 0.4578275, 0.40821073] , UpperCAmelCase_ : List[Any]=[0.26862954, 0.26130258, 0.27577711] , UpperCAmelCase_ : Optional[int]=True , ) -> Tuple: """simple docstring""" _lowerCAmelCase = size if size is not None else {'height': 224, 'width': 224} _lowerCAmelCase = crop_size if crop_size is not None else {'height': 18, 'width': 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean _lowerCAmelCase = image_std _lowerCAmelCase = do_convert_rgb def __lowerCamelCase ( self : Optional[int] ) -> int: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def __lowerCamelCase ( self : Dict , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : int=False , UpperCAmelCase_ : Dict=False ) -> str: """simple docstring""" assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: _lowerCAmelCase = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: _lowerCAmelCase = [] for i in range(self.batch_size ): _lowerCAmelCase , _lowerCAmelCase = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension _lowerCAmelCase = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs] if torchify: _lowerCAmelCase = [torch.from_numpy(UpperCAmelCase_ ) for x in image_inputs] return image_inputs @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( UpperCAmelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] = ChineseCLIPImageProcessor if is_vision_available() else None def __lowerCamelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" _lowerCAmelCase = ChineseCLIPImageProcessingTester(self , do_center_crop=UpperCAmelCase_ ) @property def __lowerCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __lowerCamelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'size' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_center_crop' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'center_crop' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'image_mean' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'image_std' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_convert_rgb' ) ) def __lowerCamelCase ( self : Dict ) -> Tuple: """simple docstring""" _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 224, 'width': 224} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def __lowerCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" pass def __lowerCamelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase = self.image_processor_tester.prepare_inputs(equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __lowerCamelCase ( self : List[str] ) -> int: """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = self.image_processor_tester.prepare_inputs(equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __lowerCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = self.image_processor_tester.prepare_inputs(equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( UpperCAmelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: str = ChineseCLIPImageProcessor if is_vision_available() else None def __lowerCamelCase ( self : List[str] ) -> List[Any]: """simple docstring""" _lowerCAmelCase = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=UpperCAmelCase_ ) _lowerCAmelCase = 3 @property def __lowerCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __lowerCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'size' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_center_crop' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'center_crop' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'image_mean' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'image_std' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_convert_rgb' ) ) def __lowerCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" pass def __lowerCamelCase ( self : int ) -> List[Any]: """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase = self.image_processor_tester.prepare_inputs(equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
491
1
'''simple docstring''' import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def lowerCAmelCase_ ( snake_case_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = checkpoints.load_tax_checkpoint(snake_case_ ) UpperCAmelCase_ = flatten_dict(snake_case_ ) return flax_params def lowerCAmelCase_ ( snake_case_ : Union[str, Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = {} UpperCAmelCase_ = { "token_embedder": "embeddings", "encoder_norm": "layernorm", "kernel": "weight", ".out": ".output", "scale": "weight", "embedders_0.pos_embedding": "row_embedder.weight", "embedders_1.pos_embedding": "column_embedder.weight", } UpperCAmelCase_ = { "query": "attention.query", "key": "attention.key", "value": "attention.value", "output.dense": "output", "encoder_decoder_attention.o": "encoder_decoder_attention.attention.o", "pre_self_attention_layer_norm": "self_attention.layer_norm", "pre_cross_attention_layer_norm": "encoder_decoder_attention.layer_norm", "mlp.": "mlp.DenseReluDense.", "pre_mlp_layer_norm": "mlp.layer_norm", "self_attention.o": "self_attention.attention.o", "decoder.embeddings.embedding": "decoder.embed_tokens.weight", "decoder.relpos_bias.rel_embedding": "decoder.layer.0.self_attention.attention.relative_attention_bias.weight", "decoder.decoder_norm.weight": "decoder.final_layer_norm.weight", "decoder.logits_dense.weight": "decoder.lm_head.weight", } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key UpperCAmelCase_ = ".".join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): UpperCAmelCase_ = new_key.replace(snake_case_ , snake_case_ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): UpperCAmelCase_ = new_key.replace(snake_case_ , snake_case_ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number UpperCAmelCase_ = re.sub(R"layers_(\d+)" , R"layer.\1" , snake_case_ ) UpperCAmelCase_ = new_key.replace("encoder" , "encoder.encoder" ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number UpperCAmelCase_ = re.sub(R"layers_(\d+)" , R"layer.\1" , snake_case_ ) UpperCAmelCase_ = flax_dict[key] UpperCAmelCase_ = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): UpperCAmelCase_ = torch.from_numpy(converted_dict[key].T ) else: UpperCAmelCase_ = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def lowerCAmelCase_ ( snake_case_ : Tuple , snake_case_ : Dict , snake_case_ : Dict=False , snake_case_ : Tuple=False ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = get_flax_param(snake_case_ ) if not use_large: UpperCAmelCase_ = PixaStructVisionConfig() UpperCAmelCase_ = PixaStructTextConfig() else: UpperCAmelCase_ = PixaStructVisionConfig( hidden_size=15_36 , d_ff=39_68 , num_attention_heads=24 , num_hidden_layers=18 ) UpperCAmelCase_ = PixaStructTextConfig(hidden_size=15_36 , d_ff=39_68 , num_heads=24 , num_layers=18 ) UpperCAmelCase_ = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=snake_case_ ) UpperCAmelCase_ = PixaStructForConditionalGeneration(snake_case_ ) UpperCAmelCase_ = rename_and_convert_flax_params(snake_case_ ) model.load_state_dict(snake_case_ ) UpperCAmelCase_ = AutoTokenizer.from_pretrained("ybelkada/test-pix2struct-tokenizer" ) UpperCAmelCase_ = PixaStructImageProcessor() UpperCAmelCase_ = PixaStructProcessor(image_processor=snake_case_ , tokenizer=snake_case_ ) if use_large: UpperCAmelCase_ = 40_96 UpperCAmelCase_ = True # mkdir if needed os.makedirs(snake_case_ , exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) processor.save_pretrained(snake_case_ ) print("Model saved in {}".format(snake_case_ ) ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: List[str] =argparse.ArgumentParser() parser.add_argument('--t5x_checkpoint_path', default=None, type=str, help='Path to the original T5x checkpoint.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--use_large', action='store_true', help='Use large model.') parser.add_argument('--is_vqa', action='store_true', help='Use large model.') SCREAMING_SNAKE_CASE_: int =parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
78
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __a : Optional[Any] = { """configuration_distilbert""": [ """DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DistilBertConfig""", """DistilBertOnnxConfig""", ], """tokenization_distilbert""": ["""DistilBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Optional[int] = ["""DistilBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : List[str] = [ """DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DistilBertForMaskedLM""", """DistilBertForMultipleChoice""", """DistilBertForQuestionAnswering""", """DistilBertForSequenceClassification""", """DistilBertForTokenClassification""", """DistilBertModel""", """DistilBertPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : List[Any] = [ """TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDistilBertForMaskedLM""", """TFDistilBertForMultipleChoice""", """TFDistilBertForQuestionAnswering""", """TFDistilBertForSequenceClassification""", """TFDistilBertForTokenClassification""", """TFDistilBertMainLayer""", """TFDistilBertModel""", """TFDistilBertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Union[str, Any] = [ """FlaxDistilBertForMaskedLM""", """FlaxDistilBertForMultipleChoice""", """FlaxDistilBertForQuestionAnswering""", """FlaxDistilBertForSequenceClassification""", """FlaxDistilBertForTokenClassification""", """FlaxDistilBertModel""", """FlaxDistilBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys __a : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
606
0
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class __magic_name__ : """simple docstring""" def __init__( self , a__ , a__=13 , a__=7 , a__=True , a__=True , a__=False , a__=True , a__=99 , a__=32 , a__=5 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=5_12 , a__=16 , a__=2 , a__=0.02 , a__=3 , a__=4 , a__=None , ): _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = seq_length _lowerCamelCase = is_training _lowerCamelCase = use_input_mask _lowerCamelCase = use_token_type_ids _lowerCamelCase = use_labels _lowerCamelCase = vocab_size _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = max_position_embeddings _lowerCamelCase = type_vocab_size _lowerCamelCase = type_sequence_label_size _lowerCamelCase = initializer_range _lowerCamelCase = num_labels _lowerCamelCase = num_choices _lowerCamelCase = scope def _UpperCAmelCase ( self ): _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase = None if self.use_input_mask: _lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase = None if self.use_token_type_ids: _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCamelCase = None _lowerCamelCase = None _lowerCamelCase = None if self.use_labels: _lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ): return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a__ , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCamelCase = LlamaModel(config=a__ ) model.to(a__ ) model.eval() _lowerCamelCase = model(a__ , attention_mask=a__ ) _lowerCamelCase = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): _lowerCamelCase = True _lowerCamelCase = LlamaModel(a__ ) model.to(a__ ) model.eval() _lowerCamelCase = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , ) _lowerCamelCase = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , ) _lowerCamelCase = model(a__ , attention_mask=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): _lowerCamelCase = LlamaForCausalLM(config=a__ ) model.to(a__ ) model.eval() _lowerCamelCase = model(a__ , attention_mask=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): _lowerCamelCase = True _lowerCamelCase = True _lowerCamelCase = LlamaForCausalLM(config=a__ ) model.to(a__ ) model.eval() # first forward pass _lowerCamelCase = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , use_cache=a__ , ) _lowerCamelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _lowerCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCamelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCamelCase = torch.cat([input_mask, next_mask] , dim=-1 ) _lowerCamelCase = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , output_hidden_states=a__ , )['''hidden_states'''][0] _lowerCamelCase = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , past_key_values=a__ , output_hidden_states=a__ , )['''hidden_states'''][0] # select random slice _lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() _lowerCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a__ , a__ , atol=1E-3 ) ) def _UpperCAmelCase ( self ): _lowerCamelCase = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) = config_and_inputs _lowerCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __magic_name__ ( lowercase_ ,lowercase_ ,lowercase_ ,unittest.TestCase ): """simple docstring""" _UpperCamelCase = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _UpperCamelCase = (LlamaForCausalLM,) if is_torch_available() else () _UpperCamelCase = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) _UpperCamelCase = False _UpperCamelCase = False def _UpperCAmelCase ( self ): _lowerCamelCase = LlamaModelTester(self ) _lowerCamelCase = ConfigTester(self , config_class=a__ , hidden_size=37 ) def _UpperCAmelCase ( self ): self.config_tester.run_common_tests() def _UpperCAmelCase ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def _UpperCAmelCase ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCamelCase = type self.model_tester.create_and_check_model(*a__ ) def _UpperCAmelCase ( self ): _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase = 3 _lowerCamelCase = input_dict['''input_ids'''] _lowerCamelCase = input_ids.ne(1 ).to(a__ ) _lowerCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _lowerCamelCase = LlamaForSequenceClassification(a__ ) model.to(a__ ) model.eval() _lowerCamelCase = model(a__ , attention_mask=a__ , labels=a__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCAmelCase ( self ): _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase = 3 _lowerCamelCase = '''single_label_classification''' _lowerCamelCase = input_dict['''input_ids'''] _lowerCamelCase = input_ids.ne(1 ).to(a__ ) _lowerCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _lowerCamelCase = LlamaForSequenceClassification(a__ ) model.to(a__ ) model.eval() _lowerCamelCase = model(a__ , attention_mask=a__ , labels=a__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCAmelCase ( self ): _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase = 3 _lowerCamelCase = '''multi_label_classification''' _lowerCamelCase = input_dict['''input_ids'''] _lowerCamelCase = input_ids.ne(1 ).to(a__ ) _lowerCamelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _lowerCamelCase = LlamaForSequenceClassification(a__ ) model.to(a__ ) model.eval() _lowerCamelCase = model(a__ , attention_mask=a__ , labels=a__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''LLaMA buffers include complex numbers, which breaks this test''' ) def _UpperCAmelCase ( self ): pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def _UpperCAmelCase ( self , a__ ): _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase = ids_tensor([1, 10] , config.vocab_size ) _lowerCamelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _lowerCamelCase = LlamaModel(a__ ) original_model.to(a__ ) original_model.eval() _lowerCamelCase = original_model(a__ ).last_hidden_state _lowerCamelCase = original_model(a__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _lowerCamelCase = {'''type''': scaling_type, '''factor''': 10.0} _lowerCamelCase = LlamaModel(a__ ) scaled_model.to(a__ ) scaled_model.eval() _lowerCamelCase = scaled_model(a__ ).last_hidden_state _lowerCamelCase = scaled_model(a__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(a__ , a__ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(a__ , a__ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(a__ , a__ , atol=1E-5 ) ) @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def _UpperCAmelCase ( self ): _lowerCamelCase = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] _lowerCamelCase = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-7b-hf''' , device_map='''auto''' ) _lowerCamelCase = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 _lowerCamelCase = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , a__ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off _lowerCamelCase = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a__ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def _UpperCAmelCase ( self ): _lowerCamelCase = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] _lowerCamelCase = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-hf''' , device_map='''auto''' ) _lowerCamelCase = model(torch.tensor(a__ ) ) # Expected mean on dim = -1 _lowerCamelCase = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , a__ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off _lowerCamelCase = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a__ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def _UpperCAmelCase ( self ): _lowerCamelCase = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] _lowerCamelCase = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' , device_map='''auto''' ) _lowerCamelCase = model(torch.tensor(a__ ) ) # Expected mean on dim = -1 _lowerCamelCase = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , a__ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off _lowerCamelCase = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , a__ , atol=1E-2 , rtol=1E-2 ) @unittest.skip( '''Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test''' ) @slow def _UpperCAmelCase ( self ): _lowerCamelCase = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] _lowerCamelCase = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-70b-hf''' , device_map='''auto''' ) _lowerCamelCase = model(torch.tensor(a__ ) ) _lowerCamelCase = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , a__ , atol=1E-2 , rtol=1E-2 ) # fmt: off _lowerCamelCase = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a__ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Model is curently gated''' ) @slow def _UpperCAmelCase ( self ): _lowerCamelCase = '''Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi''' _lowerCamelCase = '''Simply put, the theory of relativity states that ''' _lowerCamelCase = LlamaTokenizer.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' ) _lowerCamelCase = tokenizer.encode(a__ , return_tensors='''pt''' ) _lowerCamelCase = LlamaForCausalLM.from_pretrained( '''meta-llama/Llama-2-13b-chat-hf''' , device_map='''sequential''' , use_safetensors=a__ ) # greedy generation outputs _lowerCamelCase = model.generate(a__ , max_new_tokens=64 , top_p=a__ , temperature=1 , do_sample=a__ ) _lowerCamelCase = tokenizer.decode(generated_ids[0] , skip_special_tokens=a__ ) self.assertEqual(a__ , a__ )
716
import math import qiskit def _lowerCamelCase ( _a = 1 , _a = 1 , _a = 1 ): """simple docstring""" if ( isinstance(_a , _a ) or isinstance(_a , _a ) or isinstance(_a , _a ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(_a ) != input_a) or (math.floor(_a ) != input_a) or (math.floor(_a ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers _lowerCamelCase = qiskit.QuantumRegister(4 , '''qr''' ) _lowerCamelCase = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries _lowerCamelCase = [input_a, input_a, carry_in] _lowerCamelCase = qiskit.QuantumCircuit(_a , _a ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(_a ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(_a ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(_a ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , _a ) # measure the last two qbits _lowerCamelCase = qiskit.Aer.get_backend('''aer_simulator''' ) _lowerCamelCase = qiskit.execute(_a , _a , shots=1_0_0_0 ) return job.result().get_counts(_a ) if __name__ == "__main__": print(F'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
297
0
'''simple docstring''' from manim import * class a_ ( UpperCAmelCase__ ): def lowercase__ ( self : Optional[int] ): __snake_case = Rectangle(height=0.5 , width=0.5 ) __snake_case = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __snake_case = [mem.copy() for i in range(6 )] __snake_case = [mem.copy() for i in range(6 )] __snake_case = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) __snake_case = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) __snake_case = VGroup(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) __snake_case = Text('CPU' , font_size=2_4 ) __snake_case = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowerCAmelCase ) __snake_case = [mem.copy() for i in range(1 )] __snake_case = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) __snake_case = Text('GPU' , font_size=2_4 ) __snake_case = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) gpu.align_to(__lowerCAmelCase , __lowerCAmelCase ) gpu.set_x(gpu.get_x() - 1 ) self.add(__lowerCAmelCase ) __snake_case = [mem.copy() for i in range(6 )] __snake_case = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) __snake_case = Text('Model' , font_size=2_4 ) __snake_case = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) model.move_to([3, -1.0, 0] ) self.play( Create(__lowerCAmelCase , run_time=1 ) , Create(__lowerCAmelCase , run_time=1 ) , Create(__lowerCAmelCase , run_time=1 ) , ) __snake_case = MarkupText( F'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' , font_size=2_4 , ) __snake_case = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __snake_case = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowerCAmelCase , run_time=2.5 ) , Write(__lowerCAmelCase ) , Write(__lowerCAmelCase ) ) self.add(__lowerCAmelCase ) __snake_case = [] __snake_case = [] __snake_case = [] for i, rect in enumerate(__lowerCAmelCase ): __snake_case = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(__lowerCAmelCase , opacity=0.7 ) cpu_target.move_to(__lowerCAmelCase ) cpu_target.generate_target() __snake_case = 0.46 / 4 __snake_case = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__lowerCAmelCase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=__lowerCAmelCase , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=__lowerCAmelCase , buff=0.0 ) cpu_targs.append(__lowerCAmelCase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(__lowerCAmelCase ) ) second_animations.append(MoveToTarget(__lowerCAmelCase , run_time=1.5 ) ) self.play(*__lowerCAmelCase ) self.play(*__lowerCAmelCase ) self.wait()
356
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class a_ ( unittest.TestCase ): def lowercase__ ( self : Optional[Any] ): __snake_case = 'ylacombe/bark-small' __snake_case = tempfile.mkdtemp() __snake_case = 'en_speaker_1' __snake_case = 'This is a test string' __snake_case = 'speaker_embeddings_path.json' __snake_case = 'speaker_embeddings' def lowercase__ ( self : int , **__lowerCAmelCase : str ): return AutoTokenizer.from_pretrained(self.checkpoint , **__lowerCAmelCase ) def lowercase__ ( self : List[Any] ): shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : Dict ): __snake_case = self.get_tokenizer() __snake_case = BarkProcessor(tokenizer=__lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) __snake_case = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowercase__ ( self : int ): __snake_case = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __snake_case = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __snake_case = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowercase__ ( self : str ): __snake_case = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __snake_case = 3_5 __snake_case = 2 __snake_case = 8 __snake_case = { 'semantic_prompt': np.ones(__lowerCAmelCase ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __snake_case = processor(text=self.input_string , voice_preset=__lowerCAmelCase ) __snake_case = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__lowerCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file __snake_case = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(__lowerCAmelCase , **__lowerCAmelCase ) __snake_case = processor(text=self.input_string , voice_preset=__lowerCAmelCase ) __snake_case = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__lowerCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub __snake_case = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowercase__ ( self : int ): __snake_case = self.get_tokenizer() __snake_case = BarkProcessor(tokenizer=__lowerCAmelCase ) __snake_case = processor(text=self.input_string ) __snake_case = tokenizer( self.input_string , padding='max_length' , max_length=2_5_6 , add_special_tokens=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
356
1
'''simple docstring''' def snake_case__ ( _A: List[str] , _A: Tuple , _A: int , _A: Dict , _A: Tuple , _A: Optional[Any] ) -> Any: '''simple docstring''' if index == r: for j in range(_A ): print(data[j] , end=""" """ ) print(""" """ ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location lowerCAmelCase = arr[i] combination_util(_A , _A , _A , index + 1 , _A , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(_A , _A , _A , _A , _A , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def snake_case__ ( _A: str , _A: Tuple , _A: Optional[int] ) -> List[str]: '''simple docstring''' lowerCAmelCase = [0] * r # Print all combination using temporary array 'data[]' combination_util(_A , _A , _A , 0 , _A , 0 ) if __name__ == "__main__": # Driver code to check the function above __lowercase = [1_0, 2_0, 3_0, 4_0, 5_0] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
