code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ : Optional[Any] = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCAmelCase_ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
120
'''simple docstring''' import numpy class UpperCamelCase_ : """simple docstring""" def __init__( self : Union[str, Any] , _lowerCamelCase : numpy.ndarray , _lowerCamelCase : numpy.ndarray ) -> None: __magic_name__ = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. __magic_name__ = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. __magic_name__ = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. __magic_name__ = numpy.random.rand(3 , 1 ) # Real output values provided. __magic_name__ = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. __magic_name__ = numpy.zeros(output_array.shape ) def __A ( self : int ) -> numpy.ndarray: __magic_name__ = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. __magic_name__ = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. __magic_name__ = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def __A ( self : Dict ) -> None: __magic_name__ = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) __magic_name__ = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) __magic_name__ = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def __A ( self : Optional[int] , _lowerCamelCase : numpy.ndarray , _lowerCamelCase : int , _lowerCamelCase : bool ) -> None: for iteration in range(1 , iterations + 1 ): __magic_name__ = self.feedforward() self.back_propagation() if give_loss: __magic_name__ = numpy.mean(numpy.square(output - self.feedforward() ) ) print(f'Iteration {iteration} Loss: {loss}' ) def __A ( self : Tuple , _lowerCamelCase : numpy.ndarray ) -> int: __magic_name__ = input_arr __magic_name__ = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) __magic_name__ = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) __magic_name__ = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def __snake_case ( lowerCamelCase_ : numpy.ndarray ): '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def __snake_case ( lowerCamelCase_ : numpy.ndarray ): '''simple docstring''' return (value) * (1 - (value)) def __snake_case ( ): '''simple docstring''' __magic_name__ = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. __magic_name__ = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. __magic_name__ = TwoHiddenLayerNeuralNetwork( input_array=lowerCamelCase_ , output_array=lowerCamelCase_ ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=lowerCamelCase_ , iterations=10 , give_loss=lowerCamelCase_ ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
664
0
"""simple docstring""" from __future__ import annotations def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): print(f"Vertex\tShortest Distance from vertex {src}" ) for i, d in enumerate(UpperCamelCase_ ): print(f"{i}\t\t{d}" ) def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): for j in range(UpperCamelCase_ ): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = (graph[j][k] for k in ["""src""", """dst""", """weight"""]) if distance[u] != float("""inf""" ) and distance[u] + w < distance[v]: return True return False def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = [float("""inf""" )] * vertex_count __SCREAMING_SNAKE_CASE = 0.0 for _ in range(vertex_count - 1 ): for j in range(UpperCamelCase_ ): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = (graph[j][k] for k in ["""src""", """dst""", """weight"""]) if distance[u] != float("""inf""" ) and distance[u] + w < distance[v]: __SCREAMING_SNAKE_CASE = distance[u] + w __SCREAMING_SNAKE_CASE = check_negative_cycle(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if negative_cycle_exists: raise Exception("""Negative cycle found""" ) return distance if __name__ == "__main__": import doctest doctest.testmod() __magic_name__ = int(input("Enter number of vertices: ").strip()) __magic_name__ = int(input("Enter number of edges: ").strip()) __magic_name__ = [{} for _ in range(E)] for i in range(E): print("Edge ", i + 1) __magic_name__, __magic_name__, __magic_name__ = ( int(x) for x in input("Enter source, destination, weight: ").strip().split(" ") ) __magic_name__ = {"src": src, "dst": dest, "weight": weight} __magic_name__ = int(input("\nEnter shortest path source:").strip()) __magic_name__ = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
248
"""simple docstring""" import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib __magic_name__ = threading.Lock() __magic_name__ = None __magic_name__ = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } __magic_name__ = logging.WARNING __magic_name__ = True def _lowerCAmelCase ( ): __SCREAMING_SNAKE_CASE = os.getenv("""TRANSFORMERS_VERBOSITY""" , UpperCamelCase_ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, " f"has to be one of: { ', '.join(log_levels.keys() ) }" ) return _default_log_level def _lowerCAmelCase ( ): return __name__.split(""".""" )[0] def _lowerCAmelCase ( ): return logging.getLogger(_get_library_name() ) def _lowerCAmelCase ( ): global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return __SCREAMING_SNAKE_CASE = logging.StreamHandler() # Set sys.stderr as stream. __SCREAMING_SNAKE_CASE = sys.stderr.flush # Apply our default configuration to the library root logger. __SCREAMING_SNAKE_CASE = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) __SCREAMING_SNAKE_CASE = False def _lowerCAmelCase ( ): global _default_handler with _lock: if not _default_handler: return __SCREAMING_SNAKE_CASE = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) __SCREAMING_SNAKE_CASE = None def _lowerCAmelCase ( ): return log_levels def _lowerCAmelCase ( UpperCamelCase_ = None ): if name is None: __SCREAMING_SNAKE_CASE = _get_library_name() _configure_library_root_logger() return logging.getLogger(UpperCamelCase_ ) def _lowerCAmelCase ( ): _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def _lowerCAmelCase ( UpperCamelCase_ ): _configure_library_root_logger() _get_library_root_logger().setLevel(UpperCamelCase_ ) def _lowerCAmelCase ( ): return set_verbosity(UpperCamelCase_ ) def _lowerCAmelCase ( ): return set_verbosity(UpperCamelCase_ ) def _lowerCAmelCase ( ): return set_verbosity(UpperCamelCase_ ) def _lowerCAmelCase ( ): return set_verbosity(UpperCamelCase_ ) def _lowerCAmelCase ( ): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def _lowerCAmelCase ( ): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def _lowerCAmelCase ( UpperCamelCase_ ): _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(UpperCamelCase_ ) def _lowerCAmelCase ( UpperCamelCase_ ): _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(UpperCamelCase_ ) def _lowerCAmelCase ( ): _configure_library_root_logger() __SCREAMING_SNAKE_CASE = False def _lowerCAmelCase ( ): _configure_library_root_logger() __SCREAMING_SNAKE_CASE = True def _lowerCAmelCase ( ): __SCREAMING_SNAKE_CASE = _get_library_root_logger().handlers for handler in handlers: __SCREAMING_SNAKE_CASE = logging.Formatter("""[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s""" ) handler.setFormatter(UpperCamelCase_ ) def _lowerCAmelCase ( ): __SCREAMING_SNAKE_CASE = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(UpperCamelCase_ ) def _lowerCAmelCase ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = os.getenv("""TRANSFORMERS_NO_ADVISORY_WARNINGS""" , UpperCamelCase_ ) if no_advisory_warnings: return self.warning(*UpperCamelCase_ , **UpperCamelCase_ ) __magic_name__ = warning_advice @functools.lru_cache(UpperCamelCase_ ) def _lowerCAmelCase ( self , *UpperCamelCase_ , **UpperCamelCase_ ): self.warning(*UpperCamelCase_ , **UpperCamelCase_ ) __magic_name__ = warning_once class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): # pylint: disable=unused-argument __SCREAMING_SNAKE_CASE = args[0] if args else None def __iter__( self): return iter(self._iterator) def __getattr__( self , lowerCAmelCase__): def empty_fn(*lowerCAmelCase__ , **lowerCAmelCase__): # pylint: disable=unused-argument return return empty_fn def __enter__( self): return self def __exit__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): return class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __call__( self , *lowerCAmelCase__ , **lowerCAmelCase__): if _tqdm_active: return tqdm_lib.tqdm(*lowerCAmelCase__ , **lowerCAmelCase__) else: return EmptyTqdm(*lowerCAmelCase__ , **lowerCAmelCase__) def snake_case_ ( self , *lowerCAmelCase__ , **lowerCAmelCase__): __SCREAMING_SNAKE_CASE = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*lowerCAmelCase__ , **lowerCAmelCase__) def snake_case_ ( self): if _tqdm_active: return tqdm_lib.tqdm.get_lock() __magic_name__ = _tqdm_cls() def _lowerCAmelCase ( ): global _tqdm_active return bool(_tqdm_active ) def _lowerCAmelCase ( ): global _tqdm_active __SCREAMING_SNAKE_CASE = True hf_hub_utils.enable_progress_bars() def _lowerCAmelCase ( ): global _tqdm_active __SCREAMING_SNAKE_CASE = False hf_hub_utils.disable_progress_bars()
248
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class __A ( a ): """simple docstring""" A_ = 'ibert' def __init__( self , _lowerCamelCase=3_0_5_2_2 , _lowerCamelCase=7_6_8 , _lowerCamelCase=1_2 , _lowerCamelCase=1_2 , _lowerCamelCase=3_0_7_2 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=5_1_2 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-12 , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase="absolute" , _lowerCamelCase=False , _lowerCamelCase="none" , **_lowerCamelCase , )-> Dict: super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = quant_mode lowercase__ = force_dequant class __A ( a ): """simple docstring""" @property def snake_case_( self )-> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowercase__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
161
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __A ( a ): """simple docstring""" A_ = ['image_processor', 'tokenizer'] A_ = 'BridgeTowerImageProcessor' A_ = ('RobertaTokenizer', 'RobertaTokenizerFast') def __init__( self , _lowerCamelCase , _lowerCamelCase )-> str: super().__init__(_lowerCamelCase , _lowerCamelCase ) def __call__( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = 0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = True , _lowerCamelCase = None , **_lowerCamelCase , )-> BatchEncoding: lowercase__ = self.tokenizer( text=_lowerCamelCase , add_special_tokens=_lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , stride=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_token_type_ids=_lowerCamelCase , return_attention_mask=_lowerCamelCase , return_overflowing_tokens=_lowerCamelCase , return_special_tokens_mask=_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , return_length=_lowerCamelCase , verbose=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase , ) # add pixel_values + pixel_mask lowercase__ = self.image_processor( _lowerCamelCase , return_tensors=_lowerCamelCase , do_normalize=_lowerCamelCase , do_center_crop=_lowerCamelCase , **_lowerCamelCase ) encoding.update(_lowerCamelCase ) return encoding def snake_case_( self , *_lowerCamelCase , **_lowerCamelCase )-> str: return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def snake_case_( self , *_lowerCamelCase , **_lowerCamelCase )-> List[Any]: return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase ) @property def snake_case_( self )-> List[Any]: lowercase__ = self.tokenizer.model_input_names lowercase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
161
1
'''simple docstring''' class A : def __init__( self , SCREAMING_SNAKE_CASE = "" , SCREAMING_SNAKE_CASE = False ) -> None: """simple docstring""" A : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word A : Optional[int] = is_leaf A : Any = prefix def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> tuple[str, str, str]: """simple docstring""" A : List[str] = 0 for q, w in zip(self.prefix , SCREAMING_SNAKE_CASE ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" for word in words: self.insert(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" if self.prefix == word: A : Optional[int] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: A : str = RadixNode(prefix=SCREAMING_SNAKE_CASE , is_leaf=SCREAMING_SNAKE_CASE ) else: A : Dict = self.nodes[word[0]] A : List[Any] = incoming_node.match( SCREAMING_SNAKE_CASE ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(SCREAMING_SNAKE_CASE ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: A : str = remaining_prefix A : Tuple = self.nodes[matching_string[0]] A : List[str] = RadixNode(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Optional[Any] = aux_node if remaining_word == "": A : Union[str, Any] = True else: self.nodes[matching_string[0]].insert(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" A : int = self.nodes.get(word[0] , SCREAMING_SNAKE_CASE ) if not incoming_node: return False else: A : int = incoming_node.match( SCREAMING_SNAKE_CASE ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" A : List[Any] = self.nodes.get(word[0] , SCREAMING_SNAKE_CASE ) if not incoming_node: return False else: A : Union[str, Any] = incoming_node.match( SCREAMING_SNAKE_CASE ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(SCREAMING_SNAKE_CASE ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: A : Any = list(self.nodes.values() )[0] A : Any = merging_node.is_leaf self.prefix += merging_node.prefix A : Dict = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: A : Dict = False # If there is 1 edge, we merge it with its child else: A : int = list(incoming_node.nodes.values() )[0] A : Optional[int] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix A : Dict = merging_node.nodes return True def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE = 0 ) -> None: """simple docstring""" if self.prefix != "": print('''-''' * height , self.prefix , ''' (leaf)''' if self.is_leaf else '''''' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def lowerCAmelCase_ ( ): '''simple docstring''' A : Optional[Any] = '''banana bananas bandana band apple all beast'''.split() A : List[Any] = RadixNode() root.insert_many(snake_case__ ) assert all(root.find(snake_case__ ) for word in words ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def lowerCAmelCase_ ( ): '''simple docstring''' assert test_trie() def lowerCAmelCase_ ( ): '''simple docstring''' A : Union[str, Any] = RadixNode() A : Tuple = '''banana bananas bandanas bandana band apple all beast'''.split() root.insert_many(snake_case__ ) print('''Words:''' , snake_case__ ) print('''Tree:''' ) root.print_tree() if __name__ == "__main__": main()
721
'''simple docstring''' import math import sys def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Dict = '''''' try: with open(snake_case__ , '''rb''' ) as binary_file: A : Optional[Any] = binary_file.read() for dat in data: A : Union[str, Any] = F'{dat:08b}' result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Optional[int] = {'''0''': '''0''', '''1''': '''1'''} A, A : Union[str, Any] = '''''', '''''' A : str = len(snake_case__ ) for i in range(len(snake_case__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue A : Dict = lexicon[curr_string] result += last_match_id A : Any = last_match_id + '''0''' if math.loga(snake_case__ ).is_integer(): A : Optional[int] = {} for curr_key in list(snake_case__ ): A : Any = lexicon.pop(snake_case__ ) A : List[str] = new_lex A : Dict = last_match_id + '''1''' index += 1 A : List[str] = '''''' return result def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : Tuple = 8 try: with open(snake_case__ , '''wb''' ) as opened_file: A : List[Any] = [ to_write[i : i + byte_length] for i in range(0 , len(snake_case__ ) , snake_case__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(snake_case__ , 2 ).to_bytes(1 , byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Optional[int] = 0 for letter in data_bits: if letter == "1": break counter += 1 A : Union[str, Any] = data_bits[counter:] A : Tuple = data_bits[counter + 1 :] return data_bits def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : int = read_file_binary(snake_case__ ) A : Dict = remove_prefix(snake_case__ ) A : Union[str, Any] = decompress_data(snake_case__ ) write_file_binary(snake_case__ , snake_case__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
343
0
'''simple docstring''' def lowercase_ ( __A : float , __A : float ) -> float: """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(f"""{price_plus_tax(100, 0.25) = }""") print(f"""{price_plus_tax(125.50, 0.05) = }""")
94
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class _lowerCamelCase ( TensorFormatter[Mapping, "torch.Tensor", Mapping] ): """simple docstring""" def __init__( self , UpperCAmelCase=None , **UpperCAmelCase ) -> Optional[int]: '''simple docstring''' super().__init__(features=UpperCAmelCase ) __snake_case : Optional[int] = torch_tensor_kwargs import torch # noqa import torch at initialization def UpperCAmelCase ( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' import torch if isinstance(UpperCAmelCase , UpperCAmelCase ) and column: if all( isinstance(UpperCAmelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCAmelCase ) return column def UpperCAmelCase ( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' import torch if isinstance(UpperCAmelCase , (str, bytes, type(UpperCAmelCase )) ): return value elif isinstance(UpperCAmelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() __snake_case : Optional[Any] = {} if isinstance(UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): __snake_case : List[Any] = {"dtype": torch.intaa} elif isinstance(UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): __snake_case : Union[str, Any] = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCAmelCase , PIL.Image.Image ): __snake_case : Optional[int] = np.asarray(UpperCAmelCase ) return torch.tensor(UpperCAmelCase , **{**default_dtype, **self.torch_tensor_kwargs} ) def UpperCAmelCase ( self , UpperCAmelCase ) -> str: '''simple docstring''' import torch # support for torch, tf, jax etc. if hasattr(UpperCAmelCase , "__array__" ) and not isinstance(UpperCAmelCase , torch.Tensor ): __snake_case : List[str] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCAmelCase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCAmelCase ) for substruct in data_struct] ) elif isinstance(UpperCAmelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCAmelCase ) for substruct in data_struct] ) return self._tensorize(UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Tuple: '''simple docstring''' return map_nested(self._recursive_tensorize , UpperCAmelCase , map_list=UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Mapping: '''simple docstring''' __snake_case : Any = self.numpy_arrow_extractor().extract_row(UpperCAmelCase ) __snake_case : Dict = self.python_features_decoder.decode_row(UpperCAmelCase ) return self.recursive_tensorize(UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> "torch.Tensor": '''simple docstring''' __snake_case : Optional[Any] = self.numpy_arrow_extractor().extract_column(UpperCAmelCase ) __snake_case : List[str] = self.python_features_decoder.decode_column(UpperCAmelCase , pa_table.column_names[0] ) __snake_case : Union[str, Any] = self.recursive_tensorize(UpperCAmelCase ) __snake_case : Union[str, Any] = self._consolidate(UpperCAmelCase ) return column def UpperCAmelCase ( self , UpperCAmelCase ) -> Mapping: '''simple docstring''' __snake_case : str = self.numpy_arrow_extractor().extract_batch(UpperCAmelCase ) __snake_case : List[str] = self.python_features_decoder.decode_batch(UpperCAmelCase ) __snake_case : Union[str, Any] = self.recursive_tensorize(UpperCAmelCase ) for column_name in batch: __snake_case : Dict = self._consolidate(batch[column_name] ) return batch
243
0
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> Union[str, Any]: _UpperCAmelCase = f"{sampling_rate}" _UpperCAmelCase = """1""" _UpperCAmelCase = """f32le""" _UpperCAmelCase = [ """ffmpeg""", """-i""", """pipe:0""", """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] try: with subprocess.Popen(_lowercase , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: _UpperCAmelCase = ffmpeg_process.communicate(_lowercase ) except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to load audio files from filename""" ) from error _UpperCAmelCase = output_stream[0] _UpperCAmelCase = np.frombuffer(_lowercase , np.floataa ) if audio.shape[0] == 0: raise ValueError("""Malformed soundfile""" ) return audio def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case = "f32le" , ) -> List[str]: _UpperCAmelCase = f"{sampling_rate}" _UpperCAmelCase = """1""" if format_for_conversion == "s16le": _UpperCAmelCase = 2 elif format_for_conversion == "f32le": _UpperCAmelCase = 4 else: raise ValueError(f"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`" ) _UpperCAmelCase = platform.system() if system == "Linux": _UpperCAmelCase = """alsa""" _UpperCAmelCase = """default""" elif system == "Darwin": _UpperCAmelCase = """avfoundation""" _UpperCAmelCase = """:0""" elif system == "Windows": _UpperCAmelCase = """dshow""" _UpperCAmelCase = """default""" _UpperCAmelCase = [ """ffmpeg""", """-f""", format_, """-i""", input_, """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-fflags""", """nobuffer""", """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] _UpperCAmelCase = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample _UpperCAmelCase = _ffmpeg_stream(_lowercase , _lowercase ) for item in iterator: yield item def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case = None , snake_case = None , snake_case = "f32le" , ) -> str: if stream_chunk_s is not None: _UpperCAmelCase = stream_chunk_s else: _UpperCAmelCase = chunk_length_s _UpperCAmelCase = ffmpeg_microphone(_lowercase , _lowercase , format_for_conversion=_lowercase ) if format_for_conversion == "s16le": _UpperCAmelCase = np.intaa _UpperCAmelCase = 2 elif format_for_conversion == "f32le": _UpperCAmelCase = np.floataa _UpperCAmelCase = 4 else: raise ValueError(f"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`" ) if stride_length_s is None: _UpperCAmelCase = chunk_length_s / 6 _UpperCAmelCase = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(_lowercase , (int, float) ): _UpperCAmelCase = [stride_length_s, stride_length_s] _UpperCAmelCase = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample _UpperCAmelCase = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample _UpperCAmelCase = datetime.datetime.now() _UpperCAmelCase = datetime.timedelta(seconds=_lowercase ) for item in chunk_bytes_iter(_lowercase , _lowercase , stride=(stride_left, stride_right) , stream=_lowercase ): # Put everything back in numpy scale _UpperCAmelCase = np.frombuffer(item["""raw"""] , dtype=_lowercase ) _UpperCAmelCase = ( item["""stride"""][0] // size_of_sample, item["""stride"""][1] // size_of_sample, ) _UpperCAmelCase = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 1_0 * delta: # We're late !! SKIP continue yield item def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case , snake_case = False ) -> Union[str, Any]: _UpperCAmelCase = B"""""" _UpperCAmelCase , _UpperCAmelCase = stride if stride_left + stride_right >= chunk_len: raise ValueError( f"Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}" ) _UpperCAmelCase = 0 for raw in iterator: acc += raw if stream and len(_lowercase ) < chunk_len: _UpperCAmelCase = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(_lowercase ) >= chunk_len: # We are flushing the accumulator _UpperCAmelCase = (_stride_left, stride_right) _UpperCAmelCase = {"""raw""": acc[:chunk_len], """stride""": stride} if stream: _UpperCAmelCase = False yield item _UpperCAmelCase = stride_left _UpperCAmelCase = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(_lowercase ) > stride_left: _UpperCAmelCase = {"""raw""": acc, """stride""": (_stride_left, 0)} if stream: _UpperCAmelCase = False yield item def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> Any: _UpperCAmelCase = 2**2_4 # 16Mo try: with subprocess.Popen(_lowercase , stdout=subprocess.PIPE , bufsize=_lowercase ) as ffmpeg_process: while True: _UpperCAmelCase = ffmpeg_process.stdout.read(_lowercase ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to stream audio files from filename""" ) from error
718
from typing import Union import fire import torch from tqdm import tqdm def _SCREAMING_SNAKE_CASE ( snake_case , snake_case = "cpu" , snake_case = None ) -> None: _UpperCAmelCase = torch.load(snake_case , map_location=snake_case ) for k, v in tqdm(state_dict.items() ): if not isinstance(snake_case , torch.Tensor ): raise TypeError("""FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin""" ) _UpperCAmelCase = v.half() if save_path is None: # overwrite src_path _UpperCAmelCase = src_path torch.save(snake_case , snake_case ) if __name__ == "__main__": fire.Fire(convert)
175
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any]=7 , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : List[Any]=3_0 , lowerCAmelCase_ : List[str]=4_0_0 , lowerCAmelCase_ : int=True , lowerCAmelCase_ : str=None , lowerCAmelCase_ : List[Any]=0.9 , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Optional[Any]=[0.5, 0.5, 0.5] , lowerCAmelCase_ : List[str]=[0.5, 0.5, 0.5] , ) -> List[str]: __lowerCAmelCase = size if size is not None else {'shortest_edge': 3_0} __lowerCAmelCase = crop_size if crop_size is not None else {'height': 3_0, 'width': 3_0} __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution __lowerCAmelCase = do_resize_and_center_crop __lowerCAmelCase = size __lowerCAmelCase = crop_pct __lowerCAmelCase = crop_size __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean __lowerCAmelCase = image_std def lowercase ( self : str ) -> Tuple: return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = PoolFormerImageProcessor if is_vision_available() else None def lowercase ( self : int ) -> str: __lowerCAmelCase = PoolFormerImageProcessingTester(self ) @property def lowercase ( self : List[Any] ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def lowercase ( self : List[str] ) -> Optional[int]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase_ , 'do_resize_and_center_crop' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'size' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'crop_pct' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'do_normalize' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'image_mean' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'image_std' ) ) def lowercase ( self : Optional[Any] ) -> List[str]: __lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 3_0} ) self.assertEqual(image_processor.crop_size , {'height': 3_0, 'width': 3_0} ) __lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'shortest_edge': 4_2} ) self.assertEqual(image_processor.crop_size , {'height': 8_4, 'width': 8_4} ) def lowercase ( self : List[Any] ) -> str: pass def lowercase ( self : Tuple ) -> Tuple: # Initialize image_processing __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , Image.Image ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __lowerCAmelCase = image_processing(lowerCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase ( self : Tuple ) -> Optional[int]: # Initialize image_processing __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , numpify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __lowerCAmelCase = image_processing(lowerCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase ( self : Dict ) -> Optional[Any]: # Initialize image_processing __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , torchify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __lowerCAmelCase = image_processing(lowerCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
53
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case : Union[str, Any] = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : int=False ): __lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Optional[int]=False ): for i in range(config.num_hidden_layers ): if base_model: __lowerCAmelCase = '' else: __lowerCAmelCase = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] __lowerCAmelCase = in_proj_bias[: config.hidden_size] __lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] __lowerCAmelCase = in_proj_bias[-config.hidden_size :] def a_ ( lowerCAmelCase_ : List[str] ): __lowerCAmelCase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : int, lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = dct.pop(lowerCAmelCase_ ) __lowerCAmelCase = val def a_ ( ): __lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Optional[Any]=True ): __lowerCAmelCase = ViTConfig() # patch_size if model_name[-1] == "8": __lowerCAmelCase = 8 # set labels if required if not base_model: __lowerCAmelCase = 1000 __lowerCAmelCase = 'huggingface/label-files' __lowerCAmelCase = 'imagenet-1k-id2label.json' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) __lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: __lowerCAmelCase = 384 __lowerCAmelCase = 1536 __lowerCAmelCase = 12 __lowerCAmelCase = 6 # load original model from torch hub __lowerCAmelCase = torch.hub.load('facebookresearch/dino:main', lowerCAmelCase_ ) original_model.eval() # load state_dict of original model, remove and rename some keys __lowerCAmelCase = original_model.state_dict() if base_model: remove_classification_head_(lowerCAmelCase_ ) __lowerCAmelCase = create_rename_keys(lowerCAmelCase_, base_model=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # load HuggingFace model if base_model: __lowerCAmelCase = ViTModel(lowerCAmelCase_, add_pooling_layer=lowerCAmelCase_ ).eval() else: __lowerCAmelCase = ViTForImageClassification(lowerCAmelCase_ ).eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image, prepared by ViTImageProcessor __lowerCAmelCase = ViTImageProcessor() __lowerCAmelCase = image_processor(images=prepare_img(), return_tensors='pt' ) __lowerCAmelCase = encoding['pixel_values'] __lowerCAmelCase = model(lowerCAmelCase_ ) if base_model: __lowerCAmelCase = original_model(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_, outputs.last_hidden_state[:, 0, :], atol=1E-1 ) else: __lowerCAmelCase = original_model(lowerCAmelCase_ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase_, outputs.logits, atol=1E-3 ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) _snake_case : List[Any] = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
53
1
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin snake_case_ : str = get_tests_dir("fixtures/test_sentencepiece_with_bytefallback.model") @require_sentencepiece @require_tokenizers class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : Any = GPTSwaTokenizer UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Optional[Any] = True UpperCAmelCase__ : str = False def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = GPTSwaTokenizer(_snake_case , eos_token='''<unk>''' , bos_token='''<unk>''' , pad_token='''<unk>''') tokenizer.save_pretrained(self.tmpdirname) def lowerCamelCase ( self : Optional[int] , _snake_case : List[str]): """simple docstring""" UpperCAmelCase_ = '''This is a test''' UpperCAmelCase_ = '''This is a test''' return input_text, output_text def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = '''<s>''' UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case) , _snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case) , _snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<unk>''') self.assertEqual(vocab_keys[1] , '''<s>''') self.assertEqual(vocab_keys[-1] , '''j''') self.assertEqual(len(_snake_case) , 2000) def lowerCamelCase ( self : Optional[int]): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 2000) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = GPTSwaTokenizer(_snake_case) UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case) , [465, 287, 265, 631, 842]) UpperCAmelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') # fmt: off self.assertListEqual( _snake_case , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.'''] , ) # fmt: on UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_snake_case) self.assertListEqual( _snake_case , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_snake_case) # fmt: off self.assertListEqual( _snake_case , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.''']) # fmt: on def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = GPTSwaTokenizer(_snake_case) UpperCAmelCase_ = ['''This is a test''', '''I was born in 92000, and this is falsé.'''] UpperCAmelCase_ = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(_snake_case , _snake_case): self.assertListEqual(tokenizer.encode_fast(_snake_case) , _snake_case) # Test that decode_fast returns the input text for text, token_ids in zip(_snake_case , _snake_case): self.assertEqual(tokenizer.decode_fast(_snake_case) , _snake_case) @slow def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = [ '''<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')''', '''Hey there, how are you doing this fine day?''', '''This is a text with a trailing spaces followed by a dot .''', '''Häj sväjs lillebrör! =)''', '''Det är inget fel på Mr. Cool''', ] # fmt: off UpperCAmelCase_ = {'''input_ids''': [[63423, 5, 6811, 14954, 282, 816, 3821, 63466, 63425, 63462, 18, 63978, 678, 301, 1320, 63423, 63455, 63458, 18, 63982, 4246, 3940, 1901, 47789, 5547, 18994], [19630, 1100, 63446, 1342, 633, 544, 4488, 593, 5102, 2416, 63495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 58593, 22413, 9106, 546, 268, 33213, 63979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [55130, 63450, 924, 63449, 2249, 4062, 1558, 318, 63504, 21498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 63443, 26801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name='''AI-Sweden/gpt-sw3-126m''' , sequences=_snake_case , )
718
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case_ : Optional[Any] = logging.get_logger(__name__) snake_case_ : Optional[int] = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class __snake_case ( a ): UpperCAmelCase__ : Any = '''roberta''' def __init__( self : Tuple , _snake_case : int=50265 , _snake_case : Dict=768 , _snake_case : Union[str, Any]=12 , _snake_case : Tuple=12 , _snake_case : Optional[Any]=3072 , _snake_case : str="gelu" , _snake_case : Tuple=0.1 , _snake_case : str=0.1 , _snake_case : Tuple=512 , _snake_case : List[str]=2 , _snake_case : Optional[int]=0.0_2 , _snake_case : Tuple=1e-12 , _snake_case : Tuple=1 , _snake_case : int=0 , _snake_case : str=2 , _snake_case : Tuple="absolute" , _snake_case : Any=True , _snake_case : Union[str, Any]=None , **_snake_case : Any , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class __snake_case ( a ): @property def lowerCamelCase ( self : Tuple): """simple docstring""" if self.task == "multiple-choice": UpperCAmelCase_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ])
169
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor lowercase__ : Union[str, Any] = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self : Dict , *lowerCAmelCase__ : int , **lowerCAmelCase__ : Dict ) -> None: '''simple docstring''' warnings.warn( '''The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use SegformerImageProcessor instead.''' , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
98
'''simple docstring''' import math def a__ ( ) -> None: UpperCAmelCase__ : List[str] = input('''Enter message: ''' ) UpperCAmelCase__ : Any = int(input(F"""Enter key [2-{len(lowerCAmelCase__ ) - 1}]: """ ) ) UpperCAmelCase__ : List[str] = input('''Encryption/Decryption [e/d]: ''' ) if mode.lower().startswith('''e''' ): UpperCAmelCase__ : Dict = encrypt_message(lowerCAmelCase__ , lowerCAmelCase__ ) elif mode.lower().startswith('''d''' ): UpperCAmelCase__ : Optional[int] = decrypt_message(lowerCAmelCase__ , lowerCAmelCase__ ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(F"""Output:\n{text + "|"}""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> str: UpperCAmelCase__ : Optional[int] = [''''''] * key for col in range(lowerCAmelCase__ ): UpperCAmelCase__ : Tuple = col while pointer < len(lowerCAmelCase__ ): cipher_text[col] += message[pointer] pointer += key return "".join(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> str: UpperCAmelCase__ : int = math.ceil(len(lowerCAmelCase__ ) / key ) UpperCAmelCase__ : Any = key UpperCAmelCase__ : Optional[int] = (num_cols * num_rows) - len(lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = [''''''] * num_cols UpperCAmelCase__ : List[str] = 0 UpperCAmelCase__ : List[Any] = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): UpperCAmelCase__ : Optional[int] = 0 row += 1 return "".join(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
75
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule __a : Dict = {'tokenization_bertweet': ['BertweetTokenizer']} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys __a : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
707
"""simple docstring""" from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self: List[str] , __A: str , __A: Any=2 , __A: str=3 , __A: Tuple=4 , __A: Dict=2 , __A: List[Any]=7 , __A: Any=True , __A: Any=True , __A: List[str]=True , __A: Optional[int]=True , __A: Optional[int]=99 , __A: Tuple=36 , __A: List[str]=2 , __A: Dict=4 , __A: List[str]=37 , __A: Optional[int]="gelu" , __A: Optional[int]=0.1 , __A: Tuple=0.1 , __A: List[Any]=512 , __A: List[str]=16 , __A: Any=2 , __A: Union[str, Any]=0.0_2 , __A: Optional[int]=6 , __A: Union[str, Any]=6 , __A: Union[str, Any]=3 , __A: Tuple=4 , __A: Optional[int]=None , __A: Optional[Any]=1000 , ): '''simple docstring''' a__ = parent a__ = batch_size a__ = num_channels a__ = image_size a__ = patch_size a__ = is_training a__ = use_input_mask a__ = use_token_type_ids a__ = use_labels a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = type_sequence_label_size a__ = initializer_range a__ = coordinate_size a__ = shape_size a__ = num_labels a__ = num_choices a__ = scope a__ = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) a__ = text_seq_length a__ = (image_size // patch_size) ** 2 + 1 a__ = self.text_seq_length + self.image_seq_length def lowercase ( self: Optional[int] ): '''simple docstring''' a__ = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) a__ = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) a__ = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: a__ = bbox[i, j, 3] a__ = bbox[i, j, 1] a__ = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: a__ = bbox[i, j, 2] a__ = bbox[i, j, 0] a__ = tmp_coordinate a__ = tf.constant(__A ) a__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ = None if self.use_input_mask: a__ = random_attention_mask([self.batch_size, self.text_seq_length] ) a__ = None if self.use_token_type_ids: a__ = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) a__ = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowercase ( self: List[str] , __A: List[str] , __A: List[str] , __A: List[str] , __A: int , __A: Any , __A: Any ): '''simple docstring''' a__ = TFLayoutLMvaModel(config=__A ) # text + image a__ = model(__A , pixel_values=__A , training=__A ) a__ = model( __A , bbox=__A , pixel_values=__A , attention_mask=__A , token_type_ids=__A , training=__A , ) a__ = model(__A , bbox=__A , pixel_values=__A , training=__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only a__ = model(__A , training=__A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only a__ = model({'''pixel_values''': pixel_values} , training=__A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def lowercase ( self: Optional[int] , __A: Any , __A: str , __A: List[str] , __A: List[str] , __A: List[str] , __A: Optional[Any] , __A: Any ): '''simple docstring''' a__ = self.num_labels a__ = TFLayoutLMvaForSequenceClassification(config=__A ) a__ = model( __A , bbox=__A , pixel_values=__A , attention_mask=__A , token_type_ids=__A , labels=__A , training=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self: str , __A: List[str] , __A: int , __A: str , __A: Any , __A: str , __A: str , __A: str ): '''simple docstring''' a__ = self.num_labels a__ = TFLayoutLMvaForTokenClassification(config=__A ) a__ = model( __A , bbox=__A , pixel_values=__A , attention_mask=__A , token_type_ids=__A , labels=__A , training=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def lowercase ( self: Union[str, Any] , __A: Any , __A: List[Any] , __A: Any , __A: List[str] , __A: Any , __A: Optional[int] , __A: Tuple ): '''simple docstring''' a__ = 2 a__ = TFLayoutLMvaForQuestionAnswering(config=__A ) a__ = model( __A , bbox=__A , pixel_values=__A , attention_mask=__A , token_type_ids=__A , start_positions=__A , end_positions=__A , training=__A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self: int ): '''simple docstring''' a__ = self.prepare_config_and_inputs() ((a__) ,(a__) ,(a__) ,(a__) ,(a__) ,(a__) ,(a__) ,(a__)) = config_and_inputs a__ = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE =( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) _SCREAMING_SNAKE_CASE =( {'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel} if is_tf_available() else {} ) _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =False def lowercase ( self: List[str] , __A: Dict , __A: Optional[Any] , __A: str , __A: Union[str, Any] , __A: Optional[Any] ): '''simple docstring''' return True def lowercase ( self: Dict , __A: Optional[Any] , __A: Any , __A: List[Any]=False ): '''simple docstring''' a__ = copy.deepcopy(__A ) if model_class in get_values(__A ): a__ = { k: tf.tile(tf.expand_dims(__A , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(__A , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__A ): a__ = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__A ): a__ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) a__ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__A ): a__ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__A ): a__ = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def lowercase ( self: List[str] ): '''simple docstring''' a__ = TFLayoutLMvaModelTester(self ) a__ = ConfigTester(self , config_class=__A , hidden_size=37 ) def lowercase ( self: Dict ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase ( self: Any ): '''simple docstring''' a__ ,a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(__A ) if getattr(__A , '''hf_compute_loss''' , __A ): # The number of elements in the loss should be the same as the number of elements in the label a__ = self._prepare_for_class(inputs_dict.copy() , __A , return_labels=__A ) a__ = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__A )[0] ] a__ = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs a__ = self._prepare_for_class(inputs_dict.copy() , __A , return_labels=__A ) a__ = prepared_for_class.pop('''input_ids''' ) a__ = model(__A , **__A )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions a__ = self._prepare_for_class(inputs_dict.copy() , __A , return_labels=__A ) a__ = prepared_for_class.pop('''input_ids''' ) if "labels" in prepared_for_class: a__ = prepared_for_class['''labels'''].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: a__ = -100 a__ = tf.convert_to_tensor(__A ) a__ = model(__A , **__A )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict a__ = self._prepare_for_class(inputs_dict.copy() , __A , return_labels=__A ) a__ = model(__A )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple a__ = self._prepare_for_class(inputs_dict.copy() , __A , return_labels=__A ) # Get keys that were added with the _prepare_for_class function a__ = prepared_for_class.keys() - inputs_dict.keys() a__ = inspect.signature(model.call ).parameters a__ = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple a__ = {0: '''input_ids'''} for label_key in label_keys: a__ = signature_names.index(__A ) a__ = label_key a__ = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple a__ = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: a__ = prepared_for_class[value] a__ = tuple(__A ) # Send to model a__ = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def lowercase ( self: Optional[int] ): '''simple docstring''' ( ( a__ ) ,( a__ ) ,( a__ ) ,( a__ ) ,( a__ ) ,( a__ ) ,( a__ ) ,( a__ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__A , __A , __A , __A , __A , __A ) def lowercase ( self: Dict ): '''simple docstring''' ( ( a__ ) ,( a__ ) ,( a__ ) ,( a__ ) ,( a__ ) ,( a__ ) ,( a__ ) ,( a__ ) , ) = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a__ = type self.model_tester.create_and_check_model(__A , __A , __A , __A , __A , __A ) def lowercase ( self: int ): '''simple docstring''' ( ( a__ ) ,( a__ ) ,( a__ ) ,( a__ ) ,( a__ ) ,( a__ ) ,( a__ ) ,( a__ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( __A , __A , __A , __A , __A , __A , __A ) def lowercase ( self: List[str] ): '''simple docstring''' ( ( a__ ) ,( a__ ) ,( a__ ) ,( a__ ) ,( a__ ) ,( a__ ) ,( a__ ) ,( a__ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( __A , __A , __A , __A , __A , __A , __A ) def lowercase ( self: Tuple ): '''simple docstring''' ( ( a__ ) ,( a__ ) ,( a__ ) ,( a__ ) ,( a__ ) ,( a__ ) ,( a__ ) ,( a__ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( __A , __A , __A , __A , __A , __A , __A ) @slow def lowercase ( self: Union[str, Any] ): '''simple docstring''' for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = TFLayoutLMvaModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def SCREAMING_SNAKE_CASE ( ): a__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase ( self: Any ): '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=__A ) if is_vision_available() else None @slow def lowercase ( self: Union[str, Any] ): '''simple docstring''' a__ = TFLayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ) a__ = self.default_image_processor a__ = prepare_img() a__ = image_processor(images=__A , return_tensors='''tf''' ).pixel_values a__ = tf.constant([[1, 2]] ) a__ = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass a__ = model(input_ids=__A , bbox=__A , pixel_values=__A , training=__A ) # verify the logits a__ = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape , __A ) a__ = tf.constant( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __A , atol=1e-4 ) )
200
0
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def _lowercase( __a : Any ): return getitem, k def _lowercase( __a : List[Any] , __a : Tuple ): return setitem, k, v def _lowercase( __a : Tuple ): return delitem, k def _lowercase( __a : List[str] , __a : Optional[int] , *__a : Union[str, Any] ): try: return fun(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ), None except Exception as e: return None, e _lowerCAmelCase: Optional[Any] = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) _lowerCAmelCase: Tuple = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] _lowerCAmelCase: Union[str, Any] = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] _lowerCAmelCase: List[Any] = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] _lowerCAmelCase: Dict = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] _lowerCAmelCase: int = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( 'operations' , ( pytest.param(_add_items , id='add items' ), pytest.param(_overwrite_items , id='overwrite items' ), pytest.param(_delete_items , id='delete items' ), pytest.param(_access_absent_items , id='access absent items' ), pytest.param(_add_with_resize_up , id='add with resize up' ), pytest.param(_add_with_resize_down , id='add with resize down' ), ) , ) def _lowercase( __a : Dict ): a__ =HashMap(initial_block_size=4 ) a__ ={} for _, (fun, *args) in enumerate(SCREAMING_SNAKE_CASE__ ): a__ =_run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) a__ =_run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) assert my_res == py_res assert str(SCREAMING_SNAKE_CASE__ ) == str(SCREAMING_SNAKE_CASE__ ) assert set(SCREAMING_SNAKE_CASE__ ) == set(SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) assert set(my.items() ) == set(py.items() ) def _lowercase( ): def is_public(__a : str ) -> bool: return not name.startswith('_' ) a__ ={name for name in dir({} ) if is_public(SCREAMING_SNAKE_CASE__ )} a__ ={name for name in dir(HashMap() ) if is_public(SCREAMING_SNAKE_CASE__ )} assert dict_public_names > hash_public_names
20
from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand a__ = logging.get_logger(__name__) # pylint: disable=invalid-name def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> List[Any]: if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(SCREAMING_SNAKE_CASE__ ): return ext raise Exception( F'''Unable to determine file format from file extension {path}. ''' F'''Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}''' ) def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> int: _snake_case : str = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) _snake_case : Optional[Any] = try_infer_format_from_ext(args.input ) if args.format == """infer""" else args.format _snake_case : Any = PipelineDataFormat.from_str( format=SCREAMING_SNAKE_CASE__ , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : Pipeline , lowerCAmelCase : PipelineDataFormat) -> Dict: """simple docstring""" _snake_case : int = nlp _snake_case : Dict = reader @staticmethod def UpperCamelCase_ ( lowerCAmelCase : ArgumentParser) -> Any: """simple docstring""" _snake_case : Any = parser.add_parser("""run""" , help="""Run a pipeline through the CLI""") run_parser.add_argument("""--task""" , choices=get_supported_tasks() , help="""Task to run""") run_parser.add_argument("""--input""" , type=lowerCAmelCase , help="""Path to the file to use for inference""") run_parser.add_argument("""--output""" , type=lowerCAmelCase , help="""Path to the file that will be used post to write results.""") run_parser.add_argument("""--model""" , type=lowerCAmelCase , help="""Name or path to the model to instantiate.""") run_parser.add_argument("""--config""" , type=lowerCAmelCase , help="""Name or path to the model's config to instantiate.""") run_parser.add_argument( """--tokenizer""" , type=lowerCAmelCase , help="""Name of the tokenizer to use. (default: same as the model name)""") run_parser.add_argument( """--column""" , type=lowerCAmelCase , help="""Name of the column to use as input. (For multi columns input as QA use column1,columns2)""" , ) run_parser.add_argument( """--format""" , type=lowerCAmelCase , default="""infer""" , choices=PipelineDataFormat.SUPPORTED_FORMATS , help="""Input format to read from""" , ) run_parser.add_argument( """--device""" , type=lowerCAmelCase , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , ) run_parser.add_argument("""--overwrite""" , action="""store_true""" , help="""Allow overwriting the output file.""") run_parser.set_defaults(func=lowerCAmelCase) def UpperCamelCase_ ( self : Optional[int]) -> Tuple: """simple docstring""" _snake_case , _snake_case : int = self._nlp, [] for entry in self._reader: _snake_case : List[Any] = nlp(**lowerCAmelCase) if self._reader.is_multi_columns else nlp(lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase): outputs.append(lowerCAmelCase) else: outputs += output # Saving data if self._nlp.binary_output: _snake_case : Any = self._reader.save_binary(lowerCAmelCase) logger.warning(F'''Current pipeline requires output to be in binary format, saving at {binary_path}''') else: self._reader.save(lowerCAmelCase)
477
0
'''simple docstring''' import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __SCREAMING_SNAKE_CASE = '.' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) __SCREAMING_SNAKE_CASE = [ 'Assert', 'AssignVariableOp', 'EmptyTensorList', 'MergeV2Checkpoints', 'ReadVariableOp', 'ResourceGather', 'RestoreV2', 'SaveV2', 'ShardedFilename', 'StatefulPartitionedCall', 'StaticRegexFullMatch', 'VarHandleOp', ] def __a ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple ): a__ : str = SavedModel() a__ : List[Any] = [] with open(os.path.join(__lowercase , '''utils''' , '''tf_ops''' , '''onnx.json''' ) ) as f: a__ : Any = json.load(__lowercase )['opsets'] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(__lowercase )] ) with open(__lowercase , '''rb''' ) as f: saved_model.ParseFromString(f.read() ) a__ : int = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want a__ : List[str] = sorted(__lowercase ) a__ : Any = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(__lowercase ) if strict and len(__lowercase ) > 0: raise Exception(F'Found the following incompatible ops for the opset {opset}:\n' + incompatible_ops ) elif len(__lowercase ) > 0: print(F'Found the following incompatible ops for the opset {opset}:' ) print(*__lowercase , sep='''\n''' ) else: print(F'The saved model {saved_model_path} can properly be converted with ONNX.' ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).') parser.add_argument( '--opset', default=1_2, type=int, help='The ONNX opset against which the model has to be tested.' ) parser.add_argument( '--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.' ) parser.add_argument( '--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)' ) __SCREAMING_SNAKE_CASE = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
704
'''simple docstring''' import os def __a ( ): with open(os.path.dirname(lowerCAmelCase__ ) + '''/grid.txt''' ) as f: a__ : Optional[int] = [] # noqa: E741 for _ in range(20 ): l.append([int(lowerCAmelCase__ ) for x in f.readline().split()] ) a__ : List[str] = 0 # right for i in range(20 ): for j in range(17 ): a__ : int = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: a__ : str = temp # down for i in range(17 ): for j in range(20 ): a__ : List[str] = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: a__ : Dict = temp # diagonal 1 for i in range(17 ): for j in range(17 ): a__ : str = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: a__ : Optional[Any] = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): a__ : str = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: a__ : Tuple = temp return maximum if __name__ == "__main__": print(solution())
340
0
'''simple docstring''' import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class SCREAMING_SNAKE_CASE__ : def __init__( self : Tuple , a_ : Optional[Any] , a_ : Dict=13 , a_ : Optional[Any]=7 , a_ : int=6 , a_ : str=17 , a_ : Union[str, Any]=23 , a_ : Dict=11 , a_ : Optional[Any]=True , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = act_dim __snake_case = state_dim __snake_case = hidden_size __snake_case = max_length __snake_case = is_training def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) __snake_case = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) __snake_case = floats_tensor((self.batch_size, self.seq_length, 1) ) __snake_case = floats_tensor((self.batch_size, self.seq_length, 1) ) __snake_case = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_000 ) __snake_case = random_attention_mask((self.batch_size, self.seq_length) ) __snake_case = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def A ( self : List[str] ): """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def A ( self : List[str] , a_ : Dict , a_ : Any , a_ : Optional[Any] , a_ : Optional[int] , a_ : Tuple , a_ : List[str] , a_ : Any , ): """simple docstring""" __snake_case = DecisionTransformerModel(config=a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ , a_ , a_ , a_ , a_ , a_ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def A ( self : Optional[int] ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = (DecisionTransformerModel,) if is_torch_available() else () __SCREAMING_SNAKE_CASE = () __SCREAMING_SNAKE_CASE = {"""feature-extraction""": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __SCREAMING_SNAKE_CASE = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def A ( self : Optional[int] ): """simple docstring""" __snake_case = DecisionTransformerModelTester(self ) __snake_case = ConfigTester(self , config_class=a_ , hidden_size=37 ) def A ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() def A ( self : Dict ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) @slow def A ( self : int ): """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = DecisionTransformerModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def A ( self : int ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(a_ )] , a_ ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def A ( self : List[Any] ): """simple docstring""" __snake_case = 2 # number of steps of autoregressive prediction we will perform __snake_case = 10 # defined by the RL environment, may be normalized __snake_case = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) __snake_case = model.to(a_ ) __snake_case = model.config torch.manual_seed(0 ) __snake_case = torch.randn(1 , 1 , config.state_dim ).to(device=a_ , dtype=torch.floataa ) # env.reset() __snake_case = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=a_ ) __snake_case = torch.tensor(a_ , device=a_ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) __snake_case = state __snake_case = torch.zeros(1 , 0 , config.act_dim , device=a_ , dtype=torch.floataa ) __snake_case = torch.zeros(1 , 0 , device=a_ , dtype=torch.floataa ) __snake_case = torch.tensor(0 , device=a_ , dtype=torch.long ).reshape(1 , 1 ) for step in range(a_ ): __snake_case = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=a_ )] , dim=1 ) __snake_case = torch.cat([rewards, torch.zeros(1 , 1 , device=a_ )] , dim=1 ) __snake_case = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): __snake_case , __snake_case , __snake_case = model( states=a_ , actions=a_ , rewards=a_ , returns_to_go=a_ , timesteps=a_ , attention_mask=a_ , return_dict=a_ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) __snake_case , __snake_case , __snake_case , __snake_case = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=a_ , dtype=torch.floataa ), 1.0, False, {}, ) __snake_case = action_pred[0, -1] __snake_case = torch.cat([states, state] , dim=1 ) __snake_case = returns_to_go[0, -1] - reward __snake_case = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) __snake_case = torch.cat( [timesteps, torch.ones((1, 1) , device=a_ , dtype=torch.long ) * (step + 1)] , dim=1 )
69
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor snake_case__ = logging.get_logger(__name__) class lowerCAmelCase_ ( _a): def __init__( self : str , *__A : Optional[int] , **__A : int ) ->None: """simple docstring""" warnings.warn( "The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PoolFormerImageProcessor instead." , __A , ) super().__init__(*__A , **__A )
395
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class SCREAMING_SNAKE_CASE__ : def __init__(self , _lowercase , ): '''simple docstring''' __a : List[Any] = parent __a : Optional[int] = 13 __a : Optional[int] = 7 __a : Any = True __a : Optional[int] = True __a : Any = False __a : str = True __a : Optional[Any] = 99 __a : Dict = 32 __a : List[Any] = 2 __a : int = 4 __a : List[str] = 37 __a : Dict = """gelu""" __a : Any = 0.1 __a : Tuple = 0.1 __a : Tuple = 512 __a : Optional[int] = 16 __a : Any = 2 __a : Optional[int] = 0.02 __a : str = 3 __a : Optional[int] = 4 __a : List[str] = None def lowerCAmelCase__(self ): '''simple docstring''' __a : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : List[str] = None if self.use_input_mask: __a : Any = random_attention_mask([self.batch_size, self.seq_length] ) __a : str = None __a : List[Any] = None __a : Union[str, Any] = None if self.use_labels: __a : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) __a : List[str] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__(self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' __a : int = TFDistilBertModel(config=_lowercase ) __a : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} __a : str = model(_lowercase ) __a : Optional[Any] = [input_ids, input_mask] __a : Any = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__(self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' __a : Dict = TFDistilBertForMaskedLM(config=_lowercase ) __a : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask} __a : Any = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__(self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' __a : Optional[int] = TFDistilBertForQuestionAnswering(config=_lowercase ) __a : str = { """input_ids""": input_ids, """attention_mask""": input_mask, } __a : Tuple = model(_lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__(self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' __a : Optional[int] = self.num_labels __a : Union[str, Any] = TFDistilBertForSequenceClassification(_lowercase ) __a : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} __a : Tuple = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__(self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' __a : Optional[int] = self.num_choices __a : List[Any] = TFDistilBertForMultipleChoice(_lowercase ) __a : List[str] = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) __a : int = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) __a : int = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, } __a : Optional[int] = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase__(self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' __a : List[str] = self.num_labels __a : Tuple = TFDistilBertForTokenClassification(_lowercase ) __a : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} __a : List[str] = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__(self ): '''simple docstring''' __a : Any = self.prepare_config_and_inputs() ((__a) , (__a) , (__a) , (__a) , (__a) , (__a)) : List[str] = config_and_inputs __a : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( __snake_case , __snake_case , unittest.TestCase ): _lowerCAmelCase = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) _lowerCAmelCase = ( { "feature-extraction": TFDistilBertModel, "fill-mask": TFDistilBertForMaskedLM, "question-answering": TFDistilBertForQuestionAnswering, "text-classification": TFDistilBertForSequenceClassification, "token-classification": TFDistilBertForTokenClassification, "zero-shot": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False def lowerCAmelCase__(self ): '''simple docstring''' __a : List[str] = TFDistilBertModelTester(self ) __a : Optional[int] = ConfigTester(self , config_class=_lowercase , dim=37 ) def lowerCAmelCase__(self ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase__(self ): '''simple docstring''' __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*_lowercase ) def lowerCAmelCase__(self ): '''simple docstring''' __a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*_lowercase ) def lowerCAmelCase__(self ): '''simple docstring''' __a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*_lowercase ) def lowerCAmelCase__(self ): '''simple docstring''' __a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*_lowercase ) def lowerCAmelCase__(self ): '''simple docstring''' __a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*_lowercase ) def lowerCAmelCase__(self ): '''simple docstring''' __a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*_lowercase ) @slow def lowerCAmelCase__(self ): '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __a : Any = TFDistilBertModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def lowerCAmelCase__(self ): '''simple docstring''' __a : Union[str, Any] = TFDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) __a : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) __a : Optional[Any] = model(_lowercase )[0] __a : List[Any] = [1, 6, 768] self.assertEqual(output.shape , _lowercase ) __a : int = tf.constant( [ [ [0.1926_1885, -0.1373_2955, 0.411_9799], [0.2215_0156, -0.0742_2661, 0.3903_7204], [0.2275_6018, -0.089_6414, 0.370_1467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowercase , atol=1e-4 )
63
