code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput lowercase : Optional[int] = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self , *_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> List[str]: super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) snake_case_ : List[str] = eval_examples snake_case_ : Tuple = post_process_function snake_case_ : str = quant_trainer_args snake_case_ : Tuple = 128 # default number of calibration samples def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE=None ) -> List[str]: if calib_dataset is None and self.calib_dataset is None: raise ValueError("Trainer: calibration requires an calib_dataset." ) snake_case_ : Union[str, Any] = calib_dataset if calib_dataset is not None else self.calib_dataset snake_case_ : Union[str, Any] = self._remove_unused_columns(_SCREAMING_SNAKE_CASE , description="Calibration" ) return DataLoader( _SCREAMING_SNAKE_CASE , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=_SCREAMING_SNAKE_CASE , ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE=None ) -> Any: snake_case_ : Tuple = self.train_dataset if calib_dataset is None else calib_dataset snake_case_ : int = self.get_calib_dataloader(_SCREAMING_SNAKE_CASE ) snake_case_ : int = self.model quant_trainer.configure_model(_SCREAMING_SNAKE_CASE , self.quant_trainer_args , calib=_SCREAMING_SNAKE_CASE ) model.eval() quant_trainer.enable_calibration(_SCREAMING_SNAKE_CASE ) logger.info("***** Running calibration *****" ) logger.info(f''' Num examples = {self.calib_num}''' ) logger.info(f''' Batch size = {calib_dataloader.batch_size}''' ) for step, inputs in enumerate(_SCREAMING_SNAKE_CASE ): # Prediction step snake_case_ , snake_case_ , snake_case_ : List[Any] = self.prediction_step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , prediction_loss_only=_SCREAMING_SNAKE_CASE ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(_SCREAMING_SNAKE_CASE , self.quant_trainer_args ) snake_case_ : List[Any] = model def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = "eval" ) -> int: snake_case_ : List[Any] = self.eval_dataset if eval_dataset is None else eval_dataset snake_case_ : int = self.get_eval_dataloader(_SCREAMING_SNAKE_CASE ) snake_case_ : str = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. snake_case_ : int = self.compute_metrics snake_case_ : Any = None snake_case_ : Dict = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: snake_case_ : Dict = eval_loop( _SCREAMING_SNAKE_CASE , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_SCREAMING_SNAKE_CASE , ) finally: snake_case_ : List[Any] = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: snake_case_ : str = self.post_process_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , output.predictions ) snake_case_ : Any = self.compute_metrics(_SCREAMING_SNAKE_CASE ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): snake_case_ : str = metrics.pop(_SCREAMING_SNAKE_CASE ) self.log(_SCREAMING_SNAKE_CASE ) else: snake_case_ : Optional[Any] = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) snake_case_ : Tuple = self.callback_handler.on_evaluate(self.args , self.state , self.control , _SCREAMING_SNAKE_CASE ) return metrics def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = "test" ) -> Tuple: snake_case_ : Optional[Any] = self.get_test_dataloader(_SCREAMING_SNAKE_CASE ) # Temporarily disable metric computation, we will do it in the loop here. snake_case_ : List[Any] = self.compute_metrics snake_case_ : Dict = None snake_case_ : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: snake_case_ : int = eval_loop( _SCREAMING_SNAKE_CASE , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_SCREAMING_SNAKE_CASE , ) finally: snake_case_ : Tuple = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output snake_case_ : Dict = self.post_process_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , output.predictions , "predict" ) snake_case_ : Optional[Any] = self.compute_metrics(_SCREAMING_SNAKE_CASE ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): snake_case_ : Tuple = metrics.pop(_SCREAMING_SNAKE_CASE ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE="./" ) -> Optional[int]: snake_case_ : Dict = self.eval_dataset snake_case_ : Union[str, Any] = self.get_eval_dataloader(_SCREAMING_SNAKE_CASE ) snake_case_ : List[str] = next(iter(_SCREAMING_SNAKE_CASE ) ) # saving device - to make it consistent snake_case_ : Union[str, Any] = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) # convert to tuple snake_case_ : List[str] = tuple(v.to(_SCREAMING_SNAKE_CASE ) for k, v in batch.items() ) logger.info("Converting model to be onnx compatible" ) from pytorch_quantization.nn import TensorQuantizer snake_case_ : int = True snake_case_ : List[Any] = self.model.to(_SCREAMING_SNAKE_CASE ) model.eval() model.float() snake_case_ : int = model.module if hasattr(_SCREAMING_SNAKE_CASE , "module" ) else model quant_trainer.configure_model(_SCREAMING_SNAKE_CASE , self.quant_trainer_args ) snake_case_ : Tuple = os.path.join(_SCREAMING_SNAKE_CASE , "model.onnx" ) logger.info(f'''exporting model to {output_model_file}''' ) snake_case_ : List[str] = {0: "batch_size", 1: "seq_len"} torch.onnx.export( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , export_params=_SCREAMING_SNAKE_CASE , opset_version=13 , do_constant_folding=_SCREAMING_SNAKE_CASE , input_names=["input_ids", "attention_mask", "token_type_ids"] , output_names=["output_start_logits", "output_end_logits"] , dynamic_axes={ "input_ids": axes, "attention_mask": axes, "token_type_ids": axes, "output_start_logits": axes, "output_end_logits": axes, } , verbose=_SCREAMING_SNAKE_CASE , ) logger.info("onnx export finished" )
568
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def lowerCAmelCase__ ( _a : Union[str, Any] , _a : Dict , _a : Optional[int] , _a : str ): snake_case_ : int = s.rsplit(_a , _a ) return new.join(_a ) def lowerCAmelCase__ ( _a : Optional[int] ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items() ) def lowerCAmelCase__ ( _a : Optional[Any] ): snake_case_ : Dict = {} snake_case_ : List[Any] = ["group_1", "group_2", "group_3", "group_4"] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: snake_case_ : Tuple = key.replace(F'''{group_key}.''' , F'''{group_key}.group.''' ) if "res_path" in key: snake_case_ : str = key.replace("res_path." , "res_path.path." ) if key.endswith(".w" ): snake_case_ : List[Any] = rreplace(_a , ".w" , ".weight" , 1 ) if key.endswith(".b" ): snake_case_ : List[Any] = rreplace(_a , ".b" , ".bias" , 1 ) snake_case_ : Dict = value.float() return upgrade @torch.no_grad() def lowerCAmelCase__ ( _a : List[Any] , _a : Optional[int] , _a : Optional[Any]=None , _a : Optional[int]=True ): from dall_e import Encoder snake_case_ : Optional[Any] = Encoder() if os.path.exists(_a ): snake_case_ : Tuple = torch.load(_a ) else: snake_case_ : Any = torch.hub.load_state_dict_from_url(_a ) if isinstance(_a , _a ): snake_case_ : Optional[Any] = ckpt.state_dict() encoder.load_state_dict(_a ) if config_path is not None: snake_case_ : Union[str, Any] = FlavaImageCodebookConfig.from_pretrained(_a ) else: snake_case_ : Union[str, Any] = FlavaImageCodebookConfig() snake_case_ : int = FlavaImageCodebook(_a ).eval() snake_case_ : int = encoder.state_dict() snake_case_ : Optional[int] = upgrade_state_dict(_a ) hf_model.load_state_dict(_a ) snake_case_ : int = hf_model.state_dict() snake_case_ : Optional[Any] = count_parameters(_a ) snake_case_ : Union[str, Any] = count_parameters(_a ) assert torch.allclose(_a , _a , atol=1E-3 ) if save_checkpoint: hf_model.save_pretrained(_a ) else: return hf_state_dict if __name__ == "__main__": lowercase : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowercase : Union[str, Any] = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
568
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : Union[str, Any] = logging.get_logger(__name__) snake_case__ : str = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class __SCREAMING_SNAKE_CASE ( _A ): '''simple docstring''' lowerCamelCase_ :Dict = '''rwkv''' lowerCamelCase_ :Tuple = {'''max_position_embeddings''': '''context_length'''} def __init__( self , snake_case_=5_0_2_7_7 , snake_case_=1_0_2_4 , snake_case_=4_0_9_6 , snake_case_=3_2 , snake_case_=None , snake_case_=None , snake_case_=1E-5 , snake_case_=0 , snake_case_=0 , snake_case_=6 , snake_case_=False , snake_case_=True , **snake_case_ , ): '''simple docstring''' UpperCAmelCase_ : Dict = vocab_size UpperCAmelCase_ : Optional[int] = context_length UpperCAmelCase_ : int = hidden_size UpperCAmelCase_ : Optional[Any] = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size UpperCAmelCase_ : List[Any] = intermediate_size if intermediate_size is not None else 4 * hidden_size UpperCAmelCase_ : List[str] = layer_norm_epsilon UpperCAmelCase_ : Tuple = rescale_every UpperCAmelCase_ : Optional[int] = use_cache UpperCAmelCase_ : Dict = bos_token_id UpperCAmelCase_ : List[str] = eos_token_id super().__init__( tie_word_embeddings=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ )
713
'''simple docstring''' import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : str = logging.get_logger() # the current default level is logging.WARNING UpperCAmelCase_ : Union[str, Any] = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(snake_case_ ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = logging.get_verbosity() UpperCAmelCase_ : List[str] = logging.get_logger('transformers.models.bart.tokenization_bart' ) UpperCAmelCase_ : int = 'Testing 1, 2, 3' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + '\n' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , '' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + '\n' ) # restore to the original level logging.set_verbosity(snake_case_ ) @mockenv(TRANSFORMERS_VERBOSITY='error' ) def _UpperCamelCase ( self ): '''simple docstring''' transformers.utils.logging._reset_library_root_logger() # this action activates the env var UpperCAmelCase_ : int = logging.get_logger('transformers.models.bart.tokenization_bart' ) UpperCAmelCase_ : Optional[Any] = os.getenv('TRANSFORMERS_VERBOSITY' , snake_case_ ) UpperCAmelCase_ : List[Any] = logging.log_levels[env_level_str] UpperCAmelCase_ : Dict = logging.get_verbosity() self.assertEqual( snake_case_ , snake_case_ , F'''TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}''' , ) # restore to the original level UpperCAmelCase_ : Tuple = '' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='super-error' ) def _UpperCamelCase ( self ): '''simple docstring''' transformers.utils.logging._reset_library_root_logger() UpperCAmelCase_ : Tuple = logging.logging.getLogger() with CaptureLogger(snake_case_ ) as cl: # this action activates the env var logging.get_logger('transformers.models.bart.tokenization_bart' ) self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out ) # no need to restore as nothing was changed def _UpperCamelCase ( self ): '''simple docstring''' transformers.utils.logging._reset_library_root_logger() UpperCAmelCase_ : int = logging.get_logger('transformers.models.bart.tokenization_bart' ) UpperCAmelCase_ : List[Any] = 'Testing 1, 2, 3' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1' ): # nothing should be logged as env var disables this method with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , '' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , msg + '\n' ) def _lowerCamelCase ( ): """simple docstring""" disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
389
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = '''▁''' __UpperCAmelCase = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __UpperCAmelCase = { '''vocab_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''', }, '''spm_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_config_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''', }, } __UpperCAmelCase = { '''facebook/m2m100_418M''': 1_024, } # fmt: off __UpperCAmelCase = { '''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''], '''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de'''] } class lowerCAmelCase_ ( lowerCAmelCase__ ): UpperCAmelCase__ : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Any = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : int = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__ : List[int] = [] UpperCAmelCase__ : List[int] = [] def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_="m2m100", SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_=8, **SCREAMING_SNAKE_CASE_, ) -> Any: UpperCamelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs UpperCamelCase : List[Any] = language_codes UpperCamelCase : Tuple = FAIRSEQ_LANGUAGE_CODES[language_codes] UpperCamelCase : Union[str, Any] = {lang_code: F"""__{lang_code}__""" for lang_code in fairseq_language_code} UpperCamelCase : int = kwargs.get('additional_special_tokens', [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(__lowerCAmelCase ) for lang_code in fairseq_language_code if self.get_lang_token(__lowerCAmelCase ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__lowerCAmelCase, tgt_lang=__lowerCAmelCase, bos_token=__lowerCAmelCase, eos_token=__lowerCAmelCase, sep_token=__lowerCAmelCase, unk_token=__lowerCAmelCase, pad_token=__lowerCAmelCase, language_codes=__lowerCAmelCase, sp_model_kwargs=self.sp_model_kwargs, num_madeup_words=__lowerCAmelCase, **__lowerCAmelCase, ) UpperCamelCase : Optional[int] = vocab_file UpperCamelCase : int = load_json(__lowerCAmelCase ) UpperCamelCase : Any = {v: k for k, v in self.encoder.items()} UpperCamelCase : List[Any] = spm_file UpperCamelCase : Optional[int] = load_spm(__lowerCAmelCase, self.sp_model_kwargs ) UpperCamelCase : Optional[int] = len(self.encoder ) UpperCamelCase : Optional[int] = { self.get_lang_token(__lowerCAmelCase ): self.encoder_size + i for i, lang_code in enumerate(__lowerCAmelCase ) } UpperCamelCase : Optional[Any] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(__lowerCAmelCase )} UpperCamelCase : str = {v: k for k, v in self.lang_token_to_id.items()} UpperCamelCase : Optional[int] = src_lang if src_lang is not None else 'en' UpperCamelCase : Dict = tgt_lang UpperCamelCase : Tuple = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) UpperCamelCase : Union[str, Any] = num_madeup_words @property def snake_case_ ( self ) -> Any: return len(self.encoder ) + len(self.lang_token_to_id ) @property def snake_case_ ( self ) -> str: return self._src_lang @src_lang.setter def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: UpperCamelCase : str = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]: return self.sp_model.encode(__lowerCAmelCase, out_type=__lowerCAmelCase ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Tuple: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(__lowerCAmelCase, self.encoder[self.unk_token] ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(__lowerCAmelCase, self.unk_token ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCamelCase : str = [] UpperCamelCase : Optional[int] = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__lowerCAmelCase ) + token UpperCamelCase : Optional[Any] = [] else: current_sub_tokens.append(__lowerCAmelCase ) out_string += self.sp_model.decode(__lowerCAmelCase ) return out_string.strip() def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False ) -> Any: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase, token_ids_a=__lowerCAmelCase, already_has_special_tokens=__lowerCAmelCase ) UpperCamelCase : List[Any] = [1] * len(self.prefix_tokens ) UpperCamelCase : Any = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(__lowerCAmelCase )) + ([0] * len(__lowerCAmelCase )) + suffix_ones def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Dict: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Tuple = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[Any]: UpperCamelCase : int = self.__dict__.copy() UpperCamelCase : List[Any] = None return state def __setstate__( self, SCREAMING_SNAKE_CASE_ ) -> int: UpperCamelCase : str = d # for backward compatibility if not hasattr(self, 'sp_model_kwargs' ): UpperCamelCase : int = {} UpperCamelCase : Dict = load_spm(self.spm_file, self.sp_model_kwargs ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Optional[Any]: UpperCamelCase : List[Any] = Path(__lowerCAmelCase ) if not save_dir.is_dir(): raise OSError(F"""{save_directory} should be a directory""" ) UpperCamelCase : str = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) UpperCamelCase : Tuple = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder, __lowerCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file, __lowerCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(__lowerCAmelCase, 'wb' ) as fi: UpperCamelCase : List[Any] = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) return (str(__lowerCAmelCase ), str(__lowerCAmelCase )) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = "en", SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = "ro", **SCREAMING_SNAKE_CASE_, ) -> List[str]: UpperCamelCase : List[Any] = src_lang UpperCamelCase : Dict = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(__lowerCAmelCase, __lowerCAmelCase, **__lowerCAmelCase ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) UpperCamelCase : Optional[Any] = src_lang UpperCamelCase : Dict = self(__lowerCAmelCase, add_special_tokens=__lowerCAmelCase, **__lowerCAmelCase ) UpperCamelCase : Tuple = self.get_lang_id(__lowerCAmelCase ) UpperCamelCase : Optional[int] = tgt_lang_id return inputs def snake_case_ ( self ) -> Any: self.set_src_lang_special_tokens(self.src_lang ) def snake_case_ ( self ) -> int: self.set_tgt_lang_special_tokens(self.tgt_lang ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase : Any = self.get_lang_token(__lowerCAmelCase ) UpperCamelCase : Optional[Any] = self.lang_token_to_id[lang_token] UpperCamelCase : Tuple = [self.cur_lang_id] UpperCamelCase : Union[str, Any] = [self.eos_token_id] def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCamelCase : List[Any] = self.get_lang_token(__lowerCAmelCase ) UpperCamelCase : Optional[Any] = self.lang_token_to_id[lang_token] UpperCamelCase : Optional[int] = [self.cur_lang_id] UpperCamelCase : List[str] = [self.eos_token_id] def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> str: return self.lang_code_to_token[lang] def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase : Optional[Any] = self.get_lang_token(__lowerCAmelCase ) return self.lang_token_to_id[lang_token] def UpperCamelCase ( snake_case__ : str , snake_case__ : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: UpperCamelCase : Optional[int] = sentencepiece.SentencePieceProcessor(**_A ) spm.Load(str(_A ) ) return spm def UpperCamelCase ( snake_case__ : str ) -> Union[Dict, List]: with open(_A , 'r' ) as f: return json.load(_A ) def UpperCamelCase ( snake_case__ : str , snake_case__ : str ) -> None: with open(_A , 'w' ) as f: json.dump(_A , _A , indent=2 )
40
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a__( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : List[str] = KandinskyImgaImgPipeline UpperCAmelCase_ : Union[str, Any] = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image'''] UpperCAmelCase_ : List[str] = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', ] UpperCAmelCase_ : Dict = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] UpperCAmelCase_ : str = False @property def a_ ( self): """simple docstring""" return 32 @property def a_ ( self): """simple docstring""" return 32 @property def a_ ( self): """simple docstring""" return self.time_input_dim @property def a_ ( self): """simple docstring""" return self.time_input_dim * 4 @property def a_ ( self): """simple docstring""" return 100 @property def a_ ( self): """simple docstring""" lowerCAmelCase = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""") return tokenizer @property def a_ ( self): """simple docstring""" torch.manual_seed(0) lowerCAmelCase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) lowerCAmelCase = MultilingualCLIP(__lowerCAmelCase) lowerCAmelCase = text_encoder.eval() return text_encoder @property def a_ ( self): """simple docstring""" torch.manual_seed(0) lowerCAmelCase = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowerCAmelCase = UNetaDConditionModel(**__lowerCAmelCase) return model @property def a_ ( self): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a_ ( self): """simple docstring""" torch.manual_seed(0) lowerCAmelCase = VQModel(**self.dummy_movq_kwargs) return model def a_ ( self): """simple docstring""" lowerCAmelCase = self.dummy_text_encoder lowerCAmelCase = self.dummy_tokenizer lowerCAmelCase = self.dummy_unet lowerCAmelCase = self.dummy_movq lowerCAmelCase = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } lowerCAmelCase = DDIMScheduler(**__lowerCAmelCase) lowerCAmelCase = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def a_ ( self , __lowerCAmelCase , __lowerCAmelCase=0): """simple docstring""" lowerCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__lowerCAmelCase)).to(__lowerCAmelCase) lowerCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1)).to(__lowerCAmelCase) # create init_image lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCAmelCase)).to(__lowerCAmelCase) lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1)[0] lowerCAmelCase = Image.fromarray(np.uinta(__lowerCAmelCase)).convert("""RGB""").resize((256, 256)) if str(__lowerCAmelCase).startswith("""mps"""): lowerCAmelCase = torch.manual_seed(__lowerCAmelCase) else: lowerCAmelCase = torch.Generator(device=__lowerCAmelCase).manual_seed(__lowerCAmelCase) lowerCAmelCase = { """prompt""": """horse""", """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def a_ ( self): """simple docstring""" lowerCAmelCase = """cpu""" lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = self.pipeline_class(**__lowerCAmelCase) lowerCAmelCase = pipe.to(__lowerCAmelCase) pipe.set_progress_bar_config(disable=__lowerCAmelCase) lowerCAmelCase = pipe(**self.get_dummy_inputs(__lowerCAmelCase)) lowerCAmelCase = output.images lowerCAmelCase = pipe( **self.get_dummy_inputs(__lowerCAmelCase) , return_dict=__lowerCAmelCase , )[0] lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase = np.array( [0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class a__( unittest.TestCase ): '''simple docstring''' def a_ ( self): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self): """simple docstring""" lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_img2img_frog.npy""") lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""") lowerCAmelCase = """A red cartoon frog, 4k""" lowerCAmelCase = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa) pipe_prior.to(__lowerCAmelCase) lowerCAmelCase = KandinskyImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa) lowerCAmelCase = pipeline.to(__lowerCAmelCase) pipeline.set_progress_bar_config(disable=__lowerCAmelCase) lowerCAmelCase = torch.Generator(device="""cpu""").manual_seed(0) lowerCAmelCase , lowerCAmelCase = pipe_prior( __lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() lowerCAmelCase = pipeline( __lowerCAmelCase , image=__lowerCAmelCase , image_embeds=__lowerCAmelCase , negative_image_embeds=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , ) lowerCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase)
370
0
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def snake_case_ ( A_ : int, A_ : int, A_ : int, A_ : int, A_ : int, A_ : int ): '''simple docstring''' if (ksize % 2) == 0: _lowerCamelCase : Union[str, Any] = ksize + 1 _lowerCamelCase : List[Any] = np.zeros((ksize, ksize), dtype=np.floataa ) # each value for y in range(A_ ): for x in range(A_ ): # distance from center _lowerCamelCase : Dict = x - ksize // 2 _lowerCamelCase : int = y - ksize // 2 # degree to radiant _lowerCamelCase : int = theta / 1_80 * np.pi _lowerCamelCase : Dict = np.cos(_theta ) _lowerCamelCase : int = np.sin(_theta ) # get kernel x _lowerCamelCase : Optional[Any] = cos_theta * px + sin_theta * py # get kernel y _lowerCamelCase : int = -sin_theta * px + cos_theta * py # fill kernel _lowerCamelCase : str = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image lowerCAmelCase__ = imread('''../image_data/lena.jpg''') # turn image in gray scale value lowerCAmelCase__ = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges lowerCAmelCase__ = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: lowerCAmelCase__ = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) lowerCAmelCase__ = out / out.max() * 255 lowerCAmelCase__ = out.astype(np.uinta) imshow('''Original''', gray) imshow('''Gabor filter with 20x20 mask and 6 directions''', out) waitKey(0)
598
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCAmelCase__ = imread(R'''digital_image_processing/image_data/lena_small.jpg''') lowerCAmelCase__ = cvtColor(img, COLOR_BGR2GRAY) def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Any = cn.convert_to_negative(A_ ) # assert negative_img array for at least one True assert negative_img.any() def snake_case_ ( ): '''simple docstring''' with Image.open('''digital_image_processing/image_data/lena_small.jpg''' ) as img: # Work around assertion for response assert str(cc.change_contrast(A_, 1_10 ) ).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''' ) def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Optional[int] = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Any = imread('''digital_image_processing/image_data/lena_small.jpg''', 0 ) # assert ambiguous array for all == True assert canny_img.all() _lowerCamelCase : Tuple = canny.canny(A_ ) # assert canny array for at least one True assert canny_array.any() def snake_case_ ( ): '''simple docstring''' assert gg.gaussian_filter(A_, 5, sigma=0.9 ).all() def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : List[str] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) _lowerCamelCase : Optional[int] = conv.img_convolve(A_, A_ ).astype(A_ ) assert res.any() def snake_case_ ( ): '''simple docstring''' assert med.median_filter(A_, 3 ).any() def snake_case_ ( ): '''simple docstring''' _lowerCamelCase , _lowerCamelCase : int = sob.sobel_filter(A_ ) assert grad.any() and theta.any() def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : List[Any] = sp.make_sepia(A_, 20 ) assert sepia.all() def snake_case_ ( A_ : str = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' _lowerCamelCase : Tuple = bs.Burkes(imread(A_, 1 ), 1_20 ) burkes.process() assert burkes.output_img.any() def snake_case_ ( A_ : str = "digital_image_processing/image_data/lena_small.jpg", ): '''simple docstring''' _lowerCamelCase : str = rs.NearestNeighbour(imread(A_, 1 ), 4_00, 2_00 ) nn.process() assert nn.output.any() def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Tuple = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. _lowerCamelCase : Optional[int] = imread(A_, 0 ) # Test for get_neighbors_pixel function() return not None _lowerCamelCase : Tuple = 0 _lowerCamelCase : Any = 0 _lowerCamelCase : Optional[int] = image[x_coordinate][y_coordinate] _lowerCamelCase : List[Any] = lbp.get_neighbors_pixel( A_, A_, A_, A_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image _lowerCamelCase : Any = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): _lowerCamelCase : Union[str, Any] = lbp.local_binary_value(A_, A_, A_ ) assert lbp_image.any()
598
1