605
'''simple docstring''' from __future__ import annotations import time __lowercase = list[tuple[int, int]] __lowercase = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowercase = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class a__: '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = pos_x lowerCAmelCase = pos_y lowerCAmelCase = (pos_y, pos_x) lowerCAmelCase = goal_x lowerCAmelCase = goal_y lowerCAmelCase = parent class a__: '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = Node(start[1] , start[0] , goal[1] , goal[0] , __lowerCAmelCase) lowerCAmelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , __lowerCAmelCase) lowerCAmelCase = [self.start] lowerCAmelCase = False def a_ ( self): """simple docstring""" while self.node_queue: lowerCAmelCase = self.node_queue.pop(0) if current_node.pos == self.target.pos: lowerCAmelCase = True return self.retrace_path(__lowerCAmelCase) lowerCAmelCase = self.get_successors(__lowerCAmelCase) for node in successors: self.node_queue.append(__lowerCAmelCase) if not self.reached: return [self.start.pos] return None def a_ ( self , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = [] for action in delta: lowerCAmelCase = parent.pos_x + action[1] lowerCAmelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(__lowerCAmelCase) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(__lowerCAmelCase , __lowerCAmelCase , self.target.pos_y , self.target.pos_x , __lowerCAmelCase)) return successors def a_ ( self , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = node lowerCAmelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x)) lowerCAmelCase = current_node.parent path.reverse() return path class a__: '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = BreadthFirstSearch(__lowerCAmelCase , __lowerCAmelCase) lowerCAmelCase = BreadthFirstSearch(__lowerCAmelCase , __lowerCAmelCase) lowerCAmelCase = False def a_ ( self): """simple docstring""" while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: lowerCAmelCase = self.fwd_bfs.node_queue.pop(0) lowerCAmelCase = self.bwd_bfs.node_queue.pop(0) if current_bwd_node.pos == current_fwd_node.pos: lowerCAmelCase = True return self.retrace_bidirectional_path( __lowerCAmelCase , __lowerCAmelCase) lowerCAmelCase = current_bwd_node lowerCAmelCase = current_fwd_node lowerCAmelCase = { self.fwd_bfs: self.fwd_bfs.get_successors(__lowerCAmelCase), self.bwd_bfs: self.bwd_bfs.get_successors(__lowerCAmelCase), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(__lowerCAmelCase) if not self.reached: return [self.fwd_bfs.start.pos] return None def a_ ( self , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = self.fwd_bfs.retrace_path(__lowerCAmelCase) lowerCAmelCase = self.bwd_bfs.retrace_path(__lowerCAmelCase) bwd_path.pop() bwd_path.reverse() lowerCAmelCase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() __lowercase = (0, 0) __lowercase = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __lowercase = time.time() __lowercase = BreadthFirstSearch(init, goal) __lowercase = bfs.search() __lowercase = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) __lowercase = time.time() __lowercase = BidirectionalBreadthFirstSearch(init, goal) __lowercase = bd_bfs.search() __lowercase = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
605
1
import requests def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : str ): '''simple docstring''' lowerCamelCase_ = {'Content-Type': 'application/json'} lowerCamelCase_ = requests.post(lowercase , json={'text': message_body} , headers=lowercase ) if response.status_code != 2_00: lowerCamelCase_ = ( 'Request to slack returned an error ' f"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(lowercase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
70
"""simple docstring""" from __future__ import annotations import queue class lowercase__ : def __init__( self , SCREAMING_SNAKE_CASE) -> int: _lowerCamelCase : int = data _lowerCamelCase : List[str] = None _lowerCamelCase : Any = None def _snake_case ( ): """simple docstring""" print("""\n********Press N to stop entering at any point of time********\n""" ) _lowerCamelCase : Optional[int] = input("""Enter the value of the root node: """ ).strip().lower() _lowerCamelCase : queue.Queue = queue.Queue() _lowerCamelCase : Optional[int] = TreeNode(int(__snake_case ) ) q.put(__snake_case ) while not q.empty(): _lowerCamelCase : Tuple = q.get() _lowerCamelCase : Any = F'Enter the left node of {node_found.data}: ' _lowerCamelCase : Union[str, Any] = input(__snake_case ).strip().lower() or """n""" if check == "n": return tree_node _lowerCamelCase : Dict = TreeNode(int(__snake_case ) ) _lowerCamelCase : List[str] = left_node q.put(__snake_case ) _lowerCamelCase : Optional[int] = F'Enter the right node of {node_found.data}: ' _lowerCamelCase : Optional[Any] = input(__snake_case ).strip().lower() or """n""" if check == "n": return tree_node _lowerCamelCase : List[Any] = TreeNode(int(__snake_case ) ) _lowerCamelCase : List[Any] = right_node q.put(__snake_case ) raise def _snake_case ( __snake_case : TreeNode ): """simple docstring""" if not isinstance(__snake_case , __snake_case ) or not node: return print(node.data , end=""",""" ) pre_order(node.left ) pre_order(node.right ) def _snake_case ( __snake_case : TreeNode ): """simple docstring""" if not isinstance(__snake_case , __snake_case ) or not node: return in_order(node.left ) print(node.data , end=""",""" ) in_order(node.right ) def _snake_case ( __snake_case : TreeNode ): """simple docstring""" if not isinstance(__snake_case , __snake_case ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=""",""" ) def _snake_case ( __snake_case : TreeNode ): """simple docstring""" if not isinstance(__snake_case , __snake_case ) or not node: return _lowerCamelCase : queue.Queue = queue.Queue() q.put(__snake_case ) while not q.empty(): _lowerCamelCase : Any = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def _snake_case ( __snake_case : TreeNode ): """simple docstring""" if not isinstance(__snake_case , __snake_case ) or not node: return _lowerCamelCase : queue.Queue = queue.Queue() q.put(__snake_case ) while not q.empty(): _lowerCamelCase : Optional[Any] = [] while not q.empty(): _lowerCamelCase : Dict = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(__snake_case ) def _snake_case ( __snake_case : TreeNode ): """simple docstring""" if not isinstance(__snake_case , __snake_case ) or not node: return _lowerCamelCase : list[TreeNode] = [] _lowerCamelCase : Optional[int] = node while n or stack: while n: # start from root node, find its left child print(n.data , end=""",""" ) stack.append(__snake_case ) _lowerCamelCase : Tuple = n.left # end of while means current node doesn't have left child _lowerCamelCase : Optional[Any] = stack.pop() # start to traverse its right child _lowerCamelCase : Dict = n.right def _snake_case ( __snake_case : TreeNode ): """simple docstring""" if not isinstance(__snake_case , __snake_case ) or not node: return _lowerCamelCase : list[TreeNode] = [] _lowerCamelCase : int = node while n or stack: while n: stack.append(__snake_case ) _lowerCamelCase : Any = n.left _lowerCamelCase : Optional[Any] = stack.pop() print(n.data , end=""",""" ) _lowerCamelCase : List[Any] = n.right def _snake_case ( __snake_case : TreeNode ): """simple docstring""" if not isinstance(__snake_case , __snake_case ) or not node: return _lowerCamelCase , _lowerCamelCase : Union[str, Any] = [], [] _lowerCamelCase : Optional[Any] = node stacka.append(__snake_case ) while stacka: # to find the reversed order of post order, store it in stack2 _lowerCamelCase : Union[str, Any] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(__snake_case ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=""",""" ) def _snake_case ( __snake_case : str = "" , __snake_case : Any=50 , __snake_case : List[str]="*" ): """simple docstring""" if not s: return "\n" + width * char _lowerCamelCase , _lowerCamelCase : Optional[int] = divmod(width - len(__snake_case ) - 2 , 2 ) return F'{left * char} {s} {(left + extra) * char}' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) UpperCAmelCase = build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 50 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
88
0
'''simple docstring''' import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } _a = { "vocab_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"}, "merges_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"}, } _a = { "ctrl": 256, } _a = { "Pregnancy": 168_629, "Christianity": 7_675, "Explain": 106_423, "Fitness": 63_440, "Saving": 63_163, "Ask": 27_171, "Ass": 95_985, "Joke": 163_509, "Questions": 45_622, "Thoughts": 49_605, "Retail": 52_342, "Feminism": 164_338, "Writing": 11_992, "Atheism": 192_263, "Netflix": 48_616, "Computing": 39_639, "Opinion": 43_213, "Alone": 44_967, "Funny": 58_917, "Gaming": 40_358, "Human": 4_088, "India": 1_331, "Joker": 77_138, "Diet": 36_206, "Legal": 11_859, "Norman": 4_939, "Tip": 72_689, "Weight": 52_343, "Movies": 46_273, "Running": 23_425, "Science": 2_090, "Horror": 37_793, "Confession": 60_572, "Finance": 12_250, "Politics": 16_360, "Scary": 191_985, "Support": 12_654, "Technologies": 32_516, "Teenage": 66_160, "Event": 32_769, "Learned": 67_460, "Notion": 182_770, "Wikipedia": 37_583, "Books": 6_665, "Extract": 76_050, "Confessions": 102_701, "Conspiracy": 75_932, "Links": 63_674, "Narcissus": 150_425, "Relationship": 54_766, "Relationships": 134_796, "Reviews": 41_671, "News": 4_256, "Translation": 26_820, "multilingual": 128_406, } def lowerCAmelCase__(__snake_case ) -> Any: '''simple docstring''' lowerCamelCase__ = set() lowerCamelCase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase__ = char lowerCamelCase__ = set(__snake_case ) return pairs class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = CONTROL_CODES def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase="<unk>" , **__lowerCAmelCase ): '''simple docstring''' super().__init__(unk_token=__lowerCAmelCase , **__lowerCAmelCase ) with open(__lowerCAmelCase , encoding='''utf-8''' ) as vocab_handle: lowerCamelCase__ = json.load(__lowerCAmelCase ) lowerCamelCase__ = {v: k for k, v in self.encoder.items()} with open(__lowerCAmelCase , encoding='''utf-8''' ) as merges_handle: lowerCamelCase__ = merges_handle.read().split('''\n''' )[1:-1] lowerCamelCase__ = [tuple(merge.split() ) for merge in merges] lowerCamelCase__ = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) lowerCamelCase__ = {} @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.encoder ) def __lowerCamelCase ( self ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' if token in self.cache: return self.cache[token] lowerCamelCase__ = tuple(__lowerCAmelCase ) lowerCamelCase__ = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) lowerCamelCase__ = get_pairs(__lowerCAmelCase ) if not pairs: return token while True: lowerCamelCase__ = min(__lowerCAmelCase , key=lambda __lowerCAmelCase : self.bpe_ranks.get(__lowerCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase__ , lowerCamelCase__ = bigram lowerCamelCase__ = [] lowerCamelCase__ = 0 while i < len(__lowerCAmelCase ): try: lowerCamelCase__ = word.index(__lowerCAmelCase , __lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase__ = j if word[i] == first and i < len(__lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase__ = tuple(__lowerCAmelCase ) lowerCamelCase__ = new_word if len(__lowerCAmelCase ) == 1: break else: lowerCamelCase__ = get_pairs(__lowerCAmelCase ) lowerCamelCase__ = '''@@ '''.join(__lowerCAmelCase ) lowerCamelCase__ = word[:-4] lowerCamelCase__ = word return word def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = [] lowerCamelCase__ = re.findall(r'''\S+\n?''' , __lowerCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(__lowerCAmelCase ).split(''' ''' ) ) ) return split_tokens def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' return self.encoder.get(__lowerCAmelCase , self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' return self.decoder.get(__lowerCAmelCase , self.unk_token ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = ''' '''.join(__lowerCAmelCase ).replace('''@@ ''' , '''''' ).strip() return out_string def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): '''simple docstring''' if not os.path.isdir(__lowerCAmelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCamelCase__ = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase__ = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCAmelCase , ensure_ascii=__lowerCAmelCase ) + '''\n''' ) lowerCamelCase__ = 0 with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) lowerCamelCase__ = token_index writer.write(''' '''.join(__lowerCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
711
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures _a = logging.get_logger(__name__) @dataclass class __A : '''simple docstring''' lowerCAmelCase_ = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(glue_processors.keys() )} ) lowerCAmelCase_ = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) lowerCAmelCase_ = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) lowerCAmelCase_ = field( default=lowerCAmelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.task_name.lower() class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = """train""" lowerCAmelCase_ = """dev""" lowerCAmelCase_ = """test""" class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = Split.train , __lowerCAmelCase = None , ): '''simple docstring''' warnings.warn( '''This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' , __lowerCAmelCase , ) lowerCamelCase__ = args lowerCamelCase__ = glue_processors[args.task_name]() lowerCamelCase__ = glue_output_modes[args.task_name] if isinstance(__lowerCAmelCase , __lowerCAmelCase ): try: lowerCamelCase__ = Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) # Load data features from cache or dataset file lowerCamelCase__ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) lowerCamelCase__ = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCamelCase__ , lowerCamelCase__ = label_list[2], label_list[1] lowerCamelCase__ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase__ = cached_features_file + '''.lock''' with FileLock(__lowerCAmelCase ): if os.path.exists(__lowerCAmelCase ) and not args.overwrite_cache: lowerCamelCase__ = time.time() lowerCamelCase__ = torch.load(__lowerCAmelCase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(F'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: lowerCamelCase__ = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: lowerCamelCase__ = self.processor.get_test_examples(args.data_dir ) else: lowerCamelCase__ = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: lowerCamelCase__ = examples[:limit_length] lowerCamelCase__ = glue_convert_examples_to_features( __lowerCAmelCase , __lowerCAmelCase , max_length=args.max_seq_length , label_list=__lowerCAmelCase , output_mode=self.output_mode , ) lowerCamelCase__ = time.time() torch.save(self.features , __lowerCAmelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): '''simple docstring''' return len(self.features ) def __getitem__( self , __lowerCAmelCase ): '''simple docstring''' return self.features[i] def __lowerCamelCase ( self ): '''simple docstring''' return self.label_list
29
0
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) SCREAMING_SNAKE_CASE__ : Union[str, Any] = logging.getLogger(__name__) SCREAMING_SNAKE_CASE__ : List[str] = """Hello world! cécé herlolip""" SCREAMING_SNAKE_CASE__ : Any = namedtuple( """BertAbsConfig""", [ """temp_dir""", """large""", """use_bert_emb""", """finetune_bert""", """encoder""", """share_emb""", """max_pos""", """enc_layers""", """enc_hidden_size""", """enc_heads""", """enc_ff_size""", """enc_dropout""", """dec_layers""", """dec_hidden_size""", """dec_heads""", """dec_ff_size""", """dec_dropout""", ], ) def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase ) -> Tuple: '''simple docstring''' UpperCAmelCase__ : List[Any] = BertAbsConfig( temp_dir=""".""" , finetune_bert=__lowerCamelCase , large=__lowerCamelCase , share_emb=__lowerCamelCase , use_bert_emb=__lowerCamelCase , encoder="""bert""" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) UpperCAmelCase__ : Any = torch.load(__lowerCamelCase , lambda __lowerCamelCase , __lowerCamelCase : storage ) UpperCAmelCase__ : int = AbsSummarizer(__lowerCamelCase , torch.device("""cpu""" ) , __lowerCamelCase ) original.eval() UpperCAmelCase__ : Tuple = BertAbsSummarizer(__lowerCamelCase , torch.device("""cpu""" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("""convert the model""" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("""Make sure that the models' outputs are identical""" ) UpperCAmelCase__ : Any = BertTokenizer.from_pretrained("""bert-base-uncased""" ) # prepare the model inputs UpperCAmelCase__ : List[Any] = tokenizer.encode("""This is sample éàalj'-.""" ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(__lowerCamelCase )) ) UpperCAmelCase__ : Any = torch.tensor(__lowerCamelCase ).unsqueeze(0 ) UpperCAmelCase__ : Tuple = tokenizer.encode("""This is sample 3 éàalj'-.""" ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(__lowerCamelCase )) ) UpperCAmelCase__ : Dict = torch.tensor(__lowerCamelCase ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass UpperCAmelCase__ : List[str] = encoder_input_ids UpperCAmelCase__ : List[str] = decoder_input_ids UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : Optional[Any] = None UpperCAmelCase__ : Optional[Any] = None UpperCAmelCase__ : Optional[int] = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical UpperCAmelCase__ : Any = original(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )[0] UpperCAmelCase__ : List[str] = original.generator(__lowerCamelCase ) UpperCAmelCase__ : List[Any] = new_model( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )[0] UpperCAmelCase__ : int = new_model.generator(__lowerCamelCase ) UpperCAmelCase__ : List[Any] = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(__lowerCamelCase ) ) UpperCAmelCase__ : Any = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(__lowerCamelCase ) ) UpperCAmelCase__ : str = torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 ) if are_identical: logging.info("""all weights are equal up to 1e-3""" ) else: raise ValueError("""the weights are different. The new model is likely different from the original one.""" ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("""saving the model's state dictionary""" ) torch.save( new_model.state_dict() , """./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : str = argparse.ArgumentParser() parser.add_argument( """--bertabs_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""", ) SCREAMING_SNAKE_CASE__ : int = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
79
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Any = { """huggingface/informer-tourism-monthly""": ( """https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json""" ), # See all Informer models at https://huggingface.co/models?filter=informer } class UpperCAmelCase_ ( __lowerCamelCase ): __lowerCamelCase = 'informer' __lowerCamelCase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = "student_t" , _lowerCAmelCase = "nll" , _lowerCAmelCase = 1 , _lowerCAmelCase = None , _lowerCAmelCase = "mean" , _lowerCAmelCase = 0 , _lowerCAmelCase = 0 , _lowerCAmelCase = 0 , _lowerCAmelCase = 0 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = 64 , _lowerCAmelCase = 32 , _lowerCAmelCase = 32 , _lowerCAmelCase = 2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 2 , _lowerCAmelCase = True , _lowerCAmelCase = "gelu" , _lowerCAmelCase = 0.0_5 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 100 , _lowerCAmelCase = 0.0_2 , _lowerCAmelCase=True , _lowerCAmelCase = "prob" , _lowerCAmelCase = 5 , _lowerCAmelCase = True , **_lowerCAmelCase , ): # time series specific configuration UpperCAmelCase__ : List[str] = prediction_length UpperCAmelCase__ : Optional[Any] = context_length or prediction_length UpperCAmelCase__ : str = distribution_output UpperCAmelCase__ : int = loss UpperCAmelCase__ : Optional[Any] = input_size UpperCAmelCase__ : Any = num_time_features UpperCAmelCase__ : int = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] UpperCAmelCase__ : Union[str, Any] = scaling UpperCAmelCase__ : Optional[Any] = num_dynamic_real_features UpperCAmelCase__ : List[str] = num_static_real_features UpperCAmelCase__ : str = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(_lowerCAmelCase ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) UpperCAmelCase__ : List[str] = cardinality else: UpperCAmelCase__ : Optional[Any] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(_lowerCAmelCase ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) UpperCAmelCase__ : str = embedding_dimension else: UpperCAmelCase__ : List[str] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase__ : Union[str, Any] = num_parallel_samples # Transformer architecture configuration UpperCAmelCase__ : Dict = input_size * len(self.lags_sequence ) + self._number_of_features UpperCAmelCase__ : Any = d_model UpperCAmelCase__ : int = encoder_attention_heads UpperCAmelCase__ : Optional[Any] = decoder_attention_heads UpperCAmelCase__ : int = encoder_ffn_dim UpperCAmelCase__ : Tuple = decoder_ffn_dim UpperCAmelCase__ : List[Any] = encoder_layers UpperCAmelCase__ : Optional[Any] = decoder_layers UpperCAmelCase__ : Tuple = dropout UpperCAmelCase__ : int = attention_dropout UpperCAmelCase__ : List[str] = activation_dropout UpperCAmelCase__ : Any = encoder_layerdrop UpperCAmelCase__ : Union[str, Any] = decoder_layerdrop UpperCAmelCase__ : Tuple = activation_function UpperCAmelCase__ : Dict = init_std UpperCAmelCase__ : str = use_cache # Informer UpperCAmelCase__ : Union[str, Any] = attention_type UpperCAmelCase__ : int = sampling_factor UpperCAmelCase__ : Any = distil super().__init__(is_encoder_decoder=_lowerCAmelCase , **_lowerCAmelCase ) @property def __UpperCAmelCase ( self ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
79
1
from __future__ import annotations def lowerCamelCase_ ( UpperCamelCase__ : list[float], UpperCamelCase__ : int ): '''simple docstring''' print(F"""Vertex\tShortest Distance from vertex {src}""" ) for i, d in enumerate(UpperCamelCase__ ): print(F"""{i}\t\t{d}""" ) def lowerCamelCase_ ( UpperCamelCase__ : list[dict[str, int]], UpperCamelCase__ : list[float], UpperCamelCase__ : int ): '''simple docstring''' for j in range(UpperCamelCase__ ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def lowerCamelCase_ ( UpperCamelCase__ : list[dict[str, int]], UpperCamelCase__ : int, UpperCamelCase__ : int, UpperCamelCase__ : int ): '''simple docstring''' UpperCamelCase__ = [float('''inf''' )] * vertex_count UpperCamelCase__ = 0.0 for _ in range(vertex_count - 1 ): for j in range(UpperCamelCase__ ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: UpperCamelCase__ = distance[u] + w UpperCamelCase__ = check_negative_cycle(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() lowercase = int(input("""Enter number of vertices: """).strip()) lowercase = int(input("""Enter number of edges: """).strip()) lowercase = [{} for _ in range(E)] for i in range(E): print("""Edge """, i + 1) lowercase , lowercase , lowercase = ( int(x) for x in input("""Enter source, destination, weight: """).strip().split(""" """) ) lowercase = {"""src""": src, """dst""": dest, """weight""": weight} lowercase = int(input("""\nEnter shortest path source:""").strip()) lowercase = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
591