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class SCREAMING_SNAKE_CASE__ ( __snake_case ): def __init__(self , _lowercase , _lowercase=None , _lowercase=None , _lowercase=0 ): '''simple docstring''' __a : Any = 1.0 if scale is None else scale __a : str = 0.0 if loc is None else loc super().__init__(_lowercase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=_lowercase )] ) @property def lowerCAmelCase__(self ): '''simple docstring''' return self.base_dist.mean * self.scale + self.loc @property def lowerCAmelCase__(self ): '''simple docstring''' return self.base_dist.variance * self.scale**2 @property def lowerCAmelCase__(self ): '''simple docstring''' return self.variance.sqrt() class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__(self , _lowercase , _lowercase , _lowercase , **_lowercase ): '''simple docstring''' super().__init__(**_lowercase ) __a : str = args_dim __a : List[Any] = nn.ModuleList([nn.Linear(_lowercase , _lowercase ) for dim in args_dim.values()] ) __a : Dict = domain_map def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' __a : List[Any] = [proj(_lowercase ) for proj in self.proj] return self.domain_map(*_lowercase ) class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__(self , _lowercase ): '''simple docstring''' super().__init__() __a : Optional[int] = function def lowerCAmelCase__(self , _lowercase , *_lowercase ): '''simple docstring''' return self.function(_lowercase , *_lowercase ) class SCREAMING_SNAKE_CASE__ : _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 def __init__(self , _lowercase = 1 ): '''simple docstring''' __a : Optional[int] = dim __a : str = {k: dim * self.args_dim[k] for k in self.args_dim} def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' if self.dim == 1: return self.distribution_class(*_lowercase ) else: return Independent(self.distribution_class(*_lowercase ) , 1 ) def lowerCAmelCase__(self , _lowercase , _lowercase = None , _lowercase = None , ): '''simple docstring''' __a : Tuple = self._base_distribution(_lowercase ) if loc is None and scale is None: return distr else: return AffineTransformed(_lowercase , loc=_lowercase , scale=_lowercase , event_dim=self.event_dim ) @property def lowerCAmelCase__(self ): '''simple docstring''' return () if self.dim == 1 else (self.dim,) @property def lowerCAmelCase__(self ): '''simple docstring''' return len(self.event_shape ) @property def lowerCAmelCase__(self ): '''simple docstring''' return 0.0 def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' return ParameterProjection( in_features=_lowercase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def lowerCAmelCase__(self , *_lowercase ): '''simple docstring''' raise NotImplementedError() @staticmethod def lowerCAmelCase__(_lowercase ): '''simple docstring''' return (x + torch.sqrt(torch.square(_lowercase ) + 4.0 )) / 2.0 class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = {"df": 1, "loc": 1, "scale": 1} _lowerCAmelCase = StudentT @classmethod def lowerCAmelCase__(cls , _lowercase , _lowercase , _lowercase ): '''simple docstring''' __a : int = cls.squareplus(_lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) __a : Optional[Any] = 2.0 + cls.squareplus(_lowercase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = {"loc": 1, "scale": 1} _lowerCAmelCase = Normal @classmethod def lowerCAmelCase__(cls , _lowercase , _lowercase ): '''simple docstring''' __a : str = cls.squareplus(_lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = {"total_count": 1, "logits": 1} _lowerCAmelCase = NegativeBinomial @classmethod def lowerCAmelCase__(cls , _lowercase , _lowercase ): '''simple docstring''' __a : Union[str, Any] = cls.squareplus(_lowercase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' __a , __a : Optional[Any] = distr_args if self.dim == 1: return self.distribution_class(total_count=_lowercase , logits=_lowercase ) else: return Independent(self.distribution_class(total_count=_lowercase , logits=_lowercase ) , 1 ) def lowerCAmelCase__(self , _lowercase , _lowercase = None , _lowercase = None ): '''simple docstring''' __a , __a : List[Any] = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
63
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Dict = logging.get_logger(__name__) class A__ ( __UpperCAmelCase ): """simple docstring""" __A : List[str] = '''encoder-decoder''' __A : Optional[Any] = True def __init__( self , **lowercase) -> Optional[int]: '''simple docstring''' super().__init__(**a__) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" a__ : Dict = kwargs.pop('encoder') a__ : Optional[Any] = encoder_config.pop('model_type') a__ : Optional[int] = kwargs.pop('decoder') a__ : int = decoder_config.pop('model_type') from ..auto.configuration_auto import AutoConfig a__ : List[Any] = AutoConfig.for_model(a__ , **a__) a__ : List[str] = AutoConfig.for_model(a__ , **a__) a__ : Any = True @classmethod def __lowercase ( cls , lowercase , lowercase , **lowercase) -> PretrainedConfig: '''simple docstring''' logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config') a__ : Any = True a__ : str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **a__) def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : Union[str, Any] = copy.deepcopy(self.__dict__) a__ : List[str] = self.encoder.to_dict() a__ : List[Any] = self.decoder.to_dict() a__ : Union[str, Any] = self.__class__.model_type return output
302
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors SCREAMING_SNAKE_CASE : Any = logging.getLogger(__name__) class __lowercase ( A ): __magic_name__ : Any = '''sequence-classification''' def __init__( self , a__ ) -> Optional[Any]: '''simple docstring''' if type(a__ ) == dict: A_ = Namespace(**a__ ) A_ = glue_output_modes[hparams.task] A_ = glue_tasks_num_labels[hparams.task] super().__init__(a__ , a__ , self.mode ) def lowerCAmelCase_ ( self , **a__ ) -> List[Any]: '''simple docstring''' return self.model(**a__ ) def lowerCAmelCase_ ( self , a__ , a__ ) -> Optional[int]: '''simple docstring''' A_ = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: A_ = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None A_ = self(**a__ ) A_ = outputs[0] A_ = self.trainer.lr_schedulers[0]['''scheduler'''] A_ = {'''loss''': loss, '''rate''': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' A_ = self.hparams A_ = processors[args.task]() A_ = processor.get_labels() for mode in ["train", "dev"]: A_ = self._feature_file(a__ ) if os.path.exists(a__ ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , a__ ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) A_ = ( processor.get_dev_examples(args.data_dir ) if mode == '''dev''' else processor.get_train_examples(args.data_dir ) ) A_ = convert_examples_to_features( a__ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('''Saving features into cached file %s''' , a__ ) torch.save(a__ , a__ ) def lowerCAmelCase_ ( self , a__ , a__ , a__ = False ) -> DataLoader: '''simple docstring''' A_ = '''dev''' if mode == '''test''' else mode A_ = self._feature_file(a__ ) logger.info('''Loading features from cached file %s''' , a__ ) A_ = torch.load(a__ ) A_ = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) A_ = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) A_ = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": A_ = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": A_ = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(a__ , a__ , a__ , a__ ) , batch_size=a__ , shuffle=a__ , ) def lowerCAmelCase_ ( self , a__ , a__ ) -> Union[str, Any]: '''simple docstring''' A_ = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: A_ = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None A_ = self(**a__ ) A_ , A_ = outputs[:2] A_ = logits.detach().cpu().numpy() A_ = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def lowerCAmelCase_ ( self , a__ ) -> tuple: '''simple docstring''' A_ = torch.stack([x['''val_loss'''] for x in outputs] ).mean().detach().cpu().item() A_ = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": A_ = np.argmax(a__ , axis=1 ) elif self.hparams.glue_output_mode == "regression": A_ = np.squeeze(a__ ) A_ = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) A_ = [[] for _ in range(out_label_ids.shape[0] )] A_ = [[] for _ in range(out_label_ids.shape[0] )] A_ = {**{'''val_loss''': val_loss_mean}, **compute_metrics(self.hparams.task , a__ , a__ )} A_ = dict(results.items() ) A_ = results return ret, preds_list, out_label_list def lowerCAmelCase_ ( self , a__ ) -> dict: '''simple docstring''' A_ , A_ , A_ = self._eval_end(a__ ) A_ = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def lowerCAmelCase_ ( self , a__ ) -> dict: '''simple docstring''' A_ , A_ , A_ = self._eval_end(a__ ) A_ = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def lowerCAmelCase_ ( a__ , a__ ) -> Dict: '''simple docstring''' BaseTransformer.add_model_specific_args(a__ , a__ ) parser.add_argument( '''--max_seq_length''' , default=1_2_8 , type=a__ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--task''' , default='''''' , type=a__ , required=a__ , help='''The GLUE task to run''' , ) parser.add_argument( '''--gpus''' , default=0 , type=a__ , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser def lowerCamelCase_ ( ): A_ = argparse.ArgumentParser() add_generic_args(__UpperCamelCase , os.getcwd() ) A_ = GLUETransformer.add_model_specific_args(__UpperCamelCase , os.getcwd() ) A_ = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: A_ = os.path.join( '''./results''' , F"{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}" , ) os.makedirs(args.output_dir ) A_ = GLUETransformer(__UpperCamelCase ) A_ = generic_train(__UpperCamelCase , __UpperCamelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: A_ = sorted(glob.glob(os.path.join(args.output_dir , '''checkpoint-epoch=*.ckpt''' ) , recursive=__UpperCamelCase ) ) A_ = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__UpperCamelCase ) if __name__ == "__main__": main()
141
0
from ...processing_utils import ProcessorMixin class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : Optional[Any] = ["image_processor", "feature_extractor"] _UpperCAmelCase : Any = "TvltImageProcessor" _UpperCAmelCase : Union[str, Any] = "TvltFeatureExtractor" def __init__( self : List[Any] , A : List[str] , A : Tuple ) ->str: super().__init__(image_processor=A , feature_extractor=A ) lowerCamelCase__ : List[Any] = image_processor lowerCamelCase__ : Optional[Any] = feature_extractor def __call__( self : str , A : Union[str, Any]=None , A : int=None , A : Dict=None , A : Union[str, Any]=None , A : Tuple=False , A : List[str]=False , *A : Any , **A : Optional[Any] , ) ->str: if images is None and audio is None: raise ValueError('''You need to specify either an `images` or `audio` input to process.''' ) lowerCamelCase__ : Union[str, Any] = None if images is not None: lowerCamelCase__ : int = self.image_processor(A , mask_pixel=A , *A , **A ) if images_mixed is not None: lowerCamelCase__ : Tuple = self.image_processor(A , is_mixed=A , *A , **A ) if audio is not None: lowerCamelCase__ : Union[str, Any] = self.feature_extractor( A , *A , sampling_rate=A , mask_audio=A , **A ) lowerCamelCase__ : Dict = {} if audio is not None: output_dict.update(A ) if images is not None: output_dict.update(A ) if images_mixed_dict is not None: output_dict.update(A ) return output_dict @property def __lowerCamelCase ( self : Tuple ) ->Optional[Any]: lowerCamelCase__ : str = self.image_processor.model_input_names lowerCamelCase__ : Tuple = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
130
import math def _a ( UpperCAmelCase ) -> str: """simple docstring""" lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : List[Any] = 0 while num > 0: lowerCamelCase__ : Tuple = num % 8 lowerCamelCase__ : List[str] = octal + (remainder * math.floor(math.pow(10 , UpperCAmelCase ) )) counter += 1 lowerCamelCase__ : Optional[Any] = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f"0o{int(UpperCAmelCase )}" def _a ( ) -> None: """simple docstring""" print('''\n2 in octal is:''' ) print(decimal_to_octal(2 ) ) # = 2 print('''\n8 in octal is:''' ) print(decimal_to_octal(8 ) ) # = 10 print('''\n65 in octal is:''' ) print(decimal_to_octal(65 ) ) # = 101 print('''\n216 in octal is:''' ) print(decimal_to_octal(216 ) ) # = 330 print('''\n512 in octal is:''' ) print(decimal_to_octal(512 ) ) # = 1000 print('''\n''' ) if __name__ == "__main__": main()
130
1
"""simple docstring""" import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase__ ( _a , _a , unittest.TestCase ): a : Any = IFPipeline a : str = TEXT_TO_IMAGE_PARAMS - {"""width""", """height""", """latents"""} a : Dict = TEXT_TO_IMAGE_BATCH_PARAMS a : int = PipelineTesterMixin.required_optional_params - {"""latents"""} def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' return self._get_dummy_components() def SCREAMING_SNAKE_CASE_ ( self : Any , A_ : int , A_ : Dict=0 ): '''simple docstring''' if str(A_ ).startswith("""mps""" ): __lowercase = torch.manual_seed(A_ ) else: __lowercase = torch.Generator(device=A_ ).manual_seed(A_ ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' self._test_save_load_local() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' __lowercase = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa ) __lowercase = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=A_ , tokenizer=A_ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""" ) __lowercase , __lowercase = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() __lowercase = None __lowercase = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(A_ , A_ , A_ , A_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img __lowercase = IFImgaImgPipeline(**pipe_a.components ) __lowercase = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(A_ , A_ , A_ , A_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting __lowercase = IFInpaintingPipeline(**pipe_a.components ) __lowercase = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(A_ , A_ , A_ , A_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , A_ : Any , A_ : int , A_ : str , A_ : Dict ): '''simple docstring''' _start_torch_memory_measurement() __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , num_inference_steps=2 , generator=A_ , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (6_4, 6_4, 3) __lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_3 * 1_0**9 __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""" ) assert_mean_pixel_difference(A_ , A_ ) # pipeline 2 _start_torch_memory_measurement() __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(A_ ) __lowercase = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , generator=A_ , num_inference_steps=2 , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) __lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(A_ , A_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , A_ : Tuple , A_ : List[Any] , A_ : List[Any] , A_ : Any ): '''simple docstring''' _start_torch_memory_measurement() __lowercase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(A_ ) __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , num_inference_steps=2 , generator=A_ , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (6_4, 6_4, 3) __lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""" ) assert_mean_pixel_difference(A_ , A_ ) # pipeline 2 _start_torch_memory_measurement() __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(A_ ) __lowercase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(A_ ) __lowercase = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , original_image=A_ , generator=A_ , num_inference_steps=2 , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) __lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(A_ , A_ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , A_ : List[Any] , A_ : str , A_ : List[Any] , A_ : List[Any] ): '''simple docstring''' _start_torch_memory_measurement() __lowercase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(A_ ) __lowercase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(1 ) ).to(A_ ) __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , mask_image=A_ , num_inference_steps=2 , generator=A_ , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (6_4, 6_4, 3) __lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""" ) assert_mean_pixel_difference(A_ , A_ ) # pipeline 2 _start_torch_memory_measurement() __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(A_ ) __lowercase = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(A_ ) __lowercase = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(1 ) ).to(A_ ) __lowercase = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , mask_image=A_ , original_image=A_ , generator=A_ , num_inference_steps=2 , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) __lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(A_ , A_ ) def lowerCAmelCase_ ( ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
616
"""simple docstring""" import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase__ ( _a , _a , unittest.TestCase ): a : Any = IFPipeline a : str = TEXT_TO_IMAGE_PARAMS - {"""width""", """height""", """latents"""} a : Dict = TEXT_TO_IMAGE_BATCH_PARAMS a : int = PipelineTesterMixin.required_optional_params - {"""latents"""} def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' return self._get_dummy_components() def SCREAMING_SNAKE_CASE_ ( self : Any , A_ : int , A_ : Dict=0 ): '''simple docstring''' if str(A_ ).startswith("""mps""" ): __lowercase = torch.manual_seed(A_ ) else: __lowercase = torch.Generator(device=A_ ).manual_seed(A_ ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' self._test_save_load_local() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' __lowercase = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa ) __lowercase = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=A_ , tokenizer=A_ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""" ) __lowercase , __lowercase = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() __lowercase = None __lowercase = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(A_ , A_ , A_ , A_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img __lowercase = IFImgaImgPipeline(**pipe_a.components ) __lowercase = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(A_ , A_ , A_ , A_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting __lowercase = IFInpaintingPipeline(**pipe_a.components ) __lowercase = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(A_ , A_ , A_ , A_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , A_ : Any , A_ : int , A_ : str , A_ : Dict ): '''simple docstring''' _start_torch_memory_measurement() __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , num_inference_steps=2 , generator=A_ , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (6_4, 6_4, 3) __lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_3 * 1_0**9 __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""" ) assert_mean_pixel_difference(A_ , A_ ) # pipeline 2 _start_torch_memory_measurement() __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(A_ ) __lowercase = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , generator=A_ , num_inference_steps=2 , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) __lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(A_ , A_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , A_ : Tuple , A_ : List[Any] , A_ : List[Any] , A_ : Any ): '''simple docstring''' _start_torch_memory_measurement() __lowercase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(A_ ) __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , num_inference_steps=2 , generator=A_ , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (6_4, 6_4, 3) __lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""" ) assert_mean_pixel_difference(A_ , A_ ) # pipeline 2 _start_torch_memory_measurement() __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(A_ ) __lowercase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(A_ ) __lowercase = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , original_image=A_ , generator=A_ , num_inference_steps=2 , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) __lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(A_ , A_ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , A_ : List[Any] , A_ : str , A_ : List[Any] , A_ : List[Any] ): '''simple docstring''' _start_torch_memory_measurement() __lowercase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(A_ ) __lowercase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(1 ) ).to(A_ ) __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , mask_image=A_ , num_inference_steps=2 , generator=A_ , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (6_4, 6_4, 3) __lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""" ) assert_mean_pixel_difference(A_ , A_ ) # pipeline 2 _start_torch_memory_measurement() __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(A_ ) __lowercase = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(A_ ) __lowercase = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(1 ) ).to(A_ ) __lowercase = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , mask_image=A_ , original_image=A_ , generator=A_ , num_inference_steps=2 , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) __lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(A_ , A_ ) def lowerCAmelCase_ ( ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
616
1
import qiskit def lowerCamelCase ( UpperCAmelCase_ : int = 2 )-> qiskit.result.counts.Counts: """simple docstring""" a =qubits # Using Aer's simulator a =qiskit.Aer.get_backend("""aer_simulator""" ) # Creating a Quantum Circuit acting on the q register a =qiskit.QuantumCircuit(UpperCAmelCase_ , UpperCAmelCase_ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , UpperCAmelCase_ ): # Adding CX (CNOT) gate circuit.cx(i - 1 , UpperCAmelCase_ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(UpperCAmelCase_ ) ) , list(range(UpperCAmelCase_ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator a =qiskit.execute(UpperCAmelCase_ , UpperCAmelCase_ , shots=1000 ) return job.result().get_counts(UpperCAmelCase_ ) if __name__ == "__main__": print(f"""Total count for various states are: {quantum_entanglement(3)}""")
321
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase__ : '''simple docstring''' def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=30 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=32 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=10 , _lowerCAmelCase=0.02 , _lowerCAmelCase=None , ): a =parent a =batch_size a =image_size a =patch_size a =num_channels a =is_training a =use_labels a =hidden_size a =num_hidden_layers a =num_attention_heads a =intermediate_size a =hidden_act a =hidden_dropout_prob a =attention_probs_dropout_prob a =type_sequence_label_size a =initializer_range a =scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a =(image_size // patch_size) ** 2 a =num_patches + 1 def lowerCAmelCase__ ( self ): a =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a =None if self.use_labels: a =ids_tensor([self.batch_size] , self.type_sequence_label_size ) a =self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self ): return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): a =ViTMSNModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() a =model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): a =self.type_sequence_label_size a =ViTMSNForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() a =model(_lowerCAmelCase , labels=_lowerCAmelCase ) print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" ) print("""Labels: {labels}""" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images a =1 a =ViTMSNForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() a =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a =model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self ): a =self.prepare_config_and_inputs() a , a , a =config_and_inputs a ={"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : int = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () _SCREAMING_SNAKE_CASE : str = ( {"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Tuple = False _SCREAMING_SNAKE_CASE : str = False _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : List[str] = False def lowerCAmelCase__ ( self ): a =ViTMSNModelTester(self ) a =ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMSN does not use inputs_embeds""" ) def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): a , a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a =model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a =model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def lowerCAmelCase__ ( self ): a , a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a =model_class(_lowerCAmelCase ) a =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a =[*signature.parameters.keys()] a =["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def lowerCAmelCase__ ( self ): a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase__ ( self ): a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def lowerCAmelCase__ ( self ): for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a =ViTMSNModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def lowerCamelCase ( )-> Dict: """simple docstring""" a =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase__ ( self ): return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self ): torch.manual_seed(2 ) a =ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(_lowerCAmelCase ) a =self.default_image_processor a =prepare_img() a =image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): a =model(**_lowerCAmelCase ) # verify the logits a =torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) a =torch.tensor([-0.08_03, -0.44_54, -0.23_75] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) )
321
1
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor _lowerCamelCase = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :Optional[int] , *__A :Optional[Any] , **__A :Optional[Any] ) -> None: """simple docstring""" warnings.warn( """The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DPTImageProcessor instead.""" , __A , ) super().__init__(*__A , **__A )
6
from math import ceil def _lowerCamelCase( lowercase__ = 1_0_0_1 ) -> int: '''simple docstring''' __lowercase= 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): __lowercase= 2 * i + 1 __lowercase= 2 * i __lowercase= total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: lowerCAmelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
230
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
721
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = StableDiffusionXLImgaImgPipeline lowerCAmelCase : Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} lowerCAmelCase : List[str] = PipelineTesterMixin.required_optional_params - {"latents"} lowerCAmelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase : str = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') ,attention_head_dim=(2, 4) ,use_linear_projection=_snake_case ,addition_embed_type='''text_time''' ,addition_time_embed_dim=8 ,transformer_layers_per_block=(1, 2) ,projection_class_embeddings_input_dim=80 ,cross_attention_dim=64 ,) lowercase__ : Union[str, Any] = EulerDiscreteScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,steps_offset=1 ,beta_schedule='''scaled_linear''' ,timestep_spacing='''leading''' ,) torch.manual_seed(0 ) lowercase__ : str = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,sample_size=128 ,) torch.manual_seed(0 ) lowercase__ : List[str] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,hidden_act='''gelu''' ,projection_dim=32 ,) lowercase__ : Optional[Any] = CLIPTextModel(_snake_case ) lowercase__ : Any = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ,local_files_only=_snake_case ) lowercase__ : Tuple = CLIPTextModelWithProjection(_snake_case ) lowercase__ : Tuple = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ,local_files_only=_snake_case ) lowercase__ : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''text_encoder_2''': text_encoder_a, '''tokenizer_2''': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def UpperCAmelCase ( self : List[str] ,_snake_case : int ,_snake_case : Any=0 ) -> Optional[Any]: """simple docstring""" lowercase__ : int = floats_tensor((1, 3, 32, 32) ,rng=random.Random(_snake_case ) ).to(_snake_case ) lowercase__ : Tuple = image / 2 + 0.5 if str(_snake_case ).startswith('''mps''' ): lowercase__ : int = torch.manual_seed(_snake_case ) else: lowercase__ : Optional[Any] = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowercase__ : int = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 5.0, '''output_type''': '''numpy''', '''strength''': 0.75, } return inputs def UpperCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" lowercase__ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ : Dict = self.get_dummy_components() lowercase__ : Tuple = StableDiffusionXLImgaImgPipeline(**_snake_case ) lowercase__ : Dict = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Dict = self.get_dummy_inputs(_snake_case ) lowercase__ : Dict = sd_pipe(**_snake_case ).images lowercase__ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__ : Optional[int] = np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def UpperCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def UpperCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" pass def UpperCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" lowercase__ : int = self.get_dummy_components() lowercase__ : Any = StableDiffusionXLImgaImgPipeline(**_snake_case ) lowercase__ : int = sd_pipe.to(_snake_case ) lowercase__ : List[Any] = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) # forward without prompt embeds lowercase__ : Tuple = self.get_dummy_inputs(_snake_case ) lowercase__ : List[str] = 3 * ['''this is a negative prompt'''] lowercase__ : List[str] = negative_prompt lowercase__ : Union[str, Any] = 3 * [inputs['''prompt''']] lowercase__ : List[Any] = sd_pipe(**_snake_case ) lowercase__ : Any = output.images[0, -3:, -3:, -1] # forward with prompt embeds lowercase__ : Optional[int] = self.get_dummy_inputs(_snake_case ) lowercase__ : List[str] = 3 * ['''this is a negative prompt'''] lowercase__ : List[str] = 3 * [inputs.pop('''prompt''' )] ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : Optional[int] = sd_pipe.encode_prompt(_snake_case ,negative_prompt=_snake_case ) lowercase__ : Tuple = sd_pipe( **_snake_case ,prompt_embeds=_snake_case ,negative_prompt_embeds=_snake_case ,pooled_prompt_embeds=_snake_case ,negative_pooled_prompt_embeds=_snake_case ,) lowercase__ : Union[str, Any] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @slow @require_torch_gpu class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : int ) -> str: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self : Any ,_snake_case : int ,_snake_case : Any="cpu" ,_snake_case : List[str]=torch.floataa ,_snake_case : Union[str, Any]=0 ) -> List[Any]: """simple docstring""" lowercase__ : Optional[Any] = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowercase__ : Union[str, Any] = np.random.RandomState(_snake_case ).standard_normal((1, 4, 64, 64) ) lowercase__ : int = torch.from_numpy(_snake_case ).to(device=_snake_case ,dtype=_snake_case ) lowercase__ : List[Any] = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" lowercase__ : Dict = DiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-base''' ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Tuple = self.get_inputs(_snake_case ) lowercase__ : Union[str, Any] = pipe(**_snake_case ).images lowercase__ : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowercase__ : List[str] = np.array([0.4_9493, 0.4_7896, 0.4_0798, 0.5_4214, 0.5_3212, 0.4_8202, 0.4_7656, 0.4_6329, 0.4_8506] ) assert np.abs(image_slice - expected_slice ).max() < 7e-3
122
0
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() __magic_name__ = logging.get_logger(__name__) __magic_name__ = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: snake_case__ = TOKENIZER_CLASSES else: snake_case__ = {tokenizer_name: getattr(__lowerCAmelCase , tokenizer_name + "Fast" )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: snake_case__ = TOKENIZER_CLASSES[tokenizer_name] snake_case__ = True if checkpoint_name is None: snake_case__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: snake_case__ = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer snake_case__ = tokenizer_class.from_pretrained(__lowerCAmelCase , force_download=__lowerCAmelCase ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: snake_case__ , snake_case__ = checkpoint.split("/" ) snake_case__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) elif add_prefix: snake_case__ = checkpoint snake_case__ = dump_path else: snake_case__ = None snake_case__ = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: snake_case__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] snake_case__ = file_path.split(__lowerCAmelCase )[-1][0] if next_char == "/": snake_case__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) snake_case__ = tokenizer.save_pretrained( __lowerCAmelCase , legacy_format=__lowerCAmelCase , filename_prefix=__lowerCAmelCase ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith("tokenizer.json" ): os.remove(__lowerCAmelCase ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( F'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ''' '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) __magic_name__ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
276
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class _SCREAMING_SNAKE_CASE : def __init__( self , lowerCamelCase , lowerCamelCase = 13 , lowerCamelCase = 64 , lowerCamelCase = 2 , lowerCamelCase = 3 , lowerCamelCase = 3 , lowerCamelCase = True , lowerCamelCase = True , lowerCamelCase = 1_28 , lowerCamelCase=[16, 32, 64, 1_28] , lowerCamelCase = 7 , lowerCamelCase = 4 , lowerCamelCase = 37 , lowerCamelCase = "gelu" , lowerCamelCase = 0.1 , lowerCamelCase = 0.1 , lowerCamelCase = 10 , lowerCamelCase = 0.0_2 , lowerCamelCase = 2 , lowerCamelCase = 1 , lowerCamelCase = 1_28 , lowerCamelCase = [2, 2, 2, 2] , lowerCamelCase = 2 , lowerCamelCase = 2 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = image_size snake_case__ = patch_size snake_case__ = num_channels snake_case__ = is_training snake_case__ = use_labels snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = type_sequence_label_size snake_case__ = initializer_range snake_case__ = encoder_stride snake_case__ = num_attention_outputs snake_case__ = embed_dim snake_case__ = embed_dim + 1 snake_case__ = resolution snake_case__ = depths snake_case__ = hidden_sizes snake_case__ = dim snake_case__ = mlp_expansion_ratio def A_ ( self ): snake_case__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ = self.get_config() return config, pixel_values, labels def A_ ( self ): return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): snake_case__ = TFEfficientFormerModel(config=lowerCamelCase ) snake_case__ = model(lowerCamelCase , training=lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): snake_case__ = self.type_sequence_label_size snake_case__ = TFEfficientFormerForImageClassification(lowerCamelCase ) snake_case__ = model(lowerCamelCase , labels=lowerCamelCase , training=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case__ = 1 snake_case__ = TFEfficientFormerForImageClassification(lowerCamelCase ) snake_case__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case__ = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A_ ( self ): snake_case__ = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ = config_and_inputs snake_case__ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): _A : str = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) _A : List[str] = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) _A : Optional[Any] = False _A : List[Any] = False _A : Tuple = False _A : List[Any] = False _A : Any = False def A_ ( self ): snake_case__ = TFEfficientFormerModelTester(self ) snake_case__ = ConfigTester( self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase , hidden_size=37 ) def A_ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="EfficientFormer does not use inputs_embeds" ) def A_ ( self ): pass @unittest.skip(reason="EfficientFormer does not support input and output embeddings" ) def A_ ( self ): pass def A_ ( self ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(lowerCamelCase ) snake_case__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ = [*signature.parameters.keys()] snake_case__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def A_ ( self ): def check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ): snake_case__ = model_class(lowerCamelCase ) snake_case__ = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) , training=lowerCamelCase ) snake_case__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case__ = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) if hasattr(self.model_tester , "encoder_seq_length" ): snake_case__ = self.model_tester.encoder_seq_length if hasattr(self.model_tester , "chunk_length" ) and self.model_tester.chunk_length > 1: snake_case__ = seq_length * self.model_tester.chunk_length else: snake_case__ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: snake_case__ = outputs.decoder_hidden_states self.asseretIsInstance(lowerCamelCase , (list, tuple) ) self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) snake_case__ = getattr(self.model_tester , "seq_length" , lowerCamelCase ) snake_case__ = getattr(self.model_tester , "decoder_seq_length" , lowerCamelCase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=False ): snake_case__ = super()._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def A_ ( self ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) @unittest.skip(reason="EfficientFormer does not implement masked image modeling yet" ) def A_ ( self ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase ) def A_ ( self ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) @slow def A_ ( self ): for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ = TFEfficientFormerModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def A_ ( self ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = True snake_case__ = getattr(self.model_tester , "seq_length" , lowerCamelCase ) snake_case__ = getattr(self.model_tester , "encoder_seq_length" , lowerCamelCase ) snake_case__ = getattr(self.model_tester , "key_length" , lowerCamelCase ) snake_case__ = getattr(self.model_tester , "chunk_length" , lowerCamelCase ) if chunk_length is not None and hasattr(self.model_tester , "num_hashes" ): snake_case__ = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: snake_case__ = True snake_case__ = False snake_case__ = True snake_case__ = model_class(lowerCamelCase ) snake_case__ = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) , training=lowerCamelCase ) snake_case__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCamelCase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case__ = True snake_case__ = model_class(lowerCamelCase ) snake_case__ = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) , training=lowerCamelCase ) snake_case__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCamelCase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def A_ ( self ): # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model snake_case__ = model_class(lowerCamelCase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes snake_case__ = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=lowerCamelCase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } snake_case__ = model(lowerCamelCase ) self.assertTrue(outputs_dict is not None ) def SCREAMING_SNAKE_CASE__ ( ): snake_case__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def A_ ( self ): return ( EfficientFormerImageProcessor.from_pretrained("snap-research/efficientformer-l1-300" ) if is_vision_available() else None ) @slow def A_ ( self ): snake_case__ = TFEfficientFormerForImageClassification.from_pretrained("snap-research/efficientformer-l1-300" ) snake_case__ = self.default_image_processor snake_case__ = prepare_img() snake_case__ = image_processor(images=lowerCamelCase , return_tensors="tf" ) # forward pass snake_case__ = model(**lowerCamelCase , training=lowerCamelCase ) # verify the logits snake_case__ = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) snake_case__ = tf.constant([-0.0_5_5_5, 0.4_8_2_5, -0.0_8_5_2] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1e-4 ) ) @slow def A_ ( self ): snake_case__ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( "snap-research/efficientformer-l1-300" ) snake_case__ = self.default_image_processor snake_case__ = prepare_img() snake_case__ = image_processor(images=lowerCamelCase , return_tensors="tf" ) # forward pass snake_case__ = model(**lowerCamelCase , training=lowerCamelCase ) # verify the logits snake_case__ = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) snake_case__ = tf.constant([-0.1_3_1_2, 0.4_3_5_3, -1.0_4_9_9] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1e-4 ) )
276
1
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu A : Dict = get_tests_dir() + """/test_data/fsmt/fsmt_val_data.json""" with io.open(filename, 'r', encoding='utf-8') as f: A : str = json.load(f) @require_torch class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ ( self :str , lowerCamelCase_ :Optional[Any] ) -> Any: """simple docstring""" return FSMTTokenizer.from_pretrained(snake_case__ ) def lowerCamelCase__ ( self :List[str] , lowerCamelCase_ :Dict ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = FSMTForConditionalGeneration.from_pretrained(snake_case__ ).to(snake_case__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["en-ru", 26.0], ["ru-en", 22.0], ["en-de", 22.0], ["de-en", 29.0], ] ) @slow def lowerCamelCase__ ( self :Any , lowerCamelCase_ :int , lowerCamelCase_ :Any ) -> List[Any]: """simple docstring""" UpperCamelCase__ = f'facebook/wmt19-{pair}' UpperCamelCase__ = self.get_tokenizer(snake_case__ ) UpperCamelCase__ = self.get_model(snake_case__ ) UpperCamelCase__ = bleu_data[pair]["src"] UpperCamelCase__ = bleu_data[pair]["tgt"] UpperCamelCase__ = tokenizer(snake_case__ , return_tensors="pt" , truncation=snake_case__ , padding="longest" ).to(snake_case__ ) UpperCamelCase__ = model.generate( input_ids=batch.input_ids , num_beams=8 , ) UpperCamelCase__ = tokenizer.batch_decode( snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) UpperCamelCase__ = calculate_bleu(snake_case__ , snake_case__ ) print(snake_case__ ) self.assertGreaterEqual(scores["bleu"] , snake_case__ )
719
"""simple docstring""" def snake_case__ ( _snake_case : str ): """simple docstring""" UpperCamelCase__ = 0 # if input_string is "aba" than new_input_string become "a|b|a" UpperCamelCase__ = "" UpperCamelCase__ = "" # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(_snake_case ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring UpperCamelCase__ , UpperCamelCase__ = 0, 0 # length[i] shows the length of palindromic substring with center i UpperCamelCase__ = [1 for i in range(len(_snake_case ) )] # for each character in new_string find corresponding palindromic string UpperCamelCase__ = 0 for j in range(len(_snake_case ) ): UpperCamelCase__ = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(_snake_case ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 UpperCamelCase__ = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: UpperCamelCase__ = j - k + 1 # noqa: E741 UpperCamelCase__ = j + k - 1 # update max_length and start position if max_length < length[j]: UpperCamelCase__ = length[j] UpperCamelCase__ = j # create that string UpperCamelCase__ = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
304
0
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def a_ ( ): '''simple docstring''' import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join lowercase__ : List[str] = '__test_patch_submodule_mock__' with patch_submodule(_test_patching , 'os.path.join' , _lowerCAmelCase ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def a_ ( ): '''simple docstring''' assert _test_patching.open is open lowercase__ : Optional[int] = '__test_patch_submodule_builtin_mock__' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , 'open' , _lowerCAmelCase ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def a_ ( ): '''simple docstring''' lowercase__ : List[Any] = '__test_patch_submodule_missing_mock__' with patch_submodule(_test_patching , 'pandas.read_csv' , _lowerCAmelCase ): pass def a_ ( ): '''simple docstring''' lowercase__ : str = '__test_patch_submodule_missing_builtin_mock__' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , 'len' , _lowerCAmelCase ) is None with patch_submodule(_test_patching , 'len' , _lowerCAmelCase ): assert _test_patching.len is mock assert _test_patching.len is len def a_ ( ): '''simple docstring''' lowercase__ : Optional[Any] = '__test_patch_submodule_start_and_stop_mock__' lowercase__ : Dict = patch_submodule(_test_patching , 'open' , _lowerCAmelCase ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def a_ ( ): '''simple docstring''' from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join lowercase__ : Optional[int] = '__test_patch_submodule_successive_join__' lowercase__ : List[Any] = '__test_patch_submodule_successive_dirname__' lowercase__ : str = '__test_patch_submodule_successive_rename__' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , 'os.path.join' , _lowerCAmelCase ): with patch_submodule(_test_patching , 'os.rename' , _lowerCAmelCase ): with patch_submodule(_test_patching , 'os.path.dirname' , _lowerCAmelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , 'os.rename' , _lowerCAmelCase ): with patch_submodule(_test_patching , 'os.path.join' , _lowerCAmelCase ): with patch_submodule(_test_patching , 'os.path.dirname' , _lowerCAmelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def a_ ( ): '''simple docstring''' lowercase__ : Any = '__test_patch_submodule_doesnt_exist_mock__' with patch_submodule(_test_patching , '__module_that_doesn_exist__.__attribute_that_doesn_exist__' , _lowerCAmelCase ): pass with patch_submodule(_test_patching , 'os.__attribute_that_doesn_exist__' , _lowerCAmelCase ): pass
599
"""simple docstring""" class UpperCAmelCase_ : def __init__( self , a , a , a ) -> List[Any]: lowercase__ : List[str] = name lowercase__ : List[str] = value lowercase__ : Tuple = weight def __repr__( self ) -> Any: return f"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def _UpperCAmelCase ( self ) -> Any: return self.value def _UpperCAmelCase ( self ) -> int: return self.name def _UpperCAmelCase ( self ) -> str: return self.weight def _UpperCAmelCase ( self ) -> int: return self.value / self.weight def a_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] ): '''simple docstring''' lowercase__ : Union[str, Any] = [] for i in range(len(_lowerCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict ): '''simple docstring''' lowercase__ : Optional[Any] = sorted(_lowerCAmelCase , key=_lowerCAmelCase , reverse=_lowerCAmelCase ) lowercase__ : int = [] lowercase__ , lowercase__ : Dict = 0.0, 0.0 for i in range(len(_lowerCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def a_ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
599
1
"""simple docstring""" import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __magic_name__ ( _UpperCamelCase ): UpperCamelCase : int = ["image_processor", "tokenizer"] UpperCamelCase : List[str] = "FlavaImageProcessor" UpperCamelCase : List[Any] = ("BertTokenizer", "BertTokenizerFast") def __init__( self , __magic_name__=None , __magic_name__=None , **__magic_name__ ): """simple docstring""" _lowerCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __magic_name__ , ) _lowerCAmelCase = kwargs.pop('feature_extractor' ) _lowerCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__magic_name__ , __magic_name__ ) _lowerCAmelCase = self.image_processor def __call__( self , __magic_name__ = None , __magic_name__ = None , __magic_name__ = True , __magic_name__ = False , __magic_name__ = False , __magic_name__ = None , __magic_name__ = 0 , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = False , __magic_name__ = False , __magic_name__ = False , __magic_name__ = False , __magic_name__ = True , __magic_name__ = None , **__magic_name__ , ): """simple docstring""" if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _lowerCAmelCase = self.tokenizer( text=__magic_name__ , add_special_tokens=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , stride=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_token_type_ids=__magic_name__ , return_attention_mask=__magic_name__ , return_overflowing_tokens=__magic_name__ , return_special_tokens_mask=__magic_name__ , return_offsets_mapping=__magic_name__ , return_length=__magic_name__ , verbose=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , ) if images is not None: _lowerCAmelCase = self.image_processor( __magic_name__ , return_image_mask=__magic_name__ , return_codebook_pixels=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , ) if text is not None and images is not None: encoding.update(__magic_name__ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__magic_name__ ) , tensor_type=__magic_name__ ) def _lowerCamelCase ( self , *__magic_name__ , **__magic_name__ ): """simple docstring""" return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def _lowerCamelCase ( self , *__magic_name__ , **__magic_name__ ): """simple docstring""" return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) @property def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.tokenizer.model_input_names _lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowerCamelCase ( self ): """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __magic_name__ , ) return self.image_processor_class @property def _lowerCamelCase ( self ): """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __magic_name__ , ) return self.image_processor
705
"""simple docstring""" import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __magic_name__ : def __init__( self , __magic_name__ , __magic_name__=1_3 , __magic_name__=3_0 , __magic_name__=2 , __magic_name__=3 , __magic_name__=True , __magic_name__=True , __magic_name__=3_2 , __magic_name__=5 , __magic_name__=4 , __magic_name__=3_7 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=1_0 , __magic_name__=0.02 , __magic_name__=3 , __magic_name__=0.6 , __magic_name__=None , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = is_training _lowerCAmelCase = use_labels _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = mask_ratio _lowerCAmelCase = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _lowerCAmelCase = (image_size // patch_size) ** 2 _lowerCAmelCase = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self ): """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__magic_name__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ): """simple docstring""" _lowerCAmelCase = ViTMAEModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() _lowerCAmelCase = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ): """simple docstring""" _lowerCAmelCase = ViTMAEForPreTraining(__magic_name__ ) model.to(__magic_name__ ) model.eval() _lowerCAmelCase = model(__magic_name__ ) _lowerCAmelCase = (self.image_size // self.patch_size) ** 2 _lowerCAmelCase = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _lowerCAmelCase = 1 _lowerCAmelCase = ViTMAEForPreTraining(__magic_name__ ) model.to(__magic_name__ ) model.eval() _lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase = model(__magic_name__ ) _lowerCAmelCase = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( _UpperCamelCase ,_UpperCamelCase ,unittest.TestCase ): UpperCamelCase : Dict = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () UpperCamelCase : Dict = {"feature-extraction": ViTMAEModel} if is_torch_available() else {} UpperCamelCase : int = False UpperCamelCase : Optional[int] = False UpperCamelCase : Any = False UpperCamelCase : Optional[Any] = False def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = ViTMAEModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=3_7 ) def _lowerCamelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def _lowerCamelCase ( self ): """simple docstring""" pass def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(__magic_name__ ) _lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__magic_name__ ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ ): """simple docstring""" np.random.seed(2 ) _lowerCAmelCase = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) _lowerCAmelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _lowerCAmelCase = torch.from_numpy(__magic_name__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _lowerCAmelCase = pt_noise super().check_pt_tf_models(__magic_name__ , __magic_name__ , __magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) _lowerCAmelCase = outputs[0].cpu().numpy() _lowerCAmelCase = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__magic_name__ ) _lowerCAmelCase = model_class.from_pretrained(__magic_name__ ) model.to(__magic_name__ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) # Make sure we don't have nans _lowerCAmelCase = after_outputs[0].cpu().numpy() _lowerCAmelCase = 0 _lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__magic_name__ , 1e-5 ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def _lowerCamelCase ( self ): """simple docstring""" pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def _lowerCamelCase ( self ): """simple docstring""" pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def _lowerCamelCase ( self ): """simple docstring""" pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def _lowerCamelCase ( self ): """simple docstring""" pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _lowerCamelCase ( self ): """simple docstring""" pass @slow def _lowerCamelCase ( self ): """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = ViTMAEModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def A__ ( ): """simple docstring""" _lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self ): """simple docstring""" return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def _lowerCamelCase ( self ): """simple docstring""" np.random.seed(2 ) _lowerCAmelCase = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ).to(__magic_name__ ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=__magic_name__ , return_tensors='pt' ).to(__magic_name__ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _lowerCAmelCase = ViTMAEConfig() _lowerCAmelCase = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _lowerCAmelCase = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): _lowerCAmelCase = model(**__magic_name__ , noise=torch.from_numpy(__magic_name__ ).to(device=__magic_name__ ) ) # verify the logits _lowerCAmelCase = torch.Size((1, 1_9_6, 7_6_8) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) _lowerCAmelCase = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(__magic_name__ ) , atol=1e-4 ) )
309
0
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging A_ : str = logging.get_logger(__name__) A_ : int = { 'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : int ='''umt5''' a : Optional[Any] =['''past_key_values'''] def __init__( self , _lowerCamelCase=2_5_0_1_1_2 , _lowerCamelCase=5_1_2 , _lowerCamelCase=6_4 , _lowerCamelCase=1_0_2_4 , _lowerCamelCase=8 , _lowerCamelCase=None , _lowerCamelCase=6 , _lowerCamelCase=3_2 , _lowerCamelCase=1_2_8 , _lowerCamelCase=0.1 , _lowerCamelCase=1e-6 , _lowerCamelCase=1.0 , _lowerCamelCase="gated-gelu" , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase="T5Tokenizer" , _lowerCamelCase=True , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=0 , **_lowerCamelCase , ): super().__init__( is_encoder_decoder=_lowerCamelCase , tokenizer_class=_lowerCamelCase , tie_word_embeddings=_lowerCamelCase , pad_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , **_lowerCamelCase , ) UpperCamelCase_: str = vocab_size UpperCamelCase_: Any = d_model UpperCamelCase_: Any = d_kv UpperCamelCase_: Optional[Any] = d_ff UpperCamelCase_: str = num_layers UpperCamelCase_: Tuple = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry UpperCamelCase_: Optional[Any] = num_heads UpperCamelCase_: List[str] = relative_attention_num_buckets UpperCamelCase_: Union[str, Any] = relative_attention_max_distance UpperCamelCase_: List[str] = dropout_rate UpperCamelCase_: str = layer_norm_epsilon UpperCamelCase_: Dict = initializer_factor UpperCamelCase_: Optional[int] = feed_forward_proj UpperCamelCase_: List[Any] = use_cache UpperCamelCase_: Dict = self.feed_forward_proj.split('-' ) UpperCamelCase_: List[str] = act_info[-1] UpperCamelCase_: str = act_info[0] == 'gated' if len(_lowerCamelCase ) > 1 and act_info[0] != "gated" or len(_lowerCamelCase ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": UpperCamelCase_: int = 'gelu_new' @property def _a ( self ): return self.d_model @property def _a ( self ): return self.num_heads @property def _a ( self ): return self.num_layers class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def _a ( self ): UpperCamelCase_: Dict = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: UpperCamelCase_: Tuple = 'past_encoder_sequence + sequence' UpperCamelCase_: Any = {0: 'batch'} UpperCamelCase_: Optional[int] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: UpperCamelCase_: Tuple = {0: 'batch', 1: 'decoder_sequence'} UpperCamelCase_: Any = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_lowerCamelCase , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def _a ( self ): return 1_3 @property def _a ( self ): return 5e-4
57
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging lowerCAmelCase__ :Dict = logging.get_logger(__name__) lowerCAmelCase__ :Optional[int] = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class __a ( UpperCAmelCase ): _a : Tuple = 'perceiver' def __init__( self , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=1280 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=26 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="kv" , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-1_2 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=262 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=56 , _SCREAMING_SNAKE_CASE=[368, 496] , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=1920 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=[1, 16, 224, 224] , **_SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = num_latents _UpperCAmelCase = d_latents _UpperCAmelCase = d_model _UpperCAmelCase = num_blocks _UpperCAmelCase = num_self_attends_per_block _UpperCAmelCase = num_self_attention_heads _UpperCAmelCase = num_cross_attention_heads _UpperCAmelCase = qk_channels _UpperCAmelCase = v_channels _UpperCAmelCase = cross_attention_shape_for_attention _UpperCAmelCase = self_attention_widening_factor _UpperCAmelCase = cross_attention_widening_factor _UpperCAmelCase = hidden_act _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = use_query_residual # masked language modeling attributes _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings # image classification attributes _UpperCAmelCase = image_size # flow attributes _UpperCAmelCase = train_size # multimodal autoencoding attributes _UpperCAmelCase = num_frames _UpperCAmelCase = audio_samples_per_frame _UpperCAmelCase = samples_per_patch _UpperCAmelCase = output_shape class __a ( UpperCAmelCase ): @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('inputs', dynamic_axis), ('attention_mask', dynamic_axis), ] ) @property def UpperCAmelCase__ ( self ) -> float: """simple docstring""" return 1e-4 def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 3 , _SCREAMING_SNAKE_CASE = 40 , _SCREAMING_SNAKE_CASE = 40 , ) -> Mapping[str, Any]: """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _UpperCAmelCase = compute_effective_axis_dimension( _SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _UpperCAmelCase = preprocessor.num_special_tokens_to_add(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = compute_effective_axis_dimension( _SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_SCREAMING_SNAKE_CASE ) # Generate dummy inputs according to compute batch and sequence _UpperCAmelCase = [' '.join(['a'] ) * seq_length] * batch_size _UpperCAmelCase = dict(preprocessor(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = inputs.pop('input_ids' ) return inputs elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _UpperCAmelCase = compute_effective_axis_dimension(_SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_batch ) _UpperCAmelCase = self._generate_dummy_images(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = dict(preprocessor(images=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = inputs.pop('pixel_values' ) return inputs else: raise ValueError( 'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
618
0
import math def a_ ( lowerCamelCase : int ): lowerCAmelCase = 0 lowerCAmelCase = 0 while num > 0: lowerCAmelCase = num % 8 lowerCAmelCase = octal + (remainder * math.floor(math.pow(10 , lowerCamelCase ) )) counter += 1 lowerCAmelCase = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f'''0o{int(lowerCamelCase )}''' def a_ ( ): print('\n2 in octal is:' ) print(decimal_to_octal(2 ) ) # = 2 print('\n8 in octal is:' ) print(decimal_to_octal(8 ) ) # = 10 print('\n65 in octal is:' ) print(decimal_to_octal(65 ) ) # = 101 print('\n216 in octal is:' ) print(decimal_to_octal(216 ) ) # = 330 print('\n512 in octal is:' ) print(decimal_to_octal(512 ) ) # = 1000 print('\n' ) if __name__ == "__main__": main()
705
'''simple docstring''' from __future__ import annotations def a_ ( lowerCamelCase : list , lowerCamelCase : int ): # Checks if the entire collection has been sorted if len(lowerCamelCase ) <= 1 or n <= 1: return insert_next(lowerCamelCase , n - 1 ) rec_insertion_sort(lowerCamelCase , n - 1 ) def a_ ( lowerCamelCase : list , lowerCamelCase : int ): # Checks order between adjacent elements if index >= len(lowerCamelCase ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order lowerCAmelCase , lowerCAmelCase = ( collection[index], collection[index - 1], ) insert_next(lowerCamelCase , index + 1 ) if __name__ == "__main__": __snake_case =input("""Enter integers separated by spaces: """) __snake_case =[int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
513
0
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def UpperCamelCase ( lowercase_ = "isbn/0140328726" ) -> dict: '''simple docstring''' lowercase__ : Dict = olid.strip().strip("""/""" ) # Remove leading/trailing whitespace & slashes if new_olid.count("""/""" ) != 1: lowercase__ : Optional[Any] = F'{olid} is not a valid Open Library olid' raise ValueError(lowercase_ ) return requests.get(F'https://openlibrary.org/{new_olid}.json' ).json() def UpperCamelCase ( lowercase_ ) -> dict: '''simple docstring''' lowercase__ : Tuple = { """title""": """Title""", """publish_date""": """Publish date""", """authors""": """Authors""", """number_of_pages""": """Number of pages:""", """first_sentence""": """First sentence""", """isbn_10""": """ISBN (10)""", """isbn_13""": """ISBN (13)""", } lowercase__ : List[Any] = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} lowercase__ : Any = [ get_openlibrary_data(author["""key"""] )["""name"""] for author in data["""Authors"""] ] lowercase__ : Tuple = data["""First sentence"""]["""value"""] for key, value in data.items(): if isinstance(lowercase_ , lowercase_ ): lowercase__ : List[str] = """, """.join(lowercase_ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: lowerCamelCase__ : Tuple = input("""\nEnter the ISBN code to search (or 'quit' to stop): """).strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (1_0, 1_3) or not isbn.isdigit(): print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(f'''\nSearching Open Library for ISBN: {isbn}...\n''') try: lowerCamelCase__ : Optional[Any] = summarize_book(get_openlibrary_data(f'''isbn/{isbn}''')) print("""\n""".join(f'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'''Sorry, there are no results for ISBN: {isbn}.''')