"""simple docstring""" import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __A ( unittest.TestCase ): def lowerCamelCase__ ( self : Union[str, Any] ) -> Optional[Any]: __magic_name__: List[str] = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() __magic_name__: List[Any] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) __magic_name__: Union[str, Any] = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } __magic_name__: Optional[int] = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 1_6_0_0_0, """return_attention_mask""": False, """do_normalize""": True, } __magic_name__: int = tempfile.mkdtemp() __magic_name__: Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__: Tuple = os.path.join(self.tmpdirname , __snake_case ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__snake_case ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__snake_case ) + """\n""" ) # load decoder from hub __magic_name__: Dict = """hf-internal-testing/ngram-beam-search-decoder""" def lowerCamelCase__ ( self : Any , **__snake_case : str ) -> Optional[int]: __magic_name__: Union[str, Any] = self.add_kwargs_tokens_map.copy() kwargs.update(__snake_case ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def lowerCamelCase__ ( self : str , **__snake_case : int ) -> Dict: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__snake_case ) def lowerCamelCase__ ( self : int , **__snake_case : List[str] ) -> int: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__snake_case ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Any: shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ ( self : List[Any] ) -> Optional[Any]: __magic_name__: Dict = self.get_tokenizer() __magic_name__: Any = self.get_feature_extractor() __magic_name__: Tuple = self.get_decoder() __magic_name__: Tuple = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) processor.save_pretrained(self.tmpdirname ) __magic_name__: Dict = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __snake_case ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __snake_case ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __snake_case ) def lowerCamelCase__ ( self : Any ) -> Tuple: __magic_name__: Union[str, Any] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __magic_name__: int = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowerCamelCase__ ( self : Optional[int] ) -> Optional[Any]: __magic_name__: Union[str, Any] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(__snake_case , """include""" ): WavaVecaProcessorWithLM( tokenizer=__snake_case , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowerCamelCase__ ( self : Union[str, Any] ) -> int: __magic_name__: int = self.get_feature_extractor() __magic_name__: Optional[Any] = self.get_tokenizer() __magic_name__: List[Any] = self.get_decoder() __magic_name__: int = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) __magic_name__: Tuple = floats_list((3, 1_0_0_0) ) __magic_name__: List[str] = feature_extractor(__snake_case , return_tensors="""np""" ) __magic_name__: Tuple = processor(__snake_case , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase__ ( self : Union[str, Any] ) -> List[str]: __magic_name__: Tuple = self.get_feature_extractor() __magic_name__: List[str] = self.get_tokenizer() __magic_name__: str = self.get_decoder() __magic_name__: Tuple = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) __magic_name__: Optional[int] = """This is a test string""" __magic_name__: List[str] = processor(text=__snake_case ) __magic_name__: Tuple = tokenizer(__snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase__ ( self : int , __snake_case : List[str]=(2, 1_0, 1_6) , __snake_case : List[Any]=7_7 ) -> Dict: np.random.seed(__snake_case ) return np.random.rand(*__snake_case ) def lowerCamelCase__ ( self : Any ) -> Any: __magic_name__: int = self.get_feature_extractor() __magic_name__: Tuple = self.get_tokenizer() __magic_name__: Any = self.get_decoder() __magic_name__: Tuple = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) __magic_name__: List[Any] = self._get_dummy_logits(shape=(1_0, 1_6) , seed=1_3 ) __magic_name__: str = processor.decode(__snake_case ) __magic_name__: Optional[int] = decoder.decode_beams(__snake_case )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def lowerCamelCase__ ( self : int , __snake_case : Dict ) -> Any: __magic_name__: int = self.get_feature_extractor() __magic_name__: List[Any] = self.get_tokenizer() __magic_name__: int = self.get_decoder() __magic_name__: Optional[Any] = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) __magic_name__: Optional[int] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __magic_name__: Optional[int] = processor.batch_decode(__snake_case ) else: with get_context(__snake_case ).Pool() as pool: __magic_name__: Any = processor.batch_decode(__snake_case , __snake_case ) __magic_name__: Dict = list(__snake_case ) with get_context("""fork""" ).Pool() as p: __magic_name__: List[str] = decoder.decode_beams_batch(__snake_case , __snake_case ) __magic_name__, __magic_name__, __magic_name__: Optional[int] = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__snake_case , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(__snake_case , decoded_processor.logit_score ) self.assertListEqual(__snake_case , decoded_processor.lm_score ) def lowerCamelCase__ ( self : List[Any] ) -> List[Any]: __magic_name__: List[str] = self.get_feature_extractor() __magic_name__: Optional[Any] = self.get_tokenizer() __magic_name__: Optional[int] = self.get_decoder() __magic_name__: Dict = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) __magic_name__: str = self._get_dummy_logits() __magic_name__: Dict = 1_5 __magic_name__: int = -20.0 __magic_name__: int = -4.0 __magic_name__: Dict = processor.batch_decode( __snake_case , beam_width=__snake_case , beam_prune_logp=__snake_case , token_min_logp=__snake_case , ) __magic_name__: Optional[int] = decoded_processor_out.text __magic_name__: Union[str, Any] = list(__snake_case ) with get_context("""fork""" ).Pool() as pool: __magic_name__: str = decoder.decode_beams_batch( __snake_case , __snake_case , beam_width=__snake_case , beam_prune_logp=__snake_case , token_min_logp=__snake_case , ) __magic_name__: Any = [d[0][0] for d in decoded_decoder_out] __magic_name__: Optional[int] = [d[0][2] for d in decoded_decoder_out] __magic_name__: Optional[Any] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__snake_case , __snake_case ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , __snake_case ) self.assertTrue(np.array_equal(__snake_case , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , __snake_case , atol=1E-3 ) ) self.assertTrue(np.array_equal(__snake_case , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , __snake_case , atol=1E-3 ) ) def lowerCamelCase__ ( self : Union[str, Any] ) -> int: __magic_name__: int = self.get_feature_extractor() __magic_name__: Any = self.get_tokenizer() __magic_name__: Union[str, Any] = self.get_decoder() __magic_name__: str = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) __magic_name__: Any = self._get_dummy_logits() __magic_name__: Union[str, Any] = 2.0 __magic_name__: Optional[Any] = 5.0 __magic_name__: Optional[Any] = -20.0 __magic_name__: List[str] = True __magic_name__: List[Any] = processor.batch_decode( __snake_case , alpha=__snake_case , beta=__snake_case , unk_score_offset=__snake_case , lm_score_boundary=__snake_case , ) __magic_name__: Union[str, Any] = decoded_processor_out.text __magic_name__: Union[str, Any] = list(__snake_case ) decoder.reset_params( alpha=__snake_case , beta=__snake_case , unk_score_offset=__snake_case , lm_score_boundary=__snake_case , ) with get_context("""fork""" ).Pool() as pool: __magic_name__: str = decoder.decode_beams_batch( __snake_case , __snake_case , ) __magic_name__: List[str] = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__snake_case , __snake_case ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , __snake_case ) __magic_name__: List[str] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __snake_case ) def lowerCamelCase__ ( self : Union[str, Any] ) -> List[Any]: __magic_name__: List[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __magic_name__: Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key] __magic_name__: Union[str, Any] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __magic_name__: Optional[int] = os.listdir(__snake_case ) __magic_name__: Union[str, Any] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__snake_case , __snake_case ) def lowerCamelCase__ ( self : Any ) -> Any: __magic_name__: int = snapshot_download("""hf-internal-testing/processor_with_lm""" ) __magic_name__: List[Any] = WavaVecaProcessorWithLM.from_pretrained(__snake_case ) __magic_name__: Any = processor.decoder.model_container[processor.decoder._model_key] __magic_name__: int = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __magic_name__: str = os.listdir(__snake_case ) __magic_name__: Tuple = os.listdir(__snake_case ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__snake_case , __snake_case ) def lowerCamelCase__ ( self : Optional[int] ) -> int: __magic_name__: List[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __magic_name__: List[str] = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __magic_name__: List[str] = floats_list((3, 1_0_0_0) ) __magic_name__: Tuple = processor_wavaveca(__snake_case , return_tensors="""np""" ) __magic_name__: Optional[Any] = processor_auto(__snake_case , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) __magic_name__: int = self._get_dummy_logits() __magic_name__: List[Any] = processor_wavaveca.batch_decode(__snake_case ) __magic_name__: Union[str, Any] = processor_auto.batch_decode(__snake_case ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowerCamelCase__ ( self : Union[str, Any] ) -> str: __magic_name__: Optional[int] = self.get_feature_extractor() __magic_name__: Any = self.get_tokenizer() __magic_name__: Dict = self.get_decoder() __magic_name__: List[str] = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def lowerCamelCase__ ( __snake_case : Optional[int] , __snake_case : int ) -> int: __magic_name__: Any = [d[key] for d in offsets] return retrieved_list def lowerCamelCase__ ( self : str ) -> Union[str, Any]: __magic_name__: Tuple = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __magic_name__: Tuple = self._get_dummy_logits()[0] __magic_name__: List[Any] = processor.decode(__snake_case , output_word_offsets=__snake_case ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__snake_case , __snake_case ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def lowerCamelCase__ ( self : Optional[int] ) -> Dict: __magic_name__: Optional[int] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __magic_name__: Optional[int] = self._get_dummy_logits() __magic_name__: Any = processor.batch_decode(__snake_case , output_word_offsets=__snake_case ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__snake_case , __snake_case ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(__snake_case , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowerCamelCase__ ( self : Union[str, Any] ) -> int: import torch __magic_name__: List[Any] = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=__snake_case ) __magic_name__: Dict = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_6_0_0_0 ) ) __magic_name__: Any = iter(__snake_case ) __magic_name__: Optional[int] = next(__snake_case ) __magic_name__: Optional[int] = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) __magic_name__: Tuple = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __magic_name__: List[str] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): __magic_name__: List[Any] = model(__snake_case ).logits.cpu().numpy() __magic_name__: Optional[Any] = processor.decode(logits[0] , output_word_offsets=__snake_case ) __magic_name__: List[str] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __magic_name__: str = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] __magic_name__: Tuple = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(__snake_case , """word""" ) ) , __snake_case ) self.assertEqual(""" """.join(self.get_from_offsets(__snake_case , """word""" ) ) , output.text ) # output times __magic_name__: Dict = torch.tensor(self.get_from_offsets(__snake_case , """start_time""" ) ) __magic_name__: Optional[Any] = torch.tensor(self.get_from_offsets(__snake_case , """end_time""" ) ) # fmt: off __magic_name__: Tuple = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) __magic_name__: int = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=0.01 ) ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=0.01 ) )
96
"""simple docstring""" from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = "efficientnet" def __init__( self : Optional[Any] , __snake_case : int = 3 , __snake_case : int = 6_0_0 , __snake_case : float = 2.0 , __snake_case : float = 3.1 , __snake_case : int = 8 , __snake_case : List[int] = [3, 3, 5, 3, 5, 5, 3] , __snake_case : List[int] = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , __snake_case : List[int] = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , __snake_case : List[int] = [] , __snake_case : List[int] = [1, 2, 2, 2, 1, 2, 1] , __snake_case : List[int] = [1, 2, 2, 3, 3, 4, 1] , __snake_case : List[int] = [1, 6, 6, 6, 6, 6, 6] , __snake_case : float = 0.25 , __snake_case : str = "swish" , __snake_case : int = 2_5_6_0 , __snake_case : str = "mean" , __snake_case : float = 0.02 , __snake_case : float = 0.001 , __snake_case : float = 0.99 , __snake_case : float = 0.5 , __snake_case : float = 0.2 , **__snake_case : List[Any] , ) -> List[Any]: super().__init__(**__snake_case ) __magic_name__: str = num_channels __magic_name__: List[str] = image_size __magic_name__: List[str] = width_coefficient __magic_name__: Optional[Any] = depth_coefficient __magic_name__: Tuple = depth_divisor __magic_name__: Dict = kernel_sizes __magic_name__: int = in_channels __magic_name__: str = out_channels __magic_name__: Dict = depthwise_padding __magic_name__: Union[str, Any] = strides __magic_name__: Dict = num_block_repeats __magic_name__: Tuple = expand_ratios __magic_name__: List[str] = squeeze_expansion_ratio __magic_name__: Any = hidden_act __magic_name__: Tuple = hidden_dim __magic_name__: int = pooling_type __magic_name__: int = initializer_range __magic_name__: List[str] = batch_norm_eps __magic_name__: str = batch_norm_momentum __magic_name__: List[str] = dropout_rate __magic_name__: Dict = drop_connect_rate __magic_name__: Optional[Any] = sum(__snake_case ) * 4 class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = version.parse("1.11" ) @property def lowerCamelCase__ ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase__ ( self : List[Any] ) -> float: return 1E-5
96
1
"""simple docstring""" from collections import deque from .hash_table import HashTable class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Optional[int] , *lowercase__ : Any , **lowercase__ : Union[str, Any] ): super().__init__(*lowercase__ , **lowercase__ ) def snake_case ( self : Any , lowercase__ : Dict , lowercase__ : Dict ): __lowercase : Dict = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(lowercase__ ) __lowercase : Union[str, Any] = self.values[key] def snake_case ( self : str ): return ( sum(self.charge_factor - len(lowercase__ ) for slot in self.values ) / self.size_table * self.charge_factor ) def snake_case ( self : Union[str, Any] , lowercase__ : List[str] , lowercase__ : str=None ): if not ( len(self.values[key] ) == self.charge_factor and self.values.count(lowercase__ ) == 0 ): return key return super()._collision_resolution(lowercase__ , lowercase__ )
281
"""simple docstring""" from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class lowerCAmelCase__ : """simple docstring""" def __init__( self : Optional[Any] , lowercase__ : List[Any] , lowercase__ : int=1_3 , lowercase__ : Optional[int]=7 , lowercase__ : Any=True , lowercase__ : int=True , lowercase__ : List[Any]=True , lowercase__ : Union[str, Any]=True , lowercase__ : Any=9_9 , lowercase__ : Tuple=[1, 1, 2] , lowercase__ : str=1 , lowercase__ : Union[str, Any]=3_2 , lowercase__ : int=4 , lowercase__ : Dict=8 , lowercase__ : Tuple=3_7 , lowercase__ : int="gelu_new" , lowercase__ : Tuple=0.1 , lowercase__ : int=0.1 , lowercase__ : Dict=0.0 , lowercase__ : int=5_1_2 , lowercase__ : str=3 , lowercase__ : List[Any]=0.0_2 , lowercase__ : Any=3 , lowercase__ : Union[str, Any]=4 , lowercase__ : Tuple=None , lowercase__ : List[Any]=False , ): __lowercase : Any = parent __lowercase : Tuple = batch_size __lowercase : Union[str, Any] = seq_length __lowercase : List[Any] = is_training __lowercase : Tuple = use_input_mask __lowercase : Optional[int] = use_token_type_ids __lowercase : List[Any] = use_labels __lowercase : Any = vocab_size __lowercase : Union[str, Any] = block_sizes __lowercase : Optional[Any] = num_decoder_layers __lowercase : str = d_model __lowercase : Tuple = n_head __lowercase : Any = d_head __lowercase : Dict = d_inner __lowercase : Optional[Any] = hidden_act __lowercase : int = hidden_dropout __lowercase : int = attention_dropout __lowercase : Tuple = activation_dropout __lowercase : int = max_position_embeddings __lowercase : Optional[Any] = type_vocab_size __lowercase : Union[str, Any] = 2 __lowercase : Optional[int] = num_labels __lowercase : List[str] = num_choices __lowercase : List[Any] = scope __lowercase : List[str] = initializer_std # Used in the tests to check the size of the first attention layer __lowercase : str = n_head # Used in the tests to check the size of the first hidden state __lowercase : List[str] = self.d_model # Used in the tests to check the number of output hidden states/attentions __lowercase : Optional[Any] = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: __lowercase : Dict = self.num_hidden_layers + 2 def snake_case ( self : List[Any] ): __lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : Optional[int] = None if self.use_input_mask: __lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : List[str] = None if self.use_token_type_ids: __lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : Any = None __lowercase : str = None __lowercase : str = None if self.use_labels: __lowercase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : Union[str, Any] = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def snake_case ( self : Dict , lowercase__ : str , lowercase__ : List[str] , lowercase__ : Dict , lowercase__ : int , lowercase__ : Union[str, Any] , lowercase__ : Any , lowercase__ : Optional[int] , ): __lowercase : int = TFFunnelModel(config=lowercase__ ) __lowercase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __lowercase : List[Any] = model(lowercase__ ) __lowercase : Optional[Any] = [input_ids, input_mask] __lowercase : int = model(lowercase__ ) __lowercase : Tuple = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) __lowercase : int = False __lowercase : int = TFFunnelModel(config=lowercase__ ) __lowercase : List[str] = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) __lowercase : str = False __lowercase : int = TFFunnelModel(config=lowercase__ ) __lowercase : Dict = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def snake_case ( self : Union[str, Any] , lowercase__ : List[Any] , lowercase__ : Union[str, Any] , lowercase__ : Optional[int] , lowercase__ : int , lowercase__ : str , lowercase__ : Dict , lowercase__ : Union[str, Any] , ): __lowercase : List[str] = TFFunnelBaseModel(config=lowercase__ ) __lowercase : int = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __lowercase : List[Any] = model(lowercase__ ) __lowercase : List[Any] = [input_ids, input_mask] __lowercase : Optional[int] = model(lowercase__ ) __lowercase : Optional[Any] = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) __lowercase : Any = False __lowercase : Any = TFFunnelBaseModel(config=lowercase__ ) __lowercase : Union[str, Any] = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) __lowercase : List[Any] = False __lowercase : Optional[int] = TFFunnelBaseModel(config=lowercase__ ) __lowercase : Optional[int] = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def snake_case ( self : Optional[int] , lowercase__ : str , lowercase__ : Tuple , lowercase__ : Any , lowercase__ : List[Any] , lowercase__ : Dict , lowercase__ : List[str] , lowercase__ : Optional[Any] , ): __lowercase : Tuple = TFFunnelForPreTraining(config=lowercase__ ) __lowercase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __lowercase : Union[str, Any] = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self : int , lowercase__ : List[Any] , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : int , lowercase__ : Any , lowercase__ : str , lowercase__ : Optional[Any] , ): __lowercase : Optional[int] = TFFunnelForMaskedLM(config=lowercase__ ) __lowercase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __lowercase : Optional[int] = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self : Union[str, Any] , lowercase__ : str , lowercase__ : Any , lowercase__ : Any , lowercase__ : Union[str, Any] , lowercase__ : Dict , lowercase__ : int , lowercase__ : int , ): __lowercase : str = self.num_labels __lowercase : List[Any] = TFFunnelForSequenceClassification(config=lowercase__ ) __lowercase : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __lowercase : int = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self : Tuple , lowercase__ : Tuple , lowercase__ : List[str] , lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : str , lowercase__ : Union[str, Any] , ): __lowercase : Dict = self.num_choices __lowercase : List[str] = TFFunnelForMultipleChoice(config=lowercase__ ) __lowercase : Any = tf.tile(tf.expand_dims(lowercase__ , 1 ) , (1, self.num_choices, 1) ) __lowercase : Optional[Any] = tf.tile(tf.expand_dims(lowercase__ , 1 ) , (1, self.num_choices, 1) ) __lowercase : Tuple = tf.tile(tf.expand_dims(lowercase__ , 1 ) , (1, self.num_choices, 1) ) __lowercase : Optional[int] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } __lowercase : str = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case ( self : Any , lowercase__ : Tuple , lowercase__ : str , lowercase__ : List[str] , lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : Any , lowercase__ : Optional[int] , ): __lowercase : Tuple = self.num_labels __lowercase : int = TFFunnelForTokenClassification(config=lowercase__ ) __lowercase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __lowercase : int = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self : Optional[int] , lowercase__ : str , lowercase__ : Tuple , lowercase__ : str , lowercase__ : List[Any] , lowercase__ : int , lowercase__ : str , lowercase__ : int , ): __lowercase : List[str] = TFFunnelForQuestionAnswering(config=lowercase__ ) __lowercase : str = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __lowercase : Union[str, Any] = model(lowercase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self : str ): __lowercase : Optional[int] = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) : List[Any] = config_and_inputs __lowercase : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase__ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : List[Any] = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) __UpperCAmelCase : Optional[int] = ( { "feature-extraction": (TFFunnelBaseModel, TFFunnelModel), "fill-mask": TFFunnelForMaskedLM, "question-answering": TFFunnelForQuestionAnswering, "text-classification": TFFunnelForSequenceClassification, "token-classification": TFFunnelForTokenClassification, "zero-shot": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) __UpperCAmelCase : Dict = False __UpperCAmelCase : Union[str, Any] = False def snake_case ( self : Dict ): __lowercase : List[Any] = TFFunnelModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=lowercase__ ) def snake_case ( self : List[Any] ): self.config_tester.run_common_tests() def snake_case ( self : Any ): __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def snake_case ( self : List[Any] ): __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase__ ) def snake_case ( self : str ): __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase__ ) def snake_case ( self : Any ): __lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase__ ) def snake_case ( self : str ): __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase__ ) @require_tf class lowerCAmelCase__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : List[str] = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) __UpperCAmelCase : str = False __UpperCAmelCase : Optional[Any] = False def snake_case ( self : List[Any] ): __lowercase : Optional[int] = TFFunnelModelTester(self , base=lowercase__ ) __lowercase : List[Any] = ConfigTester(self , config_class=lowercase__ ) def snake_case ( self : Union[str, Any] ): self.config_tester.run_common_tests() def snake_case ( self : List[str] ): __lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*lowercase__ ) def snake_case ( self : Union[str, Any] ): __lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase__ ) def snake_case ( self : List[Any] ): __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase__ )
281
1
"""simple docstring""" SCREAMING_SNAKE_CASE__:List[str] = { 0: "0", 1: "1", 2: "2", 3: "3", 4: "4", 5: "5", 6: "6", 7: "7", 8: "8", 9: "9", 10: "a", 11: "b", 12: "c", 13: "d", 14: "e", 15: "f", } def _lowerCamelCase( a ): assert type(UpperCamelCase_ ) in (int, float) and decimal == int(UpperCamelCase_ ) __a = int(UpperCamelCase_ ) __a = """""" __a = False if decimal < 0: __a = True decimal *= -1 while decimal > 0: __a = divmod(UpperCamelCase_ , 1_6 ) __a = values[remainder] + hexadecimal __a = """0x""" + hexadecimal if negative: __a = """-""" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
528
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint _lowerCamelCase : Optional[Any] = { "169M": 1_2, "430M": 2_4, "1B5": 2_4, "3B": 3_2, "7B": 3_2, "14B": 4_0, } _lowerCamelCase : int = { "169M": 7_6_8, "430M": 1_0_2_4, "1B5": 2_0_4_8, "3B": 2_5_6_0, "7B": 4_0_9_6, "14B": 5_1_2_0, } def _UpperCAmelCase (UpperCamelCase_ : Optional[Any] ): '''simple docstring''' _lowerCAmelCase : str = list(state_dict.keys() ) for name in state_dict_keys: _lowerCAmelCase : str = state_dict.pop(UpperCamelCase_ ) # emb -> embedding if name.startswith("""emb.""" ): _lowerCAmelCase : str = name.replace("""emb.""" , """embeddings.""" ) # ln_0 -> pre_ln (only present at block 0) if name.startswith("""blocks.0.ln0""" ): _lowerCAmelCase : Tuple = name.replace("""blocks.0.ln0""" , """blocks.0.pre_ln""" ) # att -> attention _lowerCAmelCase : Dict = re.sub(R"""blocks\.(\d+)\.att""" , R"""blocks.\1.attention""" , UpperCamelCase_ ) # ffn -> feed_forward _lowerCAmelCase : List[Any] = re.sub(R"""blocks\.(\d+)\.ffn""" , R"""blocks.\1.feed_forward""" , UpperCamelCase_ ) # time_mix_k -> time_mix_key and reshape if name.endswith(""".time_mix_k""" ): _lowerCAmelCase : Dict = name.replace(""".time_mix_k""" , """.time_mix_key""" ) # time_mix_v -> time_mix_value and reshape if name.endswith(""".time_mix_v""" ): _lowerCAmelCase : Any = name.replace(""".time_mix_v""" , """.time_mix_value""" ) # time_mix_r -> time_mix_key and reshape if name.endswith(""".time_mix_r""" ): _lowerCAmelCase : List[str] = name.replace(""".time_mix_r""" , """.time_mix_receptance""" ) if name != "head.weight": _lowerCAmelCase : Optional[int] = """rwkv.""" + name _lowerCAmelCase : List[Any] = weight return state_dict def _UpperCAmelCase (UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : int=None ): '''simple docstring''' # 1. If possible, build the tokenizer. if tokenizer_file is None: print("""No `--tokenizer_file` provided, we will use the default tokenizer.""" ) _lowerCAmelCase : List[str] = 50277 _lowerCAmelCase : Any = AutoTokenizer.from_pretrained("""EleutherAI/gpt-neox-20b""" ) else: _lowerCAmelCase : int = PreTrainedTokenizerFast(tokenizer_file=UpperCamelCase_ ) _lowerCAmelCase : int = len(UpperCamelCase_ ) tokenizer.save_pretrained(UpperCamelCase_ ) # 2. Build the config _lowerCAmelCase : List[str] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: _lowerCAmelCase : Any = candidate break if size is None: raise ValueError("""Could not infer the size, please provide it with the `--size` argument.""" ) if size not in possible_sizes: raise ValueError(F"`size` should be one of {possible_sizes}, got {size}." ) _lowerCAmelCase : List[Any] = RwkvConfig( vocab_size=UpperCamelCase_ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(UpperCamelCase_ ) # 3. Download model file then convert state_dict _lowerCAmelCase : Optional[Any] = hf_hub_download(UpperCamelCase_ , UpperCamelCase_ ) _lowerCAmelCase : Optional[Any] = torch.load(UpperCamelCase_ , map_location="""cpu""" ) _lowerCAmelCase : Any = convert_state_dict(UpperCamelCase_ ) # 4. Split in shards and save _lowerCAmelCase , _lowerCAmelCase : Dict = shard_checkpoint(UpperCamelCase_ ) for shard_file, shard in shards.items(): torch.save(UpperCamelCase_ , os.path.join(UpperCamelCase_ , UpperCamelCase_ ) ) if index is not None: _lowerCAmelCase : Tuple = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) # Save the index as well with open(UpperCamelCase_ , """w""" , encoding="""utf-8""" ) as f: _lowerCAmelCase : Optional[Any] = json.dumps(UpperCamelCase_ , indent=2 , sort_keys=UpperCamelCase_ ) + """\n""" f.write(UpperCamelCase_ ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( """Cleaning up shards. This may error with an OOM error, it this is the case don't worry you still have converted the model.""" ) _lowerCAmelCase : Union[str, Any] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: _lowerCAmelCase : int = torch.load(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(UpperCamelCase_ , UpperCamelCase_ ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError("""Please provide a `model_name` to push the model to the Hub.""" ) _lowerCAmelCase : Any = AutoModelForCausalLM.from_pretrained(UpperCamelCase_ ) model.push_to_hub(UpperCamelCase_ , max_shard_size="""2GB""" ) tokenizer.push_to_hub(UpperCamelCase_ ) if __name__ == "__main__": _lowerCamelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--repo_id", default=None, type=str, required=True, help="Repo ID from which to pull the checkpoint." ) parser.add_argument( "--checkpoint_file", default=None, type=str, required=True, help="Name of the checkpoint file in the repo." ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="Where to save the converted model." ) parser.add_argument( "--tokenizer_file", default=None, type=str, help="Path to the tokenizer file to use (if not provided, only the model is converted).", ) parser.add_argument( "--size", default=None, type=str, help="Size of the model. Will be inferred from the `checkpoint_file` if not passed.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Push to the Hub the converted model.", ) parser.add_argument( "--model_name", default=None, type=str, help="Name of the pushed model on the Hub, including the username / organization.", ) _lowerCamelCase : Tuple = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
429
0
from collections import deque class __UpperCAmelCase: """simple docstring""" def __init__( self , __magic_name__ , __magic_name__ , __magic_name__ ): """simple docstring""" A_ : int = process_name # process name A_ : str = arrival_time # arrival time of the process # completion time of finished process or last interrupted time A_ : List[Any] = arrival_time A_ : Dict = burst_time # remaining burst time A_ : List[Any] = 0 # total time of the process wait in ready queue A_ : Any = 0 # time from arrival time to completion time class __UpperCAmelCase: """simple docstring""" def __init__( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ): """simple docstring""" A_ : int = number_of_queues # time slice of queues that round robin algorithm applied A_ : int = time_slices # unfinished process is in this ready_queue A_ : Optional[int] = queue # current time A_ : Optional[Any] = current_time # finished process is in this sequence queue A_ : deque[Process] = deque() def UpperCAmelCase ( self ): """simple docstring""" A_ : List[Any] = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def UpperCAmelCase ( self , __magic_name__ ): """simple docstring""" A_ : Optional[Any] = [] for i in range(len(_UpperCAmelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def UpperCAmelCase ( self , __magic_name__ ): """simple docstring""" A_ : Dict = [] for i in range(len(_UpperCAmelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def UpperCAmelCase ( self , __magic_name__ ): """simple docstring""" A_ : int = [] for i in range(len(_UpperCAmelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def UpperCAmelCase ( self , __magic_name__ ): """simple docstring""" return [q.burst_time for q in queue] def UpperCAmelCase ( self , __magic_name__ ): """simple docstring""" process.waiting_time += self.current_time - process.stop_time return process.waiting_time def UpperCAmelCase ( self , __magic_name__ ): """simple docstring""" A_ : deque[Process] = deque() # sequence deque of finished process while len(_UpperCAmelCase ) != 0: A_ : List[str] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_UpperCAmelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 A_ : int = 0 # set the process's turnaround time because it is finished A_ : str = self.current_time - cp.arrival_time # set the completion time A_ : List[str] = self.current_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def UpperCAmelCase ( self , __magic_name__ , __magic_name__ ): """simple docstring""" A_ : deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_UpperCAmelCase ) ): A_ : str = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_UpperCAmelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time A_ : Tuple = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_UpperCAmelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished A_ : Optional[Any] = 0 # set the finish time A_ : Optional[int] = self.current_time # update the process' turnaround time because it is finished A_ : Dict = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def UpperCAmelCase ( self ): """simple docstring""" for i in range(self.number_of_queues - 1 ): A_ : List[str] = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest _lowerCAmelCase = Process('P1', 0, 5_3) _lowerCAmelCase = Process('P2', 0, 1_7) _lowerCAmelCase = Process('P3', 0, 6_8) _lowerCAmelCase = Process('P4', 0, 2_4) _lowerCAmelCase = 3 _lowerCAmelCase = [1_7, 2_5] _lowerCAmelCase = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'queue': deque([Pa, Pa, Pa, Pa])}) _lowerCAmelCase = Process('P1', 0, 5_3) _lowerCAmelCase = Process('P2', 0, 1_7) _lowerCAmelCase = Process('P3', 0, 6_8) _lowerCAmelCase = Process('P4', 0, 2_4) _lowerCAmelCase = 3 _lowerCAmelCase = [1_7, 2_5] _lowerCAmelCase = deque([Pa, Pa, Pa, Pa]) _lowerCAmelCase = MLFQ(number_of_queues, time_slices, queue, 0) _lowerCAmelCase = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print completion times of processes(P1, P2, P3, P4) print( F'completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print sequence of finished processes print( F'sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}' )