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class __lowercase ( A, A, A, unittest.TestCase ): '''simple docstring''' _A : List[Any] = StableDiffusionControlNetImgaImgPipeline _A : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} _A : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _A : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'''control_image'''} ) _A : str = IMAGE_TO_IMAGE_IMAGE_PARAMS def A_ ( self : Optional[Any] ): torch.manual_seed(0 ) UpperCamelCase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) UpperCamelCase__ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) UpperCamelCase__ = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_a , set_alpha_to_one=_a , ) torch.manual_seed(0 ) UpperCamelCase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) UpperCamelCase__ = CLIPTextModel(_a ) UpperCamelCase__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCamelCase__ = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def A_ ( self : Optional[Any] , _a : Optional[int] , _a : Optional[Any]=0 ): if str(_a ).startswith('''mps''' ): UpperCamelCase__ = torch.manual_seed(_a ) else: UpperCamelCase__ = torch.Generator(device=_a ).manual_seed(_a ) UpperCamelCase__ = 2 UpperCamelCase__ = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_a , device=torch.device(_a ) , ) UpperCamelCase__ = floats_tensor(control_image.shape , rng=random.Random(_a ) ).to(_a ) UpperCamelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase__ = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((64, 64) ) UpperCamelCase__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def A_ ( self : Union[str, Any] ): return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def A_ ( self : Any ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def A_ ( self : Any ): self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class __lowercase ( A, A, unittest.TestCase ): '''simple docstring''' _A : int = StableDiffusionControlNetImgaImgPipeline _A : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} _A : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _A : Optional[Any] = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def A_ ( self : Tuple ): torch.manual_seed(0 ) UpperCamelCase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(_a : List[str] ): if isinstance(_a , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) UpperCamelCase__ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_a ) torch.manual_seed(0 ) UpperCamelCase__ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_a ) torch.manual_seed(0 ) UpperCamelCase__ = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_a , set_alpha_to_one=_a , ) torch.manual_seed(0 ) UpperCamelCase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) UpperCamelCase__ = CLIPTextModel(_a ) UpperCamelCase__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCamelCase__ = MultiControlNetModel([controlneta, controlneta] ) UpperCamelCase__ = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def A_ ( self : Tuple , _a : Dict , _a : Optional[int]=0 ): if str(_a ).startswith('''mps''' ): UpperCamelCase__ = torch.manual_seed(_a ) else: UpperCamelCase__ = torch.Generator(device=_a ).manual_seed(_a ) UpperCamelCase__ = 2 UpperCamelCase__ = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_a , device=torch.device(_a ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_a , device=torch.device(_a ) , ), ] UpperCamelCase__ = floats_tensor(control_image[0].shape , rng=random.Random(_a ) ).to(_a ) UpperCamelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase__ = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((64, 64) ) UpperCamelCase__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def A_ ( self : str ): UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = self.pipeline_class(**_a ) pipe.to(_a ) UpperCamelCase__ = 10.0 UpperCamelCase__ = 4 UpperCamelCase__ = self.get_dummy_inputs(_a ) UpperCamelCase__ = steps UpperCamelCase__ = scale UpperCamelCase__ = pipe(**_a )[0] UpperCamelCase__ = self.get_dummy_inputs(_a ) UpperCamelCase__ = steps UpperCamelCase__ = scale UpperCamelCase__ = pipe(**_a , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] UpperCamelCase__ = self.get_dummy_inputs(_a ) UpperCamelCase__ = steps UpperCamelCase__ = scale UpperCamelCase__ = pipe(**_a , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] UpperCamelCase__ = self.get_dummy_inputs(_a ) UpperCamelCase__ = steps UpperCamelCase__ = scale UpperCamelCase__ = pipe(**_a , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def A_ ( self : int ): return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def A_ ( self : int ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def A_ ( self : int ): self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def A_ ( self : Dict ): UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(_a ) except NotImplementedError: pass @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' def A_ ( self : Optional[int] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self : Dict ): UpperCamelCase__ = ControlNetModel.from_pretrained('''lllyasviel/sd-controlnet-canny''' ) UpperCamelCase__ = StableDiffusionControlNetImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , safety_checker=_a , controlnet=_a ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_a ) UpperCamelCase__ = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCamelCase__ = '''evil space-punk bird''' UpperCamelCase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ).resize((512, 512) ) UpperCamelCase__ = load_image( '''https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png''' ).resize((512, 512) ) UpperCamelCase__ = pipe( _a , _a , control_image=_a , generator=_a , output_type='''np''' , num_inference_steps=50 , strength=0.6 , ) UpperCamelCase__ = output.images[0] assert image.shape == (512, 512, 3) UpperCamelCase__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy''' ) assert np.abs(expected_image - image ).max() < 9E-2
591
1
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _A = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowercase (_snake_case ,_snake_case ,_snake_case=None ,_snake_case=None ,_snake_case=None ,_snake_case=None ,_snake_case=None ,_snake_case=None ,) -> Any: '''simple docstring''' if attention_mask is None: __UpperCamelCase = np.where(input_ids != config.pad_token_id ,1 ,0 ) if decoder_attention_mask is None: __UpperCamelCase = np.where(decoder_input_ids != config.pad_token_id ,1 ,0 ) if head_mask is None: __UpperCamelCase = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __UpperCamelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __UpperCamelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class __UpperCAmelCase : """simple docstring""" def __init__( self : Optional[Any] , A_ : List[str] , A_ : Dict=13 , A_ : str=7 , A_ : List[Any]=True , A_ : Optional[int]=False , A_ : Optional[int]=99 , A_ : str=16 , A_ : Optional[Any]=2 , A_ : Optional[int]=4 , A_ : List[Any]=4 , A_ : Optional[Any]="gelu" , A_ : Optional[int]=0.1 , A_ : Optional[int]=0.1 , A_ : List[str]=32 , A_ : str=2 , A_ : Any=1 , A_ : Tuple=0 , A_ : List[str]=0.02 , )-> Tuple: __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = eos_token_id __UpperCamelCase = pad_token_id __UpperCamelCase = bos_token_id __UpperCamelCase = initializer_range def A ( self : Any )-> Optional[Any]: __UpperCamelCase = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __UpperCamelCase = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __UpperCamelCase = shift_tokens_right(_lowercase , 1 , 2 ) __UpperCamelCase = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_lowercase , ) __UpperCamelCase = prepare_blenderbot_inputs_dict(_lowercase , _lowercase , _lowercase ) return config, inputs_dict def A ( self : Optional[int] )-> Optional[Any]: __UpperCamelCase , __UpperCamelCase = self.prepare_config_and_inputs() return config, inputs_dict def A ( self : Union[str, Any] , A_ : str , A_ : Any , A_ : Any )-> Optional[Any]: __UpperCamelCase = 20 __UpperCamelCase = model_class_name(_lowercase ) __UpperCamelCase = model.encode(inputs_dict["input_ids"] ) __UpperCamelCase , __UpperCamelCase = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) __UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , _lowercase , _lowercase ) __UpperCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=_lowercase , decoder_position_ids=_lowercase , ) __UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) __UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowercase , ) __UpperCamelCase = model.decode(_lowercase , _lowercase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def A ( self : List[str] , A_ : Tuple , A_ : Union[str, Any] , A_ : Dict )-> Optional[int]: __UpperCamelCase = 20 __UpperCamelCase = model_class_name(_lowercase ) __UpperCamelCase = model.encode(inputs_dict["input_ids"] ) __UpperCamelCase , __UpperCamelCase = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) __UpperCamelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , _lowercase , _lowercase ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=_lowercase , decoder_position_ids=_lowercase , ) __UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) __UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , _lowercase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowercase , decoder_position_ids=_lowercase , ) __UpperCamelCase = model.decode(_lowercase , _lowercase , decoder_attention_mask=_lowercase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" _snake_case : str = 9_9 def A ( self : Any )-> Any: __UpperCamelCase = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) __UpperCamelCase = input_ids.shape[0] __UpperCamelCase = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def A ( self : List[Any] )-> List[str]: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self._get_config_and_data() __UpperCamelCase = FlaxBlenderbotForConditionalGeneration(_lowercase ) __UpperCamelCase = lm_model(input_ids=_lowercase ) __UpperCamelCase = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , _lowercase ) def A ( self : int )-> List[Any]: __UpperCamelCase = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) __UpperCamelCase = FlaxBlenderbotForConditionalGeneration(_lowercase ) __UpperCamelCase = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) __UpperCamelCase = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) __UpperCamelCase = lm_model(input_ids=_lowercase , decoder_input_ids=_lowercase ) __UpperCamelCase = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , _lowercase ) def A ( self : Dict )-> Tuple: __UpperCamelCase = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) __UpperCamelCase = shift_tokens_right(_lowercase , 1 , 2 ) __UpperCamelCase = np.equal(_lowercase , 1 ).astype(np.floataa ).sum() __UpperCamelCase = np.equal(_lowercase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_lowercase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class __UpperCAmelCase ( UpperCAmelCase_ , unittest.TestCase , UpperCAmelCase_ ): """simple docstring""" _snake_case : Tuple = True _snake_case : Union[str, Any] = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) _snake_case : List[Any] = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def A ( self : str )-> str: __UpperCamelCase = FlaxBlenderbotModelTester(self ) def A ( self : Dict )-> Any: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_lowercase , _lowercase , _lowercase ) def A ( self : Any )-> int: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_lowercase , _lowercase , _lowercase ) def A ( self : Tuple )-> int: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCamelCase = self._prepare_for_class(_lowercase , _lowercase ) __UpperCamelCase = model_class(_lowercase ) @jax.jit def encode_jitted(A_ : Any , A_ : Optional[int]=None , **A_ : Optional[Any] ): return model.encode(input_ids=_lowercase , attention_mask=_lowercase ) with self.subTest("JIT Enabled" ): __UpperCamelCase = encode_jitted(**_lowercase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __UpperCamelCase = encode_jitted(**_lowercase ).to_tuple() self.assertEqual(len(_lowercase ) , len(_lowercase ) ) for jitted_output, output in zip(_lowercase , _lowercase ): self.assertEqual(jitted_output.shape , output.shape ) def A ( self : str )-> Optional[int]: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCamelCase = model_class(_lowercase ) __UpperCamelCase = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) __UpperCamelCase = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(A_ : List[str] , A_ : List[Any] , A_ : Dict ): return model.decode( decoder_input_ids=_lowercase , decoder_attention_mask=_lowercase , encoder_outputs=_lowercase , ) with self.subTest("JIT Enabled" ): __UpperCamelCase = decode_jitted(**_lowercase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __UpperCamelCase = decode_jitted(**_lowercase ).to_tuple() self.assertEqual(len(_lowercase ) , len(_lowercase ) ) for jitted_output, output in zip(_lowercase , _lowercase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def A ( self : Dict )-> List[Any]: for model_class_name in self.all_model_classes: __UpperCamelCase = model_class_name.from_pretrained("facebook/blenderbot-400M-distill" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __UpperCamelCase = np.ones((1, 1) ) * model.config.eos_token_id __UpperCamelCase = model(_lowercase ) self.assertIsNotNone(_lowercase ) @unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU." ) @slow def A ( self : int )-> str: __UpperCamelCase = {"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25} __UpperCamelCase = {"skip_special_tokens": True, "clean_up_tokenization_spaces": True} __UpperCamelCase = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=_lowercase ) __UpperCamelCase = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B" ) __UpperCamelCase = ["Sam"] __UpperCamelCase = tokenizer(_lowercase , return_tensors="jax" ) __UpperCamelCase = model.generate(**_lowercase , **_lowercase ) __UpperCamelCase = "Sam is a great name. It means \"sun\" in Gaelic." __UpperCamelCase = tokenizer.batch_decode(_lowercase , **_lowercase ) assert generated_txt[0].strip() == tgt_text
505
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer UpperCamelCase : str = logging.get_logger(__name__) UpperCamelCase : List[str] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : List[Any] = { "vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"}, "tokenizer_file": { "mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json" }, } UpperCamelCase : Any = {"mobilebert-uncased": 512} UpperCamelCase : Any = {} class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = MobileBertTokenizer def __init__( self : Optional[int] , _lowercase : Optional[int]=None , _lowercase : Any=None , _lowercase : Optional[int]=True , _lowercase : int="[UNK]" , _lowercase : Dict="[SEP]" , _lowercase : Any="[PAD]" , _lowercase : str="[CLS]" , _lowercase : Union[str, Any]="[MASK]" , _lowercase : List[Any]=True , _lowercase : Any=None , **_lowercase : Optional[Any] , ): super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowercase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowercase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowercase ) != tokenize_chinese_chars ): A = getattr(_lowercase , normalizer_state.pop('type' ) ) A = do_lower_case A = strip_accents A = tokenize_chinese_chars A = normalizer_class(**_lowercase ) A = do_lower_case def __a ( self : List[Any] , _lowercase : Tuple , _lowercase : Any=None ): A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : Dict , _lowercase : str , _lowercase : Optional[str] = None ): A = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
690
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: lowerCamelCase = None lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", }, """tokenizer_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json""", }, } lowerCamelCase = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } lowerCamelCase = """▁""" # Segments (not really needed) lowerCamelCase = 0 lowerCamelCase = 1 lowerCamelCase = 2 lowerCamelCase = 3 lowerCamelCase = 4 class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A :Union[str, Any] = VOCAB_FILES_NAMES A :str = PRETRAINED_VOCAB_FILES_MAP A :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A :Optional[Any] = "left" A :Optional[Any] = XLNetTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<sep>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<cls>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=["<eop>", "<eod>"] , **__UpperCAmelCase , ): """simple docstring""" a__ : Optional[Any] = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( vocab_file=__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) a__ : str = 3 a__ : Optional[int] = do_lower_case a__ : Optional[Any] = remove_space a__ : Optional[int] = keep_accents a__ : Union[str, Any] = vocab_file a__ : Union[str, Any] = False if not self.vocab_file else True def _A ( self , __UpperCAmelCase , __UpperCAmelCase = None ): """simple docstring""" a__ : int = [self.sep_token_id] a__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _A ( self , __UpperCAmelCase , __UpperCAmelCase = None ): """simple docstring""" a__ : Tuple = [self.sep_token_id] a__ : Union[str, Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _A ( self , __UpperCAmelCase , __UpperCAmelCase = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return a__ : Dict = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
712
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase ) -> Dict: a__ : List[Any] = checkpoint a__ : List[Any] = {} a__ : int = vae_state_dict["encoder.conv_in.weight"] a__ : Any = vae_state_dict["encoder.conv_in.bias"] a__ : Union[str, Any] = vae_state_dict["encoder.conv_out.weight"] a__ : Optional[Any] = vae_state_dict["encoder.conv_out.bias"] a__ : List[str] = vae_state_dict["encoder.norm_out.weight"] a__ : Optional[int] = vae_state_dict["encoder.norm_out.bias"] a__ : Optional[Any] = vae_state_dict["decoder.conv_in.weight"] a__ : Dict = vae_state_dict["decoder.conv_in.bias"] a__ : Union[str, Any] = vae_state_dict["decoder.conv_out.weight"] a__ : Optional[int] = vae_state_dict["decoder.conv_out.bias"] a__ : Dict = vae_state_dict["decoder.norm_out.weight"] a__ : int = vae_state_dict["decoder.norm_out.bias"] a__ : Any = vae_state_dict["quant_conv.weight"] a__ : Any = vae_state_dict["quant_conv.bias"] a__ : str = vae_state_dict["post_quant_conv.weight"] a__ : Any = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only a__ : Dict = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) a__ : Optional[int] = { layer_id: [key for key in vae_state_dict if F'down.{layer_id}' in key] for layer_id in range(__UpperCamelCase ) } # Retrieves the keys for the decoder up blocks only a__ : Dict = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) a__ : int = { layer_id: [key for key in vae_state_dict if F'up.{layer_id}' in key] for layer_id in range(__UpperCamelCase ) } for i in range(__UpperCamelCase ): a__ : Tuple = [key for key in down_blocks[i] if F'down.{i}' in key and F'down.{i}.downsample' not in key] if F'encoder.down.{i}.downsample.conv.weight' in vae_state_dict: a__ : Optional[Any] = vae_state_dict.pop( F'encoder.down.{i}.downsample.conv.weight' ) a__ : List[str] = vae_state_dict.pop( F'encoder.down.{i}.downsample.conv.bias' ) a__ : Optional[Any] = renew_vae_resnet_paths(__UpperCamelCase ) a__ : List[str] = {"old": F'down.{i}.block', "new": F'down_blocks.{i}.resnets'} assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase ) a__ : Any = [key for key in vae_state_dict if "encoder.mid.block" in key] a__ : Optional[int] = 2 for i in range(1 , num_mid_res_blocks + 1 ): a__ : List[Any] = [key for key in mid_resnets if F'encoder.mid.block_{i}' in key] a__ : Dict = renew_vae_resnet_paths(__UpperCamelCase ) a__ : Union[str, Any] = {"old": F'mid.block_{i}', "new": F'mid_block.resnets.{i - 1}'} assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase ) a__ : Dict = [key for key in vae_state_dict if "encoder.mid.attn" in key] a__ : Optional[int] = renew_vae_attention_paths(__UpperCamelCase ) a__ : str = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase ) conv_attn_to_linear(__UpperCamelCase ) for i in range(__UpperCamelCase ): a__ : Optional[Any] = num_up_blocks - 1 - i a__ : str = [ key for key in up_blocks[block_id] if F'up.{block_id}' in key and F'up.{block_id}.upsample' not in key ] if F'decoder.up.{block_id}.upsample.conv.weight' in vae_state_dict: a__ : Dict = vae_state_dict[ F'decoder.up.{block_id}.upsample.conv.weight' ] a__ : Optional[int] = vae_state_dict[ F'decoder.up.{block_id}.upsample.conv.bias' ] a__ : int = renew_vae_resnet_paths(__UpperCamelCase ) a__ : Optional[Any] = {"old": F'up.{block_id}.block', "new": F'up_blocks.{i}.resnets'} assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase ) a__ : Union[str, Any] = [key for key in vae_state_dict if "decoder.mid.block" in key] a__ : Dict = 2 for i in range(1 , num_mid_res_blocks + 1 ): a__ : List[str] = [key for key in mid_resnets if F'decoder.mid.block_{i}' in key] a__ : List[str] = renew_vae_resnet_paths(__UpperCamelCase ) a__ : Union[str, Any] = {"old": F'mid.block_{i}', "new": F'mid_block.resnets.{i - 1}'} assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase ) a__ : int = [key for key in vae_state_dict if "decoder.mid.attn" in key] a__ : str = renew_vae_attention_paths(__UpperCamelCase ) a__ : List[str] = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase ) conv_attn_to_linear(__UpperCamelCase ) return new_checkpoint def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase , ) -> str: # Only support V1 a__ : Optional[int] = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) a__ : Any = io.BytesIO(r.content ) a__ : int = OmegaConf.load(__UpperCamelCase ) a__ : Any = 5_12 a__ : str = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open a__ : Optional[Any] = {} with safe_open(__UpperCamelCase , framework="pt" , device="cpu" ) as f: for key in f.keys(): a__ : Tuple = f.get_tensor(__UpperCamelCase ) else: a__ : List[Any] = torch.load(__UpperCamelCase , map_location=__UpperCamelCase )["state_dict"] # Convert the VAE model. a__ : Optional[int] = create_vae_diffusers_config(__UpperCamelCase , image_size=__UpperCamelCase ) a__ : List[Any] = custom_convert_ldm_vae_checkpoint(__UpperCamelCase , __UpperCamelCase ) a__ : Optional[int] = AutoencoderKL(**__UpperCamelCase ) vae.load_state_dict(__UpperCamelCase ) vae.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--vae_pt_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") lowerCamelCase = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
207
0
'''simple docstring''' import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def a__ ( lowercase : Any, lowercase : Dict, lowercase : str ) -> Dict: """simple docstring""" _UpperCamelCase = TaConfig.from_json_file(_UpperCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) _UpperCamelCase = TaForConditionalGeneration(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": lowercase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowercase__ : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
98
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : str ) -> list: _a : Tuple =len(_UpperCAmelCase ) _a : str =[] for i in range(len(_UpperCAmelCase ) - pat_len + 1 ): _a : int =True for j in range(_UpperCAmelCase ): if s[i + j] != pattern[j]: _a : int =False break if match_found: position.append(_UpperCAmelCase ) return position if __name__ == "__main__": assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3] print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
694
0