12
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''KEY''') lowerCAmelCase__ = TypeVar('''VAL''') @dataclass(frozen=lowerCamelCase__ , slots=lowerCamelCase__ ) class lowercase_ (Generic[KEY, VAL] ): """simple docstring""" SCREAMING_SNAKE_CASE : KEY SCREAMING_SNAKE_CASE : VAL class lowercase_ (_Item ): """simple docstring""" def __init__( self : Optional[int] ): super().__init__(lowercase__ ,lowercase__ ) def __bool__( self : List[str] ): return False lowerCAmelCase__ = _DeletedItem() class lowercase_ (MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self : Dict ,lowercase__ : int = 8 ,lowercase__ : float = 0.7_5 ): __lowercase = initial_block_size __lowercase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __lowercase = capacity_factor __lowercase = 0 def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : KEY ): return hash(lowercase__ ) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : int ): return (ind + 1) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : int ,lowercase__ : KEY ,lowercase__ : VAL ): __lowercase = self._buckets[ind] if not stored: __lowercase = _Item(lowercase__ ,lowercase__ ) self._len += 1 return True elif stored.key == key: __lowercase = _Item(lowercase__ ,lowercase__ ) return True else: return False def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): if len(self._buckets ) <= self._initial_block_size: return False __lowercase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ): __lowercase = self._buckets __lowercase = [None] * new_size __lowercase = 0 for item in old_buckets: if item: self._add_item(item.key ,item.val ) def SCREAMING_SNAKE_CASE ( self : str ): self._resize(len(self._buckets ) * 2 ) def SCREAMING_SNAKE_CASE ( self : Tuple ): self._resize(len(self._buckets ) // 2 ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : KEY ): __lowercase = self._get_bucket_index(lowercase__ ) for _ in range(len(self._buckets ) ): yield ind __lowercase = self._get_next_ind(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): for ind in self._iterate_buckets(lowercase__ ): if self._try_set(lowercase__ ,lowercase__ ,lowercase__ ): break def __setitem__( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): if self._is_full(): self._size_up() self._add_item(lowercase__ ,lowercase__ ) def __delitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: raise KeyError(lowercase__ ) if item is _deleted: continue if item.key == key: __lowercase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowercase__ ) def __len__( self : Optional[int] ): return self._len def __iter__( self : str ): yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ): __lowercase = ''' ,'''.join( F"{item.key}: {item.val}" for item in self._buckets if item ) return F"HashMap({val_string})"
41
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE = { 'configuration_time_series_transformer': [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimeSeriesTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimeSeriesTransformerForPrediction', 'TimeSeriesTransformerModel', 'TimeSeriesTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
340
'''simple docstring''' import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __a ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] ): # Construct model if gpta_config_file == "": a__ : str = GPTaConfig() else: a__ : List[str] = GPTaConfig.from_json_file(lowerCAmelCase__ ) a__ : Optional[int] = GPTaModel(lowerCAmelCase__ ) # Load weights from numpy load_tf_weights_in_gpta(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model a__ : Union[str, Any] = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME a__ : Optional[Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , lowerCAmelCase__ ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--gpt2_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
340
1
'''simple docstring''' from __future__ import annotations UpperCamelCase : List[Any] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class UpperCamelCase__ : '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = graph # mapping node to its parent in resulting breadth first tree lowerCamelCase__ = {} lowerCamelCase__ = source_vertex def UpperCamelCase_ ( self ): lowerCamelCase__ = {self.source_vertex} lowerCamelCase__ = None lowerCamelCase__ = [self.source_vertex] # first in first out queue while queue: lowerCamelCase__ = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(_lowerCAmelCase ) lowerCamelCase__ = vertex queue.append(_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): if target_vertex == self.source_vertex: return self.source_vertex lowerCamelCase__ = self.parent.get(_lowerCAmelCase ) if target_vertex_parent is None: lowerCamelCase__ = ( F'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(_lowerCAmelCase ) return self.shortest_path(_lowerCAmelCase ) + F'''->{target_vertex}''' if __name__ == "__main__": UpperCamelCase : List[Any] = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
50
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase : Union[str, Any] = { 'configuration_canine': ['CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CanineConfig'], 'tokenization_canine': ['CanineTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Any = [ 'CANINE_PRETRAINED_MODEL_ARCHIVE_LIST', 'CanineForMultipleChoice', 'CanineForQuestionAnswering', 'CanineForSequenceClassification', 'CanineForTokenClassification', 'CanineLayer', 'CanineModel', 'CaninePreTrainedModel', 'load_tf_weights_in_canine', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys UpperCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
50
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowercase : Optional[int] = { '''configuration_chinese_clip''': [ '''CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ChineseCLIPConfig''', '''ChineseCLIPOnnxConfig''', '''ChineseCLIPTextConfig''', '''ChineseCLIPVisionConfig''', ], '''processing_chinese_clip''': ['''ChineseCLIPProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] = ['''ChineseCLIPFeatureExtractor'''] __lowercase : int = ['''ChineseCLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Dict = [ '''CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ChineseCLIPModel''', '''ChineseCLIPPreTrainedModel''', '''ChineseCLIPTextModel''', '''ChineseCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys __lowercase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
706
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments __lowercase : Dict = logging.getLogger(__name__) @dataclass class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : Optional[float] = field( default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} ) __lowerCamelCase : bool = field(default=snake_case , metadata={'''help''': '''Whether to SortishSamler or not.'''} ) __lowerCamelCase : bool = field( default=snake_case , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) __lowerCamelCase : bool = field(default=snake_case , metadata={'''help''': '''whether to use adafactor'''} ) __lowerCamelCase : Optional[float] = field( default=snake_case , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} ) __lowerCamelCase : Optional[float] = field( default=snake_case , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} ) __lowerCamelCase : Optional[float] = field(default=snake_case , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} ) __lowerCamelCase : Optional[float] = field( default=snake_case , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} ) __lowerCamelCase : Optional[str] = field( default='''linear''' , metadata={'''help''': f"""Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"""} , )
315
0
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = {"""vocab_file""": """vocab.txt"""} lowerCamelCase = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } lowerCamelCase = { """openbmb/cpm-ant-10b""": 10_24, } def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> int: a__ : List[str] = collections.OrderedDict() with open(__UpperCamelCase , "r" , encoding="utf-8" ) as reader: a__ : Optional[Any] = reader.readlines() for index, token in enumerate(__UpperCamelCase ): a__ : List[str] = token.rstrip("\n" ) a__ : Union[str, Any] = index return vocab class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase="<unk>" , __UpperCAmelCase=200 ): """simple docstring""" a__ : str = vocab a__ : Union[str, Any] = unk_token a__ : Optional[Any] = max_input_chars_per_word def _A ( self , __UpperCAmelCase ): """simple docstring""" a__ : Union[str, Any] = list(__UpperCAmelCase ) if len(__UpperCAmelCase ) > self.max_input_chars_per_word: return [self.unk_token] a__ : Optional[Any] = 0 a__ : Tuple = [] while start < len(__UpperCAmelCase ): a__ : Dict = len(__UpperCAmelCase ) a__ : Union[str, Any] = None while start < end: a__ : List[Any] = "".join(chars[start:end] ) if substr in self.vocab: a__ : List[str] = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(__UpperCAmelCase ) a__ : List[Any] = end return sub_tokens class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A :Tuple = VOCAB_FILES_NAMES A :Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A :List[str] = ["input_ids", "attention_mask"] A :Optional[Any] = False def __init__( self , __UpperCAmelCase , __UpperCAmelCase="<d>" , __UpperCAmelCase="</d>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="</n>" , __UpperCAmelCase="</_>" , __UpperCAmelCase="left" , **__UpperCAmelCase , ): """simple docstring""" requires_backends(self , ["jieba"] ) super().__init__( bod_token=__UpperCAmelCase , eod_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , line_token=__UpperCAmelCase , space_token=__UpperCAmelCase , padding_side=__UpperCAmelCase , **__UpperCAmelCase , ) a__ : Any = bod_token a__ : List[str] = eod_token a__ : Optional[int] = load_vocab(__UpperCAmelCase ) a__ : Dict = self.encoder[space_token] a__ : Dict = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] a__ : int = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __UpperCAmelCase : x[1] ) ) a__ : Optional[int] = {v: k for k, v in self.encoder.items()} a__ : Optional[int] = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def _A ( self ): """simple docstring""" return self.encoder[self.bod_token] @property def _A ( self ): """simple docstring""" return self.encoder[self.eod_token] @property def _A ( self ): """simple docstring""" return self.encoder["\n"] @property def _A ( self ): """simple docstring""" return len(self.encoder ) def _A ( self ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def _A ( self , __UpperCAmelCase ): """simple docstring""" a__ : Optional[int] = [] for x in jieba.cut(__UpperCAmelCase , cut_all=__UpperCAmelCase ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(__UpperCAmelCase ) ) return output_tokens def _A ( self , __UpperCAmelCase , **__UpperCAmelCase ): """simple docstring""" a__ : int = [i for i in token_ids if i >= 0] a__ : Optional[int] = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(__UpperCAmelCase , **__UpperCAmelCase ) def _A ( self , __UpperCAmelCase ): """simple docstring""" return token in self.encoder def _A ( self , __UpperCAmelCase ): """simple docstring""" return "".join(__UpperCAmelCase ) def _A ( self , __UpperCAmelCase ): """simple docstring""" return self.encoder.get(__UpperCAmelCase , self.encoder.get(self.unk_token ) ) def _A ( self , __UpperCAmelCase ): """simple docstring""" return self.decoder.get(__UpperCAmelCase , self.unk_token ) def _A ( self , __UpperCAmelCase , __UpperCAmelCase = None ): """simple docstring""" if os.path.isdir(__UpperCAmelCase ): a__ : Tuple = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: a__ : Union[str, Any] = (filename_prefix + "-" if filename_prefix else "") + save_directory a__ : Union[str, Any] = 0 if " " in self.encoder: a__ : str = self.encoder[" "] del self.encoder[" "] if "\n" in self.encoder: a__ : Optional[Any] = self.encoder["\n"] del self.encoder["\n"] a__ : List[Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __UpperCAmelCase : x[1] ) ) with open(__UpperCAmelCase , "w" , encoding="utf-8" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' " Please check that the vocabulary is not corrupted!" ) a__ : str = token_index writer.write(token + "\n" ) index += 1 return (vocab_file,) def _A ( self , __UpperCAmelCase , __UpperCAmelCase = None ): """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def _A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is not None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) return [1] + ([0] * len(__UpperCAmelCase ))
191
from __future__ import annotations import queue class _a : '''simple docstring''' def __init__( self , __UpperCAmelCase ): """simple docstring""" a__ : Union[str, Any] = data a__ : Tuple = None a__ : Optional[Any] = None def SCREAMING_SNAKE_CASE( ) -> TreeNode: print("\n********Press N to stop entering at any point of time********\n" ) a__ : Tuple = input("Enter the value of the root node: " ).strip().lower() a__ : queue.Queue = queue.Queue() a__ : str = TreeNode(int(__UpperCamelCase ) ) q.put(__UpperCamelCase ) while not q.empty(): a__ : str = q.get() a__ : Optional[Any] = F'Enter the left node of {node_found.data}: ' a__ : List[Any] = input(__UpperCamelCase ).strip().lower() or "n" if check == "n": return tree_node a__ : Optional[int] = TreeNode(int(__UpperCamelCase ) ) a__ : List[str] = left_node q.put(__UpperCamelCase ) a__ : Dict = F'Enter the right node of {node_found.data}: ' a__ : List[str] = input(__UpperCamelCase ).strip().lower() or "n" if check == "n": return tree_node a__ : str = TreeNode(int(__UpperCamelCase ) ) a__ : Any = right_node q.put(__UpperCamelCase ) raise def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> None: if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node: return print(node.data , end="," ) pre_order(node.left ) pre_order(node.right ) def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> None: if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node: return in_order(node.left ) print(node.data , end="," ) in_order(node.right ) def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> None: if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end="," ) def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> None: if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node: return a__ : queue.Queue = queue.Queue() q.put(__UpperCamelCase ) while not q.empty(): a__ : Tuple = q.get() print(node_dequeued.data , end="," ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> None: if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node: return a__ : queue.Queue = queue.Queue() q.put(__UpperCamelCase ) while not q.empty(): a__ : int = [] while not q.empty(): a__ : Union[str, Any] = q.get() print(node_dequeued.data , end="," ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(__UpperCamelCase ) def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> None: if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node: return a__ : list[TreeNode] = [] a__ : Optional[int] = node while n or stack: while n: # start from root node, find its left child print(n.data , end="," ) stack.append(__UpperCamelCase ) a__ : int = n.left # end of while means current node doesn't have left child a__ : Dict = stack.pop() # start to traverse its right child a__ : str = n.right def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> None: if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node: return a__ : list[TreeNode] = [] a__ : Dict = node while n or stack: while n: stack.append(__UpperCamelCase ) a__ : List[Any] = n.left a__ : str = stack.pop() print(n.data , end="," ) a__ : Any = n.right def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> None: if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node: return a__ , a__ : List[str] = [], [] a__ : List[Any] = node stacka.append(__UpperCamelCase ) while stacka: # to find the reversed order of post order, store it in stack2 a__ : Optional[Any] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(__UpperCamelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end="," ) def SCREAMING_SNAKE_CASE( __UpperCamelCase = "" , __UpperCamelCase=50 , __UpperCamelCase="*" ) -> str: if not s: return "\n" + width * char a__ , a__ : int = divmod(width - len(__UpperCamelCase ) - 2 , 2 ) return F'{left * char} {s} {(left + extra) * char}' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) lowerCamelCase = build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 50 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
191
1
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib UpperCAmelCase_ : str = threading.Lock() UpperCAmelCase_ : Optional[logging.Handler] = None UpperCAmelCase_ : Tuple = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } UpperCAmelCase_ : Optional[Any] = logging.WARNING UpperCAmelCase_ : Any = True def _A () -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = os.getenv('''TRANSFORMERS_VERBOSITY''' , __a ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f'Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ' f'has to be one of: { ", ".join(log_levels.keys() ) }' ) return _default_log_level def _A () -> str: """simple docstring""" return __name__.split('''.''' )[0] def _A () -> logging.Logger: """simple docstring""" return logging.getLogger(_get_library_name() ) def _A () -> None: """simple docstring""" global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return SCREAMING_SNAKE_CASE_ : List[str] = logging.StreamHandler() # Set sys.stderr as stream. SCREAMING_SNAKE_CASE_ : Optional[Any] = sys.stderr.flush # Apply our default configuration to the library root logger. SCREAMING_SNAKE_CASE_ : Union[str, Any] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = False def _A () -> None: """simple docstring""" global _default_handler with _lock: if not _default_handler: return SCREAMING_SNAKE_CASE_ : Dict = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = None def _A () -> Union[str, Any]: """simple docstring""" return log_levels def _A (__a = None ) -> logging.Logger: """simple docstring""" if name is None: SCREAMING_SNAKE_CASE_ : Optional[int] = _get_library_name() _configure_library_root_logger() return logging.getLogger(__a ) def _A () -> int: """simple docstring""" _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def _A (__a ) -> None: """simple docstring""" _configure_library_root_logger() _get_library_root_logger().setLevel(__a ) def _A () -> Optional[Any]: """simple docstring""" return set_verbosity(__a ) def _A () -> Optional[int]: """simple docstring""" return set_verbosity(__a ) def _A () -> Any: """simple docstring""" return set_verbosity(__a ) def _A () -> Union[str, Any]: """simple docstring""" return set_verbosity(__a ) def _A () -> None: """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def _A () -> None: """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def _A (__a ) -> None: """simple docstring""" _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(__a ) def _A (__a ) -> None: """simple docstring""" _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(__a ) def _A () -> None: """simple docstring""" _configure_library_root_logger() SCREAMING_SNAKE_CASE_ : Union[str, Any] = False def _A () -> None: """simple docstring""" _configure_library_root_logger() SCREAMING_SNAKE_CASE_ : str = True def _A () -> None: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = _get_library_root_logger().handlers for handler in handlers: SCREAMING_SNAKE_CASE_ : List[str] = logging.Formatter('''[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s''' ) handler.setFormatter(__a ) def _A () -> None: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(__a ) def _A (self , *__a , **__a ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = os.getenv('''TRANSFORMERS_NO_ADVISORY_WARNINGS''' , __a ) if no_advisory_warnings: return self.warning(*__a , **__a ) UpperCAmelCase_ : Any = warning_advice @functools.lru_cache(__a ) def _A (self , *__a , **__a ) -> Tuple: """simple docstring""" self.warning(*__a , **__a ) UpperCAmelCase_ : Optional[int] = warning_once class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Dict , *lowercase_ : Any , **lowercase_ : int): # pylint: disable=unused-argument '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = args[0] if args else None def __iter__( self : int): '''simple docstring''' return iter(self._iterator) def __getattr__( self : Optional[int] , lowercase_ : List[str]): '''simple docstring''' def empty_fn(*lowercase_ : List[Any] , **lowercase_ : Dict): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Optional[Any]): '''simple docstring''' return self def __exit__( self : Tuple , lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : int): '''simple docstring''' return class lowerCAmelCase__ : '''simple docstring''' def __call__( self : int , *lowercase_ : Optional[Any] , **lowercase_ : Dict): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm(*lowercase_ , **lowercase_) else: return EmptyTqdm(*lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , *lowercase_ : List[Any] , **lowercase_ : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() UpperCAmelCase_ : List[Any] = _tqdm_cls() def _A () -> bool: """simple docstring""" global _tqdm_active return bool(_tqdm_active ) def _A () -> Tuple: """simple docstring""" global _tqdm_active SCREAMING_SNAKE_CASE_ : int = True hf_hub_utils.enable_progress_bars() def _A () -> int: """simple docstring""" global _tqdm_active SCREAMING_SNAKE_CASE_ : Any = False hf_hub_utils.disable_progress_bars()
714
"""simple docstring""" # Algorithm for the pigeonhole sorting def _A (__a ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = min(__a ) # min() finds the minimum value SCREAMING_SNAKE_CASE_ : int = max(__a ) # max() finds the maximum value SCREAMING_SNAKE_CASE_ : Dict = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size SCREAMING_SNAKE_CASE_ : Any = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(__a , __a ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. SCREAMING_SNAKE_CASE_ : Any = 0 for count in range(__a ): while holes[count] > 0: holes[count] -= 1 SCREAMING_SNAKE_CASE_ : Dict = count + min_val i += 1 def _A () -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(__a ) print('''Sorted order is:''' , ''' '''.join(__a ) ) if __name__ == "__main__": main()
176
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __lowerCAmelCase =logging.get_logger(__name__) if is_vision_available(): import PIL class __magic_name__ ( _a): _UpperCAmelCase : Union[str, Any] = ['pixel_values'] def __init__( self : Any ,__SCREAMING_SNAKE_CASE : bool = True ,__SCREAMING_SNAKE_CASE : Dict[str, int] = None ,__SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BICUBIC ,__SCREAMING_SNAKE_CASE : bool = True ,__SCREAMING_SNAKE_CASE : Dict[str, int] = None ,__SCREAMING_SNAKE_CASE : bool = True ,__SCREAMING_SNAKE_CASE : Union[int, float] = 1 / 2_5_5 ,__SCREAMING_SNAKE_CASE : bool = True ,__SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None ,__SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None ,__SCREAMING_SNAKE_CASE : bool = True ,**__SCREAMING_SNAKE_CASE : str ,): super().__init__(**__SCREAMING_SNAKE_CASE ) UpperCAmelCase = size if size is not None else {"shortest_edge": 2_2_4} UpperCAmelCase = get_size_dict(__SCREAMING_SNAKE_CASE ,default_to_square=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} UpperCAmelCase = get_size_dict(__SCREAMING_SNAKE_CASE ,default_to_square=__SCREAMING_SNAKE_CASE ,param_name="crop_size" ) UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = resample UpperCAmelCase = do_center_crop UpperCAmelCase = crop_size UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = do_normalize UpperCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase = do_convert_rgb def _UpperCAmelCase ( self : List[str] ,__SCREAMING_SNAKE_CASE : np.ndarray ,__SCREAMING_SNAKE_CASE : Dict[str, int] ,__SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BICUBIC ,__SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None ,**__SCREAMING_SNAKE_CASE : str ,): UpperCAmelCase = get_size_dict(__SCREAMING_SNAKE_CASE ,default_to_square=__SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) UpperCAmelCase = get_resize_output_image_size(__SCREAMING_SNAKE_CASE ,size=size["shortest_edge"] ,default_to_square=__SCREAMING_SNAKE_CASE ) return resize(__SCREAMING_SNAKE_CASE ,size=__SCREAMING_SNAKE_CASE ,resample=__SCREAMING_SNAKE_CASE ,data_format=__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Optional[Any] ,__SCREAMING_SNAKE_CASE : np.ndarray ,__SCREAMING_SNAKE_CASE : Dict[str, int] ,__SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None ,**__SCREAMING_SNAKE_CASE : Tuple ,): UpperCAmelCase = get_size_dict(__SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(__SCREAMING_SNAKE_CASE ,size=(size["height"], size["width"]) ,data_format=__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Dict ,__SCREAMING_SNAKE_CASE : np.ndarray ,__SCREAMING_SNAKE_CASE : Union[int, float] ,__SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None ,**__SCREAMING_SNAKE_CASE : Optional[Any] ,): return rescale(__SCREAMING_SNAKE_CASE ,scale=__SCREAMING_SNAKE_CASE ,data_format=__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Optional[int] ,__SCREAMING_SNAKE_CASE : np.ndarray ,__SCREAMING_SNAKE_CASE : Union[float, List[float]] ,__SCREAMING_SNAKE_CASE : Union[float, List[float]] ,__SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None ,**__SCREAMING_SNAKE_CASE : List[Any] ,): return normalize(__SCREAMING_SNAKE_CASE ,mean=__SCREAMING_SNAKE_CASE ,std=__SCREAMING_SNAKE_CASE ,data_format=__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : List[Any] ,__SCREAMING_SNAKE_CASE : ImageInput ,__SCREAMING_SNAKE_CASE : bool = None ,__SCREAMING_SNAKE_CASE : Dict[str, int] = None ,__SCREAMING_SNAKE_CASE : PILImageResampling = None ,__SCREAMING_SNAKE_CASE : bool = None ,__SCREAMING_SNAKE_CASE : int = None ,__SCREAMING_SNAKE_CASE : bool = None ,__SCREAMING_SNAKE_CASE : float = None ,__SCREAMING_SNAKE_CASE : bool = None ,__SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None ,__SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None ,__SCREAMING_SNAKE_CASE : bool = None ,__SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None ,__SCREAMING_SNAKE_CASE : Optional[ChannelDimension] = ChannelDimension.FIRST ,**__SCREAMING_SNAKE_CASE : List[Any] ,): UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = size if size is not None else self.size UpperCAmelCase = get_size_dict(__SCREAMING_SNAKE_CASE ,param_name="size" ,default_to_square=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = resample if resample is not None else self.resample UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase = crop_size if crop_size is not None else self.crop_size UpperCAmelCase = get_size_dict(__SCREAMING_SNAKE_CASE ,param_name="crop_size" ,default_to_square=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase = image_mean if image_mean is not None else self.image_mean UpperCAmelCase = image_std if image_std is not None else self.image_std UpperCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase = make_list_of_images(__SCREAMING_SNAKE_CASE ) if not valid_images(__SCREAMING_SNAKE_CASE ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase = [convert_to_rgb(__SCREAMING_SNAKE_CASE ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase = [to_numpy_array(__SCREAMING_SNAKE_CASE ) for image in images] if do_resize: UpperCAmelCase = [self.resize(image=__SCREAMING_SNAKE_CASE ,size=__SCREAMING_SNAKE_CASE ,resample=__SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: UpperCAmelCase = [self.center_crop(image=__SCREAMING_SNAKE_CASE ,size=__SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: UpperCAmelCase = [self.rescale(image=__SCREAMING_SNAKE_CASE ,scale=__SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: UpperCAmelCase = [self.normalize(image=__SCREAMING_SNAKE_CASE ,mean=__SCREAMING_SNAKE_CASE ,std=__SCREAMING_SNAKE_CASE ) for image in images] UpperCAmelCase = [to_channel_dimension_format(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) for image in images] UpperCAmelCase = {"pixel_values": images} return BatchFeature(data=__SCREAMING_SNAKE_CASE ,tensor_type=__SCREAMING_SNAKE_CASE )
333
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class __magic_name__ ( unittest.TestCase): def __init__( self : List[str] ,__SCREAMING_SNAKE_CASE : Tuple ,__SCREAMING_SNAKE_CASE : List[str]=1_3 ,__SCREAMING_SNAKE_CASE : Union[str, Any]=7 ,__SCREAMING_SNAKE_CASE : str=True ,__SCREAMING_SNAKE_CASE : Union[str, Any]=True ,__SCREAMING_SNAKE_CASE : List[Any]=True ,__SCREAMING_SNAKE_CASE : Tuple=True ,__SCREAMING_SNAKE_CASE : Dict=9_9 ,__SCREAMING_SNAKE_CASE : List[Any]=3_2 ,__SCREAMING_SNAKE_CASE : Dict=5 ,__SCREAMING_SNAKE_CASE : Optional[Any]=4 ,__SCREAMING_SNAKE_CASE : Union[str, Any]=3_7 ,__SCREAMING_SNAKE_CASE : Optional[Any]="gelu" ,__SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 ,__SCREAMING_SNAKE_CASE : Any=0.1 ,__SCREAMING_SNAKE_CASE : Union[str, Any]=5_1_2 ,__SCREAMING_SNAKE_CASE : int=1_6 ,__SCREAMING_SNAKE_CASE : Dict=2 ,__SCREAMING_SNAKE_CASE : Dict=0.02 ,__SCREAMING_SNAKE_CASE : Optional[int]=4 ,): UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_attention_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_choices def _UpperCAmelCase ( self : Dict ): UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase = None if self.use_attention_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) UpperCAmelCase = RobertaPreLayerNormConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__SCREAMING_SNAKE_CASE ,initializer_range=self.initializer_range ,) return config, input_ids, token_type_ids, attention_mask def _UpperCAmelCase ( self : Any ): UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def _UpperCAmelCase ( self : Any ): UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = True UpperCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class __magic_name__ ( _a , unittest.TestCase): _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : str = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def _UpperCAmelCase ( self : Union[str, Any] ): UpperCAmelCase = FlaxRobertaPreLayerNormModelTester(self ) @slow def _UpperCAmelCase ( self : Optional[Any] ): for model_class_name in self.all_model_classes: UpperCAmelCase = model_class_name.from_pretrained("andreasmadsen/efficient_mlm_m0.40" ,from_pt=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @require_flax class __magic_name__ ( unittest.TestCase): @slow def _UpperCAmelCase ( self : Optional[int] ): UpperCAmelCase = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40" ,from_pt=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ,dtype=jnp.intaa ) UpperCAmelCase = model(__SCREAMING_SNAKE_CASE )[0] UpperCAmelCase = [1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape ) ,__SCREAMING_SNAKE_CASE ) # compare the actual values for a slice. UpperCAmelCase = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] ,dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] ,__SCREAMING_SNAKE_CASE ,atol=1e-4 ) ) @slow def _UpperCAmelCase ( self : Dict ): UpperCAmelCase = FlaxRobertaPreLayerNormModel.from_pretrained("andreasmadsen/efficient_mlm_m0.40" ,from_pt=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ,dtype=jnp.intaa ) UpperCAmelCase = model(__SCREAMING_SNAKE_CASE )[0] # compare the actual values for a slice. UpperCAmelCase = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] ,dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] ,__SCREAMING_SNAKE_CASE ,atol=1e-4 ) )
333
1
"""simple docstring""" import operator def _snake_case ( UpperCAmelCase_ : list , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : list | None = None ): A__ = operator.lt if reverse else operator.gt A__ = solution or [] if not arr: return solution A__ = [arr.pop(0 )] for i, item in enumerate(UpperCAmelCase_ ): if _operator(UpperCAmelCase_ , sublist[-1] ): sublist.append(UpperCAmelCase_ ) arr.pop(UpperCAmelCase_ ) # merging sublist into solution list if not solution: solution.extend(UpperCAmelCase_ ) else: while sublist: A__ = sublist.pop(0 ) for i, xx in enumerate(UpperCAmelCase_ ): if not _operator(UpperCAmelCase_ , UpperCAmelCase_ ): solution.insert(UpperCAmelCase_ , UpperCAmelCase_ ) break else: solution.append(UpperCAmelCase_ ) strand_sort(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
500
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE_ : List[str] = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : List[Any] = [ 'MRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MraForMaskedLM', 'MraForMultipleChoice', 'MraForQuestionAnswering', 'MraForSequenceClassification', 'MraForTokenClassification', 'MraLayer', 'MraModel', 'MraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure)
500
1
'''simple docstring''' def snake_case_ (UpperCamelCase : list[int] ): '''simple docstring''' if not numbers: return 0 if not isinstance(UpperCamelCase , (list, tuple) ) or not all( isinstance(UpperCamelCase , UpperCamelCase ) for number in numbers ): raise ValueError('''numbers must be an iterable of integers''' ) _a = _a = _a = numbers[0] for i in range(1 , len(UpperCamelCase ) ): # update the maximum and minimum subarray products _a = numbers[i] if number < 0: _a , _a = min_till_now, max_till_now _a = max(UpperCamelCase , max_till_now * number ) _a = min(UpperCamelCase , min_till_now * number ) # update the maximum product found till now _a = max(UpperCamelCase , UpperCamelCase ) return max_prod
22
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class A ( unittest.TestCase ): def __init__( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str]=7 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : List[Any]=18 , lowerCAmelCase_ : Any=30 , lowerCAmelCase_ : Optional[int]=4_00 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[str]=True , ) -> Optional[Any]: """simple docstring""" _a = size if size is not None else {'''height''': 18, '''width''': 18} _a = parent _a = batch_size _a = num_channels _a = image_size _a = min_resolution _a = max_resolution _a = do_resize _a = size _a = do_normalize def __lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class A ( _a ,unittest.TestCase ): lowercase_ = ImageGPTImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" _a = ImageGPTImageProcessingTester(self ) @property def __lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase_ , '''clusters''' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , '''size''' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , '''do_normalize''' ) ) def __lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" _a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) _a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def __lowerCAmelCase ( self : str ) -> str: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) _a = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCAmelCase_ , obj[key] ) ) else: self.assertEqual(obj[key] , lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a = os.path.join(lowerCAmelCase_ , '''image_processor.json''' ) image_processor_first.to_json_file(lowerCAmelCase_ ) _a = self.image_processing_class.from_json_file(lowerCAmelCase_ ).to_dict() _a = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCAmelCase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowerCAmelCase_ ) _a = self.image_processing_class.from_pretrained(lowerCAmelCase_ ).to_dict() _a = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCAmelCase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowerCAmelCase_ ) @unittest.skip('''ImageGPT requires clusters at initialization''' ) def __lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" pass def snake_case_ (): '''simple docstring''' _a = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) _a = Image.open(dataset[4]['''file'''] ) _a = Image.open(dataset[5]['''file'''] ) _a = [imagea, imagea] return images @require_vision @require_torch class A ( unittest.TestCase ): @slow def __lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _a = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''' ) _a = prepare_images() # test non-batched _a = image_processing(images[0] , return_tensors='''pt''' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 10_24) ) _a = [3_06, 1_91, 1_91] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowerCAmelCase_ ) # test batched _a = image_processing(lowerCAmelCase_ , return_tensors='''pt''' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 10_24) ) _a = [3_03, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowerCAmelCase_ )
22
1
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def UpperCamelCase_ ( __a = "laptop" ) -> DataFrame: a__ : Any = f'''https://www.amazon.in/laptop/s?k={product}''' a__ : List[Any] = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } a__ : Optional[Any] = BeautifulSoup(requests.get(__a , headers=__a ).text ) # Initialize a Pandas dataframe with the column titles a__ : int = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"} ) , ): try: a__ : Union[str, Any] = item.ha.text a__ : List[str] = "https://www.amazon.in/" + item.ha.a["href"] a__ : int = item.find("span" , attrs={"class": "a-offscreen"} ).text try: a__ : List[str] = item.find("span" , attrs={"class": "a-icon-alt"} ).text except AttributeError: a__ : str = "Not available" try: a__ : List[Any] = ( "₹" + item.find( "span" , attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: a__ : List[str] = "" try: a__ : Any = float( ( ( float(product_mrp.strip("₹" ).replace("," , "" ) ) - float(product_price.strip("₹" ).replace("," , "" ) ) ) / float(product_mrp.strip("₹" ).replace("," , "" ) ) ) * 100 ) except ValueError: a__ : str = float("nan" ) except AttributeError: pass a__ : List[str] = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] a__ : Tuple = " " a__ : Union[str, Any] = " " data_frame.index += 1 return data_frame if __name__ == "__main__": UpperCamelCase : str = """headphones""" get_amazon_product_data(product).to_csv(f"""Amazon Product Data for {product}.csv""")
151
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy UpperCamelCase : Any = logging.get_logger(__name__) class A__ ( A__ ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : float , **lowerCamelCase__ : List[Any] ): a__ : int = feature_size a__ : List[str] = sampling_rate a__ : Optional[Any] = padding_value a__ : List[Any] = kwargs.pop("padding_side" , "right" ) a__ : Optional[int] = kwargs.pop("return_attention_mask" , lowerCamelCase__ ) super().__init__(**lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] , lowerCamelCase__ : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , lowerCamelCase__ : Union[bool, str, PaddingStrategy] = True , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : bool = False , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[Union[str, TensorType]] = None , ): # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(lowerCamelCase__ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): a__ : Optional[Any] = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" f''' to this method that includes {self.model_input_names[0]}, but you provided''' f''' {list(processed_features.keys() )}''' ) a__ : Union[str, Any] = processed_features[self.model_input_names[0]] a__ : Any = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(lowerCamelCase__ ) == 0: if return_attention_mask: a__ : Union[str, Any] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch a__ : List[str] = required_input[0] if isinstance(lowerCamelCase__ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. a__ : Tuple = 0 while len(required_input[index] ) == 0: index += 1 if index < len(lowerCamelCase__ ): a__ : Optional[int] = required_input[index][0] if return_tensors is None: if is_tf_tensor(lowerCamelCase__ ): a__ : List[Any] = "tf" elif is_torch_tensor(lowerCamelCase__ ): a__ : int = "pt" elif isinstance(lowerCamelCase__ , (int, float, list, tuple, np.ndarray) ): a__ : str = "np" else: raise ValueError( f'''type of {first_element} unknown: {type(lowerCamelCase__ )}. ''' "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): a__ : str = to_numpy(lowerCamelCase__ ) else: a__ : Any = [to_numpy(lowerCamelCase__ ) for v in value] # Convert padding_strategy in PaddingStrategy a__ : Union[str, Any] = self._get_padding_strategies(padding=lowerCamelCase__ , max_length=lowerCamelCase__ ) a__ : Tuple = processed_features[self.model_input_names[0]] a__ : Optional[Any] = len(lowerCamelCase__ ) if not all(len(lowerCamelCase__ ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) a__ : Dict = [] for i in range(lowerCamelCase__ ): a__ : int = {k: v[i] for k, v in processed_features.items()} # truncation a__ : Any = self._truncate( lowerCamelCase__ , max_length=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , truncation=lowerCamelCase__ , ) truncated_inputs.append(lowerCamelCase__ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length a__ : Union[str, Any] = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) a__ : Any = PaddingStrategy.MAX_LENGTH a__ : Optional[int] = {} for i in range(lowerCamelCase__ ): # padding a__ : Optional[Any] = self._pad( truncated_inputs[i] , max_length=lowerCamelCase__ , padding_strategy=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , ) for key, value in outputs.items(): if key not in batch_outputs: a__ : Dict = [] if value.dtype is np.dtype(np.floataa ): a__ : Optional[int] = value.astype(np.floataa ) batch_outputs[key].append(lowerCamelCase__ ) return BatchFeature(lowerCamelCase__ , tensor_type=lowerCamelCase__ ) def _UpperCamelCase( self : int , lowerCamelCase__ : Union[Dict[str, np.ndarray], BatchFeature] , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[bool] = None , ): a__ : Optional[Any] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: a__ : Tuple = len(lowerCamelCase__ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): a__ : List[Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of a__ : Any = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowerCamelCase__ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: a__ : Optional[int] = np.ones(len(lowerCamelCase__ ) , dtype=np.intaa ) if needs_to_be_padded: a__ : List[str] = max_length - len(lowerCamelCase__ ) if self.padding_side == "right": if return_attention_mask: a__ : Tuple = np.pad( processed_features["attention_mask"] , (0, difference) ) a__ : int = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) a__ : List[Any] = np.pad( lowerCamelCase__ , lowerCamelCase__ , "constant" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: a__ : List[str] = np.pad( processed_features["attention_mask"] , (difference, 0) ) a__ : Any = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) a__ : List[str] = np.pad( lowerCamelCase__ , lowerCamelCase__ , "constant" , constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def _UpperCamelCase( self : List[Any] , lowerCamelCase__ : Union[Dict[str, np.ndarray], BatchFeature] , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[bool] = None , ): if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) a__ : Optional[Any] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): a__ : int = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of a__ : List[str] = len(lowerCamelCase__ ) > max_length if needs_to_be_truncated: a__ : Optional[int] = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: a__ : List[str] = processed_features["attention_mask"][:max_length] return processed_features def _UpperCamelCase( self : Optional[Any] , lowerCamelCase__ : Dict=False , lowerCamelCase__ : Tuple=None ): # Get padding strategy if padding is not False: if padding is True: a__ : Tuple = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(lowerCamelCase__ , lowerCamelCase__ ): a__ : Tuple = PaddingStrategy(lowerCamelCase__ ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): a__ : Optional[Any] = padding else: a__ : Any = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f'''When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined''' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
151
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = "trocr" _UpperCAmelCase :str = ["past_key_values"] _UpperCAmelCase :Any = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self , _UpperCAmelCase=50265 , _UpperCAmelCase=1024 , _UpperCAmelCase=12 , _UpperCAmelCase=16 , _UpperCAmelCase=4096 , _UpperCAmelCase="gelu" , _UpperCAmelCase=512 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , **_UpperCAmelCase , ): lowercase__: List[Any] = vocab_size lowercase__: List[str] = d_model lowercase__: Tuple = decoder_layers lowercase__: Any = decoder_attention_heads lowercase__: Dict = decoder_ffn_dim lowercase__: Union[str, Any] = activation_function lowercase__: List[str] = max_position_embeddings lowercase__: Optional[Any] = dropout lowercase__: Tuple = attention_dropout lowercase__: List[str] = activation_dropout lowercase__: Union[str, Any] = init_std lowercase__: str = decoder_layerdrop lowercase__: int = use_cache lowercase__: str = scale_embedding lowercase__: List[str] = use_learned_position_embeddings lowercase__: List[Any] = layernorm_embedding super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
586
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/config.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/config.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json" ), "distilbert-base-uncased-finetuned-sst-2-english": ( "https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json" ), } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Union[str, Any] = "distilbert" _UpperCAmelCase :Any = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__( self , _UpperCAmelCase=30522 , _UpperCAmelCase=512 , _UpperCAmelCase=False , _UpperCAmelCase=6 , _UpperCAmelCase=12 , _UpperCAmelCase=768 , _UpperCAmelCase=4 * 768 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.02 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.2 , _UpperCAmelCase=0 , **_UpperCAmelCase , ): lowercase__: Any = vocab_size lowercase__: Optional[int] = max_position_embeddings lowercase__: int = sinusoidal_pos_embds lowercase__: Dict = n_layers lowercase__: List[str] = n_heads lowercase__: Tuple = dim lowercase__: Union[str, Any] = hidden_dim lowercase__: List[str] = dropout lowercase__: Optional[int] = attention_dropout lowercase__: Dict = activation lowercase__: Union[str, Any] = initializer_range lowercase__: Optional[Any] = qa_dropout lowercase__: Dict = seq_classif_dropout super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" @property def _snake_case ( self ): if self.task == "multiple-choice": lowercase__: Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase__: Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
586
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase__ = { "configuration_pix2struct": [ "PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Pix2StructConfig", "Pix2StructTextConfig", "Pix2StructVisionConfig", ], "processing_pix2struct": ["Pix2StructProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["Pix2StructImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST", "Pix2StructPreTrainedModel", "Pix2StructForConditionalGeneration", "Pix2StructVisionModel", "Pix2StructTextModel", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
202
lowerCamelCase__ = [ "DownloadConfig", "DownloadManager", "DownloadMode", "StreamingDownloadManager", ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
202
1
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class __lowerCamelCase (unittest.TestCase ): def __init__( self: int,A_: List[str],A_: bool = True,A_: Dict[str, int] = None,A_: int = 32,A_: bool = True,A_: Union[int, float] = 1 / 255,A_: bool = True,A_: bool = True,A_: Optional[Union[float, List[float]]] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3],A_: Optional[Union[float, List[float]]] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1],A_: bool = True,A_: Union[str, Any]=7,A_: Dict=30,A_: Dict=400,A_: Optional[int]=3,): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = do_resize __UpperCamelCase = size if size is not None else {'shortest_edge': 288} __UpperCamelCase = size_divisor __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_normalize __UpperCamelCase = do_center_crop __UpperCamelCase = image_mean __UpperCamelCase = image_std __UpperCamelCase = do_pad __UpperCamelCase = batch_size __UpperCamelCase = num_channels __UpperCamelCase = min_resolution __UpperCamelCase = max_resolution def snake_case_ ( self: Dict ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def snake_case_ ( self: List[str],A_: Tuple,A_: List[Any]=False ): '''simple docstring''' if not batched: __UpperCamelCase = self.size['shortest_edge'] __UpperCamelCase = image_inputs[0] if isinstance(A_,Image.Image ): __UpperCamelCase, __UpperCamelCase = image.size else: __UpperCamelCase, __UpperCamelCase = image.shape[1], image.shape[2] __UpperCamelCase = size / min(A_,A_ ) if h < w: __UpperCamelCase, __UpperCamelCase = size, scale * w else: __UpperCamelCase, __UpperCamelCase = scale * h, size __UpperCamelCase = int((1333 / 800) * size ) if max(A_,A_ ) > max_size: __UpperCamelCase = max_size / max(A_,A_ ) __UpperCamelCase = newh * scale __UpperCamelCase = neww * scale __UpperCamelCase, __UpperCamelCase = int(newh + 0.5 ), int(neww + 0.5 ) __UpperCamelCase, __UpperCamelCase = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __UpperCamelCase = [] for image in image_inputs: __UpperCamelCase, __UpperCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __UpperCamelCase = max(A_,key=lambda A_ : item[0] )[0] __UpperCamelCase = max(A_,key=lambda A_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = BridgeTowerImageProcessor if is_vision_available() else None def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = BridgeTowerImageProcessingTester(self ) @property def snake_case_ ( self: int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_,'image_mean' ) ) self.assertTrue(hasattr(A_,'image_std' ) ) self.assertTrue(hasattr(A_,'do_normalize' ) ) self.assertTrue(hasattr(A_,'do_resize' ) ) self.assertTrue(hasattr(A_,'size' ) ) self.assertTrue(hasattr(A_,'size_divisor' ) ) def snake_case_ ( self: Dict ): '''simple docstring''' pass def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase = prepare_image_inputs(self.image_processor_tester,equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_,Image.Image ) # Test not batched input __UpperCamelCase = image_processing(image_inputs[0],return_tensors='pt' ).pixel_values __UpperCamelCase, __UpperCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape,(1, self.image_processor_tester.num_channels, expected_height, expected_width),) # Test batched __UpperCamelCase = image_processing(A_,return_tensors='pt' ).pixel_values __UpperCamelCase, __UpperCamelCase = self.image_processor_tester.get_expected_values(A_,batched=A_ ) self.assertEqual( encoded_images.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ),) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase = prepare_image_inputs(self.image_processor_tester,equal_resolution=A_,numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_,np.ndarray ) # Test not batched input __UpperCamelCase = image_processing(image_inputs[0],return_tensors='pt' ).pixel_values __UpperCamelCase, __UpperCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape,(1, self.image_processor_tester.num_channels, expected_height, expected_width),) # Test batched __UpperCamelCase = image_processing(A_,return_tensors='pt' ).pixel_values __UpperCamelCase, __UpperCamelCase = self.image_processor_tester.get_expected_values(A_,batched=A_ ) self.assertEqual( encoded_images.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ),) def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase = prepare_image_inputs(self.image_processor_tester,equal_resolution=A_,torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_,torch.Tensor ) # Test not batched input __UpperCamelCase = image_processing(image_inputs[0],return_tensors='pt' ).pixel_values __UpperCamelCase, __UpperCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape,(1, self.image_processor_tester.num_channels, expected_height, expected_width),) # Test batched __UpperCamelCase = image_processing(A_,return_tensors='pt' ).pixel_values __UpperCamelCase, __UpperCamelCase = self.image_processor_tester.get_expected_values(A_,batched=A_ ) self.assertEqual( encoded_images.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ),)
1
"""simple docstring""" import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case_ ( a_ ,unittest.TestCase ): __lowerCAmelCase = FunnelTokenizer __lowerCAmelCase = FunnelTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = True def snake_case_ ( self ): super().setUp() a_ : int = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] a_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def snake_case_ ( self , **a_ ): return FunnelTokenizer.from_pretrained(self.tmpdirname , **a_ ) def snake_case_ ( self , **a_ ): return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **a_ ) def snake_case_ ( self , a_ ): a_ : int = "UNwant\u00E9d,running" a_ : List[Any] = "unwanted, running" return input_text, output_text def snake_case_ ( self ): a_ : int = self.tokenizer_class(self.vocab_file ) a_ : List[Any] = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(a_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , [7, 4, 5, 1_0, 8, 9] ) def snake_case_ ( self ): a_ : List[str] = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: a_ : Dict = tokenizer("UNwant\u00E9d,running" ) a_ : int = len(inputs["input_ids"] ) - 1 self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len ) a_ : Dict = tokenizer("UNwant\u00E9d,running" , "UNwant\u00E9d,running" ) self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len + [1] * sentence_len )
237
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase_ : List[str] = logging.get_logger(__name__) lowercase_ : Any = { 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _lowerCamelCase ( UpperCamelCase_ , UpperCamelCase_ ): __a = "swin" __a = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , lowerCAmelCase=224 , lowerCAmelCase=4 , lowerCAmelCase=3 , lowerCAmelCase=96 , lowerCAmelCase=[2, 2, 6, 2] , lowerCAmelCase=[3, 6, 12, 24] , lowerCAmelCase=7 , lowerCAmelCase=4.0 , lowerCAmelCase=True , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=0.1 , lowerCAmelCase="gelu" , lowerCAmelCase=False , lowerCAmelCase=0.02 , lowerCAmelCase=1e-5 , lowerCAmelCase=32 , lowerCAmelCase=None , lowerCAmelCase=None , **lowerCAmelCase , ) -> Tuple: super().__init__(**lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Any= image_size SCREAMING_SNAKE_CASE__: Optional[int]= patch_size SCREAMING_SNAKE_CASE__: Tuple= num_channels SCREAMING_SNAKE_CASE__: Union[str, Any]= embed_dim SCREAMING_SNAKE_CASE__: List[str]= depths SCREAMING_SNAKE_CASE__: Any= len(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Any= num_heads SCREAMING_SNAKE_CASE__: List[str]= window_size SCREAMING_SNAKE_CASE__: Any= mlp_ratio SCREAMING_SNAKE_CASE__: int= qkv_bias SCREAMING_SNAKE_CASE__: Dict= hidden_dropout_prob SCREAMING_SNAKE_CASE__: Union[str, Any]= attention_probs_dropout_prob SCREAMING_SNAKE_CASE__: Any= drop_path_rate SCREAMING_SNAKE_CASE__: Optional[int]= hidden_act SCREAMING_SNAKE_CASE__: Union[str, Any]= use_absolute_embeddings SCREAMING_SNAKE_CASE__: Tuple= layer_norm_eps SCREAMING_SNAKE_CASE__: str= initializer_range SCREAMING_SNAKE_CASE__: Dict= encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE__: Optional[Any]= int(embed_dim * 2 ** (len(lowerCAmelCase ) - 1) ) SCREAMING_SNAKE_CASE__: List[Any]= ['''stem'''] + [f'stage{idx}' for idx in range(1 , len(lowerCAmelCase ) + 1 )] SCREAMING_SNAKE_CASE__: Optional[int]= get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names ) class _lowerCamelCase ( UpperCamelCase_ ): __a = version.parse("1.11" ) @property def UpperCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCamelCase_ ( self ) -> float: return 1e-4
712
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowercase_ : List[str] = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def A__ ( snake_case_ : Optional[int] ): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case_ ) def A__ ( snake_case_ : Optional[int] ): from diffusers.utils.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE__: Optional[int]= terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
107
0
__lowerCAmelCase = { """Pillow""": """Pillow""", """accelerate""": """accelerate>=0.11.0""", """compel""": """compel==0.1.8""", """black""": """black~=23.1""", """datasets""": """datasets""", """filelock""": """filelock""", """flax""": """flax>=0.4.1""", """hf-doc-builder""": """hf-doc-builder>=0.3.0""", """huggingface-hub""": """huggingface-hub>=0.13.2""", """requests-mock""": """requests-mock==1.10.0""", """importlib_metadata""": """importlib_metadata""", """invisible-watermark""": """invisible-watermark""", """isort""": """isort>=5.5.4""", """jax""": """jax>=0.2.8,!=0.3.2""", """jaxlib""": """jaxlib>=0.1.65""", """Jinja2""": """Jinja2""", """k-diffusion""": """k-diffusion>=0.0.12""", """torchsde""": """torchsde""", """note_seq""": """note_seq""", """librosa""": """librosa""", """numpy""": """numpy""", """omegaconf""": """omegaconf""", """parameterized""": """parameterized""", """protobuf""": """protobuf>=3.20.3,<4""", """pytest""": """pytest""", """pytest-timeout""": """pytest-timeout""", """pytest-xdist""": """pytest-xdist""", """ruff""": """ruff>=0.0.241""", """safetensors""": """safetensors""", """sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""", """scipy""": """scipy""", """onnx""": """onnx""", """regex""": """regex!=2019.12.17""", """requests""": """requests""", """tensorboard""": """tensorboard""", """torch""": """torch>=1.4""", """torchvision""": """torchvision""", """transformers""": """transformers>=4.25.1""", """urllib3""": """urllib3<=2.0.0""", }
147
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") a_ = logging.getLogger(__name__) @dataclass class __snake_case : """simple docstring""" _lowerCamelCase = field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) @dataclass class __snake_case : """simple docstring""" _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Evaluation language. Also train language if `train_language` is set to None."""} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Train language if it is different from the evaluation language."""} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"""} , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) _lowerCamelCase = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__ , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def __lowercase ( ) ->List[str]: '''simple docstring''' __A : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __A , __A , __A : Tuple = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_xnli''' ,snake_case_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,handlers=[logging.StreamHandler(sys.stdout )] ,) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __A : Tuple = training_args.get_process_log_level() logger.setLevel(snake_case_ ) datasets.utils.logging.set_verbosity(snake_case_ ) transformers.utils.logging.set_verbosity(snake_case_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __A : List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __A : Optional[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: __A : Dict = load_dataset( '''xnli''' ,model_args.language ,split='''train''' ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) else: __A : List[str] = load_dataset( '''xnli''' ,model_args.train_language ,split='''train''' ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) __A : List[Any] = train_dataset.features['''label'''].names if training_args.do_eval: __A : int = load_dataset( '''xnli''' ,model_args.language ,split='''validation''' ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) __A : List[Any] = eval_dataset.features['''label'''].names if training_args.do_predict: __A : Dict = load_dataset( '''xnli''' ,model_args.language ,split='''test''' ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) __A : List[Any] = predict_dataset.features['''label'''].names # Labels __A : Dict = len(snake_case_ ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __A : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=snake_case_ ,idalabel={str(snake_case_ ): label for i, label in enumerate(snake_case_ )} ,labelaid={label: i for i, label in enumerate(snake_case_ )} ,finetuning_task='''xnli''' ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) __A : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,do_lower_case=model_args.do_lower_case ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast_tokenizer ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) __A : str = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) ,config=snake_case_ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,ignore_mismatched_sizes=model_args.ignore_mismatched_sizes ,) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: __A : Tuple = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __A : List[str] = False def preprocess_function(snake_case_ : str ): # Tokenize the texts return tokenizer( examples['''premise'''] ,examples['''hypothesis'''] ,padding=snake_case_ ,max_length=data_args.max_seq_length ,truncation=snake_case_ ,) if training_args.do_train: if data_args.max_train_samples is not None: __A : Dict = min(len(snake_case_ ) ,data_args.max_train_samples ) __A : Any = train_dataset.select(range(snake_case_ ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): __A : Dict = train_dataset.map( snake_case_ ,batched=snake_case_ ,load_from_cache_file=not data_args.overwrite_cache ,desc='''Running tokenizer on train dataset''' ,) # Log a few random samples from the training set: for index in random.sample(range(len(snake_case_ ) ) ,3 ): logger.info(F"""Sample {index} of the training set: {train_dataset[index]}.""" ) if training_args.do_eval: if data_args.max_eval_samples is not None: __A : Optional[Any] = min(len(snake_case_ ) ,data_args.max_eval_samples ) __A : Any = eval_dataset.select(range(snake_case_ ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): __A : Dict = eval_dataset.map( snake_case_ ,batched=snake_case_ ,load_from_cache_file=not data_args.overwrite_cache ,desc='''Running tokenizer on validation dataset''' ,) if training_args.do_predict: if data_args.max_predict_samples is not None: __A : Union[str, Any] = min(len(snake_case_ ) ,data_args.max_predict_samples ) __A : Union[str, Any] = predict_dataset.select(range(snake_case_ ) ) with training_args.main_process_first(desc='''prediction dataset map pre-processing''' ): __A : List[str] = predict_dataset.map( snake_case_ ,batched=snake_case_ ,load_from_cache_file=not data_args.overwrite_cache ,desc='''Running tokenizer on prediction dataset''' ,) # Get the metric function __A : Dict = evaluate.load('''xnli''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(snake_case_ : EvalPrediction ): __A : List[str] = p.predictions[0] if isinstance(p.predictions ,snake_case_ ) else p.predictions __A : int = np.argmax(snake_case_ ,axis=1 ) return metric.compute(predictions=snake_case_ ,references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __A : Tuple = default_data_collator elif training_args.fpaa: __A : str = DataCollatorWithPadding(snake_case_ ,pad_to_multiple_of=8 ) else: __A : Dict = None # Initialize our Trainer __A : str = Trainer( model=snake_case_ ,args=snake_case_ ,train_dataset=train_dataset if training_args.do_train else None ,eval_dataset=eval_dataset if training_args.do_eval else None ,compute_metrics=snake_case_ ,tokenizer=snake_case_ ,data_collator=snake_case_ ,) # Training if training_args.do_train: __A : Union[str, Any] = None if training_args.resume_from_checkpoint is not None: __A : List[str] = training_args.resume_from_checkpoint elif last_checkpoint is not None: __A : Any = last_checkpoint __A : int = trainer.train(resume_from_checkpoint=snake_case_ ) __A : Union[str, Any] = train_result.metrics __A : Dict = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(snake_case_ ) ) __A : Any = min(snake_case_ ,len(snake_case_ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' ,snake_case_ ) trainer.save_metrics('''train''' ,snake_case_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __A : Any = trainer.evaluate(eval_dataset=snake_case_ ) __A : List[str] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(snake_case_ ) __A : str = min(snake_case_ ,len(snake_case_ ) ) trainer.log_metrics('''eval''' ,snake_case_ ) trainer.save_metrics('''eval''' ,snake_case_ ) # Prediction if training_args.do_predict: logger.info('''*** Predict ***''' ) __A , __A , __A : Union[str, Any] = trainer.predict(snake_case_ ,metric_key_prefix='''predict''' ) __A : Dict = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(snake_case_ ) ) __A : Optional[Any] = min(snake_case_ ,len(snake_case_ ) ) trainer.log_metrics('''predict''' ,snake_case_ ) trainer.save_metrics('''predict''' ,snake_case_ ) __A : Optional[int] = np.argmax(snake_case_ ,axis=1 ) __A : Dict = os.path.join(training_args.output_dir ,'''predictions.txt''' ) if trainer.is_world_process_zero(): with open(snake_case_ ,'''w''' ) as writer: writer.write('''index\tprediction\n''' ) for index, item in enumerate(snake_case_ ): __A : str = label_list[item] writer.write(F"""{index}\t{item}\n""" ) if __name__ == "__main__": main()
177
0