713
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
236
0
import os def UpperCamelCase ( ) -> Tuple: UpperCamelCase : str = os.path.join(os.path.dirname(snake_case__ ) , 'num.txt' ) with open(snake_case__ ) as file_hand: return str(sum(int(snake_case__ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
40
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class UpperCAmelCase__ ( A__ ): """simple docstring""" a = 42 a = None def UpperCAmelCase_ ( _A , _A=0.9_9_9 , _A="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_A ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_A ): return math.exp(t * -1_2.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) SCREAMING_SNAKE_CASE__ = [] for i in range(_A ): SCREAMING_SNAKE_CASE__ = i / num_diffusion_timesteps SCREAMING_SNAKE_CASE__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_A ) / alpha_bar_fn(_A ) , _A ) ) return torch.tensor(_A , dtype=torch.floataa ) class UpperCAmelCase__ ( A__ , A__ ): """simple docstring""" a = 1 @register_to_config def __init__( self : Dict , __lowerCamelCase : int = 1000 , __lowerCamelCase : float = 0.0001 , __lowerCamelCase : float = 0.02 , __lowerCamelCase : str = "linear" , __lowerCamelCase : Optional[Union[np.ndarray, List[float]]] = None , __lowerCamelCase : bool = True , __lowerCamelCase : bool = True , __lowerCamelCase : int = 0 , __lowerCamelCase : str = "epsilon" , __lowerCamelCase : float = 1.0 , **__lowerCamelCase : str , ) -> Optional[Any]: if kwargs.get('''set_alpha_to_one''' , __lowerCamelCase ) is not None: SCREAMING_SNAKE_CASE__ = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , __lowerCamelCase , standard_warn=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = kwargs['''set_alpha_to_one'''] if trained_betas is not None: SCREAMING_SNAKE_CASE__ = torch.tensor(__lowerCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": SCREAMING_SNAKE_CASE__ = torch.linspace(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. SCREAMING_SNAKE_CASE__ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __lowerCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule SCREAMING_SNAKE_CASE__ = betas_for_alpha_bar(__lowerCamelCase ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) SCREAMING_SNAKE_CASE__ = 1.0 - self.betas SCREAMING_SNAKE_CASE__ = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. SCREAMING_SNAKE_CASE__ = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution SCREAMING_SNAKE_CASE__ = 1.0 # setable values SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = torch.from_numpy(np.arange(0 , __lowerCamelCase ).copy().astype(np.intaa ) ) def lowercase_ ( self : Optional[int] , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : Optional[int] = None ) -> torch.FloatTensor: return sample def lowercase_ ( self : int , __lowerCamelCase : int , __lowerCamelCase : Union[str, torch.device] = None ) -> Union[str, Any]: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' f''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' f''' maximal {self.config.num_train_timesteps} timesteps.''' ) SCREAMING_SNAKE_CASE__ = num_inference_steps SCREAMING_SNAKE_CASE__ = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 SCREAMING_SNAKE_CASE__ = (np.arange(0 , __lowerCamelCase ) * step_ratio).round().copy().astype(np.intaa ) SCREAMING_SNAKE_CASE__ = torch.from_numpy(__lowerCamelCase ).to(__lowerCamelCase ) self.timesteps += self.config.steps_offset def lowercase_ ( self : List[Any] , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : int , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : float = 0.0 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[torch.FloatTensor] = None , __lowerCamelCase : bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]: # 1. get previous step value (=t+1) SCREAMING_SNAKE_CASE__ = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process SCREAMING_SNAKE_CASE__ = self.alphas_cumprod[timestep] SCREAMING_SNAKE_CASE__ = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) SCREAMING_SNAKE_CASE__ = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": SCREAMING_SNAKE_CASE__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 SCREAMING_SNAKE_CASE__ = model_output elif self.config.prediction_type == "sample": SCREAMING_SNAKE_CASE__ = model_output SCREAMING_SNAKE_CASE__ = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": SCREAMING_SNAKE_CASE__ = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output SCREAMING_SNAKE_CASE__ = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: SCREAMING_SNAKE_CASE__ = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf SCREAMING_SNAKE_CASE__ = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf SCREAMING_SNAKE_CASE__ = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=__lowerCamelCase , pred_original_sample=__lowerCamelCase ) def __len__( self : List[str] ) -> Union[str, Any]: return self.config.num_train_timesteps
493
0
from __future__ import annotations from math import gcd def _A ( _UpperCamelCase , _UpperCamelCase = 2 , _UpperCamelCase = 1 , _UpperCamelCase = 3 , ): # A value less than 2 can cause an infinite loop in the algorithm. if num < 2: raise ValueError('''The input value cannot be less than 2''' ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> int: return (pow(_UpperCamelCase , 2 ) + step) % modulus for _ in range(_UpperCamelCase ): # These track the position within the cycle detection logic. _UpperCAmelCase : List[Any] = seed _UpperCAmelCase : Optional[Any] = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. _UpperCAmelCase : str = rand_fn(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase : Dict = rand_fn(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase : Any = rand_fn(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. _UpperCAmelCase : Any = gcd(hare - tortoise , _UpperCamelCase ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. _UpperCAmelCase : Any = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse UpperCAmelCase__ : Any = argparse.ArgumentParser() parser.add_argument( 'num', type=int, help='The value to find a divisor of', ) parser.add_argument( '--attempts', type=int, default=3, help='The number of attempts before giving up', ) UpperCAmelCase__ : Tuple = parser.parse_args() UpperCAmelCase__ : List[str] = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F"""{args.num} is probably prime""") else: UpperCAmelCase__ : Any = args.num // divisor print(F"""{args.num} = {divisor} * {quotient}""")
416
from ...processing_utils import ProcessorMixin class lowerCAmelCase_ ( lowercase_ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = """WhisperFeatureExtractor""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = """WhisperTokenizer""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] ) -> List[Any]: '''simple docstring''' super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCAmelCase : List[str] = self.feature_extractor _UpperCAmelCase : Any = False def a_ ( self : Any , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Tuple=True ) -> Union[str, Any]: '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=UpperCAmelCase_ , language=UpperCAmelCase_ , no_timestamps=UpperCAmelCase_ ) def __call__( self : Tuple , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Dict ) -> Dict: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*UpperCAmelCase_ , **UpperCAmelCase_ ) _UpperCAmelCase : Optional[Any] = kwargs.pop('''audio''' , UpperCAmelCase_ ) _UpperCAmelCase : Tuple = kwargs.pop('''sampling_rate''' , UpperCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = kwargs.pop('''text''' , UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > 0: _UpperCAmelCase : List[Any] = args[0] _UpperCAmelCase : List[Any] = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: _UpperCAmelCase : List[str] = self.feature_extractor(UpperCAmelCase_ , *UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , **UpperCAmelCase_ ) if text is not None: _UpperCAmelCase : Dict = self.tokenizer(UpperCAmelCase_ , **UpperCAmelCase_ ) if text is None: return inputs elif audio is None: return encodings else: _UpperCAmelCase : Union[str, Any] = encodings['''input_ids'''] return inputs def a_ ( self : Optional[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def a_ ( self : Union[str, Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Union[str, Any] ) -> List[str]: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def a_ ( self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str]="np" ) -> Optional[Any]: '''simple docstring''' return self.tokenizer.get_prompt_ids(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ )
416
1
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) UpperCamelCase_ = logging.getLogger(__name__) class _SCREAMING_SNAKE_CASE( _SCREAMING_SNAKE_CASE ): def __lowerCamelCase ( self : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Dict=None ) -> Any: SCREAMING_SNAKE_CASE__ :Tuple = self.layer[current_layer](UpperCamelCase_ , UpperCamelCase_ , head_mask[current_layer] ) SCREAMING_SNAKE_CASE__ :int = layer_outputs[0] return hidden_states @add_start_docstrings( 'The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.' , _SCREAMING_SNAKE_CASE , ) class _SCREAMING_SNAKE_CASE( _SCREAMING_SNAKE_CASE ): def __init__( self : List[str] , UpperCamelCase_ : List[Any] ) -> Union[str, Any]: super().__init__(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Dict = BertEncoderWithPabee(UpperCamelCase_ ) self.init_weights() SCREAMING_SNAKE_CASE__ :Optional[Any] = 0 SCREAMING_SNAKE_CASE__ :List[str] = 0 SCREAMING_SNAKE_CASE__ :List[Any] = 0 SCREAMING_SNAKE_CASE__ :List[Any] = 0 def __lowerCamelCase ( self : str , UpperCamelCase_ : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ :Optional[Any] = threshold def __lowerCamelCase ( self : Optional[Any] , UpperCamelCase_ : Tuple ) -> int: SCREAMING_SNAKE_CASE__ :Tuple = patience def __lowerCamelCase ( self : List[str] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ :Optional[Any] = 0 SCREAMING_SNAKE_CASE__ :List[Any] = 0 def __lowerCamelCase ( self : Tuple ) -> List[str]: SCREAMING_SNAKE_CASE__ :List[str] = self.inference_layers_num / self.inference_instances_num SCREAMING_SNAKE_CASE__ :Optional[Any] = ( f'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' f''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(UpperCamelCase_ ) @add_start_docstrings_to_model_forward(UpperCamelCase_ ) def __lowerCamelCase ( self : int , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : str=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : int=None , UpperCamelCase_ : int=False , ) -> Any: if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: SCREAMING_SNAKE_CASE__ :str = input_ids.size() elif inputs_embeds is not None: SCREAMING_SNAKE_CASE__ :Optional[int] = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) SCREAMING_SNAKE_CASE__ :Dict = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: SCREAMING_SNAKE_CASE__ :Dict = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ ) if token_type_ids is None: SCREAMING_SNAKE_CASE__ :Dict = torch.zeros(UpperCamelCase_ , dtype=torch.long , device=UpperCamelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. SCREAMING_SNAKE_CASE__ :torch.Tensor = self.get_extended_attention_mask(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ :Optional[int] = encoder_hidden_states.size() SCREAMING_SNAKE_CASE__ :Optional[Any] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: SCREAMING_SNAKE_CASE__ :Optional[int] = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Optional[Any] = self.invert_attention_mask(UpperCamelCase_ ) else: SCREAMING_SNAKE_CASE__ :str = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] SCREAMING_SNAKE_CASE__ :Optional[int] = self.get_head_mask(UpperCamelCase_ , self.config.num_hidden_layers ) SCREAMING_SNAKE_CASE__ :List[str] = self.embeddings( input_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :str = embedding_output if self.training: SCREAMING_SNAKE_CASE__ :str = [] for i in range(self.config.num_hidden_layers ): SCREAMING_SNAKE_CASE__ :Dict = self.encoder.adaptive_forward( UpperCamelCase_ , current_layer=UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Optional[int] = self.pooler(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = output_layers[i](output_dropout(UpperCamelCase_ ) ) res.append(UpperCamelCase_ ) elif self.patience == 0: # Use all layers for inference SCREAMING_SNAKE_CASE__ :Optional[Any] = self.encoder( UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , ) SCREAMING_SNAKE_CASE__ :Dict = self.pooler(encoder_outputs[0] ) SCREAMING_SNAKE_CASE__ :Any = [output_layers[self.config.num_hidden_layers - 1](UpperCamelCase_ )] else: SCREAMING_SNAKE_CASE__ :Any = 0 SCREAMING_SNAKE_CASE__ :Optional[int] = None SCREAMING_SNAKE_CASE__ :Optional[int] = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 SCREAMING_SNAKE_CASE__ :str = self.encoder.adaptive_forward( UpperCamelCase_ , current_layer=UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Optional[int] = self.pooler(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Any = output_layers[i](UpperCamelCase_ ) if regression: SCREAMING_SNAKE_CASE__ :List[Any] = logits.detach() if patient_result is not None: SCREAMING_SNAKE_CASE__ :Optional[Any] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: SCREAMING_SNAKE_CASE__ :Union[str, Any] = 0 else: SCREAMING_SNAKE_CASE__ :Optional[int] = logits.detach().argmax(dim=1 ) if patient_result is not None: SCREAMING_SNAKE_CASE__ :Dict = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(UpperCamelCase_ ) ): patient_counter += 1 else: SCREAMING_SNAKE_CASE__ :Dict = 0 SCREAMING_SNAKE_CASE__ :List[str] = logits if patient_counter == self.patience: break SCREAMING_SNAKE_CASE__ :List[Any] = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( 'Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. ' , _SCREAMING_SNAKE_CASE , ) class _SCREAMING_SNAKE_CASE( _SCREAMING_SNAKE_CASE ): def __init__( self : List[str] , UpperCamelCase_ : int ) -> Optional[Any]: super().__init__(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Dict = config.num_labels SCREAMING_SNAKE_CASE__ :Optional[int] = BertModelWithPabee(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = nn.Dropout(config.hidden_dropout_prob ) SCREAMING_SNAKE_CASE__ :str = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCamelCase_ ) def __lowerCamelCase ( self : Any , UpperCamelCase_ : str=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Optional[Any]=None , ) -> Tuple: SCREAMING_SNAKE_CASE__ :Any = self.bert( input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , head_mask=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) SCREAMING_SNAKE_CASE__ :Optional[int] = (logits[-1],) if labels is not None: SCREAMING_SNAKE_CASE__ :Tuple = None SCREAMING_SNAKE_CASE__ :Dict = 0 for ix, logits_item in enumerate(UpperCamelCase_ ): if self.num_labels == 1: # We are doing regression SCREAMING_SNAKE_CASE__ :List[Any] = MSELoss() SCREAMING_SNAKE_CASE__ :Any = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: SCREAMING_SNAKE_CASE__ :List[str] = CrossEntropyLoss() SCREAMING_SNAKE_CASE__ :int = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: SCREAMING_SNAKE_CASE__ :List[str] = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 SCREAMING_SNAKE_CASE__ :Any = (total_loss / total_weights,) + outputs return outputs
209
'''simple docstring''' from __future__ import annotations UpperCamelCase_ = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def lowerCamelCase ( UpperCAmelCase__ : list[list[int]] , UpperCAmelCase__ : list[int] , UpperCAmelCase__ : list[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : list[list[int]] , ) -> tuple[list[list[int]], list[list[int]]]: '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCAmelCase__ ) ) ] # the reference grid SCREAMING_SNAKE_CASE__ :Any = 1 SCREAMING_SNAKE_CASE__ :Dict = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCAmelCase__ ) ) ] # the action grid SCREAMING_SNAKE_CASE__ :int = init[0] SCREAMING_SNAKE_CASE__ :Optional[Any] = init[1] SCREAMING_SNAKE_CASE__ :List[str] = 0 SCREAMING_SNAKE_CASE__ :List[Any] = g + heuristic[x][y] # cost from starting cell to destination cell SCREAMING_SNAKE_CASE__ :List[Any] = [[f, g, x, y]] SCREAMING_SNAKE_CASE__ :Any = False # flag that is set when search is complete SCREAMING_SNAKE_CASE__ :str = False # flag set if we can't find expand while not found and not resign: if len(UpperCAmelCase__ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() SCREAMING_SNAKE_CASE__ :List[Any] = cell.pop() SCREAMING_SNAKE_CASE__ :Optional[int] = next_cell[2] SCREAMING_SNAKE_CASE__ :Any = next_cell[3] SCREAMING_SNAKE_CASE__ :Dict = next_cell[1] if x == goal[0] and y == goal[1]: SCREAMING_SNAKE_CASE__ :Tuple = True else: for i in range(len(UpperCAmelCase__ ) ): # to try out different valid actions SCREAMING_SNAKE_CASE__ :Optional[int] = x + DIRECTIONS[i][0] SCREAMING_SNAKE_CASE__ :int = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(UpperCAmelCase__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: SCREAMING_SNAKE_CASE__ :str = g + cost SCREAMING_SNAKE_CASE__ :Union[str, Any] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = 1 SCREAMING_SNAKE_CASE__ :Any = i SCREAMING_SNAKE_CASE__ :int = [] SCREAMING_SNAKE_CASE__ :Union[str, Any] = goal[0] SCREAMING_SNAKE_CASE__ :Optional[int] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: SCREAMING_SNAKE_CASE__ :Optional[Any] = x - DIRECTIONS[action[x][y]][0] SCREAMING_SNAKE_CASE__ :Optional[Any] = y - DIRECTIONS[action[x][y]][1] SCREAMING_SNAKE_CASE__ :Optional[int] = xa SCREAMING_SNAKE_CASE__ :int = ya invpath.append([x, y] ) SCREAMING_SNAKE_CASE__ :int = [] for i in range(len(UpperCAmelCase__ ) ): path.append(invpath[len(UpperCAmelCase__ ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCamelCase_ = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCamelCase_ = [0, 0] # all coordinates are given in format [y,x] UpperCamelCase_ = [len(grid) - 1, len(grid[0]) - 1] UpperCamelCase_ = 1 # the cost map which pushes the path closer to the goal UpperCamelCase_ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCamelCase_ = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCamelCase_ = 99 UpperCamelCase_ , UpperCamelCase_ = search(grid, init, goal, cost, heuristic) print('''ACTION MAP''') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
209
1
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = 1_0 def UpperCamelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = [1, 2, 3, 4] __SCREAMING_SNAKE_CASE : Any = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(__A , self.block_size , 0 ) , __A ) def UpperCamelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] __SCREAMING_SNAKE_CASE : Optional[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(__A , self.block_size , 0 ) , __A ) def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0, 1_1, 1_2, 1_3] __SCREAMING_SNAKE_CASE : int = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(__A , self.block_size , 0 ) , __A ) def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = "It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this." __SCREAMING_SNAKE_CASE : Any = process_story(__A ) self.assertEqual(__A , [] ) def UpperCamelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = "" __SCREAMING_SNAKE_CASE : Tuple = process_story(__A ) self.assertEqual(__A , [] ) self.assertEqual(__A , [] ) def UpperCamelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = ( "It was the year of Our Lord one thousand seven hundred and " "seventy-five\n\nSpiritual revelations were conceded to England " "at that favoured period, as at this.\n@highlight\n\nIt was the best of times" ) __SCREAMING_SNAKE_CASE : Tuple = process_story(__A ) __SCREAMING_SNAKE_CASE : Optional[Any] = [ "It was the year of Our Lord one thousand seven hundred and seventy-five.", "Spiritual revelations were conceded to England at that favoured period, as at this.", ] self.assertEqual(__A , __A ) __SCREAMING_SNAKE_CASE : Optional[Any] = ["It was the best of times."] self.assertEqual(__A , __A ) def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = torch.tensor([1, 2, 3, 4] ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(__A , 0 ).numpy() , expected.numpy() ) def UpperCamelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = torch.tensor([1, 2, 3, 4, 2_3, 2_3, 2_3] ) __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__A , 2_3 ).numpy() , expected.numpy() ) def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__A , 1 ).numpy() , expected.numpy() ) def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = 1_0_1 __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_0_1, 5, 6], [1, 1_0_1, 3, 4, 1_0_1, 6]] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = compute_token_type_ids(__A , __A ) np.testing.assert_array_equal(__A , __A )
703
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def lowerCAmelCase_ ( _lowerCamelCase: Tuple ): __SCREAMING_SNAKE_CASE : List[Any] = SwinvaConfig() __SCREAMING_SNAKE_CASE : List[Any] = swinva_name.split("""_""" ) __SCREAMING_SNAKE_CASE : Union[str, Any] = name_split[1] if "to" in name_split[3]: __SCREAMING_SNAKE_CASE : Dict = int(name_split[3][-3:] ) else: __SCREAMING_SNAKE_CASE : str = int(name_split[3] ) if "to" in name_split[2]: __SCREAMING_SNAKE_CASE : Optional[Any] = int(name_split[2][-2:] ) else: __SCREAMING_SNAKE_CASE : Optional[int] = int(name_split[2][6:] ) if model_size == "tiny": __SCREAMING_SNAKE_CASE : Dict = 96 __SCREAMING_SNAKE_CASE : List[str] = (2, 2, 6, 2) __SCREAMING_SNAKE_CASE : List[Any] = (3, 6, 12, 24) elif model_size == "small": __SCREAMING_SNAKE_CASE : List[str] = 96 __SCREAMING_SNAKE_CASE : int = (2, 2, 18, 2) __SCREAMING_SNAKE_CASE : int = (3, 6, 12, 24) elif model_size == "base": __SCREAMING_SNAKE_CASE : int = 1_28 __SCREAMING_SNAKE_CASE : str = (2, 2, 18, 2) __SCREAMING_SNAKE_CASE : Optional[int] = (4, 8, 16, 32) else: __SCREAMING_SNAKE_CASE : List[str] = 1_92 __SCREAMING_SNAKE_CASE : Union[str, Any] = (2, 2, 18, 2) __SCREAMING_SNAKE_CASE : Dict = (6, 12, 24, 48) if "to" in swinva_name: __SCREAMING_SNAKE_CASE : int = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): __SCREAMING_SNAKE_CASE : int = 2_18_41 __SCREAMING_SNAKE_CASE : str = """huggingface/label-files""" __SCREAMING_SNAKE_CASE : List[str] = """imagenet-22k-id2label.json""" __SCREAMING_SNAKE_CASE : List[str] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __SCREAMING_SNAKE_CASE : List[Any] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE : Optional[int] = idalabel __SCREAMING_SNAKE_CASE : str = {v: k for k, v in idalabel.items()} else: __SCREAMING_SNAKE_CASE : str = 10_00 __SCREAMING_SNAKE_CASE : Optional[int] = """huggingface/label-files""" __SCREAMING_SNAKE_CASE : Any = """imagenet-1k-id2label.json""" __SCREAMING_SNAKE_CASE : Optional[int] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __SCREAMING_SNAKE_CASE : int = {int(_lowerCamelCase ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE : Optional[int] = idalabel __SCREAMING_SNAKE_CASE : Dict = {v: k for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE : Any = img_size __SCREAMING_SNAKE_CASE : Union[str, Any] = num_classes __SCREAMING_SNAKE_CASE : int = embed_dim __SCREAMING_SNAKE_CASE : Dict = depths __SCREAMING_SNAKE_CASE : str = num_heads __SCREAMING_SNAKE_CASE : int = window_size return config def lowerCAmelCase_ ( _lowerCamelCase: int ): if "patch_embed.proj" in name: __SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: __SCREAMING_SNAKE_CASE : Optional[int] = """encoder.""" + name if "attn.proj" in name: __SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: __SCREAMING_SNAKE_CASE : Any = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: __SCREAMING_SNAKE_CASE : Optional[int] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __SCREAMING_SNAKE_CASE : Dict = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __SCREAMING_SNAKE_CASE : List[Any] = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: __SCREAMING_SNAKE_CASE : Tuple = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: __SCREAMING_SNAKE_CASE : Optional[int] = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: __SCREAMING_SNAKE_CASE : List[str] = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: __SCREAMING_SNAKE_CASE : str = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if name == "norm.weight": __SCREAMING_SNAKE_CASE : Tuple = """layernorm.weight""" if name == "norm.bias": __SCREAMING_SNAKE_CASE : Optional[int] = """layernorm.bias""" if "head" in name: __SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("""head""" , """classifier""" ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = """swinv2.""" + name return name def lowerCAmelCase_ ( _lowerCamelCase: int , _lowerCamelCase: Optional[Any] ): for key in orig_state_dict.copy().keys(): __SCREAMING_SNAKE_CASE : Optional[Any] = orig_state_dict.pop(_lowerCamelCase ) if "mask" in key: continue elif "qkv" in key: __SCREAMING_SNAKE_CASE : Union[str, Any] = key.split(""".""" ) __SCREAMING_SNAKE_CASE : List[str] = int(key_split[1] ) __SCREAMING_SNAKE_CASE : Dict = int(key_split[3] ) __SCREAMING_SNAKE_CASE : str = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __SCREAMING_SNAKE_CASE : Optional[int] = val[:dim, :] __SCREAMING_SNAKE_CASE : str = val[dim : dim * 2, :] __SCREAMING_SNAKE_CASE : Dict = val[-dim:, :] else: __SCREAMING_SNAKE_CASE : Optional[Any] = val[:dim] __SCREAMING_SNAKE_CASE : int = val[ dim : dim * 2 ] __SCREAMING_SNAKE_CASE : int = val[-dim:] else: __SCREAMING_SNAKE_CASE : Optional[Any] = val return orig_state_dict def lowerCAmelCase_ ( _lowerCamelCase: Tuple , _lowerCamelCase: int ): __SCREAMING_SNAKE_CASE : Union[str, Any] = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() __SCREAMING_SNAKE_CASE : int = get_swinva_config(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = SwinvaForImageClassification(_lowerCamelCase ) model.eval() __SCREAMING_SNAKE_CASE : Optional[int] = convert_state_dict(timm_model.state_dict() , _lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" __SCREAMING_SNAKE_CASE : List[Any] = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swinva_name.replace("""_""" , """-""" ) ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) __SCREAMING_SNAKE_CASE : Union[str, Any] = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ) __SCREAMING_SNAKE_CASE : int = timm_model(inputs["""pixel_values"""] ) __SCREAMING_SNAKE_CASE : Dict = model(**_lowerCamelCase ).logits assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1E-3 ) print(F"Saving model {swinva_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCamelCase ) model.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase ) , organization="""nandwalritik""" , commit_message="""Add model""" , ) if __name__ == "__main__": UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swinv2_name''', default='''swinv2_tiny_patch4_window8_256''', type=str, help='''Name of the Swinv2 timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) UpperCamelCase__ : Optional[int] = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
178