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def snake_case ( a_ : int ) -> Union[str, Any]: """simple docstring""" random.seed(a_ ) np.random.seed(a_ ) torch.manual_seed(a_ ) torch.cuda.manual_seed_all(a_ ) # ^^ safe to call this function even if cuda is not available class A : """simple docstring""" def __init__( self , __lowerCAmelCase , __lowerCAmelCase = 0.99_99 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 0 , __lowerCAmelCase = False , __lowerCAmelCase = 1.0 , __lowerCAmelCase = 2 / 3 , __lowerCAmelCase = None , __lowerCAmelCase = None , **__lowerCAmelCase , ): if isinstance(__lowerCAmelCase , torch.nn.Module ): UpperCamelCase_ : Dict = ( """Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , __lowerCAmelCase , standard_warn=__lowerCAmelCase , ) UpperCamelCase_ : str = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility UpperCamelCase_ : Optional[int] = True if kwargs.get("""max_value""" , __lowerCAmelCase ) is not None: UpperCamelCase_ : Tuple = """The `max_value` argument is deprecated. Please use `decay` instead.""" deprecate("""max_value""" , """1.0.0""" , __lowerCAmelCase , standard_warn=__lowerCAmelCase ) UpperCamelCase_ : str = kwargs["""max_value"""] if kwargs.get("""min_value""" , __lowerCAmelCase ) is not None: UpperCamelCase_ : Dict = """The `min_value` argument is deprecated. Please use `min_decay` instead.""" deprecate("""min_value""" , """1.0.0""" , __lowerCAmelCase , standard_warn=__lowerCAmelCase ) UpperCamelCase_ : Optional[Any] = kwargs["""min_value"""] UpperCamelCase_ : Optional[Any] = list(__lowerCAmelCase ) UpperCamelCase_ : Any = [p.clone().detach() for p in parameters] if kwargs.get("""device""" , __lowerCAmelCase ) is not None: UpperCamelCase_ : str = """The `device` argument is deprecated. Please use `to` instead.""" deprecate("""device""" , """1.0.0""" , __lowerCAmelCase , standard_warn=__lowerCAmelCase ) self.to(device=kwargs["""device"""] ) UpperCamelCase_ : List[Any] = None UpperCamelCase_ : Optional[Any] = decay UpperCamelCase_ : List[str] = min_decay UpperCamelCase_ : int = update_after_step UpperCamelCase_ : Optional[int] = use_ema_warmup UpperCamelCase_ : Optional[int] = inv_gamma UpperCamelCase_ : Any = power UpperCamelCase_ : str = 0 UpperCamelCase_ : List[str] = None # set in `step()` UpperCamelCase_ : Union[str, Any] = model_cls UpperCamelCase_ : Any = model_config @classmethod def _UpperCAmelCase ( cls , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase_ : int = model_cls.load_config(__lowerCAmelCase , return_unused_kwargs=__lowerCAmelCase ) UpperCamelCase_ : str = model_cls.from_pretrained(__lowerCAmelCase ) UpperCamelCase_ : Union[str, Any] = cls(model.parameters() , model_cls=__lowerCAmelCase , model_config=model.config ) ema_model.load_state_dict(__lowerCAmelCase ) return ema_model def _UpperCAmelCase ( self , __lowerCAmelCase ): if self.model_cls is None: raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" ) if self.model_config is None: raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" ) UpperCamelCase_ : int = self.model_cls.from_config(self.model_config ) UpperCamelCase_ : List[Any] = self.state_dict() state_dict.pop("""shadow_params""" , __lowerCAmelCase ) model.register_to_config(**__lowerCAmelCase ) self.copy_to(model.parameters() ) model.save_pretrained(__lowerCAmelCase ) def _UpperCAmelCase ( self , __lowerCAmelCase ): UpperCamelCase_ : Any = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: UpperCamelCase_ : List[Any] = 1 - (1 + step / self.inv_gamma) ** -self.power else: UpperCamelCase_ : List[Any] = (1 + step) / (10 + step) UpperCamelCase_ : Optional[Any] = min(__lowerCAmelCase , self.decay ) # make sure decay is not smaller than min_decay UpperCamelCase_ : Optional[Any] = max(__lowerCAmelCase , self.min_decay ) return cur_decay_value @torch.no_grad() def _UpperCAmelCase ( self , __lowerCAmelCase ): if isinstance(__lowerCAmelCase , torch.nn.Module ): UpperCamelCase_ : str = ( """Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , __lowerCAmelCase , standard_warn=__lowerCAmelCase , ) UpperCamelCase_ : int = parameters.parameters() UpperCamelCase_ : Optional[int] = list(__lowerCAmelCase ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. UpperCamelCase_ : Any = self.get_decay(self.optimization_step ) UpperCamelCase_ : List[str] = decay UpperCamelCase_ : Any = 1 - decay UpperCamelCase_ : Optional[int] = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , __lowerCAmelCase ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): UpperCamelCase_ : Optional[Any] = deepspeed.zero.GatheredParameters(__lowerCAmelCase , modifier_rank=__lowerCAmelCase ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(__lowerCAmelCase ) def _UpperCAmelCase ( self , __lowerCAmelCase ): UpperCamelCase_ : str = list(__lowerCAmelCase ) for s_param, param in zip(self.shadow_params , __lowerCAmelCase ): param.data.copy_(s_param.to(param.device ).data ) def _UpperCAmelCase ( self , __lowerCAmelCase=None , __lowerCAmelCase=None ): UpperCamelCase_ : Union[str, Any] = [ p.to(device=__lowerCAmelCase , dtype=__lowerCAmelCase ) if p.is_floating_point() else p.to(device=__lowerCAmelCase ) for p in self.shadow_params ] def _UpperCAmelCase ( self ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def _UpperCAmelCase ( self , __lowerCAmelCase ): UpperCamelCase_ : List[str] = [param.detach().cpu().clone() for param in parameters] def _UpperCAmelCase ( self , __lowerCAmelCase ): if self.temp_stored_params is None: raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" ) for c_param, param in zip(self.temp_stored_params , __lowerCAmelCase ): param.data.copy_(c_param.data ) # Better memory-wise. UpperCamelCase_ : List[Any] = None def _UpperCAmelCase ( self , __lowerCAmelCase ): UpperCamelCase_ : List[Any] = copy.deepcopy(__lowerCAmelCase ) UpperCamelCase_ : int = state_dict.get("""decay""" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("""Decay must be between 0 and 1""" ) UpperCamelCase_ : Dict = state_dict.get("""min_decay""" , self.min_decay ) if not isinstance(self.min_decay , __lowerCAmelCase ): raise ValueError("""Invalid min_decay""" ) UpperCamelCase_ : str = state_dict.get("""optimization_step""" , self.optimization_step ) if not isinstance(self.optimization_step , __lowerCAmelCase ): raise ValueError("""Invalid optimization_step""" ) UpperCamelCase_ : Dict = state_dict.get("""update_after_step""" , self.update_after_step ) if not isinstance(self.update_after_step , __lowerCAmelCase ): raise ValueError("""Invalid update_after_step""" ) UpperCamelCase_ : List[str] = state_dict.get("""use_ema_warmup""" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , __lowerCAmelCase ): raise ValueError("""Invalid use_ema_warmup""" ) UpperCamelCase_ : Any = state_dict.get("""inv_gamma""" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("""Invalid inv_gamma""" ) UpperCamelCase_ : str = state_dict.get("""power""" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("""Invalid power""" ) UpperCamelCase_ : Dict = state_dict.get("""shadow_params""" , __lowerCAmelCase ) if shadow_params is not None: UpperCamelCase_ : Any = shadow_params if not isinstance(self.shadow_params , __lowerCAmelCase ): raise ValueError("""shadow_params must be a list""" ) if not all(isinstance(__lowerCAmelCase , torch.Tensor ) for p in self.shadow_params ): raise ValueError("""shadow_params must all be Tensors""" )
703
'''simple docstring''' # Lint as: python3 import itertools import os import re UpperCamelCase =re.compile(R"([A-Z]+)([A-Z][a-z])") UpperCamelCase =re.compile(R"([a-z\d])([A-Z])") UpperCamelCase =re.compile(R"(?<!_)_(?!_)") UpperCamelCase =re.compile(R"(_{2,})") UpperCamelCase =R"^\w+(\.\w+)*$" UpperCamelCase =R"<>:/\|?*" def snake_case ( a_ : str ) -> int: """simple docstring""" UpperCamelCase_ : str = _uppercase_uppercase_re.sub(r"""\1_\2""" , a_ ) UpperCamelCase_ : List[Any] = _lowercase_uppercase_re.sub(r"""\1_\2""" , a_ ) return name.lower() def snake_case ( a_ : Any ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : Optional[Any] = _single_underscore_re.split(a_ ) UpperCamelCase_ : Tuple = [_multiple_underscores_re.split(a_ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(a_ ) if n != """""" ) def snake_case ( a_ : Optional[int] ) -> str: """simple docstring""" if os.path.basename(a_ ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(a_ ) def snake_case ( a_ : List[Any] , a_ : Optional[int] ) -> Optional[Any]: """simple docstring""" if os.path.basename(a_ ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re , a_ ): raise ValueError(f"Split name should match '{_split_re}'' but got '{split}'." ) return f"{filename_prefix_for_name(a_ )}-{split}" def snake_case ( a_ : Optional[Any] , a_ : int , a_ : List[Any] , a_ : Union[str, Any]=None ) -> Dict: """simple docstring""" UpperCamelCase_ : Optional[int] = filename_prefix_for_split(a_ , a_ ) if filetype_suffix: prefix += f".{filetype_suffix}" UpperCamelCase_ : str = os.path.join(a_ , a_ ) return f"{filepath}*" def snake_case ( a_ : Tuple , a_ : Any , a_ : Optional[int] , a_ : Union[str, Any]=None , a_ : Optional[Any]=None ) -> List[Any]: """simple docstring""" UpperCamelCase_ : Dict = filename_prefix_for_split(a_ , a_ ) UpperCamelCase_ : Dict = os.path.join(a_ , a_ ) if shard_lengths: UpperCamelCase_ : Optional[int] = len(a_ ) UpperCamelCase_ : Tuple = [f"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(a_ )] if filetype_suffix: UpperCamelCase_ : Tuple = [filename + f".{filetype_suffix}" for filename in filenames] return filenames else: UpperCamelCase_ : Dict = prefix if filetype_suffix: filename += f".{filetype_suffix}" return [filename]
543
0
"""simple docstring""" import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ : Any = False, False, False @dataclass class __lowerCAmelCase : """simple docstring""" snake_case = None snake_case = True snake_case = True snake_case = None # Automatically constructed snake_case = "dict" snake_case = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) snake_case = field(default="Audio" , init=_lowercase , repr=_lowercase ) def __call__( self : Dict ) -> str: """simple docstring""" return self.pa_type def lowerCamelCase__ ( self : Union[str, Any] , _snake_case : Union[str, bytes, dict] ) -> dict: """simple docstring""" try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err if isinstance(_snake_case , _snake_case ): return {"bytes": None, "path": value} elif isinstance(_snake_case , _snake_case ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes A_ = BytesIO() sf.write(_snake_case , value["array"] , value["sampling_rate"] , format="wav" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm" ): # "PCM" only has raw audio bytes if value.get("sampling_rate" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" ) if value.get("bytes" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) A_ = np.frombuffer(value["bytes"] , dtype=np.intaa ).astype(np.floataa ) / 32_767 else: A_ = np.memmap(value["path"] , dtype="h" , mode="r" ).astype(np.floataa ) / 32_767 A_ = BytesIO(bytes() ) sf.write(_snake_case , _snake_case , value["sampling_rate"] , format="wav" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( F'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def lowerCamelCase__ ( self : Any , _snake_case : dict , _snake_case : Optional[Dict[str, Union[str, bool, None]]] = None ) -> dict: """simple docstring""" if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." ) A_ , A_ = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(F'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err A_ = xsplitext(_snake_case )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) if file is None: A_ = token_per_repo_id or {} A_ = path.split("::" )[-1] try: A_ = string_to_dict(_snake_case , config.HUB_DATASETS_URL )["repo_id"] A_ = token_per_repo_id[repo_id] except (ValueError, KeyError): A_ = None with xopen(_snake_case , "rb" , use_auth_token=_snake_case ) as f: A_ , A_ = sf.read(_snake_case ) else: A_ , A_ = sf.read(_snake_case ) A_ = array.T if self.mono: A_ = librosa.to_mono(_snake_case ) if self.sampling_rate and self.sampling_rate != sampling_rate: A_ = librosa.resample(_snake_case , orig_sr=_snake_case , target_sr=self.sampling_rate ) A_ = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def lowerCamelCase__ ( self : Any ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature." ) return { "bytes": Value("binary" ), "path": Value("string" ), } def lowerCamelCase__ ( self : List[Any] , _snake_case : Union[pa.StringArray, pa.StructArray] ) -> pa.StructArray: """simple docstring""" if pa.types.is_string(storage.type ): A_ = pa.array([None] * len(_snake_case ) , type=pa.binary() ) A_ = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): A_ = pa.array([None] * len(_snake_case ) , type=pa.string() ) A_ = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ): A_ = pa.array([Audio().encode_example(_snake_case ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: A_ = storage.field("bytes" ) else: A_ = pa.array([None] * len(_snake_case ) , type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: A_ = storage.field("path" ) else: A_ = pa.array([None] * len(_snake_case ) , type=pa.string() ) A_ = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() ) return array_cast(_snake_case , self.pa_type ) def lowerCamelCase__ ( self : Tuple , _snake_case : pa.StructArray ) -> pa.StructArray: """simple docstring""" @no_op_if_value_is_null def path_to_bytes(_snake_case : List[Any] ): with xopen(_snake_case , "rb" ) as f: A_ = f.read() return bytes_ A_ = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) A_ = pa.array( [os.path.basename(_snake_case ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , ) A_ = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(_snake_case , self.pa_type )
115
"""simple docstring""" from __future__ import annotations def A_ (__a ): '''simple docstring''' A_ = 0.00 A_ = 0 for resistor in resistors: if resistor <= 0: A_ = f'Resistor at index {index} has a negative or zero value!' raise ValueError(__a ) first_sum += 1 / float(__a ) index += 1 return 1 / first_sum def A_ (__a ): '''simple docstring''' A_ = 0.00 A_ = 0 for resistor in resistors: sum_r += resistor if resistor < 0: A_ = f'Resistor at index {index} has a negative value!' raise ValueError(__a ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
115
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
703
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
688
0
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 6_50, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "pytorch", "script": "run_ddp.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 6_00, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "tensorflow", "script": "run_tf_dist.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 6_00, "eval_accuracy": 0.6, "eval_loss": 0.7}, }, ] ) class UpperCAmelCase_ ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Optional[Any]: if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=UpperCamelCase_ , ) assert hasattr(self , '''env''' ) def _lowerCamelCase ( self , UpperCamelCase_ ) -> Union[str, Any]: __lowercase : str = F"""{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}""" # distributed data settings __lowercase : List[str] = {'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=UpperCamelCase_ , instance_count=UpperCamelCase_ , instance_type=self.instance_type , debugger_hook_config=UpperCamelCase_ , hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=UpperCamelCase_ , py_version='''py36''' , ) def _lowerCamelCase ( self , UpperCamelCase_ ) -> List[Any]: TrainingJobAnalytics(UpperCamelCase_ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def _lowerCamelCase ( self , UpperCamelCase_ ) -> Any: # create estimator __lowercase : List[str] = self.create_estimator(UpperCamelCase_ ) # run training estimator.fit() # result dataframe __lowercase : Dict = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __lowercase : int = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) __lowercase : Optional[Any] = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowercase : int = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , UpperCamelCase_ )
76
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING _A = logging.get_logger(__name__) @add_end_docstrings(__UpperCAmelCase ) class A ( __UpperCAmelCase ): def __init__( self, **UpperCamelCase__ ): """simple docstring""" super().__init__(**UpperCamelCase__ ) if self.framework == "tf": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) requires_backends(self, '''vision''' ) self.check_model_type(UpperCamelCase__ ) def __call__( self, UpperCamelCase__, UpperCamelCase__ = None, **UpperCamelCase__, ): """simple docstring""" if "text_queries" in kwargs: lowerCAmelCase_ = kwargs.pop('''text_queries''' ) if isinstance(UpperCamelCase__, (str, Image.Image) ): lowerCAmelCase_ = {'''image''': image, '''candidate_labels''': candidate_labels} else: lowerCAmelCase_ = image lowerCAmelCase_ = super().__call__(UpperCamelCase__, **UpperCamelCase__ ) return results def SCREAMING_SNAKE_CASE__ ( self, **UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = {} if "threshold" in kwargs: lowerCAmelCase_ = kwargs['''threshold'''] if "top_k" in kwargs: lowerCAmelCase_ = kwargs['''top_k'''] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = load_image(inputs['''image'''] ) lowerCAmelCase_ = inputs['''candidate_labels'''] if isinstance(UpperCamelCase__, UpperCamelCase__ ): lowerCAmelCase_ = candidate_labels.split(''',''' ) lowerCAmelCase_ = torch.tensor([[image.height, image.width]], dtype=torch.intaa ) for i, candidate_label in enumerate(UpperCamelCase__ ): lowerCAmelCase_ = self.tokenizer(UpperCamelCase__, return_tensors=self.framework ) lowerCAmelCase_ = self.image_processor(UpperCamelCase__, return_tensors=self.framework ) yield { "is_last": i == len(UpperCamelCase__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = model_inputs.pop('''target_size''' ) lowerCAmelCase_ = model_inputs.pop('''candidate_label''' ) lowerCAmelCase_ = model_inputs.pop('''is_last''' ) lowerCAmelCase_ = self.model(**UpperCamelCase__ ) lowerCAmelCase_ = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__=0.1, UpperCamelCase__=None ): """simple docstring""" lowerCAmelCase_ = [] for model_output in model_outputs: lowerCAmelCase_ = model_output['''candidate_label'''] lowerCAmelCase_ = BaseModelOutput(UpperCamelCase__ ) lowerCAmelCase_ = self.image_processor.post_process_object_detection( outputs=UpperCamelCase__, threshold=UpperCamelCase__, target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): lowerCAmelCase_ = outputs['''scores'''][index].item() lowerCAmelCase_ = self._get_bounding_box(outputs['''boxes'''][index][0] ) lowerCAmelCase_ = {'''score''': score, '''label''': label, '''box''': box} results.append(UpperCamelCase__ ) lowerCAmelCase_ = sorted(UpperCamelCase__, key=lambda UpperCamelCase__ : x["score"], reverse=UpperCamelCase__ ) if top_k: lowerCAmelCase_ = results[:top_k] return results def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = box.int().tolist() lowerCAmelCase_ = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
431
0
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = "T5Config" class __magic_name__ ( _a): _UpperCAmelCase : Any = 'mt5' _UpperCAmelCase : Dict = MTaConfig class __magic_name__ ( _a): _UpperCAmelCase : int = 'mt5' _UpperCAmelCase : List[Any] = MTaConfig class __magic_name__ ( _a): _UpperCAmelCase : Dict = 'mt5' _UpperCAmelCase : List[str] = MTaConfig
713
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __magic_name__ ( _a): @require_torch def _UpperCAmelCase ( self : Tuple ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched UpperCAmelCase = "\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n " UpperCAmelCase = "\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n " UpperCAmelCase = "\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\")\nsocket.socket = offline_socket\n " # Force fetching the files so that we can use the cache UpperCAmelCase = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) BertModel.from_pretrained(__SCREAMING_SNAKE_CASE ) BertTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) pipeline(task="fill-mask" ,model=__SCREAMING_SNAKE_CASE ) # baseline - just load from_pretrained with normal network UpperCAmelCase = [sys.executable, "-c", "\n".join([load, run, mock] )] # should succeed UpperCAmelCase = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase = "1" UpperCAmelCase = subprocess.run(__SCREAMING_SNAKE_CASE ,env=__SCREAMING_SNAKE_CASE ,check=__SCREAMING_SNAKE_CASE ,capture_output=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn("success" ,result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self : Optional[int] ): # python one-liner segments # this must be loaded before socket.socket is monkey-patched UpperCAmelCase = "\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n " UpperCAmelCase = "\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n " UpperCAmelCase = "\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\")\nsocket.socket = offline_socket\n " # Force fetching the files so that we can use the cache UpperCAmelCase = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) BertModel.from_pretrained(__SCREAMING_SNAKE_CASE ) BertTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) pipeline(task="fill-mask" ,model=__SCREAMING_SNAKE_CASE ) # baseline - just load from_pretrained with normal network UpperCAmelCase = [sys.executable, "-c", "\n".join([load, run, mock] )] # should succeed UpperCAmelCase = self.get_env() UpperCAmelCase = subprocess.run(__SCREAMING_SNAKE_CASE ,env=__SCREAMING_SNAKE_CASE ,check=__SCREAMING_SNAKE_CASE ,capture_output=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn("success" ,result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self : str ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched UpperCAmelCase = "\nfrom transformers import BertConfig, BertModel, BertTokenizer\n " UpperCAmelCase = "\nmname = \"hf-internal-testing/tiny-random-bert-sharded\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint(\"success\")\n " UpperCAmelCase = "\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n " # baseline - just load from_pretrained with normal network UpperCAmelCase = [sys.executable, "-c", "\n".join([load, run] )] # should succeed UpperCAmelCase = self.get_env() UpperCAmelCase = subprocess.run(__SCREAMING_SNAKE_CASE ,env=__SCREAMING_SNAKE_CASE ,check=__SCREAMING_SNAKE_CASE ,capture_output=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn("success" ,result.stdout.decode() ) # next emulate no network UpperCAmelCase = [sys.executable, "-c", "\n".join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase = "1" UpperCAmelCase = subprocess.run(__SCREAMING_SNAKE_CASE ,env=__SCREAMING_SNAKE_CASE ,check=__SCREAMING_SNAKE_CASE ,capture_output=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn("success" ,result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self : Dict ): UpperCAmelCase = "\nfrom transformers import pipeline\n " UpperCAmelCase = "\nmname = \"hf-internal-testing/tiny-random-bert\"\npipe = pipeline(model=mname)\n " UpperCAmelCase = "\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n " UpperCAmelCase = self.get_env() UpperCAmelCase = "1" UpperCAmelCase = [sys.executable, "-c", "\n".join([load, mock, run] )] UpperCAmelCase = subprocess.run(__SCREAMING_SNAKE_CASE ,env=__SCREAMING_SNAKE_CASE ,check=__SCREAMING_SNAKE_CASE ,capture_output=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.returncode ,1 ,result.stderr ) self.assertIn( "You cannot infer task automatically within `pipeline` when using offline mode" ,result.stderr.decode().replace("\n" ,"" ) ,) @require_torch def _UpperCAmelCase ( self : Any ): UpperCAmelCase = "\nfrom transformers import AutoModel\n " UpperCAmelCase = "\nmname = \"hf-internal-testing/test_dynamic_model\"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint(\"success\")\n " # baseline - just load from_pretrained with normal network UpperCAmelCase = [sys.executable, "-c", "\n".join([load, run] )] # should succeed UpperCAmelCase = self.get_env() UpperCAmelCase = subprocess.run(__SCREAMING_SNAKE_CASE ,env=__SCREAMING_SNAKE_CASE ,check=__SCREAMING_SNAKE_CASE ,capture_output=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn("success" ,result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase = "1" UpperCAmelCase = subprocess.run(__SCREAMING_SNAKE_CASE ,env=__SCREAMING_SNAKE_CASE ,check=__SCREAMING_SNAKE_CASE ,capture_output=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn("success" ,result.stdout.decode() )
405
0