'''simple docstring''' import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def __UpperCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = checkpoint SCREAMING_SNAKE_CASE_ : Optional[Any] = {} SCREAMING_SNAKE_CASE_ : Tuple = vae_state_dict['encoder.conv_in.weight'] SCREAMING_SNAKE_CASE_ : Optional[int] = vae_state_dict['encoder.conv_in.bias'] SCREAMING_SNAKE_CASE_ : Optional[int] = vae_state_dict['encoder.conv_out.weight'] SCREAMING_SNAKE_CASE_ : List[Any] = vae_state_dict['encoder.conv_out.bias'] SCREAMING_SNAKE_CASE_ : List[Any] = vae_state_dict['encoder.norm_out.weight'] SCREAMING_SNAKE_CASE_ : List[str] = vae_state_dict['encoder.norm_out.bias'] SCREAMING_SNAKE_CASE_ : Any = vae_state_dict['decoder.conv_in.weight'] SCREAMING_SNAKE_CASE_ : List[Any] = vae_state_dict['decoder.conv_in.bias'] SCREAMING_SNAKE_CASE_ : Union[str, Any] = vae_state_dict['decoder.conv_out.weight'] SCREAMING_SNAKE_CASE_ : Union[str, Any] = vae_state_dict['decoder.conv_out.bias'] SCREAMING_SNAKE_CASE_ : List[str] = vae_state_dict['decoder.norm_out.weight'] SCREAMING_SNAKE_CASE_ : Dict = vae_state_dict['decoder.norm_out.bias'] SCREAMING_SNAKE_CASE_ : Dict = vae_state_dict['quant_conv.weight'] SCREAMING_SNAKE_CASE_ : List[Any] = vae_state_dict['quant_conv.bias'] SCREAMING_SNAKE_CASE_ : Dict = vae_state_dict['post_quant_conv.weight'] SCREAMING_SNAKE_CASE_ : List[Any] = vae_state_dict['post_quant_conv.bias'] # Retrieves the keys for the encoder down blocks only SCREAMING_SNAKE_CASE_ : List[Any] = len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'encoder.down' in layer} ) SCREAMING_SNAKE_CASE_ : int = { layer_id: [key for key in vae_state_dict if F'down.{layer_id}' in key] for layer_id in range(lowerCamelCase_ ) } # Retrieves the keys for the decoder up blocks only SCREAMING_SNAKE_CASE_ : Optional[Any] = len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'decoder.up' in layer} ) SCREAMING_SNAKE_CASE_ : List[Any] = { layer_id: [key for key in vae_state_dict if F'up.{layer_id}' in key] for layer_id in range(lowerCamelCase_ ) } for i in range(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Tuple = [key for key in down_blocks[i] if F'down.{i}' in key and F'down.{i}.downsample' not in key] if F'encoder.down.{i}.downsample.conv.weight' in vae_state_dict: SCREAMING_SNAKE_CASE_ : Dict = vae_state_dict.pop( F'encoder.down.{i}.downsample.conv.weight' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = vae_state_dict.pop( F'encoder.down.{i}.downsample.conv.bias' ) SCREAMING_SNAKE_CASE_ : str = renew_vae_resnet_paths(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Tuple = {'old': F'down.{i}.block', 'new': F'down_blocks.{i}.resnets'} assign_to_checkpoint(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , additional_replacements=[meta_path] , config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : int = [key for key in vae_state_dict if 'encoder.mid.block' in key] SCREAMING_SNAKE_CASE_ : Dict = 2 for i in range(1 , num_mid_res_blocks + 1 ): SCREAMING_SNAKE_CASE_ : Optional[int] = [key for key in mid_resnets if F'encoder.mid.block_{i}' in key] SCREAMING_SNAKE_CASE_ : Optional[int] = renew_vae_resnet_paths(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = {'old': F'mid.block_{i}', 'new': F'mid_block.resnets.{i - 1}'} assign_to_checkpoint(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , additional_replacements=[meta_path] , config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : int = [key for key in vae_state_dict if 'encoder.mid.attn' in key] SCREAMING_SNAKE_CASE_ : int = renew_vae_attention_paths(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : int = {'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'} assign_to_checkpoint(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , additional_replacements=[meta_path] , config=lowerCamelCase_ ) conv_attn_to_linear(lowerCamelCase_ ) for i in range(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Dict = num_up_blocks - 1 - i SCREAMING_SNAKE_CASE_ : Dict = [ key for key in up_blocks[block_id] if F'up.{block_id}' in key and F'up.{block_id}.upsample' not in key ] if F'decoder.up.{block_id}.upsample.conv.weight' in vae_state_dict: SCREAMING_SNAKE_CASE_ : List[Any] = vae_state_dict[ F'decoder.up.{block_id}.upsample.conv.weight' ] SCREAMING_SNAKE_CASE_ : Any = vae_state_dict[ F'decoder.up.{block_id}.upsample.conv.bias' ] SCREAMING_SNAKE_CASE_ : List[Any] = renew_vae_resnet_paths(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Tuple = {'old': F'up.{block_id}.block', 'new': F'up_blocks.{i}.resnets'} assign_to_checkpoint(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , additional_replacements=[meta_path] , config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : str = [key for key in vae_state_dict if 'decoder.mid.block' in key] SCREAMING_SNAKE_CASE_ : List[Any] = 2 for i in range(1 , num_mid_res_blocks + 1 ): SCREAMING_SNAKE_CASE_ : List[str] = [key for key in mid_resnets if F'decoder.mid.block_{i}' in key] SCREAMING_SNAKE_CASE_ : Tuple = renew_vae_resnet_paths(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : int = {'old': F'mid.block_{i}', 'new': F'mid_block.resnets.{i - 1}'} assign_to_checkpoint(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , additional_replacements=[meta_path] , config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : int = [key for key in vae_state_dict if 'decoder.mid.attn' in key] SCREAMING_SNAKE_CASE_ : str = renew_vae_attention_paths(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : str = {'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'} assign_to_checkpoint(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , additional_replacements=[meta_path] , config=lowerCamelCase_ ) conv_attn_to_linear(lowerCamelCase_ ) return new_checkpoint def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : str , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = requests.get( ' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml' ) SCREAMING_SNAKE_CASE_ : Any = io.BytesIO(r.content ) SCREAMING_SNAKE_CASE_ : Optional[Any] = OmegaConf.load(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] = 5_12 SCREAMING_SNAKE_CASE_ : str = 'cuda' if torch.cuda.is_available() else 'cpu' if checkpoint_path.endswith('safetensors' ): from safetensors import safe_open SCREAMING_SNAKE_CASE_ : Tuple = {} with safe_open(lowerCamelCase_ , framework='pt' , device='cpu' ) as f: for key in f.keys(): SCREAMING_SNAKE_CASE_ : Optional[int] = f.get_tensor(lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE_ : Optional[int] = torch.load(lowerCamelCase_ , map_location=lowerCamelCase_ )['state_dict'] # Convert the VAE model. SCREAMING_SNAKE_CASE_ : Optional[Any] = create_vae_diffusers_config(lowerCamelCase_ , image_size=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Tuple = custom_convert_ldm_vae_checkpoint(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Any = AutoencoderKL(**lowerCamelCase_ ) vae.load_state_dict(lowerCamelCase_ ) vae.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": UpperCamelCase__ : Dict = argparse.ArgumentParser() parser.add_argument('''--vae_pt_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') UpperCamelCase__ : str = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
720
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : Union[str, Any] = CLIPTokenizer __a : List[str] = CLIPTokenizerFast __a : List[str] = True __a : Tuple = {} __a : Tuple = False def snake_case ( self ): super().setUp() # fmt: off SCREAMING_SNAKE_CASE_ : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on SCREAMING_SNAKE_CASE_ : Union[str, Any] = dict(zip(snake_case__ ,range(len(snake_case__ ) ) ) ) SCREAMING_SNAKE_CASE_ : Any = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] SCREAMING_SNAKE_CASE_ : Any = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE_ : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case__ ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case__ ) ) def snake_case ( self ,**snake_case__ ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ,**snake_case__ ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[str] = 'lower newer' SCREAMING_SNAKE_CASE_ : Tuple = 'lower newer' return input_text, output_text def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = CLIPTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) SCREAMING_SNAKE_CASE_ : List[Any] = 'lower newer' SCREAMING_SNAKE_CASE_ : Optional[Any] = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] SCREAMING_SNAKE_CASE_ : Any = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE_ : Optional[Any] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) ,snake_case__ ) @require_ftfy def snake_case ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ : Any = self.tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = self.rust_tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways SCREAMING_SNAKE_CASE_ : Dict = 'xa\u0303y' + ' ' + 'x\xe3y' SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on unicode of space type SCREAMING_SNAKE_CASE_ : Optional[Any] = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on unicode of line break type SCREAMING_SNAKE_CASE_ : Tuple = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) def snake_case ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ : Optional[int] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE_ : Tuple = F'{text_of_1_token} {text_of_1_token}' SCREAMING_SNAKE_CASE_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( snake_case__ ,use_fast=snake_case__ ,) SCREAMING_SNAKE_CASE_ : str = tokenizer_r(snake_case__ ,return_offsets_mapping=snake_case__ ,add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(snake_case__ ) + 1, len(snake_case__ ) + 1 + len(snake_case__ )) ,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = F' {text}' SCREAMING_SNAKE_CASE_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( snake_case__ ,use_fast=snake_case__ ,) SCREAMING_SNAKE_CASE_ : int = tokenizer_r(snake_case__ ,return_offsets_mapping=snake_case__ ,add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] ,(1, 1 + len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(snake_case__ ) + 1, 1 + len(snake_case__ ) + 1 + len(snake_case__ )) ,) def snake_case ( self ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(snake_case__ ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def snake_case ( self ): super().test_tokenization_python_rust_equals() def snake_case ( self ): # CLIP always lower cases letters pass
685
0
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
39
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if any(not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or x < 0 for x in sequence ): raise TypeError('''Sequence must be list of non-negative integers''' ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(SCREAMING_SNAKE_CASE__ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
39
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A : Dict ={ '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Union[str, Any] =[ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _A : Dict =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
719
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Any =logging.get_logger(__name__) _A : Dict ={ '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class _lowercase ( _lowercase ): a = """trocr""" a = ["""past_key_values"""] a = { """num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """decoder_layers""", } def __init__( self: Optional[Any] , UpperCamelCase__: int=50_265 , UpperCamelCase__: int=1_024 , UpperCamelCase__: Optional[Any]=12 , UpperCamelCase__: Dict=16 , UpperCamelCase__: int=4_096 , UpperCamelCase__: Tuple="gelu" , UpperCamelCase__: int=512 , UpperCamelCase__: Dict=0.1 , UpperCamelCase__: Tuple=0.0 , UpperCamelCase__: str=0.0 , UpperCamelCase__: Any=2 , UpperCamelCase__: Dict=0.02 , UpperCamelCase__: Optional[Any]=0.0 , UpperCamelCase__: str=True , UpperCamelCase__: Tuple=False , UpperCamelCase__: Union[str, Any]=True , UpperCamelCase__: Tuple=True , UpperCamelCase__: Dict=1 , UpperCamelCase__: List[str]=0 , UpperCamelCase__: Union[str, Any]=2 , **UpperCamelCase__: str , ): lowerCamelCase__ : Any = vocab_size lowerCamelCase__ : Tuple = d_model lowerCamelCase__ : Any = decoder_layers lowerCamelCase__ : Dict = decoder_attention_heads lowerCamelCase__ : str = decoder_ffn_dim lowerCamelCase__ : Tuple = activation_function lowerCamelCase__ : Dict = max_position_embeddings lowerCamelCase__ : int = dropout lowerCamelCase__ : int = attention_dropout lowerCamelCase__ : List[Any] = activation_dropout lowerCamelCase__ : Union[str, Any] = init_std lowerCamelCase__ : Optional[int] = decoder_layerdrop lowerCamelCase__ : Dict = use_cache lowerCamelCase__ : Any = scale_embedding lowerCamelCase__ : Optional[int] = use_learned_position_embeddings lowerCamelCase__ : List[str] = layernorm_embedding super().__init__( pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , **UpperCamelCase__ , )
631
0
'''simple docstring''' import os def lowerCamelCase( SCREAMING_SNAKE_CASE_ = "input.txt" ) -> int: with open(os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE_ ) ,SCREAMING_SNAKE_CASE_ ) ) as input_file: A_ = [ [int(SCREAMING_SNAKE_CASE_ ) for element in line.split(',' )] for line in input_file.readlines() ] A_ = len(SCREAMING_SNAKE_CASE_ ) A_ = len(matrix[0] ) A_ = [[-1 for _ in range(SCREAMING_SNAKE_CASE_ )] for _ in range(SCREAMING_SNAKE_CASE_ )] for i in range(SCREAMING_SNAKE_CASE_ ): A_ = matrix[i][0] for j in range(1 ,SCREAMING_SNAKE_CASE_ ): for i in range(SCREAMING_SNAKE_CASE_ ): A_ = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 ,SCREAMING_SNAKE_CASE_ ): A_ = min( minimal_path_sums[i][j] ,minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 ,-1 ,-1 ): A_ = min( minimal_path_sums[i][j] ,minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f"""{solution() = }""")
366
'''simple docstring''' import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCamelCase( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> str: # Construct model if openai_config_file == "": A_ = OpenAIGPTConfig() else: A_ = OpenAIGPTConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) A_ = OpenAIGPTModel(SCREAMING_SNAKE_CASE_ ) # Load weights from numpy load_tf_weights_in_openai_gpt(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) # Save pytorch-model A_ = pytorch_dump_folder_path + '/' + WEIGHTS_NAME A_ = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() ,SCREAMING_SNAKE_CASE_ ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(SCREAMING_SNAKE_CASE_ ,'w' ,encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--openai_checkpoint_folder_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--openai_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
366
1
import unittest import numpy as np def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a = None , ): snake_case_ : Union[str, Any] = np.shape(__a ) snake_case_ : Dict = np.shape(__a ) snake_case_ : str = np.shape(__a ) if shape_a[0] != shape_b[0]: snake_case_ : List[Any] = ( 'Expected the same number of rows for A and B. ' f"""Instead found A of size {shape_a} and B of size {shape_b}""" ) raise ValueError(__a ) if shape_b[1] != shape_c[1]: snake_case_ : Optional[int] = ( 'Expected the same number of columns for B and C. ' f"""Instead found B of size {shape_b} and C of size {shape_c}""" ) raise ValueError(__a ) snake_case_ : List[str] = pseudo_inv if a_inv is None: try: snake_case_ : int = np.linalg.inv(__a ) except np.linalg.LinAlgError: raise ValueError( 'Input matrix A is not invertible. Cannot compute Schur complement.' ) return mat_c - mat_b.T @ a_inv @ mat_b class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def UpperCAmelCase_ ( self : List[Any] ) -> None: """simple docstring""" snake_case_ : Union[str, Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) snake_case_ : Optional[Any] = np.array([[0, 3], [3, 0], [2, 3]] ) snake_case_ : Any = np.array([[2, 1], [6, 3]] ) snake_case_ : int = schur_complement(_A , _A , _A ) snake_case_ : Optional[int] = np.block([[a, b], [b.T, c]] ) snake_case_ : Tuple = np.linalg.det(_A ) snake_case_ : Optional[Any] = np.linalg.det(_A ) snake_case_ : Union[str, Any] = np.linalg.det(_A ) self.assertAlmostEqual(_A , det_a * det_s ) def UpperCAmelCase_ ( self : Optional[Any] ) -> None: """simple docstring""" snake_case_ : int = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) snake_case_ : int = np.array([[0, 3], [3, 0], [2, 3]] ) snake_case_ : Dict = np.array([[2, 1], [6, 3]] ) with self.assertRaises(_A ): schur_complement(_A , _A , _A ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> None: """simple docstring""" snake_case_ : List[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) snake_case_ : List[str] = np.array([[0, 3], [3, 0], [2, 3]] ) snake_case_ : Any = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(_A ): schur_complement(_A , _A , _A ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
534
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): return [ int(10_00 * (box[0] / width) ), int(10_00 * (box[1] / height) ), int(10_00 * (box[2] / width) ), int(10_00 * (box[3] / height) ), ] def SCREAMING_SNAKE_CASE__ ( __a , __a , __a = None ): snake_case_ : int = tesseract_config if tesseract_config is not None else '' # apply OCR snake_case_ : str = to_pil_image(__a ) snake_case_ ,snake_case_ : str = pil_image.size snake_case_ : str = pytesseract.image_to_data(__a , lang=__a , output_type='dict' , config=__a ) snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ : Dict = data['text'], data['left'], data['top'], data['width'], data['height'] # filter empty words and corresponding coordinates snake_case_ : str = [idx for idx, word in enumerate(__a ) if not word.strip()] snake_case_ : Optional[Any] = [word for idx, word in enumerate(__a ) if idx not in irrelevant_indices] snake_case_ : Any = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] snake_case_ : Any = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] snake_case_ : List[Any] = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] snake_case_ : int = [coord for idx, coord in enumerate(__a ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format snake_case_ : int = [] for x, y, w, h in zip(__a , __a , __a , __a ): snake_case_ : str = [x, y, x + w, y + h] actual_boxes.append(__a ) # finally, normalize the bounding boxes snake_case_ : Dict = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__a , __a , __a ) ) assert len(__a ) == len(__a ), "Not as many words as there are bounding boxes" return words, normalized_boxes class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: str = ["pixel_values"] def __init__( self : List[str] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Optional[str] = None , _A : Optional[str] = "" , **_A : int , ) -> None: """simple docstring""" super().__init__(**_A ) snake_case_ : Optional[int] = size if size is not None else {'height': 224, 'width': 224} snake_case_ : List[str] = get_size_dict(_A ) snake_case_ : int = do_resize snake_case_ : int = size snake_case_ : Any = resample snake_case_ : List[str] = apply_ocr snake_case_ : str = ocr_lang snake_case_ : Dict = tesseract_config def UpperCAmelCase_ ( self : int , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : Optional[Union[str, ChannelDimension]] = None , **_A : str , ) -> np.ndarray: """simple docstring""" snake_case_ : Optional[Any] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) snake_case_ : Optional[Any] = (size['height'], size['width']) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : Optional[int] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Optional[str] = None , _A : Optional[str] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : List[str] , ) -> PIL.Image.Image: """simple docstring""" snake_case_ : Dict = do_resize if do_resize is not None else self.do_resize snake_case_ : Optional[Any] = size if size is not None else self.size snake_case_ : Union[str, Any] = get_size_dict(_A ) snake_case_ : Dict = resample if resample is not None else self.resample snake_case_ : Tuple = apply_ocr if apply_ocr is not None else self.apply_ocr snake_case_ : int = ocr_lang if ocr_lang is not None else self.ocr_lang snake_case_ : int = tesseract_config if tesseract_config is not None else self.tesseract_config snake_case_ : str = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) # All transformations expect numpy arrays. snake_case_ : List[str] = [to_numpy_array(_A ) for image in images] if apply_ocr: requires_backends(self , 'pytesseract' ) snake_case_ : str = [] snake_case_ : List[Any] = [] for image in images: snake_case_ ,snake_case_ : Tuple = apply_tesseract(_A , _A , _A ) words_batch.append(_A ) boxes_batch.append(_A ) if do_resize: snake_case_ : Tuple = [self.resize(image=_A , size=_A , resample=_A ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) snake_case_ : int = [flip_channel_order(_A ) for image in images] snake_case_ : Any = [to_channel_dimension_format(_A , _A ) for image in images] snake_case_ : List[str] = BatchFeature(data={'pixel_values': images} , tensor_type=_A ) if apply_ocr: snake_case_ : Dict = words_batch snake_case_ : List[str] = boxes_batch return data
534
1
'''simple docstring''' import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowercase( a_ ,unittest.TestCase ): """simple docstring""" __lowerCamelCase = None __lowerCamelCase = BloomTokenizerFast __lowerCamelCase = BloomTokenizerFast __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = '''tokenizer_file''' __lowerCamelCase = {'''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''unk_token''': '''<unk>''', '''pad_token''': '''<pad>'''} def snake_case ( self: Tuple ): super().setUp() __UpperCAmelCase = BloomTokenizerFast.from_pretrained('bigscience/tokenizer' ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case ( self: List[Any] ,**a: List[str] ): kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname ,**UpperCamelCase_ ) def snake_case ( self: str ): __UpperCAmelCase = self.get_rust_tokenizer() __UpperCAmelCase = ['The quick brown fox</s>', 'jumps over the lazy dog</s>'] __UpperCAmelCase = [[2175, 23714, 73173, 144252, 2], [77, 132619, 3478, 368, 109586, 35433, 2]] __UpperCAmelCase = tokenizer.batch_encode_plus(UpperCamelCase_ )['input_ids'] self.assertListEqual(UpperCamelCase_ ,UpperCamelCase_ ) __UpperCAmelCase = tokenizer.batch_decode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ ,UpperCamelCase_ ) def snake_case ( self: Tuple ,a: Tuple=6 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(UpperCamelCase_ ,**UpperCamelCase_ ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input __UpperCAmelCase = 'This is a simple input' __UpperCAmelCase = ['This is a simple input 1', 'This is a simple input 2'] __UpperCAmelCase = ('This is a simple input', 'This is a pair') __UpperCAmelCase = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests try: tokenizer_r.encode(UpperCamelCase_ ,max_length=UpperCamelCase_ ) tokenizer_r.encode_plus(UpperCamelCase_ ,max_length=UpperCamelCase_ ) tokenizer_r.batch_encode_plus(UpperCamelCase_ ,max_length=UpperCamelCase_ ) tokenizer_r.encode(UpperCamelCase_ ,max_length=UpperCamelCase_ ) tokenizer_r.batch_encode_plus(UpperCamelCase_ ,max_length=UpperCamelCase_ ) except ValueError: self.fail('Bloom Tokenizer should be able to deal with padding' ) __UpperCAmelCase = None # Hotfixing padding = None self.assertRaises(UpperCamelCase_ ,tokenizer_r.encode ,UpperCamelCase_ ,max_length=UpperCamelCase_ ,padding='max_length' ) # Simple input self.assertRaises(UpperCamelCase_ ,tokenizer_r.encode_plus ,UpperCamelCase_ ,max_length=UpperCamelCase_ ,padding='max_length' ) # Simple input self.assertRaises( UpperCamelCase_ ,tokenizer_r.batch_encode_plus ,UpperCamelCase_ ,max_length=UpperCamelCase_ ,padding='max_length' ,) # Pair input self.assertRaises(UpperCamelCase_ ,tokenizer_r.encode ,UpperCamelCase_ ,max_length=UpperCamelCase_ ,padding='max_length' ) # Pair input self.assertRaises(UpperCamelCase_ ,tokenizer_r.encode_plus ,UpperCamelCase_ ,max_length=UpperCamelCase_ ,padding='max_length' ) # Pair input self.assertRaises( UpperCamelCase_ ,tokenizer_r.batch_encode_plus ,UpperCamelCase_ ,max_length=UpperCamelCase_ ,padding='max_length' ,) def snake_case ( self: Dict ): __UpperCAmelCase = self.get_rust_tokenizer() __UpperCAmelCase = load_dataset('xnli' ,'all_languages' ,split='test' ,streaming=UpperCamelCase_ ) __UpperCAmelCase = next(iter(UpperCamelCase_ ) )['premise'] # pick up one data __UpperCAmelCase = list(sample_data.values() ) __UpperCAmelCase = list(map(tokenizer.encode ,UpperCamelCase_ ) ) __UpperCAmelCase = [tokenizer.decode(UpperCamelCase_ ,clean_up_tokenization_spaces=UpperCamelCase_ ) for x in output_tokens] self.assertListEqual(UpperCamelCase_ ,UpperCamelCase_ ) def snake_case ( self: Tuple ): self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) ,1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) ,1 )
396
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCamelCase__ ( metaclass=a_): """simple docstring""" __UpperCAmelCase = ["""flax""", """transformers"""] def __init__( self : List[Any] , *UpperCamelCase_ : str , **UpperCamelCase_ : Any ): '''simple docstring''' requires_backends(self , ['flax', 'transformers'] ) @classmethod def a__ ( cls : Optional[int] , *UpperCamelCase_ : Tuple , **UpperCamelCase_ : List[Any] ): '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] ) @classmethod def a__ ( cls : str , *UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : Dict ): '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] ) class UpperCamelCase__ ( metaclass=a_): """simple docstring""" __UpperCAmelCase = ["""flax""", """transformers"""] def __init__( self : List[Any] , *UpperCamelCase_ : str , **UpperCamelCase_ : str ): '''simple docstring''' requires_backends(self , ['flax', 'transformers'] ) @classmethod def a__ ( cls : Optional[int] , *UpperCamelCase_ : Optional[int] , **UpperCamelCase_ : List[str] ): '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] ) @classmethod def a__ ( cls : Tuple , *UpperCamelCase_ : List[str] , **UpperCamelCase_ : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] ) class UpperCamelCase__ ( metaclass=a_): """simple docstring""" __UpperCAmelCase = ["""flax""", """transformers"""] def __init__( self : Optional[int] , *UpperCamelCase_ : List[Any] , **UpperCamelCase_ : List[str] ): '''simple docstring''' requires_backends(self , ['flax', 'transformers'] ) @classmethod def a__ ( cls : str , *UpperCamelCase_ : List[str] , **UpperCamelCase_ : Tuple ): '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] ) @classmethod def a__ ( cls : Tuple , *UpperCamelCase_ : Any , **UpperCamelCase_ : List[str] ): '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] ) class UpperCamelCase__ ( metaclass=a_): """simple docstring""" __UpperCAmelCase = ["""flax""", """transformers"""] def __init__( self : Optional[Any] , *UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : Dict ): '''simple docstring''' requires_backends(self , ['flax', 'transformers'] ) @classmethod def a__ ( cls : str , *UpperCamelCase_ : Dict , **UpperCamelCase_ : List[str] ): '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] ) @classmethod def a__ ( cls : str , *UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] )
545
0
import math import qiskit def UpperCamelCase__( UpperCamelCase__ : int = 1 , UpperCamelCase__ : int = 1 , UpperCamelCase__ : int = 1 )->qiskit.result.counts.Counts: if ( isinstance(UpperCamelCase__ , UpperCamelCase__ ) or isinstance(UpperCamelCase__ , UpperCamelCase__ ) or isinstance(UpperCamelCase__ , UpperCamelCase__ ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(UpperCamelCase__ ) != input_a) or (math.floor(UpperCamelCase__ ) != input_a) or (math.floor(UpperCamelCase__ ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers A__ = qiskit.QuantumRegister(4 , '''qr''' ) A__ = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries A__ = [input_a, input_a, carry_in] A__ = qiskit.QuantumCircuit(UpperCamelCase__ , UpperCamelCase__ ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(UpperCamelCase__ ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(UpperCamelCase__ ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(UpperCamelCase__ ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , UpperCamelCase__ ) # measure the last two qbits A__ = qiskit.Aer.get_backend('''aer_simulator''' ) A__ = qiskit.execute(UpperCamelCase__ , UpperCamelCase__ , shots=10_00 ) return job.result().get_counts(UpperCamelCase__ ) if __name__ == "__main__": print(F"Total sum count for state is: {quantum_full_adder(1, 1, 1)}")
717
import math def UpperCamelCase__( UpperCamelCase__ : int )->bool: assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False A__ = range(3 , int(math.sqrt(UpperCamelCase__ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def UpperCamelCase__( UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any]=1 , **UpperCamelCase__ : int )->List[Any]: A__ = factor * value A__ = value while not is_prime(UpperCamelCase__ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **UpperCamelCase__ ) return value
212
0
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def lowerCamelCase ( _snake_case : Dict ,_snake_case : Union[str, Any] ,_snake_case : Optional[int] ): '''simple docstring''' lowercase__ = UniSpeechSatForSequenceClassification.from_pretrained(_snake_case ,config=_snake_case ) lowercase__ = downstream_dict["projector.weight"] lowercase__ = downstream_dict["projector.bias"] lowercase__ = downstream_dict["model.post_net.linear.weight"] lowercase__ = downstream_dict["model.post_net.linear.bias"] return model def lowerCamelCase ( _snake_case : Union[str, Any] ,_snake_case : int ,_snake_case : Any ): '''simple docstring''' lowercase__ = UniSpeechSatForAudioFrameClassification.from_pretrained(_snake_case ,config=_snake_case ) lowercase__ = downstream_dict["model.linear.weight"] lowercase__ = downstream_dict["model.linear.bias"] return model def lowerCamelCase ( _snake_case : Optional[Any] ,_snake_case : Optional[Any] ,_snake_case : int ): '''simple docstring''' lowercase__ = UniSpeechSatForXVector.from_pretrained(_snake_case ,config=_snake_case ) lowercase__ = downstream_dict["connector.weight"] lowercase__ = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): lowercase__ = downstream_dict[ f'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] lowercase__ = downstream_dict[f'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] lowercase__ = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] lowercase__ = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] lowercase__ = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] lowercase__ = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] lowercase__ = downstream_dict["objective.W"] return model @torch.no_grad() def lowerCamelCase ( _snake_case : Dict ,_snake_case : Optional[int] ,_snake_case : int ,_snake_case : List[Any] ): '''simple docstring''' lowercase__ = torch.load(_snake_case ,map_location="cpu" ) lowercase__ = checkpoint["Downstream"] lowercase__ = UniSpeechSatConfig.from_pretrained(_snake_case ) lowercase__ = WavaVecaFeatureExtractor.from_pretrained( _snake_case ,return_attention_mask=_snake_case ,do_normalize=_snake_case ) lowercase__ = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): lowercase__ = convert_classification(_snake_case ,_snake_case ,_snake_case ) elif arch.endswith("ForAudioFrameClassification" ): lowercase__ = convert_diarization(_snake_case ,_snake_case ,_snake_case ) elif arch.endswith("ForXVector" ): lowercase__ = convert_xvector(_snake_case ,_snake_case ,_snake_case ) else: raise NotImplementedError(f'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: lowercase__ = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(_snake_case ) hf_model.save_pretrained(_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
267
'''simple docstring''' import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset SCREAMING_SNAKE_CASE__ = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class snake_case (nn.Module ): def __init__( self ,UpperCAmelCase_ ) -> Dict: super().__init__() lowercase__ = torchvision.models.resnetaaa(pretrained=UpperCAmelCase_ ) lowercase__ = list(model.children() )[:-2] lowercase__ = nn.Sequential(*UpperCAmelCase_ ) lowercase__ = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def _a ( self ,UpperCAmelCase_ ) -> str: # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 lowercase__ = self.pool(self.model(UpperCAmelCase_ ) ) lowercase__ = torch.flatten(UpperCAmelCase_ ,start_dim=2 ) lowercase__ = out.transpose(1 ,2 ).contiguous() return out # BxNx2048 class snake_case (UpperCamelCase ): def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) -> Dict: lowercase__ = [json.loads(UpperCAmelCase_ ) for l in open(UpperCAmelCase_ )] lowercase__ = os.path.dirname(UpperCAmelCase_ ) lowercase__ = tokenizer lowercase__ = labels lowercase__ = len(UpperCAmelCase_ ) lowercase__ = max_seq_length lowercase__ = transforms def __len__( self ) -> Optional[Any]: return len(self.data ) def __getitem__( self ,UpperCAmelCase_ ) -> Optional[int]: lowercase__ = torch.LongTensor(self.tokenizer.encode(self.data[index]["text"] ,add_special_tokens=UpperCAmelCase_ ) ) lowercase__ , lowercase__ , lowercase__ = sentence[0], sentence[1:-1], sentence[-1] lowercase__ = sentence[: self.max_seq_length] lowercase__ = torch.zeros(self.n_classes ) lowercase__ = 1 lowercase__ = Image.open(os.path.join(self.data_dir ,self.data[index]["img"] ) ).convert("RGB" ) lowercase__ = self.transforms(UpperCAmelCase_ ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def _a ( self ) -> str: lowercase__ = Counter() for row in self.data: label_freqs.update(row["label"] ) return label_freqs def lowerCamelCase ( _snake_case : Optional[int] ): '''simple docstring''' lowercase__ = [len(row["sentence"] ) for row in batch] lowercase__ , lowercase__ = len(_snake_case ), max(_snake_case ) lowercase__ = torch.zeros(_snake_case ,_snake_case ,dtype=torch.long ) lowercase__ = torch.zeros(_snake_case ,_snake_case ,dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_snake_case ,_snake_case ) ): lowercase__ = input_row["sentence"] lowercase__ = 1 lowercase__ = torch.stack([row["image"] for row in batch] ) lowercase__ = torch.stack([row["label"] for row in batch] ) lowercase__ = torch.stack([row["image_start_token"] for row in batch] ) lowercase__ = torch.stack([row["image_end_token"] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def lowerCamelCase ( ): '''simple docstring''' return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def lowerCamelCase ( ): '''simple docstring''' return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] ,std=[0.12_221_994, 0.12_145_835, 0.14_380_469] ,), ] )
267
1
import math def a(lowercase__ ): '''simple docstring''' snake_case_ = [] snake_case_ = 2 snake_case_ = int(math.sqrt(lowercase__ ) ) # Size of every segment snake_case_ = [True] * (end + 1) snake_case_ = [] while start <= end: if temp[start] is True: in_prime.append(lowercase__ ) for i in range(start * start , end + 1 , lowercase__ ): snake_case_ = False start += 1 prime += in_prime snake_case_ = end + 1 snake_case_ = min(2 * end , lowercase__ ) while low <= n: snake_case_ = [True] * (high - low + 1) for each in in_prime: snake_case_ = math.floor(low / each ) * each if t < low: t += each for j in range(lowercase__ , high + 1 , lowercase__ ): snake_case_ = False for j in range(len(lowercase__ ) ): if temp[j] is True: prime.append(j + low ) snake_case_ = high + 1 snake_case_ = min(high + end , lowercase__ ) return prime print(sieve(10**6))
712
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A = logging.get_logger(__name__) A = { 'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json', } class SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): """simple docstring""" __A = """bit""" __A = ["""preactivation""", """bottleneck"""] __A = ["""SAME""", """VALID"""] def __init__( self , __UpperCamelCase=3 , __UpperCamelCase=64 , __UpperCamelCase=[2_56, 5_12, 10_24, 20_48] , __UpperCamelCase=[3, 4, 6, 3] , __UpperCamelCase="preactivation" , __UpperCamelCase="relu" , __UpperCamelCase=None , __UpperCamelCase=32 , __UpperCamelCase=0.0 , __UpperCamelCase=False , __UpperCamelCase=32 , __UpperCamelCase=1 , __UpperCamelCase=None , __UpperCamelCase=None , **__UpperCamelCase , ): """simple docstring""" super().__init__(**__UpperCamelCase ) if layer_type not in self.layer_types: raise ValueError(f"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: snake_case_ = global_padding.upper() else: raise ValueError(f"""Padding strategy {global_padding} not supported""" ) snake_case_ = num_channels snake_case_ = embedding_size snake_case_ = hidden_sizes snake_case_ = depths snake_case_ = layer_type snake_case_ = hidden_act snake_case_ = global_padding snake_case_ = num_groups snake_case_ = drop_path_rate snake_case_ = embedding_dynamic_padding snake_case_ = output_stride snake_case_ = width_factor snake_case_ = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(__UpperCamelCase ) + 1 )] snake_case_ , snake_case_ = get_aligned_output_features_output_indices( out_features=__UpperCamelCase , out_indices=__UpperCamelCase , stage_names=self.stage_names )
46
0
from __future__ import annotations def a__ ( snake_case ): """simple docstring""" return len(set(snake_case ) ) == len(snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
74
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowercase_ = logging.get_logger(__name__) class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : Tuple , *_A : Optional[int] , **_A : Tuple ): """simple docstring""" warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' , _A , ) super().__init__(*_A , **_A )
74
1
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=[10, 20, 30, 40] , SCREAMING_SNAKE_CASE_=[1, 1, 2, 1] , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="relu" , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=None , ) -> List[str]: '''simple docstring''' lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = num_channels lowerCamelCase_ = embeddings_size lowerCamelCase_ = hidden_sizes lowerCamelCase_ = depths lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = hidden_act lowerCamelCase_ = num_labels lowerCamelCase_ = scope lowerCamelCase_ = len(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = TFResNetModel(config=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' lowerCamelCase_ = self.num_labels lowerCamelCase_ = TFResNetForImageClassification(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () SCREAMING_SNAKE_CASE_ = ( {'feature-extraction': TFResNetModel, 'image-classification': TFResNetForImageClassification} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = TFResNetModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def UpperCamelCase( self ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' pass def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> List[str]: '''simple docstring''' def check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = model_class(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase_ = self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCamelCase_ = layer_type lowerCamelCase_ = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> str: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @slow def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFResNetModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def _UpperCamelCase ( ) -> Dict: lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCamelCase( self ) -> int: '''simple docstring''' lowerCamelCase_ = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='tf' ) # forward pass lowerCamelCase_ = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits lowerCamelCase_ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tf.constant([-11.1_069, -9.7_877, -8.3_777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
702
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME A_ = ["small", "medium", "large"] A_ = "lm_head.decoder.weight" A_ = "lm_head.weight" def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> str: lowerCamelCase_ = torch.load(__UpperCamelCase ) lowerCamelCase_ = d.pop(__UpperCamelCase ) os.makedirs(__UpperCamelCase ,exist_ok=__UpperCamelCase ) torch.save(__UpperCamelCase ,os.path.join(__UpperCamelCase ,__UpperCamelCase ) ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument("--dialogpt_path", default=".", type=str) A_ = parser.parse_args() for MODEL in DIALOGPT_MODELS: A_ = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') A_ = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
384
0
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration __snake_case: Union[str, Any] = 50_00_00 __snake_case: List[Any] = os.path.split(__file__) __snake_case: str = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def _snake_case ( A_ : Tuple , **A_ : List[str] ): """simple docstring""" a_ : int = dataset.map(**A_ ) @get_duration def _snake_case ( A_ : int , **A_ : List[Any] ): """simple docstring""" a_ : str = dataset.filter(**A_ ) def _snake_case ( ): """simple docstring""" a_ : Optional[int] = {"""num examples""": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: a_ : Union[str, Any] = datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} ) a_ : Optional[Any] = generate_example_dataset( os.path.join(A_ , """dataset.arrow""" ) , A_ , num_examples=A_ ) a_ : Dict = transformers.AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=A_ ) def tokenize(A_ : Optional[int] ): return tokenizer(examples["""text"""] ) a_ : List[str] = map(A_ ) a_ : Tuple = map(A_ , batched=A_ ) a_ : Optional[Any] = map(A_ , function=lambda A_ : None , batched=A_ ) with dataset.formatted_as(type="""numpy""" ): a_ : List[Any] = map(A_ , function=lambda A_ : None , batched=A_ ) with dataset.formatted_as(type="""pandas""" ): a_ : Optional[int] = map(A_ , function=lambda A_ : None , batched=A_ ) with dataset.formatted_as(type="""torch""" , columns="""numbers""" ): a_ : Dict = map(A_ , function=lambda A_ : None , batched=A_ ) with dataset.formatted_as(type="""tensorflow""" , columns="""numbers""" ): a_ : Union[str, Any] = map(A_ , function=lambda A_ : None , batched=A_ ) a_ : List[Any] = map(A_ , function=A_ , batched=A_ ) a_ : Dict = filter(A_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(A_ , """wb""" ) as f: f.write(json.dumps(A_ ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
577
def lowercase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' if index == r: for j in range(SCREAMING_SNAKE_CASE ): print(data[j] , end=' ' ) print(' ' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location SCREAMING_SNAKE_CASE_ = arr[i] combination_util(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index + 1 , SCREAMING_SNAKE_CASE , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowercase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_ = [0] * r # Print all combination using temporary array 'data[]' combination_util(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 0 , SCREAMING_SNAKE_CASE , 0 ) if __name__ == "__main__": # Driver code to check the function above SCREAMING_SNAKE_CASE__ : Dict = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
205
0
'''simple docstring''' import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def UpperCamelCase_ ( A__ , A__ , A__ , A__=None , A__=None , A__=None , A__=None , A__=None , ): if attention_mask is None: a_ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: a_ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: a_ = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=A__ ) if decoder_head_mask is None: a_ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=A__ ) if cross_attn_head_mask is None: a_ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=A__ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class a_ : def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=99 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase="relu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=20 , UpperCAmelCase=2 , UpperCAmelCase=1 , UpperCAmelCase=0 , ): a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_labels a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = encoder_layerdrop a_ = decoder_layerdrop a_ = max_position_embeddings a_ = eos_token_id a_ = pad_token_id a_ = bos_token_id def lowerCAmelCase__ ( self ): a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ = self.eos_token_id # Eos Token a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input a_ = input_ids.clamp(self.pad_token_id + 1 ) a_ = decoder_input_ids.clamp(self.pad_token_id + 1 ) a_ = self.get_config() a_ = prepare_mam_aaa_inputs_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return config, inputs_dict def lowerCAmelCase__ ( self ): return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def lowerCAmelCase__ ( self ): a_ , a_ = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): a_ = MaMaaaModel(config=UpperCAmelCase ).get_decoder().to(UpperCAmelCase ).eval() a_ = inputs_dict["""input_ids"""] a_ = inputs_dict["""attention_mask"""] a_ = inputs_dict["""head_mask"""] # first forward pass a_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , head_mask=UpperCAmelCase , use_cache=UpperCAmelCase ) a_ , a_ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids a_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) a_ = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and a_ = torch.cat([input_ids, next_tokens] , dim=-1 ) a_ = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) a_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase )["""last_hidden_state"""] a_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase )[ """last_hidden_state""" ] # select random slice a_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() a_ = output_from_no_past[:, -3:, random_slice_idx].detach() a_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-2 ) ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): a_ = MaMaaaModel(config=UpperCAmelCase ).to(UpperCAmelCase ).eval() a_ = model(**UpperCAmelCase ) a_ = outputs.encoder_last_hidden_state a_ = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: a_ = model.get_encoder() encoder.save_pretrained(UpperCAmelCase ) a_ = MaMaaaEncoder.from_pretrained(UpperCAmelCase ).to(UpperCAmelCase ) a_ = encoder(inputs_dict["""input_ids"""] , attention_mask=inputs_dict["""attention_mask"""] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: a_ = model.get_decoder() decoder.save_pretrained(UpperCAmelCase ) a_ = MaMaaaDecoder.from_pretrained(UpperCAmelCase ).to(UpperCAmelCase ) a_ = decoder( input_ids=inputs_dict["""decoder_input_ids"""] , attention_mask=inputs_dict["""decoder_attention_mask"""] , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=inputs_dict["""attention_mask"""] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class a_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): lowerCamelCase__ : Optional[Any] = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) lowerCamelCase__ : Any = (MaMaaaForConditionalGeneration,) if is_torch_available() else () lowerCamelCase__ : Tuple = ( { 'conversational': MaMaaaForConditionalGeneration, 'feature-extraction': MaMaaaModel, 'summarization': MaMaaaForConditionalGeneration, 'text2text-generation': MaMaaaForConditionalGeneration, 'translation': MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) lowerCamelCase__ : List[Any] = True lowerCamelCase__ : Any = True lowerCamelCase__ : int = False lowerCamelCase__ : Union[str, Any] = False def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def lowerCAmelCase__ ( self ): a_ = MaMaaaModelTester(self ) a_ = ConfigTester(self , config_class=UpperCAmelCase ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): a_ , a_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: a_ = model_class(UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase ) a_ , a_ = model_class.from_pretrained(UpperCAmelCase , output_loading_info=UpperCAmelCase ) self.assertEqual(info["""missing_keys"""] , [] ) def lowerCAmelCase__ ( self ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): a_ = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() a_ = copy.deepcopy(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) if not self.is_encoder_decoder: a_ = inputs["""input_ids"""] del inputs["input_ids"] else: a_ = inputs["""input_ids"""] a_ = inputs.get("""decoder_input_ids""" , UpperCAmelCase ) del inputs["input_ids"] inputs.pop("""decoder_input_ids""" , UpperCAmelCase ) a_ = model.get_input_embeddings() if not self.is_encoder_decoder: a_ = wte(UpperCAmelCase ) else: a_ = wte(UpperCAmelCase ) a_ = wte(UpperCAmelCase ) with torch.no_grad(): model(**UpperCAmelCase )[0] def lowerCAmelCase__ ( self ): a_ , a_ = self.model_tester.prepare_config_and_inputs() a_ = input_dict["""input_ids"""] a_ = input_ids.ne(1 ).to(UpperCAmelCase ) a_ = MaMaaaForConditionalGeneration(UpperCAmelCase ).eval().to(UpperCAmelCase ) if torch_device == "cuda": model.half() model.generate(UpperCAmelCase , attention_mask=UpperCAmelCase ) model.generate(num_beams=4 , do_sample=UpperCAmelCase , early_stopping=UpperCAmelCase , num_return_sequences=3 ) def UpperCamelCase_ ( A__ ): return torch.tensor(A__ , dtype=torch.long , device=A__ ) lowercase__ =1E-4 @require_torch @require_sentencepiece @require_tokenizers @slow class a_ ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self ): return MaMaaaTokenizer.from_pretrained("""facebook/m2m100_418M""" ) def lowerCAmelCase__ ( self ): a_ = MaMaaaModel.from_pretrained("""facebook/m2m100_418M""" ).to(UpperCAmelCase ) a_ = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] ) a_ = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] ) a_ = prepare_mam_aaa_inputs_dict(model.config , UpperCAmelCase , UpperCAmelCase ) with torch.no_grad(): a_ = model(**UpperCAmelCase )[0] a_ = torch.Size((1, 11, 10_24) ) self.assertEqual(output.shape , UpperCAmelCase ) # change to expected output here a_ = torch.tensor( [[-0.77_80, -0.16_76, 0.10_38], [-6.75_56, -1.39_92, 0.05_67], [-7.53_83, -0.59_20, -0.27_79]] , device=UpperCAmelCase ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowerCAmelCase__ ( self ): a_ = MaMaaaForConditionalGeneration.from_pretrained("""facebook/m2m100_418M""" ).to(UpperCAmelCase ) # change to intended input a_ = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] ) a_ = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] ) a_ = prepare_mam_aaa_inputs_dict(model.config , UpperCAmelCase , UpperCAmelCase ) with torch.no_grad(): a_ = model(**UpperCAmelCase )[0] a_ = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , UpperCAmelCase ) # change to expected output here a_ = torch.tensor( [[-1.04_48, -1.04_11, 3.79_92], [-3.21_91, -3.23_86, -1.34_51], [-3.62_10, -3.59_93, 0.49_25]] , device=UpperCAmelCase ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def lowerCAmelCase__ ( self ): a_ = MaMaaaForConditionalGeneration.from_pretrained("""facebook/m2m100_418M""" ).to(UpperCAmelCase ) a_ = MaMaaaTokenizer.from_pretrained("""facebook/m2m100_418M""" , src_lang="""fr""" , tgt_lang="""en""" ) a_ = [ """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent""" """ Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de""" """ l'ampleur de la surveillance américaine sur l'ensemble des communications en France.""", ] # The below article tests that we don't add any hypotheses outside of the top n_beams a_ = tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors="""pt""" ) a_ = model.generate( input_ids=dct["""input_ids"""].to(UpperCAmelCase ) , attention_mask=dct["""attention_mask"""].to(UpperCAmelCase ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("""en""" ) , ) a_ = [ """The NSA case highlights the total absence of intelligence debate""", """I think there are two levels of response from the French government.""", """When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.""" """ Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all""" """ communications in France.""", ] a_ = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) assert generated == expected_en
511
'''simple docstring''' def UpperCamelCase_ ( A__ ): if n_term == "": return [] a_ = [] for temp in range(int(A__ ) ): series.append(F'''1/{temp + 1}''' if series else """1""" ) return series if __name__ == "__main__": lowercase__ =input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
511
1
import math def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [] lowercase__ = 2 lowercase__ = int(math.sqrt(SCREAMING_SNAKE_CASE ) ) # Size of every segment lowercase__ = [True] * (end + 1) lowercase__ = [] while start <= end: if temp[start] is True: in_prime.append(SCREAMING_SNAKE_CASE ) for i in range(start * start , end + 1 , SCREAMING_SNAKE_CASE ): lowercase__ = False start += 1 prime += in_prime lowercase__ = end + 1 lowercase__ = min(2 * end , SCREAMING_SNAKE_CASE ) while low <= n: lowercase__ = [True] * (high - low + 1) for each in in_prime: lowercase__ = math.floor(low / each ) * each if t < low: t += each for j in range(SCREAMING_SNAKE_CASE , high + 1 , SCREAMING_SNAKE_CASE ): lowercase__ = False for j in range(len(SCREAMING_SNAKE_CASE ) ): if temp[j] is True: prime.append(j + low ) lowercase__ = high + 1 lowercase__ = min(high + end , SCREAMING_SNAKE_CASE ) return prime print(sieve(10**6))
43
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ :Any = { "configuration_jukebox": [ "JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "JukeboxConfig", "JukeboxPriorConfig", "JukeboxVQVAEConfig", ], "tokenization_jukebox": ["JukeboxTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :int = [ "JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST", "JukeboxModel", "JukeboxPreTrainedModel", "JukeboxVQVAE", "JukeboxPrior", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys a_ :int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
478
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE = { """configuration_instructblip""": [ """INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InstructBlipConfig""", """InstructBlipQFormerConfig""", """InstructBlipVisionConfig""", ], """processing_instructblip""": ["""InstructBlipProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ """INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """InstructBlipQFormerModel""", """InstructBlipPreTrainedModel""", """InstructBlipForConditionalGeneration""", """InstructBlipVisionModel""", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
556
"""simple docstring""" SCREAMING_SNAKE_CASE = { """meter""": """m""", """kilometer""": """km""", """megametre""": """Mm""", """gigametre""": """Gm""", """terametre""": """Tm""", """petametre""": """Pm""", """exametre""": """Em""", """zettametre""": """Zm""", """yottametre""": """Ym""", } # Exponent of the factor(meter) SCREAMING_SNAKE_CASE = { """m""": 0, """km""": 3, """Mm""": 6, """Gm""": 9, """Tm""": 12, """Pm""": 15, """Em""": 18, """Zm""": 21, """Ym""": 24, } def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> float: """simple docstring""" UpperCamelCase = from_type.lower().strip("s" ) UpperCamelCase = to_type.lower().strip("s" ) UpperCamelCase = UNIT_SYMBOL.get(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCamelCase = UNIT_SYMBOL.get(UpperCAmelCase_ , UpperCAmelCase_ ) if from_sanitized not in METRIC_CONVERSION: UpperCamelCase = ( F"Invalid 'from_type' value: {from_type!r}.\n" F"Conversion abbreviations are: {', '.join(UpperCAmelCase_ )}" ) raise ValueError(UpperCAmelCase_ ) if to_sanitized not in METRIC_CONVERSION: UpperCamelCase = ( F"Invalid 'to_type' value: {to_type!r}.\n" F"Conversion abbreviations are: {', '.join(UpperCAmelCase_ )}" ) raise ValueError(UpperCAmelCase_ ) UpperCamelCase = METRIC_CONVERSION[from_sanitized] UpperCamelCase = METRIC_CONVERSION[to_sanitized] UpperCamelCase = 1 if from_exponent > to_exponent: UpperCamelCase = from_exponent - to_exponent else: UpperCamelCase = -(to_exponent - from_exponent) return value * pow(10 , UpperCAmelCase_ ) if __name__ == "__main__": from doctest import testmod testmod()
556
1
from __future__ import annotations class lowerCamelCase_ : def __init__( self , lowerCamelCase_ , lowerCamelCase_ ) -> int: """simple docstring""" _UpperCamelCase , _UpperCamelCase = text, pattern _UpperCamelCase , _UpperCamelCase = len(lowerCamelCase_ ), len(lowerCamelCase_ ) def lowercase ( self , lowerCamelCase_ ) -> int: """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def lowercase ( self , lowerCamelCase_ ) -> int: """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def lowercase ( self ) -> list[int]: """simple docstring""" _UpperCamelCase = [] for i in range(self.textLen - self.patLen + 1 ): _UpperCamelCase = self.mismatch_in_text(lowerCamelCase_ ) if mismatch_index == -1: positions.append(lowerCamelCase_ ) else: _UpperCamelCase = self.match_in_pattern(self.text[mismatch_index] ) _UpperCamelCase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions __lowerCAmelCase = """ABAABA""" __lowerCAmelCase = """AB""" __lowerCAmelCase = BoyerMooreSearch(text, pattern) __lowerCAmelCase = bms.bad_character_heuristic() if len(positions) == 0: print("""No match found""") else: print("""Pattern found in following positions: """) print(positions)
147
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _lowercase ( a__ : Dict ) -> Any: """simple docstring""" if not is_accelerate_available(): return method _UpperCamelCase = version.parse(accelerate.__version__ ).base_version if version.parse(a__ ) < version.parse("0.17.0" ): return method def wrapper(self : List[str] , *a__ : str , **a__ : int ): if hasattr(self , "_hf_hook" ) and hasattr(self._hf_hook , "pre_forward" ): self._hf_hook.pre_forward(self ) return method(self , *a__ , **a__ ) return wrapper
147
1
"""simple docstring""" import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): """simple docstring""" @property def lowerCAmelCase__ ( self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCAmelCase__ ( self ): SCREAMING_SNAKE_CASE__ = ort.SessionOptions() SCREAMING_SNAKE_CASE__ = False return options def lowerCAmelCase__ ( self ): SCREAMING_SNAKE_CASE__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy" ) # using the PNDM scheduler by default SCREAMING_SNAKE_CASE__ = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=A__ , feature_extractor=A__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A__ ) SCREAMING_SNAKE_CASE__ = """A red cat sitting on a park bench""" SCREAMING_SNAKE_CASE__ = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE__ = pipe( prompt=A__ , image=A__ , mask_image=A__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=A__ , output_type="np" , ) SCREAMING_SNAKE_CASE__ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-2
720
"""simple docstring""" from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def __lowercase ( lowerCamelCase_ : int ): SCREAMING_SNAKE_CASE__ = prime_factors(lowerCamelCase_ ) if is_square_free(lowerCamelCase_ ): return -1 if len(lowerCamelCase_ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
112
0
"""simple docstring""" import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase ( __a): def __init__( self , _A , _A=13 , _A=7 , _A=True , _A=True , _A=True , _A=True , _A=99 , _A=32 , _A=5 , _A=4 , _A=37 , _A="gelu" , _A=0.1 , _A=0.1 , _A=5_12 , _A=16 , _A=2 , _A=0.02 , _A=False , _A=True , _A="None" , _A=3 , _A=4 , _A=None , ) -> List[Any]: '''simple docstring''' _UpperCAmelCase : str = parent _UpperCAmelCase : Dict = batch_size _UpperCAmelCase : List[Any] = seq_length _UpperCAmelCase : str = is_training _UpperCAmelCase : Optional[int] = use_input_mask _UpperCAmelCase : Optional[Any] = use_token_type_ids _UpperCAmelCase : Union[str, Any] = use_labels _UpperCAmelCase : str = vocab_size _UpperCAmelCase : Dict = hidden_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : List[str] = intermediate_size _UpperCAmelCase : str = hidden_act _UpperCAmelCase : Tuple = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : str = max_position_embeddings _UpperCAmelCase : Optional[int] = type_vocab_size _UpperCAmelCase : Dict = type_sequence_label_size _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : Dict = num_labels _UpperCAmelCase : List[str] = num_choices _UpperCAmelCase : str = relative_attention _UpperCAmelCase : int = position_biased_input _UpperCAmelCase : List[str] = pos_att_type _UpperCAmelCase : List[str] = scope def __snake_case ( self ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : List[str] = None if self.use_input_mask: _UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _UpperCAmelCase : Any = None if self.use_token_type_ids: _UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : List[Any] = None _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Union[str, Any] = None if self.use_labels: _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case ( self ) -> Optional[int]: '''simple docstring''' return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def __snake_case ( self ) -> Any: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.get_config() _UpperCAmelCase : Dict = 3_00 return config def __snake_case ( self , _A ) -> int: '''simple docstring''' self.parent.assertListEqual(list(result.loss.size() ) , [] ) def __snake_case ( self , _A , _A , _A , _A , _A , _A , _A ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = DebertaModel(config=_A ) model.to(_A ) model.eval() _UpperCAmelCase : Dict = model(_A , attention_mask=_A , token_type_ids=_A )[0] _UpperCAmelCase : Union[str, Any] = model(_A , token_type_ids=_A )[0] _UpperCAmelCase : int = model(_A )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def __snake_case ( self , _A , _A , _A , _A , _A , _A , _A ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = DebertaForMaskedLM(config=_A ) model.to(_A ) model.eval() _UpperCAmelCase : int = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case ( self , _A , _A , _A , _A , _A , _A , _A ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = self.num_labels _UpperCAmelCase : List[Any] = DebertaForSequenceClassification(_A ) model.to(_A ) model.eval() _UpperCAmelCase : int = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(_A ) def __snake_case ( self , _A , _A , _A , _A , _A , _A , _A ) -> Dict: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.num_labels _UpperCAmelCase : Optional[int] = DebertaForTokenClassification(config=_A ) model.to(_A ) model.eval() _UpperCAmelCase : Tuple = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case ( self , _A , _A , _A , _A , _A , _A , _A ) -> List[Any]: '''simple docstring''' _UpperCAmelCase : int = DebertaForQuestionAnswering(config=_A ) model.to(_A ) model.eval() _UpperCAmelCase : Union[str, Any] = model( _A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __snake_case ( self ) -> Any: '''simple docstring''' _UpperCAmelCase : Dict = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : Optional[int] = config_and_inputs _UpperCAmelCase : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( __a , __a , unittest.TestCase): __a : Tuple = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) __a : Optional[int] = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) __a : Union[str, Any] = True __a : Dict = False __a : Optional[Any] = False __a : int = False __a : Tuple = False def __snake_case ( self ) -> Tuple: '''simple docstring''' _UpperCAmelCase : Dict = DebertaModelTester(self ) _UpperCAmelCase : int = ConfigTester(self , config_class=_A , hidden_size=37 ) def __snake_case ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def __snake_case ( self ) -> List[str]: '''simple docstring''' _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_A ) def __snake_case ( self ) -> Dict: '''simple docstring''' _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_A ) def __snake_case ( self ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_A ) def __snake_case ( self ) -> List[Any]: '''simple docstring''' _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_A ) def __snake_case ( self ) -> Dict: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_A ) @slow def __snake_case ( self ) -> List[Any]: '''simple docstring''' for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Optional[int] = DebertaModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( unittest.TestCase): @unittest.skip(reason="""Model not available yet""" ) def __snake_case ( self ) -> Dict: '''simple docstring''' pass @slow def __snake_case ( self ) -> List[Any]: '''simple docstring''' _UpperCAmelCase : Dict = DebertaModel.from_pretrained("""microsoft/deberta-base""" ) _UpperCAmelCase : List[str] = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) _UpperCAmelCase : List[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _UpperCAmelCase : Optional[Any] = model(_A , attention_mask=_A )[0] # compare the actual values for a slice. _UpperCAmelCase : Optional[Any] = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _A , atol=1e-4 ) , f'''{output[:, 1:4, 1:4]}''' )
238
"""simple docstring""" import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _UpperCAmelCase ( __a , unittest.TestCase): __a : str = DebertaTokenizer __a : Tuple = True __a : Dict = DebertaTokenizerFast def __snake_case ( self ) -> Any: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCAmelCase : Any = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """[UNK]""", ] _UpperCAmelCase : Tuple = dict(zip(_A , range(len(_A ) ) ) ) _UpperCAmelCase : Dict = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _UpperCAmelCase : Union[str, Any] = {"""unk_token""": """[UNK]"""} _UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _UpperCAmelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_A ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_A ) ) def __snake_case ( self , **_A ) -> Optional[Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def __snake_case ( self , _A ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = """lower newer""" _UpperCAmelCase : Union[str, Any] = """lower newer""" return input_text, output_text def __snake_case ( self ) -> Tuple: '''simple docstring''' _UpperCAmelCase : Tuple = self.get_tokenizer() _UpperCAmelCase : List[Any] = """lower newer""" _UpperCAmelCase : Tuple = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] _UpperCAmelCase : Optional[Any] = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _UpperCAmelCase : List[str] = tokens + [tokenizer.unk_token] _UpperCAmelCase : Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , _A ) def __snake_case ( self ) -> Any: '''simple docstring''' _UpperCAmelCase : Any = self.get_tokenizer() _UpperCAmelCase : str = tokenizer("""Hello""" , """World""" ) _UpperCAmelCase : Any = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["""token_type_ids"""] , _A ) @slow def __snake_case ( self ) -> List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) _UpperCAmelCase : Any = tokenizer.encode("""sequence builders""" , add_special_tokens=_A ) _UpperCAmelCase : Any = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_A ) _UpperCAmelCase : Dict = tokenizer.encode( """sequence builders""" , add_special_tokens=_A , add_prefix_space=_A ) _UpperCAmelCase : List[Any] = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=_A , add_prefix_space=_A ) _UpperCAmelCase : Tuple = tokenizer.build_inputs_with_special_tokens(_A ) _UpperCAmelCase : Optional[int] = tokenizer.build_inputs_with_special_tokens(_A , _A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def __snake_case ( self ) -> List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: _UpperCAmelCase : Dict = tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) _UpperCAmelCase : Optional[int] = [ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] _UpperCAmelCase : Any = tokenizer(_A , padding=_A ) _UpperCAmelCase : str = [tokenizer.decode(_A , skip_special_tokens=_A ) for seq in encoding["""input_ids"""]] # fmt: off _UpperCAmelCase : Tuple = { """input_ids""": [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], """token_type_ids""": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], """attention_mask""": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on _UpperCAmelCase : List[str] = [ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] self.assertDictEqual(encoding.data , _A ) for expected, decoded in zip(_A , _A ): self.assertEqual(_A , _A )
238
1
'''simple docstring''' from collections.abc import Sequence from queue import Queue class __lowerCAmelCase : def __init__(self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None ): _UpperCAmelCase : Any = start _UpperCAmelCase : Union[str, Any] = end _UpperCAmelCase : List[Any] = val _UpperCAmelCase : Optional[int] = (start + end) // 2 _UpperCAmelCase : Dict = left _UpperCAmelCase : str = right def __repr__(self ): return F"SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})" class __lowerCAmelCase : def __init__(self , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Optional[int] = collection _UpperCAmelCase : str = function if self.collection: _UpperCAmelCase : Optional[Any] = self._build_tree(0 , len(__a ) - 1 ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ ): self._update_tree(self.root , __a , __a ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ ): return self._query_range(self.root , __a , __a ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ ): if start == end: return SegmentTreeNode(__a , __a , self.collection[start] ) _UpperCAmelCase : int = (start + end) // 2 _UpperCAmelCase : Tuple = self._build_tree(__a , __a ) _UpperCAmelCase : Union[str, Any] = self._build_tree(mid + 1 , __a ) return SegmentTreeNode(__a , __a , self.fn(left.val , right.val ) , __a , __a ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if node.start == i and node.end == i: _UpperCAmelCase : Optional[Any] = val return if i <= node.mid: self._update_tree(node.left , __a , __a ) else: self._update_tree(node.right , __a , __a ) _UpperCAmelCase : Optional[int] = self.fn(node.left.val , node.right.val ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , __a , __a ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , __a , node.mid ) , self._query_range(node.right , node.mid + 1 , __a ) , ) else: # range in right child tree return self._query_range(node.right , __a , __a ) def snake_case_ (self ): if self.root is not None: _UpperCAmelCase : Union[str, Any] = Queue() queue.put(self.root ) while not queue.empty(): _UpperCAmelCase : List[Any] = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 50) lowerCAmelCase_ : int = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
720