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a = { """configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""], """tokenization_convbert""": ["""ConvBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ["""ConvBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvBertForMaskedLM""", """ConvBertForMultipleChoice""", """ConvBertForQuestionAnswering""", """ConvBertForSequenceClassification""", """ConvBertForTokenClassification""", """ConvBertLayer""", """ConvBertModel""", """ConvBertPreTrainedModel""", """load_tf_weights_in_convbert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFConvBertForMaskedLM""", """TFConvBertForMultipleChoice""", """TFConvBertForQuestionAnswering""", """TFConvBertForSequenceClassification""", """TFConvBertForTokenClassification""", """TFConvBertLayer""", """TFConvBertModel""", """TFConvBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def UpperCamelCase_( __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ): """simple docstring""" if isinstance(__magic_name__ , torch.Tensor ): return image elif isinstance(__magic_name__ , PIL.Image.Image ): _lowerCAmelCase :Tuple = [image] if isinstance(image[0] , PIL.Image.Image ): _lowerCAmelCase :List[Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _lowerCAmelCase :Optional[Any] = np.concatenate(__magic_name__ , axis=0 ) _lowerCAmelCase :Any = np.array(__magic_name__ ).astype(np.floataa ) / 255.0 _lowerCAmelCase :Optional[int] = image.transpose(0 , 3 , 1 , 2 ) _lowerCAmelCase :int = 2.0 * image - 1.0 _lowerCAmelCase :Optional[int] = torch.from_numpy(__magic_name__ ) elif isinstance(image[0] , torch.Tensor ): _lowerCAmelCase :str = torch.cat(__magic_name__ , dim=0 ) return image def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : int=0.9995 ): """simple docstring""" if not isinstance(__magic_name__ , np.ndarray ): _lowerCAmelCase :Tuple = True _lowerCAmelCase :str = va.device _lowerCAmelCase :List[str] = va.cpu().numpy() _lowerCAmelCase :List[str] = va.cpu().numpy() _lowerCAmelCase :Any = np.sum(va * va / (np.linalg.norm(__magic_name__ ) * np.linalg.norm(__magic_name__ )) ) if np.abs(__magic_name__ ) > DOT_THRESHOLD: _lowerCAmelCase :Optional[Any] = (1 - t) * va + t * va else: _lowerCAmelCase :int = np.arccos(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = np.sin(__magic_name__ ) _lowerCAmelCase :Union[str, Any] = theta_a * t _lowerCAmelCase :str = np.sin(__magic_name__ ) _lowerCAmelCase :Any = np.sin(theta_a - theta_t ) / sin_theta_a _lowerCAmelCase :Optional[Any] = sin_theta_t / sin_theta_a _lowerCAmelCase :List[Any] = sa * va + sa * va if inputs_are_torch: _lowerCAmelCase :int = torch.from_numpy(__magic_name__ ).to(__magic_name__ ) return va def UpperCamelCase_( __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Any = F.normalize(__magic_name__ , dim=-1 ) _lowerCAmelCase :str = F.normalize(__magic_name__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def UpperCamelCase_( __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" for param in model.parameters(): _lowerCAmelCase :List[str] = value class UpperCAmelCase_ (snake_case__ ): """simple docstring""" def __init__( self: Any , _UpperCAmelCase: AutoencoderKL , _UpperCAmelCase: CLIPTextModel , _UpperCAmelCase: CLIPModel , _UpperCAmelCase: CLIPTokenizer , _UpperCAmelCase: UNetaDConditionModel , _UpperCAmelCase: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , _UpperCAmelCase: CLIPFeatureExtractor , _UpperCAmelCase: str=None , _UpperCAmelCase: Tuple=None , _UpperCAmelCase: Union[str, Any]=None , ): super().__init__() self.register_modules( vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , clip_model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , coca_model=_UpperCAmelCase , coca_tokenizer=_UpperCAmelCase , coca_transform=_UpperCAmelCase , ) _lowerCAmelCase :int = ( feature_extractor.size if isinstance(feature_extractor.size , _UpperCAmelCase ) else feature_extractor.size['shortest_edge'] ) _lowerCAmelCase :Union[str, Any] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , _UpperCAmelCase ) set_requires_grad(self.clip_model , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowerCAmelCase :Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): self.enable_attention_slicing(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): set_requires_grad(self.vae , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): set_requires_grad(self.vae , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any ): set_requires_grad(self.unet , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): set_requires_grad(self.unet , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Dict ): # get the original timestep using init_timestep _lowerCAmelCase :Optional[Any] = min(int(num_inference_steps * strength ) , _UpperCAmelCase ) _lowerCAmelCase :List[str] = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase :Tuple = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Union[str, Any]=None ): if not isinstance(_UpperCAmelCase , torch.Tensor ): raise ValueError(f"""`image` has to be of type `torch.Tensor` but is {type(_UpperCAmelCase )}""" ) _lowerCAmelCase :Union[str, Any] = image.to(device=_UpperCAmelCase , dtype=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase :List[Any] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_UpperCAmelCase ) ] _lowerCAmelCase :List[str] = torch.cat(_UpperCAmelCase , dim=0 ) else: _lowerCAmelCase :List[str] = self.vae.encode(_UpperCAmelCase ).latent_dist.sample(_UpperCAmelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :List[Any] = 0.1_8_2_1_5 * init_latents _lowerCAmelCase :List[Any] = init_latents.repeat_interleave(_UpperCAmelCase , dim=0 ) _lowerCAmelCase :Dict = randn_tensor(init_latents.shape , generator=_UpperCAmelCase , device=_UpperCAmelCase , dtype=_UpperCAmelCase ) # get latents _lowerCAmelCase :Dict = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :List[str] = init_latents return latents def SCREAMING_SNAKE_CASE__ ( self: Dict , _UpperCAmelCase: Union[str, Any] ): _lowerCAmelCase :Optional[int] = self.coca_transform(_UpperCAmelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _lowerCAmelCase :Optional[Any] = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _lowerCAmelCase :int = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def SCREAMING_SNAKE_CASE__ ( self: int , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: List[str] ): _lowerCAmelCase :Optional[int] = self.feature_extractor.preprocess(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() _lowerCAmelCase :List[str] = self.clip_model.get_image_features(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) _lowerCAmelCase :Dict = image_embeddings_clip.repeat_interleave(_UpperCAmelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] , _UpperCAmelCase: List[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , _UpperCAmelCase: Dict , _UpperCAmelCase: str , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple , ): _lowerCAmelCase :Dict = latents.detach().requires_grad_() _lowerCAmelCase :Optional[Any] = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _lowerCAmelCase :int = self.scheduler.alphas_cumprod[timestep] _lowerCAmelCase :Optional[int] = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase :str = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _lowerCAmelCase :Optional[Any] = torch.sqrt(_UpperCAmelCase ) _lowerCAmelCase :List[str] = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , _UpperCAmelCase ): _lowerCAmelCase :Dict = self.scheduler.sigmas[index] _lowerCAmelCase :Optional[Any] = latents - sigma * noise_pred else: raise ValueError(f"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :Tuple = 1 / 0.1_8_2_1_5 * sample _lowerCAmelCase :Optional[Any] = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Tuple = transforms.Resize(self.feature_extractor_size )(_UpperCAmelCase ) _lowerCAmelCase :Tuple = self.normalize(_UpperCAmelCase ).to(latents.dtype ) _lowerCAmelCase :List[Any] = self.clip_model.get_image_features(_UpperCAmelCase ) _lowerCAmelCase :List[str] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) _lowerCAmelCase :Tuple = spherical_dist_loss(_UpperCAmelCase , _UpperCAmelCase ).mean() * clip_guidance_scale _lowerCAmelCase :str = -torch.autograd.grad(_UpperCAmelCase , _UpperCAmelCase )[0] if isinstance(self.scheduler , _UpperCAmelCase ): _lowerCAmelCase :Union[str, Any] = latents.detach() + grads * (sigma**2) _lowerCAmelCase :Dict = noise_pred_original else: _lowerCAmelCase :Optional[int] = noise_pred_original - torch.sqrt(_UpperCAmelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self: Optional[int] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[str] = None , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: Optional[int] = 512 , _UpperCAmelCase: float = 0.6 , _UpperCAmelCase: Optional[int] = 50 , _UpperCAmelCase: Optional[float] = 7.5 , _UpperCAmelCase: Optional[int] = 1 , _UpperCAmelCase: float = 0.0 , _UpperCAmelCase: Optional[float] = 100 , _UpperCAmelCase: Optional[torch.Generator] = None , _UpperCAmelCase: Optional[str] = "pil" , _UpperCAmelCase: bool = True , _UpperCAmelCase: float = 0.8 , _UpperCAmelCase: float = 0.1 , _UpperCAmelCase: float = 0.1 , ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size: raise ValueError(f"""You have passed {batch_size} batch_size, but only {len(_UpperCAmelCase )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(_UpperCAmelCase , torch.Generator ) and batch_size > 1: _lowerCAmelCase :int = [generator] + [None] * (batch_size - 1) _lowerCAmelCase :List[Any] = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] _lowerCAmelCase :Optional[int] = [x[0] for x in coca_is_none if x[1]] _lowerCAmelCase :List[str] = ', '.join(_UpperCAmelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(_UpperCAmelCase ): raise ValueError( f"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" f"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _lowerCAmelCase :List[Any] = self.get_image_description(_UpperCAmelCase ) if style_prompt is None: if len(_UpperCAmelCase ): raise ValueError( f"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" f""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) _lowerCAmelCase :Any = self.get_image_description(_UpperCAmelCase ) # get prompt text embeddings for content and style _lowerCAmelCase :Any = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :str = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase :int = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) _lowerCAmelCase :Union[str, Any] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _lowerCAmelCase :List[str] = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # duplicate text embeddings for each generation per prompt _lowerCAmelCase :str = text_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # set timesteps _lowerCAmelCase :Any = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _lowerCAmelCase :Dict = {} if accepts_offset: _lowerCAmelCase :Optional[int] = 1 self.scheduler.set_timesteps(_UpperCAmelCase , **_UpperCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.get_timesteps(_UpperCAmelCase , _UpperCAmelCase , self.device ) _lowerCAmelCase :int = timesteps[:1].repeat(_UpperCAmelCase ) # Preprocess image _lowerCAmelCase :Dict = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :int = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) _lowerCAmelCase :Any = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) _lowerCAmelCase :str = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if clip_guidance_scale > 0: _lowerCAmelCase :Optional[Any] = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Dict = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Any = slerp( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowerCAmelCase :int = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase :Optional[int] = content_text_input.input_ids.shape[-1] _lowerCAmelCase :Union[str, Any] = self.tokenizer([''] , padding='max_length' , max_length=_UpperCAmelCase , return_tensors='pt' ) _lowerCAmelCase :Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _lowerCAmelCase :Optional[int] = uncond_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCAmelCase :int = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowerCAmelCase :Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _lowerCAmelCase :Optional[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _lowerCAmelCase :Any = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device='cpu' , dtype=_UpperCAmelCase ).to( self.device ) else: _lowerCAmelCase :List[Any] = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) _lowerCAmelCase :int = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _lowerCAmelCase :Optional[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowerCAmelCase :Any = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _lowerCAmelCase :Any = {} if accepts_eta: _lowerCAmelCase :Any = eta # check if the scheduler accepts generator _lowerCAmelCase :List[Any] = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _lowerCAmelCase :List[Any] = generator with self.progress_bar(total=_UpperCAmelCase ): for i, t in enumerate(_UpperCAmelCase ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase :Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase :Tuple = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _lowerCAmelCase :Optional[Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase :List[str] = noise_pred.chunk(2 ) _lowerCAmelCase :Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _lowerCAmelCase :List[Any] = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _lowerCAmelCase , _lowerCAmelCase :List[str] = self.cond_fn( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase :str = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCAmelCase :str = 1 / 0.1_8_2_1_5 * latents _lowerCAmelCase :Any = self.vae.decode(_UpperCAmelCase ).sample _lowerCAmelCase :List[str] = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase :Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase :List[Any] = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=_UpperCAmelCase , nsfw_content_detected=_UpperCAmelCase )
687
1
from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCamelCase__ = {"tokenization_byt5": ["ByT5Tokenizer"]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
202
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def __A(lowerCAmelCase ) -> Optional[int]: """simple docstring""" return EnvironmentCommand() class lowerCAmelCase__ ( __lowercase ): @staticmethod def A_ ( a ) -> List[str]: '''simple docstring''' _UpperCamelCase = parser.add_parser("""env""" ) download_parser.set_defaults(func=a ) def A_ ( self ) -> List[str]: '''simple docstring''' _UpperCamelCase = huggingface_hub.__version__ _UpperCamelCase = """not installed""" _UpperCamelCase = """NA""" if is_torch_available(): import torch _UpperCamelCase = torch.__version__ _UpperCamelCase = torch.cuda.is_available() _UpperCamelCase = """not installed""" if is_transformers_available(): import transformers _UpperCamelCase = transformers.__version__ _UpperCamelCase = """not installed""" if is_accelerate_available(): import accelerate _UpperCamelCase = accelerate.__version__ _UpperCamelCase = """not installed""" if is_xformers_available(): import xformers _UpperCamelCase = xformers.__version__ _UpperCamelCase = { """`diffusers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """PyTorch version (GPU?)""": F'{pt_version} ({pt_cuda_available})', """Huggingface_hub version""": hub_version, """Transformers version""": transformers_version, """Accelerate version""": accelerate_version, """xFormers version""": xformers_version, """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(a ) ) return info @staticmethod def A_ ( a ) -> Dict: '''simple docstring''' return "\n".join([F'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
202
1
"""simple docstring""" import os import pytest from attr import dataclass __lowerCAmelCase : Optional[Any] ="""us-east-1""" # defaults region @dataclass class _A : snake_case__ : str snake_case__ : Union[str, Any] = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' snake_case__ : List[str] = { 'task_name': 'mnli', 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 500, 'save_steps': 5500, } snake_case__ : Optional[Any] = {**hyperparameters, 'max_steps': 1000} @property def A__ ( self ): """simple docstring""" if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def A__ ( self ): """simple docstring""" return f'{self.framework}-transfromers-test' @property def A__ ( self ): """simple docstring""" return f'./tests/sagemaker/scripts/{self.framework}' @property def A__ ( self ): """simple docstring""" if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="""class""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> Dict: '''simple docstring''' lowercase = SageMakerTestEnvironment(framework=request.cls.framework )
359
"""simple docstring""" import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __lowerCAmelCase : List[str] =[ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class _A ( unittest.TestCase ): def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None ): """simple docstring""" lowercase = None lowercase = os.path.abspath(os.path.join("""examples""" , """by_feature""" ) ) lowercase = os.path.abspath("""examples""" ) for item in os.listdir(__lowerCAmelCase ): if item not in EXCLUDE_EXAMPLES: lowercase = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) if os.path.isfile(__lowerCAmelCase ) and ".py" in item_path: with self.subTest( tested_script=__lowerCAmelCase , feature_script=__lowerCAmelCase , tested_section="""main()""" if parser_only else """training_function()""" , ): lowercase = compare_against_test( os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowercase = """\n""".join(__lowerCAmelCase ) if special_strings is not None: for string in special_strings: lowercase = diff.replace(__lowerCAmelCase , """""" ) self.assertEqual(__lowerCAmelCase , """""" ) def A__ ( self ): """simple docstring""" self.one_complete_example("""complete_nlp_example.py""" , __lowerCAmelCase ) self.one_complete_example("""complete_nlp_example.py""" , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = os.path.abspath(os.path.join("""examples""" , """cv_example.py""" ) ) lowercase = [ """ """ * 16 + """{\n\n""", """ """ * 20 + """\"accuracy\": eval_metric[\"accuracy\"],\n\n""", """ """ * 20 + """\"f1\": eval_metric[\"f1\"],\n\n""", """ """ * 20 + """\"train_loss\": total_loss.item() / len(train_dataloader),\n\n""", """ """ * 20 + """\"epoch\": epoch,\n\n""", """ """ * 16 + """},\n\n""", """ """ * 16 + """step=epoch,\n""", """ """ * 12, """ """ * 8 + """for step, batch in enumerate(active_dataloader):\n""", ] self.one_complete_example("""complete_cv_example.py""" , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) self.one_complete_example("""complete_cv_example.py""" , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) @mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '1'} ) class _A ( lowerCAmelCase ): snake_case__ : Any = False @classmethod def A__ ( cls ): """simple docstring""" super().setUpClass() lowercase = tempfile.mkdtemp() lowercase = os.path.join(cls._tmpdir , """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) lowercase = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def A__ ( cls ): """simple docstring""" super().tearDownClass() shutil.rmtree(cls._tmpdir ) def A__ ( self ): """simple docstring""" lowercase = f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """epoch_0""" ) ) ) def A__ ( self ): """simple docstring""" lowercase = f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '.split() lowercase = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """step_2""" ) ) ) def A__ ( self ): """simple docstring""" lowercase = f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )}\n '.split() lowercase = run_command(self._launch_args + testargs , return_stdout=__lowerCAmelCase ) self.assertNotIn("""epoch 0:""" , __lowerCAmelCase ) self.assertIn("""epoch 1:""" , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )}\n '.split() lowercase = run_command(self._launch_args + testargs , return_stdout=__lowerCAmelCase ) if torch.cuda.is_available(): lowercase = torch.cuda.device_count() else: lowercase = 1 if num_processes > 1: self.assertNotIn("""epoch 0:""" , __lowerCAmelCase ) self.assertIn("""epoch 1:""" , __lowerCAmelCase ) else: self.assertIn("""epoch 0:""" , __lowerCAmelCase ) self.assertIn("""epoch 1:""" , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = """ examples/by_feature/cross_validation.py --num_folds 2 """.split() with mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """0"""} ): lowercase = run_command(self._launch_args + testargs , return_stdout=__lowerCAmelCase ) lowercase = re.findall("""({.+})""" , __lowerCAmelCase ) lowercase = [r for r in results if """accuracy""" in r][-1] lowercase = ast.literal_eval(__lowerCAmelCase ) self.assertGreaterEqual(results["""accuracy"""] , 0.7_5 ) def A__ ( self ): """simple docstring""" lowercase = ["""examples/by_feature/multi_process_metrics.py"""] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def A__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: lowercase = f'\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__lowerCAmelCase , """tracking""" ) ) ) def A__ ( self ): """simple docstring""" lowercase = ["""examples/by_feature/gradient_accumulation.py"""] run_command(self._launch_args + testargs ) def A__ ( self ): """simple docstring""" lowercase = ["""examples/by_feature/local_sgd.py"""] run_command(self._launch_args + testargs )
359
1
"""simple docstring""" import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors lowerCAmelCase__ = load_file(UpperCAmelCase__ ) lowerCAmelCase__ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: lowerCAmelCase__ = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) lowerCAmelCase__ = pipeline.text_encoder else: lowerCAmelCase__ = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) lowerCAmelCase__ = pipeline.unet # find the target layer lowerCAmelCase__ = layer_infos.pop(0 ) while len(UpperCAmelCase__ ) > -1: try: lowerCAmelCase__ = curr_layer.__getattr__(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > 0: lowerCAmelCase__ = layer_infos.pop(0 ) elif len(UpperCAmelCase__ ) == 0: break except Exception: if len(UpperCAmelCase__ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: lowerCAmelCase__ = layer_infos.pop(0 ) lowerCAmelCase__ = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) ) pair_keys.append(UpperCAmelCase__ ) else: pair_keys.append(UpperCAmelCase__ ) pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: lowerCAmelCase__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) lowerCAmelCase__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(UpperCAmelCase__ , UpperCAmelCase__ ).unsqueeze(2 ).unsqueeze(3 ) else: lowerCAmelCase__ = state_dict[pair_keys[0]].to(torch.floataa ) lowerCAmelCase__ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(UpperCAmelCase__ , UpperCAmelCase__ ) # update visited list for item in pair_keys: visited.append(UpperCAmelCase__ ) return pipeline if __name__ == "__main__": __lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( "--base_model_path", default=None, type=str, required=True, help="Path to the base model in diffusers format." ) parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--lora_prefix_unet", default="lora_unet", type=str, help="The prefix of UNet weight in safetensors" ) parser.add_argument( "--lora_prefix_text_encoder", default="lora_te", type=str, help="The prefix of text encoder weight in safetensors", ) parser.add_argument("--alpha", default=0.75, type=float, help="The merging ratio in W = W0 + alpha * deltaW") parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not." ) parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") __lowerCAmelCase : List[str] = parser.parse_args() __lowerCAmelCase : Tuple = args.base_model_path __lowerCAmelCase : Dict = args.checkpoint_path __lowerCAmelCase : Union[str, Any] = args.dump_path __lowerCAmelCase : Dict = args.lora_prefix_unet __lowerCAmelCase : Tuple = args.lora_prefix_text_encoder __lowerCAmelCase : List[str] = args.alpha __lowerCAmelCase : Dict = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) __lowerCAmelCase : str = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
708
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a_ : def __init__( self : Optional[int] ): lowerCAmelCase__ = """""" lowerCAmelCase__ = """""" lowerCAmelCase__ = [] lowerCAmelCase__ = 0 lowerCAmelCase__ = 256 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Union[str, Any] ): lowerCAmelCase__ = cva.imread(snake_case__ , 0 ) lowerCAmelCase__ = copy.deepcopy(self.img ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label="""x""" ) lowerCAmelCase__ = np.sum(snake_case__ ) for i in range(len(snake_case__ ) ): lowerCAmelCase__ = x[i] / self.k self.sk += prk lowerCAmelCase__ = (self.L - 1) * self.sk if self.rem != 0: lowerCAmelCase__ = int(last % last ) lowerCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(snake_case__ ) lowerCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size ) lowerCAmelCase__ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowerCAmelCase__ = self.img[j][i] if num != self.last_list[num]: lowerCAmelCase__ = self.last_list[num] cva.imwrite("""output_data/output.jpg""" , self.img ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): plt.hist(self.img.ravel() , 256 , [0, 256] ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): cva.imshow("""Output-Image""" , self.img ) cva.imshow("""Input-Image""" , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": __lowerCAmelCase : Dict = os.path.join(os.path.basename(__file__), "image_data/input.jpg") __lowerCAmelCase : Optional[int] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
674
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = 42 A_ = 42 A_ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
23
"""simple docstring""" from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _snake_case = ["text", "image", "audio"] def snake_case ( _a: List[str] )-> List[str]: '''simple docstring''' lowerCamelCase__ = [] for input_type in input_types: if input_type == "text": inputs.append('Text input' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(_a , _a ): inputs.append(create_inputs(_a ) ) else: raise ValueError(F'Invalid type requested: {input_type}' ) return inputs def snake_case ( _a: List )-> Tuple: '''simple docstring''' lowerCamelCase__ = [] for output in outputs: if isinstance(_a , (str, AgentText) ): output_types.append('text' ) elif isinstance(_a , (Image.Image, AgentImage) ): output_types.append('image' ) elif isinstance(_a , (torch.Tensor, AgentAudio) ): output_types.append('audio' ) else: raise ValueError(F'Invalid output: {output}' ) return output_types @is_tool_test class _a : def _UpperCamelCase ( self : List[str] ): self.assertTrue(hasattr(self.tool , 'inputs' ) ) self.assertTrue(hasattr(self.tool , 'outputs' ) ) lowerCamelCase__ = self.tool.inputs for _input in inputs: if isinstance(_input , SCREAMING_SNAKE_CASE__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowerCamelCase__ = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ = create_inputs(self.tool.inputs ) lowerCamelCase__ = self.tool(*SCREAMING_SNAKE_CASE__ ) # There is a single output if len(self.tool.outputs ) == 1: lowerCamelCase__ = [outputs] self.assertListEqual(output_types(SCREAMING_SNAKE_CASE__ ) , self.tool.outputs ) def _UpperCamelCase ( self : str ): self.assertTrue(hasattr(self.tool , 'description' ) ) self.assertTrue(hasattr(self.tool , 'default_checkpoint' ) ) self.assertTrue(self.tool.description.startswith('This is a tool that' ) ) def _UpperCamelCase ( self : str ): lowerCamelCase__ = create_inputs(self.tool.inputs ) lowerCamelCase__ = self.tool(*SCREAMING_SNAKE_CASE__ ) if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = [outputs] self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(self.tool.outputs ) ) for output, output_type in zip(SCREAMING_SNAKE_CASE__ , self.tool.outputs ): lowerCamelCase__ = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( self : Optional[Any] ): lowerCamelCase__ = create_inputs(self.tool.inputs ) lowerCamelCase__ = [] for _input, input_type in zip(SCREAMING_SNAKE_CASE__ , self.tool.inputs ): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowerCamelCase__ = self.tool(*SCREAMING_SNAKE_CASE__ ) if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = [outputs] self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(self.tool.outputs ) )
510
0
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self :str): """simple docstring""" _lowercase =0 @slow def UpperCamelCase__ ( self :str): """simple docstring""" for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): _lowercase =AutoTokenizer.from_pretrained(snake_case) self.assertIsNotNone(snake_case) self.assertIsInstance(snake_case, (BertTokenizer, BertTokenizerFast)) self.assertGreater(len(snake_case), 0) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): _lowercase =AutoTokenizer.from_pretrained(snake_case) self.assertIsNotNone(snake_case) self.assertIsInstance(snake_case, (GPTaTokenizer, GPTaTokenizerFast)) self.assertGreater(len(snake_case), 0) def UpperCamelCase__ ( self :str): """simple docstring""" _lowercase =AutoTokenizer.from_pretrained(snake_case) self.assertIsInstance(snake_case, (BertTokenizer, BertTokenizerFast)) self.assertEqual(tokenizer.vocab_size, 12) def UpperCamelCase__ ( self :Tuple): """simple docstring""" _lowercase =AutoTokenizer.from_pretrained(snake_case) self.assertIsInstance(snake_case, (RobertaTokenizer, RobertaTokenizerFast)) self.assertEqual(tokenizer.vocab_size, 20) def UpperCamelCase__ ( self :Optional[int]): """simple docstring""" _lowercase =AutoConfig.from_pretrained(snake_case) self.assertIsInstance(snake_case, snake_case) # Check that tokenizer_type ≠ model_type _lowercase =AutoTokenizer.from_pretrained(snake_case, config=snake_case) self.assertIsInstance(snake_case, (BertTokenizer, BertTokenizerFast)) self.assertEqual(tokenizer.vocab_size, 12) def UpperCamelCase__ ( self :Tuple): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.txt', os.path.join(snake_case, 'vocab.txt')) _lowercase =AutoTokenizer.from_pretrained(snake_case, tokenizer_type='bert', use_fast=snake_case) self.assertIsInstance(snake_case, snake_case) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.json', os.path.join(snake_case, 'vocab.json')) shutil.copy('./tests/fixtures/merges.txt', os.path.join(snake_case, 'merges.txt')) _lowercase =AutoTokenizer.from_pretrained(snake_case, tokenizer_type='gpt2', use_fast=snake_case) self.assertIsInstance(snake_case, snake_case) @require_tokenizers def UpperCamelCase__ ( self :Any): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.txt', os.path.join(snake_case, 'vocab.txt')) _lowercase =AutoTokenizer.from_pretrained(snake_case, tokenizer_type='bert') self.assertIsInstance(snake_case, snake_case) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.json', os.path.join(snake_case, 'vocab.json')) shutil.copy('./tests/fixtures/merges.txt', os.path.join(snake_case, 'merges.txt')) _lowercase =AutoTokenizer.from_pretrained(snake_case, tokenizer_type='gpt2') self.assertIsInstance(snake_case, snake_case) def UpperCamelCase__ ( self :Tuple): """simple docstring""" with pytest.raises(snake_case): AutoTokenizer.from_pretrained('./', tokenizer_type='xxx') @require_tokenizers def UpperCamelCase__ ( self :Any): """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: _lowercase =tokenizer_class.from_pretrained('wietsedv/bert-base-dutch-cased') self.assertIsInstance(snake_case, (BertTokenizer, BertTokenizerFast)) if isinstance(snake_case, snake_case): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case, snake_case) else: self.assertEqual(tokenizer.do_lower_case, snake_case) self.assertEqual(tokenizer.model_max_length, 512) @require_tokenizers def UpperCamelCase__ ( self :int): """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( snake_case, 'julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier', ): _lowercase =tokenizer_class.from_pretrained('julien-c/herlolip-not-exists') def UpperCamelCase__ ( self :Optional[Any]): """simple docstring""" _lowercase =TOKENIZER_MAPPING.values() _lowercase =[] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(snake_case) @require_tokenizers def UpperCamelCase__ ( self :str): """simple docstring""" self.assertIsInstance(AutoTokenizer.from_pretrained('bert-base-cased', use_fast=snake_case), snake_case) self.assertIsInstance(AutoTokenizer.from_pretrained('bert-base-cased'), snake_case) @require_tokenizers def UpperCamelCase__ ( self :List[str]): """simple docstring""" _lowercase =AutoTokenizer.from_pretrained('distilbert-base-uncased', do_lower_case=snake_case) _lowercase ='Hello, world. How are you?' _lowercase =tokenizer.tokenize(snake_case) self.assertEqual('[UNK]', tokens[0]) _lowercase =AutoTokenizer.from_pretrained('microsoft/mpnet-base', do_lower_case=snake_case) _lowercase =tokenizer.tokenize(snake_case) self.assertEqual('[UNK]', tokens[0]) @require_tokenizers def UpperCamelCase__ ( self :str): """simple docstring""" _lowercase =AutoTokenizer.from_pretrained('robot-test/dummy-tokenizer-fast-with-model-config') self.assertEqual(type(snake_case), snake_case) self.assertEqual(tokenizer.model_max_length, 512) self.assertEqual(tokenizer.vocab_size, 3_0000) self.assertEqual(tokenizer.unk_token, '[UNK]') self.assertEqual(tokenizer.padding_side, 'right') self.assertEqual(tokenizer.truncation_side, 'right') def UpperCamelCase__ ( self :List[Any]): """simple docstring""" _lowercase =AutoTokenizer.from_pretrained(snake_case) self.assertIsInstance(snake_case, (BertTokenizer, BertTokenizerFast)) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case) _lowercase =AutoTokenizer.from_pretrained(snake_case) self.assertIsInstance(snake_case, tokenizer.