'''simple docstring''' import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = AudioLDMPipeline lowerCAmelCase__ = TEXT_TO_AUDIO_PARAMS lowerCAmelCase__ = TEXT_TO_AUDIO_BATCH_PARAMS lowerCAmelCase__ = frozenset( [ 'num_inference_steps', 'num_waveforms_per_prompt', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) def lowercase_ ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : int = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=(32, 64) , class_embed_type='''simple_projection''' , projection_class_embeddings_input_dim=32 , class_embeddings_concat=__lowerCAmelCase , ) UpperCAmelCase__ : Optional[Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , ) torch.manual_seed(0 ) UpperCAmelCase__ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase__ : Optional[Any] = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , projection_dim=32 , ) UpperCAmelCase__ : Optional[int] = ClapTextModelWithProjection(__lowerCAmelCase ) UpperCAmelCase__ : List[str] = RobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-roberta''' , model_max_length=77 ) UpperCAmelCase__ : Dict = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=16_000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=__lowerCAmelCase , ) UpperCAmelCase__ : List[Any] = SpeechTaHifiGan(__lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''vocoder''': vocoder, } return components def lowercase_ ( self : Optional[int] , _A : Tuple , _A : str=0 ): '''simple docstring''' if str(__lowerCAmelCase ).startswith('''mps''' ): UpperCAmelCase__ : Optional[int] = torch.manual_seed(__lowerCAmelCase ) else: UpperCAmelCase__ : Tuple = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) UpperCAmelCase__ : str = { '''prompt''': '''A hammer hitting a wooden surface''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, } return inputs def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ : List[Any] = self.get_dummy_components() UpperCAmelCase__ : int = AudioLDMPipeline(**__lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = audioldm_pipe.to(__lowerCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) UpperCAmelCase__ : int = self.get_dummy_inputs(__lowerCAmelCase ) UpperCAmelCase__ : int = audioldm_pipe(**__lowerCAmelCase ) UpperCAmelCase__ : List[str] = output.audios[0] assert audio.ndim == 1 assert len(__lowerCAmelCase ) == 256 UpperCAmelCase__ : Any = audio[:10] UpperCAmelCase__ : List[Any] = np.array( [-0.0_0_5_0, 0.0_0_5_0, -0.0_0_6_0, 0.0_0_3_3, -0.0_0_2_6, 0.0_0_3_3, -0.0_0_2_7, 0.0_0_3_3, -0.0_0_2_8, 0.0_0_3_3] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = self.get_dummy_components() UpperCAmelCase__ : Optional[Any] = AudioLDMPipeline(**__lowerCAmelCase ) UpperCAmelCase__ : Tuple = audioldm_pipe.to(__lowerCAmelCase ) UpperCAmelCase__ : Dict = audioldm_pipe.to(__lowerCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) UpperCAmelCase__ : str = self.get_dummy_inputs(__lowerCAmelCase ) UpperCAmelCase__ : str = 3 * [inputs['''prompt''']] # forward UpperCAmelCase__ : Dict = audioldm_pipe(**__lowerCAmelCase ) UpperCAmelCase__ : Dict = output.audios[0] UpperCAmelCase__ : Dict = self.get_dummy_inputs(__lowerCAmelCase ) UpperCAmelCase__ : Dict = 3 * [inputs.pop('''prompt''' )] UpperCAmelCase__ : Dict = audioldm_pipe.tokenizer( __lowerCAmelCase , padding='''max_length''' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__lowerCAmelCase , return_tensors='''pt''' , ) UpperCAmelCase__ : Optional[Any] = text_inputs['''input_ids'''].to(__lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = audioldm_pipe.text_encoder( __lowerCAmelCase , ) UpperCAmelCase__ : Optional[Any] = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state UpperCAmelCase__ : Optional[int] = F.normalize(__lowerCAmelCase , dim=-1 ) UpperCAmelCase__ : Optional[int] = prompt_embeds # forward UpperCAmelCase__ : Tuple = audioldm_pipe(**__lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.get_dummy_components() UpperCAmelCase__ : List[str] = AudioLDMPipeline(**__lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = audioldm_pipe.to(__lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = audioldm_pipe.to(__lowerCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) UpperCAmelCase__ : Dict = self.get_dummy_inputs(__lowerCAmelCase ) UpperCAmelCase__ : Dict = 3 * ['''this is a negative prompt'''] UpperCAmelCase__ : Any = negative_prompt UpperCAmelCase__ : int = 3 * [inputs['''prompt''']] # forward UpperCAmelCase__ : Optional[int] = audioldm_pipe(**__lowerCAmelCase ) UpperCAmelCase__ : List[str] = output.audios[0] UpperCAmelCase__ : Optional[int] = self.get_dummy_inputs(__lowerCAmelCase ) UpperCAmelCase__ : Any = 3 * [inputs.pop('''prompt''' )] UpperCAmelCase__ : Dict = [] for p in [prompt, negative_prompt]: UpperCAmelCase__ : Optional[int] = audioldm_pipe.tokenizer( __lowerCAmelCase , padding='''max_length''' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__lowerCAmelCase , return_tensors='''pt''' , ) UpperCAmelCase__ : str = text_inputs['''input_ids'''].to(__lowerCAmelCase ) UpperCAmelCase__ : int = audioldm_pipe.text_encoder( __lowerCAmelCase , ) UpperCAmelCase__ : Optional[Any] = text_embeds.text_embeds # additional L_2 normalization over each hidden-state UpperCAmelCase__ : List[str] = F.normalize(__lowerCAmelCase , dim=-1 ) embeds.append(__lowerCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ : int = embeds # forward UpperCAmelCase__ : Dict = audioldm_pipe(**__lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ : List[Any] = self.get_dummy_components() UpperCAmelCase__ : int = PNDMScheduler(skip_prk_steps=__lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = AudioLDMPipeline(**__lowerCAmelCase ) UpperCAmelCase__ : Any = audioldm_pipe.to(__lowerCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = self.get_dummy_inputs(__lowerCAmelCase ) UpperCAmelCase__ : Dict = '''egg cracking''' UpperCAmelCase__ : Optional[int] = audioldm_pipe(**__lowerCAmelCase , negative_prompt=__lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = output.audios[0] assert audio.ndim == 1 assert len(__lowerCAmelCase ) == 256 UpperCAmelCase__ : Optional[int] = audio[:10] UpperCAmelCase__ : Dict = np.array( [-0.0_0_5_1, 0.0_0_5_0, -0.0_0_6_0, 0.0_0_3_4, -0.0_0_2_6, 0.0_0_3_3, -0.0_0_2_7, 0.0_0_3_3, -0.0_0_2_8, 0.0_0_3_2] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ : Tuple = self.get_dummy_components() UpperCAmelCase__ : str = PNDMScheduler(skip_prk_steps=__lowerCAmelCase ) UpperCAmelCase__ : str = AudioLDMPipeline(**__lowerCAmelCase ) UpperCAmelCase__ : List[str] = audioldm_pipe.to(__lowerCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = '''A hammer hitting a wooden surface''' # test num_waveforms_per_prompt=1 (default) UpperCAmelCase__ : Optional[int] = audioldm_pipe(__lowerCAmelCase , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts UpperCAmelCase__ : Dict = 2 UpperCAmelCase__ : Any = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt UpperCAmelCase__ : str = 2 UpperCAmelCase__ : List[str] = audioldm_pipe(__lowerCAmelCase , num_inference_steps=2 , num_waveforms_per_prompt=__lowerCAmelCase ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts UpperCAmelCase__ : List[Any] = 2 UpperCAmelCase__ : List[Any] = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=__lowerCAmelCase ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ : Union[str, Any] = self.get_dummy_components() UpperCAmelCase__ : List[str] = AudioLDMPipeline(**__lowerCAmelCase ) UpperCAmelCase__ : Tuple = audioldm_pipe.to(__lowerCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) UpperCAmelCase__ : Tuple = audioldm_pipe.vocoder.config.sampling_rate UpperCAmelCase__ : List[Any] = self.get_dummy_inputs(__lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = audioldm_pipe(audio_length_in_s=0.0_1_6 , **__lowerCAmelCase ) UpperCAmelCase__ : int = output.audios[0] assert audio.ndim == 1 assert len(__lowerCAmelCase ) / vocoder_sampling_rate == 0.0_1_6 UpperCAmelCase__ : int = audioldm_pipe(audio_length_in_s=0.0_3_2 , **__lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = output.audios[0] assert audio.ndim == 1 assert len(__lowerCAmelCase ) / vocoder_sampling_rate == 0.0_3_2 def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.get_dummy_components() UpperCAmelCase__ : List[str] = AudioLDMPipeline(**__lowerCAmelCase ) UpperCAmelCase__ : List[str] = audioldm_pipe.to(__lowerCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) UpperCAmelCase__ : Any = ['''hey'''] UpperCAmelCase__ : List[str] = audioldm_pipe(__lowerCAmelCase , num_inference_steps=1 ) UpperCAmelCase__ : Tuple = output.audios.shape assert audio_shape == (1, 256) UpperCAmelCase__ : int = audioldm_pipe.vocoder.config config.model_in_dim *= 2 UpperCAmelCase__ : Tuple = SpeechTaHifiGan(__lowerCAmelCase ).to(__lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = audioldm_pipe(__lowerCAmelCase , num_inference_steps=1 ) UpperCAmelCase__ : Union[str, Any] = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def lowercase_ ( self : List[Any] ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__lowerCAmelCase ) def lowercase_ ( self : Tuple ): '''simple docstring''' self._test_inference_batch_single_identical(test_mean_pixel_difference=__lowerCAmelCase ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__lowerCAmelCase ) @slow class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : List[str] , _A : Optional[int] , _A : List[str]="cpu" , _A : Optional[Any]=torch.floataa , _A : Optional[int]=0 ): '''simple docstring''' UpperCAmelCase__ : List[Any] = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) UpperCAmelCase__ : int = np.random.RandomState(__lowerCAmelCase ).standard_normal((1, 8, 128, 16) ) UpperCAmelCase__ : Union[str, Any] = torch.from_numpy(__lowerCAmelCase ).to(device=__lowerCAmelCase , dtype=__lowerCAmelCase ) UpperCAmelCase__ : Tuple = { '''prompt''': '''A hammer hitting a wooden surface''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 2.5, } return inputs def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) UpperCAmelCase__ : List[Any] = audioldm_pipe.to(__lowerCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = self.get_inputs(__lowerCAmelCase ) UpperCAmelCase__ : Tuple = 25 UpperCAmelCase__ : str = audioldm_pipe(**__lowerCAmelCase ).audios[0] assert audio.ndim == 1 assert len(__lowerCAmelCase ) == 81_920 UpperCAmelCase__ : Optional[Any] = audio[77_230:77_240] UpperCAmelCase__ : Optional[int] = np.array( [-0.4_8_8_4, -0.4_6_0_7, 0.0_0_2_3, 0.5_0_0_7, 0.5_8_9_6, 0.5_1_5_1, 0.3_8_1_3, -0.0_2_0_8, -0.3_6_8_7, -0.4_3_1_5] ) UpperCAmelCase__ : List[Any] = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1e-2 def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) UpperCAmelCase__ : Optional[Any] = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) UpperCAmelCase__ : Tuple = audioldm_pipe.to(__lowerCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = self.get_inputs(__lowerCAmelCase ) UpperCAmelCase__ : Dict = audioldm_pipe(**__lowerCAmelCase ).audios[0] assert audio.ndim == 1 assert len(__lowerCAmelCase ) == 81_920 UpperCAmelCase__ : Tuple = audio[27_780:27_790] UpperCAmelCase__ : str = np.array([-0.2_1_3_1, -0.0_8_7_3, -0.0_1_2_4, -0.0_1_8_9, 0.0_5_6_9, 0.1_3_7_3, 0.1_8_8_3, 0.2_8_8_6, 0.3_2_9_7, 0.2_2_1_2] ) UpperCAmelCase__ : Dict = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3e-2
75
from ...configuration_utils import PretrainedConfig from ...utils import logging A : Optional[int] = logging.get_logger(__name__) A : Dict = { '''vinvino02/glpn-kitti''': '''https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json''', # See all GLPN models at https://huggingface.co/models?filter=glpn } class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : Tuple = '''glpn''' def __init__( self : Optional[int] , __lowerCAmelCase : Union[str, Any]=3 , __lowerCAmelCase : Any=4 , __lowerCAmelCase : Tuple=[2, 2, 2, 2] , __lowerCAmelCase : int=[8, 4, 2, 1] , __lowerCAmelCase : int=[32, 64, 1_60, 2_56] , __lowerCAmelCase : str=[7, 3, 3, 3] , __lowerCAmelCase : Dict=[4, 2, 2, 2] , __lowerCAmelCase : List[str]=[1, 2, 5, 8] , __lowerCAmelCase : List[Any]=[4, 4, 4, 4] , __lowerCAmelCase : str="gelu" , __lowerCAmelCase : Union[str, Any]=0.0 , __lowerCAmelCase : Tuple=0.0 , __lowerCAmelCase : List[Any]=0.0_2 , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : Dict=1e-6 , __lowerCAmelCase : Tuple=64 , __lowerCAmelCase : Tuple=10 , __lowerCAmelCase : Union[str, Any]=-1 , **__lowerCAmelCase : Any , ) -> Tuple: """simple docstring""" super().__init__(**__lowerCAmelCase ) A__ = num_channels A__ = num_encoder_blocks A__ = depths A__ = sr_ratios A__ = hidden_sizes A__ = patch_sizes A__ = strides A__ = mlp_ratios A__ = num_attention_heads A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = drop_path_rate A__ = layer_norm_eps A__ = decoder_hidden_size A__ = max_depth A__ = head_in_index
176
0
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black lowerCAmelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowerCAmelCase__ = ' \"""\n Output class for the scheduler\'s step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"""\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n' class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Any): UpperCamelCase__ : List[str] = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/')) UpperCamelCase__ : int = self.diffusers_dir shutil.copy( os.path.join(UpperCAmelCase_ , 'src/diffusers/schedulers/scheduling_ddpm.py') , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py') , ) def __UpperCamelCase ( self : Any): UpperCamelCase__ : List[str] = 'src/diffusers' shutil.rmtree(self.diffusers_dir) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int=None): UpperCamelCase__ : Optional[int] = comment + F'\nclass {class_name}(nn.Module):\n' + class_code if overwrite_result is not None: UpperCamelCase__ : List[str] = comment + F'\nclass {class_name}(nn.Module):\n' + overwrite_result UpperCamelCase__ : Any = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119) UpperCamelCase__ : Tuple = black.format_str(UpperCAmelCase_ , mode=UpperCAmelCase_) UpperCamelCase__ : List[str] = os.path.join(self.diffusers_dir , 'new_code.py') with open(UpperCAmelCase_ , 'w' , newline='\n') as f: f.write(UpperCAmelCase_) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(UpperCAmelCase_)) == 0) else: check_copies.is_copy_consistent(f.name , overwrite=UpperCAmelCase_) with open(UpperCAmelCase_ , 'r') as f: self.assertTrue(f.read() , UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : List[Any] = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput') self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : List[Any]): # Base copy consistency self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , UpperCAmelCase_ , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , UpperCAmelCase_) , ) # Copy consistency with a really long name UpperCamelCase__ : List[str] = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( F'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}' , F'{long_class_name}SchedulerOutput' , re.sub('Bert' , UpperCAmelCase_ , UpperCAmelCase_) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , UpperCAmelCase_ , overwrite_result=re.sub('DDPM' , 'Test' , UpperCAmelCase_) , )
6
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : int = tempfile.mkdtemp() # fmt: off UpperCamelCase__ : Union[str, Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on UpperCamelCase__ : Dict = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] UpperCamelCase__ : Union[str, Any] = {'unk_token': '<unk>'} UpperCamelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(UpperCAmelCase_) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(UpperCAmelCase_)) UpperCamelCase__ : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } UpperCamelCase__ : Any = os.path.join(self.tmpdirname , UpperCAmelCase_) with open(self.image_processor_file , 'w' , encoding='utf-8') as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Dict , **UpperCAmelCase_ : Union[str, Any]): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , **UpperCAmelCase_ : str): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any] , **UpperCAmelCase_ : Union[str, Any]): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : str): shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCamelCase__ : List[str] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1)) for x in image_inputs] return image_inputs def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Union[str, Any] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = self.get_rust_tokenizer() UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_slow.save_pretrained(self.tmpdirname) UpperCamelCase__ : Any = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_) UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_fast.save_pretrained(self.tmpdirname) UpperCamelCase__ : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Union[str, Any] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) UpperCamelCase__ : List[str] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') UpperCamelCase__ : Tuple = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0) UpperCamelCase__ : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : int = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : int = self.prepare_image_inputs() UpperCamelCase__ : int = image_processor(UpperCAmelCase_ , return_tensors='np') UpperCamelCase__ : Optional[int] = processor(images=UpperCAmelCase_ , return_tensors='np') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Any = 'lower newer' UpperCamelCase__ : Union[str, Any] = processor(text=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = tokenizer(UpperCAmelCase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def __UpperCamelCase ( self : int): UpperCamelCase__ : Optional[int] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'lower newer' UpperCamelCase__ : List[Any] = self.prepare_image_inputs() UpperCamelCase__ : str = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , ['input_ids', 'attention_mask', 'pixel_values']) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_): processor() def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ : List[Any] = processor.batch_decode(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = tokenizer.batch_decode(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : Union[str, Any] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'lower newer' UpperCamelCase__ : Optional[int] = self.prepare_image_inputs() UpperCamelCase__ : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
6
1
"""simple docstring""" def __lowerCamelCase ( a_ : str ) -> bool: return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''') ) def __lowerCamelCase ( a_ : str ) -> bool: __SCREAMING_SNAKE_CASE :Dict = credit_card_number __SCREAMING_SNAKE_CASE :Optional[Any] = 0 __SCREAMING_SNAKE_CASE :Optional[Any] = len(a_ ) - 2 for i in range(a_ , -1 , -2 ): # double the value of every second digit __SCREAMING_SNAKE_CASE :Optional[int] = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 __SCREAMING_SNAKE_CASE :Optional[Any] = cc_number[:i] + str(a_ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(a_ ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def __lowerCamelCase ( a_ : str ) -> bool: __SCREAMING_SNAKE_CASE :List[Any] = f'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(f'''{error_message} it has nonnumerical characters.''' ) return False if not 13 <= len(a_ ) <= 16: print(f'''{error_message} of its length.''' ) return False if not validate_initial_digits(a_ ): print(f'''{error_message} of its first two digits.''' ) return False if not luhn_validation(a_ ): print(f'''{error_message} it fails the Luhn check.''' ) return False print(f'''{credit_card_number} is a valid credit card number.''' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
498
"""simple docstring""" from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging lowerCamelCase_ = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE: SCREAMING_SNAKE_CASE_ : str SCREAMING_SNAKE_CASE_ : str = None @staticmethod def _UpperCamelCase ( ) -> str: """simple docstring""" raise NotImplementedError def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" raise NotImplementedError def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" raise NotImplementedError def _UpperCamelCase ( self ) -> Any: """simple docstring""" if not self.is_available(): raise RuntimeError( f'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' ) @classmethod def _UpperCamelCase ( cls ) -> str: """simple docstring""" return f'''`pip install {cls.pip_package or cls.name}`''' class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''optuna''' @staticmethod def _UpperCamelCase ( ) -> Dict: """simple docstring""" return is_optuna_available() def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" return run_hp_search_optuna(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" return default_hp_space_optuna(SCREAMING_SNAKE_CASE__ ) class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : Tuple = '''ray''' SCREAMING_SNAKE_CASE_ : Dict = '''\'ray[tune]\'''' @staticmethod def _UpperCamelCase ( ) -> int: """simple docstring""" return is_ray_available() def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" return run_hp_search_ray(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" return default_hp_space_ray(SCREAMING_SNAKE_CASE__ ) class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : str = '''sigopt''' @staticmethod def _UpperCamelCase ( ) -> str: """simple docstring""" return is_sigopt_available() def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" return run_hp_search_sigopt(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" return default_hp_space_sigopt(SCREAMING_SNAKE_CASE__ ) class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : int = '''wandb''' @staticmethod def _UpperCamelCase ( ) -> Dict: """simple docstring""" return is_wandb_available() def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" return run_hp_search_wandb(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" return default_hp_space_wandb(SCREAMING_SNAKE_CASE__ ) lowerCamelCase_ = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def __lowerCamelCase ( ) -> str: __SCREAMING_SNAKE_CASE :Dict = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(a_ ) > 0: __SCREAMING_SNAKE_CASE :str = available_backends[0].name if len(a_ ) > 1: logger.info( f'''{len(a_ )} hyperparameter search backends available. Using {name} as the default.''' ) return name raise RuntimeError( '''No hyperparameter search backend available.\n''' + '''\n'''.join( f''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
498
1
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def A ( A_ : Dict , A_ : Optional[Any]=False ): snake_case : List[Any] = OmegaConf.load(__UpperCAmelCase ) if display: print(yaml.dump(OmegaConf.to_container(__UpperCAmelCase ) ) ) return config def A ( A_ : Dict , A_ : Optional[int]=None , A_ : Optional[Any]=None ): if conf_path is None: snake_case : List[str] = '''./model_checkpoints/vqgan_only.yaml''' snake_case : List[Any] = load_config(__UpperCAmelCase , display=__UpperCAmelCase ) snake_case : List[Any] = VQModel(**config.model.params ) if ckpt_path is None: snake_case : str = '''./model_checkpoints/vqgan_only.pt''' snake_case : Union[str, Any] = torch.load(__UpperCAmelCase , map_location=__UpperCAmelCase ) if ".ckpt" in ckpt_path: snake_case : Union[str, Any] = sd['''state_dict'''] model.load_state_dict(__UpperCAmelCase , strict=__UpperCAmelCase ) model.to(__UpperCAmelCase ) del sd return model def A ( A_ : List[str] , A_ : int ): snake_case, snake_case, snake_case : Dict = model.encode(__UpperCAmelCase ) print(F"""VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}""" ) snake_case : List[Any] = model.decode(__UpperCAmelCase ) return xrec def A ( A_ : Tuple , A_ : int=False ): snake_case, snake_case : Optional[Any] = string.rsplit('''.''' , 1 ) if reload: snake_case : Any = importlib.import_module(__UpperCAmelCase ) importlib.reload(__UpperCAmelCase ) return getattr(importlib.import_module(__UpperCAmelCase , package=__UpperCAmelCase ) , cls ) def A ( A_ : List[str] ): if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''' ) return get_obj_from_str(config['''target'''] )(**config.get('''params''' , {} ) ) def A ( A_ : str , A_ : Optional[Any] , A_ : int=True , A_ : Union[str, Any]=True ): snake_case : Any = instantiate_from_config(__UpperCAmelCase ) if sd is not None: model.load_state_dict(__UpperCAmelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def A ( A_ : int , A_ : Dict , A_ : Dict , A_ : str ): if ckpt: snake_case : Union[str, Any] = torch.load(__UpperCAmelCase , map_location='''cpu''' ) snake_case : Union[str, Any] = pl_sd['''global_step'''] print(F"""loaded model from global step {global_step}.""" ) else: snake_case : Any = {'''state_dict''': None} snake_case : List[Any] = None snake_case : str = load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=__UpperCAmelCase , eval_mode=__UpperCAmelCase )['''model'''] return model, global_step
713
'''simple docstring''' from __future__ import annotations import math def A ( A_ : int ): if num <= 0: snake_case : List[Any] = F"""{num}: Invalid input, please enter a positive integer.""" raise ValueError(A_ ) snake_case : Optional[Any] = [True] * (num + 1) snake_case : List[str] = [] snake_case : List[Any] = 2 snake_case : str = int(math.sqrt(A_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(A_ ) # Set multiples of start be False for i in range(start * start , num + 1 , A_ ): if sieve[i] is True: snake_case : int = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(A_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
555
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__: Optional[Any] = { '''configuration_table_transformer''': [ '''TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TableTransformerConfig''', '''TableTransformerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: str = [ '''TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TableTransformerForObjectDetection''', '''TableTransformerModel''', '''TableTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys A__: Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
694
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> int: if n == 1 or not isinstance(_UpperCAmelCase ,_UpperCAmelCase ): return 0 elif n == 2: return 1 else: _a : Dict =[0, 1] for i in range(2 ,n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> int: _a : Union[str, Any] =0 _a : Optional[Any] =2 while digits < n: index += 1 _a : Optional[int] =len(str(fibonacci(_UpperCAmelCase ) ) ) return index def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 1000 ) -> int: return fibonacci_digits_index(_UpperCAmelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
694
1
import math def SCREAMING_SNAKE_CASE__ ( __a , __a ): return math.pow(__a , 2 ) - a def SCREAMING_SNAKE_CASE__ ( __a ): return 2 * x def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : List[Any] = 2.0 while start <= a: snake_case_ : Optional[int] = math.pow(__a , 2 ) return start def SCREAMING_SNAKE_CASE__ ( __a , __a = 99_99 , __a = 0.00000000000001 ): if a < 0: raise ValueError('math domain error' ) snake_case_ : Any = get_initial_point(__a ) for _ in range(__a ): snake_case_ : int = value snake_case_ : List[Any] = value - fx(__a , __a ) / fx_derivative(__a ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
534
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @property def UpperCAmelCase_ ( self : Any ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) snake_case_ : List[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: """simple docstring""" snake_case_ : List[Any] = self.dummy_uncond_unet snake_case_ : Optional[Any] = ScoreSdeVeScheduler() snake_case_ : Tuple = ScoreSdeVePipeline(unet=_A , scheduler=_A ) sde_ve.to(_A ) sde_ve.set_progress_bar_config(disable=_A ) snake_case_ : Optional[Any] = torch.manual_seed(0 ) snake_case_ : Tuple = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=_A ).images snake_case_ : int = torch.manual_seed(0 ) snake_case_ : Optional[int] = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=_A , return_dict=_A )[ 0 ] snake_case_ : List[str] = image[0, -3:, -3:, -1] snake_case_ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case_ : List[Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def UpperCAmelCase_ ( self : Dict ) -> Dict: """simple docstring""" snake_case_ : Dict = 'google/ncsnpp-church-256' snake_case_ : List[Any] = UNetaDModel.from_pretrained(_A ) snake_case_ : str = ScoreSdeVeScheduler.from_pretrained(_A ) snake_case_ : Optional[Any] = ScoreSdeVePipeline(unet=_A , scheduler=_A ) sde_ve.to(_A ) sde_ve.set_progress_bar_config(disable=_A ) snake_case_ : Any = torch.manual_seed(0 ) snake_case_ : Optional[int] = sde_ve(num_inference_steps=10 , output_type='numpy' , generator=_A ).images snake_case_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) snake_case_ : Dict = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