'''simple docstring''' from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __lowerCAmelCase ( __a ): @slow @require_torch def snake_case_ (self ): _UpperCAmelCase : Dict = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) _UpperCAmelCase : Tuple = BertTokenizer.from_pretrained("""bert-base-uncased""" ) _UpperCAmelCase : List[str] = bertabert.config.encoder.vocab_size _UpperCAmelCase : List[str] = tokenizer.sep_token_id _UpperCAmelCase : List[Any] = tokenizer.cls_token_id _UpperCAmelCase : List[str] = 1_2_8 _UpperCAmelCase : int = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) _UpperCAmelCase : Tuple = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) _UpperCAmelCase : str = train_dataset.select(range(3_2 ) ) _UpperCAmelCase : str = val_dataset.select(range(1_6 ) ) _UpperCAmelCase : Any = 4 def _map_to_encoder_decoder_inputs(lowerCAmelCase__ ): # Tokenizer will automatically set [BOS] <text> [EOS] _UpperCAmelCase : List[str] = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=lowerCAmelCase__ , max_length=5_1_2 ) _UpperCAmelCase : Union[str, Any] = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=lowerCAmelCase__ , max_length=1_2_8 ) _UpperCAmelCase : List[Any] = inputs.input_ids _UpperCAmelCase : int = inputs.attention_mask _UpperCAmelCase : Union[str, Any] = outputs.input_ids _UpperCAmelCase : List[Any] = outputs.input_ids.copy() _UpperCAmelCase : str = [ [-1_0_0 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] _UpperCAmelCase : Tuple = outputs.attention_mask assert all(len(lowerCAmelCase__ ) == 5_1_2 for x in inputs.input_ids ) assert all(len(lowerCAmelCase__ ) == 1_2_8 for x in outputs.input_ids ) return batch def _compute_metrics(lowerCAmelCase__ ): _UpperCAmelCase : Optional[int] = pred.label_ids _UpperCAmelCase : Optional[int] = pred.predictions # all unnecessary tokens are removed _UpperCAmelCase : Optional[Any] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : str = sum([int(pred_str[i] == label_str[i] ) for i in range(len(lowerCAmelCase__ ) )] ) / len(lowerCAmelCase__ ) return {"accuracy": accuracy} # map train dataset _UpperCAmelCase : int = train_dataset.map( _map_to_encoder_decoder_inputs , batched=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset _UpperCAmelCase : Tuple = val_dataset.map( _map_to_encoder_decoder_inputs , batched=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) _UpperCAmelCase : Any = self.get_auto_remove_tmp_dir() _UpperCAmelCase : int = SeqaSeqTrainingArguments( output_dir=lowerCAmelCase__ , per_device_train_batch_size=lowerCAmelCase__ , per_device_eval_batch_size=lowerCAmelCase__ , predict_with_generate=lowerCAmelCase__ , evaluation_strategy="""steps""" , do_train=lowerCAmelCase__ , do_eval=lowerCAmelCase__ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer _UpperCAmelCase : Any = SeqaSeqTrainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , compute_metrics=_compute_metrics , train_dataset=lowerCAmelCase__ , eval_dataset=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , ) # start training trainer.train()
156
0
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : Any ): '''simple docstring''' _lowerCAmelCase = [0] * len(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(SCREAMING_SNAKE_CASE_ ) ): if indegree[i] == 0: queue.append(SCREAMING_SNAKE_CASE_ ) while queue: _lowerCAmelCase = queue.pop(0 ) cnt += 1 topo.append(SCREAMING_SNAKE_CASE_ ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(SCREAMING_SNAKE_CASE_ ) if cnt != len(SCREAMING_SNAKE_CASE_ ): print("Cycle exists" ) else: print(SCREAMING_SNAKE_CASE_ ) # Adjacency List of Graph _SCREAMING_SNAKE_CASE = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
18
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Any = "falcon" __lowerCamelCase : List[str] = ["past_key_values"] def __init__( self , _lowerCAmelCase=65024 , _lowerCAmelCase=4544 , _lowerCAmelCase=32 , _lowerCAmelCase=71 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=11 , _lowerCAmelCase=11 , **_lowerCAmelCase , ) -> Union[str, Any]: _lowerCAmelCase = vocab_size # Backward compatibility with n_embed kwarg _lowerCAmelCase = kwargs.pop("n_embed" , _lowerCAmelCase ) _lowerCAmelCase = hidden_size if n_embed is None else n_embed _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = use_cache _lowerCAmelCase = hidden_dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id _lowerCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads _lowerCAmelCase = alibi _lowerCAmelCase = new_decoder_architecture _lowerCAmelCase = multi_query # Ignored when new_decoder_architecture is True _lowerCAmelCase = parallel_attn _lowerCAmelCase = bias super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) @property def _snake_case ( self ) -> Optional[Any]: return self.hidden_size // self.num_attention_heads @property def _snake_case ( self ) -> Optional[Any]: return not self.alibi
18
1
"""simple docstring""" from typing import Dict, Optional import numpy as np import datasets lowercase_ = '\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n' lowercase_ = '\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n' lowercase_ = '\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}' def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = False , ): """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): __A = new_id # turn into Numpy arrays __A = np.array(__UpperCamelCase ) __A = np.array(__UpperCamelCase ) if reduce_labels: __A = 2_5_5 __A = label - 1 __A = 2_5_5 __A = label != ignore_index __A = np.not_equal(__UpperCamelCase , __UpperCamelCase ) __A = pred_label[mask] __A = np.array(__UpperCamelCase )[mask] __A = pred_label[pred_label == label] __A = np.histogram(__UpperCamelCase , bins=__UpperCamelCase , range=(0, num_labels - 1) )[0] __A = np.histogram(__UpperCamelCase , bins=__UpperCamelCase , range=(0, num_labels - 1) )[0] __A = np.histogram(__UpperCamelCase , bins=__UpperCamelCase , range=(0, num_labels - 1) )[0] __A = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = False , ): """simple docstring""" __A = np.zeros((num_labels,) , dtype=np.floataa ) __A = np.zeros((num_labels,) , dtype=np.floataa ) __A = np.zeros((num_labels,) , dtype=np.floataa ) __A = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(__UpperCamelCase , __UpperCamelCase ): __A , __A , __A , __A = intersect_and_union( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , ): """simple docstring""" __A , __A , __A , __A = total_intersect_and_union( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # compute metrics __A = {} __A = total_area_intersect.sum() / total_area_label.sum() __A = total_area_intersect / total_area_union __A = total_area_intersect / total_area_label __A = np.nanmean(__UpperCamelCase ) __A = np.nanmean(__UpperCamelCase ) __A = all_acc __A = iou __A = acc if nan_to_num is not None: __A = {metric: np.nan_to_num(__UpperCamelCase , nan=__UpperCamelCase ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), } ), reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ], ) def _SCREAMING_SNAKE_CASE ( self : Optional[int], _lowerCamelCase : Union[str, Any], _lowerCamelCase : Dict, _lowerCamelCase : int, _lowerCamelCase : bool, _lowerCamelCase : Optional[int] = None, _lowerCamelCase : Optional[Dict[int, int]] = None, _lowerCamelCase : bool = False, ): '''simple docstring''' __A = mean_iou( results=_lowerCamelCase, gt_seg_maps=_lowerCamelCase, num_labels=_lowerCamelCase, ignore_index=_lowerCamelCase, nan_to_num=_lowerCamelCase, label_map=_lowerCamelCase, reduce_labels=_lowerCamelCase, ) return iou_result
712
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any], _lowerCamelCase : int, _lowerCamelCase : List[Any]=7, _lowerCamelCase : Any=3, _lowerCamelCase : List[Any]=18, _lowerCamelCase : str=30, _lowerCamelCase : List[Any]=4_00, _lowerCamelCase : List[str]=True, _lowerCamelCase : List[Any]=None, _lowerCamelCase : Union[str, Any]=True, _lowerCamelCase : List[str]=False, _lowerCamelCase : str=True, _lowerCamelCase : int=True, _lowerCamelCase : List[str]=[0.5, 0.5, 0.5], _lowerCamelCase : Union[str, Any]=[0.5, 0.5, 0.5], ): '''simple docstring''' __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size if size is not None else {'''height''': 18, '''width''': 20} __A = do_thumbnail __A = do_align_axis __A = do_pad __A = do_normalize __A = image_mean __A = image_std def _SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class snake_case ( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' A_ : Union[str, Any] = DonutImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' __A = DonutImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase, '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''size''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''do_thumbnail''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''do_align_long_axis''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''do_pad''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''image_mean''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''image_std''' ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' __A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''height''': 18, '''width''': 20} ) __A = self.image_processing_class.from_dict(self.image_processor_dict, size=42 ) self.assertEqual(image_processor.size, {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order __A = self.image_processing_class.from_dict(self.image_processor_dict, size=(42, 84) ) self.assertEqual(image_processor.size, {'''height''': 84, '''width''': 42} ) def _SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' pass @is_flaky() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester, equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase, Image.Image ) # Test not batched input __A = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) # Test batched __A = image_processing(_lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) @is_flaky() def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester, equal_resolution=_lowerCamelCase, numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase, np.ndarray ) # Test not batched input __A = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) # Test batched __A = image_processing(_lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) @is_flaky() def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester, equal_resolution=_lowerCamelCase, torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase, torch.Tensor ) # Test not batched input __A = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) # Test batched __A = image_processing(_lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), )
215
0
from math import sqrt def a_ ( lowerCAmelCase_ : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(sqrt(lowerCAmelCase_ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a_ ( lowerCAmelCase_ : int = 1_0001 ): __lowerCAmelCase = 0 __lowerCAmelCase = 1 while count != nth and number < 3: number += 1 if is_prime(lowerCAmelCase_ ): count += 1 while count != nth: number += 2 if is_prime(lowerCAmelCase_ ): count += 1 return number if __name__ == "__main__": print(F"""{solution() = }""")
53
from __future__ import annotations from math import pow, sqrt def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance == 0: return {"resistance": sqrt(pow(UpperCamelCase_ ,2 ) - pow(UpperCamelCase_ ,2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(UpperCamelCase_ ,2 ) - pow(UpperCamelCase_ ,2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(UpperCamelCase_ ,2 ) + pow(UpperCamelCase_ ,2 ) )} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
550
0
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig snake_case__ : Dict = logging.get_logger(__name__) # General docstring snake_case__ : Any = '''RegNetConfig''' # Base docstring snake_case__ : Any = '''facebook/regnet-y-040''' snake_case__ : Tuple = [1, 1088, 7, 7] # Image classification docstring snake_case__ : Tuple = '''facebook/regnet-y-040''' snake_case__ : int = '''tabby, tabby cat''' snake_case__ : Dict = [ '''facebook/regnet-y-040''', # See all regnet models at https://huggingface.co/models?filter=regnet ] class __SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ = 3 , snake_case_ = 1 , snake_case_ = 1 , snake_case_ = "relu" , **snake_case_ , ): '''simple docstring''' super().__init__(**snake_case_ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb UpperCAmelCase_ : Union[str, Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) UpperCAmelCase_ : Optional[int] = tf.keras.layers.ConvaD( filters=snake_case_ , kernel_size=snake_case_ , strides=snake_case_ , padding='VALID' , groups=snake_case_ , use_bias=snake_case_ , name='convolution' , ) UpperCAmelCase_ : List[str] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) UpperCAmelCase_ : Optional[Any] = ACTaFN[activation] if activation is not None else tf.identity def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.convolution(self.padding(snake_case_ ) ) UpperCAmelCase_ : Optional[int] = self.normalization(snake_case_ ) UpperCAmelCase_ : Optional[int] = self.activation(snake_case_ ) return hidden_state class __SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , snake_case_ , **snake_case_ ): '''simple docstring''' super().__init__(**snake_case_ ) UpperCAmelCase_ : Tuple = config.num_channels UpperCAmelCase_ : Tuple = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , ) def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = shape_list(snake_case_ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) UpperCAmelCase_ : Union[str, Any] = tf.transpose(snake_case_ , perm=(0, 2, 3, 1) ) UpperCAmelCase_ : Any = self.embedder(snake_case_ ) return hidden_state class __SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ = 2 , **snake_case_ ): '''simple docstring''' super().__init__(**snake_case_ ) UpperCAmelCase_ : Tuple = tf.keras.layers.ConvaD( filters=snake_case_ , kernel_size=1 , strides=snake_case_ , use_bias=snake_case_ , name='convolution' ) UpperCAmelCase_ : str = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) def _UpperCamelCase ( self , snake_case_ , snake_case_ = False ): '''simple docstring''' return self.normalization(self.convolution(snake_case_ ) , training=snake_case_ ) class __SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ , **snake_case_ ): '''simple docstring''' super().__init__(**snake_case_ ) UpperCAmelCase_ : str = tf.keras.layers.GlobalAveragePoolingaD(keepdims=snake_case_ , name='pooler' ) UpperCAmelCase_ : str = [ tf.keras.layers.ConvaD(filters=snake_case_ , kernel_size=1 , activation='relu' , name='attention.0' ), tf.keras.layers.ConvaD(filters=snake_case_ , kernel_size=1 , activation='sigmoid' , name='attention.2' ), ] def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.pooler(snake_case_ ) for layer_module in self.attention: UpperCAmelCase_ : List[str] = layer_module(snake_case_ ) UpperCAmelCase_ : Optional[Any] = hidden_state * pooled return hidden_state class __SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = 1 , **snake_case_ ): '''simple docstring''' super().__init__(**snake_case_ ) UpperCAmelCase_ : Optional[Any] = in_channels != out_channels or stride != 1 UpperCAmelCase_ : Union[str, Any] = max(1 , out_channels // config.groups_width ) UpperCAmelCase_ : Optional[Any] = ( TFRegNetShortCut(snake_case_ , stride=snake_case_ , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. UpperCAmelCase_ : str = [ TFRegNetConvLayer(snake_case_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( snake_case_ , stride=snake_case_ , groups=snake_case_ , activation=config.hidden_act , name='layer.1' ), TFRegNetConvLayer(snake_case_ , kernel_size=1 , activation=snake_case_ , name='layer.2' ), ] UpperCAmelCase_ : Optional[int] = ACTaFN[config.hidden_act] def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : List[Any] = hidden_state for layer_module in self.layers: UpperCAmelCase_ : List[Any] = layer_module(snake_case_ ) UpperCAmelCase_ : Union[str, Any] = self.shortcut(snake_case_ ) hidden_state += residual UpperCAmelCase_ : List[str] = self.activation(snake_case_ ) return hidden_state class __SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = 1 , **snake_case_ ): '''simple docstring''' super().__init__(**snake_case_ ) UpperCAmelCase_ : List[str] = in_channels != out_channels or stride != 1 UpperCAmelCase_ : Optional[Any] = max(1 , out_channels // config.groups_width ) UpperCAmelCase_ : Optional[Any] = ( TFRegNetShortCut(snake_case_ , stride=snake_case_ , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) UpperCAmelCase_ : List[Any] = [ TFRegNetConvLayer(snake_case_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( snake_case_ , stride=snake_case_ , groups=snake_case_ , activation=config.hidden_act , name='layer.1' ), TFRegNetSELayer(snake_case_ , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ), TFRegNetConvLayer(snake_case_ , kernel_size=1 , activation=snake_case_ , name='layer.3' ), ] UpperCAmelCase_ : Optional[int] = ACTaFN[config.hidden_act] def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = hidden_state for layer_module in self.layers: UpperCAmelCase_ : Union[str, Any] = layer_module(snake_case_ ) UpperCAmelCase_ : Any = self.shortcut(snake_case_ ) hidden_state += residual UpperCAmelCase_ : List[str] = self.activation(snake_case_ ) return hidden_state class __SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = 2 , snake_case_ = 2 , **snake_case_ ): '''simple docstring''' super().__init__(**snake_case_ ) UpperCAmelCase_ : int = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer UpperCAmelCase_ : Any = [ # downsampling is done in the first layer with stride of 2 layer(snake_case_ , snake_case_ , snake_case_ , stride=snake_case_ , name='layers.0' ), *[layer(snake_case_ , snake_case_ , snake_case_ , name=F'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' for layer_module in self.layers: UpperCAmelCase_ : Any = layer_module(snake_case_ ) return hidden_state class __SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , snake_case_ , **snake_case_ ): '''simple docstring''' super().__init__(**snake_case_ ) UpperCAmelCase_ : Tuple = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( snake_case_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) ) UpperCAmelCase_ : Optional[Any] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(snake_case_ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(snake_case_ , snake_case_ , snake_case_ , depth=snake_case_ , name=F'''stages.{i+1}''' ) ) def _UpperCamelCase ( self , snake_case_ , snake_case_ = False , snake_case_ = True ): '''simple docstring''' UpperCAmelCase_ : Tuple = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCAmelCase_ : Any = hidden_states + (hidden_state,) UpperCAmelCase_ : Tuple = stage_module(snake_case_ ) if output_hidden_states: UpperCAmelCase_ : Any = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=snake_case_ , hidden_states=snake_case_ ) @keras_serializable class __SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer ): '''simple docstring''' lowerCamelCase_ :Optional[int] = RegNetConfig def __init__( self , snake_case_ , **snake_case_ ): '''simple docstring''' super().__init__(**snake_case_ ) UpperCAmelCase_ : Optional[int] = config UpperCAmelCase_ : Optional[int] = TFRegNetEmbeddings(snake_case_ , name='embedder' ) UpperCAmelCase_ : List[Any] = TFRegNetEncoder(snake_case_ , name='encoder' ) UpperCAmelCase_ : List[str] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=snake_case_ , name='pooler' ) @unpack_inputs def _UpperCamelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = False , ): '''simple docstring''' UpperCAmelCase_ : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase_ : Any = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase_ : List[str] = self.embedder(snake_case_ , training=snake_case_ ) UpperCAmelCase_ : Optional[int] = self.encoder( snake_case_ , output_hidden_states=snake_case_ , return_dict=snake_case_ , training=snake_case_ ) UpperCAmelCase_ : Optional[int] = encoder_outputs[0] UpperCAmelCase_ : Optional[int] = self.pooler(snake_case_ ) # Change to NCHW output format have uniformity in the modules UpperCAmelCase_ : List[str] = tf.transpose(snake_case_ , perm=(0, 3, 1, 2) ) UpperCAmelCase_ : List[Any] = tf.transpose(snake_case_ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: UpperCAmelCase_ : Dict = tuple([tf.transpose(snake_case_ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=snake_case_ , pooler_output=snake_case_ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' lowerCamelCase_ :Optional[Any] = RegNetConfig lowerCamelCase_ :Dict = '''regnet''' lowerCamelCase_ :List[str] = '''pixel_values''' @property def _UpperCamelCase ( self ): '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_2_4, 2_2_4) , dtype=tf.floataa )} snake_case__ : Optional[int] = r''' Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. ''' snake_case__ : Tuple = r''' Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , lowerCamelCase_ , ) class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' def __init__( self , snake_case_ , *snake_case_ , **snake_case_ ): '''simple docstring''' super().__init__(snake_case_ , *snake_case_ , **snake_case_ ) UpperCAmelCase_ : Optional[Any] = TFRegNetMainLayer(snake_case_ , name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(snake_case_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=snake_case_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _UpperCamelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_=False , ): '''simple docstring''' UpperCAmelCase_ : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase_ : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase_ : Union[str, Any] = self.regnet( pixel_values=snake_case_ , output_hidden_states=snake_case_ , return_dict=snake_case_ , training=snake_case_ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( ''' RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , lowerCamelCase_ , ) class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' def __init__( self , snake_case_ , *snake_case_ , **snake_case_ ): '''simple docstring''' super().__init__(snake_case_ , *snake_case_ , **snake_case_ ) UpperCAmelCase_ : int = config.num_labels UpperCAmelCase_ : str = TFRegNetMainLayer(snake_case_ , name='regnet' ) # classification head UpperCAmelCase_ : Optional[Any] = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(snake_case_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=snake_case_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _UpperCamelCase ( self , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_=False , ): '''simple docstring''' UpperCAmelCase_ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase_ : List[str] = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase_ : Tuple = self.regnet( snake_case_ , output_hidden_states=snake_case_ , return_dict=snake_case_ , training=snake_case_ ) UpperCAmelCase_ : List[str] = outputs.pooler_output if return_dict else outputs[1] UpperCAmelCase_ : Dict = self.classifier[0](snake_case_ ) UpperCAmelCase_ : Optional[Any] = self.classifier[1](snake_case_ ) UpperCAmelCase_ : List[Any] = None if labels is None else self.hf_compute_loss(labels=snake_case_ , logits=snake_case_ ) if not return_dict: UpperCAmelCase_ : List[str] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=snake_case_ , logits=snake_case_ , hidden_states=outputs.hidden_states )
721
'''simple docstring''' from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' lowerCamelCase_ :torch.FloatTensor class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' @register_to_config def __init__( self , snake_case_ = 3_2 , snake_case_ = 6_4 , snake_case_ = 2_0 , snake_case_ = 7_6_8 , snake_case_=7_7 , snake_case_=4 , snake_case_ = 0.0 , snake_case_ = "silu" , snake_case_ = None , snake_case_ = None , snake_case_ = "linear" , snake_case_ = "prd" , snake_case_ = None , snake_case_ = None , snake_case_ = None , ): '''simple docstring''' super().__init__() UpperCAmelCase_ : int = num_attention_heads UpperCAmelCase_ : Dict = attention_head_dim UpperCAmelCase_ : int = num_attention_heads * attention_head_dim UpperCAmelCase_ : str = additional_embeddings UpperCAmelCase_ : List[Any] = time_embed_dim or inner_dim UpperCAmelCase_ : Tuple = embedding_proj_dim or embedding_dim UpperCAmelCase_ : Union[str, Any] = clip_embed_dim or embedding_dim UpperCAmelCase_ : Tuple = Timesteps(snake_case_ , snake_case_ , 0 ) UpperCAmelCase_ : Tuple = TimestepEmbedding(snake_case_ , snake_case_ , out_dim=snake_case_ , act_fn=snake_case_ ) UpperCAmelCase_ : Union[str, Any] = nn.Linear(snake_case_ , snake_case_ ) if embedding_proj_norm_type is None: UpperCAmelCase_ : Optional[Any] = None elif embedding_proj_norm_type == "layer": UpperCAmelCase_ : Dict = nn.LayerNorm(snake_case_ ) else: raise ValueError(F'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) UpperCAmelCase_ : Tuple = nn.Linear(snake_case_ , snake_case_ ) if encoder_hid_proj_type is None: UpperCAmelCase_ : List[Any] = None elif encoder_hid_proj_type == "linear": UpperCAmelCase_ : Tuple = nn.Linear(snake_case_ , snake_case_ ) else: raise ValueError(F'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) UpperCAmelCase_ : Dict = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , snake_case_ ) ) if added_emb_type == "prd": UpperCAmelCase_ : Tuple = nn.Parameter(torch.zeros(1 , 1 , snake_case_ ) ) elif added_emb_type is None: UpperCAmelCase_ : str = None else: raise ValueError( F'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) UpperCAmelCase_ : Dict = nn.ModuleList( [ BasicTransformerBlock( snake_case_ , snake_case_ , snake_case_ , dropout=snake_case_ , activation_fn='gelu' , attention_bias=snake_case_ , ) for d in range(snake_case_ ) ] ) if norm_in_type == "layer": UpperCAmelCase_ : int = nn.LayerNorm(snake_case_ ) elif norm_in_type is None: UpperCAmelCase_ : List[str] = None else: raise ValueError(F'''Unsupported norm_in_type: {norm_in_type}.''' ) UpperCAmelCase_ : int = nn.LayerNorm(snake_case_ ) UpperCAmelCase_ : int = nn.Linear(snake_case_ , snake_case_ ) UpperCAmelCase_ : List[Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) UpperCAmelCase_ : Tuple = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , snake_case_ , persistent=snake_case_ ) UpperCAmelCase_ : List[Any] = nn.Parameter(torch.zeros(1 , snake_case_ ) ) UpperCAmelCase_ : Any = nn.Parameter(torch.zeros(1 , snake_case_ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : str = {} def fn_recursive_add_processors(snake_case_ , snake_case_ , snake_case_ ): if hasattr(snake_case_ , 'set_processor' ): UpperCAmelCase_ : Any = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''' , snake_case_ , snake_case_ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(snake_case_ , snake_case_ , snake_case_ ) return processors def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = len(self.attn_processors.keys() ) if isinstance(snake_case_ , snake_case_ ) and len(snake_case_ ) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(snake_case_ )} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(snake_case_ , snake_case_ , snake_case_ ): if hasattr(snake_case_ , 'set_processor' ): if not isinstance(snake_case_ , snake_case_ ): module.set_processor(snake_case_ ) else: module.set_processor(processor.pop(F'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''' , snake_case_ , snake_case_ ) for name, module in self.named_children(): fn_recursive_attn_processor(snake_case_ , snake_case_ , snake_case_ ) def _UpperCamelCase ( self ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = True , ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = hidden_states.shape[0] UpperCAmelCase_ : Any = timestep if not torch.is_tensor(snake_case_ ): UpperCAmelCase_ : Any = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(snake_case_ ) and len(timesteps.shape ) == 0: UpperCAmelCase_ : Union[str, Any] = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCAmelCase_ : Optional[Any] = timesteps * torch.ones(snake_case_ , dtype=timesteps.dtype , device=timesteps.device ) UpperCAmelCase_ : List[str] = self.time_proj(snake_case_ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. UpperCAmelCase_ : List[str] = timesteps_projected.to(dtype=self.dtype ) UpperCAmelCase_ : List[Any] = self.time_embedding(snake_case_ ) if self.embedding_proj_norm is not None: UpperCAmelCase_ : Union[str, Any] = self.embedding_proj_norm(snake_case_ ) UpperCAmelCase_ : Tuple = self.embedding_proj(snake_case_ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: UpperCAmelCase_ : Tuple = self.encoder_hidden_states_proj(snake_case_ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) UpperCAmelCase_ : Optional[int] = self.proj_in(snake_case_ ) UpperCAmelCase_ : Tuple = self.positional_embedding.to(hidden_states.dtype ) UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : Tuple = 0 if encoder_hidden_states is not None: additional_embeds.append(snake_case_ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: UpperCAmelCase_ : Dict = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: UpperCAmelCase_ : str = hidden_states[:, None, :] UpperCAmelCase_ : Optional[Any] = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: UpperCAmelCase_ : Dict = self.prd_embedding.to(hidden_states.dtype ).expand(snake_case_ , -1 , -1 ) additional_embeds.append(snake_case_ ) UpperCAmelCase_ : Union[str, Any] = torch.cat( snake_case_ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens UpperCAmelCase_ : Union[str, Any] = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: UpperCAmelCase_ : Optional[int] = F.pad( snake_case_ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) UpperCAmelCase_ : List[Any] = hidden_states + positional_embeddings if attention_mask is not None: UpperCAmelCase_ : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 UpperCAmelCase_ : Dict = F.pad(snake_case_ , (0, self.additional_embeddings) , value=0.0 ) UpperCAmelCase_ : int = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) UpperCAmelCase_ : str = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: UpperCAmelCase_ : List[str] = self.norm_in(snake_case_ ) for block in self.transformer_blocks: UpperCAmelCase_ : List[str] = block(snake_case_ , attention_mask=snake_case_ ) UpperCAmelCase_ : Dict = self.norm_out(snake_case_ ) if self.prd_embedding is not None: UpperCAmelCase_ : Optional[Any] = hidden_states[:, -1] else: UpperCAmelCase_ : List[Any] = hidden_states[:, additional_embeddings_len:] UpperCAmelCase_ : List[Any] = self.proj_to_clip_embeddings(snake_case_ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=snake_case_ ) def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Any = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
389
0
'''simple docstring''' def lowerCamelCase ( ) -> int: '''simple docstring''' return 1 def lowerCamelCase ( UpperCAmelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def lowerCamelCase ( UpperCAmelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else five_pence(x - 5 ) + two_pence(UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else ten_pence(x - 1_0 ) + five_pence(UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else twenty_pence(x - 2_0 ) + ten_pence(UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else fifty_pence(x - 5_0 ) + twenty_pence(UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else one_pound(x - 1_0_0 ) + fifty_pence(UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else two_pound(x - 2_0_0 ) + one_pound(UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : int = 2_0_0 ) -> int: '''simple docstring''' return two_pound(UpperCAmelCase__ ) if __name__ == "__main__": print(solution(int(input().strip())))
209
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a__ = { '''configuration_efficientnet''': [ '''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientNetConfig''', '''EfficientNetOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = ['''EfficientNetImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientNetForImageClassification''', '''EfficientNetModel''', '''EfficientNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
279
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: Union[str, Any] ) -> List[str]: """simple docstring""" __a = botoa.client('iam' ) __a = { 'Version': '2012-10-17', 'Statement': [ {'Effect': 'Allow', 'Principal': {'Service': 'sagemaker.amazonaws.com'}, 'Action': 'sts:AssumeRole'} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=SCREAMING_SNAKE_CASE__, AssumeRolePolicyDocument=json.dumps(SCREAMING_SNAKE_CASE__, indent=2 ) ) __a = { 'Version': '2012-10-17', 'Statement': [ { 'Effect': 'Allow', 'Action': [ 'sagemaker:*', 'ecr:GetDownloadUrlForLayer', 'ecr:BatchGetImage', 'ecr:BatchCheckLayerAvailability', 'ecr:GetAuthorizationToken', 'cloudwatch:PutMetricData', 'cloudwatch:GetMetricData', 'cloudwatch:GetMetricStatistics', 'cloudwatch:ListMetrics', 'logs:CreateLogGroup', 'logs:CreateLogStream', 'logs:DescribeLogStreams', 'logs:PutLogEvents', 'logs:GetLogEvents', 's3:CreateBucket', 's3:ListBucket', 's3:GetBucketLocation', 's3:GetObject', 's3:PutObject', ], 'Resource': '*', } ], } # attach policy to role iam_client.put_role_policy( RoleName=SCREAMING_SNAKE_CASE__, PolicyName=f"""{role_name}_policy_permission""", PolicyDocument=json.dumps(SCREAMING_SNAKE_CASE__, indent=2 ), ) except iam_client.exceptions.EntityAlreadyExistsException: print(f"""role {role_name} already exists. Using existing one""" ) def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: List[str] ) -> Optional[Any]: """simple docstring""" __a = botoa.client('iam' ) return iam_client.get_role(RoleName=SCREAMING_SNAKE_CASE__ )["Role"]["Arn"] def __UpperCAmelCase ( ) -> Any: """simple docstring""" __a = _ask_options( 'How do you want to authorize?', ['AWS Profile', 'Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '], SCREAMING_SNAKE_CASE__, ) __a = None if credentials_configuration == 0: __a = _ask_field('Enter your AWS Profile name: [default] ', default='default' ) __a = aws_profile else: print( 'Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,' '`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`' ) __a = _ask_field('AWS Access Key ID: ' ) __a = aws_access_key_id __a = _ask_field('AWS Secret Access Key: ' ) __a = aws_secret_access_key __a = _ask_field('Enter your AWS Region: [us-east-1]', default='us-east-1' ) __a = aws_region __a = _ask_options( 'Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?', ['Provide IAM Role name', 'Create new IAM role using credentials'], SCREAMING_SNAKE_CASE__, ) if role_management == 0: __a = _ask_field('Enter your IAM role name: ' ) else: __a = 'accelerate_sagemaker_execution_role' print(f"""Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials""" ) _create_iam_role_for_sagemaker(SCREAMING_SNAKE_CASE__ ) __a = _ask_field( 'Do you want to use custom Docker image? [yes/NO]: ', _convert_yes_no_to_bool, default=SCREAMING_SNAKE_CASE__, error_message='Please enter yes or no.', ) __a = None if is_custom_docker_image: __a = _ask_field('Enter your Docker image: ', lambda SCREAMING_SNAKE_CASE__ : str(SCREAMING_SNAKE_CASE__ ).lower() ) __a = _ask_field( 'Do you want to provide SageMaker input channels with data locations? [yes/NO]: ', _convert_yes_no_to_bool, default=SCREAMING_SNAKE_CASE__, error_message='Please enter yes or no.', ) __a = None if is_sagemaker_inputs_enabled: __a = _ask_field( 'Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ', lambda SCREAMING_SNAKE_CASE__ : str(SCREAMING_SNAKE_CASE__ ).lower(), ) __a = _ask_field( 'Do you want to enable SageMaker metrics? [yes/NO]: ', _convert_yes_no_to_bool, default=SCREAMING_SNAKE_CASE__, error_message='Please enter yes or no.', ) __a = None if is_sagemaker_metrics_enabled: __a = _ask_field( 'Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ', lambda SCREAMING_SNAKE_CASE__ : str(SCREAMING_SNAKE_CASE__ ).lower(), ) __a = _ask_options( 'What is the distributed mode?', ['No distributed training', 'Data parallelism'], _convert_sagemaker_distributed_mode, ) __a = {} __a = _ask_field( 'Do you wish to optimize your script with torch dynamo?[yes/NO]:', _convert_yes_no_to_bool, default=SCREAMING_SNAKE_CASE__, error_message='Please enter yes or no.', ) if use_dynamo: __a = 'dynamo_' __a = _ask_options( 'Which dynamo backend would you like to use?', [x.lower() for x in DYNAMO_BACKENDS], _convert_dynamo_backend, default=2, ) __a = _ask_field( 'Do you want to customize the defaults sent to torch.compile? [yes/NO]: ', _convert_yes_no_to_bool, default=SCREAMING_SNAKE_CASE__, error_message='Please enter yes or no.', ) if use_custom_options: __a = _ask_options( 'Which mode do you want to use?', SCREAMING_SNAKE_CASE__, lambda SCREAMING_SNAKE_CASE__ : TORCH_DYNAMO_MODES[int(SCREAMING_SNAKE_CASE__ )], default='default', ) __a = _ask_field( 'Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ', _convert_yes_no_to_bool, default=SCREAMING_SNAKE_CASE__, error_message='Please enter yes or no.', ) __a = _ask_field( 'Do you want to enable dynamic shape tracing? [yes/NO]: ', _convert_yes_no_to_bool, default=SCREAMING_SNAKE_CASE__, error_message='Please enter yes or no.', ) __a = 'Which EC2 instance type you want to use for your training?' if distributed_type != SageMakerDistributedType.NO: __a = _ask_options( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, lambda SCREAMING_SNAKE_CASE__ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(SCREAMING_SNAKE_CASE__ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" __a = _ask_field(SCREAMING_SNAKE_CASE__, lambda SCREAMING_SNAKE_CASE__ : str(SCREAMING_SNAKE_CASE__ ).lower(), default='ml.p3.2xlarge' ) __a = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): __a = _ask_field( 'How many machines do you want use? [1]: ', SCREAMING_SNAKE_CASE__, default=1, ) __a = _ask_options( 'Do you wish to use FP16 or BF16 (mixed precision)?', ['no', 'fp16', 'bf16', 'fp8'], _convert_mixed_precision, ) if use_dynamo and mixed_precision == "no": print( 'Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.' ) return SageMakerConfig( image_uri=SCREAMING_SNAKE_CASE__, compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER, distributed_type=SCREAMING_SNAKE_CASE__, use_cpu=SCREAMING_SNAKE_CASE__, dynamo_config=SCREAMING_SNAKE_CASE__, eca_instance_type=SCREAMING_SNAKE_CASE__, profile=SCREAMING_SNAKE_CASE__, region=SCREAMING_SNAKE_CASE__, iam_role_name=SCREAMING_SNAKE_CASE__, mixed_precision=SCREAMING_SNAKE_CASE__, num_machines=SCREAMING_SNAKE_CASE__, sagemaker_inputs_file=SCREAMING_SNAKE_CASE__, sagemaker_metrics_file=SCREAMING_SNAKE_CASE__, )
270
'''simple docstring''' import warnings from .generation import TFGenerationMixin class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): # warning at import time warnings.warn( "Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will " "be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead." , _lowerCAmelCase , )
270
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowercase__ ( A_ ): __UpperCAmelCase = '''speech_to_text_2''' __UpperCAmelCase = ['''past_key_values'''] __UpperCAmelCase = {'''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , SCREAMING_SNAKE_CASE=1_0000 , SCREAMING_SNAKE_CASE=6 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE="relu" , SCREAMING_SNAKE_CASE=256 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=1024 , **SCREAMING_SNAKE_CASE , ) -> Dict: _lowerCamelCase : Dict = vocab_size _lowerCamelCase : str = d_model _lowerCamelCase : List[str] = decoder_ffn_dim _lowerCamelCase : Tuple = decoder_layers _lowerCamelCase : str = decoder_attention_heads _lowerCamelCase : Dict = dropout _lowerCamelCase : Union[str, Any] = attention_dropout _lowerCamelCase : int = activation_dropout _lowerCamelCase : str = activation_function _lowerCamelCase : Dict = init_std _lowerCamelCase : Optional[Any] = decoder_layerdrop _lowerCamelCase : Dict = use_cache _lowerCamelCase : str = decoder_layers _lowerCamelCase : str = scale_embedding # scale factor will be sqrt(d_model) if True _lowerCamelCase : Optional[Any] = max_target_positions super().__init__( pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , decoder_start_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , )
88
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __UpperCAmelCase () -> Optional[Any]: '''simple docstring''' a_ = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } a_ = Dataset.from_dict(lowercase__ ) return dataset class SCREAMING_SNAKE_CASE__ ( lowercase_ ): def _lowerCAmelCase ( self: Union[str, Any]) ->Optional[int]: '''simple docstring''' a_ = get_dataset() a_ = make_duplicate_clusters(a , 0.85) self.assertEqual(len(duplicate_clusters[0]) , 2) def _lowerCAmelCase ( self: Any) ->Dict: '''simple docstring''' a_ = get_dataset() a_ , a_ = deduplicate_dataset(a) self.assertEqual(len(a) , 2) print(a) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , a)
685
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _lowercase = logging.get_logger(__name__) if is_vision_available(): import PIL class a_ ( UpperCAmelCase__ ): lowercase_ : Any = ['''pixel_values'''] def __init__( self : Tuple , __lowerCAmelCase : bool = True , __lowerCAmelCase : Dict[str, int] = None , __lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , __lowerCAmelCase : bool = True , __lowerCAmelCase : Dict[str, int] = None , __lowerCAmelCase : bool = True , __lowerCAmelCase : Union[int, float] = 1 / 2_5_5 , __lowerCAmelCase : bool = True , __lowerCAmelCase : Optional[Union[float, List[float]]] = None , __lowerCAmelCase : Optional[Union[float, List[float]]] = None , __lowerCAmelCase : bool = True , **__lowerCAmelCase : str , ): super().__init__(**__lowerCAmelCase ) __snake_case = size if size is not None else {'shortest_edge': 2_2_4} __snake_case = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase ) __snake_case = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} __snake_case = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase , param_name='crop_size' ) __snake_case = do_resize __snake_case = size __snake_case = resample __snake_case = do_center_crop __snake_case = crop_size __snake_case = do_rescale __snake_case = rescale_factor __snake_case = do_normalize __snake_case = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __snake_case = image_std if image_std is not None else OPENAI_CLIP_STD __snake_case = do_convert_rgb def lowercase__ ( self : Tuple , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : Dict[str, int] , __lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , __lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCAmelCase : Tuple , ): __snake_case = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) __snake_case = get_resize_output_image_size(__lowerCAmelCase , size=size['shortest_edge'] , default_to_square=__lowerCAmelCase ) return resize(__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def lowercase__ ( self : List[Any] , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : Dict[str, int] , __lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCAmelCase : List[Any] , ): __snake_case = get_size_dict(__lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(__lowerCAmelCase , size=(size['height'], size['width']) , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def lowercase__ ( self : Dict , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : Union[int, float] , __lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCAmelCase : Union[str, Any] , ): return rescale(__lowerCAmelCase , scale=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def lowercase__ ( self : Tuple , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : Union[float, List[float]] , __lowerCAmelCase : Union[float, List[float]] , __lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCAmelCase : Dict , ): return normalize(__lowerCAmelCase , mean=__lowerCAmelCase , std=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def lowercase__ ( self : List[str] , __lowerCAmelCase : ImageInput , __lowerCAmelCase : bool = None , __lowerCAmelCase : Dict[str, int] = None , __lowerCAmelCase : PILImageResampling = None , __lowerCAmelCase : bool = None , __lowerCAmelCase : int = None , __lowerCAmelCase : bool = None , __lowerCAmelCase : float = None , __lowerCAmelCase : bool = None , __lowerCAmelCase : Optional[Union[float, List[float]]] = None , __lowerCAmelCase : Optional[Union[float, List[float]]] = None , __lowerCAmelCase : bool = None , __lowerCAmelCase : Optional[Union[str, TensorType]] = None , __lowerCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **__lowerCAmelCase : Optional[Any] , ): __snake_case = do_resize if do_resize is not None else self.do_resize __snake_case = size if size is not None else self.size __snake_case = get_size_dict(__lowerCAmelCase , param_name='size' , default_to_square=__lowerCAmelCase ) __snake_case = resample if resample is not None else self.resample __snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop __snake_case = crop_size if crop_size is not None else self.crop_size __snake_case = get_size_dict(__lowerCAmelCase , param_name='crop_size' , default_to_square=__lowerCAmelCase ) __snake_case = do_rescale if do_rescale is not None else self.do_rescale __snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case = do_normalize if do_normalize is not None else self.do_normalize __snake_case = image_mean if image_mean is not None else self.image_mean __snake_case = image_std if image_std is not None else self.image_std __snake_case = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __snake_case = make_list_of_images(__lowerCAmelCase ) if not valid_images(__lowerCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __snake_case = [convert_to_rgb(__lowerCAmelCase ) for image in images] # All transformations expect numpy arrays. __snake_case = [to_numpy_array(__lowerCAmelCase ) for image in images] if do_resize: __snake_case = [self.resize(image=__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase ) for image in images] if do_center_crop: __snake_case = [self.center_crop(image=__lowerCAmelCase , size=__lowerCAmelCase ) for image in images] if do_rescale: __snake_case = [self.rescale(image=__lowerCAmelCase , scale=__lowerCAmelCase ) for image in images] if do_normalize: __snake_case = [self.normalize(image=__lowerCAmelCase , mean=__lowerCAmelCase , std=__lowerCAmelCase ) for image in images] __snake_case = [to_channel_dimension_format(__lowerCAmelCase , __lowerCAmelCase ) for image in images] __snake_case = {'pixel_values': images} return BatchFeature(data=__lowerCAmelCase , tensor_type=__lowerCAmelCase )
427
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs _lowercase = imread(r"""digital_image_processing/image_data/lena_small.jpg""") _lowercase = cvtColor(img, COLOR_BGR2GRAY) def lowerCamelCase__ ( ): __snake_case = cn.convert_to_negative(a ) # assert negative_img array for at least one True assert negative_img.any() def lowerCamelCase__ ( ): with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(a , 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def lowerCamelCase__ ( ): __snake_case = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def lowerCamelCase__ ( ): __snake_case = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() __snake_case = canny.canny(a ) # assert canny array for at least one True assert canny_array.any() def lowerCamelCase__ ( ): assert gg.gaussian_filter(a , 5 , sigma=0.9 ).all() def lowerCamelCase__ ( ): # laplace diagonals __snake_case = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) __snake_case = conv.img_convolve(a , a ).astype(a ) assert res.any() def lowerCamelCase__ ( ): assert med.median_filter(a , 3 ).any() def lowerCamelCase__ ( ): __snake_case , __snake_case = sob.sobel_filter(a ) assert grad.any() and theta.any() def lowerCamelCase__ ( ): __snake_case = sp.make_sepia(a , 20 ) assert sepia.all() def lowerCamelCase__ ( a = "digital_image_processing/image_data/lena_small.jpg" ): __snake_case = bs.Burkes(imread(a , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def lowerCamelCase__ ( a = "digital_image_processing/image_data/lena_small.jpg" , ): __snake_case = rs.NearestNeighbour(imread(a , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def lowerCamelCase__ ( ): __snake_case = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. __snake_case = imread(a , 0 ) # Test for get_neighbors_pixel function() return not None __snake_case = 0 __snake_case = 0 __snake_case = image[x_coordinate][y_coordinate] __snake_case = lbp.get_neighbors_pixel( a , a , a , a ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __snake_case = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): __snake_case = lbp.local_binary_value(a , a , a ) assert lbp_image.any()
427
1
"""simple docstring""" import baseaa def a__ ( lowerCAmelCase__ ): return baseaa.baaencode(string.encode("utf-8" ) ) def a__ ( lowerCAmelCase__ ): return baseaa.baadecode(lowerCAmelCase__ ).decode("utf-8" ) if __name__ == "__main__": lowerCamelCase = """Hello World!""" lowerCamelCase = baseaa_encode(test) print(encoded) lowerCamelCase = baseaa_decode(encoded) print(decoded)
82
import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor lowerCamelCase : Any = random.Random() def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] , lowercase : int=1.0 , lowercase : List[str]=None , lowercase : str=None ): '''simple docstring''' if rng is None: lowerCamelCase_ = global_rng lowerCamelCase_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class A( unittest.TestCase ): '''simple docstring''' def __init__( self : List[Any] , A_ : Dict , A_ : int=7 , A_ : str=400 , A_ : Dict=2000 , A_ : List[Any]=24 , A_ : List[Any]=24 , A_ : int=0.0 , A_ : Dict=16000 , A_ : List[Any]=True , A_ : str=True , ) -> Dict: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = min_seq_length lowerCamelCase_ = max_seq_length lowerCamelCase_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCamelCase_ = feature_size lowerCamelCase_ = num_mel_bins lowerCamelCase_ = padding_value lowerCamelCase_ = sampling_rate lowerCamelCase_ = return_attention_mask lowerCamelCase_ = do_normalize def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def a__ ( self : List[Any] , A_ : str=False , A_ : Union[str, Any]=False ) -> str: """simple docstring""" def _flatten(A_ : List[Any] ): return list(itertools.chain(*A_ ) ) if equal_length: lowerCamelCase_ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCamelCase_ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCamelCase_ = [np.asarray(A_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = SpeechaTextFeatureExtractor if is_speech_available() else None def a__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = SpeechaTextFeatureExtractionTester(self ) def a__ ( self : str , A_ : Dict ) -> Dict: """simple docstring""" self.assertTrue(np.all(np.mean(A_ , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(A_ , axis=0 ) - 1 ) < 1E-3 ) ) def a__ ( self : int ) -> List[Any]: """simple docstring""" lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCamelCase_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCamelCase_ = [np.asarray(A_ ) for speech_input in speech_inputs] # Test feature size lowerCamelCase_ = feature_extractor(A_ , padding=A_ , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input lowerCamelCase_ = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features lowerCamelCase_ = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # Test batched lowerCamelCase_ = feature_extractor(A_ , return_tensors='np' ).input_features lowerCamelCase_ = feature_extractor(A_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCamelCase_ = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowerCamelCase_ = np.asarray(A_ ) lowerCamelCase_ = feature_extractor(A_ , return_tensors='np' ).input_features lowerCamelCase_ = feature_extractor(A_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) def a__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCamelCase_ = ['longest', 'max_length', 'do_not_pad'] lowerCamelCase_ = [None, 16, None] for max_length, padding in zip(A_ , A_ ): lowerCamelCase_ = feature_extractor( A_ , padding=A_ , max_length=A_ , return_attention_mask=A_ ) lowerCamelCase_ = inputs.input_features lowerCamelCase_ = inputs.attention_mask lowerCamelCase_ = [np.sum(A_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def a__ ( self : List[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCamelCase_ = ['longest', 'max_length', 'do_not_pad'] lowerCamelCase_ = [None, 16, None] for max_length, padding in zip(A_ , A_ ): lowerCamelCase_ = feature_extractor( A_ , max_length=A_ , padding=A_ , return_tensors='np' , return_attention_mask=A_ ) lowerCamelCase_ = inputs.input_features lowerCamelCase_ = inputs.attention_mask lowerCamelCase_ = [np.sum(A_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCamelCase_ = feature_extractor( A_ , padding='max_length' , max_length=4 , truncation=A_ , return_tensors='np' , return_attention_mask=A_ , ) lowerCamelCase_ = inputs.input_features lowerCamelCase_ = inputs.attention_mask lowerCamelCase_ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCamelCase_ = feature_extractor( A_ , padding='longest' , max_length=4 , truncation=A_ , return_tensors='np' , return_attention_mask=A_ , ) lowerCamelCase_ = inputs.input_features lowerCamelCase_ = inputs.attention_mask lowerCamelCase_ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24) ) lowerCamelCase_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCamelCase_ = feature_extractor( A_ , padding='longest' , max_length=16 , truncation=A_ , return_tensors='np' , return_attention_mask=A_ , ) lowerCamelCase_ = inputs.input_features lowerCamelCase_ = inputs.attention_mask lowerCamelCase_ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24) ) def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" import torch lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase_ = np.random.rand(100 , 32 ).astype(np.floataa ) lowerCamelCase_ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCamelCase_ = feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) lowerCamelCase_ = feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def a__ ( self : List[str] , A_ : Union[str, Any] ) -> List[Any]: """simple docstring""" from datasets import load_dataset lowerCamelCase_ = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech lowerCamelCase_ = ds.sort('id' ).select(range(A_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def a__ ( self : str ) -> Tuple: """simple docstring""" lowerCamelCase_ = np.array([ -1.5745, -1.7713, -1.7020, -1.6069, -1.2250, -1.1105, -0.9072, -0.8241, -1.2310, -0.8098, -0.3320, -0.4101, -0.7985, -0.4996, -0.8213, -0.9128, -1.0420, -1.1286, -1.0440, -0.7999, -0.8405, -1.2275, -1.5443, -1.4625, ] ) # fmt: on lowerCamelCase_ = self._load_datasamples(1 ) lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase_ = feature_extractor(A_ , return_tensors='pt' ).input_features self.assertEquals(input_features.shape , (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] , A_ , atol=1E-4 ) )
70
0
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
704
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : Optional[Any] = BertJapaneseTokenizer snake_case_ : Optional[int] = False snake_case_ : Optional[int] = True def UpperCamelCase_ ( self : Optional[int]) -> int: """simple docstring""" super().setUp() _snake_case : List[str] = [ """[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは""", """世界""", """##世界""", """、""", """##、""", """。""", """##。""", ] _snake_case : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens])) def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : str) -> int: """simple docstring""" _snake_case : List[Any] = """こんにちは、世界。 \nこんばんは、世界。""" _snake_case : Optional[Any] = """こんにちは 、 世界 。 こんばんは 、 世界 。""" return input_text, output_text def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" _snake_case , _snake_case : Dict = self.get_input_output_texts(lowerCAmelCase) _snake_case : Optional[Any] = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase) _snake_case : Tuple = tokenizer.decode(lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase) return text, ids def UpperCamelCase_ ( self : List[Any]) -> int: """simple docstring""" pass # TODO add if relevant def UpperCamelCase_ ( self : List[Any]) -> Optional[Any]: """simple docstring""" pass # TODO add if relevant def UpperCamelCase_ ( self : List[Any]) -> Dict: """simple docstring""" pass # TODO add if relevant def UpperCamelCase_ ( self : Dict) -> Any: """simple docstring""" _snake_case : List[str] = self.tokenizer_class(self.vocab_file) _snake_case : List[Any] = tokenizer.tokenize("""こんにちは、世界。\nこんばんは、世界。""") self.assertListEqual(lowerCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase) , [3, 12, 10, 14, 4, 9, 12, 10, 14]) def UpperCamelCase_ ( self : int) -> Dict: """simple docstring""" _snake_case : Tuple = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""mecab""") self.assertIsNotNone(lowerCAmelCase) _snake_case : List[str] = """こんにちは、世界。\nこんばんは、世界。""" _snake_case : Dict = tokenizer.tokenize(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase) , [3, 12, 10, 14, 4, 9, 12, 10, 14]) _snake_case : Tuple = os.path.join(self.tmpdirname , """tokenizer.bin""") with open(lowerCAmelCase , """wb""") as handle: pickle.dump(lowerCAmelCase , lowerCAmelCase) with open(lowerCAmelCase , """rb""") as handle: _snake_case : Dict = pickle.load(lowerCAmelCase) _snake_case : Optional[int] = tokenizer_new.tokenize(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) def UpperCamelCase_ ( self : str) -> int: """simple docstring""" _snake_case : Optional[Any] = MecabTokenizer(mecab_dic="""ipadic""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def UpperCamelCase_ ( self : Optional[int]) -> Union[str, Any]: """simple docstring""" try: _snake_case : Optional[int] = MecabTokenizer(mecab_dic="""unidic_lite""") except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def UpperCamelCase_ ( self : List[str]) -> Union[str, Any]: """simple docstring""" try: _snake_case : List[Any] = MecabTokenizer(mecab_dic="""unidic""") except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def UpperCamelCase_ ( self : Optional[Any]) -> List[Any]: """simple docstring""" _snake_case : List[str] = MecabTokenizer(do_lower_case=lowerCAmelCase , mecab_dic="""ipadic""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップルストア""", """で""", """iphone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def UpperCamelCase_ ( self : Optional[int]) -> int: """simple docstring""" try: _snake_case : Dict = MecabTokenizer( do_lower_case=lowerCAmelCase , normalize_text=lowerCAmelCase , mecab_option="""-d /usr/local/lib/mecab/dic/jumandic""") except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) def UpperCamelCase_ ( self : Optional[Any]) -> Tuple: """simple docstring""" _snake_case : str = MecabTokenizer(normalize_text=lowerCAmelCase , mecab_dic="""ipadic""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """ """, """。"""] , ) @require_sudachi def UpperCamelCase_ ( self : Union[str, Any]) -> str: """simple docstring""" _snake_case : Optional[Any] = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""sudachi""") self.assertIsNotNone(lowerCAmelCase) _snake_case : List[str] = """こんにちは、世界。\nこんばんは、世界。""" _snake_case : str = tokenizer.tokenize(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase) , [3, 12, 10, 14, 4, 9, 12, 10, 14]) _snake_case : Optional[Any] = os.path.join(self.tmpdirname , """tokenizer.bin""") with open(lowerCAmelCase , """wb""") as handle: pickle.dump(lowerCAmelCase , lowerCAmelCase) with open(lowerCAmelCase , """rb""") as handle: _snake_case : Optional[Any] = pickle.load(lowerCAmelCase) _snake_case : Tuple = tokenizer_new.tokenize(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) @require_sudachi def UpperCamelCase_ ( self : List[Any]) -> List[str]: """simple docstring""" _snake_case : Union[str, Any] = SudachiTokenizer(sudachi_dict_type="""core""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def UpperCamelCase_ ( self : str) -> Tuple: """simple docstring""" _snake_case : Optional[Any] = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""A""") self.assertListEqual(tokenizer.tokenize("""外国人参政権""") , ["""外国""", """人""", """参政""", """権"""]) @require_sudachi def UpperCamelCase_ ( self : Union[str, Any]) -> List[str]: """simple docstring""" _snake_case : Dict = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""B""") self.assertListEqual(tokenizer.tokenize("""外国人参政権""") , ["""外国人""", """参政権"""]) @require_sudachi def UpperCamelCase_ ( self : Dict) -> str: """simple docstring""" _snake_case : Union[str, Any] = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""C""") self.assertListEqual(tokenizer.tokenize("""外国人参政権""") , ["""外国人参政権"""]) @require_sudachi def UpperCamelCase_ ( self : Tuple) -> Tuple: """simple docstring""" _snake_case : List[str] = SudachiTokenizer(do_lower_case=lowerCAmelCase , sudachi_dict_type="""core""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iphone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def UpperCamelCase_ ( self : Optional[int]) -> Union[str, Any]: """simple docstring""" _snake_case : Dict = SudachiTokenizer(normalize_text=lowerCAmelCase , sudachi_dict_type="""core""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """\u3000""", """。""", """ """, """ """] , ) @require_sudachi def UpperCamelCase_ ( self : Any) -> Union[str, Any]: """simple docstring""" _snake_case : Tuple = SudachiTokenizer(trim_whitespace=lowerCAmelCase , sudachi_dict_type="""core""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) @require_jumanpp def UpperCamelCase_ ( self : Any) -> Any: """simple docstring""" _snake_case : int = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""jumanpp""") self.assertIsNotNone(lowerCAmelCase) _snake_case : Optional[Any] = """こんにちは、世界。\nこんばんは、世界。""" _snake_case : Tuple = tokenizer.tokenize(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase) , [3, 12, 10, 14, 4, 9, 12, 10, 14]) _snake_case : str = os.path.join(self.tmpdirname , """tokenizer.bin""") with open(lowerCAmelCase , """wb""") as handle: pickle.dump(lowerCAmelCase , lowerCAmelCase) with open(lowerCAmelCase , """rb""") as handle: _snake_case : int = pickle.load(lowerCAmelCase) _snake_case : List[Any] = tokenizer_new.tokenize(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) @require_jumanpp def UpperCamelCase_ ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _snake_case : Optional[Any] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def UpperCamelCase_ ( self : Dict) -> Optional[int]: """simple docstring""" _snake_case : Union[str, Any] = JumanppTokenizer(do_lower_case=lowerCAmelCase) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップル""", """ストア""", """で""", """iphone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def UpperCamelCase_ ( self : int) -> List[str]: """simple docstring""" _snake_case : Union[str, Any] = JumanppTokenizer(normalize_text=lowerCAmelCase) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""ア""", """ッ""", """フ""", """゚""", """ル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def UpperCamelCase_ ( self : Optional[int]) -> List[str]: """simple docstring""" _snake_case : str = JumanppTokenizer(trim_whitespace=lowerCAmelCase) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """。"""] , ) @require_jumanpp def UpperCamelCase_ ( self : Optional[int]) -> int: """simple docstring""" _snake_case : Union[str, Any] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("""ありがとうございますm(_ _)m見つけるのが大変です。""") , ["""ありがとう""", """ございます""", """m(_ _)m""", """見つける""", """の""", """が""", """大変です""", """。"""] , ) def UpperCamelCase_ ( self : List[str]) -> Optional[Any]: """simple docstring""" _snake_case : Union[str, Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは"""] _snake_case : str = {} for i, token in enumerate(lowerCAmelCase): _snake_case : List[Any] = i _snake_case : List[Any] = WordpieceTokenizer(vocab=lowerCAmelCase , unk_token="""[UNK]""") self.assertListEqual(tokenizer.tokenize("""""") , []) self.assertListEqual(tokenizer.tokenize("""こんにちは""") , ["""こんにちは"""]) self.assertListEqual(tokenizer.tokenize("""こんばんは""") , ["""こん""", """##ばんは"""]) self.assertListEqual(tokenizer.tokenize("""こんばんは こんばんにちは こんにちは""") , ["""こん""", """##ばんは""", """[UNK]""", """こんにちは"""]) def UpperCamelCase_ ( self : Optional[Any]) -> str: """simple docstring""" _snake_case : Optional[int] = BertJapaneseTokenizer.from_pretrained("""nlp-waseda/roberta-base-japanese-with-auto-jumanpp""") _snake_case : Tuple = tokenizer.subword_tokenizer _snake_case : Tuple = subword_tokenizer.tokenize("""国境 の 長い トンネル を 抜ける と 雪国 であった 。""") self.assertListEqual(lowerCAmelCase , ["""▁国境""", """▁の""", """▁長い""", """▁トンネル""", """▁を""", """▁抜ける""", """▁と""", """▁雪""", """国""", """▁であった""", """▁。"""]) _snake_case : Union[str, Any] = subword_tokenizer.tokenize("""こんばんは こんばん にち は こんにちは""") self.assertListEqual(lowerCAmelCase , ["""▁こん""", """ばん""", """は""", """▁こん""", """ばん""", """▁に""", """ち""", """▁は""", """▁こんにちは"""]) def UpperCamelCase_ ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" _snake_case : int = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese""") _snake_case : str = tokenizer.encode("""ありがとう。""" , add_special_tokens=lowerCAmelCase) _snake_case : Optional[Any] = tokenizer.encode("""どういたしまして。""" , add_special_tokens=lowerCAmelCase) _snake_case : str = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase) _snake_case : Dict = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase , lowerCAmelCase) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : Tuple = BertJapaneseTokenizer snake_case_ : Dict = False def UpperCamelCase_ ( self : Optional[Any]) -> List[Any]: """simple docstring""" super().setUp() _snake_case : Optional[Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] _snake_case : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens])) def UpperCamelCase_ ( self : str , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="""character""" , **lowerCAmelCase) def UpperCamelCase_ ( self : str , lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" _snake_case : Any = """こんにちは、世界。 \nこんばんは、世界。""" _snake_case : List[Any] = """こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。""" return input_text, output_text def UpperCamelCase_ ( self : str) -> int: """simple docstring""" pass # TODO add if relevant def UpperCamelCase_ ( self : List[str]) -> Optional[Any]: """simple docstring""" pass # TODO add if relevant def UpperCamelCase_ ( self : str) -> Any: """simple docstring""" pass # TODO add if relevant def UpperCamelCase_ ( self : Optional[int]) -> int: """simple docstring""" _snake_case : Union[str, Any] = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="""character""") _snake_case : Dict = tokenizer.tokenize("""こんにちは、世界。 \nこんばんは、世界。""") self.assertListEqual( lowerCAmelCase , ["""こ""", """ん""", """に""", """ち""", """は""", """、""", """世""", """界""", """。""", """こ""", """ん""", """ば""", """ん""", """は""", """、""", """世""", """界""", """。"""]) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12]) def UpperCamelCase_ ( self : List[str]) -> int: """simple docstring""" _snake_case : str = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] _snake_case : int = {} for i, token in enumerate(lowerCAmelCase): _snake_case : int = i _snake_case : Optional[int] = CharacterTokenizer(vocab=lowerCAmelCase , unk_token="""[UNK]""") self.assertListEqual(tokenizer.tokenize("""""") , []) self.assertListEqual(tokenizer.tokenize("""こんにちは""") , ["""こ""", """ん""", """に""", """ち""", """は"""]) self.assertListEqual(tokenizer.tokenize("""こんにちほ""") , ["""こ""", """ん""", """に""", """ち""", """[UNK]"""]) def UpperCamelCase_ ( self : int) -> List[str]: """simple docstring""" _snake_case : Optional[int] = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese-char""") _snake_case : List[str] = tokenizer.encode("""ありがとう。""" , add_special_tokens=lowerCAmelCase) _snake_case : Optional[int] = tokenizer.encode("""どういたしまして。""" , add_special_tokens=lowerCAmelCase) _snake_case : str = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase) _snake_case : Any = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase , lowerCAmelCase) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : int) -> List[Any]: """simple docstring""" _snake_case : List[str] = """cl-tohoku/bert-base-japanese""" _snake_case : int = AutoTokenizer.from_pretrained(lowerCAmelCase) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase) class snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : str) -> Any: """simple docstring""" _snake_case : str = """cl-tohoku/bert-base-japanese""" with self.assertLogs("""transformers""" , level="""WARNING""") as cm: BertTokenizer.from_pretrained(lowerCAmelCase) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""")) _snake_case : Any = """bert-base-cased""" with self.assertLogs("""transformers""" , level="""WARNING""") as cm: BertJapaneseTokenizer.from_pretrained(lowerCAmelCase) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from."""))