__class__) self.assertEqual(tokenizera.vocab_size, 12) def UpperCamelCase__ ( self :Union[str, Any]): """simple docstring""" _lowercase =AutoTokenizer.from_pretrained('ctrl') # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(snake_case, snake_case) def UpperCamelCase__ ( self :Optional[Any]): """simple docstring""" _lowercase =get_tokenizer_config('bert-base-cased') _lowercase =config.pop('_commit_hash', snake_case) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(snake_case, {'do_lower_case': False}) # This model does not have a tokenizer_config so we get back an empty dict. _lowercase =get_tokenizer_config(snake_case) self.assertDictEqual(snake_case, {}) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. _lowercase =AutoTokenizer.from_pretrained(snake_case) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case) _lowercase =get_tokenizer_config(snake_case) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['tokenizer_class'], 'BertTokenizer') def UpperCamelCase__ ( self :str): """simple docstring""" try: AutoConfig.register('custom', snake_case) AutoTokenizer.register(snake_case, slow_tokenizer_class=snake_case) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case): AutoTokenizer.register(snake_case, slow_tokenizer_class=snake_case) _lowercase =CustomTokenizer.from_pretrained(snake_case) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case) _lowercase =AutoTokenizer.from_pretrained(snake_case) self.assertIsInstance(snake_case, snake_case) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def UpperCamelCase__ ( self :Any): """simple docstring""" try: AutoConfig.register('custom', snake_case) # Can register in two steps AutoTokenizer.register(snake_case, slow_tokenizer_class=snake_case) self.assertEqual(TOKENIZER_MAPPING[CustomConfig], (CustomTokenizer, None)) AutoTokenizer.register(snake_case, fast_tokenizer_class=snake_case) self.assertEqual(TOKENIZER_MAPPING[CustomConfig], (CustomTokenizer, CustomTokenizerFast)) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( snake_case, slow_tokenizer_class=snake_case, fast_tokenizer_class=snake_case) self.assertEqual(TOKENIZER_MAPPING[CustomConfig], (CustomTokenizer, CustomTokenizerFast)) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case): AutoTokenizer.register(snake_case, fast_tokenizer_class=snake_case) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: _lowercase =BertTokenizerFast.from_pretrained(snake_case) bert_tokenizer.save_pretrained(snake_case) _lowercase =CustomTokenizerFast.from_pretrained(snake_case) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case) _lowercase =AutoTokenizer.from_pretrained(snake_case) self.assertIsInstance(snake_case, snake_case) _lowercase =AutoTokenizer.from_pretrained(snake_case, use_fast=snake_case) self.assertIsInstance(snake_case, snake_case) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def UpperCamelCase__ ( self :Union[str, Any]): """simple docstring""" with self.assertRaises(snake_case): _lowercase =AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer') # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case): _lowercase =AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer', trust_remote_code=snake_case) _lowercase =AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer', trust_remote_code=snake_case) self.assertTrue(tokenizer.special_attribute_present) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case) _lowercase =AutoTokenizer.from_pretrained(snake_case, trust_remote_code=snake_case) self.assertTrue(reloaded_tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__, 'NewTokenizerFast') self.assertEqual(reloaded_tokenizer.__class__.__name__, 'NewTokenizerFast') # Test we can also load the slow version _lowercase =AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer', trust_remote_code=snake_case, use_fast=snake_case) self.assertTrue(tokenizer.special_attribute_present) self.assertEqual(tokenizer.__class__.__name__, 'NewTokenizer') # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case) _lowercase =AutoTokenizer.from_pretrained(snake_case, trust_remote_code=snake_case, use_fast=snake_case) self.assertEqual(reloaded_tokenizer.__class__.__name__, 'NewTokenizer') self.assertTrue(reloaded_tokenizer.special_attribute_present) else: self.assertEqual(tokenizer.__class__.__name__, 'NewTokenizer') self.assertEqual(reloaded_tokenizer.__class__.__name__, 'NewTokenizer') @require_tokenizers def UpperCamelCase__ ( self :str): """simple docstring""" class SCREAMING_SNAKE_CASE_ ( _a ): """simple docstring""" __lowerCAmelCase : str =False class SCREAMING_SNAKE_CASE_ ( _a ): """simple docstring""" __lowerCAmelCase : Tuple =NewTokenizer __lowerCAmelCase : Union[str, Any] =False try: AutoConfig.register('custom', snake_case) AutoTokenizer.register(snake_case, slow_tokenizer_class=snake_case) AutoTokenizer.register(snake_case, fast_tokenizer_class=snake_case) # If remote code is not set, the default is to use local _lowercase =AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer') self.assertEqual(tokenizer.__class__.__name__, 'NewTokenizerFast') self.assertFalse(tokenizer.special_attribute_present) _lowercase =AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer', use_fast=snake_case) self.assertEqual(tokenizer.__class__.__name__, 'NewTokenizer') self.assertFalse(tokenizer.special_attribute_present) # If remote code is disabled, we load the local one. _lowercase =AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer', trust_remote_code=snake_case) self.assertEqual(tokenizer.__class__.__name__, 'NewTokenizerFast') self.assertFalse(tokenizer.special_attribute_present) _lowercase =AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer', trust_remote_code=snake_case, use_fast=snake_case) self.assertEqual(tokenizer.__class__.__name__, 'NewTokenizer') self.assertFalse(tokenizer.special_attribute_present) # If remote is enabled, we load from the Hub _lowercase =AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer', trust_remote_code=snake_case) self.assertEqual(tokenizer.__class__.__name__, 'NewTokenizerFast') self.assertTrue(tokenizer.special_attribute_present) _lowercase =AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer', trust_remote_code=snake_case, use_fast=snake_case) self.assertEqual(tokenizer.__class__.__name__, 'NewTokenizer') self.assertTrue(tokenizer.special_attribute_present) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def UpperCamelCase__ ( self :List[Any]): """simple docstring""" _lowercase =AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer_legacy', trust_remote_code=snake_case) self.assertTrue(tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__, 'NewTokenizerFast') # Test we can also load the slow version _lowercase =AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer_legacy', trust_remote_code=snake_case, use_fast=snake_case) self.assertTrue(tokenizer.special_attribute_present) self.assertEqual(tokenizer.__class__.__name__, 'NewTokenizer') else: self.assertEqual(tokenizer.__class__.__name__, 'NewTokenizer') def UpperCamelCase__ ( self :str): """simple docstring""" with self.assertRaisesRegex( snake_case, 'bert-base is not a local folder and is not a valid model identifier'): _lowercase =AutoTokenizer.from_pretrained('bert-base') def UpperCamelCase__ ( self :Union[str, Any]): """simple docstring""" with self.assertRaisesRegex( snake_case, r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'): _lowercase =AutoTokenizer.from_pretrained(snake_case, revision='aaaaaa') def UpperCamelCase__ ( self :int): """simple docstring""" _lowercase =AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert') with RequestCounter() as counter: _lowercase =AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert') self.assertEqual(counter.get_request_count, 0) self.assertEqual(counter.head_request_count, 1) self.assertEqual(counter.other_request_count, 0)
557
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _SCREAMING_SNAKE_CASE = 2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _SCREAMING_SNAKE_CASE = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _SCREAMING_SNAKE_CASE = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def _snake_case (_snake_case : str , _snake_case : str) -> tuple[str, float]: _lowercase =len([g for position, g in enumerate(_snake_case) if g == main_target[position]]) return (item, float(_snake_case)) def _snake_case (_snake_case : str , _snake_case : str) -> tuple[str, str]: _lowercase =random.randint(0 , len(_snake_case) - 1) _lowercase =parent_a[:random_slice] + parent_a[random_slice:] _lowercase =parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _snake_case (_snake_case : str , _snake_case : list[str]) -> str: _lowercase =list(_snake_case) if random.uniform(0 , 1) < MUTATION_PROBABILITY: _lowercase =random.choice(_snake_case) return "".join(_snake_case) def _snake_case (_snake_case : tuple[str, float] , _snake_case : list[tuple[str, float]] , _snake_case : list[str] , ) -> list[str]: _lowercase =[] # Generate more children proportionally to the fitness score. _lowercase =int(parent_a[1] * 100) + 1 _lowercase =10 if child_n >= 10 else child_n for _ in range(_snake_case): _lowercase =population_score[random.randint(0 , _snake_case)][0] _lowercase , _lowercase =crossover(parent_a[0] , _snake_case) # Append new string to the population list. pop.append(mutate(_snake_case , _snake_case)) pop.append(mutate(_snake_case , _snake_case)) return pop def _snake_case (_snake_case : str , _snake_case : list[str] , _snake_case : bool = True) -> tuple[int, int, str]: # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: _lowercase =f'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(_snake_case) # Verify that the target contains no genes besides the ones inside genes variable. _lowercase =sorted({c for c in target if c not in genes}) if not_in_genes_list: _lowercase =f'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(_snake_case) # Generate random starting population. _lowercase =[] for _ in range(_snake_case): population.append(''.join([random.choice(_snake_case) for i in range(len(_snake_case))])) # Just some logs to know what the algorithms is doing. _lowercase , _lowercase =0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_snake_case) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _lowercase =[evaluate(_snake_case , _snake_case) for item in population] # Check if there is a matching evolution. _lowercase =sorted(_snake_case , key=lambda _snake_case: x[1] , reverse=_snake_case) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f'''\nGeneration: {generation}''' f'''\nTotal Population:{total_population}''' f'''\nBest score: {population_score[0][1]}''' f'''\nBest string: {population_score[0][0]}''') # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _lowercase =population[: int(N_POPULATION / 3)] population.clear() population.extend(_snake_case) # Normalize population score to be between 0 and 1. _lowercase =[ (item, score / len(_snake_case)) for item, score in population_score ] # This is selection for i in range(_snake_case): population.extend(select(population_score[int(_snake_case)] , _snake_case , _snake_case)) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_snake_case) > N_POPULATION: break if __name__ == "__main__": _SCREAMING_SNAKE_CASE = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) _SCREAMING_SNAKE_CASE = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = basic(target_str, genes_list) print( f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
557
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor UpperCamelCase_ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( lowercase__ ): def __init__( self : Dict , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : int ): '''simple docstring''' warnings.warn( '''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PerceiverImageProcessor instead.''' , __A , ) super().__init__(*__A , **__A )
92
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : List[Any] ) -> Dict: assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def SCREAMING_SNAKE_CASE_ ( ) -> Union[str, Any]: assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def SCREAMING_SNAKE_CASE_ ( ) -> Dict: SCREAMING_SNAKE_CASE_ : Optional[Any] ='''mock-s3-bucket''' SCREAMING_SNAKE_CASE_ : Any =f's3://{mock_bucket}' SCREAMING_SNAKE_CASE_ : Dict =extract_path_from_uri(UpperCAmelCase_ ) assert dataset_path.startswith('''s3://''' ) is False SCREAMING_SNAKE_CASE_ : Dict ='''./local/path''' SCREAMING_SNAKE_CASE_ : str =extract_path_from_uri(UpperCAmelCase_ ) assert dataset_path == new_dataset_path def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Union[str, Any] ) -> List[str]: SCREAMING_SNAKE_CASE_ : Union[str, Any] =is_remote_filesystem(UpperCAmelCase_ ) assert is_remote is True SCREAMING_SNAKE_CASE_ : Dict =fsspec.filesystem('''file''' ) SCREAMING_SNAKE_CASE_ : Optional[int] =is_remote_filesystem(UpperCAmelCase_ ) assert is_remote is False @pytest.mark.parametrize('''compression_fs_class''' , UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Any ) -> List[Any]: SCREAMING_SNAKE_CASE_ : str ={'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} SCREAMING_SNAKE_CASE_ : List[Any] =input_paths[compression_fs_class.protocol] if input_path is None: SCREAMING_SNAKE_CASE_ : List[str] =f'for \'{compression_fs_class.protocol}\' compression protocol, ' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =fsspec.filesystem(compression_fs_class.protocol , fo=UpperCAmelCase_ ) assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ : str =os.path.basename(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] =expected_filename[: expected_filename.rindex('''.''' )] assert fs.glob('''*''' ) == [expected_filename] with fs.open(UpperCAmelCase_ , '''r''' , encoding='''utf-8''' ) as f, open(UpperCAmelCase_ , encoding='''utf-8''' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] ) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str ) -> Any: SCREAMING_SNAKE_CASE_ : Tuple ={'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} SCREAMING_SNAKE_CASE_ : List[Any] =compressed_file_paths[protocol] SCREAMING_SNAKE_CASE_ : str ='''dataset.jsonl''' SCREAMING_SNAKE_CASE_ : Dict =f'{protocol}://{member_file_path}::{compressed_file_path}' SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ : Dict =fsspec.get_fs_token_paths(UpperCAmelCase_ ) assert fs.isfile(UpperCAmelCase_ ) assert not fs.isfile('''non_existing_''' + member_file_path ) @pytest.mark.integration def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int ) -> int: SCREAMING_SNAKE_CASE_ : Dict =hf_api.dataset_info(UpperCAmelCase_ , token=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] =HfFileSystem(repo_info=UpperCAmelCase_ , token=UpperCAmelCase_ ) assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"] assert hffs.isdir('''data''' ) assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' ) with open(UpperCAmelCase_ ) as f: assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read() def SCREAMING_SNAKE_CASE_ ( ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ : Tuple ='''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(UpperCAmelCase_ , UpperCAmelCase_ , clobber=UpperCAmelCase_ ) with pytest.warns(UpperCAmelCase_ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(UpperCAmelCase_ ) == 1 assert ( str(warning_info[0].message ) == f'A filesystem protocol was already set for {protocol} and will be overwritten.' )
443
0
'''simple docstring''' from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase__ = 16 , lowerCamelCase__ = 88 , lowerCamelCase__ = None , lowerCamelCase__ = 1 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = 32 , lowerCamelCase__ = None , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "geglu" , lowerCamelCase__ = None , ) -> int: '''simple docstring''' super().__init__() __lowerCamelCase = nn.ModuleList( [ TransformeraDModel( num_attention_heads=lowerCamelCase__ , attention_head_dim=lowerCamelCase__ , in_channels=lowerCamelCase__ , num_layers=lowerCamelCase__ , dropout=lowerCamelCase__ , norm_num_groups=lowerCamelCase__ , cross_attention_dim=lowerCamelCase__ , attention_bias=lowerCamelCase__ , sample_size=lowerCamelCase__ , num_vector_embeds=lowerCamelCase__ , activation_fn=lowerCamelCase__ , num_embeds_ada_norm=lowerCamelCase__ , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference __lowerCamelCase = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` __lowerCamelCase = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` __lowerCamelCase = [1, 0] def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__ = True , ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = hidden_states __lowerCamelCase = [] __lowerCamelCase = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens __lowerCamelCase = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] __lowerCamelCase = self.transformer_index_for_condition[i] __lowerCamelCase = self.transformers[transformer_index]( lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , timestep=lowerCamelCase__ , cross_attention_kwargs=lowerCamelCase__ , return_dict=lowerCamelCase__ , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] __lowerCamelCase = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) __lowerCamelCase = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=lowerCamelCase__ )
715
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __A = "." # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) __A = [ "Assert", "AssignVariableOp", "EmptyTensorList", "MergeV2Checkpoints", "ReadVariableOp", "ResourceGather", "RestoreV2", "SaveV2", "ShardedFilename", "StatefulPartitionedCall", "StaticRegexFullMatch", "VarHandleOp", ] def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] ) -> int: """simple docstring""" __lowerCamelCase = SavedModel() __lowerCamelCase = [] with open(os.path.join(UpperCamelCase__ , 'utils' , 'tf_ops' , 'onnx.json' ) ) as f: __lowerCamelCase = json.load(UpperCamelCase__ )['opsets'] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(UpperCamelCase__ )] ) with open(UpperCamelCase__ , 'rb' ) as f: saved_model.ParseFromString(f.read() ) __lowerCamelCase = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want __lowerCamelCase = sorted(UpperCamelCase__ ) __lowerCamelCase = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(UpperCamelCase__ ) if strict and len(UpperCamelCase__ ) > 0: raise Exception(F"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(UpperCamelCase__ ) > 0: print(F"""Found the following incompatible ops for the opset {opset}:""" ) print(*UpperCamelCase__ , sep='\n' ) else: print(F"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).") parser.add_argument( "--opset", default=12, type=int, help="The ONNX opset against which the model has to be tested." ) parser.add_argument( "--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model." ) parser.add_argument( "--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)" ) __A = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
167
0
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase_ ( lowercase_ ): """simple docstring""" def __init__( self : Dict , _a : TransformeraDModel , _a : AutoencoderKL , _a : KarrasDiffusionSchedulers , _a : Optional[Dict[int, str]] = None , ) -> Tuple: super().__init__() self.register_modules(transformer=_lowercase , vae=_lowercase , scheduler=_lowercase ) # create a imagenet -> id dictionary for easier use __lowerCamelCase : List[Any] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(',' ): __lowerCamelCase : Optional[int] = int(_lowercase ) __lowerCamelCase : List[Any] = dict(sorted(self.labels.items() ) ) def _lowercase ( self : Optional[int] , _a : Union[str, List[str]] ) -> Any: if not isinstance(_lowercase , _lowercase ): __lowerCamelCase : Any = list(_lowercase ) for l in label: if l not in self.labels: raise ValueError( f'{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : Optional[Any] , _a : List[int] , _a : float = 4.0 , _a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _a : int = 50 , _a : Optional[str] = "pil" , _a : bool = True , ) -> List[Any]: __lowerCamelCase : Optional[Any] = len(_lowercase ) __lowerCamelCase : Union[str, Any] = self.transformer.config.sample_size __lowerCamelCase : List[Any] = self.transformer.config.in_channels __lowerCamelCase : Optional[Any] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=_lowercase , device=self.device , dtype=self.transformer.dtype , ) __lowerCamelCase : List[Any] = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents __lowerCamelCase : Tuple = torch.tensor(_lowercase , device=self.device ).reshape(-1 ) __lowerCamelCase : Tuple = torch.tensor([1000] * batch_size , device=self.device ) __lowerCamelCase : Optional[Any] = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(_lowercase ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: __lowerCamelCase : Tuple = latent_model_input[: len(_lowercase ) // 2] __lowerCamelCase : List[str] = torch.cat([half, half] , dim=0 ) __lowerCamelCase : Any = self.scheduler.scale_model_input(_lowercase , _lowercase ) __lowerCamelCase : List[str] = t if not torch.is_tensor(_lowercase ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __lowerCamelCase : int = latent_model_input.device.type == 'mps' if isinstance(_lowercase , _lowercase ): __lowerCamelCase : Optional[Any] = torch.floataa if is_mps else torch.floataa else: __lowerCamelCase : Tuple = torch.intaa if is_mps else torch.intaa __lowerCamelCase : Optional[Any] = torch.tensor([timesteps] , dtype=_lowercase , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: __lowerCamelCase : Union[str, Any] = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __lowerCamelCase : List[Any] = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output __lowerCamelCase : Tuple = self.transformer( _lowercase , timestep=_lowercase , class_labels=_lowercase ).sample # perform guidance if guidance_scale > 1: __lowerCamelCase ,__lowerCamelCase : List[Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __lowerCamelCase ,__lowerCamelCase : Any = torch.split(_lowercase , len(_lowercase ) // 2 , dim=0 ) __lowerCamelCase : int = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __lowerCamelCase : str = torch.cat([half_eps, half_eps] , dim=0 ) __lowerCamelCase : Any = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __lowerCamelCase ,__lowerCamelCase : Optional[Any] = torch.split(_lowercase , _lowercase , dim=1 ) else: __lowerCamelCase : Union[str, Any] = noise_pred # compute previous image: x_t -> x_t-1 __lowerCamelCase : Tuple = self.scheduler.step(_lowercase , _lowercase , _lowercase ).prev_sample if guidance_scale > 1: __lowerCamelCase ,__lowerCamelCase : Union[str, Any] = latent_model_input.chunk(2 , dim=0 ) else: __lowerCamelCase : Union[str, Any] = latent_model_input __lowerCamelCase : Any = 1 / self.vae.config.scaling_factor * latents __lowerCamelCase : str = self.vae.decode(_lowercase ).sample __lowerCamelCase : str = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __lowerCamelCase : str = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __lowerCamelCase : int = self.numpy_to_pil(_lowercase ) if not return_dict: return (samples,) return ImagePipelineOutput(images=_lowercase )
459
import math import random def _A ( __magic_name__ , __magic_name__ = False ): if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value _snake_case = 0.02 def _A ( __magic_name__ , __magic_name__ ): lowercase__ = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(__magic_name__ ): # Forward propagation lowercase__ = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? lowercase__ = (expected / 100) - layer_a # Error delta lowercase__ = layer_1_error * sigmoid_function(__magic_name__ , __magic_name__ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() _snake_case = int(input("""Expected value: """)) _snake_case = int(input("""Number of propagations: """)) print(forward_propagation(expected, number_propagations))
655
0
"""simple docstring""" from typing import Any class lowercase__: '''simple docstring''' def __init__( self :List[str] , lowerCamelCase_ :Any ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = data SCREAMING_SNAKE_CASE : Dict = None class lowercase__: '''simple docstring''' def __init__( self :Optional[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = None def __lowerCAmelCase ( self :Tuple ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.head while temp is not None: print(temp.data , end=''' ''' ) SCREAMING_SNAKE_CASE : Dict = temp.next print() def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :Any ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = Node(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = self.head SCREAMING_SNAKE_CASE : Optional[Any] = new_node def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[Any] ) -> Any: '''simple docstring''' if node_data_a == node_data_a: return else: SCREAMING_SNAKE_CASE : Dict = self.head while node_a is not None and node_a.data != node_data_a: SCREAMING_SNAKE_CASE : Optional[Any] = node_a.next SCREAMING_SNAKE_CASE : Optional[Any] = self.head while node_a is not None and node_a.data != node_data_a: SCREAMING_SNAKE_CASE : Optional[Any] = node_a.next if node_a is None or node_a is None: return SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = node_a.data, node_a.data if __name__ == "__main__": lowerCamelCase__ : Tuple = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("After swapping") ll.print_list()
18
"""simple docstring""" from sklearn.metrics import fa_score import datasets lowerCamelCase__ : List[Any] = "\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n" lowerCamelCase__ : str = "\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n\n - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {'f1': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results['f1'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results['f1'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results['f1'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'f1': array([0.8, 0. , 0. ])}\n" lowerCamelCase__ : int = "\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__( datasets.Metric ): '''simple docstring''' def __lowerCAmelCase ( self :str ) -> Any: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , ) def __lowerCAmelCase ( self :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :int=None , lowerCamelCase_ :str=1 , lowerCamelCase_ :Union[str, Any]="binary" , lowerCamelCase_ :Dict=None ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : int = fa_score( lowerCamelCase_ , lowerCamelCase_ , labels=lowerCamelCase_ , pos_label=lowerCamelCase_ , average=lowerCamelCase_ , sample_weight=lowerCamelCase_ ) return {"f1": float(lowerCamelCase_ ) if score.size == 1 else score}
18
1
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
201
from PIL import Image def a ( a ) ->Image: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image.size SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = image.load() for i in range(a ): for j in range(a ): SCREAMING_SNAKE_CASE = pixels[j, i] mean += pixel mean //= width * height for j in range(a ): for i in range(a ): SCREAMING_SNAKE_CASE = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": __lowerCAmelCase = mean_threshold(Image.open('path_to_image').convert('L')) image.save('output_image_path')
201
1
"""simple docstring""" # # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def _UpperCamelCase ( *UpperCamelCase ) -> Optional[int]: """simple docstring""" with open(UpperCamelCase , "r" ) as fh: fcntl.flock(UpperCamelCase , fcntl.LOCK_EX ) try: print(*UpperCamelCase ) finally: fcntl.flock(UpperCamelCase , fcntl.LOCK_UN ) A = int(os.environ["""LOCAL_RANK"""]) torch.cuda.set_device(local_rank) A = torch.device("""cuda""", local_rank) A = socket.gethostname() A = f'''[{hostname}-{local_rank}]''' try: # test distributed dist.init_process_group("""nccl""") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank A = dist.get_rank() A = dist.get_world_size() printflock(f'''{gpu} is OK (global rank: {rank}/{world_size})''') dist.barrier() if rank == 0: printflock(f'''pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}''') except Exception: printflock(f'''{gpu} is broken''') raise
487
"""simple docstring""" import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a__ ( __magic_name__ , unittest.TestCase ): lowercase_ = ConsistencyModelPipeline lowercase_ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowercase_ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt lowercase_ = frozenset( [ "num_inference_steps", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) @property def a_ ( self : Optional[Any]): """simple docstring""" __UpperCAmelCase : Union[str, Any] = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" , subfolder="test_unet" , ) return unet @property def a_ ( self : List[Any]): """simple docstring""" __UpperCAmelCase : Dict = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" , subfolder="test_unet_class_cond" , ) return unet def a_ ( self : Any , UpperCamelCase_ : int=False): """simple docstring""" if class_cond: __UpperCAmelCase : List[Any] = self.dummy_cond_unet else: __UpperCAmelCase : Optional[int] = self.dummy_uncond_unet # Default to CM multistep sampler __UpperCAmelCase : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __UpperCAmelCase : Optional[int] = { "unet": unet, "scheduler": scheduler, } return components def a_ ( self : List[str] , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any]=0): """simple docstring""" if str(UpperCamelCase_).startswith("mps"): __UpperCAmelCase : str = torch.manual_seed(UpperCamelCase_) else: __UpperCAmelCase : Optional[Any] = torch.Generator(device=UpperCamelCase_).manual_seed(UpperCamelCase_) __UpperCAmelCase : List[Any] = { "batch_size": 1, "num_inference_steps": None, "timesteps": [22, 0], "generator": generator, "output_type": "np", } return inputs def a_ ( self : int): """simple docstring""" __UpperCAmelCase : Union[str, Any] = "cpu" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : Union[str, Any] = self.get_dummy_components() __UpperCAmelCase : str = ConsistencyModelPipeline(**UpperCamelCase_) __UpperCAmelCase : Any = pipe.to(UpperCamelCase_) pipe.set_progress_bar_config(disable=UpperCamelCase_) __UpperCAmelCase : Any = self.get_dummy_inputs(UpperCamelCase_) __UpperCAmelCase : str = pipe(**UpperCamelCase_).images assert image.shape == (1, 32, 32, 3) __UpperCAmelCase : Dict = image[0, -3:, -3:, -1] __UpperCAmelCase : List[Any] = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def a_ ( self : Optional[int]): """simple docstring""" __UpperCAmelCase : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : Optional[int] = self.get_dummy_components(class_cond=UpperCamelCase_) __UpperCAmelCase : Optional[Any] = ConsistencyModelPipeline(**UpperCamelCase_) __UpperCAmelCase : str = pipe.to(UpperCamelCase_) pipe.set_progress_bar_config(disable=UpperCamelCase_) __UpperCAmelCase : Tuple = self.get_dummy_inputs(UpperCamelCase_) __UpperCAmelCase : Dict = 0 __UpperCAmelCase : int = pipe(**UpperCamelCase_).images assert image.shape == (1, 32, 32, 3) __UpperCAmelCase : Any = image[0, -3:, -3:, -1] __UpperCAmelCase : List[Any] = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def a_ ( self : Optional[Any]): """simple docstring""" __UpperCAmelCase : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : Optional[int] = self.get_dummy_components() __UpperCAmelCase : Optional[Any] = ConsistencyModelPipeline(**UpperCamelCase_) __UpperCAmelCase : Optional[Any] = pipe.to(UpperCamelCase_) pipe.set_progress_bar_config(disable=UpperCamelCase_) __UpperCAmelCase : List[str] = self.get_dummy_inputs(UpperCamelCase_) __UpperCAmelCase : Dict = 1 __UpperCAmelCase : int = None __UpperCAmelCase : List[Any] = pipe(**UpperCamelCase_).images assert image.shape == (1, 32, 32, 3) __UpperCAmelCase : Tuple = image[0, -3:, -3:, -1] __UpperCAmelCase : Union[str, Any] = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def a_ ( self : List[str]): """simple docstring""" __UpperCAmelCase : Dict = "cpu" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : List[str] = self.get_dummy_components(class_cond=UpperCamelCase_) __UpperCAmelCase : Tuple = ConsistencyModelPipeline(**UpperCamelCase_) __UpperCAmelCase : int = pipe.to(UpperCamelCase_) pipe.set_progress_bar_config(disable=UpperCamelCase_) __UpperCAmelCase : Tuple = self.get_dummy_inputs(UpperCamelCase_) __UpperCAmelCase : Optional[int] = 1 __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Tuple = 0 __UpperCAmelCase : Tuple = pipe(**UpperCamelCase_).images assert image.shape == (1, 32, 32, 3) __UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] __UpperCAmelCase : Dict = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 @slow @require_torch_gpu class a__ ( unittest.TestCase ): def a_ ( self : Optional[int]): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self : Union[str, Any] , UpperCamelCase_ : Optional[int]=0 , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : int="cpu" , UpperCamelCase_ : Any=torch.floataa , UpperCamelCase_ : List[str]=(1, 3, 64, 64)): """simple docstring""" __UpperCAmelCase : Optional[int] = torch.manual_seed(UpperCamelCase_) __UpperCAmelCase : int = { "num_inference_steps": None, "timesteps": [22, 0], "class_labels": 0, "generator": generator, "output_type": "np", } if get_fixed_latents: __UpperCAmelCase : int = self.get_fixed_latents(seed=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ , shape=UpperCamelCase_) __UpperCAmelCase : Optional[int] = latents return inputs def a_ ( self : Union[str, Any] , UpperCamelCase_ : int=0 , UpperCamelCase_ : Tuple="cpu" , UpperCamelCase_ : Tuple=torch.floataa , UpperCamelCase_ : Optional[Any]=(1, 3, 64, 64)): """simple docstring""" if type(UpperCamelCase_) == str: __UpperCAmelCase : Union[str, Any] = torch.device(UpperCamelCase_) __UpperCAmelCase : Union[str, Any] = torch.Generator(device=UpperCamelCase_).manual_seed(UpperCamelCase_) __UpperCAmelCase : Optional[int] = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_) return latents def a_ ( self : List[Any]): """simple docstring""" __UpperCAmelCase : Optional[int] = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2") __UpperCAmelCase : Dict = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __UpperCAmelCase : Dict = ConsistencyModelPipeline(unet=UpperCamelCase_ , scheduler=UpperCamelCase_) pipe.to(torch_device=UpperCamelCase_) pipe.set_progress_bar_config(disable=UpperCamelCase_) __UpperCAmelCase : Dict = self.get_inputs() __UpperCAmelCase : List[str] = pipe(**UpperCamelCase_).images assert image.shape == (1, 64, 64, 3) __UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] __UpperCAmelCase : Union[str, Any] = np.array([0.0888, 0.0881, 0.0666, 0.0479, 0.0292, 0.0195, 0.0201, 0.0163, 0.0254]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : List[str] = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2") __UpperCAmelCase : Optional[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __UpperCAmelCase : Any = ConsistencyModelPipeline(unet=UpperCamelCase_ , scheduler=UpperCamelCase_) pipe.to(torch_device=UpperCamelCase_) pipe.set_progress_bar_config(disable=UpperCamelCase_) __UpperCAmelCase : int = self.get_inputs() __UpperCAmelCase : str = 1 __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : Tuple = pipe(**UpperCamelCase_).images assert image.shape == (1, 64, 64, 3) __UpperCAmelCase : str = image[0, -3:, -3:, -1] __UpperCAmelCase : Union[str, Any] = np.array([0.0340, 0.0152, 0.0063, 0.0267, 0.0221, 0.0107, 0.0416, 0.0186, 0.0217]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 @require_torch_a def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : int = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2") __UpperCAmelCase : Optional[int] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __UpperCAmelCase : int = ConsistencyModelPipeline(unet=UpperCamelCase_ , scheduler=UpperCamelCase_) pipe.to(torch_device=UpperCamelCase_ , torch_dtype=torch.floataa) pipe.set_progress_bar_config(disable=UpperCamelCase_) __UpperCAmelCase : Tuple = self.get_inputs(get_fixed_latents=UpperCamelCase_ , device=UpperCamelCase_) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=UpperCamelCase_ , enable_math=UpperCamelCase_ , enable_mem_efficient=UpperCamelCase_): __UpperCAmelCase : List[str] = pipe(**UpperCamelCase_).images assert image.shape == (1, 64, 64, 3) __UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] __UpperCAmelCase : Optional[int] = np.array([0.1875, 0.1428, 0.1289, 0.2151, 0.2092, 0.1477, 0.1877, 0.1641, 0.1353]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 @require_torch_a def a_ ( self : str): """simple docstring""" __UpperCAmelCase : Tuple = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2") __UpperCAmelCase : Union[str, Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __UpperCAmelCase : List[Any] = ConsistencyModelPipeline(unet=UpperCamelCase_ , scheduler=UpperCamelCase_) pipe.to(torch_device=UpperCamelCase_ , torch_dtype=torch.floataa) pipe.set_progress_bar_config(disable=UpperCamelCase_) __UpperCAmelCase : Optional[int] = self.get_inputs(get_fixed_latents=UpperCamelCase_ , device=UpperCamelCase_) __UpperCAmelCase : List[str] = 1 __UpperCAmelCase : Any = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=UpperCamelCase_ , enable_math=UpperCamelCase_ , enable_mem_efficient=UpperCamelCase_): __UpperCAmelCase : List[str] = pipe(**UpperCamelCase_).images assert image.shape == (1, 64, 64, 3) __UpperCAmelCase : int = image[0, -3:, -3:, -1] __UpperCAmelCase : List[str] = np.array([0.1663, 0.1948, 0.2275, 0.1680, 0.1204, 0.1245, 0.1858, 0.1338, 0.2095]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