534
1
import datasets from .evaluate import evaluate _lowercase = '''\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } ''' _lowercase = ''' This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. ''' _lowercase = ''' Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the CUAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer \'aupr\': Area Under the Precision-Recall curve \'prec_at_80_recall\': Precision at 80% recall \'prec_at_90_recall\': Precision at 90% recall Examples: >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> cuad_metric = datasets.load_metric("cuad") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): """simple docstring""" def UpperCAmelCase_ ( self : Optional[int] ) -> Any: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { "predictions": { "id": datasets.Value("string" ), "prediction_text": datasets.features.Sequence(datasets.Value("string" ) ), }, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) ,codebase_urls=["https://www.atticusprojectai.org/cuad"] ,reference_urls=["https://www.atticusprojectai.org/cuad"] ,) def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : int ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : int = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} lowerCAmelCase_ : Tuple = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] lowerCAmelCase_ : Any = evaluate(dataset=lowerCAmelCase__ ,predictions=lowerCAmelCase__ ) return score
659
import os _lowercase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} def UpperCamelCase ( snake_case__): lowerCAmelCase_ : List[str] = 0 lowerCAmelCase_ : Any = 0 while index < len(snake_case__) - 1: lowerCAmelCase_ : Optional[Any] = SYMBOLS[numerals[index]] lowerCAmelCase_ : int = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[int] = "" lowerCAmelCase_ : Tuple = num // 10_00 numerals += m_count * "M" num %= 10_00 lowerCAmelCase_ : int = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 lowerCAmelCase_ : int = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCamelCase ( snake_case__ = "/p089_roman.txt"): lowerCAmelCase_ : int = 0 with open(os.path.dirname(snake_case__) + roman_numerals_filename) as filea: lowerCAmelCase_ : List[Any] = filea.readlines() for line in lines: lowerCAmelCase_ : Any = line.strip() lowerCAmelCase_ : Tuple = parse_roman_numerals(snake_case__) lowerCAmelCase_ : List[Any] = generate_roman_numerals(snake_case__) savings += len(snake_case__) - len(snake_case__) return savings if __name__ == "__main__": print(f"{solution() = }")
659
1
"""simple docstring""" from __future__ import annotations import math def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if len(_SCREAMING_SNAKE_CASE ) == 0: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , ) return min( minimax(depth + 1 , node_index * 2 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , ) def _a ( ) -> None: snake_case_ = [90, 23, 6, 33, 21, 65, 123, 34_423] snake_case_ = math.log(len(_SCREAMING_SNAKE_CASE ) , 2 ) print("""Optimal value : """ , end="""""" ) print(minimax(0 , 0 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
2
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Optional[int] = 'https://openaipublic.azureedge.net/jukebox/models/' __SCREAMING_SNAKE_CASE : List[Any] = { 'jukebox-1b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '1b_lyrics/prior_level_2.pth.tar', ], 'jukebox-5b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '5b_lyrics/prior_level_2.pth.tar', ], } def _a ( _SCREAMING_SNAKE_CASE ) -> int: if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10: snake_case_ = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" ) elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10: snake_case_ = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" ) elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10: snake_case_ = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" ) elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10: snake_case_ = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" ) if "conditioner_blocks.0." in key: snake_case_ = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" ) if "prime_prior" in key: snake_case_ = key.replace("""prime_prior""" , """encoder""" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: snake_case_ = key.replace(""".emb.""" , """.""" ) if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(""".k""" , """.codebook""" ) if "y_emb." in key: return key.replace("""y_emb.""" , """metadata_embedding.""" ) if "x_emb.emb." in key: snake_case_ = key.replace("""0.x_emb.emb""" , """embed_tokens""" ) if "prime_state_ln" in key: return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" ) if ".ln" in key: return key.replace(""".ln""" , """.layer_norm""" ) if "_ln" in key: return key.replace("""_ln""" , """_layer_norm""" ) if "prime_state_proj" in key: return key.replace("""prime_state_proj""" , """encoder.proj_in""" ) if "prime_x_out" in key: return key.replace("""prime_x_out""" , """encoder.lm_head""" ) if "prior.x_out" in key: return key.replace("""x_out""" , """fc_proj_out""" ) if "x_emb" in key: return key.replace("""x_emb""" , """embed_tokens""" ) return key def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: snake_case_ = {} import re snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) snake_case_ = re.compile( r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) snake_case_ = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) snake_case_ = re.compile( r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) snake_case_ = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" ) snake_case_ = re.compile( r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) snake_case_ = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_encoder_block_conv_in.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" snake_case_ = re_encoder_block_conv_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_encoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_encoder_block_resnet.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]] snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" snake_case_ = prefix + resnet_block snake_case_ = re_encoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_encoder_block_proj_out.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_encoder_block_proj_out.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" snake_case_ = re_encoder_block_proj_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_decoder_block_conv_out.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2 snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" snake_case_ = re_decoder_block_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_decoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_decoder_block_resnet.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = int(groups[2] ) * 2 + int(groups[3] ) - 2 snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]] snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" snake_case_ = prefix + resnet_block snake_case_ = re_decoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_decoder_block_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_decoder_block_proj_in.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" snake_case_ = re_decoder_block_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_prior_cond_conv_out.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2 snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" snake_case_ = re_prior_cond_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_prior_cond_resnet.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_prior_cond_resnet.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = int(groups[1] ) * 2 + int(groups[2] ) - 2 snake_case_ = {"""1""": 1, """3""": 2}[groups[-2]] snake_case_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" snake_case_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" snake_case_ = prefix + resnet_block snake_case_ = re_prior_cond_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_prior_cond_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ): snake_case_ = re_prior_cond_proj_in.match(_SCREAMING_SNAKE_CASE ) snake_case_ = regex_match.groups() snake_case_ = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" snake_case_ = re_prior_cond_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # keep original key else: snake_case_ = original_key snake_case_ = replace_key(_SCREAMING_SNAKE_CASE ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: snake_case_ = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) snake_case_ = original_key snake_case_ = original_key snake_case_ = value return new_dict @torch.no_grad() def _a ( _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Optional[int]: for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ): snake_case_ = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_SCREAMING_SNAKE_CASE ) os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_SCREAMING_SNAKE_CASE ) open(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" , """wb""" ).write(r.content ) snake_case_ = MODEL_MAPPING[model_name.split("""/""" )[-1]] snake_case_ = JukeboxConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ = JukeboxModel(_SCREAMING_SNAKE_CASE ) snake_case_ = [] snake_case_ = {} for i, dict_name in enumerate(_SCREAMING_SNAKE_CASE ): snake_case_ = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )["""model"""] snake_case_ = {} for k in old_dic.keys(): if k.endswith(""".b""" ): snake_case_ = old_dic[k] elif k.endswith(""".w""" ): snake_case_ = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: snake_case_ = old_dic[k] else: snake_case_ = old_dic[k] snake_case_ = """vqvae""" if i == 0 else f"""priors.{3 - i}""" snake_case_ = fix_jukebox_keys(_SCREAMING_SNAKE_CASE , model.state_dict() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) weight_dict.append(_SCREAMING_SNAKE_CASE ) snake_case_ = weight_dict.pop(0 ) model.vqvae.load_state_dict(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) with open(f"""{pytorch_dump_folder_path}/mapping.json""" , """w""" ) as txtfile: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) return weight_dict if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='jukebox-5b-lyrics', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='jukebox-5b-lyrics-converted', type=str, help='Path to the output PyTorch model directory.', ) __SCREAMING_SNAKE_CASE : str = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
2
1
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED SCREAMING_SNAKE_CASE__ = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } SCREAMING_SNAKE_CASE__ = { '''allenai/led-base-16384''': 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def UpperCAmelCase__ ( ): __a : List[str] = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) __a : str = bs[:] __a : List[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCamelCase_ ) cs.append(2**8 + n ) n += 1 __a : Dict = [chr(lowerCamelCase_ ) for n in cs] return dict(zip(lowerCamelCase_ , lowerCamelCase_ ) ) def UpperCAmelCase__ ( lowerCamelCase_ : Optional[Any] ): __a : Optional[Any] = set() __a : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __a : Dict = char return pairs class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : int = ['''input_ids''', '''attention_mask'''] def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple="replace" , SCREAMING_SNAKE_CASE__ : int="<s>" , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : int="</s>" , SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : List[Any]="<unk>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="<pad>" , SCREAMING_SNAKE_CASE__ : List[Any]="<mask>" , SCREAMING_SNAKE_CASE__ : Optional[int]=False , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ): '''simple docstring''' __a : Union[str, Any] = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else bos_token __a : List[Any] = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else eos_token __a : int = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else sep_token __a : Optional[int] = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else cls_token __a : Optional[int] = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else unk_token __a : Dict = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __a : Tuple = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token super().__init__( errors=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) with open(SCREAMING_SNAKE_CASE__ , encoding='utf-8' ) as vocab_handle: __a : List[Any] = json.load(SCREAMING_SNAKE_CASE__ ) __a : List[str] = {v: k for k, v in self.encoder.items()} __a : Dict = errors # how to handle errors in decoding __a : List[Any] = bytes_to_unicode() __a : List[Any] = {v: k for k, v in self.byte_encoder.items()} with open(SCREAMING_SNAKE_CASE__ , encoding='utf-8' ) as merges_handle: __a : str = merges_handle.read().split('\n' )[1:-1] __a : List[str] = [tuple(merge.split() ) for merge in bpe_merges] __a : str = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) __a : Tuple = {} __a : Union[str, Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __a : Optional[Any] = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' return len(self.encoder ) def __lowerCAmelCase ( self : Dict ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def __lowerCAmelCase ( self : int , SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' if token in self.cache: return self.cache[token] __a : List[Any] = tuple(SCREAMING_SNAKE_CASE__ ) __a : Tuple = get_pairs(SCREAMING_SNAKE_CASE__ ) if not pairs: return token while True: __a : Tuple = min(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE__ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break __a , __a : str = bigram __a : Optional[Any] = [] __a : List[str] = 0 while i < len(SCREAMING_SNAKE_CASE__ ): try: __a : str = word.index(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __a : List[Any] = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __a : Optional[int] = tuple(SCREAMING_SNAKE_CASE__ ) __a : Union[str, Any] = new_word if len(SCREAMING_SNAKE_CASE__ ) == 1: break else: __a : Dict = get_pairs(SCREAMING_SNAKE_CASE__ ) __a : Tuple = ' '.join(SCREAMING_SNAKE_CASE__ ) __a : List[Any] = word return word def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' __a : int = [] for token in re.findall(self.pat , SCREAMING_SNAKE_CASE__ ): __a : Optional[Any] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE__ ).split(' ' ) ) return bpe_tokens def __lowerCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' return self.encoder.get(SCREAMING_SNAKE_CASE__ , self.encoder.get(self.unk_token ) ) def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' return self.decoder.get(SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' __a : Optional[Any] = ''.join(SCREAMING_SNAKE_CASE__ ) __a : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __a : int = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) __a : Optional[int] = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(SCREAMING_SNAKE_CASE__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) + '\n' ) __a : List[Any] = 0 with open(SCREAMING_SNAKE_CASE__ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) __a : Optional[int] = token_index writer.write(' '.join(SCREAMING_SNAKE_CASE__ ) + '\n' ) index += 1 return vocab_file, merge_file def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __a : Union[str, Any] = [self.cls_token_id] __a : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowerCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] def __lowerCAmelCase ( self : int , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): '''simple docstring''' __a : Any = [self.sep_token_id] __a : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str]=False , **SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' __a : Dict = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE__ ) > 0 and not text[0].isspace()): __a : Tuple = ' ' + text return (text, kwargs) def __lowerCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[Dict[str, EncodedInput], BatchEncoding] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ): '''simple docstring''' __a : Union[str, Any] = super()._pad( encoded_inputs=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding_strategy=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , ) # Load from model defaults if return_attention_mask is None: __a : Tuple = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __a : Optional[Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __a : int = len(encoded_inputs['global_attention_mask'] ) != len(SCREAMING_SNAKE_CASE__ ) if needs_to_be_padded: __a : Any = len(SCREAMING_SNAKE_CASE__ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __a : Optional[Any] = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": __a : List[str] = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
47
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _lowerCamelCase = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
0
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging UpperCAmelCase__ = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class snake_case ( _lowerCAmelCase ): '''simple docstring''' def __init__( self : List[Any], _lowerCamelCase : int = 1_01 ): '''simple docstring''' __A = length def __len__( self : int ): '''simple docstring''' return self.length def __getitem__( self : List[Any], _lowerCamelCase : int ): '''simple docstring''' return i class snake_case : '''simple docstring''' def __call__( self : Any, _lowerCamelCase : List[str] ): '''simple docstring''' return {"input_ids": torch.tensor(_lowerCamelCase ), "labels": torch.tensor(_lowerCamelCase )} class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ): '''simple docstring''' super().__init__() # Add some (unused) params otherwise DDP will complain. __A = nn.Linear(1_20, 80 ) def _SCREAMING_SNAKE_CASE ( self : str, _lowerCamelCase : Tuple, _lowerCamelCase : str=None ): '''simple docstring''' if labels is not None: return torch.tensor(0.0, device=input_ids.device ), input_ids else: return input_ids class snake_case ( _lowerCAmelCase ): '''simple docstring''' @require_torch_neuroncore def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' __A = f'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() __A = self.get_auto_remove_tmp_dir() __A = f'--output_dir {output_dir}'.split() __A = ['torchrun'] + distributed_args + args execute_subprocess_async(_lowerCamelCase, env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class snake_case ( _lowerCAmelCase ): '''simple docstring''' @require_torch_multi_gpu def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' __A = f'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() __A = self.get_auto_remove_tmp_dir() __A = f'--output_dir {output_dir}'.split() __A = ['torchrun'] + distributed_args + args execute_subprocess_async(_lowerCamelCase, env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py UpperCAmelCase__ = HfArgumentParser((TrainingArguments,)) UpperCAmelCase__ = parser.parse_args_into_dataclasses()[0] logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ''' F'''distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}''' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: UpperCAmelCase__ = DummyDataset(dataset_length) def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = list(range(len(SCREAMING_SNAKE_CASE_ ) ) ) __A = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' f'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} UpperCAmelCase__ = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) UpperCAmelCase__ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) UpperCAmelCase__ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) UpperCAmelCase__ = 2 UpperCAmelCase__ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) UpperCAmelCase__ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) UpperCAmelCase__ = None
703
"""simple docstring""" lowercase_ = 8.31_4462 # Unit - J mol-1 K-1 def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
215
0
"""simple docstring""" import os # Precomputes a list of the 100 first triangular numbers __magic_name__ : Tuple = [int(0.5 * n * (n + 1)) for n in range(1, 1_0_1)] def UpperCamelCase (): UpperCamelCase : List[Any] = os.path.dirname(os.path.realpath(SCREAMING_SNAKE_CASE ) ) UpperCamelCase : str = os.path.join(SCREAMING_SNAKE_CASE , """words.txt""" ) UpperCamelCase : Optional[Any] = """""" with open(SCREAMING_SNAKE_CASE ) as f: UpperCamelCase : Dict = f.readline() UpperCamelCase : int = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )] UpperCamelCase : Union[str, Any] = [ word for word in [sum(ord(SCREAMING_SNAKE_CASE ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(solution())
102
def _lowerCamelCase ( __A : int ) -> str: _UpperCAmelCase : Tuple = int(__A ) if decimal in (0, 1): # Exit cases for the recursion return str(__A ) _UpperCAmelCase , _UpperCAmelCase : int = divmod(__A , 2 ) return binary_recursive(__A ) + str(__A ) def _lowerCamelCase ( __A : str ) -> str: _UpperCAmelCase : List[Any] = str(__A ).strip() if not number: raise ValueError('''No input value was provided''' ) _UpperCAmelCase : Tuple = '''-''' if number.startswith('''-''' ) else '''''' _UpperCAmelCase : Dict = number.lstrip('''-''' ) if not number.isnumeric(): raise ValueError('''Input value is not an integer''' ) return f'''{negative}0b{binary_recursive(int(__A ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
485
0
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase_ = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''') @require_sentencepiece @require_tokenizers class __lowerCamelCase ( __snake_case , unittest.TestCase ): lowerCamelCase_ : Dict = PegasusTokenizer lowerCamelCase_ : Optional[int] = PegasusTokenizerFast lowerCamelCase_ : List[Any] = True lowerCamelCase_ : Optional[int] = True def lowerCAmelCase_ ( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing snake_case_ = PegasusTokenizer(lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCAmelCase_ ( self ) -> str: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def lowerCAmelCase_ ( self , **lowerCamelCase ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase ) def lowerCAmelCase_ ( self , lowerCamelCase ) -> Optional[Any]: return ("This is a test", "This is a test") def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case_ = """</s>""" snake_case_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase ) , lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase ) , lowerCamelCase ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(lowerCamelCase ) , 1103 ) def lowerCAmelCase_ ( self ) -> Any: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case_ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) snake_case_ = self.tokenizer_class.from_pretrained(self.tmpdirname ) snake_case_ = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) snake_case_ = rust_tokenizer([raw_input_str] , return_tensors=lowerCamelCase , add_special_tokens=lowerCamelCase ).input_ids[0] snake_case_ = py_tokenizer([raw_input_str] , return_tensors=lowerCamelCase , add_special_tokens=lowerCamelCase ).input_ids[0] self.assertListEqual(lowerCamelCase , lowerCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case_ = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word snake_case_ = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" snake_case_ = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] snake_case_ = tokenizer([raw_input_str] , return_tensors=lowerCamelCase ).input_ids[0] self.assertListEqual(lowerCamelCase , lowerCamelCase ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case_ = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 snake_case_ = """To ensure a smooth flow of bank resolutions.""" snake_case_ = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] snake_case_ = tokenizer([raw_input_str] , return_tensors=lowerCamelCase ).input_ids[0] self.assertListEqual(lowerCamelCase , lowerCamelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowerCAmelCase_ ( self ) -> Tuple: snake_case_ = ["""This is going to be way too long.""" * 150, """short example"""] snake_case_ = ["""not super long but more than 5 tokens""", """tiny"""] snake_case_ = self._large_tokenizer(lowerCamelCase , padding=lowerCamelCase , truncation=lowerCamelCase , return_tensors="""pt""" ) snake_case_ = self._large_tokenizer( text_target=lowerCamelCase , max_length=5 , padding=lowerCamelCase , truncation=lowerCamelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(lowerCamelCase ) == 2 # input_ids, attention_mask. @slow def lowerCAmelCase_ ( self ) -> Optional[int]: # fmt: off snake_case_ = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class __lowerCamelCase ( __snake_case , unittest.TestCase ): lowerCamelCase_ : Optional[Any] = PegasusTokenizer lowerCamelCase_ : int = PegasusTokenizerFast lowerCamelCase_ : Optional[int] = True lowerCamelCase_ : int = True def lowerCAmelCase_ ( self ) -> Dict: super().setUp() # We have a SentencePiece fixture for testing snake_case_ = PegasusTokenizer(lowerCamelCase , offset=0 , mask_token_sent=lowerCamelCase , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCAmelCase_ ( self ) -> int: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def lowerCAmelCase_ ( self , **lowerCamelCase ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase ) def lowerCAmelCase_ ( self , lowerCamelCase ) -> int: return ("This is a test", "This is a test") def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case_ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) snake_case_ = self.tokenizer_class.from_pretrained(self.tmpdirname ) snake_case_ = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) snake_case_ = rust_tokenizer([raw_input_str] , return_tensors=lowerCamelCase , add_special_tokens=lowerCamelCase ).input_ids[0] snake_case_ = py_tokenizer([raw_input_str] , return_tensors=lowerCamelCase , add_special_tokens=lowerCamelCase ).input_ids[0] self.assertListEqual(lowerCamelCase , lowerCamelCase ) @require_torch def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case_ = ["""This is going to be way too long.""" * 1000, """short example"""] snake_case_ = ["""not super long but more than 5 tokens""", """tiny"""] snake_case_ = self._large_tokenizer(lowerCamelCase , padding=lowerCamelCase , truncation=lowerCamelCase , return_tensors="""pt""" ) snake_case_ = self._large_tokenizer( text_target=lowerCamelCase , max_length=5 , padding=lowerCamelCase , truncation=lowerCamelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(lowerCamelCase ) == 2 # input_ids, attention_mask. def lowerCAmelCase_ ( self ) -> int: snake_case_ = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) snake_case_ = self._large_tokenizer(lowerCamelCase ).input_ids self.assertListEqual( lowerCamelCase , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