198
0
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = tf.convert_to_tensor( [ [ 8.222_0991, # 3rd highest value; idx. 0 -0.562_0044, 5.2322_9752, 4.038_6393, -6.879_8378, -0.5478_5802, -3.201_2153, 2.9277_7176, 1.8817_1953, 7.3534_1276, # 5th highest value; idx. 9 8.4320_7833, # 2nd highest value; idx. 10 -9.8571_1836, -5.9620_9236, -1.1303_9161, -7.111_5294, -0.836_9633, -5.318_6408, 7.0642_7407, 0.8136_9344, -0.8202_3817, -5.917_9796, 0.5881_3443, -6.9977_8438, 4.7155_1189, -0.1877_1637, 7.4402_0759, # 4th highest value; idx. 25 9.3845_0987, # 1st highest value; idx. 26 2.1266_2941, -9.3256_2038, 2.3565_2522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.5842_5518, 4.5313_9238, -5.5751_0464, -6.2803_0699, -7.1952_9503, -4.0212_2551, 1.3933_7037, -6.0670_7057, 1.5948_0517, -9.64_3119, 0.0390_7799, 0.6723_1762, -8.8820_6726, 6.2711_5922, # 4th highest value; idx. 13 2.2852_0723, 4.8276_7506, 4.3042_1368, 8.827_5313, # 2nd highest value; idx. 17 5.4402_9958, # 5th highest value; idx. 18 -4.473_5794, 7.3857_9536, # 3rd highest value; idx. 20 -2.9105_1663, 2.6194_6077, -2.567_4762, -9.4895_9302, -4.0292_2645, -1.3541_6918, 9.6770_2323, # 1st highest value; idx. 27 -5.8947_8553, 1.8537_0467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) SCREAMING_SNAKE_CASE : Optional[int] = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above SCREAMING_SNAKE_CASE : List[Any] = tf.convert_to_tensor( [8.22_2099, 7.353_4126, 8.43_2078, 7.440_2075, 9.3_8451, 6.27_1159, 8.82_7531, 5.440_2995, 7.385_7956, 9.67_7023] , dtype=tf.floataa , ) # expected non filtered values as noted above SCREAMING_SNAKE_CASE : Union[str, Any] = tf_top_k_top_p_filtering(a , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) SCREAMING_SNAKE_CASE : List[Any] = output[output != -float("inf" )] SCREAMING_SNAKE_CASE : Tuple = tf.cast( tf.where(tf.not_equal(a , tf.constant(-float("inf" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(a , a , rtol=1e-12 ) tf.debugging.assert_equal(a , a ) @require_tf class _UpperCamelCase ( unittest.TestCase , __A ): '''simple docstring''' if is_tf_available(): lowerCamelCase__ ={ 'AutoModelForCausalLM': TFAutoModelForCausalLM, 'AutoModelForSpeechSeq2Seq': TFAutoModelForSpeechSeqaSeq, 'AutoModelForSeq2SeqLM': TFAutoModelForSeqaSeqLM, 'AutoModelForVision2Seq': TFAutoModelForVisionaSeq, 'LogitsProcessorList': TFLogitsProcessorList, 'MinLengthLogitsProcessor': TFMinLengthLogitsProcessor, 'create_tensor_fn': tf.convert_to_tensor, 'floats_tensor': floats_tensor, 'return_tensors': 'tf', } @slow def __UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE : str = 2 SCREAMING_SNAKE_CASE : List[str] = 2 class _UpperCamelCase ( tf.Module ): '''simple docstring''' def __init__( self : List[str] , a : Optional[int] ) -> str: """simple docstring""" super(a , self ).__init__() SCREAMING_SNAKE_CASE : Dict = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="input_ids" ), tf.TensorSpec((None, input_length) , tf.intaa , name="attention_mask" ), ) , jit_compile=a , ) def __UpperCamelCase ( self : Union[str, Any] , a : List[str] , a : Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model.generate( input_ids=a , attention_mask=a , max_new_tokens=a , return_dict_in_generate=a , ) return {"sequences": outputs["sequences"]} SCREAMING_SNAKE_CASE : Dict = [[2, 0], [102, 103]] SCREAMING_SNAKE_CASE : Optional[int] = [[1, 0], [1, 1]] SCREAMING_SNAKE_CASE : Any = DummyModel(model=a ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(a , a , signatures={"serving_default": dummy_model.serving} ) SCREAMING_SNAKE_CASE : Tuple = tf.saved_model.load(a ).signatures["serving_default"] for batch_size in range(1 , len(a ) + 1 ): SCREAMING_SNAKE_CASE : Optional[int] = { "input_ids": tf.constant(dummy_input_ids[:batch_size] ), "attention_mask": tf.constant(dummy_attention_masks[:batch_size] ), } SCREAMING_SNAKE_CASE : Dict = serving_func(**a )["sequences"] SCREAMING_SNAKE_CASE : Union[str, Any] = test_model.generate(**a , max_new_tokens=a ) tf.debugging.assert_equal(a , a ) @slow def __UpperCamelCase ( self : Any ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE : int = 1 SCREAMING_SNAKE_CASE : Union[str, Any] = 2 class _UpperCamelCase ( tf.Module ): '''simple docstring''' def __init__( self : List[str] , a : List[Any] ) -> Optional[int]: """simple docstring""" super(a , self ).__init__() SCREAMING_SNAKE_CASE : List[Any] = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="input_ids" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="attention_mask" ), ) , jit_compile=a , ) def __UpperCamelCase ( self : str , a : List[str] , a : str ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Any = self.model.generate( input_ids=a , attention_mask=a , max_new_tokens=a , return_dict_in_generate=a , ) return {"sequences": outputs["sequences"]} SCREAMING_SNAKE_CASE : str = [[2], [102, 103]] SCREAMING_SNAKE_CASE : str = [[1], [1, 1]] SCREAMING_SNAKE_CASE : Optional[Any] = DummyModel(model=a ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(a , a , signatures={"serving_default": dummy_model.serving} ) SCREAMING_SNAKE_CASE : List[Any] = tf.saved_model.load(a ).signatures["serving_default"] for input_row in range(len(a ) ): SCREAMING_SNAKE_CASE : List[str] = { "input_ids": tf.constant([dummy_input_ids[input_row]] ), "attention_mask": tf.constant([dummy_attention_masks[input_row]] ), } SCREAMING_SNAKE_CASE : Union[str, Any] = serving_func(**a )["sequences"] SCREAMING_SNAKE_CASE : str = test_model.generate(**a , max_new_tokens=a ) tf.debugging.assert_equal(a , a ) @slow @require_tensorflow_text def __UpperCamelCase ( self : Tuple ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="google/flan-t5-small" , filename="spiece.model" , local_dir=a ) class _UpperCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple ) -> Optional[Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE : List[str] = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(a , "spiece.model" ) , "rb" ).read() ) SCREAMING_SNAKE_CASE : str = TFAutoModelForSeqaSeqLM.from_pretrained("hf-internal-testing/tiny-random-t5" ) def __UpperCamelCase ( self : Union[str, Any] , a : Optional[Any] , *a : Union[str, Any] , **a : int ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer.tokenize(a ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = text.pad_model_inputs( a , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) SCREAMING_SNAKE_CASE : str = self.model.generate(input_ids=a , attention_mask=a ) return self.tokenizer.detokenize(a ) SCREAMING_SNAKE_CASE : Union[str, Any] = CompleteSentenceTransformer() SCREAMING_SNAKE_CASE : Optional[Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="inputs" ) SCREAMING_SNAKE_CASE : Dict = complete_model(a ) SCREAMING_SNAKE_CASE : Union[str, Any] = tf.keras.Model(a , a ) keras_model.save(a ) def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = { "do_sample": True, "num_beams": 1, "top_p": 0.7, "top_k": 10, "temperature": 0.7, } SCREAMING_SNAKE_CASE : Dict = 14 SCREAMING_SNAKE_CASE : int = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE : int = "Hello, my dog is cute and" SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer(a , return_tensors="tf" ) SCREAMING_SNAKE_CASE : str = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE : Dict = 638 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(":/CPU:0" ): tf.random.set_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = model.generate(**a , eos_token_id=a , **a ) self.assertTrue(expectation == len(generated_tokens[0] ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = [638, 198] with tf.device(":/CPU:0" ): tf.random.set_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = model.generate(**a , eos_token_id=a , **a ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def __UpperCamelCase ( self : Tuple ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart" ) SCREAMING_SNAKE_CASE : Optional[int] = "Hugging Face is a technology company based in New York and Paris." SCREAMING_SNAKE_CASE : List[Any] = bart_tokenizer(a , return_tensors="tf" ).input_ids SCREAMING_SNAKE_CASE : Dict = TFBartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart" ) SCREAMING_SNAKE_CASE : Dict = bart_model.generate(a ).numpy() class _UpperCamelCase ( __A ): '''simple docstring''' def __UpperCamelCase ( self : Optional[int] , a : int , a : List[str]=None , **a : List[str] ) -> Optional[int]: """simple docstring""" return super().call(a , **a ) SCREAMING_SNAKE_CASE : Optional[int] = FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart" ) SCREAMING_SNAKE_CASE : Union[str, Any] = bart_model.generate(a , foo="bar" ).numpy() self.assertTrue(np.array_equal(a , a ) ) class _UpperCamelCase ( bart_model.model.encoder.__class__ ): '''simple docstring''' def __UpperCamelCase ( self : Tuple , a : Any , **a : List[Any] ) -> Optional[Any]: """simple docstring""" return super().call(a , **a ) SCREAMING_SNAKE_CASE : int = FakeEncoder(bart_model.config , bart_model.model.shared ) SCREAMING_SNAKE_CASE : List[str] = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) SCREAMING_SNAKE_CASE : Union[str, Any] = bart_model.generate(a ).numpy() with self.assertRaises(a ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(a , foo="bar" )
25
from math import pi, sqrt, tan def lowerCamelCase__ ( _a): if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values") return 6 * side_length**2 def lowerCamelCase__ ( _a , _a , _a): if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values") return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values") return 4 * pi * radius**2 def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values") return 3 * pi * radius**2 def lowerCamelCase__ ( _a , _a): if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values") return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCamelCase__ ( _a , _a , _a): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values") SCREAMING_SNAKE_CASE : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCamelCase__ ( _a , _a): if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values") return 2 * pi * radius * (height + radius) def lowerCamelCase__ ( _a , _a): if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values") if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori") return 4 * pow(_a , 2) * torus_radius * tube_radius def lowerCamelCase__ ( _a , _a): if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values") return length * width def lowerCamelCase__ ( _a): if side_length < 0: raise ValueError("area_square() only accepts non-negative values") return side_length**2 def lowerCamelCase__ ( _a , _a): if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values") return (base * height) / 2 def lowerCamelCase__ ( _a , _a , _a): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values") elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle") SCREAMING_SNAKE_CASE : List[str] = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE : Optional[int] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea)) return area def lowerCamelCase__ ( _a , _a): if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values") return base * height def lowerCamelCase__ ( _a , _a , _a): if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values") return 1 / 2 * (basea + basea) * height def lowerCamelCase__ ( _a): if radius < 0: raise ValueError("area_circle() only accepts non-negative values") return pi * radius**2 def lowerCamelCase__ ( _a , _a): if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values") return pi * radius_x * radius_y def lowerCamelCase__ ( _a , _a): if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values") return 1 / 2 * diagonal_a * diagonal_a def lowerCamelCase__ ( _a , _a): if not isinstance(_a , _a) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides") elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side") return (sides * length**2) / (4 * tan(pi / sides)) return (sides * length**2) / (4 * tan(pi / sides)) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F'''Rectangle: {area_rectangle(10, 20) = }''') print(F'''Square: {area_square(10) = }''') print(F'''Triangle: {area_triangle(10, 10) = }''') print(F'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(F'''Parallelogram: {area_parallelogram(10, 20) = }''') print(F'''Rhombus: {area_rhombus(10, 20) = }''') print(F'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(F'''Circle: {area_circle(20) = }''') print(F'''Ellipse: {area_ellipse(10, 20) = }''') print('\nSurface Areas of various geometric shapes: \n') print(F'''Cube: {surface_area_cube(20) = }''') print(F'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(F'''Sphere: {surface_area_sphere(20) = }''') print(F'''Hemisphere: {surface_area_hemisphere(20) = }''') print(F'''Cone: {surface_area_cone(10, 20) = }''') print(F'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(F'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(F'''Torus: {surface_area_torus(20, 10) = }''') print(F'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(F'''Square: {area_reg_polygon(4, 10) = }''') print(F'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
25
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() a_ : List[Any] = logging.get_logger(__name__) def __a ( __UpperCAmelCase , __UpperCAmelCase=False ): a__ = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''') ) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''') ) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''') ) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" a__ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) # fmt: on return rename_keys def __a ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ): for i in range(config.num_hidden_layers ): if base_model: a__ = '''''' else: a__ = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a__ = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) a__ = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict a__ = in_proj_weight[ : config.hidden_size, : ] a__ = in_proj_bias[: config.hidden_size] a__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a__ = in_proj_weight[ -config.hidden_size :, : ] a__ = in_proj_bias[-config.hidden_size :] def __a ( __UpperCAmelCase ): a__ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def __a ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): a__ = dct.pop(__UpperCAmelCase ) a__ = val def __a ( ): a__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a__ = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def __a ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ): a__ = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=__UpperCAmelCase , ) a__ = ViTHybridConfig(backbone_config=__UpperCAmelCase , image_size=384 , num_labels=1000 ) a__ = False # load original model from timm a__ = timm.create_model(__UpperCAmelCase , pretrained=__UpperCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys a__ = timm_model.state_dict() if base_model: remove_classification_head_(__UpperCAmelCase ) a__ = create_rename_keys(__UpperCAmelCase , __UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_q_k_v(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) a__ = '''huggingface/label-files''' a__ = '''imagenet-1k-id2label.json''' a__ = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) a__ = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} a__ = idalabel a__ = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": a__ = ViTHybridModel(__UpperCAmelCase ).eval() else: a__ = ViTHybridForImageClassification(__UpperCAmelCase ).eval() model.load_state_dict(__UpperCAmelCase ) # create image processor a__ = create_transform(**resolve_data_config({} , model=__UpperCAmelCase ) ) a__ = transform.transforms a__ = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } a__ = ViTHybridImageProcessor( do_resize=__UpperCAmelCase , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__UpperCAmelCase , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=__UpperCAmelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) a__ = prepare_img() a__ = transform(__UpperCAmelCase ).unsqueeze(0 ) a__ = processor(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase ) # verify logits with torch.no_grad(): a__ = model(__UpperCAmelCase ) a__ = outputs.logits print('''Predicted class:''' , logits.argmax(-1 ).item() ) if base_model: a__ = timm_model.forward_features(__UpperCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__UpperCAmelCase , outputs.pooler_output , atol=1e-3 ) else: a__ = timm_model(__UpperCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__UpperCAmelCase , outputs.logits , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(f"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCAmelCase ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: print(f"Pushing model and processor to the hub {vit_name}" ) model.push_to_hub(f"ybelkada/{vit_name}" ) processor.push_to_hub(f"ybelkada/{vit_name}" ) if __name__ == "__main__": a_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_r50_s16_384', type=str, help='Name of the hybrid ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) a_ : Dict = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
711
from __future__ import annotations def __a ( __UpperCAmelCase , __UpperCAmelCase ): a__ = get_failure_array(__UpperCAmelCase ) # 2) Step through text searching for pattern a__ , a__ = 0, 0 # index into text, pattern while i < len(__UpperCAmelCase ): if pattern[j] == text[i]: if j == (len(__UpperCAmelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: a__ = failure[j - 1] continue i += 1 return False def __a ( __UpperCAmelCase ): a__ = [0] a__ = 0 a__ = 1 while j < len(__UpperCAmelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: a__ = failure[i - 1] continue j += 1 failure.append(__UpperCAmelCase ) return failure if __name__ == "__main__": # Test 1) a_ : Tuple = 'abc1abc12' a_ : Optional[Any] = 'alskfjaldsabc1abc1abc12k23adsfabcabc' a_ : Optional[Any] = 'alskfjaldsk23adsfabcabc' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) a_ : Any = 'ABABX' a_ : Any = 'ABABZABABYABABX' assert kmp(pattern, text) # Test 3) a_ : Union[str, Any] = 'AAAB' a_ : int = 'ABAAAAAB' assert kmp(pattern, text) # Test 4) a_ : Tuple = 'abcdabcy' a_ : Optional[Any] = 'abcxabcdabxabcdabcdabcy' assert kmp(pattern, text) # Test 5) a_ : Dict = 'aabaabaaa' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
148
0
_snake_case : Any = { 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
693
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ =42 SCREAMING_SNAKE_CASE__ =42 def __init__( self, _a, _a ) -> Dict: super().__init__() self.register_modules(unet=_a, scheduler=_a ) @torch.no_grad() def __call__( self, _a = 1, _a = 20_00, _a = None, _a = "pil", _a = True, **_a, ) -> Union[ImagePipelineOutput, Tuple]: __SCREAMING_SNAKE_CASE = self.unet.config.sample_size __SCREAMING_SNAKE_CASE = (batch_size, 3, img_size, img_size) __SCREAMING_SNAKE_CASE = self.unet __SCREAMING_SNAKE_CASE = randn_tensor(_a, generator=_a ) * self.scheduler.init_noise_sigma __SCREAMING_SNAKE_CASE = sample.to(self.device ) self.scheduler.set_timesteps(_a ) self.scheduler.set_sigmas(_a ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __SCREAMING_SNAKE_CASE = self.scheduler.sigmas[i] * torch.ones(shape[0], device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __SCREAMING_SNAKE_CASE = self.unet(_a, _a ).sample __SCREAMING_SNAKE_CASE = self.scheduler.step_correct(_a, _a, generator=_a ).prev_sample # prediction step __SCREAMING_SNAKE_CASE = model(_a, _a ).sample __SCREAMING_SNAKE_CASE = self.scheduler.step_pred(_a, _a, _a, generator=_a ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = output.prev_sample, output.prev_sample_mean __SCREAMING_SNAKE_CASE = sample_mean.clamp(0, 1 ) __SCREAMING_SNAKE_CASE = sample.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": __SCREAMING_SNAKE_CASE = self.numpy_to_pil(_a ) if not return_dict: return (sample,) return ImagePipelineOutput(images=_a )
693
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ : Tuple = { """configuration_table_transformer""": [ """TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TableTransformerConfig""", """TableTransformerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[str] = [ """TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TableTransformerForObjectDetection""", """TableTransformerModel""", """TableTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
180
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def __lowercase ( snake_case ): """simple docstring""" if ( (cp >= 0x4_e_0_0 and cp <= 0x9_f_f_f) or (cp >= 0x3_4_0_0 and cp <= 0x4_d_b_f) # or (cp >= 0x2_0_0_0_0 and cp <= 0x2_a_6_d_f) # or (cp >= 0x2_a_7_0_0 and cp <= 0x2_b_7_3_f) # or (cp >= 0x2_b_7_4_0 and cp <= 0x2_b_8_1_f) # or (cp >= 0x2_b_8_2_0 and cp <= 0x2_c_e_a_f) # or (cp >= 0xf_9_0_0 and cp <= 0xf_a_f_f) or (cp >= 0x2_f_8_0_0 and cp <= 0x2_f_a_1_f) # ): # return True return False def __lowercase ( snake_case ): """simple docstring""" for char in word: __magic_name__ :Union[str, Any] = ord(snake_case ) if not _is_chinese_char(snake_case ): return 0 return 1 def __lowercase ( snake_case ): """simple docstring""" __magic_name__ :Any = set() for token in tokens: __magic_name__ :Dict = len(snake_case ) > 1 and is_chinese(snake_case ) if chinese_word: word_set.add(snake_case ) __magic_name__ :str = list(snake_case ) return word_list def __lowercase ( snake_case, snake_case ): """simple docstring""" if not chinese_word_set: return bert_tokens __magic_name__ :int = max([len(snake_case ) for w in chinese_word_set] ) __magic_name__ :Any = bert_tokens __magic_name__ , __magic_name__ :List[Any] = 0, len(snake_case ) while start < end: __magic_name__ :str = True if is_chinese(bert_word[start] ): __magic_name__ :Optional[Any] = min(end - start, snake_case ) for i in range(snake_case, 1, -1 ): __magic_name__ :Any = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): __magic_name__ :Optional[int] = '''##''' + bert_word[j] __magic_name__ :List[str] = start + i __magic_name__ :Optional[Any] = False break if single_word: start += 1 return bert_word def __lowercase ( snake_case, snake_case, snake_case ): """simple docstring""" __magic_name__ :Optional[int] = [] for i in range(0, len(snake_case ), 1_0_0 ): __magic_name__ :List[str] = ltp_tokenizer.seg(lines[i : i + 1_0_0] )[0] __magic_name__ :List[str] = [get_chinese_word(snake_case ) for r in res] ltp_res.extend(snake_case ) assert len(snake_case ) == len(snake_case ) __magic_name__ :Union[str, Any] = [] for i in range(0, len(snake_case ), 1_0_0 ): __magic_name__ :str = bert_tokenizer(lines[i : i + 1_0_0], add_special_tokens=snake_case, truncation=snake_case, max_length=5_1_2 ) bert_res.extend(res['''input_ids'''] ) assert len(snake_case ) == len(snake_case ) __magic_name__ :Union[str, Any] = [] for input_ids, chinese_word in zip(snake_case, snake_case ): __magic_name__ :Any = [] for id in input_ids: __magic_name__ :List[Any] = bert_tokenizer._convert_id_to_token(snake_case ) input_tokens.append(snake_case ) __magic_name__ :Dict = add_sub_symbol(snake_case, snake_case ) __magic_name__ :Optional[Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(snake_case ): if token[:2] == "##": __magic_name__ :Optional[int] = token[2:] # save chinese tokens' pos if len(snake_case ) == 1 and _is_chinese_char(ord(snake_case ) ): ref_id.append(snake_case ) ref_ids.append(snake_case ) assert len(snake_case ) == len(snake_case ) return ref_ids def __lowercase ( snake_case ): """simple docstring""" with open(args.file_name, '''r''', encoding='''utf-8''' ) as f: __magic_name__ :Union[str, Any] = f.readlines() __magic_name__ :int = [line.strip() for line in data if len(snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' __magic_name__ :List[Any] = LTP(args.ltp ) # faster in GPU device __magic_name__ :List[str] = BertTokenizer.from_pretrained(args.bert ) __magic_name__ :Optional[int] = prepare_ref(snake_case, snake_case, snake_case ) with open(args.save_path, '''w''', encoding='''utf-8''' ) as f: __magic_name__ :Dict = [json.dumps(snake_case ) + '''\n''' for ref in ref_ids] f.writelines(snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Tuple = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") SCREAMING_SNAKE_CASE__ : int = parser.parse_args() main(args)
180
1
"""simple docstring""" import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) snake_case : List[str] = logging.getLogger(__name__) @dataclass(frozen=a_) class UpperCamelCase__ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None @dataclass(frozen=a_) class UpperCamelCase__ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if is_torch_available(): import torch from torch.utils.data import Dataset class UpperCamelCase__ ( a_): """simple docstring""" __UpperCAmelCase = 42 def __init__( self : Any , UpperCamelCase_ : str , UpperCamelCase_ : PreTrainedTokenizer , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : List[str]=False , UpperCamelCase_ : bool = False , ): '''simple docstring''' __magic_name__ = hans_processors[task]() __magic_name__ = os.path.join( UpperCamelCase_ , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(UpperCamelCase_ ) , UpperCamelCase_ , ) , ) __magic_name__ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __magic_name__ , __magic_name__ = label_list[2], label_list[1] __magic_name__ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __magic_name__ = cached_features_file + '.lock' with FileLock(UpperCamelCase_ ): if os.path.exists(UpperCamelCase_ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) __magic_name__ = torch.load(UpperCamelCase_ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) __magic_name__ = ( processor.get_dev_examples(UpperCamelCase_ ) if evaluate else processor.get_train_examples(UpperCamelCase_ ) ) logger.info('Training examples: %s' , len(UpperCamelCase_ ) ) __magic_name__ = hans_convert_examples_to_features(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) logger.info('Saving features into cached file %s' , UpperCamelCase_ ) torch.save(self.features , UpperCamelCase_ ) def __len__( self : Optional[Any] ): '''simple docstring''' return len(self.features ) def __getitem__( self : Dict , UpperCamelCase_ : Tuple ): '''simple docstring''' return self.features[i] def a__ ( self : Tuple ): '''simple docstring''' return self.label_list if is_tf_available(): import tensorflow as tf class UpperCamelCase__ : """simple docstring""" __UpperCAmelCase = 42 def __init__( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : PreTrainedTokenizer , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int] = 1_2_8 , UpperCamelCase_ : Dict=False , UpperCamelCase_ : bool = False , ): '''simple docstring''' __magic_name__ = hans_processors[task]() __magic_name__ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __magic_name__ , __magic_name__ = label_list[2], label_list[1] __magic_name__ = label_list __magic_name__ = processor.get_dev_examples(UpperCamelCase_ ) if evaluate else processor.get_train_examples(UpperCamelCase_ ) __magic_name__ = hans_convert_examples_to_features(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 1_0_0_0_0 == 0: logger.info('Writing example %d of %d' % (ex_index, len(UpperCamelCase_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) __magic_name__ = tf.data.Dataset.from_generator( UpperCamelCase_ , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def a__ ( self : Tuple ): '''simple docstring''' return self.dataset def __len__( self : Dict ): '''simple docstring''' return len(self.features ) def __getitem__( self : Dict , UpperCamelCase_ : int ): '''simple docstring''' return self.features[i] def a__ ( self : Union[str, Any] ): '''simple docstring''' return self.label_list class UpperCamelCase__ ( a_): """simple docstring""" def a__ ( self : List[Any] , UpperCamelCase_ : int ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(UpperCamelCase_ , 'heuristics_train_set.txt' ) ) , 'train' ) def a__ ( self : int , UpperCamelCase_ : Optional[int] ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(UpperCamelCase_ , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def a__ ( self : Any ): '''simple docstring''' return ["contradiction", "entailment", "neutral"] def a__ ( self : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict ): '''simple docstring''' __magic_name__ = [] for i, line in enumerate(UpperCamelCase_ ): if i == 0: continue __magic_name__ = '%s-%s' % (set_type, line[0]) __magic_name__ = line[5] __magic_name__ = line[6] __magic_name__ = line[7][2:] if line[7].startswith('ex' ) else line[7] __magic_name__ = line[0] examples.append(InputExample(guid=UpperCamelCase_ , text_a=UpperCamelCase_ , text_b=UpperCamelCase_ , label=UpperCamelCase_ , pairID=UpperCamelCase_ ) ) return examples def A ( __snake_case: List[InputExample] , __snake_case: List[str] , __snake_case: int , __snake_case: PreTrainedTokenizer , ) -> Any: """simple docstring""" __magic_name__ = {label: i for i, label in enumerate(__snake_case )} __magic_name__ = [] for ex_index, example in tqdm.tqdm(enumerate(__snake_case ) , desc='convert examples to features' ): if ex_index % 1_0_0_0_0 == 0: logger.info('Writing example %d' % (ex_index) ) __magic_name__ = tokenizer( example.text_a , example.text_b , add_special_tokens=__snake_case , max_length=__snake_case , padding='max_length' , truncation=__snake_case , return_overflowing_tokens=__snake_case , ) __magic_name__ = label_map[example.label] if example.label in label_map else 0 __magic_name__ = int(example.pairID ) features.append(InputFeatures(**__snake_case , label=__snake_case , pairID=__snake_case ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features snake_case : str = { """hans""": 3, } snake_case : List[str] = { """hans""": HansProcessor, }
545
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCamelCase__ ( metaclass=a_): """simple docstring""" __UpperCAmelCase = ["""flax""", """transformers"""] def __init__( self : List[Any] , *UpperCamelCase_ : str , **UpperCamelCase_ : Any ): '''simple docstring''' requires_backends(self , ['flax', 'transformers'] ) @classmethod def a__ ( cls : Optional[int] , *UpperCamelCase_ : Tuple , **UpperCamelCase_ : List[Any] ): '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] ) @classmethod def a__ ( cls : str , *UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : Dict ): '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] ) class UpperCamelCase__ ( metaclass=a_): """simple docstring""" __UpperCAmelCase = ["""flax""", """transformers"""] def __init__( self : List[Any] , *UpperCamelCase_ : str , **UpperCamelCase_ : str ): '''simple docstring''' requires_backends(self , ['flax', 'transformers'] ) @classmethod def a__ ( cls : Optional[int] , *UpperCamelCase_ : Optional[int] , **UpperCamelCase_ : List[str] ): '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] ) @classmethod def a__ ( cls : Tuple , *UpperCamelCase_ : List[str] , **UpperCamelCase_ : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] ) class UpperCamelCase__ ( metaclass=a_): """simple docstring""" __UpperCAmelCase = ["""flax""", """transformers"""] def __init__( self : Optional[int] , *UpperCamelCase_ : List[Any] , **UpperCamelCase_ : List[str] ): '''simple docstring''' requires_backends(self , ['flax', 'transformers'] ) @classmethod def a__ ( cls : str , *UpperCamelCase_ : List[str] , **UpperCamelCase_ : Tuple ): '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] ) @classmethod def a__ ( cls : Tuple , *UpperCamelCase_ : Any , **UpperCamelCase_ : List[str] ): '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] ) class UpperCamelCase__ ( metaclass=a_): """simple docstring""" __UpperCAmelCase = ["""flax""", """transformers"""] def __init__( self : Optional[Any] , *UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : Dict ): '''simple docstring''' requires_backends(self , ['flax', 'transformers'] ) @classmethod def a__ ( cls : str , *UpperCamelCase_ : Dict , **UpperCamelCase_ : List[str] ): '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] ) @classmethod def a__ ( cls : str , *UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] )
545
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : List[Any] ={ """configuration_clap""": [ """CLAP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ClapAudioConfig""", """ClapConfig""", """ClapTextConfig""", ], """processing_clap""": ["""ClapProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] =[ """CLAP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ClapModel""", """ClapPreTrainedModel""", """ClapTextModel""", """ClapTextModelWithProjection""", """ClapAudioModel""", """ClapAudioModelWithProjection""", ] _lowerCamelCase : Optional[int] =["""ClapFeatureExtractor"""] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys _lowerCamelCase : Union[str, Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
706
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( """The `inpainting.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionInpaintPipeline` instead.""" )
308
0
def a ( A__ ) -> list: '''simple docstring''' if any(not isinstance(A__ , A__ ) or x < 0 for x in sequence ): raise TypeError('''Sequence must be list of non-negative integers''' ) for _ in range(len(A__ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(A__ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
35
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a_ :List[str] = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :str = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :List[Any] = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys a_ :Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
1
"""simple docstring""" from scipy.stats import pearsonr import datasets _lowerCAmelCase = "\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n" _lowerCAmelCase = "\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric(\"pearsonr\")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results['pearsonr'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric(\"pearsonr\")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n ['p-value', 'pearsonr']\n >>> print(round(results['pearsonr'], 2))\n -0.74\n >>> print(round(results['p-value'], 2))\n 0.15\n" _lowerCAmelCase = "\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): """simple docstring""" def lowerCamelCase(self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ): if return_pvalue: A_ : List[Any] = pearsonr(lowerCAmelCase_ , lowerCAmelCase_ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCAmelCase_ , lowerCAmelCase_ )[0] )}
480
"""simple docstring""" import unittest import torch from torch import nn from diffusers.models.activations import get_activation class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def lowerCamelCase(self ): A_ : Optional[int] = get_activation("""swish""" ) self.assertIsInstance(lowerCAmelCase_ , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def lowerCamelCase(self ): A_ : Dict = get_activation("""silu""" ) self.assertIsInstance(lowerCAmelCase_ , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def lowerCamelCase(self ): A_ : Optional[Any] = get_activation("""mish""" ) self.assertIsInstance(lowerCAmelCase_ , nn.Mish ) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def lowerCamelCase(self ): A_ : int = get_activation("""gelu""" ) self.assertIsInstance(lowerCAmelCase_ , nn.GELU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
480
1
'''simple docstring''' import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def __snake_case ( lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' __magic_name__ = 1.5 __magic_name__ = int(factor * num_class_images ) __magic_name__ = ClipClient( url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=lowerCamelCase_ , aesthetic_weight=0.1 ) os.makedirs(F'{class_data_dir}/images' , exist_ok=lowerCamelCase_ ) if len(list(Path(F'{class_data_dir}/images' ).iterdir() ) ) >= num_class_images: return while True: __magic_name__ = client.query(text=lowerCamelCase_ ) if len(lowerCamelCase_ ) >= factor * num_class_images or num_images > 1e4: break else: __magic_name__ = int(factor * num_images ) __magic_name__ = ClipClient( url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=lowerCamelCase_ , aesthetic_weight=0.1 , ) __magic_name__ = 0 __magic_name__ = 0 __magic_name__ = tqdm(desc="downloading real regularization images" , total=lowerCamelCase_ ) with open(F'{class_data_dir}/caption.txt' , "w" ) as fa, open(F'{class_data_dir}/urls.txt' , "w" ) as fa, open( F'{class_data_dir}/images.txt' , "w" ) as fa: while total < num_class_images: __magic_name__ = class_images[count] count += 1 try: __magic_name__ = requests.get(images["url"] ) if img.status_code == 200: __magic_name__ = Image.open(BytesIO(img.content ) ) with open(F'{class_data_dir}/images/{total}.jpg' , "wb" ) as f: f.write(img.content ) fa.write(images["caption"] + "\n" ) fa.write(images["url"] + "\n" ) fa.write(F'{class_data_dir}/images/{total}.jpg' + "\n" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def __snake_case ( ): '''simple docstring''' __magic_name__ = argparse.ArgumentParser("" , add_help=lowerCamelCase_ ) parser.add_argument("--class_prompt" , help="text prompt to retrieve images" , required=lowerCamelCase_ , type=lowerCamelCase_ ) parser.add_argument("--class_data_dir" , help="path to save images" , required=lowerCamelCase_ , type=lowerCamelCase_ ) parser.add_argument("--num_class_images" , help="number of images to download" , default=200 , type=lowerCamelCase_ ) return parser.parse_args() if __name__ == "__main__": __magic_name__ : List[str] =parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
664
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
664
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class lowerCamelCase_ ( unittest.TestCase ): def A ( self ): """simple docstring""" __magic_name__ :Union[str, Any] = tempfile.mkdtemp() # fmt: off __magic_name__ :Dict = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __magic_name__ :Union[str, Any] = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) __magic_name__ :int = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __magic_name__ :Optional[int] = {'''unk_token''': '''<unk>'''} __magic_name__ :List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __magic_name__ :int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowerCAmelCase ) ) __magic_name__ :Dict = { '''do_resize''': True, '''size''': 2_0, '''do_center_crop''': True, '''crop_size''': 1_8, '''do_normalize''': True, '''image_mean''': [0.48145466, 0.4578275, 0.40821073], '''image_std''': [0.26862954, 0.26130258, 0.27577711], } __magic_name__ :Union[str, Any] = os.path.join(self.tmpdirname , __lowerCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowerCAmelCase , __lowerCAmelCase ) def A ( self , **__lowerCAmelCase ): """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowerCAmelCase ) def A ( self , **__lowerCAmelCase ): """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **__lowerCAmelCase ) def A ( self , **__lowerCAmelCase ): """simple docstring""" return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def A ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def A ( self ): """simple docstring""" __magic_name__ :Dict = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] __magic_name__ :Optional[Any] = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def A ( self ): """simple docstring""" __magic_name__ :Tuple = self.get_tokenizer() __magic_name__ :Optional[int] = self.get_rust_tokenizer() __magic_name__ :List[str] = self.get_image_processor() __magic_name__ :Optional[Any] = OwlViTProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) __magic_name__ :Union[str, Any] = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__lowerCAmelCase ) __magic_name__ :str = OwlViTProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) __magic_name__ :str = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowerCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , __lowerCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowerCAmelCase ) self.assertIsInstance(processor_fast.image_processor , __lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :int = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __magic_name__ :Any = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __magic_name__ :Tuple = self.get_image_processor(do_normalize=__lowerCAmelCase ) __magic_name__ :Optional[int] = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowerCAmelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :int = self.get_image_processor() __magic_name__ :str = self.get_tokenizer() __magic_name__ :List[Any] = OwlViTProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) __magic_name__ :int = self.prepare_image_inputs() __magic_name__ :Dict = image_processor(__lowerCAmelCase , return_tensors='''np''' ) __magic_name__ :List[Any] = processor(images=__lowerCAmelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def A ( self ): """simple docstring""" __magic_name__ :int = self.get_image_processor() __magic_name__ :str = self.get_tokenizer() __magic_name__ :Tuple = OwlViTProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) __magic_name__ :str = '''lower newer''' __magic_name__ :Any = processor(text=__lowerCAmelCase , return_tensors='''np''' ) __magic_name__ :Dict = tokenizer(__lowerCAmelCase , return_tensors='''np''' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def A ( self ): """simple docstring""" __magic_name__ :str = self.get_image_processor() __magic_name__ :Dict = self.get_tokenizer() __magic_name__ :Optional[int] = OwlViTProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) __magic_name__ :Tuple = '''lower newer''' __magic_name__ :Tuple = self.prepare_image_inputs() __magic_name__ :Any = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowerCAmelCase ): processor() def A ( self ): """simple docstring""" __magic_name__ :str = '''google/owlvit-base-patch32''' __magic_name__ :int = OwlViTProcessor.from_pretrained(__lowerCAmelCase ) __magic_name__ :List[str] = ['''cat''', '''nasa badge'''] __magic_name__ :Optional[int] = processor(text=__lowerCAmelCase ) __magic_name__ :List[Any] = 1_6 self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowerCAmelCase ): processor() def A ( self ): """simple docstring""" __magic_name__ :Tuple = '''google/owlvit-base-patch32''' __magic_name__ :int = OwlViTProcessor.from_pretrained(__lowerCAmelCase ) __magic_name__ :List[Any] = [['''cat''', '''nasa badge'''], ['''person''']] __magic_name__ :List[str] = processor(text=__lowerCAmelCase ) __magic_name__ :List[Any] = 1_6 __magic_name__ :Union[str, Any] = len(__lowerCAmelCase ) __magic_name__ :int = max([len(__lowerCAmelCase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowerCAmelCase ): processor() def A ( self ): """simple docstring""" __magic_name__ :Optional[Any] = '''google/owlvit-base-patch32''' __magic_name__ :Tuple = OwlViTProcessor.from_pretrained(__lowerCAmelCase ) __magic_name__ :List[Any] = ['''cat''', '''nasa badge'''] __magic_name__ :Optional[Any] = processor(text=__lowerCAmelCase ) __magic_name__ :int = 1_6 __magic_name__ :Any = inputs['''input_ids'''] __magic_name__ :Optional[int] = [ [4_9_4_0_6, 2_3_6_8, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_9_4_0_6, 6_8_4_1, 1_1_3_0_1, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def A ( self ): """simple docstring""" __magic_name__ :Dict = self.get_image_processor() __magic_name__ :Optional[int] = self.get_tokenizer() __magic_name__ :Optional[Any] = OwlViTProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) __magic_name__ :Tuple = self.prepare_image_inputs() __magic_name__ :Optional[Any] = self.prepare_image_inputs() __magic_name__ :Any = processor(images=__lowerCAmelCase , query_images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowerCAmelCase ): processor() def A ( self ): """simple docstring""" __magic_name__ :List[Any] = self.get_image_processor() __magic_name__ :Dict = self.get_tokenizer() __magic_name__ :List[str] = OwlViTProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) __magic_name__ :Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __magic_name__ :Dict = processor.batch_decode(__lowerCAmelCase ) __magic_name__ :Dict = tokenizer.batch_decode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
180
from __future__ import annotations def __lowercase ( snake_case, snake_case ): """simple docstring""" __magic_name__ :Tuple = 0 __magic_name__ :Tuple = len(snake_case ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __magic_name__ :str = i + 1 else: __magic_name__ :List[Any] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 11, 15], 9) = }")
180
1
"""simple docstring""" import baseaa def UpperCamelCase__ ( lowercase__ : str ): return baseaa.baaencode(string.encode("utf-8" ) ) def UpperCamelCase__ ( lowercase__ : bytes ): return baseaa.baadecode(lowercase__ ).decode("utf-8" ) if __name__ == "__main__": __A = "Hello World!" __A = baseaa_encode(test) print(encoded) __A = baseaa_decode(encoded) print(decoded)
134
"""simple docstring""" def UpperCamelCase__ ( lowercase__ : str ): snake_case : str = [int(lowercase__ ) for i in ip_va_address.split("." ) if i.isdigit()] return len(lowercase__ ) == 4 and all(0 <= int(lowercase__ ) <= 254 for octet in octets ) if __name__ == "__main__": __A = input().strip() __A = "valid" if is_ip_va_address_valid(ip) else "invalid" print(f'{ip} is a {valid_or_invalid} IP v4 address.')