487
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : str = "▁" _lowerCamelCase : List[Any] = {"vocab_file": "sentencepiece.bpe.model"} _lowerCamelCase : int = { "vocab_file": { "facebook/mbart-large-50-one-to-many-mmt": ( "https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model" ), } } _lowerCamelCase : Dict = { "facebook/mbart-large-50-one-to-many-mmt": 1_0_2_4, } # fmt: off _lowerCamelCase : Tuple = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] class __snake_case (_a ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = ["input_ids", "attention_mask"] lowerCAmelCase__ = [] lowerCAmelCase__ = [] def __init__( self : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=None , _UpperCAmelCase : Any=None , _UpperCAmelCase : int="</s>" , _UpperCAmelCase : Optional[int]="</s>" , _UpperCAmelCase : Dict="<s>" , _UpperCAmelCase : Union[str, Any]="<unk>" , _UpperCAmelCase : List[str]="<pad>" , _UpperCAmelCase : Union[str, Any]="<mask>" , _UpperCAmelCase : Optional[Dict[str, Any]] = None , **_UpperCAmelCase : List[str] , ) -> None: '''simple docstring''' _lowerCAmelCase : Optional[Any] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token _lowerCAmelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCAmelCase : Optional[int] = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) _lowerCAmelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCAmelCase ) ) _lowerCAmelCase : Union[str, Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _lowerCAmelCase : str = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _lowerCAmelCase : str = 1 _lowerCAmelCase : List[Any] = len(self.sp_model ) _lowerCAmelCase : Dict = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_UpperCAmelCase ) } _lowerCAmelCase : Union[str, Any] = {v: k for k, v in self.lang_code_to_id.items()} _lowerCAmelCase : Optional[Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _lowerCAmelCase : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _lowerCAmelCase : Tuple = src_lang if src_lang is not None else """en_XX""" _lowerCAmelCase : Optional[Any] = self.lang_code_to_id[self._src_lang] _lowerCAmelCase : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE ( self : Any , _UpperCAmelCase : str ) -> None: '''simple docstring''' _lowerCAmelCase : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Optional[int] ) -> Dict: '''simple docstring''' _lowerCAmelCase : Optional[int] = self.__dict__.copy() _lowerCAmelCase : List[Any] = None return state def __setstate__( self : List[str] , _UpperCAmelCase : Dict ) -> None: '''simple docstring''' _lowerCAmelCase : int = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase : Dict = {} _lowerCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self : str ) -> Dict: '''simple docstring''' _lowerCAmelCase : Optional[Any] = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCAmelCase : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict , _UpperCAmelCase : str ) -> int: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowerCAmelCase : Optional[int] = self.sp_model.PieceToId(_UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE ( self : int , _UpperCAmelCase : int ) -> str: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE ( self : str , _UpperCAmelCase : Any ) -> Any: '''simple docstring''' _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : Any = """""" _lowerCAmelCase : Optional[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCAmelCase ) + token _lowerCAmelCase : List[str] = True _lowerCAmelCase : Optional[int] = [] else: current_sub_tokens.append(_UpperCAmelCase ) _lowerCAmelCase : Optional[int] = False out_string += self.sp_model.decode(_UpperCAmelCase ) return out_string.strip() def SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_UpperCAmelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _lowerCAmelCase : str = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase , """wb""" ) as fi: _lowerCAmelCase : Any = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (out_vocab_file,) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) _lowerCAmelCase : Optional[Any] = [1] * len(self.prefix_tokens ) _lowerCAmelCase : Any = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones def SCREAMING_SNAKE_CASE ( self : int , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] , _UpperCAmelCase : Optional[str] , **_UpperCAmelCase : List[str] ) -> Optional[int]: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _lowerCAmelCase : List[str] = src_lang _lowerCAmelCase : int = self(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase : List[Any] = self.convert_tokens_to_ids(_UpperCAmelCase ) _lowerCAmelCase : int = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE ( self : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : str = "en_XX" , _UpperCAmelCase : Optional[List[str]] = None , _UpperCAmelCase : str = "ro_RO" , **_UpperCAmelCase : str , ) -> BatchEncoding: '''simple docstring''' _lowerCAmelCase : int = src_lang _lowerCAmelCase : int = tgt_lang return super().prepare_seqaseq_batch(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE ( self : Dict , _UpperCAmelCase : str ) -> None: '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.lang_code_to_id[src_lang] _lowerCAmelCase : Optional[int] = [self.cur_lang_code_id] _lowerCAmelCase : Tuple = [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self : Dict , _UpperCAmelCase : str ) -> None: '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.lang_code_to_id[tgt_lang] _lowerCAmelCase : List[str] = [self.cur_lang_code_id] _lowerCAmelCase : Tuple = [self.eos_token_id]
429
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __snake_case (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE ( self : Any ) -> int: '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Dict = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") , ) return model @property def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : int = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , cross_attention_dim=10 , ) return model @property def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : List[str] = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , ) _lowerCAmelCase : Tuple = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") , ) return vqvae, unet @slow def SCREAMING_SNAKE_CASE ( self : int ) -> str: '''simple docstring''' _lowerCAmelCase : Optional[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Dict = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) _lowerCAmelCase : Tuple = DDPMScheduler() _lowerCAmelCase : str = AudioDiffusionPipeline(vqvae=_UpperCAmelCase , unet=self.dummy_unet , mel=_UpperCAmelCase , scheduler=_UpperCAmelCase ) _lowerCAmelCase : Optional[Any] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) _lowerCAmelCase : Any = torch.Generator(device=_UpperCAmelCase ).manual_seed(42 ) _lowerCAmelCase : List[Any] = pipe(generator=_UpperCAmelCase , steps=4 ) _lowerCAmelCase : List[str] = output.audios[0] _lowerCAmelCase : int = output.images[0] _lowerCAmelCase : Dict = torch.Generator(device=_UpperCAmelCase ).manual_seed(42 ) _lowerCAmelCase : Union[str, Any] = pipe(generator=_UpperCAmelCase , steps=4 , return_dict=_UpperCAmelCase ) _lowerCAmelCase : int = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) _lowerCAmelCase : Union[str, Any] = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] _lowerCAmelCase : List[str] = np.frombuffer(image_from_tuple.tobytes() , dtype="""uint8""" )[:10] _lowerCAmelCase : Dict = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 _lowerCAmelCase : List[str] = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) _lowerCAmelCase : Any = DDIMScheduler() _lowerCAmelCase : List[Any] = self.dummy_vqvae_and_unet _lowerCAmelCase : List[str] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=_UpperCAmelCase , scheduler=_UpperCAmelCase ) _lowerCAmelCase : Optional[int] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) np.random.seed(0 ) _lowerCAmelCase : Union[str, Any] = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) _lowerCAmelCase : Optional[int] = torch.Generator(device=_UpperCAmelCase ).manual_seed(42 ) _lowerCAmelCase : Dict = pipe(raw_audio=_UpperCAmelCase , generator=_UpperCAmelCase , start_step=5 , steps=10 ) _lowerCAmelCase : Tuple = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) _lowerCAmelCase : List[Any] = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] _lowerCAmelCase : Optional[int] = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 _lowerCAmelCase : Union[str, Any] = self.dummy_unet_condition _lowerCAmelCase : Optional[Any] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=_UpperCAmelCase , mel=_UpperCAmelCase , scheduler=_UpperCAmelCase ) _lowerCAmelCase : Any = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) np.random.seed(0 ) _lowerCAmelCase : Any = torch.rand((1, 1, 10) ) _lowerCAmelCase : List[Any] = pipe(generator=_UpperCAmelCase , encoding=_UpperCAmelCase ) _lowerCAmelCase : Tuple = output.images[0] _lowerCAmelCase : Any = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] _lowerCAmelCase : str = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class __snake_case (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : str ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: '''simple docstring''' _lowerCAmelCase : List[str] = torch_device _lowerCAmelCase : List[str] = DiffusionPipeline.from_pretrained("""teticio/audio-diffusion-ddim-256""" ) _lowerCAmelCase : str = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) _lowerCAmelCase : Tuple = torch.Generator(device=_UpperCAmelCase ).manual_seed(42 ) _lowerCAmelCase : Tuple = pipe(generator=_UpperCAmelCase ) _lowerCAmelCase : Any = output.audios[0] _lowerCAmelCase : List[str] = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] _lowerCAmelCase : Any = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] _lowerCAmelCase : Union[str, Any] = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
429
1
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __UpperCamelCase ( _lowerCAmelCase ) -> Tuple: """simple docstring""" def is_in_circle(_lowerCAmelCase , _lowerCAmelCase ) -> bool: A : Dict = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle A : str = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(_lowerCAmelCase ) ) # The ratio of the area for circle to square is pi/4. A : Union[str, Any] = proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 0.0 , _lowerCAmelCase = 1.0 , ) -> float: """simple docstring""" return mean( function_to_integrate(uniform(_lowerCAmelCase , _lowerCAmelCase ) ) for _ in range(_lowerCAmelCase ) ) * (max_value - min_value) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase = 0.0 , _lowerCAmelCase = 1.0 ) -> None: """simple docstring""" def identity_function(_lowerCAmelCase ) -> float: return x A : Dict = area_under_curve_estimator( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) A : Tuple = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print("""******************""" ) def __UpperCamelCase ( _lowerCAmelCase ) -> None: """simple docstring""" def function_to_integrate(_lowerCAmelCase ) -> float: return sqrt(4.0 - x * x ) A : List[str] = area_under_curve_estimator( _lowerCAmelCase , _lowerCAmelCase , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
520
import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor SCREAMING_SNAKE_CASE_:Union[str, Any] = random.Random() def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase=1.0 , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> Optional[Any]: """simple docstring""" if rng is None: A : str = global_rng A : Optional[int] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__=7, lowerCamelCase__=400, lowerCamelCase__=2000, lowerCamelCase__=24, lowerCamelCase__=24, lowerCamelCase__=0.0, lowerCamelCase__=1_6000, lowerCamelCase__=True, lowerCamelCase__=True, ): A : Optional[int] = parent A : List[Any] = batch_size A : str = min_seq_length A : str = max_seq_length A : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A : Dict = feature_size A : Any = num_mel_bins A : int = padding_value A : Optional[int] = sampling_rate A : str = return_attention_mask A : int = do_normalize def _lowerCAmelCase ( self ): return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _lowerCAmelCase ( self, lowerCamelCase__=False, lowerCamelCase__=False ): def _flatten(lowerCamelCase__ ): return list(itertools.chain(*lowerCamelCase__ ) ) if equal_length: A : Optional[Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size A : Optional[Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: A : Tuple = [np.asarray(lowerCamelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[str] = SpeechaTextFeatureExtractor if is_speech_available() else None def _lowerCAmelCase ( self ): A : Tuple = SpeechaTextFeatureExtractionTester(self ) def _lowerCAmelCase ( self, lowerCamelCase__ ): self.assertTrue(np.all(np.mean(lowerCamelCase__, axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCamelCase__, axis=0 ) - 1 ) < 1e-3 ) ) def _lowerCAmelCase ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus A : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 A : List[str] = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] A : List[Any] = [np.asarray(lowerCamelCase__ ) for speech_input in speech_inputs] # Test feature size A : Any = feature_extractor(lowerCamelCase__, padding=lowerCamelCase__, return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input A : List[str] = feature_extractor(speech_inputs[0], return_tensors="""np""" ).input_features A : Tuple = feature_extractor(np_speech_inputs[0], return_tensors="""np""" ).input_features self.assertTrue(np.allclose(lowerCamelCase__, lowerCamelCase__, atol=1e-3 ) ) # Test batched A : List[Any] = feature_extractor(lowerCamelCase__, return_tensors="""np""" ).input_features A : int = feature_extractor(lowerCamelCase__, return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase__, lowerCamelCase__ ): self.assertTrue(np.allclose(lowerCamelCase__, lowerCamelCase__, atol=1e-3 ) ) # Test 2-D numpy arrays are batched. A : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)] A : Optional[Any] = np.asarray(lowerCamelCase__ ) A : List[Any] = feature_extractor(lowerCamelCase__, return_tensors="""np""" ).input_features A : str = feature_extractor(lowerCamelCase__, return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase__, lowerCamelCase__ ): self.assertTrue(np.allclose(lowerCamelCase__, lowerCamelCase__, atol=1e-3 ) ) def _lowerCAmelCase ( self ): A : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A : Dict = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] A : Any = ["""longest""", """max_length""", """do_not_pad"""] A : int = [None, 16, None] for max_length, padding in zip(lowerCamelCase__, lowerCamelCase__ ): A : Tuple = feature_extractor( lowerCamelCase__, padding=lowerCamelCase__, max_length=lowerCamelCase__, return_attention_mask=lowerCamelCase__ ) A : Tuple = inputs.input_features A : Union[str, Any] = inputs.attention_mask A : Optional[Any] = [np.sum(lowerCamelCase__ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def _lowerCAmelCase ( self ): A : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A : str = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] A : List[str] = ["""longest""", """max_length""", """do_not_pad"""] A : Tuple = [None, 16, None] for max_length, padding in zip(lowerCamelCase__, lowerCamelCase__ ): A : Union[str, Any] = feature_extractor( lowerCamelCase__, max_length=lowerCamelCase__, padding=lowerCamelCase__, return_tensors="""np""", return_attention_mask=lowerCamelCase__ ) A : Optional[int] = inputs.input_features A : List[Any] = inputs.attention_mask A : str = [np.sum(lowerCamelCase__ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def _lowerCAmelCase ( self ): A : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A : str = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] A : Optional[Any] = feature_extractor( lowerCamelCase__, padding="""max_length""", max_length=4, truncation=lowerCamelCase__, return_tensors="""np""", return_attention_mask=lowerCamelCase__, ) A : Union[str, Any] = inputs.input_features A : Optional[Any] = inputs.attention_mask A : Dict = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def _lowerCAmelCase ( self ): A : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A : Dict = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] A : List[Any] = feature_extractor( lowerCamelCase__, padding="""longest""", max_length=4, truncation=lowerCamelCase__, return_tensors="""np""", return_attention_mask=lowerCamelCase__, ) A : List[Any] = inputs.input_features A : Optional[Any] = inputs.attention_mask A : List[str] = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape, (3, 4, 24) ) A : int = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] A : List[str] = feature_extractor( lowerCamelCase__, padding="""longest""", max_length=16, truncation=lowerCamelCase__, return_tensors="""np""", return_attention_mask=lowerCamelCase__, ) A : List[Any] = inputs.input_features A : List[str] = inputs.attention_mask A : List[str] = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape, (3, 6, 24) ) def _lowerCAmelCase ( self ): import torch A : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A : Dict = np.random.rand(100, 32 ).astype(np.floataa ) A : str = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: A : Optional[Any] = feature_extractor.pad([{"""input_features""": inputs}], return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) A : str = feature_extractor.pad([{"""input_features""": inputs}], return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _lowerCAmelCase ( self, lowerCamelCase__ ): from datasets import load_dataset A : List[str] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""", """clean""", split="""validation""" ) # automatic decoding with librispeech A : int = ds.sort("""id""" ).select(range(lowerCamelCase__ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def _lowerCAmelCase ( self ): # fmt: off A : Optional[Any] = np.array([ -1.5745, -1.7713, -1.7020, -1.6069, -1.2250, -1.1105, -0.9072, -0.8241, -1.2310, -0.8098, -0.3320, -0.4101, -0.7985, -0.4996, -0.8213, -0.9128, -1.0420, -1.1286, -1.0440, -0.7999, -0.8405, -1.2275, -1.5443, -1.4625, ] ) # fmt: on A : Optional[Any] = self._load_datasamples(1 ) A : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A : Optional[Any] = feature_extractor(lowerCamelCase__, return_tensors="""pt""" ).input_features self.assertEquals(input_features.shape, (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30], lowerCamelCase__, atol=1e-4 ) )
520
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor __lowerCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): def __init__( self : List[str] , *__SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> None: warnings.warn( '''The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DeiTImageProcessor instead.''' , __SCREAMING_SNAKE_CASE , ) super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
466
'''simple docstring''' import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def _UpperCAmelCase ( __A : Any ): a_ : List[str] = fname.split(os.path.sep )[-1] return re.search(R'''^(.*)_\d+\.jpg$''' , __A ).groups()[0] class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : Any=None ) -> Optional[Any]: a_ : List[str] = file_names a_ : str = image_transform a_ : Optional[Any] = label_to_id def __len__( self : List[str] ) -> Dict: return len(self.file_names ) def __getitem__( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[Any]: a_ : Union[str, Any] = self.file_names[idx] a_ : Union[str, Any] = PIL.Image.open(__SCREAMING_SNAKE_CASE ) a_ : int = raw_image.convert('''RGB''' ) if self.image_transform is not None: a_ : str = self.image_transform(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = extract_label(__SCREAMING_SNAKE_CASE ) if self.label_to_id is not None: a_ : Any = self.label_to_id[label] return {"image": image, "label": label} def _UpperCAmelCase ( __A : List[Any] , __A : Any ): # Initialize accelerator if args.with_tracking: a_ : Any = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: a_ : Optional[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a_ : Dict = config['''lr'''] a_ : str = int(config['''num_epochs'''] ) a_ : Any = int(config['''seed'''] ) a_ : Any = int(config['''batch_size'''] ) a_ : Optional[Any] = config['''image_size'''] if not isinstance(__A , (list, tuple) ): a_ : Union[str, Any] = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , '''isdigit''' ): if args.checkpointing_steps == "epoch": a_ : List[str] = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): a_ : List[str] = int(args.checkpointing_steps ) else: raise ValueError( f'Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.' ) else: a_ : str = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: a_ : Dict = os.path.split(__A )[-1].split('''.''' )[0] accelerator.init_trackers(__A , __A ) # Grab all the image filenames a_ : str = [os.path.join(args.data_dir , __A ) for fname in os.listdir(args.data_dir ) if fname.endswith('''.jpg''' )] # Build the label correspondences a_ : Dict = [extract_label(__A ) for fname in file_names] a_ : Optional[Any] = list(set(__A ) ) id_to_label.sort() a_ : Any = {lbl: i for i, lbl in enumerate(__A )} # Set the seed before splitting the data. np.random.seed(__A ) torch.manual_seed(__A ) torch.cuda.manual_seed_all(__A ) # Split our filenames between train and validation a_ : Optional[Any] = np.random.permutation(len(__A ) ) a_ : Dict = int(0.8 * len(__A ) ) a_ : Optional[Any] = random_perm[:cut] a_ : Optional[int] = random_perm[cut:] # For training we use a simple RandomResizedCrop a_ : Optional[int] = Compose([RandomResizedCrop(__A , scale=(0.5, 1.0) ), ToTensor()] ) a_ : str = PetsDataset( [file_names[i] for i in train_split] , image_transform=__A , label_to_id=__A ) # For evaluation, we use a deterministic Resize a_ : Any = Compose([Resize(__A ), ToTensor()] ) a_ : Tuple = PetsDataset([file_names[i] for i in eval_split] , image_transform=__A , label_to_id=__A ) # Instantiate dataloaders. a_ : Dict = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 ) a_ : str = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a_ : Union[str, Any] = create_model('''resnet50d''' , pretrained=__A , num_classes=len(__A ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). a_ : Tuple = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): a_ : int = False for param in model.get_classifier().parameters(): a_ : Tuple = True # We normalize the batches of images to be a bit faster. a_ : Union[str, Any] = torch.tensor(model.default_cfg['''mean'''] )[None, :, None, None].to(accelerator.device ) a_ : Union[str, Any] = torch.tensor(model.default_cfg['''std'''] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer a_ : str = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler a_ : Tuple = OneCycleLR(optimizer=__A , max_lr=__A , epochs=__A , steps_per_epoch=len(__A ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a_ , a_ , a_ , a_ , a_ : Tuple = accelerator.prepare( __A , __A , __A , __A , __A ) # We need to keep track of how many total steps we have iterated over a_ : Dict = 0 # We also need to keep track of the starting epoch so files are named properly a_ : Dict = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f'Resumed from checkpoint: {args.resume_from_checkpoint}' ) accelerator.load_state(args.resume_from_checkpoint ) a_ : Optional[Any] = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint a_ : List[str] = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) a_ : Tuple = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` a_ : List[str] = os.path.splitext(__A )[0] if "epoch" in training_difference: a_ : Tuple = int(training_difference.replace('''epoch_''' , '''''' ) ) + 1 a_ : str = None else: a_ : List[Any] = int(training_difference.replace('''step_''' , '''''' ) ) a_ : Union[str, Any] = resume_step // len(__A ) resume_step -= starting_epoch * len(__A ) # Now we train the model for epoch in range(__A , __A ): model.train() if args.with_tracking: a_ : List[str] = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step a_ : Union[str, Any] = accelerator.skip_first_batches(__A , __A ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader a_ : List[Any] = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. a_ : str = {k: v.to(accelerator.device ) for k, v in batch.items()} a_ : int = (batch['''image'''] - mean) / std a_ : Any = model(__A ) a_ : List[Any] = torch.nn.functional.cross_entropy(__A , batch['''label'''] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(__A ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(__A , __A ): a_ : int = f'step_{overall_step}' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: a_ : Union[str, Any] = os.path.join(args.output_dir , __A ) accelerator.save_state(__A ) model.eval() a_ : str = 0 a_ : List[Any] = 0 for step, batch in enumerate(__A ): # We could avoid this line since we set the accelerator with `device_placement=True`. a_ : Optional[Any] = {k: v.to(accelerator.device ) for k, v in batch.items()} a_ : List[Any] = (batch['''image'''] - mean) / std with torch.no_grad(): a_ : Union[str, Any] = model(__A ) a_ : List[str] = outputs.argmax(dim=-1 ) a_ , a_ : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch['''label''']) ) a_ : Union[str, Any] = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() a_ : Any = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}: {1_00 * eval_metric:.2f}' ) if args.with_tracking: accelerator.log( { '''accuracy''': 1_00 * eval_metric, '''train_loss''': total_loss.item() / len(__A ), '''epoch''': epoch, } , step=__A , ) if checkpointing_steps == "epoch": a_ : Dict = f'epoch_{epoch}' if args.output_dir is not None: a_ : int = os.path.join(args.output_dir , __A ) accelerator.save_state(__A ) if args.with_tracking: accelerator.end_training() def _UpperCAmelCase ( ): a_ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument('''--data_dir''' , required=__A , help='''The data folder on disk.''' ) parser.add_argument('''--fp16''' , action='''store_true''' , help='''If passed, will use FP16 training.''' ) parser.add_argument( '''--mixed_precision''' , type=__A , default=__A , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--checkpointing_steps''' , type=__A , default=__A , help='''Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.''' , ) parser.add_argument( '''--output_dir''' , type=__A , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=__A , default=__A , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=__A , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) a_ : Union[str, Any] = parser.parse_args() a_ : List[Any] = {'''lr''': 3E-2, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 64, '''image_size''': 2_24} training_function(__A , __A ) if __name__ == "__main__": main()