161
import unittest import numpy as np def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , ) -> np.ndarray: '''simple docstring''' snake_case_ = np.shape(lowercase_ ) snake_case_ = np.shape(lowercase_ ) snake_case_ = np.shape(lowercase_ ) if shape_a[0] != shape_b[0]: snake_case_ = ( """Expected the same number of rows for A and B. """ f'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(lowercase_ ) if shape_b[1] != shape_c[1]: snake_case_ = ( """Expected the same number of columns for B and C. """ f'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(lowercase_ ) snake_case_ = pseudo_inv if a_inv is None: try: snake_case_ = np.linalg.inv(lowercase_ ) except np.linalg.LinAlgError: raise ValueError( """Input matrix A is not invertible. Cannot compute Schur complement.""" ) return mat_c - mat_b.T @ a_inv @ mat_b class __lowerCamelCase ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> None: snake_case_ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) snake_case_ = np.array([[0, 3], [3, 0], [2, 3]] ) snake_case_ = np.array([[2, 1], [6, 3]] ) snake_case_ = schur_complement(lowerCamelCase , lowerCamelCase , lowerCamelCase ) snake_case_ = np.block([[a, b], [b.T, c]] ) snake_case_ = np.linalg.det(lowerCamelCase ) snake_case_ = np.linalg.det(lowerCamelCase ) snake_case_ = np.linalg.det(lowerCamelCase ) self.assertAlmostEqual(lowerCamelCase , det_a * det_s ) def lowerCAmelCase_ ( self ) -> None: snake_case_ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) snake_case_ = np.array([[0, 3], [3, 0], [2, 3]] ) snake_case_ = np.array([[2, 1], [6, 3]] ) with self.assertRaises(lowerCamelCase ): schur_complement(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowerCAmelCase_ ( self ) -> None: snake_case_ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) snake_case_ = np.array([[0, 3], [3, 0], [2, 3]] ) snake_case_ = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(lowerCamelCase ): schur_complement(lowerCamelCase , lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
161
1
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCamelCase : Dict =logging.get_logger(__name__) class __a ( A__ ): _lowerCAmelCase : Tuple = ['''audio_values''', '''audio_mask'''] def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Tuple=20_48 , SCREAMING_SNAKE_CASE : Optional[int]=1 , SCREAMING_SNAKE_CASE : Any=[16, 16] , SCREAMING_SNAKE_CASE : List[str]=1_28 , SCREAMING_SNAKE_CASE : int=4_41_00 , SCREAMING_SNAKE_CASE : Optional[Any]=86 , SCREAMING_SNAKE_CASE : Optional[Any]=20_48 , SCREAMING_SNAKE_CASE : Any=0.0 , **SCREAMING_SNAKE_CASE : Tuple , ): '''simple docstring''' super().__init__( feature_size=SCREAMING_SNAKE_CASE , sampling_rate=SCREAMING_SNAKE_CASE , padding_value=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) UpperCamelCase__ : Tuple = spectrogram_length UpperCamelCase__ : int = num_channels UpperCamelCase__ : Any = patch_size UpperCamelCase__ : Optional[int] = feature_size // self.patch_size[1] UpperCamelCase__ : Union[str, Any] = n_fft UpperCamelCase__ : str = sampling_rate // hop_length_to_sampling_rate UpperCamelCase__ : List[Any] = sampling_rate UpperCamelCase__ : int = padding_value UpperCamelCase__ : List[str] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=2_2_0_5_0.0 , sampling_rate=SCREAMING_SNAKE_CASE , norm="slaney" , mel_scale="slaney" , ).T def __lowercase ( self : str , SCREAMING_SNAKE_CASE : np.array ): '''simple docstring''' UpperCamelCase__ : Any = spectrogram( SCREAMING_SNAKE_CASE , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="dB" , db_range=8_0.0 , ) UpperCamelCase__ : List[Any] = log_spec[:, :-1] UpperCamelCase__ : Tuple = log_spec - 2_0.0 UpperCamelCase__ : Tuple = np.clip(log_spec / 4_0.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : Dict , SCREAMING_SNAKE_CASE : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE : Optional[bool] = True , SCREAMING_SNAKE_CASE : Optional[int] = None , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = False , **SCREAMING_SNAKE_CASE : List[str] , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( "This feature extractor is set to support sampling rate" F' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled' F' with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) UpperCamelCase__ : Any = isinstance(SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) UpperCamelCase__ : Union[str, Any] = is_batched_numpy or ( isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase__ : List[Any] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE , np.ndarray ): UpperCamelCase__ : int = np.asarray(SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCamelCase__ : Union[str, Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase__ : Any = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis UpperCamelCase__ : Tuple = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : int = [np.asarray(SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask UpperCamelCase__ : List[str] = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: UpperCamelCase__ : str = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] UpperCamelCase__ : Tuple = np.array(SCREAMING_SNAKE_CASE ).astype(np.floataa ) # convert into correct format for padding UpperCamelCase__ : Optional[int] = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch UpperCamelCase__ : Tuple = np.ones([len(SCREAMING_SNAKE_CASE ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) UpperCamelCase__ : int = padded_audio_features * self.padding_value for i in range(len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ : Tuple = audio_features[i] UpperCamelCase__ : Tuple = feature # return as BatchFeature if return_attention_mask: UpperCamelCase__ : Optional[int] = {"audio_values": padded_audio_features, "audio_mask": audio_mask} else: UpperCamelCase__ : Union[str, Any] = {"audio_values": padded_audio_features} UpperCamelCase__ : Dict = BatchFeature(data=SCREAMING_SNAKE_CASE , tensor_type=SCREAMING_SNAKE_CASE ) return encoded_inputs
228
from PIL import Image def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Image: def brightness(__lowerCAmelCase ) -> float: return 128 + level + (c - 128) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError("level must be between -255.0 (black) and 255.0 (white)" ) return img.point(__lowerCAmelCase ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 lowerCamelCase : Optional[int] =change_brightness(img, 100) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
228
1
import math def lowercase_ ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if ( not isinstance(_UpperCamelCase , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * power_factor def lowercase_ ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if ( not isinstance(_UpperCamelCase , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
711
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase_ : '''simple docstring''' def __init__( self , snake_case_=2 , snake_case_=3 , snake_case_=6_4 , snake_case_=None ) -> List[str]: '''simple docstring''' __lowercase = np.random.default_rng(snake_case_ ) __lowercase = length __lowercase = rng.normal(size=(length,) ).astype(np.floataa ) __lowercase = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self ) -> Dict: '''simple docstring''' return self.length def __getitem__( self , snake_case_ ) -> Union[str, Any]: '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self , snake_case_=0 , snake_case_=0 , snake_case_=False ) -> Optional[Any]: '''simple docstring''' super().__init__() __lowercase = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __lowercase = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __lowercase = True def A ( self , snake_case_=None ) -> List[Any]: '''simple docstring''' if self.first_batch: print(F'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __lowercase = False return x * self.a[0] + self.b[0] class lowerCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self , snake_case_=0 , snake_case_=0 , snake_case_=False ) -> List[str]: '''simple docstring''' super().__init__() __lowercase = torch.nn.Parameter(torch.tensor(snake_case_ ).float() ) __lowercase = torch.nn.Parameter(torch.tensor(snake_case_ ).float() ) __lowercase = True def A ( self , snake_case_=None ) -> str: '''simple docstring''' if self.first_batch: print(F'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __lowercase = False return x * self.a + self.b def lowercase_ ( _UpperCamelCase , _UpperCamelCase = 16 ): '''simple docstring''' from datasets import load_dataset from transformers import AutoTokenizer __lowercase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __lowercase = {'''train''': '''tests/test_samples/MRPC/train.csv''', '''validation''': '''tests/test_samples/MRPC/dev.csv'''} __lowercase = load_dataset('''csv''' , data_files=_UpperCamelCase ) __lowercase = datasets['''train'''].unique('''label''' ) __lowercase = {v: i for i, v in enumerate(_UpperCamelCase )} def tokenize_function(_UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) __lowercase = tokenizer( examples['''sentence1'''] , examples['''sentence2'''] , truncation=_UpperCamelCase , max_length=_UpperCamelCase , padding='''max_length''' ) if "label" in examples: __lowercase = [label_to_id[l] for l in examples['''label''']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowercase = datasets.map( _UpperCamelCase , batched=_UpperCamelCase , remove_columns=['''sentence1''', '''sentence2''', '''label'''] , ) def collate_fn(_UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_UpperCamelCase , padding='''max_length''' , max_length=1_28 , return_tensors='''pt''' ) return tokenizer.pad(_UpperCamelCase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __lowercase = DataLoader(tokenized_datasets['''train'''] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=2 ) __lowercase = DataLoader(tokenized_datasets['''validation'''] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=1 ) return train_dataloader, eval_dataloader
527
0
'''simple docstring''' import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( 'kwargs, expected' , [ ({'num_shards': 0, 'max_num_jobs': 1}, []), ({'num_shards': 10, 'max_num_jobs': 1}, [range(10 )]), ({'num_shards': 10, 'max_num_jobs': 10}, [range(A__ , i + 1 ) for i in range(10 )]), ({'num_shards': 1, 'max_num_jobs': 10}, [range(1 )]), ({'num_shards': 10, 'max_num_jobs': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'num_shards': 3, 'max_num_jobs': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def __lowerCamelCase ( A__ , A__ ) -> List[Any]: """simple docstring""" UpperCamelCase = _distribute_shards(**A__ ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, max_num_jobs, expected' , [ ({'foo': 0}, 10, [{'foo': 0}]), ({'shards': [0, 1, 2, 3]}, 1, [{'shards': [0, 1, 2, 3]}]), ({'shards': [0, 1, 2, 3]}, 4, [{'shards': [0]}, {'shards': [1]}, {'shards': [2]}, {'shards': [3]}]), ({'shards': [0, 1]}, 4, [{'shards': [0]}, {'shards': [1]}]), ({'shards': [0, 1, 2, 3]}, 2, [{'shards': [0, 1]}, {'shards': [2, 3]}]), ] , ) def __lowerCamelCase ( A__ , A__ , A__ ) -> Tuple: """simple docstring""" UpperCamelCase = _split_gen_kwargs(A__ , A__ ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, expected' , [ ({'foo': 0}, 1), ({'shards': [0]}, 1), ({'shards': [0, 1, 2, 3]}, 4), ({'shards': [0, 1, 2, 3], 'foo': 0}, 4), ({'shards': [0, 1, 2, 3], 'other': (0, 1)}, 4), ({'shards': [0, 1, 2, 3], 'shards2': [0, 1]}, RuntimeError), ] , ) def __lowerCamelCase ( A__ , A__ ) -> Any: """simple docstring""" if expected is RuntimeError: with pytest.raises(A__ ): _number_of_shards_in_gen_kwargs(A__ ) else: UpperCamelCase = _number_of_shards_in_gen_kwargs(A__ ) assert out == expected
430
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Optional[int] = { "EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = """gptj""" _SCREAMING_SNAKE_CASE = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : int , UpperCamelCase__ : List[Any]=5_0_4_0_0 , UpperCamelCase__ : int=2_0_4_8 , UpperCamelCase__ : Dict=4_0_9_6 , UpperCamelCase__ : Dict=2_8 , UpperCamelCase__ : str=1_6 , UpperCamelCase__ : Union[str, Any]=6_4 , UpperCamelCase__ : int=None , UpperCamelCase__ : Union[str, Any]="gelu_new" , UpperCamelCase__ : str=0.0 , UpperCamelCase__ : str=0.0 , UpperCamelCase__ : int=0.0 , UpperCamelCase__ : str=1E-5 , UpperCamelCase__ : Tuple=0.0_2 , UpperCamelCase__ : Any=True , UpperCamelCase__ : Union[str, Any]=5_0_2_5_6 , UpperCamelCase__ : int=5_0_2_5_6 , UpperCamelCase__ : int=False , **UpperCamelCase__ : Tuple , ): """simple docstring""" UpperCamelCase = vocab_size UpperCamelCase = n_positions UpperCamelCase = n_embd UpperCamelCase = n_layer UpperCamelCase = n_head UpperCamelCase = n_inner UpperCamelCase = rotary_dim UpperCamelCase = activation_function UpperCamelCase = resid_pdrop UpperCamelCase = embd_pdrop UpperCamelCase = attn_pdrop UpperCamelCase = layer_norm_epsilon UpperCamelCase = initializer_range UpperCamelCase = use_cache UpperCamelCase = bos_token_id UpperCamelCase = eos_token_id super().__init__( bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , tie_word_embeddings=UpperCamelCase__ , **UpperCamelCase__ ) class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def __init__( self : Optional[int] , UpperCamelCase__ : PretrainedConfig , UpperCamelCase__ : str = "default" , UpperCamelCase__ : List[PatchingSpec] = None , UpperCamelCase__ : bool = False , ): """simple docstring""" super().__init__(UpperCamelCase__ , task=UpperCamelCase__ , patching_specs=UpperCamelCase__ , use_past=UpperCamelCase__ ) if not getattr(self._config , 'pad_token_id' , UpperCamelCase__ ): # TODO: how to do that better? UpperCamelCase = 0 @property def A ( self : Tuple ): """simple docstring""" UpperCamelCase = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(UpperCamelCase__ , direction='inputs' ) UpperCamelCase = {0: 'batch', 1: 'past_sequence + sequence'} else: UpperCamelCase = {0: 'batch', 1: 'sequence'} return common_inputs @property def A ( self : List[str] ): """simple docstring""" return self._config.n_layer @property def A ( self : str ): """simple docstring""" return self._config.n_head def A ( self : List[Any] , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): """simple docstring""" UpperCamelCase = super(UpperCamelCase__ , self ).generate_dummy_inputs( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) # We need to order the input in the way they appears in the forward() UpperCamelCase = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch UpperCamelCase , UpperCamelCase = common_inputs['input_ids'].shape # Not using the same length for past_key_values UpperCamelCase = seqlen + 2 UpperCamelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) UpperCamelCase = [ (torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) for _ in range(self.num_layers ) ] UpperCamelCase = common_inputs['attention_mask'] if self.use_past: UpperCamelCase = ordered_inputs['attention_mask'].dtype UpperCamelCase = torch.cat( [ordered_inputs['attention_mask'], torch.ones(UpperCamelCase__ , UpperCamelCase__ , dtype=UpperCamelCase__ )] , dim=1 ) return ordered_inputs @property def A ( self : int ): """simple docstring""" return 1_3
430
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor UpperCAmelCase__ = logging.get_logger(__name__) class a ( _UpperCAmelCase ): def __init__( self : List[str] , *__lowerCAmelCase : List[Any] , **__lowerCAmelCase : Any ): warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowercase__ , ) super().__init__(*lowercase__ , **lowercase__ )
704
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class a ( lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Union[str, Any] = 'nat' _snake_case : List[str] = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : List[Any] , __lowerCAmelCase : int=4 , __lowerCAmelCase : Union[str, Any]=3 , __lowerCAmelCase : Dict=64 , __lowerCAmelCase : int=[3, 4, 6, 5] , __lowerCAmelCase : List[str]=[2, 4, 8, 16] , __lowerCAmelCase : Tuple=7 , __lowerCAmelCase : List[str]=3.0 , __lowerCAmelCase : int=True , __lowerCAmelCase : int=0.0 , __lowerCAmelCase : Tuple=0.0 , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : List[str]="gelu" , __lowerCAmelCase : List[Any]=0.02 , __lowerCAmelCase : Union[str, Any]=1e-5 , __lowerCAmelCase : List[Any]=0.0 , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : Optional[int]=None , **__lowerCAmelCase : Optional[Any] , ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = len(__lowerCAmelCase ) _UpperCAmelCase = num_heads _UpperCAmelCase = kernel_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCAmelCase = int(embed_dim * 2 ** (len(__lowerCAmelCase ) - 1) ) _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(__lowerCAmelCase ) + 1 )] _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices( out_features=__lowerCAmelCase , out_indices=__lowerCAmelCase , stage_names=self.stage_names )
275
0
import argparse import json import subprocess def lowercase__ ( __snake_case : str , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : str = ( F"curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"" ' https://api.github.com/repos/huggingface/transformers/actions/runners' ) UpperCAmelCase_ : Optional[int] = subprocess.run(_UpperCAmelCase , shell=_UpperCAmelCase , stdout=subprocess.PIPE ) UpperCAmelCase_ : List[Any] = output.stdout.decode('utf-8' ) UpperCAmelCase_ : Dict = json.loads(_UpperCAmelCase ) UpperCAmelCase_ : int = status['runners'] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_UpperCAmelCase ) # save the result so we can report them on Slack with open('offline_runners.txt' , 'w' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) ) if len(_UpperCAmelCase ) > 0: UpperCAmelCase_ : Dict = '\n'.join([x['name'] for x in offline_runners] ) raise ValueError(F"The following runners are offline:\n{failed}" ) if __name__ == "__main__": def lowercase__ ( __snake_case : Dict ): '''simple docstring''' return values.split(',' ) __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) __UpperCAmelCase = parser.parse_args() get_runner_status(args.target_runners, args.token)
406
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig __A : List[str] = logging.get_logger(__name__) __A : Optional[Any] = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class __A ( lowerCAmelCase ): lowerCAmelCase_ : List[str] = "dpt" def __init__( self : int , UpperCAmelCase_ : Dict=768 , UpperCAmelCase_ : List[Any]=12 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : int=3072 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Tuple=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Any=1E-12 , UpperCAmelCase_ : List[Any]=384 , UpperCAmelCase_ : List[str]=16 , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Optional[int]=[2, 5, 8, 11] , UpperCAmelCase_ : Optional[Any]="project" , UpperCAmelCase_ : Any=[4, 2, 1, 0.5] , UpperCAmelCase_ : Optional[int]=[96, 192, 384, 768] , UpperCAmelCase_ : Union[str, Any]=256 , UpperCAmelCase_ : Optional[Any]=-1 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : str=True , UpperCAmelCase_ : int=0.4 , UpperCAmelCase_ : Optional[Any]=255 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Union[str, Any]=[1, 1024, 24, 24] , UpperCAmelCase_ : Dict=[0, 1] , UpperCAmelCase_ : Optional[Any]=None , **UpperCAmelCase_ : Dict , ): super().__init__(**UpperCAmelCase_ ) lowerCAmelCase : Tuple = hidden_size lowerCAmelCase : Optional[Any] = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('Initializing the config with a `BiT` backbone.' ) lowerCAmelCase : Union[str, Any] = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, } lowerCAmelCase : Union[str, Any] = BitConfig(**UpperCAmelCase_ ) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): logger.info('Initializing the config with a `BiT` backbone.' ) lowerCAmelCase : Dict = BitConfig(**UpperCAmelCase_ ) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase : str = backbone_config else: raise ValueError( f"backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}." ) lowerCAmelCase : Tuple = backbone_featmap_shape lowerCAmelCase : Dict = neck_ignore_stages if readout_type != "project": raise ValueError('Readout type must be \'project\' when using `DPT-hybrid` mode.' ) else: lowerCAmelCase : List[str] = None lowerCAmelCase : str = None lowerCAmelCase : List[Any] = [] lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : int = intermediate_size lowerCAmelCase : Tuple = hidden_act lowerCAmelCase : str = hidden_dropout_prob lowerCAmelCase : List[str] = attention_probs_dropout_prob lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : List[str] = layer_norm_eps lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Optional[Any] = patch_size lowerCAmelCase : Union[str, Any] = num_channels lowerCAmelCase : int = qkv_bias lowerCAmelCase : Tuple = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('Readout_type must be one of [\'ignore\', \'add\', \'project\']' ) lowerCAmelCase : Any = readout_type lowerCAmelCase : List[str] = reassemble_factors lowerCAmelCase : Optional[int] = neck_hidden_sizes lowerCAmelCase : List[Any] = fusion_hidden_size lowerCAmelCase : List[str] = head_in_index lowerCAmelCase : List[Any] = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) lowerCAmelCase : int = use_auxiliary_head lowerCAmelCase : Any = auxiliary_loss_weight lowerCAmelCase : Any = semantic_loss_ignore_index lowerCAmelCase : str = semantic_classifier_dropout def lowercase__ ( self : str ): lowerCAmelCase : Dict = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase : Tuple = self.backbone_config.to_dict() lowerCAmelCase : List[Any] = self.__class__.model_type return output
343
0
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def UpperCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = [randint(-1000 , 1000 ) for i in range(10 )] __lowerCamelCase = randint(-5000 , 5000 ) return (arr, r) _a : Any = make_dataset() def UpperCamelCase__ ( _A: list[int] , _A: int ): '''simple docstring''' for triplet in permutations(_lowerCamelCase , 3 ): if sum(_lowerCamelCase ) == target: return tuple(sorted(_lowerCamelCase ) ) return (0, 0, 0) def UpperCamelCase__ ( _A: list[int] , _A: int ): '''simple docstring''' arr.sort() __lowerCamelCase = len(_lowerCamelCase ) for i in range(n - 1 ): __lowerCamelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def UpperCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = "\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n" __lowerCamelCase = "\ntriplet_sum1(*dataset)\n" __lowerCamelCase = "\ntriplet_sum2(*dataset)\n" __lowerCamelCase = repeat(setup=_lowerCamelCase , stmt=_lowerCamelCase , repeat=5 , number=10000 ) __lowerCamelCase = repeat(setup=_lowerCamelCase , stmt=_lowerCamelCase , repeat=5 , number=10000 ) return (min(_lowerCamelCase ), min(_lowerCamelCase )) if __name__ == "__main__": from doctest import testmod testmod() _a : str = solution_times() print(F"""The time for naive implementation is {times[0]}.""") print(F"""The time for optimized implementation is {times[1]}.""")