134
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "facebook/bart-large-mnli" __magic_name__ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) __magic_name__ = "text_classifier" __magic_name__ = AutoTokenizer __magic_name__ = AutoModelForSequenceClassification __magic_name__ = ["text", ["text"]] __magic_name__ = ["text"] def a ( self ): '''simple docstring''' super().setup() _lowerCAmelCase : Tuple = self.model.config _lowerCAmelCase : str = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail' ): _lowerCAmelCase : Optional[int] = int(snake_case__ ) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' ) def a ( self , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = labels return self.pre_processor( [text] * len(snake_case__ ) , [F'This example is {label}' for label in labels] , return_tensors='pt' , padding='max_length' , ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Dict = outputs.logits _lowerCAmelCase : Optional[Any] = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
630
'''simple docstring''' import socket def lowercase (): """simple docstring""" _lowerCAmelCase : Tuple = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) _lowerCAmelCase : Optional[int] = socket.gethostname() _lowerCAmelCase : Any = 1_2_3_1_2 sock.connect((host, port) ) sock.send(B'Hello server!' ) with open('Received_file' , 'wb' ) as out_file: print('File opened' ) print('Receiving data...' ) while True: _lowerCAmelCase : Union[str, Any] = sock.recv(1_0_2_4 ) if not data: break out_file.write(_A ) print('Successfully received the file' ) sock.close() print('Connection closed' ) if __name__ == "__main__": main()
630
1
'''simple docstring''' from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
531
'''simple docstring''' from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand lowerCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name def _A ( UpperCAmelCase ): '''simple docstring''' if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(UpperCAmelCase ): return ext raise Exception( F"""Unable to determine file format from file extension {path}. """ F"""Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}""" ) def _A ( UpperCAmelCase ): '''simple docstring''' A__ = pipeline( task=args.task ,model=args.model if args.model else None ,config=args.config ,tokenizer=args.tokenizer ,device=args.device ,) A__ = try_infer_format_from_ext(args.input ) if args.format == 'infer' else args.format A__ = PipelineDataFormat.from_str( format=UpperCAmelCase ,output_path=args.output ,input_path=args.input ,column=args.column if args.column else nlp.default_input_names ,overwrite=args.overwrite ,) return RunCommand(UpperCAmelCase ,UpperCAmelCase ) class _snake_case( UpperCAmelCase ): def __init__(self : Tuple , a : Pipeline , a : PipelineDataFormat ) -> Union[str, Any]: """simple docstring""" A__ = nlp A__ = reader @staticmethod def _UpperCamelCase (a : ArgumentParser ) -> str: """simple docstring""" A__ = parser.add_parser('run' , help='Run a pipeline through the CLI' ) run_parser.add_argument('--task' , choices=get_supported_tasks() , help='Task to run' ) run_parser.add_argument('--input' , type=a , help='Path to the file to use for inference' ) run_parser.add_argument('--output' , type=a , help='Path to the file that will be used post to write results.' ) run_parser.add_argument('--model' , type=a , help='Name or path to the model to instantiate.' ) run_parser.add_argument('--config' , type=a , help='Name or path to the model\'s config to instantiate.' ) run_parser.add_argument( '--tokenizer' , type=a , help='Name of the tokenizer to use. (default: same as the model name)' ) run_parser.add_argument( '--column' , type=a , help='Name of the column to use as input. (For multi columns input as QA use column1,columns2)' , ) run_parser.add_argument( '--format' , type=a , default='infer' , choices=PipelineDataFormat.SUPPORTED_FORMATS , help='Input format to read from' , ) run_parser.add_argument( '--device' , type=a , default=-1 , help='Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)' , ) run_parser.add_argument('--overwrite' , action='store_true' , help='Allow overwriting the output file.' ) run_parser.set_defaults(func=a ) def _UpperCamelCase (self : int ) -> Optional[Any]: """simple docstring""" A__ , A__ = self._nlp, [] for entry in self._reader: A__ = nlp(**a ) if self._reader.is_multi_columns else nlp(a ) if isinstance(a , a ): outputs.append(a ) else: outputs += output # Saving data if self._nlp.binary_output: A__ = self._reader.save_binary(a ) logger.warning(f"""Current pipeline requires output to be in binary format, saving at {binary_path}""" ) else: self._reader.save(a )
531
1
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def _lowercase ( a__ : List[Any] , a__ : Dict ) -> Dict: """simple docstring""" assert isinstance(a__ , a__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _lowercase ( a__ : List[Any] , a__ : Tuple , a__ : List[str] , a__ : Tuple ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = tmp_path / "cache" _UpperCamelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCamelCase = SqlDatasetReader( "dataset" , "sqlite:///" + sqlite_path , cache_dir=a__ , keep_in_memory=a__ ).read() _check_sql_dataset(a__ , a__ ) @require_sqlalchemy @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def _lowercase ( a__ : int , a__ : Dict , a__ : Dict , a__ : Dict ) -> Any: """simple docstring""" _UpperCamelCase = tmp_path / "cache" _UpperCamelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _UpperCamelCase = features.copy() if features else default_expected_features _UpperCamelCase = ( Features({feature: Value(a__ ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCamelCase = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , features=a__ , cache_dir=a__ ).read() _check_sql_dataset(a__ , a__ ) def _lowercase ( a__ : int ) -> Any: """simple docstring""" with contextlib.closing(sqlitea.connect(a__ ) ) as con: _UpperCamelCase = con.cursor() cur.execute("SELECT * FROM dataset" ) for row in cur: yield row @require_sqlalchemy def _lowercase ( a__ : Union[str, Any] , a__ : int , a__ : str ) -> str: """simple docstring""" _UpperCamelCase = tmp_path / "cache" _UpperCamelCase = os.path.join(a__ , "tmp.sql" ) _UpperCamelCase = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=a__ ).read() SqlDatasetWriter(a__ , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=1 ).write() _UpperCamelCase = iter_sql_file(a__ ) _UpperCamelCase = iter_sql_file(a__ ) for rowa, rowa in zip(a__ , a__ ): assert rowa == rowa @require_sqlalchemy def _lowercase ( a__ : int , a__ : Any , a__ : List[Any] ) -> Dict: """simple docstring""" _UpperCamelCase = tmp_path / "cache" _UpperCamelCase = os.path.join(a__ , "tmp.sql" ) _UpperCamelCase = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=a__ ).read() SqlDatasetWriter(a__ , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=2 ).write() _UpperCamelCase = iter_sql_file(a__ ) _UpperCamelCase = iter_sql_file(a__ ) for rowa, rowa in zip(a__ , a__ ): assert rowa == rowa @require_sqlalchemy def _lowercase ( a__ : Optional[Any] , a__ : int , a__ : Any ) -> List[Any]: """simple docstring""" _UpperCamelCase = tmp_path / "cache" _UpperCamelCase = os.path.join(a__ , "tmp.sql" ) _UpperCamelCase = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=a__ ).read() with pytest.raises(a__ ): SqlDatasetWriter(a__ , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=0 ).write()
589
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("""1.6"""): __lowerCAmelCase = True from torch.cuda.amp import autocast __lowerCAmelCase = logging.getLogger(__name__) def _lowercase ( a__ : List[str]=None , a__ : Optional[int]=None ) -> Optional[int]: """simple docstring""" return field(default_factory=lambda: default , metadata=a__ ) @dataclass class lowerCamelCase_ : __lowercase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __lowercase : Optional[str] = field( default=lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __lowercase : Optional[bool] = field( default=lowercase , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) __lowercase : Optional[float] = field( default=0.1 , metadata={"help": "The dropout ratio for the attention probabilities."} ) __lowercase : Optional[float] = field( default=0.1 , metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) __lowercase : Optional[float] = field( default=0.1 , metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." } , ) __lowercase : Optional[float] = field( default=0.1 , metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."} , ) __lowercase : Optional[float] = field( default=0.05 , metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) } , ) __lowercase : Optional[float] = field(default=0.0 , metadata={"help": "The LayerDrop probability."} ) @dataclass class lowerCamelCase_ : __lowercase : Optional[str] = field( default=lowercase , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) __lowercase : Optional[str] = field( default="train+validation" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) __lowercase : bool = field( default=lowercase , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) __lowercase : Optional[int] = field( default=lowercase , metadata={"help": "The number of processes to use for the preprocessing."} , ) __lowercase : Optional[int] = field( default=lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __lowercase : Optional[int] = field( default=lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) } , ) __lowercase : List[str] = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"] , metadata={"help": "A list of characters to remove from the transcripts."} , ) @dataclass class lowerCamelCase_ : __lowercase : WavaVecaProcessor __lowercase : Union[bool, str] = True __lowercase : Optional[int] = None __lowercase : Optional[int] = None __lowercase : Optional[int] = None __lowercase : Optional[int] = None def __call__( self , lowerCamelCase_ ) -> Dict[str, torch.Tensor]: """simple docstring""" _UpperCamelCase = [{"input_values": feature["input_values"]} for feature in features] _UpperCamelCase = [{"input_ids": feature["labels"]} for feature in features] _UpperCamelCase = self.processor.pad( lowerCamelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) _UpperCamelCase = self.processor.pad( labels=lowerCamelCase_ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors="pt" , ) # replace padding with -100 to ignore loss correctly _UpperCamelCase = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_00 ) _UpperCamelCase = labels return batch class lowerCamelCase_ ( lowercase ): def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ ) -> torch.Tensor: """simple docstring""" model.train() _UpperCamelCase = self._prepare_inputs(lowerCamelCase_ ) if self.use_amp: with autocast(): _UpperCamelCase = self.compute_loss(lowerCamelCase_ , lowerCamelCase_ ) else: _UpperCamelCase = self.compute_loss(lowerCamelCase_ , lowerCamelCase_ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": _UpperCamelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _UpperCamelCase = loss.sum() / (inputs["labels"] >= 0).sum() else: raise ValueError(f'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: _UpperCamelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowerCamelCase_ ).backward() elif self.use_apex: with amp.scale_loss(lowerCamelCase_ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowerCamelCase_ ) else: loss.backward() return loss.detach() def _lowercase ( ) -> Tuple: """simple docstring""" _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , a__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: _UpperCamelCase = datasets.load_dataset( "common_voice" , data_args.dataset_config_name , split=data_args.train_split_name ) _UpperCamelCase = datasets.load_dataset("common_voice" , data_args.dataset_config_name , split="test" ) # Create and save tokenizer _UpperCamelCase = f'''[{"".join(data_args.chars_to_ignore )}]''' def remove_special_characters(a__ : Tuple ): _UpperCamelCase = re.sub(a__ , "" , batch["sentence"] ).lower() + " " return batch _UpperCamelCase = train_dataset.map(a__ , remove_columns=["sentence"] ) _UpperCamelCase = eval_dataset.map(a__ , remove_columns=["sentence"] ) def extract_all_chars(a__ : Tuple ): _UpperCamelCase = " ".join(batch["text"] ) _UpperCamelCase = list(set(a__ ) ) return {"vocab": [vocab], "all_text": [all_text]} _UpperCamelCase = train_dataset.map( a__ , batched=a__ , batch_size=-1 , keep_in_memory=a__ , remove_columns=train_dataset.column_names , ) _UpperCamelCase = train_dataset.map( a__ , batched=a__ , batch_size=-1 , keep_in_memory=a__ , remove_columns=eval_dataset.column_names , ) _UpperCamelCase = list(set(vocab_train["vocab"][0] ) | set(vocab_test["vocab"][0] ) ) _UpperCamelCase = {v: k for k, v in enumerate(a__ )} _UpperCamelCase = vocab_dict[" "] del vocab_dict[" "] _UpperCamelCase = len(a__ ) _UpperCamelCase = len(a__ ) with open("vocab.json" , "w" ) as vocab_file: json.dump(a__ , a__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = WavaVecaCTCTokenizer( "vocab.json" , unk_token="[UNK]" , pad_token="[PAD]" , word_delimiter_token="|" , ) _UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0.0 , do_normalize=a__ , return_attention_mask=a__ ) _UpperCamelCase = WavaVecaProcessor(feature_extractor=a__ , tokenizer=a__ ) _UpperCamelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction="mean" , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: _UpperCamelCase = min(len(a__ ) , data_args.max_train_samples ) _UpperCamelCase = train_dataset.select(range(a__ ) ) if data_args.max_val_samples is not None: _UpperCamelCase = eval_dataset.select(range(data_args.max_val_samples ) ) _UpperCamelCase = torchaudio.transforms.Resample(4_80_00 , 1_60_00 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(a__ : List[Any] ): _UpperCamelCase , _UpperCamelCase = torchaudio.load(batch["path"] ) _UpperCamelCase = resampler(a__ ).squeeze().numpy() _UpperCamelCase = 1_60_00 _UpperCamelCase = batch["text"] return batch _UpperCamelCase = train_dataset.map( a__ , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( a__ , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(a__ : Dict ): # check that all files have the correct sampling rate assert ( len(set(batch["sampling_rate"] ) ) == 1 ), f'''Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.''' _UpperCamelCase = processor( audio=batch["speech"] , text=batch["target_text"] , sampling_rate=batch["sampling_rate"][0] ) batch.update(a__ ) return batch _UpperCamelCase = train_dataset.map( a__ , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=a__ , num_proc=data_args.preprocessing_num_workers , ) _UpperCamelCase = eval_dataset.map( a__ , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=a__ , num_proc=data_args.preprocessing_num_workers , ) # Metric _UpperCamelCase = datasets.load_metric("wer" ) def compute_metrics(a__ : Union[str, Any] ): _UpperCamelCase = pred.predictions _UpperCamelCase = np.argmax(a__ , axis=-1 ) _UpperCamelCase = processor.tokenizer.pad_token_id _UpperCamelCase = processor.batch_decode(a__ ) # we do not want to group tokens when computing the metrics _UpperCamelCase = processor.batch_decode(pred.label_ids , group_tokens=a__ ) _UpperCamelCase = wer_metric.compute(predictions=a__ , references=a__ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator _UpperCamelCase = DataCollatorCTCWithPadding(processor=a__ , padding=a__ ) # Initialize our Trainer _UpperCamelCase = CTCTrainer( model=a__ , data_collator=a__ , args=a__ , compute_metrics=a__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCamelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): _UpperCamelCase = model_args.model_name_or_path else: _UpperCamelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) _UpperCamelCase = trainer.train(resume_from_checkpoint=a__ ) trainer.save_model() _UpperCamelCase = train_result.metrics _UpperCamelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(a__ ) ) _UpperCamelCase = min(a__ , len(a__ ) ) trainer.log_metrics("train" , a__ ) trainer.save_metrics("train" , a__ ) trainer.save_state() # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(a__ ) _UpperCamelCase = min(a__ , len(a__ ) ) trainer.log_metrics("eval" , a__ ) trainer.save_metrics("eval" , a__ ) return results if __name__ == "__main__": main()
589
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = '▁' SCREAMING_SNAKE_CASE__ = {'vocab_file': 'sentencepiece.bpe.model'} SCREAMING_SNAKE_CASE__ = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } SCREAMING_SNAKE_CASE__ = { 'facebook/xglm-564M': 2_0_4_8, } class a_ ( lowerCAmelCase__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["""input_ids""", """attention_mask"""] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer UpperCamelCase = 7 UpperCamelCase = [F"<madeupword{i}>" for i in range(self.num_madeup_words )] UpperCamelCase = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_A ) ) UpperCamelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCamelCase = 1 # Mimic fairseq token-to-id alignment for the first 4 token UpperCamelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} UpperCamelCase = len(self.sp_model ) UpperCamelCase = {F"<madeupword{i}>": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_A ) UpperCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Dict: """simple docstring""" UpperCamelCase = self.__dict__.copy() UpperCamelCase = None UpperCamelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" UpperCamelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Any: """simple docstring""" if token_ids_a is None: return [self.sep_token_id] + token_ids_a UpperCamelCase = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> str: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> int: """simple docstring""" UpperCamelCase = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def A__ ( self ) -> List[Any]: """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def A__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A__ ( self , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return self.sp_model.encode(_A , out_type=_A ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase = self.sp_model.PieceToId(_A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A__ ( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" UpperCamelCase = ''''''.join(_A ).replace(_A , """ """ ).strip() return out_string def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[str]: """simple docstring""" if not os.path.isdir(_A ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCamelCase = os.path.join( _A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , """wb""" ) as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,)
301
import logging import os import threading import time try: import warnings except ImportError: lowercase_ = None try: import msvcrt except ImportError: lowercase_ = None try: import fcntl except ImportError: lowercase_ = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowercase_ = OSError # Data # ------------------------------------------------ lowercase_ = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] lowercase_ = """3.0.12""" lowercase_ = None def a__ ( ): """simple docstring""" global _logger __SCREAMING_SNAKE_CASE : Optional[Any] = _logger or logging.getLogger(__name__ ) return _logger class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : List[Any] , _A : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = lock_file return None def __str__( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = F'''The file lock \'{self.lock_file}\' could not be acquired.''' return temp class __UpperCamelCase : """simple docstring""" def __init__( self : Optional[Any] , _A : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = lock return None def __enter__( self : Any ): """simple docstring""" return self.lock def __exit__( self : str , _A : Any , _A : int , _A : Any ): """simple docstring""" self.lock.release() return None class __UpperCamelCase : """simple docstring""" def __init__( self : Any , _A : int , _A : Optional[int]=-1 , _A : List[Any]=None ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __SCREAMING_SNAKE_CASE : Optional[Any] = self.hash_filename_if_too_long(_A , _A ) # The path to the lock file. __SCREAMING_SNAKE_CASE : Tuple = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __SCREAMING_SNAKE_CASE : str = None # The default timeout value. __SCREAMING_SNAKE_CASE : Any = timeout # We use this lock primarily for the lock counter. __SCREAMING_SNAKE_CASE : int = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __SCREAMING_SNAKE_CASE : int = 0 return None @property def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" return self._lock_file @property def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" return self._timeout @timeout.setter def UpperCAmelCase__ ( self : Tuple , _A : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = float(_A ) return None def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" raise NotImplementedError() def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" raise NotImplementedError() @property def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" return self._lock_file_fd is not None def UpperCAmelCase__ ( self : Tuple , _A : List[Any]=None , _A : Optional[Any]=0.05 ): """simple docstring""" if timeout is None: __SCREAMING_SNAKE_CASE : Optional[int] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __SCREAMING_SNAKE_CASE : Tuple = id(self ) __SCREAMING_SNAKE_CASE : Any = self._lock_file __SCREAMING_SNAKE_CASE : Union[str, Any] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F'''Attempting to acquire lock {lock_id} on {lock_filename}''' ) self._acquire() if self.is_locked: logger().debug(F'''Lock {lock_id} acquired on {lock_filename}''' ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F'''Timeout on acquiring lock {lock_id} on {lock_filename}''' ) raise Timeout(self._lock_file ) else: logger().debug( F'''Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...''' ) time.sleep(_A ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __SCREAMING_SNAKE_CASE : Optional[Any] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def UpperCAmelCase__ ( self : int , _A : List[str]=False ): """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __SCREAMING_SNAKE_CASE : Optional[int] = id(self ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self._lock_file logger().debug(F'''Attempting to release lock {lock_id} on {lock_filename}''' ) self._release() __SCREAMING_SNAKE_CASE : int = 0 logger().debug(F'''Lock {lock_id} released on {lock_filename}''' ) return None def __enter__( self : int ): """simple docstring""" self.acquire() return self def __exit__( self : Optional[int] , _A : List[str] , _A : List[Any] , _A : int ): """simple docstring""" self.release() return None def __del__( self : int ): """simple docstring""" self.release(force=_A ) return None def UpperCAmelCase__ ( self : Optional[int] , _A : str , _A : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = os.path.basename(_A ) if len(_A ) > max_length and max_length > 0: __SCREAMING_SNAKE_CASE : Tuple = os.path.dirname(_A ) __SCREAMING_SNAKE_CASE : Optional[int] = str(hash(_A ) ) __SCREAMING_SNAKE_CASE : Optional[int] = filename[: max_length - len(_A ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(_A , _A ) else: return path class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : List[Any] , _A : Optional[Any] , _A : List[Any]=-1 , _A : Dict=None ): """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(_A , timeout=_A , max_filename_length=_A ) __SCREAMING_SNAKE_CASE : str = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __SCREAMING_SNAKE_CASE : List[str] = os.open(self._lock_file , _A ) except OSError: pass else: try: msvcrt.locking(_A , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(_A ) else: __SCREAMING_SNAKE_CASE : str = fd return None def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = self._lock_file_fd __SCREAMING_SNAKE_CASE : int = None msvcrt.locking(_A , msvcrt.LK_UNLCK , 1 ) os.close(_A ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : Tuple , _A : Optional[int] , _A : Dict=-1 , _A : str=None ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = os.statvfs(os.path.dirname(_A ) ).f_namemax super().__init__(_A , timeout=_A , max_filename_length=_A ) def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = os.O_RDWR | os.O_CREAT | os.O_TRUNC __SCREAMING_SNAKE_CASE : int = os.open(self._lock_file , _A ) try: fcntl.flock(_A , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(_A ) else: __SCREAMING_SNAKE_CASE : int = fd return None def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = self._lock_file_fd __SCREAMING_SNAKE_CASE : Any = None fcntl.flock(_A , fcntl.LOCK_UN ) os.close(_A ) return None class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __SCREAMING_SNAKE_CASE : Optional[Any] = os.open(self._lock_file , _A ) except OSError: pass else: __SCREAMING_SNAKE_CASE : List[str] = fd return None def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" os.close(self._lock_file_fd ) __SCREAMING_SNAKE_CASE : Optional[Any] = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None lowercase_ = None if msvcrt: lowercase_ = WindowsFileLock elif fcntl: lowercase_ = UnixFileLock else: lowercase_ = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
74
0
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params A_ : str = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def UpperCamelCase__ ( __magic_name__ : Dict ) -> str: '''simple docstring''' for pegasus_name, hf_name in PATTERNS: snake_case__ : Optional[Any] = k.replace(__magic_name__ , __magic_name__ ) return k def UpperCamelCase__ ( __magic_name__ : dict , __magic_name__ : dict ) -> str: '''simple docstring''' snake_case__ : Tuple = DEFAULTS.copy() cfg_kwargs.update(__magic_name__ ) snake_case__ : Tuple = PegasusConfig(**__magic_name__ ) snake_case__ : Optional[int] = PegasusForConditionalGeneration(__magic_name__ ) snake_case__ : str = torch_model.model.state_dict() snake_case__ : Dict = {} for k, v in tf_weights.items(): snake_case__ : Union[str, Any] = rename_state_dict_key(__magic_name__ ) if new_k not in sd: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: snake_case__ : List[Any] = v.T snake_case__ : str = torch.tensor(__magic_name__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected snake_case__ : List[Any] = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) snake_case__ : Any = mapping["""shared.weight"""] snake_case__ : Union[str, Any] = mapping["""shared.weight"""] snake_case__ : Optional[int] = {k: torch.zeros_like(__magic_name__ ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**__magic_name__ ) snake_case__ , snake_case__ : Tuple = torch_model.model.load_state_dict(__magic_name__ , strict=__magic_name__ ) snake_case__ : Any = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def UpperCamelCase__ ( __magic_name__ : Optional[Any]="./ckpt/aeslc/model.ckpt-32000" ) -> List[Any]: '''simple docstring''' snake_case__ : List[str] = tf.train.list_variables(__magic_name__ ) snake_case__ : Any = {} snake_case__ : Dict = ["""Adafactor""", """global_step"""] for name, shape in tqdm(__magic_name__ , desc="""converting tf checkpoint to dict""" ): snake_case__ : Any = any(pat in name for pat in ignore_name ) if skip_key: continue snake_case__ : str = tf.train.load_variable(__magic_name__ , __magic_name__ ) snake_case__ : Dict = array return tf_weights def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : str ) -> Dict: '''simple docstring''' snake_case__ : Union[str, Any] = Path(__magic_name__ ).parent.name snake_case__ : Optional[Any] = task_specific_params[f"summarization_{dataset}"]["""max_position_embeddings"""] snake_case__ : Tuple = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=__magic_name__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(__magic_name__ ) # convert model snake_case__ : str = get_tf_weights_as_numpy(__magic_name__ ) snake_case__ : Any = task_specific_params[f"summarization_{dataset}"] if dataset == "large": snake_case__ : List[str] = task_specific_params snake_case__ : Optional[int] = convert_pegasus(__magic_name__ , __magic_name__ ) torch_model.save_pretrained(__magic_name__ ) snake_case__ : Tuple = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(__magic_name__ , Path(__magic_name__ ) / """pytorch_model.bin""" ) if __name__ == "__main__": A_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") A_ : Union[str, Any] = parser.parse_args() if args.save_dir is None: A_ : Any = Path(args.tf_ckpt_path).parent.name A_ : Union[str, Any] = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
702
'''simple docstring''' from __future__ import annotations def UpperCamelCase__ ( __magic_name__ : int , __magic_name__ : int ) -> tuple[int, int]: '''simple docstring''' if b == 0: return (1, 0) ((snake_case__) , (snake_case__)) : Optional[Any] = extended_euclid(__magic_name__ , a % b ) snake_case__ : Optional[Any] = a // b return (y, x - k * y) def UpperCamelCase__ ( __magic_name__ : int , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int ) -> int: '''simple docstring''' ((snake_case__) , (snake_case__)) : Any = extended_euclid(__magic_name__ , __magic_name__ ) snake_case__ : Union[str, Any] = na * na snake_case__ : Optional[Any] = ra * x * na + ra * y * na return (n % m + m) % m def UpperCamelCase__ ( __magic_name__ : int , __magic_name__ : int ) -> int: '''simple docstring''' ((snake_case__) , (snake_case__)) : Dict = extended_euclid(__magic_name__ , __magic_name__ ) if b < 0: snake_case__ : List[Any] = (b % n + n) % n return b def UpperCamelCase__ ( __magic_name__ : int , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int ) -> int: '''simple docstring''' snake_case__ , snake_case__ : List[str] = invert_modulo(__magic_name__ , __magic_name__ ), invert_modulo(__magic_name__ , __magic_name__ ) snake_case__ : Union[str, Any] = na * na snake_case__ : Dict = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
419
0
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def UpperCAmelCase ( a__ ): '''simple docstring''' lowerCAmelCase :Tuple = filter(lambda a__ : p.requires_grad , model.parameters() ) lowerCAmelCase :Optional[Any] = sum([np.prod(p.size() ) for p in model_parameters] ) return params __SCREAMING_SNAKE_CASE = logging.getLogger(__name__) def UpperCAmelCase ( a__ , a__ ): '''simple docstring''' if metric == "rouge2": lowerCAmelCase :int = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": lowerCAmelCase :Optional[Any] = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": lowerCAmelCase :Any = '{val_avg_em:.4f}-{step_count}' else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ' function.' ) lowerCAmelCase :Any = ModelCheckpoint( dirpath=a__ , filename=a__ , monitor=F"""val_{metric}""" , mode='max' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def UpperCAmelCase ( a__ , a__ ): '''simple docstring''' return EarlyStopping( monitor=F"""val_{metric}""" , mode='min' if 'loss' in metric else 'max' , patience=a__ , verbose=a__ , ) class __UpperCamelCase ( pl.Callback ): def UpperCAmelCase__ ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : str ) -> List[str]: lowerCAmelCase :Optional[int] = {f"""lr_group_{i}""": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(UpperCAmelCase ) @rank_zero_only def UpperCAmelCase__ ( self : Union[str, Any] , UpperCAmelCase : pl.Trainer , UpperCAmelCase : pl.LightningModule , UpperCAmelCase : str , UpperCAmelCase : str=True ) -> None: logger.info(f"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) lowerCAmelCase :str = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results lowerCAmelCase :List[str] = Path(pl_module.hparams.output_dir ) if type_path == "test": lowerCAmelCase :int = od / 'test_results.txt' lowerCAmelCase :Any = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. lowerCAmelCase :Tuple = od / f"""{type_path}_results/{trainer.global_step:05d}.txt""" lowerCAmelCase :Optional[Any] = od / f"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=UpperCAmelCase ) generations_file.parent.mkdir(exist_ok=UpperCAmelCase ) with open(UpperCAmelCase , 'a+' ) as writer: for key in sorted(UpperCAmelCase ): if key in ["log", "progress_bar", "preds"]: continue lowerCAmelCase :str = metrics[key] if isinstance(UpperCAmelCase , torch.Tensor ): lowerCAmelCase :List[Any] = val.item() lowerCAmelCase :Any = f"""{key}: {val:.6f}\n""" writer.write(UpperCAmelCase ) if not save_generations: return if "preds" in metrics: lowerCAmelCase :List[Any] = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(UpperCAmelCase ) @rank_zero_only def UpperCAmelCase__ ( self : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Dict ) -> int: try: lowerCAmelCase :Tuple = pl_module.model.model.num_parameters() except AttributeError: lowerCAmelCase :List[Any] = pl_module.model.num_parameters() lowerCAmelCase :List[str] = count_trainable_parameters(UpperCAmelCase ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1e6, 'grad_mp': n_trainable_pars / 1e6} ) @rank_zero_only def UpperCAmelCase__ ( self : Any , UpperCAmelCase : pl.Trainer , UpperCAmelCase : pl.LightningModule ) -> int: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(UpperCAmelCase , UpperCAmelCase , 'test' ) @rank_zero_only def UpperCAmelCase__ ( self : int , UpperCAmelCase : pl.Trainer , UpperCAmelCase : Optional[Any] ) -> Dict: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
553
"""simple docstring""" from math import sqrt def UpperCAmelCase ( a__ = 1_00_00_00 ): '''simple docstring''' lowerCAmelCase :int = 0 lowerCAmelCase :int = 0 lowerCAmelCase :int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(a__ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"""{solution() = }""")
553
1
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder __UpperCAmelCase : List[Any] = datasets.utils.logging.get_logger(__name__) class _snake_case ( folder_based_builder.FolderBasedBuilderConfig ): _A = None _A = None class _snake_case ( folder_based_builder.FolderBasedBuilder ): _A = datasets.Audio() _A = 'audio' _A = AudioFolderConfig _A = 42 # definition at the bottom of the script _A = AudioClassification(audio_column='audio' , label_column='label' ) __UpperCAmelCase : Optional[int] = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] __UpperCAmelCase : List[str] = AUDIO_EXTENSIONS
707
def lowercase_ ( __snake_case : str ) -> list: '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(__snake_case ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("doctest").testmod()
57
0
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowerCamelCase_ ( lowerCamelCase ): def __init__( self , *__lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase ): """simple docstring""" super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) __magic_name__ :Dict = eval_examples __magic_name__ :Tuple = post_process_function def A ( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase = "eval" ): """simple docstring""" __magic_name__ :Union[str, Any] = self.eval_dataset if eval_dataset is None else eval_dataset __magic_name__ :str = self.get_eval_dataloader(__lowerCAmelCase ) __magic_name__ :Any = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __magic_name__ :Union[str, Any] = self.compute_metrics __magic_name__ :List[str] = None __magic_name__ :int = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop __magic_name__ :Tuple = time.time() try: __magic_name__ :Union[str, Any] = eval_loop( __lowerCAmelCase , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCAmelCase , metric_key_prefix=__lowerCAmelCase , ) finally: __magic_name__ :Optional[Any] = compute_metrics __magic_name__ :Union[str, Any] = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( __lowerCAmelCase , __lowerCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __magic_name__ :Dict = self.post_process_function(__lowerCAmelCase , __lowerCAmelCase , output.predictions ) __magic_name__ :List[Any] = self.compute_metrics(__lowerCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): __magic_name__ :List[str] = metrics.pop(__lowerCAmelCase ) metrics.update(output.metrics ) else: __magic_name__ :str = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__lowerCAmelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __magic_name__ :List[Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , __lowerCAmelCase ) return metrics def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase = "test" ): """simple docstring""" __magic_name__ :Tuple = self.get_test_dataloader(__lowerCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. __magic_name__ :List[str] = self.compute_metrics __magic_name__ :List[Any] = None __magic_name__ :Union[str, Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop __magic_name__ :List[Any] = time.time() try: __magic_name__ :Union[str, Any] = eval_loop( __lowerCAmelCase , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCAmelCase , metric_key_prefix=__lowerCAmelCase , ) finally: __magic_name__ :Union[str, Any] = compute_metrics __magic_name__ :str = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( __lowerCAmelCase , __lowerCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output __magic_name__ :List[str] = self.post_process_function(__lowerCAmelCase , __lowerCAmelCase , output.predictions , '''predict''' ) __magic_name__ :Dict = self.compute_metrics(__lowerCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): __magic_name__ :str = metrics.pop(__lowerCAmelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__lowerCAmelCase )
0
from sklearn.metrics import matthews_corrcoef import datasets SCREAMING_SNAKE_CASE__ : Optional[Any] = """ Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] """ SCREAMING_SNAKE_CASE__ : Union[str, Any] = """ Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results['matthews_correlation'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results['matthews_correlation'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results['matthews_correlation'], 2)) -0.25 """ SCREAMING_SNAKE_CASE__ : int = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase_ ( datasets.Metric ): def A ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html''' ] , ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ): """simple docstring""" return { "matthews_correlation": float(matthews_corrcoef(__lowerCAmelCase , __lowerCAmelCase , sample_weight=__lowerCAmelCase ) ), }
0
1
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class a__: def __init__( self , _UpperCAmelCase , _UpperCAmelCase=2 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=10 , _UpperCAmelCase=3 , _UpperCAmelCase=32 * 4 , _UpperCAmelCase=32 * 6 , _UpperCAmelCase=4 , _UpperCAmelCase=32 , ) -> List[str]: snake_case__ =parent snake_case__ =batch_size snake_case__ =is_training snake_case__ =use_auxiliary_loss snake_case__ =num_queries snake_case__ =num_channels snake_case__ =min_size snake_case__ =max_size snake_case__ =num_labels snake_case__ =mask_feature_size def _lowercase ( self ) -> Optional[int]: snake_case__ =floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _UpperCAmelCase ) snake_case__ =torch.ones([self.batch_size, self.min_size, self.max_size] , device=_UpperCAmelCase ) snake_case__ =( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_UpperCAmelCase ) > 0.5 ).float() snake_case__ =(torch.rand((self.batch_size, self.num_labels) , device=_UpperCAmelCase ) > 0.5).long() snake_case__ =self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _lowercase ( self ) -> List[Any]: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def _lowercase ( self ) -> Optional[int]: snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ =self.prepare_config_and_inputs() snake_case__ ={'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: snake_case__ =output.encoder_hidden_states snake_case__ =output.pixel_decoder_hidden_states snake_case__ =output.transformer_decoder_hidden_states self.parent.assertTrue(len(_UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_UpperCAmelCase ) , config.decoder_config.decoder_layers ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ) -> Union[str, Any]: with torch.no_grad(): snake_case__ =MaskFormerModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case__ =model(pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase ) snake_case__ =model(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_UpperCAmelCase , _UpperCAmelCase ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> str: snake_case__ =MaskFormerForInstanceSegmentation(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() def comm_check_on_output(_UpperCAmelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): snake_case__ =model(pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase ) snake_case__ =model(_UpperCAmelCase ) comm_check_on_output(_UpperCAmelCase ) snake_case__ =model( pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ) comm_check_on_output(_UpperCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class a__( snake_case__ , snake_case__ , unittest.TestCase ): a_ : Dict = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () a_ : Optional[int] = ( {'''feature-extraction''': MaskFormerModel, '''image-segmentation''': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) a_ : Any = False a_ : int = False a_ : Union[str, Any] = False a_ : int = False def _lowercase ( self ) -> Dict: snake_case__ =MaskFormerModelTester(self ) snake_case__ =ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def _lowercase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowercase ( self ) -> Dict: snake_case__ , snake_case__ =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_UpperCAmelCase , **_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) def _lowercase ( self ) -> str: snake_case__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*_UpperCAmelCase ) @unittest.skip(reason='MaskFormer does not use inputs_embeds' ) def _lowercase ( self ) -> int: pass @unittest.skip(reason='MaskFormer does not have a get_input_embeddings method' ) def _lowercase ( self ) -> Dict: pass @unittest.skip(reason='MaskFormer is not a generative model' ) def _lowercase ( self ) -> Union[str, Any]: pass @unittest.skip(reason='MaskFormer does not use token embeddings' ) def _lowercase ( self ) -> Optional[Any]: pass @require_torch_multi_gpu @unittest.skip( reason='MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _lowercase ( self ) -> Union[str, Any]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _lowercase ( self ) -> List[Any]: pass def _lowercase ( self ) -> Dict: snake_case__ , snake_case__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ =model_class(_UpperCAmelCase ) snake_case__ =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ =[*signature.parameters.keys()] snake_case__ =['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) @slow def _lowercase ( self ) -> Tuple: for model_name in ["facebook/maskformer-swin-small-coco"]: snake_case__ =MaskFormerModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def _lowercase ( self ) -> Tuple: snake_case__ =(self.model_tester.min_size,) * 2 snake_case__ ={ 'pixel_values': torch.randn((2, 3, *size) , device=_UpperCAmelCase ), 'mask_labels': torch.randn((2, 10, *size) , device=_UpperCAmelCase ), 'class_labels': torch.zeros(2 , 10 , device=_UpperCAmelCase ).long(), } snake_case__ =MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(_UpperCAmelCase ) snake_case__ =model(**_UpperCAmelCase ) self.assertTrue(outputs.loss is not None ) def _lowercase ( self ) -> Tuple: snake_case__ , snake_case__ =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_UpperCAmelCase , **_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) def _lowercase ( self ) -> List[Any]: snake_case__ , snake_case__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ =model_class(_UpperCAmelCase ).to(_UpperCAmelCase ) snake_case__ =model(**_UpperCAmelCase , output_attentions=_UpperCAmelCase ) self.assertTrue(outputs.attentions is not None ) def _lowercase ( self ) -> Union[str, Any]: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss snake_case__ =self.all_model_classes[1] snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ =self.model_tester.prepare_config_and_inputs() snake_case__ =model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() snake_case__ =model(_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ).loss loss.backward() def _lowercase ( self ) -> List[Any]: # only MaskFormerForInstanceSegmentation has the loss snake_case__ =self.all_model_classes[1] snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ =self.model_tester.prepare_config_and_inputs() snake_case__ =True snake_case__ =True snake_case__ =model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() snake_case__ =model(_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ) snake_case__ =outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() snake_case__ =outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't snake_case__ =outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() snake_case__ =outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_UpperCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) SCREAMING_SNAKE_CASE__ : Any = 1e-4 def a ( ) -> List[Any]: snake_case__ =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class a__( unittest.TestCase ): @cached_property def _lowercase ( self ) -> Optional[int]: return ( MaskFormerImageProcessor.from_pretrained('facebook/maskformer-swin-small-coco' ) if is_vision_available() else None ) def _lowercase ( self ) -> Tuple: snake_case__ =MaskFormerModel.from_pretrained('facebook/maskformer-swin-small-coco' ).to(_UpperCAmelCase ) snake_case__ =self.default_image_processor snake_case__ =prepare_img() snake_case__ =image_processor(_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) snake_case__ =inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): snake_case__ =model(**_UpperCAmelCase ) snake_case__ =torch.tensor( [[-0.0_482, 0.9_228, 0.4_951], [-0.2_547, 0.8_017, 0.8_527], [-0.0_069, 0.3_385, -0.0_089]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) snake_case__ =torch.tensor( [[-0.8_422, -0.8_434, -0.9_718], [-1.0_144, -0.5_565, -0.4_195], [-1.0_038, -0.4_484, -0.1_961]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) snake_case__ =torch.tensor( [[0.2_852, -0.0_159, 0.9_735], [0.6_254, 0.1_858, 0.8_529], [-0.0_680, -0.4_116, 1.8_413]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) def _lowercase ( self ) -> Tuple: snake_case__ =( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' ) .to(_UpperCAmelCase ) .eval() ) snake_case__ =self.default_image_processor snake_case__ =prepare_img() snake_case__ =image_processor(_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) snake_case__ =inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): snake_case__ =model(**_UpperCAmelCase ) # masks_queries_logits snake_case__ =outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) snake_case__ =[ [-1.3_737_124, -1.7_724_937, -1.9_364_233], [-1.5_977_281, -1.9_867_939, -2.1_523_695], [-1.5_795_398, -1.9_269_832, -2.093_942], ] snake_case__ =torch.tensor(_UpperCAmelCase ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) # class_queries_logits snake_case__ =outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) snake_case__ =torch.tensor( [ [1.6_512E00, -5.2_572E00, -3.3_519E00], [3.6_169E-02, -5.9_025E00, -2.9_313E00], [1.0_766E-04, -7.7_630E00, -5.1_263E00], ] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) def _lowercase ( self ) -> List[Any]: snake_case__ =( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-resnet101-coco-stuff' ) .to(_UpperCAmelCase ) .eval() ) snake_case__ =self.default_image_processor snake_case__ =prepare_img() snake_case__ =image_processor(_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) snake_case__ =inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): snake_case__ =model(**_UpperCAmelCase ) # masks_queries_logits snake_case__ =outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) snake_case__ =[[-0.9_046, -2.6_366, -4.6_062], [-3.4_179, -5.7_890, -8.8_057], [-4.9_179, -7.6_560, -10.7_711]] snake_case__ =torch.tensor(_UpperCAmelCase ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) # class_queries_logits snake_case__ =outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) snake_case__ =torch.tensor( [[4.7_188, -3.2_585, -2.8_857], [6.6_871, -2.9_181, -1.2_487], [7.2_449, -2.2_764, -2.1_874]] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) def _lowercase ( self ) -> Tuple: snake_case__ =( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' ) .to(_UpperCAmelCase ) .eval() ) snake_case__ =self.default_image_processor snake_case__ =image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) snake_case__ =inputs['pixel_values'].to(_UpperCAmelCase ) snake_case__ =[el.to(_UpperCAmelCase ) for el in inputs['mask_labels']] snake_case__ =[el.to(_UpperCAmelCase ) for el in inputs['class_labels']] with torch.no_grad(): snake_case__ =model(**_UpperCAmelCase ) self.assertTrue(outputs.loss is not None )
581
'''simple docstring''' import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class a__( snake_case__ , unittest.TestCase ): a_ : str = PriorTransformer a_ : Tuple = '''hidden_states''' @property def _lowercase ( self ) -> int: snake_case__ =4 snake_case__ =8 snake_case__ =7 snake_case__ =floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase ) snake_case__ =floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase ) snake_case__ =floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _lowercase ( self , _UpperCAmelCase=0 ) -> List[str]: torch.manual_seed(_UpperCAmelCase ) snake_case__ =4 snake_case__ =8 snake_case__ =7 snake_case__ =torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) snake_case__ =torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) snake_case__ =torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def _lowercase ( self ) -> str: return (4, 8) @property def _lowercase ( self ) -> Any: return (4, 8) def _lowercase ( self ) -> Dict: snake_case__ ={ 'num_attention_heads': 2, 'attention_head_dim': 4, 'num_layers': 2, 'embedding_dim': 8, 'num_embeddings': 7, 'additional_embeddings': 4, } snake_case__ =self.dummy_input return init_dict, inputs_dict def _lowercase ( self ) -> List[Any]: snake_case__ , snake_case__ =PriorTransformer.from_pretrained( 'hf-internal-testing/prior-dummy' , output_loading_info=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(_UpperCAmelCase ) snake_case__ =model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def _lowercase ( self ) -> Optional[Any]: snake_case__ , snake_case__ =self.prepare_init_args_and_inputs_for_common() snake_case__ =self.model_class(**_UpperCAmelCase ) snake_case__ =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ =[*signature.parameters.keys()] snake_case__ =['hidden_states', 'timestep'] self.assertListEqual(arg_names[:2] , _UpperCAmelCase ) def _lowercase ( self ) -> str: snake_case__ =PriorTransformer.from_pretrained('hf-internal-testing/prior-dummy' ) snake_case__ =model.to(_UpperCAmelCase ) if hasattr(_UpperCAmelCase , 'set_default_attn_processor' ): model.set_default_attn_processor() snake_case__ =self.get_dummy_seed_input() with torch.no_grad(): snake_case__ =model(**_UpperCAmelCase )[0] snake_case__ =output[0, :5].flatten().cpu() print(_UpperCAmelCase ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. snake_case__ =torch.tensor([-1.3_436, -0.2_870, 0.7_538, 0.4_368, -0.0_239] ) self.assertTrue(torch_all_close(_UpperCAmelCase , _UpperCAmelCase , rtol=1E-2 ) ) @slow class a__( unittest.TestCase ): def _lowercase ( self , _UpperCAmelCase=1 , _UpperCAmelCase=768 , _UpperCAmelCase=77 , _UpperCAmelCase=0 ) -> Optional[Any]: torch.manual_seed(_UpperCAmelCase ) snake_case__ =batch_size snake_case__ =embedding_dim snake_case__ =num_embeddings snake_case__ =torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) snake_case__ =torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) snake_case__ =torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _lowercase ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5_861, 0.1_283, -0.0_931, 0.0_882, 0.4_476, 0.1_329, -0.0_498, 0.0_640]], [37, [-0.4_913, 0.0_110, -0.0_483, 0.0_541, 0.4_954, -0.0_170, 0.0_354, 0.1_651]], # fmt: on ] ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: snake_case__ =PriorTransformer.from_pretrained('kandinsky-community/kandinsky-2-1-prior' , subfolder='prior' ) model.to(_UpperCAmelCase ) snake_case__ =self.get_dummy_seed_input(seed=_UpperCAmelCase ) with torch.no_grad(): snake_case__ =model(**_UpperCAmelCase )[0] assert list(sample.shape ) == [1, 768] snake_case__ =sample[0, :8].flatten().cpu() print(_UpperCAmelCase ) snake_case__ =torch.tensor(_UpperCAmelCase ) assert torch_all_close(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 )
581
1
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'vocab.txt'} a_ = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } a_ = { 'openbmb/cpm-ant-10b': 1_0_2_4, } def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : Any = collections.OrderedDict() with open(__UpperCamelCase , '''r''' , encoding='''utf-8''' ) as reader: __lowercase : List[Any] = reader.readlines() for index, token in enumerate(__UpperCamelCase ): __lowercase : str = token.rstrip('''\n''' ) __lowercase : Optional[Any] = index return vocab class UpperCAmelCase_ ( snake_case ): def __init__( self , UpperCamelCase_ , UpperCamelCase_="<unk>" , UpperCamelCase_=2_00 ) -> Any: __lowercase : Any = vocab __lowercase : Dict = unk_token __lowercase : List[str] = max_input_chars_per_word def _lowerCamelCase ( self , UpperCamelCase_ ) -> Union[str, Any]: __lowercase : Union[str, Any] = list(UpperCamelCase_ ) if len(UpperCamelCase_ ) > self.max_input_chars_per_word: return [self.unk_token] __lowercase : Any = 0 __lowercase : List[str] = [] while start < len(UpperCamelCase_ ): __lowercase : List[str] = len(UpperCamelCase_ ) __lowercase : Optional[Any] = None while start < end: __lowercase : Union[str, Any] = ''''''.join(chars[start:end] ) if substr in self.vocab: __lowercase : Union[str, Any] = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(UpperCamelCase_ ) __lowercase : int = end return sub_tokens class UpperCAmelCase_ ( snake_case ): UpperCamelCase =VOCAB_FILES_NAMES UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase =["input_ids", "attention_mask"] UpperCamelCase =False def __init__( self , UpperCamelCase_ , UpperCamelCase_="<d>" , UpperCamelCase_="</d>" , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<unk>" , UpperCamelCase_="</n>" , UpperCamelCase_="</_>" , UpperCamelCase_="left" , **UpperCamelCase_ , ) -> int: requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=UpperCamelCase_ , eod_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , line_token=UpperCamelCase_ , space_token=UpperCamelCase_ , padding_side=UpperCamelCase_ , **UpperCamelCase_ , ) __lowercase : Optional[int] = bod_token __lowercase : Optional[int] = eod_token __lowercase : Union[str, Any] = load_vocab(UpperCamelCase_ ) __lowercase : List[str] = self.encoder[space_token] __lowercase : Dict = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] __lowercase : int = collections.OrderedDict(sorted(self.encoder.items() , key=lambda UpperCamelCase_ : x[1] ) ) __lowercase : List[str] = {v: k for k, v in self.encoder.items()} __lowercase : Tuple = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def _lowerCamelCase ( self ) -> List[str]: return self.encoder[self.bod_token] @property def _lowerCamelCase ( self ) -> Optional[Any]: return self.encoder[self.eod_token] @property def _lowerCamelCase ( self ) -> Optional[Any]: return self.encoder["\n"] @property def _lowerCamelCase ( self ) -> int: return len(self.encoder ) def _lowerCamelCase ( self ) -> List[str]: return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCamelCase ( self , UpperCamelCase_ ) -> List[Any]: __lowercase : List[str] = [] for x in jieba.cut(UpperCamelCase_ , cut_all=UpperCamelCase_ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(UpperCamelCase_ ) ) return output_tokens def _lowerCamelCase ( self , UpperCamelCase_ , **UpperCamelCase_ ) -> str: __lowercase : Union[str, Any] = [i for i in token_ids if i >= 0] __lowercase : int = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(UpperCamelCase_ , **UpperCamelCase_ ) def _lowerCamelCase ( self , UpperCamelCase_ ) -> List[Any]: return token in self.encoder def _lowerCamelCase ( self , UpperCamelCase_ ) -> str: return "".join(UpperCamelCase_ ) def _lowerCamelCase ( self , UpperCamelCase_ ) -> Optional[int]: return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def _lowerCamelCase ( self , UpperCamelCase_ ) -> Optional[Any]: return self.decoder.get(UpperCamelCase_ , self.unk_token ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ) -> Tuple[str]: if os.path.isdir(UpperCamelCase_ ): __lowercase : Optional[int] = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: __lowercase : Optional[Any] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory __lowercase : int = 0 if " " in self.encoder: __lowercase : List[Any] = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: __lowercase : Dict = self.encoder['''\n'''] del self.encoder["\n"] __lowercase : Optional[Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda UpperCamelCase_ : x[1] ) ) with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) __lowercase : int = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ) -> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] + ([0] * len(UpperCamelCase_ )) return [1] + ([0] * len(UpperCamelCase_ ))
76
"""simple docstring""" def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): if digit_amount > 0: return round(number - int(__UpperCamelCase ) , __UpperCamelCase ) return number - int(__UpperCamelCase ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
76
1
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) UpperCAmelCase_ = logging.getLogger() def __magic_name__ ( ) -> Tuple: """simple docstring""" lowercase_ : List[Any] = argparse.ArgumentParser() parser.add_argument("""-f""" ) lowercase_ : Optional[Any] = parser.parse_args() return args.f class UpperCamelCase__ ( lowerCamelCase__ ): '''simple docstring''' def snake_case__ ( self ) -> None: """simple docstring""" lowercase_ : List[Any] = logging.StreamHandler(sys.stdout ) logger.addHandler(snake_case__ ) def snake_case__ ( self, snake_case__ ) -> Union[str, Any]: """simple docstring""" lowercase_ : int = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0, """run_glue_deebert.py""" ) with patch.object(snake_case__, """argv""", snake_case__ ): lowercase_ : str = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(snake_case__, 0.666 ) @slow @require_torch_non_multi_gpu def snake_case__ ( self ) -> str: """simple docstring""" lowercase_ : str = """ --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage """.split() self.run_and_check(snake_case__ ) lowercase_ : str = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(snake_case__ ) lowercase_ : int = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(snake_case__ )
436
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """t5-small""": """https://huggingface.co/t5-small/resolve/main/config.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/config.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/config.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/config.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/config.json""", } class UpperCamelCase__ ( lowerCamelCase__ ): '''simple docstring''' __a : Tuple = """t5""" __a : Optional[Any] = ["""past_key_values"""] __a : Optional[int] = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self, snake_case__=3_21_28, snake_case__=5_12, snake_case__=64, snake_case__=20_48, snake_case__=6, snake_case__=None, snake_case__=8, snake_case__=32, snake_case__=1_28, snake_case__=0.1, snake_case__=1E-6, snake_case__=1.0, snake_case__="relu", snake_case__=True, snake_case__=True, snake_case__=0, snake_case__=1, **snake_case__, ) -> List[Any]: """simple docstring""" lowercase_ : Optional[int] = vocab_size lowercase_ : int = d_model lowercase_ : int = d_kv lowercase_ : Optional[Any] = d_ff lowercase_ : Union[str, Any] = num_layers lowercase_ : int = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowercase_ : str = num_heads lowercase_ : int = relative_attention_num_buckets lowercase_ : int = relative_attention_max_distance lowercase_ : Any = dropout_rate lowercase_ : Optional[Any] = layer_norm_epsilon lowercase_ : int = initializer_factor lowercase_ : Union[str, Any] = feed_forward_proj lowercase_ : Any = use_cache lowercase_ : Optional[int] = self.feed_forward_proj.split("""-""" ) lowercase_ : Optional[Any] = act_info[-1] lowercase_ : Union[str, Any] = act_info[0] == """gated""" if len(snake_case__ ) > 1 and act_info[0] != "gated" or len(snake_case__ ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": lowercase_ : Optional[int] = """gelu_new""" super().__init__( pad_token_id=snake_case__, eos_token_id=snake_case__, is_encoder_decoder=snake_case__, **snake_case__, ) class UpperCamelCase__ ( lowerCamelCase__ ): '''simple docstring''' @property def snake_case__ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" lowercase_ : str = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: lowercase_ : Any = """past_encoder_sequence + sequence""" lowercase_ : Tuple = {0: """batch"""} lowercase_ : Any = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: lowercase_ : int = {0: """batch""", 1: """decoder_sequence"""} lowercase_ : List[str] = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(snake_case__, direction="""inputs""" ) return common_inputs @property def snake_case__ ( self ) -> int: """simple docstring""" return 13
436
1
import os from collections.abc import Iterator def __lowerCamelCase ( __lowerCAmelCase : str = "." ) -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(__lowerCAmelCase ): __UpperCamelCase : Dict = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__lowerCAmelCase )[1] in (".py", ".ipynb"): yield os.path.join(__lowerCAmelCase , __lowerCAmelCase ).lstrip("""./""" ) def __lowerCamelCase ( __lowerCAmelCase : Optional[Any] ) -> int: return f'{i * " "}*' if i else "\n##" def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : str ) -> str: __UpperCamelCase : List[str] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__lowerCAmelCase ) or old_parts[i] != new_part) and new_part: print(f'{md_prefix(__lowerCAmelCase )} {new_part.replace("_" , " " ).title()}' ) return new_path def __lowerCamelCase ( __lowerCAmelCase : str = "." ) -> None: __UpperCamelCase : List[Any] = """""" for filepath in sorted(good_file_paths(__lowerCAmelCase ) ): __UpperCamelCase , __UpperCamelCase : List[str] = os.path.split(__lowerCAmelCase ) if filepath != old_path: __UpperCamelCase : Tuple = print_path(__lowerCAmelCase , __lowerCAmelCase ) __UpperCamelCase : List[str] = (filepath.count(os.sep ) + 1) if filepath else 0 __UpperCamelCase : Optional[Any] = f'{filepath}/{filename}'.replace(""" """ , """%20""" ) __UpperCamelCase : List[Any] = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(f'{md_prefix(__lowerCAmelCase )} [{filename}]({url})' ) if __name__ == "__main__": print_directory_md('.')