466
1
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def a_ ( ): '''simple docstring''' print('Making key files...' ) make_key_files('rsa' , 1024 ) print('Key files generation successful.' ) def a_ ( _lowerCAmelCase : int ): '''simple docstring''' print('Generating prime p...' ) lowercase__ : Any = rabinMiller.generate_large_prime(_lowerCAmelCase ) print('Generating prime q...' ) lowercase__ : str = rabinMiller.generate_large_prime(_lowerCAmelCase ) lowercase__ : Any = p * q print('Generating e that is relatively prime to (p - 1) * (q - 1)...' ) while True: lowercase__ : Dict = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(_lowerCAmelCase , (p - 1) * (q - 1) ) == 1: break print('Calculating d that is mod inverse of e...' ) lowercase__ : Tuple = cryptoMath.find_mod_inverse(_lowerCAmelCase , (p - 1) * (q - 1) ) lowercase__ : Any = (n, e) lowercase__ : List[str] = (n, d) return (public_key, private_key) def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : int ): '''simple docstring''' if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print('\nWARNING:' ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" 'Use a different name or delete these files and re-run this program.' ) sys.exit() lowercase__ , lowercase__ : str = generate_key(_lowerCAmelCase ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" , 'w' ) as out_file: out_file.write(f"""{key_size},{public_key[0]},{public_key[1]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" , 'w' ) as out_file: out_file.write(f"""{key_size},{private_key[0]},{private_key[1]}""" ) if __name__ == "__main__": main()
645
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch _UpperCamelCase : int = logging.get_logger(__name__) @dataclass class UpperCAmelCase_ : def __init__( self , a=False , a=False , a=6.0 , a=None , a=False , a=False , a=None , a="fp4" , a=False , **a , ) -> Tuple: lowercase__ : str = load_in_abit lowercase__ : str = load_in_abit lowercase__ : List[str] = llm_inta_threshold lowercase__ : Dict = llm_inta_skip_modules lowercase__ : Tuple = llm_inta_enable_fpaa_cpu_offload lowercase__ : Any = llm_inta_has_fpaa_weight lowercase__ : Any = bnb_abit_quant_type lowercase__ : Dict = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: lowercase__ : Dict = torch.floataa elif isinstance(a , a ): lowercase__ : Any = getattr(a , a ) elif isinstance(a , torch.dtype ): lowercase__ : Any = bnb_abit_compute_dtype else: raise ValueError('bnb_4bit_compute_dtype must be a string or a torch.dtype' ) self.post_init() def _UpperCAmelCase ( self ) -> str: if not isinstance(self.llm_inta_threshold , a ): raise ValueError('llm_int8_threshold must be a float' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , a ): raise ValueError('llm_int8_skip_modules must be a list of strings' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , a ): raise ValueError('llm_int8_enable_fp32_cpu_offload must be a boolean' ) if not isinstance(self.llm_inta_has_fpaa_weight , a ): raise ValueError('llm_int8_has_fp16_weight must be a boolean' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('bnb_4bit_compute_dtype must be torch.dtype' ) if not isinstance(self.bnb_abit_quant_type , a ): raise ValueError('bnb_4bit_quant_type must be a string' ) if not isinstance(self.bnb_abit_use_double_quant , a ): raise ValueError('bnb_4bit_use_double_quant must be a boolean' ) if self.load_in_abit and not version.parse(importlib.metadata.version('bitsandbytes' ) ) >= version.parse( '0.39.0' ): raise ValueError( '4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version' ) def _UpperCAmelCase ( self ) -> Tuple: return self.load_in_abit or self.load_in_abit def _UpperCAmelCase ( self ) -> List[str]: if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def _UpperCAmelCase ( cls , a , a , **a ) -> Optional[Any]: lowercase__ : List[Any] = cls(**a ) lowercase__ : Union[str, Any] = [] for key, value in kwargs.items(): if hasattr(a , a ): setattr(a , a , a ) to_remove.append(a ) for key in to_remove: kwargs.pop(a , a ) if return_unused_kwargs: return config, kwargs else: return config def _UpperCAmelCase ( self , a ) -> Dict: with open(a , 'w' , encoding='utf-8' ) as writer: lowercase__ : Any = self.to_dict() lowercase__ : str = json.dumps(a , indent=2 , sort_keys=a ) + '\n' writer.write(a ) def _UpperCAmelCase ( self ) -> Dict[str, Any]: lowercase__ : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase__ : Any = str(output['bnb_4bit_compute_dtype'] ).split('.' )[1] return output def __repr__( self ) -> Dict: return f"""{self.__class__.__name__} {self.to_json_string()}""" def _UpperCAmelCase ( self , a = True ) -> str: if use_diff is True: lowercase__ : List[Any] = self.to_diff_dict() else: lowercase__ : List[str] = self.to_dict() return json.dumps(a , indent=2 , sort_keys=a ) + "\n" def _UpperCAmelCase ( self ) -> Dict[str, Any]: lowercase__ : Tuple = self.to_dict() # get the default config dict lowercase__ : Optional[Any] = BitsAndBytesConfig().to_dict() lowercase__ : int = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: lowercase__ : Optional[int] = value return serializable_config_dict
645
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = ['image_processor', 'tokenizer'] __magic_name__ = 'ViltImageProcessor' __magic_name__ = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , snake_case_=None , snake_case_=None , **snake_case_ ): _A = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , snake_case_ , ) _A = kwargs.pop('feature_extractor' ) _A = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(snake_case_ , snake_case_ ) _A = self.image_processor def __call__( self , snake_case_ , snake_case_ = None , snake_case_ = True , snake_case_ = False , snake_case_ = None , snake_case_ = None , snake_case_ = 0 , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = True , snake_case_ = None , **snake_case_ , ): _A = self.tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_token_type_ids=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) # add pixel_values + pixel_mask _A = self.image_processor(snake_case_ , return_tensors=snake_case_ ) encoding.update(snake_case_ ) return encoding def lowerCAmelCase__ ( self , *snake_case_ , **snake_case_ ): return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self , *snake_case_ , **snake_case_ ): return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property def lowerCAmelCase__ ( self ): _A = self.tokenizer.model_input_names _A = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowerCAmelCase__ ( self ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , snake_case_ , ) return self.image_processor_class @property def lowerCAmelCase__ ( self ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , snake_case_ , ) return self.image_processor
27
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py SCREAMING_SNAKE_CASE = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. SCREAMING_SNAKE_CASE = direct_transformers_import(PATH_TO_TRANSFORMERS) SCREAMING_SNAKE_CASE = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` SCREAMING_SNAKE_CASE = re.compile(R'\[(.+?)\]\((https://huggingface\.co/.+?)\)') SCREAMING_SNAKE_CASE = { 'DecisionTransformerConfig', 'EncoderDecoderConfig', 'MusicgenConfig', 'RagConfig', 'SpeechEncoderDecoderConfig', 'TimmBackboneConfig', 'VisionEncoderDecoderConfig', 'VisionTextDualEncoderConfig', 'LlamaConfig', } def _lowerCamelCase ( __A : Tuple ) -> List[str]: _UpperCAmelCase : Union[str, Any] = None # source code of `config_class` _UpperCAmelCase : Dict = inspect.getsource(__A ) _UpperCAmelCase : Dict = _re_checkpoint.findall(__A ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('''/''' ): _UpperCAmelCase : int = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link _UpperCAmelCase : Any = f'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: _UpperCAmelCase : str = ckpt_name break return checkpoint def _lowerCamelCase ( ) -> Any: _UpperCAmelCase : Optional[int] = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue _UpperCAmelCase : int = get_checkpoint_from_config_class(__A ) _UpperCAmelCase : Optional[int] = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__A ) if len(__A ) > 0: _UpperCAmelCase : Any = '''\n'''.join(sorted(__A ) ) raise ValueError(f'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
485
0
'''simple docstring''' import argparse from collections import defaultdict import yaml snake_case_ = """docs/source/en/_toctree.yml""" def _lowerCamelCase( UpperCamelCase__ : Optional[Any] ) -> str: A : Optional[int] = defaultdict(UpperCamelCase__ ) for doc in model_doc: counts[doc["local"]] += 1 A : Optional[int] = [key for key, value in counts.items() if value > 1] A : List[Any] = [] for duplicate_key in duplicates: A : int = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} ) if len(UpperCamelCase__ ) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] ) # Sort return sorted(UpperCamelCase__ , key=lambda UpperCamelCase__ : s["title"].lower() ) def _lowerCamelCase( UpperCamelCase__ : Dict=False ) -> Tuple: with open(UpperCamelCase__ , encoding='''utf-8''' ) as f: A : Optional[Any] = yaml.safe_load(f.read() ) # Get to the API doc A : str = 0 while content[api_idx]["title"] != "API": api_idx += 1 A : Optional[int] = content[api_idx]['''sections'''] # Then to the model doc A : str = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 A : List[str] = api_doc[model_idx]['''sections'''] A : Tuple = [(idx, section) for idx, section in enumerate(UpperCamelCase__ ) if '''sections''' in section] A : Any = False for idx, modality_doc in modalities_docs: A : int = modality_doc['''sections'''] A : str = clean_model_doc_toc(UpperCamelCase__ ) if old_modality_doc != new_modality_doc: A : Tuple = True if overwrite: A : Union[str, Any] = new_modality_doc if diff: if overwrite: A : Optional[int] = model_doc A : List[str] = api_doc with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(UpperCamelCase__ , allow_unicode=UpperCamelCase__ ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") snake_case_ = parser.parse_args() check_model_doc(args.fix_and_overwrite)
537
'''simple docstring''' import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case_ = logging.get_logger(__name__) class _lowercase ( a ): _UpperCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self , _UpperCAmelCase="</s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase=125 , _UpperCAmelCase=None , **_UpperCAmelCase , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: A : str = [f'''<extra_id_{i}>''' for i in range(_UpperCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens A : List[str] = len(set(filter(lambda _UpperCAmelCase : bool('''extra_id''' in str(_UpperCAmelCase ) ) , _UpperCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to ByT5Tokenizer. In this case the additional_special_tokens must include the''' ''' extra_ids tokens''' ) A : str = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else pad_token A : Any = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else eos_token A : Optional[Any] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token super().__init__( eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , extra_ids=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) A : int = extra_ids A : Any = 2**8 # utf is 8 bits # define special tokens dict A : Dict[int, str] = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } A : Tuple = len(self.special_tokens_encoder ) A : Union[str, Any] = len(_UpperCAmelCase ) for i, token in enumerate(_UpperCAmelCase ): A : Optional[Any] = self.vocab_size + i - n A : Dict[str, int] = {v: k for k, v in self.special_tokens_encoder.items()} @property def snake_case ( self ): return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_UpperCAmelCase )) + [1] return ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1] def snake_case ( self , _UpperCAmelCase ): if len(_UpperCAmelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): A : Optional[Any] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): A : Union[str, Any] = self._add_eos_if_not_present(_UpperCAmelCase ) if token_ids_a is None: return token_ids_a else: A : Tuple = self._add_eos_if_not_present(_UpperCAmelCase ) return token_ids_a + token_ids_a def snake_case ( self , _UpperCAmelCase ): A : str = [chr(_UpperCAmelCase ) for i in text.encode('''utf-8''' )] return tokens def snake_case ( self , _UpperCAmelCase ): if token in self.special_tokens_encoder: A : Union[str, Any] = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: A : int = self.added_tokens_encoder[token] elif len(_UpperCAmelCase ) != 1: A : Union[str, Any] = self.unk_token_id else: A : Union[str, Any] = ord(_UpperCAmelCase ) + self._num_special_tokens return token_id def snake_case ( self , _UpperCAmelCase ): if index in self.special_tokens_decoder: A : Optional[Any] = self.special_tokens_decoder[index] else: A : Dict = chr(index - self._num_special_tokens ) return token def snake_case ( self , _UpperCAmelCase ): A : List[str] = B'''''' for token in tokens: if token in self.special_tokens_decoder: A : List[str] = self.special_tokens_decoder[token].encode('''utf-8''' ) elif token in self.added_tokens_decoder: A : Optional[int] = self.special_tokens_decoder[token].encode('''utf-8''' ) elif token in self.special_tokens_encoder: A : Union[str, Any] = token.encode('''utf-8''' ) elif token in self.added_tokens_encoder: A : str = token.encode('''utf-8''' ) else: A : Tuple = bytes([ord(_UpperCAmelCase )] ) bstring += tok_string A : List[Any] = bstring.decode('''utf-8''' , errors='''ignore''' ) return string def snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): return ()
537
1
def a_ ( lowerCAmelCase_ : list ): if len(lowerCAmelCase_ ) <= 1: return [tuple(lowerCAmelCase_ )] __lowerCAmelCase = [] def generate(lowerCAmelCase_ : int, lowerCAmelCase_ : list ): __lowerCAmelCase = [0] * n res.append(tuple(lowerCAmelCase_ ) ) __lowerCAmelCase = 0 while i < n: if c[i] < i: if i % 2 == 0: __lowerCAmelCase = arr[i], arr[0] else: __lowerCAmelCase = arr[i], arr[c[i]] res.append(tuple(lowerCAmelCase_ ) ) c[i] += 1 __lowerCAmelCase = 0 else: __lowerCAmelCase = 0 i += 1 generate(len(lowerCAmelCase_ ), lowerCAmelCase_ ) return res if __name__ == "__main__": _snake_case : Union[str, Any] = input('Enter numbers separated by a comma:\n').strip() _snake_case : List[Any] = [int(item) for item in user_input.split(',')] print(heaps(arr))
53
from ....utils import logging a_ :Optional[int] = logging.get_logger(__name__) class snake_case__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Optional[Any], _snake_case : List[str], _snake_case : Any=None, _snake_case : Tuple=2_0_4_8 ) ->List[str]: snake_case__ : Dict = config.__dict__ snake_case__ : Optional[Any] = modal_hidden_size if num_labels: snake_case__ : Union[str, Any] = num_labels
478
0
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class lowercase__ : '''simple docstring''' @staticmethod def UpperCamelCase__ ( *__magic_name__, **__magic_name__ ) -> List[Any]: """simple docstring""" pass def lowerCAmelCase_ ( __UpperCAmelCase: List[str] ) -> Any: return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. UpperCAmelCase_ = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' a : List[str] = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ ) -> str: """simple docstring""" UpperCamelCase__ : Optional[Any] = pipeline( '''document-question-answering''', model=__magic_name__, tokenizer=__magic_name__, image_processor=__magic_name__ ) UpperCamelCase__ : Tuple = INVOICE_URL UpperCamelCase__ : Union[str, Any] = list(zip(*apply_tesseract(load_image(__magic_name__ ), __magic_name__, '''''' ) ) ) UpperCamelCase__ : int = '''What is the placebo?''' UpperCamelCase__ : Optional[int] = [ { '''image''': load_image(__magic_name__ ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def UpperCamelCase__ ( self, __magic_name__, __magic_name__ ) -> Tuple: """simple docstring""" UpperCamelCase__ : Optional[int] = dqa_pipeline(__magic_name__, top_k=2 ) self.assertEqual( __magic_name__, [ [ {'''score''': ANY(__magic_name__ ), '''answer''': ANY(__magic_name__ ), '''start''': ANY(__magic_name__ ), '''end''': ANY(__magic_name__ )}, {'''score''': ANY(__magic_name__ ), '''answer''': ANY(__magic_name__ ), '''start''': ANY(__magic_name__ ), '''end''': ANY(__magic_name__ )}, ] ] * 3, ) @require_torch @require_detectrona @require_pytesseract def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : str = pipeline('''document-question-answering''', model='''hf-internal-testing/tiny-random-layoutlmv2''' ) UpperCamelCase__ : Tuple = INVOICE_URL UpperCamelCase__ : Dict = '''How many cats are there?''' UpperCamelCase__ : int = [ {'''score''': 0.0001, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0001, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] UpperCamelCase__ : List[Any] = dqa_pipeline(image=__magic_name__, question=__magic_name__, top_k=2 ) self.assertEqual(nested_simplify(__magic_name__, decimals=4 ), __magic_name__ ) UpperCamelCase__ : Any = dqa_pipeline({'''image''': image, '''question''': question}, top_k=2 ) self.assertEqual(nested_simplify(__magic_name__, decimals=4 ), __magic_name__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably UpperCamelCase__ : Optional[Any] = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' UpperCamelCase__ : Any = dqa_pipeline(image=__magic_name__, question=__magic_name__, top_k=2 ) self.assertEqual(__magic_name__, [] ) # We can optionnally pass directly the words and bounding boxes UpperCamelCase__ : List[Any] = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' UpperCamelCase__ : Union[str, Any] = [] UpperCamelCase__ : Optional[Any] = [] UpperCamelCase__ : Optional[int] = dqa_pipeline(image=__magic_name__, question=__magic_name__, words=__magic_name__, boxes=__magic_name__, top_k=2 ) self.assertEqual(__magic_name__, [] ) @slow @require_torch @require_detectrona @require_pytesseract def UpperCamelCase__ ( self ) -> Any: """simple docstring""" UpperCamelCase__ : Optional[int] = pipeline( '''document-question-answering''', model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''', revision='''9977165''', ) UpperCamelCase__ : Dict = INVOICE_URL UpperCamelCase__ : str = '''What is the invoice number?''' UpperCamelCase__ : Any = dqa_pipeline(image=__magic_name__, question=__magic_name__, top_k=2 ) self.assertEqual( nested_simplify(__magic_name__, decimals=4 ), [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ) UpperCamelCase__ : int = dqa_pipeline({'''image''': image, '''question''': question}, top_k=2 ) self.assertEqual( nested_simplify(__magic_name__, decimals=4 ), [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ) UpperCamelCase__ : Tuple = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}], top_k=2 ) self.assertEqual( nested_simplify(__magic_name__, decimals=4 ), [ [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2, ) @slow @require_torch @require_detectrona @require_pytesseract def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Union[str, Any] = pipeline( '''document-question-answering''', model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''', revision='''9977165''', max_seq_len=50, ) UpperCamelCase__ : Optional[Any] = INVOICE_URL UpperCamelCase__ : List[Any] = '''What is the invoice number?''' UpperCamelCase__ : List[Any] = dqa_pipeline(image=__magic_name__, question=__magic_name__, top_k=2 ) self.assertEqual( nested_simplify(__magic_name__, decimals=4 ), [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ) UpperCamelCase__ : Tuple = dqa_pipeline({'''image''': image, '''question''': question}, top_k=2 ) self.assertEqual( nested_simplify(__magic_name__, decimals=4 ), [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ) UpperCamelCase__ : Optional[int] = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}], top_k=2 ) self.assertEqual( nested_simplify(__magic_name__, decimals=4 ), [ [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2, ) @slow @require_torch @require_pytesseract @require_vision def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : str = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''', revision='''3dc6de3''', add_prefix_space=__magic_name__ ) UpperCamelCase__ : List[str] = pipeline( '''document-question-answering''', model='''impira/layoutlm-document-qa''', tokenizer=__magic_name__, revision='''3dc6de3''', ) UpperCamelCase__ : Union[str, Any] = INVOICE_URL UpperCamelCase__ : str = '''What is the invoice number?''' UpperCamelCase__ : Tuple = dqa_pipeline(image=__magic_name__, question=__magic_name__, top_k=2 ) self.assertEqual( nested_simplify(__magic_name__, decimals=4 ), [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ], ) UpperCamelCase__ : List[Any] = dqa_pipeline({'''image''': image, '''question''': question}, top_k=2 ) self.assertEqual( nested_simplify(__magic_name__, decimals=4 ), [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ], ) UpperCamelCase__ : Tuple = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}], top_k=2 ) self.assertEqual( nested_simplify(__magic_name__, decimals=4 ), [ [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2, ) UpperCamelCase__ : str = list(zip(*apply_tesseract(load_image(__magic_name__ ), __magic_name__, '''''' ) ) ) # This model should also work if `image` is set to None UpperCamelCase__ : Any = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question}, top_k=2 ) self.assertEqual( nested_simplify(__magic_name__, decimals=4 ), [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ], ) @slow @require_torch @require_pytesseract @require_vision def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : List[Any] = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''', revision='''3dc6de3''', add_prefix_space=__magic_name__ ) UpperCamelCase__ : int = pipeline( '''document-question-answering''', model='''impira/layoutlm-document-qa''', tokenizer=__magic_name__, revision='''3dc6de3''', max_seq_len=50, ) UpperCamelCase__ : List[str] = INVOICE_URL UpperCamelCase__ : Union[str, Any] = '''What is the invoice number?''' UpperCamelCase__ : Dict = dqa_pipeline(image=__magic_name__, question=__magic_name__, top_k=2 ) self.assertEqual( nested_simplify(__magic_name__, decimals=4 ), [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ) UpperCamelCase__ : Tuple = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}], top_k=2 ) self.assertEqual( nested_simplify(__magic_name__, decimals=4 ), [ [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2, ) UpperCamelCase__ : Tuple = list(zip(*apply_tesseract(load_image(__magic_name__ ), __magic_name__, '''''' ) ) ) # This model should also work if `image` is set to None UpperCamelCase__ : Dict = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question}, top_k=2 ) self.assertEqual( nested_simplify(__magic_name__, decimals=4 ), [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ) @slow @require_torch def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : str = pipeline( '''document-question-answering''', model='''naver-clova-ix/donut-base-finetuned-docvqa''', tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ), feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''', ) UpperCamelCase__ : List[str] = INVOICE_URL UpperCamelCase__ : int = '''What is the invoice number?''' UpperCamelCase__ : Tuple = dqa_pipeline(image=__magic_name__, question=__magic_name__, top_k=2 ) self.assertEqual(nested_simplify(__magic_name__, decimals=4 ), [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def UpperCamelCase__ ( self ) -> int: """simple docstring""" pass
369
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def lowerCAmelCase_ ( __UpperCAmelCase: Union[str, Any] ) -> Union[str, Any]: UpperCamelCase__ : List[str] = model.config UpperCamelCase__ : Optional[Any] = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) UpperCamelCase__ : Union[str, Any] = MBartConfig( is_decoder=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , add_cross_attention=__UpperCAmelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__UpperCAmelCase , add_final_layer_norm=__UpperCAmelCase , ) return encoder_config, decoder_config def lowerCAmelCase_ ( __UpperCAmelCase: str ) -> Tuple: if "encoder.model" in name: UpperCamelCase__ : str = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: UpperCamelCase__ : Optional[int] = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: UpperCamelCase__ : Dict = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: UpperCamelCase__ : Optional[int] = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: UpperCamelCase__ : Optional[Any] = '''encoder.''' + name if "attn.proj" in name: UpperCamelCase__ : Optional[int] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: UpperCamelCase__ : str = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: UpperCamelCase__ : List[str] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: UpperCamelCase__ : Union[str, Any] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: UpperCamelCase__ : Any = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCamelCase__ : List[str] = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": UpperCamelCase__ : Optional[Any] = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": UpperCamelCase__ : Any = '''encoder.layernorm.bias''' return name def lowerCAmelCase_ ( __UpperCAmelCase: str , __UpperCAmelCase: str ) -> Dict: for key in orig_state_dict.copy().keys(): UpperCamelCase__ : Dict = orig_state_dict.pop(__UpperCAmelCase ) if "qkv" in key: UpperCamelCase__ : Tuple = key.split('''.''' ) UpperCamelCase__ : str = int(key_split[3] ) UpperCamelCase__ : List[Any] = int(key_split[5] ) UpperCamelCase__ : Optional[Any] = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCamelCase__ : Tuple = val[:dim, :] UpperCamelCase__ : Dict = val[dim : dim * 2, :] UpperCamelCase__ : Dict = val[-dim:, :] else: UpperCamelCase__ : Optional[int] = val[:dim] UpperCamelCase__ : str = val[dim : dim * 2] UpperCamelCase__ : int = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: UpperCamelCase__ : Any = val return orig_state_dict def lowerCAmelCase_ ( __UpperCAmelCase: Optional[Any] , __UpperCAmelCase: List[Any]=None , __UpperCAmelCase: Tuple=False ) -> Optional[int]: # load original model UpperCamelCase__ : List[Any] = DonutModel.from_pretrained(__UpperCAmelCase ).eval() # load HuggingFace model UpperCamelCase__ ,UpperCamelCase__ : List[str] = get_configs(__UpperCAmelCase ) UpperCamelCase__ : int = DonutSwinModel(__UpperCAmelCase ) UpperCamelCase__ : Optional[Any] = MBartForCausalLM(__UpperCAmelCase ) UpperCamelCase__ : Optional[int] = VisionEncoderDecoderModel(encoder=__UpperCAmelCase , decoder=__UpperCAmelCase ) model.eval() UpperCamelCase__ : List[Any] = original_model.state_dict() UpperCamelCase__ : List[Any] = convert_state_dict(__UpperCAmelCase , __UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) # verify results on scanned document UpperCamelCase__ : Optional[int] = load_dataset('''hf-internal-testing/example-documents''' ) UpperCamelCase__ : Any = dataset['''test'''][0]['''image'''].convert('''RGB''' ) UpperCamelCase__ : Optional[Any] = XLMRobertaTokenizerFast.from_pretrained(__UpperCAmelCase , from_slow=__UpperCAmelCase ) UpperCamelCase__ : Dict = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) UpperCamelCase__ : Any = DonutProcessor(__UpperCAmelCase , __UpperCAmelCase ) UpperCamelCase__ : str = processor(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": UpperCamelCase__ : Optional[int] = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' UpperCamelCase__ : int = '''When is the coffee break?''' UpperCamelCase__ : List[str] = task_prompt.replace('''{user_input}''' , __UpperCAmelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": UpperCamelCase__ : int = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: UpperCamelCase__ : Optional[int] = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": UpperCamelCase__ : Any = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": UpperCamelCase__ : List[Any] = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt UpperCamelCase__ : Dict = '''hello world''' else: raise ValueError('''Model name not supported''' ) UpperCamelCase__ : Tuple = original_model.decoder.tokenizer(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors='''pt''' )[ '''input_ids''' ] UpperCamelCase__ : List[str] = original_model.encoder.model.patch_embed(__UpperCAmelCase ) UpperCamelCase__ ,UpperCamelCase__ : List[str] = model.encoder.embeddings(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) # verify encoder hidden states UpperCamelCase__ : Dict = original_model.encoder(__UpperCAmelCase ) UpperCamelCase__ : Optional[Any] = model.encoder(__UpperCAmelCase ).last_hidden_state assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-2 ) # verify decoder hidden states UpperCamelCase__ : Optional[Any] = original_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).logits UpperCamelCase__ : str = model(__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ).logits assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) UpperCAmelCase_ = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
369
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ : Optional[Any] = logging.get_logger(__name__) __magic_name__ : Tuple = { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class __SCREAMING_SNAKE_CASE ( __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = '''fnet''' def __init__( self , lowerCamelCase=32_000 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=3_072 , lowerCamelCase="gelu_new" , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=4 , lowerCamelCase=0.02 , lowerCamelCase=1e-12 , lowerCamelCase=False , lowerCamelCase=512 , lowerCamelCase=3 , lowerCamelCase=1 , lowerCamelCase=2 , **lowerCamelCase , ): super().__init__(pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase ) _snake_case = vocab_size _snake_case = max_position_embeddings _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = initializer_range _snake_case = type_vocab_size _snake_case = layer_norm_eps _snake_case = use_tpu_fourier_optimizations _snake_case = tpu_short_seq_length
672
'''simple docstring''' import math def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return math.pow(SCREAMING_SNAKE_CASE__ , 2 ) - a def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return 2 * x def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = 2.0 while start <= a: _snake_case = math.pow(SCREAMING_SNAKE_CASE__ , 2 ) return start def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 99_99 , SCREAMING_SNAKE_CASE__ = 0.00000000000001 ): '''simple docstring''' if a < 0: raise ValueError("math domain error" ) _snake_case = get_initial_point(SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ ): _snake_case = value _snake_case = value - fx(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) / fx_derivative(SCREAMING_SNAKE_CASE__ ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
672
1