704
from ...processing_utils import ProcessorMixin class UpperCamelCase_ ( __UpperCamelCase ): """simple docstring""" A = ['''image_processor''', '''feature_extractor'''] A = '''TvltImageProcessor''' A = '''TvltFeatureExtractor''' def __init__( self , UpperCAmelCase , UpperCAmelCase ): super().__init__(image_processor=UpperCAmelCase , feature_extractor=UpperCAmelCase ) __lowerCamelCase = image_processor __lowerCamelCase = feature_extractor def __call__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=False , UpperCAmelCase=False , *UpperCAmelCase , **UpperCAmelCase , ): if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) __lowerCamelCase = None if images is not None: __lowerCamelCase = self.image_processor(UpperCAmelCase , mask_pixel=UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) if images_mixed is not None: __lowerCamelCase = self.image_processor(UpperCAmelCase , is_mixed=UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) if audio is not None: __lowerCamelCase = self.feature_extractor( UpperCAmelCase , *UpperCAmelCase , sampling_rate=UpperCAmelCase , mask_audio=UpperCAmelCase , **UpperCAmelCase ) __lowerCamelCase = {} if audio is not None: output_dict.update(UpperCAmelCase ) if images is not None: output_dict.update(UpperCAmelCase ) if images_mixed_dict is not None: output_dict.update(UpperCAmelCase ) return output_dict @property def lowerCamelCase_ ( self ): __lowerCamelCase = self.image_processor.model_input_names __lowerCamelCase = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
571
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available lowerCAmelCase__ = { 'configuration_audio_spectrogram_transformer': [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ASTConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ASTForAudioClassification', 'ASTModel', 'ASTPreTrainedModel', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['ASTFeatureExtractor'] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
621
"""simple docstring""" import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _lowerCAmelCase ( unittest.TestCase ): def A ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() def A ( self ) -> int: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( 'stabilityai/stable-diffusion-2' , revision='bf16' , dtype=jnp.bfloataa , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = 'A painting of a squirrel eating a burger' _SCREAMING_SNAKE_CASE : Optional[Any] = jax.device_count() _SCREAMING_SNAKE_CASE : List[Any] = num_samples * [prompt] _SCREAMING_SNAKE_CASE : Any = sd_pipe.prepare_inputs(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : List[Any] = replicate(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = shard(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Any = jax.random.PRNGKey(0 ) _SCREAMING_SNAKE_CASE : Optional[int] = jax.random.split(lowerCAmelCase_ , jax.device_count() ) _SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , num_inference_steps=2_5 , jit=lowerCAmelCase_ )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) _SCREAMING_SNAKE_CASE : int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _SCREAMING_SNAKE_CASE : Optional[Any] = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] _SCREAMING_SNAKE_CASE : Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _SCREAMING_SNAKE_CASE : List[Any] = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def A ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : str = 'stabilityai/stable-diffusion-2' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = FlaxDPMSolverMultistepScheduler.from_pretrained(lowerCAmelCase_ , subfolder='scheduler' ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = FlaxStableDiffusionPipeline.from_pretrained( lowerCAmelCase_ , scheduler=lowerCAmelCase_ , revision='bf16' , dtype=jnp.bfloataa , ) _SCREAMING_SNAKE_CASE : Any = scheduler_params _SCREAMING_SNAKE_CASE : int = 'A painting of a squirrel eating a burger' _SCREAMING_SNAKE_CASE : Tuple = jax.device_count() _SCREAMING_SNAKE_CASE : Union[str, Any] = num_samples * [prompt] _SCREAMING_SNAKE_CASE : Any = sd_pipe.prepare_inputs(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Dict = replicate(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Any = shard(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Any = jax.random.PRNGKey(0 ) _SCREAMING_SNAKE_CASE : Optional[Any] = jax.random.split(lowerCAmelCase_ , jax.device_count() ) _SCREAMING_SNAKE_CASE : int = sd_pipe(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , num_inference_steps=2_5 , jit=lowerCAmelCase_ )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) _SCREAMING_SNAKE_CASE : str = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _SCREAMING_SNAKE_CASE : str = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] _SCREAMING_SNAKE_CASE : int = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _SCREAMING_SNAKE_CASE : Optional[int] = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
621
1
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def __magic_name__( _A ): '''simple docstring''' UpperCamelCase__ = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: UpperCamelCase__ = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: UpperCamelCase__ = 4 UpperCamelCase__ = 48 UpperCamelCase__ = """pixelshuffle_aux""" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: UpperCamelCase__ = [6, 6, 6, 6] UpperCamelCase__ = 60 UpperCamelCase__ = [6, 6, 6, 6] UpperCamelCase__ = """pixelshuffledirect""" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: UpperCamelCase__ = 4 UpperCamelCase__ = """nearest+conv""" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: UpperCamelCase__ = 1 UpperCamelCase__ = 1 UpperCamelCase__ = 126 UpperCamelCase__ = 7 UpperCamelCase__ = 255.0 UpperCamelCase__ = """""" return config def __magic_name__( _A , _A ): '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: UpperCamelCase__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: UpperCamelCase__ = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" ) if "layers" in name: UpperCamelCase__ = name.replace("""layers""" , """encoder.stages""" ) if "residual_group.blocks" in name: UpperCamelCase__ = name.replace("""residual_group.blocks""" , """layers""" ) if "attn.proj" in name: UpperCamelCase__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: UpperCamelCase__ = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: UpperCamelCase__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: UpperCamelCase__ = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: UpperCamelCase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: UpperCamelCase__ = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: UpperCamelCase__ = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: UpperCamelCase__ = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: UpperCamelCase__ = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: UpperCamelCase__ = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if "patch_embed.proj" in name: UpperCamelCase__ = name.replace("""patch_embed.proj""" , """patch_embed.projection""" ) if name == "norm.weight": UpperCamelCase__ = """layernorm.weight""" if name == "norm.bias": UpperCamelCase__ = """layernorm.bias""" if "conv_first" in name: UpperCamelCase__ = name.replace("""conv_first""" , """first_convolution""" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: UpperCamelCase__ = name.replace("""conv_last""" , """final_convolution""" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: UpperCamelCase__ = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" ) if "upsample.0" in name: UpperCamelCase__ = name.replace("""upsample.0""" , """upsample.convolution_0""" ) if "upsample.2" in name: UpperCamelCase__ = name.replace("""upsample.2""" , """upsample.convolution_1""" ) UpperCamelCase__ = """upsample.""" + name elif config.upsampler == "pixelshuffledirect": UpperCamelCase__ = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" ) UpperCamelCase__ = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" ) else: pass else: UpperCamelCase__ = """swin2sr.""" + name return name def __magic_name__( _A , _A ): '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCamelCase__ = orig_state_dict.pop(_A ) if "qkv" in key: UpperCamelCase__ = key.split(""".""" ) UpperCamelCase__ = int(key_split[1] ) UpperCamelCase__ = int(key_split[4] ) UpperCamelCase__ = config.embed_dim if "weight" in key: UpperCamelCase__ = val[:dim, :] UpperCamelCase__ = val[dim : dim * 2, :] UpperCamelCase__ = val[-dim:, :] else: UpperCamelCase__ = val[:dim] UpperCamelCase__ = val[dim : dim * 2] UpperCamelCase__ = val[-dim:] pass else: UpperCamelCase__ = val return orig_state_dict def __magic_name__( _A , _A , _A ): '''simple docstring''' UpperCamelCase__ = get_config(_A ) UpperCamelCase__ = SwinaSRForImageSuperResolution(_A ) model.eval() UpperCamelCase__ = torch.hub.load_state_dict_from_url(_A , map_location="""cpu""" ) UpperCamelCase__ = convert_state_dict(_A , _A ) UpperCamelCase__ , UpperCamelCase__ = model.load_state_dict(_A , strict=_A ) if len(_A ) > 0: raise ValueError("""Missing keys when converting: {}""".format(_A ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f"Unexpected key {key} in state_dict" ) # verify values UpperCamelCase__ = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true""" UpperCamelCase__ = Image.open(requests.get(_A , stream=_A ).raw ).convert("""RGB""" ) UpperCamelCase__ = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values UpperCamelCase__ = 126 if """Jpeg""" in checkpoint_url else 256 UpperCamelCase__ = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) UpperCamelCase__ = transforms(_A ).unsqueeze(0 ) if config.num_channels == 1: UpperCamelCase__ = pixel_values[:, 0, :, :].unsqueeze(1 ) UpperCamelCase__ = model(_A ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: UpperCamelCase__ = torch.Size([1, 3, 512, 512] ) UpperCamelCase__ = torch.tensor( [[-0.7_0_8_7, -0.7_1_3_8, -0.6_7_2_1], [-0.8_3_4_0, -0.8_0_9_5, -0.7_2_9_8], [-0.9_1_4_9, -0.8_4_1_4, -0.7_9_4_0]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: UpperCamelCase__ = torch.Size([1, 3, 1024, 1024] ) UpperCamelCase__ = torch.tensor( [[-0.7_7_7_5, -0.8_1_0_5, -0.8_9_3_3], [-0.7_7_6_4, -0.8_3_5_6, -0.9_2_2_5], [-0.7_9_7_6, -0.8_6_8_6, -0.9_5_7_9]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here UpperCamelCase__ = torch.Size([1, 3, 1024, 1024] ) UpperCamelCase__ = torch.tensor( [[-0.8_0_3_5, -0.7_5_0_4, -0.7_4_9_1], [-0.8_5_3_8, -0.8_1_2_4, -0.7_7_8_2], [-0.8_8_0_4, -0.8_6_5_1, -0.8_4_9_3]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: UpperCamelCase__ = torch.Size([1, 3, 512, 512] ) UpperCamelCase__ = torch.tensor( [[-0.7_6_6_9, -0.8_6_6_2, -0.8_7_6_7], [-0.8_8_1_0, -0.9_9_6_2, -0.9_8_2_0], [-0.9_3_4_0, -1.0_3_2_2, -1.1_1_4_9]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: UpperCamelCase__ = torch.Size([1, 3, 1024, 1024] ) UpperCamelCase__ = torch.tensor( [[-0.5_2_3_8, -0.5_5_5_7, -0.6_3_2_1], [-0.6_0_1_6, -0.5_9_0_3, -0.6_3_9_1], [-0.6_2_4_4, -0.6_3_3_4, -0.6_8_8_9]] ) assert ( outputs.reconstruction.shape == expected_shape ), f"Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , _A , atol=1e-3 ) print("""Looks ok!""" ) UpperCamelCase__ = { """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": ( """swin2SR-classical-sr-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": ( """swin2SR-classical-sr-x4-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": ( """swin2SR-compressed-sr-x4-48""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": ( """swin2SR-lightweight-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": ( """swin2SR-realworld-sr-x4-64-bsrgan-psnr""" ), } UpperCamelCase__ = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_A ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_A ) if push_to_hub: model.push_to_hub(f"caidas/{model_name}" ) processor.push_to_hub(f"caidas/{model_name}" ) if __name__ == "__main__": lowerCamelCase_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''', type=str, help='''URL of the original Swin2SR checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''') lowerCamelCase_ : Union[str, Any] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
719
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar lowerCamelCase_ : List[str] = TypeVar('''T''') lowerCamelCase_ : Optional[int] = TypeVar('''U''') class _SCREAMING_SNAKE_CASE ( Generic[T, U] ): '''simple docstring''' def __init__( self : Dict , lowercase : T | None , lowercase : U | None ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = key UpperCamelCase__ = val UpperCamelCase__ = None UpperCamelCase__ = None def __repr__( self : List[Any] ) -> str: '''simple docstring''' return ( f"Node: key: {self.key}, val: {self.val}, " f"has next: {bool(self.next )}, has prev: {bool(self.prev )}" ) class _SCREAMING_SNAKE_CASE ( Generic[T, U] ): '''simple docstring''' def __init__( self : Union[str, Any] ) -> None: '''simple docstring''' UpperCamelCase__ = DoubleLinkedListNode(lowercase , lowercase ) UpperCamelCase__ = DoubleLinkedListNode(lowercase , lowercase ) UpperCamelCase__ , UpperCamelCase__ = self.rear, self.head def __repr__( self : int ) -> str: '''simple docstring''' UpperCamelCase__ = ["""DoubleLinkedList"""] UpperCamelCase__ = self.head while node.next is not None: rep.append(str(lowercase ) ) UpperCamelCase__ = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowercase ) def A ( self : str , lowercase : DoubleLinkedListNode[T, U] ) -> None: '''simple docstring''' UpperCamelCase__ = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None UpperCamelCase__ = node UpperCamelCase__ = previous UpperCamelCase__ = node UpperCamelCase__ = self.rear def A ( self : Any , lowercase : DoubleLinkedListNode[T, U] ) -> DoubleLinkedListNode[T, U] | None: '''simple docstring''' if node.prev is None or node.next is None: return None UpperCamelCase__ = node.next UpperCamelCase__ = node.prev UpperCamelCase__ = None UpperCamelCase__ = None return node class _SCREAMING_SNAKE_CASE ( Generic[T, U] ): '''simple docstring''' __a : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self : int , lowercase : int ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = DoubleLinkedList() UpperCamelCase__ = capacity UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = {} def __repr__( self : Any ) -> str: '''simple docstring''' return ( f"CacheInfo(hits={self.hits}, misses={self.miss}, " f"capacity={self.capacity}, current size={self.num_keys})" ) def __contains__( self : Any , lowercase : T ) -> bool: '''simple docstring''' return key in self.cache def A ( self : Tuple , lowercase : T ) -> U | None: '''simple docstring''' if key in self.cache: self.hits += 1 UpperCamelCase__ = self.cache[key] UpperCamelCase__ = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowercase ) return node.val self.miss += 1 return None def A ( self : Dict , lowercase : T , lowercase : U ) -> None: '''simple docstring''' if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity UpperCamelCase__ = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowercase ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 UpperCamelCase__ = DoubleLinkedListNode(lowercase , lowercase ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value UpperCamelCase__ = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list UpperCamelCase__ = value self.list.add(lowercase ) @classmethod def A ( cls : Optional[int] , lowercase : int = 1_2_8 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: '''simple docstring''' def cache_decorator_inner(lowercase : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*lowercase : T ) -> U: if func not in cls.decorator_function_to_instance_map: UpperCamelCase__ = LRUCache(lowercase ) UpperCamelCase__ = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: UpperCamelCase__ = func(*lowercase ) cls.decorator_function_to_instance_map[func].put(args[0] , lowercase ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowercase , """cache_info""" , lowercase ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
265
0
from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def UpperCAmelCase__( __UpperCAmelCase : float , __UpperCAmelCase : float , __UpperCAmelCase : bool = False ): if radian_mode: return [magnitude * cos(__UpperCAmelCase ), magnitude * sin(__UpperCAmelCase )] return [magnitude * cos(radians(__UpperCAmelCase ) ), magnitude * sin(radians(__UpperCAmelCase ) )] def UpperCAmelCase__( __UpperCAmelCase : NDArray[floataa] , __UpperCAmelCase : NDArray[floataa] , __UpperCAmelCase : float = 10**-1 ): __snake_case : NDArray[floataa] = cross(__UpperCAmelCase , __UpperCAmelCase ) __snake_case : float = sum(__UpperCAmelCase ) return abs(__UpperCAmelCase ) < eps if __name__ == "__main__": # Test to check if it works __magic_name__ = array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) __magic_name__ = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg __magic_name__ = array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) __magic_name__ = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg __magic_name__ = array([[0, -2_000], [0, -1_200], [0, 15_600], [0, -12_400]]) __magic_name__ = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
576
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np __magic_name__ = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 __magic_name__ = typing.Union[np.floataa, int, float] # noqa: UP007 def UpperCAmelCase__( __UpperCAmelCase : Vector , __UpperCAmelCase : Vector ): return np.sqrt(np.sum((np.asarray(__UpperCAmelCase ) - np.asarray(__UpperCAmelCase )) ** 2 ) ) def UpperCAmelCase__( __UpperCAmelCase : Vector , __UpperCAmelCase : Vector ): return sum((va - va) ** 2 for va, va in zip(__UpperCAmelCase , __UpperCAmelCase ) ) ** (1 / 2) if __name__ == "__main__": def UpperCAmelCase__( ): from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=1_00_00 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=1_00_00 , globals=globals() , ) ) benchmark()
576
1
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def _a ( __lowercase="" ) -> str: """simple docstring""" __UpperCamelCase = tempfile.mkdtemp() return os.path.join(__lowercase , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase( self ) -> Tuple: __UpperCamelCase = torch.rand(12 , dtype=torch.floataa ) - 0.5 __UpperCamelCase = AgentAudio(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , agent_type.to_raw() , atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(_SCREAMING_SNAKE_CASE ) ) # Ensure that the file contains the same value as the original tensor __UpperCamelCase , __UpperCamelCase = sf.read(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , torch.tensor(_SCREAMING_SNAKE_CASE ) , atol=1e-4 ) ) def __lowercase( self ) -> Optional[int]: __UpperCamelCase = torch.rand(12 , dtype=torch.floataa ) - 0.5 __UpperCamelCase = get_new_path(suffix='.wav' ) sf.write(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 16_000 ) __UpperCamelCase = AgentAudio(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , agent_type.to_raw() , atol=1e-4 ) ) self.assertEqual(agent_type.to_string() , _SCREAMING_SNAKE_CASE ) @require_vision @require_torch class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase( self ) -> Optional[int]: __UpperCamelCase = torch.randint(0 , 256 , (64, 64, 3) ) __UpperCamelCase = AgentImage(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , agent_type._tensor , atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(_SCREAMING_SNAKE_CASE ) ) def __lowercase( self ) -> int: __UpperCamelCase = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' __UpperCamelCase = Image.open(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = AgentImage(_SCREAMING_SNAKE_CASE ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(_SCREAMING_SNAKE_CASE ) ) def __lowercase( self ) -> Optional[Any]: __UpperCamelCase = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' __UpperCamelCase = Image.open(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = AgentImage(_SCREAMING_SNAKE_CASE ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(_SCREAMING_SNAKE_CASE ) ) class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase( self ) -> Any: __UpperCamelCase = 'Hey!' __UpperCamelCase = AgentText(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , agent_type.to_string() ) self.assertEqual(_SCREAMING_SNAKE_CASE , agent_type.to_raw() ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
567
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 32 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 1 / 255 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , _SCREAMING_SNAKE_CASE = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=3 , ) -> Any: __UpperCamelCase = parent __UpperCamelCase = do_resize __UpperCamelCase = size if size is not None else {'shortest_edge': 288} __UpperCamelCase = size_divisor __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_normalize __UpperCamelCase = do_center_crop __UpperCamelCase = image_mean __UpperCamelCase = image_std __UpperCamelCase = do_pad __UpperCamelCase = batch_size __UpperCamelCase = num_channels __UpperCamelCase = min_resolution __UpperCamelCase = max_resolution def __lowercase( self ) -> str: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __lowercase( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Tuple: if not batched: __UpperCamelCase = self.size['shortest_edge'] __UpperCamelCase = image_inputs[0] if isinstance(_SCREAMING_SNAKE_CASE , Image.Image ): __UpperCamelCase , __UpperCamelCase = image.size else: __UpperCamelCase , __UpperCamelCase = image.shape[1], image.shape[2] __UpperCamelCase = size / min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if h < w: __UpperCamelCase , __UpperCamelCase = size, scale * w else: __UpperCamelCase , __UpperCamelCase = scale * h, size __UpperCamelCase = int((1_333 / 800) * size ) if max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) > max_size: __UpperCamelCase = max_size / max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __UpperCamelCase = newh * scale __UpperCamelCase = neww * scale __UpperCamelCase , __UpperCamelCase = int(newh + 0.5 ), int(neww + 0.5 ) __UpperCamelCase , __UpperCamelCase = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __UpperCamelCase = [] for image in image_inputs: __UpperCamelCase , __UpperCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __UpperCamelCase = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[0] )[0] __UpperCamelCase = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ = BridgeTowerImageProcessor if is_vision_available() else None def __lowercase( self ) -> Optional[Any]: __UpperCamelCase = BridgeTowerImageProcessingTester(self ) @property def __lowercase( self ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def __lowercase( self ) -> Tuple: __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size_divisor' ) ) def __lowercase( self ) -> Dict: pass def __lowercase( self ) -> Any: # Initialize image processor __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input __UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __UpperCamelCase , __UpperCamelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCamelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values __UpperCamelCase , __UpperCamelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowercase( self ) -> List[Any]: # Initialize image processor __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input __UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __UpperCamelCase , __UpperCamelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCamelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values __UpperCamelCase , __UpperCamelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowercase( self ) -> Optional[int]: # Initialize image processor __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input __UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __UpperCamelCase , __UpperCamelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCamelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values __UpperCamelCase , __UpperCamelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
567
1