269
from __future__ import annotations from typing import Any class _A : def __init__( self : List[Any] , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : float = 0 ): """simple docstring""" __UpperCamelCase , __UpperCamelCase : Tuple = row, column __UpperCamelCase : Tuple = [[default_value for c in range(lowerCamelCase__ )] for r in range(lowerCamelCase__ )] def __str__( self : List[Any] ): """simple docstring""" __UpperCamelCase : Dict = f'Matrix consist of {self.row} rows and {self.column} columns\n' # Make string identifier __UpperCamelCase : Optional[int] = 0 for row_vector in self.array: for obj in row_vector: __UpperCamelCase : int = max(lowerCamelCase__ , len(str(lowerCamelCase__ ) ) ) __UpperCamelCase : Union[str, Any] = f'%{max_element_length}s' # Make string and return def single_line(lowerCamelCase__ : list[float] ) -> str: nonlocal string_format_identifier __UpperCamelCase : List[Any] = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(lowerCamelCase__ ) for row_vector in self.array ) return s def __repr__( self : Any ): """simple docstring""" return str(self ) def a ( self : str , lowerCamelCase__ : tuple[int, int] ): """simple docstring""" if not (isinstance(lowerCamelCase__ , (list, tuple) ) and len(lowerCamelCase__ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : Union[str, Any] , lowerCamelCase__ : tuple[int, int] ): """simple docstring""" assert self.validate_indicies(lowerCamelCase__ ) return self.array[loc[0]][loc[1]] def __setitem__( self : Union[str, Any] , lowerCamelCase__ : tuple[int, int] , lowerCamelCase__ : float ): """simple docstring""" assert self.validate_indicies(lowerCamelCase__ ) __UpperCamelCase : str = value def __add__( self : int , lowerCamelCase__ : Matrix ): """simple docstring""" assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) assert self.row == another.row and self.column == another.column # Add __UpperCamelCase : Tuple = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCamelCase : Optional[int] = self[r, c] + another[r, c] return result def __neg__( self : Optional[int] ): """simple docstring""" __UpperCamelCase : str = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCamelCase : Any = -self[r, c] return result def __sub__( self : Tuple , lowerCamelCase__ : Matrix ): """simple docstring""" return self + (-another) def __mul__( self : Tuple , lowerCamelCase__ : int | float | Matrix ): """simple docstring""" if isinstance(lowerCamelCase__ , (int, float) ): # Scalar multiplication __UpperCamelCase : List[str] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCamelCase : Tuple = self[r, c] * another return result elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): # Matrix multiplication assert self.column == another.row __UpperCamelCase : List[Any] = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __UpperCamelCase : Any = f'Unsupported type given for another ({type(lowerCamelCase__ )})' raise TypeError(lowerCamelCase__ ) def a ( self : Union[str, Any] ): """simple docstring""" __UpperCamelCase : Dict = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): __UpperCamelCase : str = self[r, c] return result def a ( self : Any , lowerCamelCase__ : Matrix , lowerCamelCase__ : Matrix ): """simple docstring""" assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __UpperCamelCase : Optional[int] = v.transpose() __UpperCamelCase : Tuple = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def __lowerCamelCase ( ) -> None: # a^(-1) __UpperCamelCase : str = Matrix(3 , 3 , 0 ) for i in range(3 ): __UpperCamelCase : List[str] = 1 print(f'a^(-1) is {ainv}' ) # u, v __UpperCamelCase : Any = Matrix(3 , 1 , 0 ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Any = 1, 2, -3 __UpperCamelCase : int = Matrix(3 , 1 , 0 ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Dict = 4, -2, 5 print(f'u is {u}' ) print(f'v is {v}' ) print(f'uv^T is {u * v.transpose()}' ) # Sherman Morrison print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(__lowerCAmelCase , __lowerCAmelCase )}' ) def __lowerCamelCase ( ) -> None: import doctest doctest.testmod() testa()
269
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def a (lowerCAmelCase__ ): __a = botoa.client("""iam""" ) __a = { """Version""": """2012-10-17""", """Statement""": [ {"""Effect""": """Allow""", """Principal""": {"""Service""": """sagemaker.amazonaws.com"""}, """Action""": """sts:AssumeRole"""} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=lowerCAmelCase__ , AssumeRolePolicyDocument=json.dumps(lowerCAmelCase__ , indent=2 ) ) __a = { """Version""": """2012-10-17""", """Statement""": [ { """Effect""": """Allow""", """Action""": [ """sagemaker:*""", """ecr:GetDownloadUrlForLayer""", """ecr:BatchGetImage""", """ecr:BatchCheckLayerAvailability""", """ecr:GetAuthorizationToken""", """cloudwatch:PutMetricData""", """cloudwatch:GetMetricData""", """cloudwatch:GetMetricStatistics""", """cloudwatch:ListMetrics""", """logs:CreateLogGroup""", """logs:CreateLogStream""", """logs:DescribeLogStreams""", """logs:PutLogEvents""", """logs:GetLogEvents""", """s3:CreateBucket""", """s3:ListBucket""", """s3:GetBucketLocation""", """s3:GetObject""", """s3:PutObject""", ], """Resource""": """*""", } ], } # attach policy to role iam_client.put_role_policy( RoleName=lowerCAmelCase__ , PolicyName=f'''{role_name}_policy_permission''' , PolicyDocument=json.dumps(lowerCAmelCase__ , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(f'''role {role_name} already exists. Using existing one''' ) def a (lowerCAmelCase__ ): __a = botoa.client("""iam""" ) return iam_client.get_role(RoleName=lowerCAmelCase__ )["Role"]["Arn"] def a (): __a = _ask_options( """How do you want to authorize?""" , ["""AWS Profile""", """Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) """] , lowerCAmelCase__ , ) __a = None if credentials_configuration == 0: __a = _ask_field("""Enter your AWS Profile name: [default] """ , default="""default""" ) __a = aws_profile else: print( """Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,""" """`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`""" ) __a = _ask_field("""AWS Access Key ID: """ ) __a = aws_access_key_id __a = _ask_field("""AWS Secret Access Key: """ ) __a = aws_secret_access_key __a = _ask_field("""Enter your AWS Region: [us-east-1]""" , default="""us-east-1""" ) __a = aws_region __a = _ask_options( """Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?""" , ["""Provide IAM Role name""", """Create new IAM role using credentials"""] , lowerCAmelCase__ , ) if role_management == 0: __a = _ask_field("""Enter your IAM role name: """ ) else: __a = """accelerate_sagemaker_execution_role""" print(f'''Accelerate will create an iam role "{iam_role_name}" using the provided credentials''' ) _create_iam_role_for_sagemaker(lowerCAmelCase__ ) __a = _ask_field( """Do you want to use custom Docker image? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowerCAmelCase__ , error_message="""Please enter yes or no.""" , ) __a = None if is_custom_docker_image: __a = _ask_field("""Enter your Docker image: """ , lambda lowerCAmelCase__ : str(lowerCAmelCase__ ).lower() ) __a = _ask_field( """Do you want to provide SageMaker input channels with data locations? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowerCAmelCase__ , error_message="""Please enter yes or no.""" , ) __a = None if is_sagemaker_inputs_enabled: __a = _ask_field( """Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): """ , lambda lowerCAmelCase__ : str(lowerCAmelCase__ ).lower() , ) __a = _ask_field( """Do you want to enable SageMaker metrics? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowerCAmelCase__ , error_message="""Please enter yes or no.""" , ) __a = None if is_sagemaker_metrics_enabled: __a = _ask_field( """Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): """ , lambda lowerCAmelCase__ : str(lowerCAmelCase__ ).lower() , ) __a = _ask_options( """What is the distributed mode?""" , ["""No distributed training""", """Data parallelism"""] , _convert_sagemaker_distributed_mode , ) __a = {} __a = _ask_field( """Do you wish to optimize your script with torch dynamo?[yes/NO]:""" , _convert_yes_no_to_bool , default=lowerCAmelCase__ , error_message="""Please enter yes or no.""" , ) if use_dynamo: __a = """dynamo_""" __a = _ask_options( """Which dynamo backend would you like to use?""" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) __a = _ask_field( """Do you want to customize the defaults sent to torch.compile? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowerCAmelCase__ , error_message="""Please enter yes or no.""" , ) if use_custom_options: __a = _ask_options( """Which mode do you want to use?""" , lowerCAmelCase__ , lambda lowerCAmelCase__ : TORCH_DYNAMO_MODES[int(lowerCAmelCase__ )] , default="""default""" , ) __a = _ask_field( """Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowerCAmelCase__ , error_message="""Please enter yes or no.""" , ) __a = _ask_field( """Do you want to enable dynamic shape tracing? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowerCAmelCase__ , error_message="""Please enter yes or no.""" , ) __a = """Which EC2 instance type you want to use for your training?""" if distributed_type != SageMakerDistributedType.NO: __a = _ask_options( lowerCAmelCase__ , lowerCAmelCase__ , lambda lowerCAmelCase__ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(lowerCAmelCase__ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" __a = _ask_field(lowerCAmelCase__ , lambda lowerCAmelCase__ : str(lowerCAmelCase__ ).lower() , default="""ml.p3.2xlarge""" ) __a = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): __a = _ask_field( """How many machines do you want use? [1]: """ , lowerCAmelCase__ , default=1 , ) __a = _ask_options( """Do you wish to use FP16 or BF16 (mixed precision)?""" , ["""no""", """fp16""", """bf16""", """fp8"""] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( """Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.""" ) return SageMakerConfig( image_uri=lowerCAmelCase__ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=lowerCAmelCase__ , use_cpu=lowerCAmelCase__ , dynamo_config=lowerCAmelCase__ , eca_instance_type=lowerCAmelCase__ , profile=lowerCAmelCase__ , region=lowerCAmelCase__ , iam_role_name=lowerCAmelCase__ , mixed_precision=lowerCAmelCase__ , num_machines=lowerCAmelCase__ , sagemaker_inputs_file=lowerCAmelCase__ , sagemaker_metrics_file=lowerCAmelCase__ , )
209
import doctest from collections import deque import numpy as np class __UpperCAmelCase : """simple docstring""" def __init__( self ): __a = [2, 1, 2, -1] __a = [1, 2, 3, 4] def snake_case_ ( self ): __a = len(self.first_signal ) __a = len(self.second_signal ) __a = max(__A , __A ) # create a zero matrix of max_length x max_length __a = [[0] * max_length for i in range(__A )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(__A ): __a = deque(self.second_signal ) rotated_signal.rotate(__A ) for j, item in enumerate(__A ): matrix[i][j] += item # multiply the matrix with the first signal __a = np.matmul(np.transpose(__A ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(__A , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
209
1
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) UpperCAmelCase_ : str = '▁' UpperCAmelCase_ : str = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', } UpperCAmelCase_ : Optional[int] = { 'vocab_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json' ), }, 'spm_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model' ) }, } UpperCAmelCase_ : Optional[int] = { 'facebook/s2t-small-librispeech-asr': 1_0_2_4, } UpperCAmelCase_ : List[str] = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de'] UpperCAmelCase_ : Any = {'mustc': MUSTC_LANGS} class _lowerCamelCase ( snake_case_ ): '''simple docstring''' __lowercase : int = VOCAB_FILES_NAMES __lowercase : Tuple = PRETRAINED_VOCAB_FILES_MAP __lowercase : Tuple = MAX_MODEL_INPUT_SIZES __lowercase : Any = ['''input_ids''', '''attention_mask'''] __lowercase : Optional[int] = [] def __init__( self , __lowercase , __lowercase , __lowercase="<s>" , __lowercase="</s>" , __lowercase="<pad>" , __lowercase="<unk>" , __lowercase=False , __lowercase=False , __lowercase=None , __lowercase=None , __lowercase = None , **__lowercase , ): """simple docstring""" __A : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , pad_token=__lowercase , do_upper_case=__lowercase , do_lower_case=__lowercase , tgt_lang=__lowercase , lang_codes=__lowercase , sp_model_kwargs=self.sp_model_kwargs , **__lowercase , ) __A : Dict = do_upper_case __A : Union[str, Any] = do_lower_case __A : Any = load_json(__lowercase ) __A : int = {v: k for k, v in self.encoder.items()} __A : Optional[int] = spm_file __A : Dict = load_spm(__lowercase , self.sp_model_kwargs ) if lang_codes is not None: __A : int = lang_codes __A : Union[str, Any] = LANGUAGES[lang_codes] __A : Tuple = [F"""<lang:{lang}>""" for lang in self.langs] __A : Tuple = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs} __A : Union[str, Any] = self.lang_tokens __A : str = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: __A : Any = {} @property def snake_case__ ( self ): """simple docstring""" return len(self.encoder ) @property def snake_case__ ( self ): """simple docstring""" return self._tgt_lang @tgt_lang.setter def snake_case__ ( self , __lowercase ): """simple docstring""" __A : Union[str, Any] = new_tgt_lang self.set_tgt_lang_special_tokens(__lowercase ) def snake_case__ ( self , __lowercase ): """simple docstring""" __A : Dict = self.lang_code_to_id[tgt_lang] __A : List[str] = [lang_code_id] def snake_case__ ( self , __lowercase ): """simple docstring""" return self.sp_model.encode(__lowercase , out_type=__lowercase ) def snake_case__ ( self , __lowercase ): """simple docstring""" return self.encoder.get(__lowercase , self.encoder[self.unk_token] ) def snake_case__ ( self , __lowercase ): """simple docstring""" return self.decoder.get(__lowercase , self.unk_token ) def snake_case__ ( self , __lowercase ): """simple docstring""" __A : Optional[int] = [] __A : Dict = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: __A : int = self.sp_model.decode(__lowercase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " __A : Union[str, Any] = [] else: current_sub_tokens.append(__lowercase ) __A : Optional[Any] = self.sp_model.decode(__lowercase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def snake_case__ ( self , __lowercase , __lowercase=None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def snake_case__ ( self , __lowercase , __lowercase = None , __lowercase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase ) __A : Union[str, Any] = [1] * len(self.prefix_tokens ) __A : Optional[int] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(__lowercase )) + suffix_ones return prefix_ones + ([0] * len(__lowercase )) + ([0] * len(__lowercase )) + suffix_ones def snake_case__ ( self ): """simple docstring""" __A : Any = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" __A : str = self.__dict__.copy() __A : Optional[Any] = None return state def __setstate__( self , __lowercase ): """simple docstring""" __A : Dict = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __A : int = {} __A : List[str] = load_spm(self.spm_file , self.sp_model_kwargs ) def snake_case__ ( self , __lowercase , __lowercase = None ): """simple docstring""" __A : Tuple = Path(__lowercase ) assert save_dir.is_dir(), F"""{save_directory} should be a directory""" __A : Any = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) __A : Tuple = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , __lowercase ) if os.path.abspath(self.spm_file ) != os.path.abspath(__lowercase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __lowercase ) elif not os.path.isfile(self.spm_file ): with open(__lowercase , 'wb' ) as fi: __A : Tuple = self.sp_model.serialized_model_proto() fi.write(__lowercase ) return (str(__lowercase ), str(__lowercase )) def _lowercase ( UpperCamelCase__ : str, UpperCamelCase__ : Dict[str, Any] ): __A : List[Any] = sentencepiece.SentencePieceProcessor(**UpperCamelCase__ ) spm.Load(str(UpperCamelCase__ ) ) return spm def _lowercase ( UpperCamelCase__ : str ): with open(UpperCamelCase__, 'r' ) as f: return json.load(UpperCamelCase__ ) def _lowercase ( UpperCamelCase__ : int, UpperCamelCase__ : str ): with open(UpperCamelCase__, 'w' ) as f: json.dump(UpperCamelCase__, UpperCamelCase__, indent=2 )
365
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase :Any = logging.get_logger(__name__) _lowerCAmelCase :Union[str, Any] = { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json', } class _UpperCAmelCase ( a ): '''simple docstring''' a__ ='''lxmert''' a__ ={} def __init__( self , A=3_0_5_2_2 , A=7_6_8 , A=1_2 , A=9_5_0_0 , A=1_6_0_0 , A=4_0_0 , A=3_0_7_2 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=2 , A=0.02 , A=1E-12 , A=9 , A=5 , A=5 , A=2_0_4_8 , A=4 , A=6.67 , A=True , A=True , A=True , A=True , A=True , A=True , A=True , **A , ) -> List[Any]: _UpperCAmelCase : int = vocab_size _UpperCAmelCase : str = hidden_size _UpperCAmelCase : str = num_attention_heads _UpperCAmelCase : str = hidden_act _UpperCAmelCase : Dict = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_dropout_prob _UpperCAmelCase : str = attention_probs_dropout_prob _UpperCAmelCase : Dict = max_position_embeddings _UpperCAmelCase : str = type_vocab_size _UpperCAmelCase : List[str] = initializer_range _UpperCAmelCase : List[str] = layer_norm_eps _UpperCAmelCase : Optional[int] = num_qa_labels _UpperCAmelCase : Tuple = num_object_labels _UpperCAmelCase : Optional[int] = num_attr_labels _UpperCAmelCase : List[str] = l_layers _UpperCAmelCase : Any = x_layers _UpperCAmelCase : Tuple = r_layers _UpperCAmelCase : Optional[Any] = visual_feat_dim _UpperCAmelCase : Optional[int] = visual_pos_dim _UpperCAmelCase : Optional[Any] = visual_loss_normalizer _UpperCAmelCase : int = task_matched _UpperCAmelCase : Optional[Any] = task_mask_lm _UpperCAmelCase : Union[str, Any] = task_obj_predict _UpperCAmelCase : Optional[int] = task_qa _UpperCAmelCase : Union[str, Any] = visual_obj_loss _UpperCAmelCase : List[str] = visual_attr_loss _UpperCAmelCase : Optional[int] = visual_feat_loss _UpperCAmelCase : Tuple = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**A )
506
0
'''simple docstring''' class a__: def __init__( self ) -> Optional[Any]: snake_case__ ={} def _lowercase ( self ) -> List[Any]: print(self.vertex ) for i in self.vertex: print(_lowercase , " -> " , " -> ".join([str(_lowercase ) for j in self.vertex[i]] ) ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: if from_vertex in self.vertex: self.vertex[from_vertex].append(_lowercase ) else: # else make a new vertex snake_case__ =[to_vertex] def _lowercase ( self ) -> Dict: snake_case__ =[False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_lowercase , _lowercase ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: snake_case__ =True print(_lowercase , end=" " ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_lowercase , _lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : int = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('''DFS:''') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
719
'''simple docstring''' import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets SCREAMING_SNAKE_CASE__ : Any = ''' @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' SCREAMING_SNAKE_CASE__ : List[str] = '''\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. ''' SCREAMING_SNAKE_CASE__ : Optional[Any] = ''' Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=["About 95 species are currently accepted ."] >>> predictions=["About 95 you now get in ."] >>> references=[["About 95 species are currently known ."]] >>> wiki_split = datasets.load_metric("wiki_split") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0} ''' def a ( UpperCamelCase_ : Dict ) -> Union[str, Any]: def remove_articles(UpperCamelCase_ : List[str] ): snake_case__ =re.compile(r'\b(a|an|the)\b' , re.UNICODE ) return re.sub(UpperCamelCase_ , ' ' , UpperCamelCase_ ) def white_space_fix(UpperCamelCase_ : List[str] ): return " ".join(text.split() ) def remove_punc(UpperCamelCase_ : Tuple ): snake_case__ =set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCamelCase_ : Tuple ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(UpperCamelCase_ ) ) ) ) def a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] ) -> Tuple: return int(normalize_answer(UpperCamelCase_ ) == normalize_answer(UpperCamelCase_ ) ) def a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Any ) -> Dict: snake_case__ =[any(compute_exact(UpperCamelCase_ , UpperCamelCase_ ) for ref in refs ) for pred, refs in zip(UpperCamelCase_ , UpperCamelCase_ )] return (sum(UpperCamelCase_ ) / len(UpperCamelCase_ )) * 100 def a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any ) -> Union[str, Any]: snake_case__ =[rgram for rgrams in rgramslist for rgram in rgrams] snake_case__ =Counter(UpperCamelCase_ ) snake_case__ =Counter(UpperCamelCase_ ) snake_case__ =Counter() for sgram, scount in sgramcounter.items(): snake_case__ =scount * numref snake_case__ =Counter(UpperCamelCase_ ) snake_case__ =Counter() for cgram, ccount in cgramcounter.items(): snake_case__ =ccount * numref # KEEP snake_case__ =sgramcounter_rep & cgramcounter_rep snake_case__ =keepgramcounter_rep & rgramcounter snake_case__ =sgramcounter_rep & rgramcounter snake_case__ =0 snake_case__ =0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. snake_case__ =1 snake_case__ =1 if len(UpperCamelCase_ ) > 0: snake_case__ =keeptmpscorea / len(UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) snake_case__ =keeptmpscorea / sum(keepgramcounterall_rep.values() ) snake_case__ =0 if keepscore_precision > 0 or keepscore_recall > 0: snake_case__ =2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION snake_case__ =sgramcounter_rep - cgramcounter_rep snake_case__ =delgramcounter_rep - rgramcounter snake_case__ =sgramcounter_rep - rgramcounter snake_case__ =0 snake_case__ =0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. snake_case__ =1 if len(UpperCamelCase_ ) > 0: snake_case__ =deltmpscorea / len(UpperCamelCase_ ) # ADDITION snake_case__ =set(UpperCamelCase_ ) - set(UpperCamelCase_ ) snake_case__ =set(UpperCamelCase_ ) & set(UpperCamelCase_ ) snake_case__ =set(UpperCamelCase_ ) - set(UpperCamelCase_ ) snake_case__ =0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. snake_case__ =1 snake_case__ =1 if len(UpperCamelCase_ ) > 0: snake_case__ =addtmpscore / len(UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: snake_case__ =addtmpscore / len(UpperCamelCase_ ) snake_case__ =0 if addscore_precision > 0 or addscore_recall > 0: snake_case__ =2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def a ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : str ) -> Optional[int]: snake_case__ =len(UpperCamelCase_ ) snake_case__ =ssent.split(' ' ) snake_case__ =csent.split(' ' ) snake_case__ =[] snake_case__ =[] snake_case__ =[] snake_case__ =[] snake_case__ =[] snake_case__ =[] snake_case__ =[] snake_case__ =[] snake_case__ =[] snake_case__ =[] for rsent in rsents: snake_case__ =rsent.split(' ' ) snake_case__ =[] snake_case__ =[] snake_case__ =[] ragramslist.append(UpperCamelCase_ ) for i in range(0 , len(UpperCamelCase_ ) - 1 ): if i < len(UpperCamelCase_ ) - 1: snake_case__ =ragrams[i] + ' ' + ragrams[i + 1] ragrams.append(UpperCamelCase_ ) if i < len(UpperCamelCase_ ) - 2: snake_case__ =ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] ragrams.append(UpperCamelCase_ ) if i < len(UpperCamelCase_ ) - 3: snake_case__ =ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] + ' ' + ragrams[i + 3] ragrams.append(UpperCamelCase_ ) ragramslist.append(UpperCamelCase_ ) ragramslist.append(UpperCamelCase_ ) ragramslist.append(UpperCamelCase_ ) for i in range(0 , len(UpperCamelCase_ ) - 1 ): if i < len(UpperCamelCase_ ) - 1: snake_case__ =sagrams[i] + ' ' + sagrams[i + 1] sagrams.append(UpperCamelCase_ ) if i < len(UpperCamelCase_ ) - 2: snake_case__ =sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] sagrams.append(UpperCamelCase_ ) if i < len(UpperCamelCase_ ) - 3: snake_case__ =sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] + ' ' + sagrams[i + 3] sagrams.append(UpperCamelCase_ ) for i in range(0 , len(UpperCamelCase_ ) - 1 ): if i < len(UpperCamelCase_ ) - 1: snake_case__ =cagrams[i] + ' ' + cagrams[i + 1] cagrams.append(UpperCamelCase_ ) if i < len(UpperCamelCase_ ) - 2: snake_case__ =cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] cagrams.append(UpperCamelCase_ ) if i < len(UpperCamelCase_ ) - 3: snake_case__ =cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] + ' ' + cagrams[i + 3] cagrams.append(UpperCamelCase_ ) ((snake_case__) , (snake_case__) , (snake_case__)) =SARIngram(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ((snake_case__) , (snake_case__) , (snake_case__)) =SARIngram(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ((snake_case__) , (snake_case__) , (snake_case__)) =SARIngram(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ((snake_case__) , (snake_case__) , (snake_case__)) =SARIngram(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) snake_case__ =sum([keepascore, keepascore, keepascore, keepascore] ) / 4 snake_case__ =sum([delascore, delascore, delascore, delascore] ) / 4 snake_case__ =sum([addascore, addascore, addascore, addascore] ) / 4 snake_case__ =(avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def a ( UpperCamelCase_ : Any , UpperCamelCase_ : bool = True , UpperCamelCase_ : str = "13a" , UpperCamelCase_ : bool = True ) -> Dict: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: snake_case__ =sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: snake_case__ =sacrebleu.metrics.bleu._get_tokenizer(UpperCamelCase_ )()(UpperCamelCase_ ) else: snake_case__ =sacrebleu.TOKENIZERS[tokenizer]()(UpperCamelCase_ ) elif tokenizer == "moses": snake_case__ =sacremoses.MosesTokenizer().tokenize(UpperCamelCase_ , return_str=UpperCamelCase_ , escape=UpperCamelCase_ ) elif tokenizer == "penn": snake_case__ =sacremoses.MosesTokenizer().penn_tokenize(UpperCamelCase_ , return_str=UpperCamelCase_ ) else: snake_case__ =sentence if not return_str: snake_case__ =normalized_sent.split() return normalized_sent def a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : Any ) -> List[str]: if not (len(UpperCamelCase_ ) == len(UpperCamelCase_ ) == len(UpperCamelCase_ )): raise ValueError('Sources length must match predictions and references lengths.' ) snake_case__ =0 for src, pred, refs in zip(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): sari_score += SARIsent(normalize(UpperCamelCase_ ) , normalize(UpperCamelCase_ ) , [normalize(UpperCamelCase_ ) for sent in refs] ) snake_case__ =sari_score / len(UpperCamelCase_ ) return 100 * sari_score def a ( UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any]="exp" , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : List[str]=False , UpperCamelCase_ : Optional[int]=False , UpperCamelCase_ : Any=False , ) -> Tuple: snake_case__ =len(references[0] ) if any(len(UpperCamelCase_ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) snake_case__ =[[refs[i] for refs in references] for i in range(UpperCamelCase_ )] snake_case__ =sacrebleu.corpus_bleu( UpperCamelCase_ , UpperCamelCase_ , smooth_method=UpperCamelCase_ , smooth_value=UpperCamelCase_ , force=UpperCamelCase_ , lowercase=UpperCamelCase_ , use_effective_order=UpperCamelCase_ , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__( datasets.Metric ): def _lowercase ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=[ 'https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py', 'https://github.com/cocoxu/simplification/blob/master/SARI.py', 'https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py', 'https://github.com/mjpost/sacreBLEU', ] , reference_urls=[ 'https://www.aclweb.org/anthology/Q16-1029.pdf', 'https://github.com/mjpost/sacreBLEU', 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: snake_case__ ={} result.update({'sari': compute_sari(sources=_UpperCAmelCase , predictions=_UpperCAmelCase , references=_UpperCAmelCase )} ) result.update({'sacrebleu': compute_sacrebleu(predictions=_UpperCAmelCase , references=_UpperCAmelCase )} ) result.update({'exact': compute_em(predictions=_UpperCAmelCase , references=_UpperCAmelCase )} ) return result
581
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase : Dict = { '''configuration_rembert''': ['''REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RemBertConfig''', '''RemBertOnnxConfig'''] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Union[str, Any] = ['''RemBertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ['''RemBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[int] = [ '''REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RemBertForCausalLM''', '''RemBertForMaskedLM''', '''RemBertForMultipleChoice''', '''RemBertForQuestionAnswering''', '''RemBertForSequenceClassification''', '''RemBertForTokenClassification''', '''RemBertLayer''', '''RemBertModel''', '''RemBertPreTrainedModel''', '''load_tf_weights_in_rembert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = [ '''TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRemBertForCausalLM''', '''TFRemBertForMaskedLM''', '''TFRemBertForMultipleChoice''', '''TFRemBertForQuestionAnswering''', '''TFRemBertForSequenceClassification''', '''TFRemBertForTokenClassification''', '''TFRemBertLayer''', '''TFRemBertModel''', '''TFRemBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys _lowerCAmelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
46
"""simple docstring""" import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging _A = logging.get_logger(__name__) def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False ) -> Optional[Any]: try: import torch # noqa: F401 except ImportError: logger.error( """Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise if not is_sharded: UpperCAmelCase__ : Tuple = os.path.abspath(lowerCAmelCase ) logger.info(F"""Loading PyTorch weights from {pt_path}""" ) UpperCAmelCase__ : Any = torch.load(lowerCAmelCase , map_location="""cpu""" ) logger.info(F"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" ) UpperCAmelCase__ : str = convert_pytorch_state_dict_to_flax(lowerCAmelCase , lowerCAmelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files UpperCAmelCase__ : Optional[Any] = convert_pytorch_sharded_state_dict_to_flax(lowerCAmelCase , lowerCAmelCase ) return flax_state_dict def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ) -> (Tuple[str], np.ndarray): def is_key_or_prefix_key_in_dict(lowerCAmelCase ) -> bool: return len(set(lowerCAmelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm UpperCAmelCase__ : Any = pt_tuple_key[:-1] + ("""scale""",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean UpperCAmelCase__ : Tuple = pt_tuple_key[:-1] + ("""mean""",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var UpperCAmelCase__ : Any = pt_tuple_key[:-1] + ("""var""",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # embedding UpperCAmelCase__ : Tuple = pt_tuple_key[:-1] + ("""embedding""",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase__ : List[str] = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(lowerCAmelCase ): UpperCAmelCase__ : Union[str, Any] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase__ : int = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(lowerCAmelCase ): UpperCAmelCase__ : str = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase__ : Tuple = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase__ : List[str] = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 UpperCAmelCase__ : Optional[int] = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): UpperCAmelCase__ : int = pt_tuple_key[-2] + """_g""" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): UpperCAmelCase__ : Optional[int] = pt_tuple_key[-2] + """_v""" if name is not None: UpperCAmelCase__ : List[str] = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def a__ ( lowerCAmelCase , lowerCAmelCase ) -> Dict: # convert pytorch tensor to numpy UpperCAmelCase__ : Optional[int] = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCAmelCase__ : Optional[Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: UpperCAmelCase__ : Any = flax_model.params["""params"""] else: UpperCAmelCase__ : Optional[Any] = flax_model.params UpperCAmelCase__ : Tuple = flatten_dict(lowerCAmelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCAmelCase__ : Dict = flatten_dict(flax_model.params["""batch_stats"""] ) random_flax_state_dict.update(lowerCAmelCase ) UpperCAmelCase__ : List[str] = {} UpperCAmelCase__ : str = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) UpperCAmelCase__ : List[str] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase__ : Optional[Any] = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary UpperCAmelCase__ : str = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCAmelCase__ : Optional[int] = pt_tuple_key[1:] # Correctly rename weight parameters UpperCAmelCase__ , UpperCAmelCase__ : int = rename_key_and_reshape_tensor( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # add model prefix if necessary UpperCAmelCase__ : str = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCAmelCase__ : str = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: UpperCAmelCase__ : Any = jnp.asarray(lowerCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(lowerCAmelCase , lowerCAmelCase ) continue # also add unexpected weight so that warning is thrown UpperCAmelCase__ : Union[str, Any] = jnp.asarray(lowerCAmelCase ) else: # also add unexpected weight so that warning is thrown UpperCAmelCase__ : Any = jnp.asarray(lowerCAmelCase ) return unflatten_dict(lowerCAmelCase ) def a__ ( lowerCAmelCase , lowerCAmelCase ) -> str: import torch # Load the index UpperCAmelCase__ : List[str] = {} for shard_file in shard_filenames: # load using msgpack utils UpperCAmelCase__ : Tuple = torch.load(lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCAmelCase__ : Optional[Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCAmelCase__ : List[Any] = flax_model.params["""params"""] UpperCAmelCase__ : int = flatten_dict(lowerCAmelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params["""batch_stats"""] ) ) else: UpperCAmelCase__ : Any = flax_model.params UpperCAmelCase__ : List[Any] = flatten_dict(lowerCAmelCase ) UpperCAmelCase__ : int = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) UpperCAmelCase__ : str = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase__ : Optional[int] = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary UpperCAmelCase__ : Dict = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCAmelCase__ : Optional[int] = pt_tuple_key[1:] # Correctly rename weight parameters UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = rename_key_and_reshape_tensor( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # add model prefix if necessary UpperCAmelCase__ : Tuple = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCAmelCase__ : Optional[int] = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: UpperCAmelCase__ : Any = jnp.asarray(lowerCAmelCase ) continue if "var" in flax_key[-1]: UpperCAmelCase__ : List[str] = jnp.asarray(lowerCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(lowerCAmelCase , lowerCAmelCase ) continue # also add unexpected weight so that warning is thrown UpperCAmelCase__ : Optional[int] = jnp.asarray(lowerCAmelCase ) else: # also add unexpected weight so that warning is thrown UpperCAmelCase__ : List[str] = jnp.asarray(lowerCAmelCase ) return unflatten_dict(lowerCAmelCase ) def a__ ( lowerCAmelCase , lowerCAmelCase ) -> Union[str, Any]: UpperCAmelCase__ : Optional[Any] = os.path.abspath(lowerCAmelCase ) logger.info(F"""Loading Flax weights from {flax_checkpoint_path}""" ) # import correct flax class UpperCAmelCase__ : Dict = getattr(lowerCAmelCase , """Flax""" + model.__class__.__name__ ) # load flax weight dict with open(lowerCAmelCase , """rb""" ) as state_f: try: UpperCAmelCase__ : Any = from_bytes(lowerCAmelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(F"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(lowerCAmelCase , lowerCAmelCase ) def a__ ( lowerCAmelCase , lowerCAmelCase ) -> Optional[Any]: try: import torch # noqa: F401 except ImportError: logger.error( """Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights UpperCAmelCase__ : List[Any] = flatten_dict(jax.tree_util.tree_map(lambda lowerCAmelCase : x.dtype == jnp.bfloataa , lowerCAmelCase ) ).values() if any(lowerCAmelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) UpperCAmelCase__ : Union[str, Any] = jax.tree_util.tree_map( lambda lowerCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , lowerCAmelCase ) UpperCAmelCase__ : int = flatten_dict(lowerCAmelCase ) UpperCAmelCase__ : str = pt_model.state_dict() UpperCAmelCase__ : Optional[int] = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) UpperCAmelCase__ : str = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys UpperCAmelCase__ : List[str] = [] UpperCAmelCase__ : Optional[int] = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCAmelCase__ : Dict = flax_key_tuple[0] == pt_model.base_model_prefix UpperCAmelCase__ : List[str] = """.""".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: UpperCAmelCase__ : int = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: UpperCAmelCase__ : List[Any] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(lowerCAmelCase ) not in pt_model_dict: # conv layer UpperCAmelCase__ : Union[str, Any] = flax_key_tuple[:-1] + ("""weight""",) UpperCAmelCase__ : str = jnp.transpose(lowerCAmelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(lowerCAmelCase ) not in pt_model_dict: # linear layer UpperCAmelCase__ : Optional[Any] = flax_key_tuple[:-1] + ("""weight""",) UpperCAmelCase__ : Union[str, Any] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCAmelCase__ : Any = flax_key_tuple[:-1] + ("""weight""",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: UpperCAmelCase__ : Any = flax_key_tuple[:-1] + ("""running_mean""",) elif "var" in flax_key_tuple[-1]: UpperCAmelCase__ : Dict = flax_key_tuple[:-1] + ("""running_var""",) if "batch_stats" in flax_state: UpperCAmelCase__ : int = """.""".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: UpperCAmelCase__ : Optional[Any] = """.""".join(lowerCAmelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. UpperCAmelCase__ : Optional[int] = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: UpperCAmelCase__ : str = key.split(""".""" ) UpperCAmelCase__ : Optional[int] = None if key_components[-3::2] == ["parametrizations", "original0"]: UpperCAmelCase__ : Dict = key_components[-2] + """_g""" elif key_components[-3::2] == ["parametrizations", "original1"]: UpperCAmelCase__ : Dict = key_components[-2] + """_v""" if name is not None: UpperCAmelCase__ : Optional[Any] = key_components[:-3] + [name] UpperCAmelCase__ : Any = """.""".join(lowerCAmelCase ) UpperCAmelCase__ : List[str] = key if flax_key in special_pt_names: UpperCAmelCase__ : Optional[Any] = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ F"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict UpperCAmelCase__ : Dict = np.asarray(lowerCAmelCase ) if not isinstance(lowerCAmelCase , np.ndarray ) else flax_tensor UpperCAmelCase__ : Optional[int] = torch.from_numpy(lowerCAmelCase ) # remove from missing keys missing_keys.remove(lowerCAmelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(lowerCAmelCase ) pt_model.load_state_dict(lowerCAmelCase ) # re-transform missing_keys to list UpperCAmelCase__ : Optional[Any] = list(lowerCAmelCase ) if len(lowerCAmelCase ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" F""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" F""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" F""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) else: logger.warning(F"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" ) if len(lowerCAmelCase ) > 0: logger.warning( F"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" F""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" """ use it for predictions and inference.""" ) else: logger.warning( F"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n""" """If your task is similar to the task the model of the checkpoint was trained on, """ F"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" ) return pt_model
182
0
"""simple docstring""" from typing import Any def lowercase ( A_ , A_ , A_ , A_ , A_ , )-> list: '''simple docstring''' _validation( A_ , A_ , A_ , A_ , A_ , ) # Creates data structures and fill initial step a : dict = {} a : dict = {} for state in states_space: a : Union[str, Any] = observations_space[0] a : Tuple = ( initial_probabilities[state] * emission_probabilities[state][observation] ) a : Tuple = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(A_ ) ): a : List[str] = observations_space[o] a : Optional[Any] = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function a : Any = "" a : int = -1 for k_state in states_space: a : Optional[Any] = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: a : int = probability a : List[str] = k_state # Update probabilities and pointers dicts a : Optional[Any] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) a : List[Any] = arg_max # The final observation a : List[Any] = observations_space[len(A_ ) - 1] # argmax for given final observation a : Any = "" a : Tuple = -1 for k_state in states_space: a : Optional[Any] = probabilities[(k_state, final_observation)] if probability > max_probability: a : Any = probability a : Any = k_state a : Union[str, Any] = arg_max # Process pointers backwards a : str = last_state a : List[Any] = [] for o in range(len(A_ ) - 1 , -1 , -1 ): result.append(A_ ) a : int = pointers[previous, observations_space[o]] result.reverse() return result def lowercase ( A_ , A_ , A_ , A_ , A_ , )-> None: '''simple docstring''' _validate_not_empty( A_ , A_ , A_ , A_ , A_ , ) _validate_lists(A_ , A_ ) _validate_dicts( A_ , A_ , A_ ) def lowercase ( A_ , A_ , A_ , A_ , A_ , )-> None: '''simple docstring''' if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowercase ( A_ , A_ )-> None: '''simple docstring''' _validate_list(A_ , "observations_space" ) _validate_list(A_ , "states_space" ) def lowercase ( A_ , A_ )-> None: '''simple docstring''' if not isinstance(_object , A_ ): a : int = F'''{var_name} must be a list''' raise ValueError(A_ ) else: for x in _object: if not isinstance(A_ , A_ ): a : str = F'''{var_name} must be a list of strings''' raise ValueError(A_ ) def lowercase ( A_ , A_ , A_ , )-> None: '''simple docstring''' _validate_dict(A_ , "initial_probabilities" , A_ ) _validate_nested_dict(A_ , "transition_probabilities" ) _validate_nested_dict(A_ , "emission_probabilities" ) def lowercase ( A_ , A_ )-> None: '''simple docstring''' _validate_dict(_object , A_ , A_ ) for x in _object.values(): _validate_dict(A_ , A_ , A_ , A_ ) def lowercase ( A_ , A_ , A_ , A_ = False )-> None: '''simple docstring''' if not isinstance(_object , A_ ): a : Optional[int] = F'''{var_name} must be a dict''' raise ValueError(A_ ) if not all(isinstance(A_ , A_ ) for x in _object ): a : Optional[Any] = F'''{var_name} all keys must be strings''' raise ValueError(A_ ) if not all(isinstance(A_ , A_ ) for x in _object.values() ): a : Optional[Any] = "nested dictionary " if nested else "" a : Dict = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(A_ ) if __name__ == "__main__": from doctest import testmod testmod()
135
"""simple docstring""" from timeit import timeit def lowercase ( A_ )-> int: '''simple docstring''' if number < 0: raise ValueError("the value of input must not be negative" ) a : Dict = 0 while number: number &= number - 1 result += 1 return result def lowercase ( A_ )-> int: '''simple docstring''' if number < 0: raise ValueError("the value of input must not be negative" ) a : int = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def lowercase ( )-> None: '''simple docstring''' def do_benchmark(A_ ) -> None: a : Tuple = "import __main__ as z" print(F'''Benchmark when {number = }:''' ) print(F'''{get_set_bits_count_using_modulo_operator(A_ ) = }''' ) a : List[Any] = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=A_ ) print(F'''timeit() runs in {timing} seconds''' ) print(F'''{get_set_bits_count_using_brian_kernighans_algorithm(A_ ) = }''' ) a : Dict = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=A_ , ) print(F'''timeit() runs in {timing} seconds''' ) for number in (25, 37, 58, 0): do_benchmark(A_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
135
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { "microsoft/git-base": "https://huggingface.co/microsoft/git-base/resolve/main/config.json", } class __a ( _snake_case ): __UpperCamelCase : int = 'git_vision_model' def __init__( self : int ,lowerCamelCase : Optional[int]=768 ,lowerCamelCase : Dict=3072 ,lowerCamelCase : List[str]=12 ,lowerCamelCase : List[Any]=12 ,lowerCamelCase : int=3 ,lowerCamelCase : Tuple=224 ,lowerCamelCase : str=16 ,lowerCamelCase : int="quick_gelu" ,lowerCamelCase : List[Any]=1E-5 ,lowerCamelCase : Dict=0.0 ,lowerCamelCase : Union[str, Any]=0.02 ,**lowerCamelCase : Union[str, Any] ,): '''simple docstring''' super().__init__(**lowerCamelCase ) __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = hidden_act @classmethod def UpperCAmelCase__ ( cls : Optional[Any] ,lowerCamelCase : Union[str, os.PathLike] ,**lowerCamelCase : Tuple ): '''simple docstring''' cls._set_token_in_kwargs(lowerCamelCase ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = cls.get_config_dict(lowerCamelCase ,**lowerCamelCase ) # get the vision config dict if we are loading from GITConfig if config_dict.get("""model_type""" ) == "git": __SCREAMING_SNAKE_CASE = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCamelCase ,**lowerCamelCase ) class __a ( _snake_case ): __UpperCamelCase : str = 'git' def __init__( self : Any ,lowerCamelCase : Optional[int]=None ,lowerCamelCase : List[str]=3_0522 ,lowerCamelCase : Any=768 ,lowerCamelCase : int=6 ,lowerCamelCase : Tuple=12 ,lowerCamelCase : List[Any]=3072 ,lowerCamelCase : int="gelu" ,lowerCamelCase : Optional[Any]=0.1 ,lowerCamelCase : Optional[int]=0.1 ,lowerCamelCase : int=1024 ,lowerCamelCase : str=0.02 ,lowerCamelCase : Union[str, Any]=1E-1_2 ,lowerCamelCase : Any=0 ,lowerCamelCase : str="absolute" ,lowerCamelCase : Dict=True ,lowerCamelCase : List[Any]=False ,lowerCamelCase : List[Any]=101 ,lowerCamelCase : Tuple=102 ,lowerCamelCase : List[str]=None ,**lowerCamelCase : Any ,): '''simple docstring''' super().__init__(bos_token_id=lowerCamelCase ,eos_token_id=lowerCamelCase ,pad_token_id=lowerCamelCase ,**lowerCamelCase ) if vision_config is None: __SCREAMING_SNAKE_CASE = {} logger.info("""vision_config is None. initializing the GitVisionConfig with default values.""" ) __SCREAMING_SNAKE_CASE = GitVisionConfig(**lowerCamelCase ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = tie_word_embeddings __SCREAMING_SNAKE_CASE = num_image_with_embedding __SCREAMING_SNAKE_CASE = bos_token_id __SCREAMING_SNAKE_CASE = eos_token_id def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE = self.vision_config.to_dict() __SCREAMING_SNAKE_CASE = self.__class__.model_type return output
109
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """kssteven/ibert-roberta-base""": """https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json""", """kssteven/ibert-roberta-large""": """https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json""", """kssteven/ibert-roberta-large-mnli""": ( """https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json""" ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = """ibert""" def __init__( self : List[Any] , lowerCAmelCase : Any=3_0522 , lowerCAmelCase : Tuple=768 , lowerCAmelCase : str=12 , lowerCAmelCase : str=12 , lowerCAmelCase : str=3072 , lowerCAmelCase : Union[str, Any]="gelu" , lowerCAmelCase : int=0.1 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Tuple=512 , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : Optional[Any]=1E-12 , lowerCAmelCase : Any=1 , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Tuple=2 , lowerCAmelCase : str="absolute" , lowerCAmelCase : Any=False , lowerCAmelCase : Optional[Any]="none" , **lowerCAmelCase : Optional[int] , ) -> Any: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase) _snake_case : List[str] = vocab_size _snake_case : Tuple = hidden_size _snake_case : int = num_hidden_layers _snake_case : Optional[int] = num_attention_heads _snake_case : Union[str, Any] = hidden_act _snake_case : str = intermediate_size _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : List[Any] = attention_probs_dropout_prob _snake_case : str = max_position_embeddings _snake_case : Optional[int] = type_vocab_size _snake_case : int = initializer_range _snake_case : List[str] = layer_norm_eps _snake_case : Tuple = position_embedding_type _snake_case : Union[str, Any] = quant_mode _snake_case : List[Any] = force_dequant class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Tuple) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _snake_case : List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case : List[str] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ])
477
0
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer lowerCamelCase : int =logging.get_logger(__name__) lowerCamelCase : List[str] ={'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase : Optional[int] ={ '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCamelCase : Union[str, Any] ={ '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCamelCase : Optional[Any] ={ '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCamelCase : Optional[int] ={ '''facebook/dpr-ctx_encoder-single-nq-base''': 5_12, '''facebook/dpr-ctx_encoder-multiset-base''': 5_12, } lowerCamelCase : Optional[Any] ={ '''facebook/dpr-question_encoder-single-nq-base''': 5_12, '''facebook/dpr-question_encoder-multiset-base''': 5_12, } lowerCamelCase : int ={ '''facebook/dpr-reader-single-nq-base''': 5_12, '''facebook/dpr-reader-multiset-base''': 5_12, } lowerCamelCase : Optional[int] ={ '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCamelCase : Tuple ={ '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCamelCase : List[Any] ={ '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class __snake_case( A_ ): '''simple docstring''' _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = DPRContextEncoderTokenizer class __snake_case( A_ ): '''simple docstring''' _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = DPRQuestionEncoderTokenizer lowerCamelCase : List[Any] =collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) lowerCamelCase : List[Any] =collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) lowerCamelCase : Optional[int] =r''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(A_ ) class __snake_case: '''simple docstring''' def __call__( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , **__lowerCamelCase , ): '''simple docstring''' if titles is None and texts is None: return super().__call__( __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , ) elif titles is None or texts is None: __A : Optional[Any] = titles if texts is None else texts return super().__call__( __lowerCamelCase , __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , ) __A : List[str] = titles if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [titles] __A : Optional[int] = texts if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [texts] __A : Tuple = len(__lowerCamelCase ) __A : Optional[int] = questions if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [questions] * n_passages assert len(__lowerCamelCase ) == len( __lowerCamelCase ), F'There should be as many titles than texts but got {len(__lowerCamelCase )} titles and {len(__lowerCamelCase )} texts.' __A : int = super().__call__(__lowerCamelCase , __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase )['input_ids'] __A : Union[str, Any] = super().__call__(__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase )['input_ids'] __A : int = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__lowerCamelCase , __lowerCamelCase ) ] } if return_attention_mask is not False: __A : Optional[int] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __A : Any = attention_mask return self.pad(__lowerCamelCase , padding=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase ) def _a ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 16 , __lowerCamelCase = 64 , __lowerCamelCase = 4 , ): '''simple docstring''' __A : int = reader_input['input_ids'] __A : Optional[int] = reader_output[:3] __A : Optional[Any] = len(__lowerCamelCase ) __A : List[Any] = sorted(range(__lowerCamelCase ) , reverse=__lowerCamelCase , key=relevance_logits.__getitem__ ) __A : List[DPRReaderOutput] = [] for doc_id in sorted_docs: __A : Any = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __A : Optional[int] = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __A : List[str] = sequence_ids.index(self.pad_token_id ) else: __A : int = len(__lowerCamelCase ) __A : Any = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__lowerCamelCase , top_spans=__lowerCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__lowerCamelCase , start_index=__lowerCamelCase , end_index=__lowerCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__lowerCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _a ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ): '''simple docstring''' __A : Dict = [] for start_index, start_score in enumerate(__lowerCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __A : Optional[Any] = sorted(__lowerCamelCase , key=lambda __lowerCamelCase : x[1] , reverse=__lowerCamelCase ) __A : Optional[int] = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F'Wrong span indices: [{start_index}:{end_index}]' __A : Union[str, Any] = end_index - start_index + 1 assert length <= max_answer_length, F'Span is too long: {length} > {max_answer_length}' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__lowerCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(A_ ) class __snake_case( A_ , A_ ): '''simple docstring''' _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = READER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = READER_PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = ["input_ids", "attention_mask"] _UpperCAmelCase = DPRReaderTokenizer
701
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging lowerCamelCase : Tuple =logging.get_logger(__name__) lowerCamelCase : Union[str, Any] ={ '''google/umt5-small''': '''https://huggingface.co/google/umt5-small/resolve/main/config.json''', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class __snake_case( A_ ): '''simple docstring''' _UpperCAmelCase = "umt5" _UpperCAmelCase = ["past_key_values"] def __init__( self , __lowerCamelCase=250112 , __lowerCamelCase=512 , __lowerCamelCase=64 , __lowerCamelCase=1024 , __lowerCamelCase=8 , __lowerCamelCase=None , __lowerCamelCase=6 , __lowerCamelCase=32 , __lowerCamelCase=128 , __lowerCamelCase=0.1 , __lowerCamelCase=1e-6 , __lowerCamelCase=1.0 , __lowerCamelCase="gated-gelu" , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase="T5Tokenizer" , __lowerCamelCase=True , __lowerCamelCase=0 , __lowerCamelCase=1 , __lowerCamelCase=0 , **__lowerCamelCase , ): '''simple docstring''' super().__init__( is_encoder_decoder=__lowerCamelCase , tokenizer_class=__lowerCamelCase , tie_word_embeddings=__lowerCamelCase , pad_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , **__lowerCamelCase , ) __A : Union[str, Any] = vocab_size __A : Any = d_model __A : str = d_kv __A : List[Any] = d_ff __A : Union[str, Any] = num_layers __A : Tuple = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __A : Union[str, Any] = num_heads __A : str = relative_attention_num_buckets __A : Union[str, Any] = relative_attention_max_distance __A : int = dropout_rate __A : int = layer_norm_epsilon __A : int = initializer_factor __A : List[Any] = feed_forward_proj __A : str = use_cache __A : str = self.feed_forward_proj.split('-' ) __A : str = act_info[-1] __A : Any = act_info[0] == 'gated' if len(__lowerCamelCase ) > 1 and act_info[0] != "gated" or len(__lowerCamelCase ) > 2: raise ValueError( F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": __A : Optional[int] = 'gelu_new' @property def _a ( self ): '''simple docstring''' return self.d_model @property def _a ( self ): '''simple docstring''' return self.num_heads @property def _a ( self ): '''simple docstring''' return self.num_layers class __snake_case( A_ ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def _a ( self ): '''simple docstring''' __A : List[Any] = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: __A : int = 'past_encoder_sequence + sequence' __A : List[str] = {0: 'batch'} __A : Dict = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __A : List[str] = {0: 'batch', 1: 'decoder_sequence'} __A : str = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(__lowerCamelCase , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def _a ( self ): '''simple docstring''' return 13 @property def _a ( self ): '''simple docstring''' return 5e-4
237
0