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCAmelCase ( UpperCamelCase_ ): _lowercase =['''image_processor''', '''tokenizer'''] _lowercase ='''BridgeTowerImageProcessor''' _lowercase =('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self , _UpperCamelCase , _UpperCamelCase ) -> List[Any]: super().__init__(_UpperCamelCase , _UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 0 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = True , _UpperCamelCase = None , **_UpperCamelCase , ) -> BatchEncoding: lowerCAmelCase_ = self.tokenizer( text=_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , stride=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_overflowing_tokens=_UpperCamelCase , return_special_tokens_mask=_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , return_length=_UpperCamelCase , verbose=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase , ) # add pixel_values + pixel_mask lowerCAmelCase_ = self.image_processor( _UpperCamelCase , return_tensors=_UpperCamelCase , do_normalize=_UpperCamelCase , do_center_crop=_UpperCamelCase , **_UpperCamelCase ) encoding.update(_UpperCamelCase ) return encoding def __a ( self , *_UpperCamelCase , **_UpperCamelCase ) -> str: return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase ) def __a ( self , *_UpperCamelCase , **_UpperCamelCase ) -> int: return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase ) @property def __a ( self ) -> Any: lowerCAmelCase_ = self.tokenizer.model_input_names lowerCAmelCase_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
719
import functools def lowerCamelCase__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ): """simple docstring""" lowerCAmelCase_ = len(__lowerCAmelCase ) lowerCAmelCase_ = len(__lowerCAmelCase ) @functools.cache def min_distance(__lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa lowerCAmelCase_ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , __lowerCAmelCase ) , 1 + min_distance(__lowerCAmelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
279
0
'''simple docstring''' import string import numpy def A_ ( snake_case , snake_case ): return b if a == 0 else greatest_common_divisor(b % a , __lowerCamelCase ) class _snake_case : _A : Any = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) _A : List[Any] = numpy.vectorize(lambda _a : x % 3_6 ) _A : int = numpy.vectorize(A_ ) def __init__( self : Tuple ,SCREAMING_SNAKE_CASE__ : numpy.ndarray ): SCREAMING_SNAKE_CASE:List[str] = self.modulus(_lowerCamelCase ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key SCREAMING_SNAKE_CASE:Tuple = encrypt_key.shape[0] def __UpperCamelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : str ): return self.key_string.index(_lowerCamelCase ) def __UpperCamelCase ( self : str ,SCREAMING_SNAKE_CASE__ : int ): return self.key_string[round(_lowerCamelCase )] def __UpperCamelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE:Union[str, Any] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: SCREAMING_SNAKE_CASE:List[Any] = det % len(self.key_string ) SCREAMING_SNAKE_CASE:List[str] = len(self.key_string ) if greatest_common_divisor(_lowerCamelCase ,len(self.key_string ) ) != 1: SCREAMING_SNAKE_CASE:Optional[Any] = ( F'''determinant modular {req_l} of encryption key({det}) ''' F'''is not co prime w.r.t {req_l}.\nTry another key.''' ) raise ValueError(_lowerCamelCase ) def __UpperCamelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : str ): SCREAMING_SNAKE_CASE:Dict = [char for char in text.upper() if char in self.key_string] SCREAMING_SNAKE_CASE:Union[str, Any] = chars[-1] while len(_lowerCamelCase ) % self.break_key != 0: chars.append(_lowerCamelCase ) return "".join(_lowerCamelCase ) def __UpperCamelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : str ): SCREAMING_SNAKE_CASE:List[Any] = self.process_text(text.upper() ) SCREAMING_SNAKE_CASE:Union[str, Any] = "" for i in range(0 ,len(_lowerCamelCase ) - self.break_key + 1 ,self.break_key ): SCREAMING_SNAKE_CASE:int = text[i : i + self.break_key] SCREAMING_SNAKE_CASE:Any = [self.replace_letters(_lowerCamelCase ) for char in batch] SCREAMING_SNAKE_CASE:Optional[int] = numpy.array([vec] ).T SCREAMING_SNAKE_CASE:str = self.modulus(self.encrypt_key.dot(_lowerCamelCase ) ).T.tolist()[ 0 ] SCREAMING_SNAKE_CASE:Any = "".join( self.replace_digits(_lowerCamelCase ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def __UpperCamelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE:List[str] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: SCREAMING_SNAKE_CASE:int = det % len(self.key_string ) SCREAMING_SNAKE_CASE:List[str] = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: SCREAMING_SNAKE_CASE:List[Any] = i break SCREAMING_SNAKE_CASE:List[str] = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(_lowerCamelCase ) ) def __UpperCamelCase ( self : str ,SCREAMING_SNAKE_CASE__ : str ): SCREAMING_SNAKE_CASE:Optional[int] = self.make_decrypt_key() SCREAMING_SNAKE_CASE:str = self.process_text(text.upper() ) SCREAMING_SNAKE_CASE:Union[str, Any] = "" for i in range(0 ,len(_lowerCamelCase ) - self.break_key + 1 ,self.break_key ): SCREAMING_SNAKE_CASE:Any = text[i : i + self.break_key] SCREAMING_SNAKE_CASE:List[str] = [self.replace_letters(_lowerCamelCase ) for char in batch] SCREAMING_SNAKE_CASE:Tuple = numpy.array([vec] ).T SCREAMING_SNAKE_CASE:str = self.modulus(decrypt_key.dot(_lowerCamelCase ) ).T.tolist()[0] SCREAMING_SNAKE_CASE:Optional[Any] = "".join( self.replace_digits(_lowerCamelCase ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def A_ ( ): SCREAMING_SNAKE_CASE:List[Any] = int(input("Enter the order of the encryption key: " ) ) SCREAMING_SNAKE_CASE:Union[str, Any] = [] print("Enter each row of the encryption key with space separated integers" ) for _ in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE:str = [int(__lowerCamelCase ) for x in input().split()] hill_matrix.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE:Any = HillCipher(numpy.array(__lowerCamelCase ) ) print("Would you like to encrypt or decrypt some text? (1 or 2)" ) SCREAMING_SNAKE_CASE:Dict = input("\n1. Encrypt\n2. Decrypt\n" ) if option == "1": SCREAMING_SNAKE_CASE:int = input("What text would you like to encrypt?: " ) print("Your encrypted text is:" ) print(hc.encrypt(__lowerCamelCase ) ) elif option == "2": SCREAMING_SNAKE_CASE:int = input("What text would you like to decrypt?: " ) print("Your decrypted text is:" ) print(hc.decrypt(__lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
143
"""simple docstring""" from __future__ import annotations import math class lowerCAmelCase__ : def __init__( self : int , _lowerCamelCase : int ): _snake_case = size # approximate the overall size of segment tree with given value _snake_case = [0 for i in range(0 , 4 * size )] # create array to store lazy update _snake_case = [0 for i in range(0 , 4 * size )] _snake_case = [0 for i in range(0 , 4 * size )] # flag for lazy update def lowercase ( self : Optional[Any] , _lowerCamelCase : int ): return idx * 2 def lowercase ( self : Dict , _lowerCamelCase : int ): return idx * 2 + 1 def lowercase ( self : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : list[int] ): if left_element == right_element: _snake_case = a[left_element - 1] else: _snake_case = (left_element + right_element) // 2 self.build(self.left(_lowerCamelCase ) , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.build(self.right(_lowerCamelCase ) , mid + 1 , _lowerCamelCase , _lowerCamelCase ) _snake_case = max( self.segment_tree[self.left(_lowerCamelCase )] , self.segment_tree[self.right(_lowerCamelCase )] ) def lowercase ( self : str , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int ): if self.flag[idx] is True: _snake_case = self.lazy[idx] _snake_case = False if left_element != right_element: _snake_case = self.lazy[idx] _snake_case = self.lazy[idx] _snake_case = True _snake_case = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: _snake_case = val if left_element != right_element: _snake_case = val _snake_case = val _snake_case = True _snake_case = True return True _snake_case = (left_element + right_element) // 2 self.update(self.left(_lowerCamelCase ) , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.update(self.right(_lowerCamelCase ) , mid + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _snake_case = max( self.segment_tree[self.left(_lowerCamelCase )] , self.segment_tree[self.right(_lowerCamelCase )] ) return True def lowercase ( self : Union[str, Any] , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int ): if self.flag[idx] is True: _snake_case = self.lazy[idx] _snake_case = False if left_element != right_element: _snake_case = self.lazy[idx] _snake_case = self.lazy[idx] _snake_case = True _snake_case = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] _snake_case = (left_element + right_element) // 2 _snake_case = self.query(self.left(_lowerCamelCase ) , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _snake_case = self.query(self.right(_lowerCamelCase ) , mid + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return max(_lowerCamelCase , _lowerCamelCase ) def __str__( self : List[Any] ): return str([self.query(1 , 1 , self.size , _lowerCamelCase , _lowerCamelCase ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": UpperCAmelCase__ = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] UpperCAmelCase__ = 15 UpperCAmelCase__ = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
224
0
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class snake_case ( ctypes.Structure ): # _fields is a specific attr expected by ctypes lowercase_ = [('size', ctypes.c_int), ('visible', ctypes.c_byte)] def _a ( ): '''simple docstring''' if os.name == "nt": SCREAMING_SNAKE_CASE__ : Dict = CursorInfo() SCREAMING_SNAKE_CASE__ : Optional[int] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(lowercase__ , ctypes.byref(lowercase__ ) ) SCREAMING_SNAKE_CASE__ : List[str] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(lowercase__ , ctypes.byref(lowercase__ ) ) elif os.name == "posix": sys.stdout.write('\033[?25l' ) sys.stdout.flush() def _a ( ): '''simple docstring''' if os.name == "nt": SCREAMING_SNAKE_CASE__ : Any = CursorInfo() SCREAMING_SNAKE_CASE__ : str = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(lowercase__ , ctypes.byref(lowercase__ ) ) SCREAMING_SNAKE_CASE__ : Dict = True ctypes.windll.kernelaa.SetConsoleCursorInfo(lowercase__ , ctypes.byref(lowercase__ ) ) elif os.name == "posix": sys.stdout.write('\033[?25h' ) sys.stdout.flush() @contextmanager def _a ( ): '''simple docstring''' try: hide_cursor() yield finally: show_cursor()
636
class snake_case ( UpperCamelCase_ ): pass class snake_case ( UpperCamelCase_ ): pass class snake_case : def __init__( self : Union[str, Any] )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = [ [], [], [], ] def __lowercase( self : int , a_ : int , a_ : int )-> None: """simple docstring""" try: if len(self.queues[priority] ) >= 100: raise OverflowError('Maximum queue size is 100' ) self.queues[priority].append(a_ ) except IndexError: raise ValueError('Valid priorities are 0, 1, and 2' ) def __lowercase( self : int )-> int: """simple docstring""" for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('All queues are empty' ) def __str__( self : Any )-> str: """simple docstring""" return "\n".join(F'''Priority {i}: {q}''' for i, q in enumerate(self.queues ) ) class snake_case : def __init__( self : Union[str, Any] )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = [] def __lowercase( self : List[str] , a_ : int )-> None: """simple docstring""" if len(self.queue ) == 100: raise OverFlowError('Maximum queue size is 100' ) self.queue.append(a_ ) def __lowercase( self : int )-> int: """simple docstring""" if not self.queue: raise UnderFlowError('The queue is empty' ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = min(self.queue ) self.queue.remove(a_ ) return data def __str__( self : List[str] )-> str: """simple docstring""" return str(self.queue ) def _a ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 1_00 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 1_28 ) print(lowercase__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(lowercase__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def _a ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(1_00 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(1_28 ) print(lowercase__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(lowercase__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
636
1
_SCREAMING_SNAKE_CASE = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] _SCREAMING_SNAKE_CASE = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] _SCREAMING_SNAKE_CASE = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] _SCREAMING_SNAKE_CASE = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] _SCREAMING_SNAKE_CASE = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] _SCREAMING_SNAKE_CASE = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] _SCREAMING_SNAKE_CASE = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] _SCREAMING_SNAKE_CASE = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
537
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = FlaxAutoencoderKL @property def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = 4 UpperCamelCase = 3 UpperCamelCase = (32, 32) UpperCamelCase = jax.random.PRNGKey(0 ) UpperCamelCase = jax.random.uniform(lowerCamelCase_ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } UpperCamelCase = self.dummy_input return init_dict, inputs_dict
537
1
"""simple docstring""" import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(">=", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType __UpperCamelCase : int = get_logger(__name__) def __UpperCAmelCase ( _snake_case : Union[str, Any], _snake_case : Optional[Any], _snake_case : int, _snake_case : int, _snake_case : int=0 ): os.makedirs(_snake_case, exist_ok=_snake_case ) with FSDP.state_dict_type( _snake_case, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): _lowercase = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: _lowercase = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" _lowercase = os.path.join(_snake_case, _snake_case ) if accelerator.process_index == 0: logger.info(f"""Saving model to {output_model_file}""" ) torch.save(_snake_case, _snake_case ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: _lowercase = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) _lowercase = os.path.join(_snake_case, _snake_case ) logger.info(f"""Saving model to {output_model_file}""" ) torch.save(_snake_case, _snake_case ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: _lowercase = os.path.join(_snake_case, f"""{MODEL_NAME}_{model_index}""" ) os.makedirs(_snake_case, exist_ok=_snake_case ) logger.info(f"""Saving model to {ckpt_dir}""" ) _lowercase = {"model": state_dict} dist_cp.save_state_dict( state_dict=_snake_case, storage_writer=dist_cp.FileSystemWriter(_snake_case ), planner=DefaultSavePlanner(), ) logger.info(f"""Model saved to {ckpt_dir}""" ) def __UpperCAmelCase ( _snake_case : Tuple, _snake_case : int, _snake_case : List[str], _snake_case : str, _snake_case : Any=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( _snake_case, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(_snake_case ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return _lowercase = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" _lowercase = os.path.join(_snake_case, _snake_case ) logger.info(f"""Loading model from {input_model_file}""" ) _lowercase = torch.load(_snake_case ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: _lowercase = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) _lowercase = os.path.join(_snake_case, _snake_case ) logger.info(f"""Loading model from {input_model_file}""" ) _lowercase = torch.load(_snake_case ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: _lowercase = ( os.path.join(_snake_case, f"""{MODEL_NAME}_{model_index}""" ) if f"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading model from {ckpt_dir}""" ) _lowercase = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=_snake_case, storage_reader=dist_cp.FileSystemReader(_snake_case ), planner=DefaultLoadPlanner(), ) _lowercase = state_dict["model"] logger.info(f"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(_snake_case ) def __UpperCAmelCase ( _snake_case : Optional[int], _snake_case : Optional[int], _snake_case : str, _snake_case : Any, _snake_case : List[Any], _snake_case : List[Any]=0 ): os.makedirs(_snake_case, exist_ok=_snake_case ) with FSDP.state_dict_type( _snake_case, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): _lowercase = FSDP.optim_state_dict(_snake_case, _snake_case ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: _lowercase = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) _lowercase = os.path.join(_snake_case, _snake_case ) logger.info(f"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(_snake_case, _snake_case ) logger.info(f"""Optimizer state saved in {output_optimizer_file}""" ) else: _lowercase = os.path.join(_snake_case, f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(_snake_case, exist_ok=_snake_case ) logger.info(f"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state}, storage_writer=dist_cp.FileSystemWriter(_snake_case ), planner=DefaultSavePlanner(), ) logger.info(f"""Optimizer state saved in {ckpt_dir}""" ) def __UpperCAmelCase ( _snake_case : List[str], _snake_case : int, _snake_case : Optional[Any], _snake_case : Any, _snake_case : Optional[int], _snake_case : Tuple=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( _snake_case, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: _lowercase = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: _lowercase = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) _lowercase = os.path.join(_snake_case, _snake_case ) logger.info(f"""Loading Optimizer state from {input_optimizer_file}""" ) _lowercase = torch.load(_snake_case ) logger.info(f"""Optimizer state loaded from {input_optimizer_file}""" ) else: _lowercase = ( os.path.join(_snake_case, f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if f"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading Optimizer from {ckpt_dir}""" ) _lowercase = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict(), optimizer_key="optimizer", storage_reader=dist_cp.FileSystemReader(_snake_case ), ) _lowercase = optim_state["optimizer"] logger.info(f"""Optimizer loaded from {ckpt_dir}""" ) _lowercase = FSDP.optim_state_dict_to_load(_snake_case, _snake_case, _snake_case ) optimizer.load_state_dict(_snake_case )
227
"""simple docstring""" # flake8: noqa # Lint as: python3 __UpperCamelCase : Optional[Any] = [ "VerificationMode", "Version", "disable_progress_bar", "enable_progress_bar", "is_progress_bar_enabled", "experimental", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
227
1
'''simple docstring''' from __future__ import annotations from collections.abc import Generator def snake_case ( ) -> Generator[int, None, None]: """simple docstring""" lowerCAmelCase = {} lowerCAmelCase = 2 while True: lowerCAmelCase = factor_map.pop(snake_case , snake_case ) if factor: lowerCAmelCase = factor + prime while x in factor_map: x += factor lowerCAmelCase = factor else: lowerCAmelCase = prime yield prime prime += 1 def snake_case ( snake_case : float = 1e10 ) -> int: """simple docstring""" lowerCAmelCase = sieve() lowerCAmelCase = 1 while True: lowerCAmelCase = next(snake_case ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(snake_case ) n += 2 if __name__ == "__main__": print(solution())
284
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase : Dict = get_tests_dir("fixtures/test_sentencepiece_with_bytefallback.model") @require_sentencepiece @require_tokenizers class _snake_case ( a_ , unittest.TestCase ): SCREAMING_SNAKE_CASE : int = GPTSwaTokenizer SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : Any = False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase = GPTSwaTokenizer(_SCREAMING_SNAKE_CASE , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = 'This is a test' lowerCAmelCase = 'This is a test' return input_text, output_text def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = '<s>' lowerCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 20_00 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 20_00 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = GPTSwaTokenizer(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = tokenizer.tokenize('This is a test' ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [4_65, 2_87, 2_65, 6_31, 8_42] ) lowerCAmelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( _SCREAMING_SNAKE_CASE , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on lowerCAmelCase = tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60] , ) lowerCAmelCase = tokenizer.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) # fmt: off self.assertListEqual( _SCREAMING_SNAKE_CASE , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = GPTSwaTokenizer(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = ['This is a test', 'I was born in 92000, and this is falsé.'] lowerCAmelCase = [ [4_65, 2_87, 2_65, 6_31, 8_42], [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertListEqual(tokenizer.encode_fast(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # Test that decode_fast returns the input text for text, token_ids in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertEqual(tokenizer.decode_fast(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off lowerCAmelCase = {'input_ids': [[6_34_23, 5, 68_11, 1_49_54, 2_82, 8_16, 38_21, 6_34_66, 6_34_25, 6_34_62, 18, 6_39_78, 6_78, 3_01, 13_20, 6_34_23, 6_34_55, 6_34_58, 18, 6_39_82, 42_46, 39_40, 19_01, 4_77_89, 55_47, 1_89_94], [1_96_30, 11_00, 6_34_46, 13_42, 6_33, 5_44, 44_88, 5_93, 51_02, 24_16, 6_34_95, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [16_52, 4_28, 2_68, 19_36, 5_15, 2_68, 5_85_93, 2_24_13, 91_06, 5_46, 2_68, 3_32_13, 6_39_79, 6_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_51_30, 6_34_50, 9_24, 6_34_49, 22_49, 40_62, 15_58, 3_18, 6_35_04, 2_14_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_09, 3_77, 28_27, 25_59, 3_32, 65_75, 6_34_43, 2_68_01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name='AI-Sweden/gpt-sw3-126m' , sequences=_SCREAMING_SNAKE_CASE , )
284
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def _lowerCAmelCase ( lowerCamelCase__ : List[Any] ) -> Any: _SCREAMING_SNAKE_CASE : Tuple = botoa.client("iam" ) _SCREAMING_SNAKE_CASE : str = { "Version": "2012-10-17", "Statement": [ {"Effect": "Allow", "Principal": {"Service": "sagemaker.amazonaws.com"}, "Action": "sts:AssumeRole"} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=lowerCamelCase__, AssumeRolePolicyDocument=json.dumps(lowerCamelCase__, indent=2 ) ) _SCREAMING_SNAKE_CASE : Optional[int] = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "sagemaker:*", "ecr:GetDownloadUrlForLayer", "ecr:BatchGetImage", "ecr:BatchCheckLayerAvailability", "ecr:GetAuthorizationToken", "cloudwatch:PutMetricData", "cloudwatch:GetMetricData", "cloudwatch:GetMetricStatistics", "cloudwatch:ListMetrics", "logs:CreateLogGroup", "logs:CreateLogStream", "logs:DescribeLogStreams", "logs:PutLogEvents", "logs:GetLogEvents", "s3:CreateBucket", "s3:ListBucket", "s3:GetBucketLocation", "s3:GetObject", "s3:PutObject", ], "Resource": "*", } ], } # attach policy to role iam_client.put_role_policy( RoleName=lowerCamelCase__, PolicyName=f'''{role_name}_policy_permission''', PolicyDocument=json.dumps(lowerCamelCase__, indent=2 ), ) except iam_client.exceptions.EntityAlreadyExistsException: print(f'''role {role_name} already exists. Using existing one''' ) def _lowerCAmelCase ( lowerCamelCase__ : str ) -> Dict: _SCREAMING_SNAKE_CASE : Dict = botoa.client("iam" ) return iam_client.get_role(RoleName=lowerCamelCase__ )["Role"]["Arn"] def _lowerCAmelCase ( ) -> Any: _SCREAMING_SNAKE_CASE : List[Any] = _ask_options( "How do you want to authorize?", ["AWS Profile", "Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) "], lowerCamelCase__, ) _SCREAMING_SNAKE_CASE : int = None if credentials_configuration == 0: _SCREAMING_SNAKE_CASE : Union[str, Any] = _ask_field("Enter your AWS Profile name: [default] ", default="default" ) _SCREAMING_SNAKE_CASE : int = aws_profile else: print( "Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with," "`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`" ) _SCREAMING_SNAKE_CASE : str = _ask_field("AWS Access Key ID: " ) _SCREAMING_SNAKE_CASE : int = aws_access_key_id _SCREAMING_SNAKE_CASE : int = _ask_field("AWS Secret Access Key: " ) _SCREAMING_SNAKE_CASE : Any = aws_secret_access_key _SCREAMING_SNAKE_CASE : Optional[Any] = _ask_field("Enter your AWS Region: [us-east-1]", default="us-east-1" ) _SCREAMING_SNAKE_CASE : Any = aws_region _SCREAMING_SNAKE_CASE : Dict = _ask_options( "Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?", ["Provide IAM Role name", "Create new IAM role using credentials"], lowerCamelCase__, ) if role_management == 0: _SCREAMING_SNAKE_CASE : Dict = _ask_field("Enter your IAM role name: " ) else: _SCREAMING_SNAKE_CASE : str = "accelerate_sagemaker_execution_role" print(f'''Accelerate will create an iam role "{iam_role_name}" using the provided credentials''' ) _create_iam_role_for_sagemaker(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : Dict = _ask_field( "Do you want to use custom Docker image? [yes/NO]: ", _convert_yes_no_to_bool, default=lowerCamelCase__, error_message="Please enter yes or no.", ) _SCREAMING_SNAKE_CASE : int = None if is_custom_docker_image: _SCREAMING_SNAKE_CASE : List[Any] = _ask_field("Enter your Docker image: ", lambda lowerCamelCase__ : str(lowerCamelCase__ ).lower() ) _SCREAMING_SNAKE_CASE : List[Any] = _ask_field( "Do you want to provide SageMaker input channels with data locations? [yes/NO]: ", _convert_yes_no_to_bool, default=lowerCamelCase__, error_message="Please enter yes or no.", ) _SCREAMING_SNAKE_CASE : List[str] = None if is_sagemaker_inputs_enabled: _SCREAMING_SNAKE_CASE : Tuple = _ask_field( "Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ", lambda lowerCamelCase__ : str(lowerCamelCase__ ).lower(), ) _SCREAMING_SNAKE_CASE : Optional[Any] = _ask_field( "Do you want to enable SageMaker metrics? [yes/NO]: ", _convert_yes_no_to_bool, default=lowerCamelCase__, error_message="Please enter yes or no.", ) _SCREAMING_SNAKE_CASE : int = None if is_sagemaker_metrics_enabled: _SCREAMING_SNAKE_CASE : Tuple = _ask_field( "Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ", lambda lowerCamelCase__ : str(lowerCamelCase__ ).lower(), ) _SCREAMING_SNAKE_CASE : Any = _ask_options( "What is the distributed mode?", ["No distributed training", "Data parallelism"], _convert_sagemaker_distributed_mode, ) _SCREAMING_SNAKE_CASE : Optional[Any] = {} _SCREAMING_SNAKE_CASE : int = _ask_field( "Do you wish to optimize your script with torch dynamo?[yes/NO]:", _convert_yes_no_to_bool, default=lowerCamelCase__, error_message="Please enter yes or no.", ) if use_dynamo: _SCREAMING_SNAKE_CASE : List[Any] = "dynamo_" _SCREAMING_SNAKE_CASE : Union[str, Any] = _ask_options( "Which dynamo backend would you like to use?", [x.lower() for x in DYNAMO_BACKENDS], _convert_dynamo_backend, default=2, ) _SCREAMING_SNAKE_CASE : List[str] = _ask_field( "Do you want to customize the defaults sent to torch.compile? [yes/NO]: ", _convert_yes_no_to_bool, default=lowerCamelCase__, error_message="Please enter yes or no.", ) if use_custom_options: _SCREAMING_SNAKE_CASE : List[str] = _ask_options( "Which mode do you want to use?", lowerCamelCase__, lambda lowerCamelCase__ : TORCH_DYNAMO_MODES[int(lowerCamelCase__ )], default="default", ) _SCREAMING_SNAKE_CASE : Optional[Any] = _ask_field( "Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ", _convert_yes_no_to_bool, default=lowerCamelCase__, error_message="Please enter yes or no.", ) _SCREAMING_SNAKE_CASE : Any = _ask_field( "Do you want to enable dynamic shape tracing? [yes/NO]: ", _convert_yes_no_to_bool, default=lowerCamelCase__, error_message="Please enter yes or no.", ) _SCREAMING_SNAKE_CASE : str = "Which EC2 instance type you want to use for your training?" if distributed_type != SageMakerDistributedType.NO: _SCREAMING_SNAKE_CASE : Optional[Any] = _ask_options( lowerCamelCase__, lowerCamelCase__, lambda lowerCamelCase__ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(lowerCamelCase__ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" _SCREAMING_SNAKE_CASE : int = _ask_field(lowerCamelCase__, lambda lowerCamelCase__ : str(lowerCamelCase__ ).lower(), default="ml.p3.2xlarge" ) _SCREAMING_SNAKE_CASE : str = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): _SCREAMING_SNAKE_CASE : Dict = _ask_field( "How many machines do you want use? [1]: ", lowerCamelCase__, default=1, ) _SCREAMING_SNAKE_CASE : int = _ask_options( "Do you wish to use FP16 or BF16 (mixed precision)?", ["no", "fp16", "bf16", "fp8"], _convert_mixed_precision, ) if use_dynamo and mixed_precision == "no": print( "Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts." ) return SageMakerConfig( image_uri=lowerCamelCase__, compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER, distributed_type=lowerCamelCase__, use_cpu=lowerCamelCase__, dynamo_config=lowerCamelCase__, eca_instance_type=lowerCamelCase__, profile=lowerCamelCase__, region=lowerCamelCase__, iam_role_name=lowerCamelCase__, mixed_precision=lowerCamelCase__, num_machines=lowerCamelCase__, sagemaker_inputs_file=lowerCamelCase__, sagemaker_metrics_file=lowerCamelCase__, )
295
"""simple docstring""" from collections.abc import Iterable from typing import Any class UpperCamelCase : def __init__( self , snake_case__ = None ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = value _SCREAMING_SNAKE_CASE : Node | None = None # Added in order to delete a node easier _SCREAMING_SNAKE_CASE : Node | None = None _SCREAMING_SNAKE_CASE : Node | None = None def __repr__( self ): """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F'''{self.value}''': (self.left, self.right)} , indent=1 ) class UpperCamelCase : def __init__( self , snake_case__ = None ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = root def __str__( self ): """simple docstring""" return str(self.root ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ ): """simple docstring""" if new_children is not None: # reset its kids _SCREAMING_SNAKE_CASE : Dict = node.parent if node.parent is not None: # reset its parent if self.is_right(snake_case__ ): # If it is the right children _SCREAMING_SNAKE_CASE : Any = new_children else: _SCREAMING_SNAKE_CASE : Union[str, Any] = new_children else: _SCREAMING_SNAKE_CASE : Any = new_children def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" if node.parent and node.parent.right: return node == node.parent.right return False def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" return self.root is None def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = Node(snake_case__ ) # create a new Node if self.empty(): # if Tree is empty _SCREAMING_SNAKE_CASE : str = new_node # set its root else: # Tree is not empty _SCREAMING_SNAKE_CASE : Dict = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: _SCREAMING_SNAKE_CASE : Union[str, Any] = new_node # We insert the new node in a leaf break else: _SCREAMING_SNAKE_CASE : int = parent_node.left else: if parent_node.right is None: _SCREAMING_SNAKE_CASE : str = new_node break else: _SCREAMING_SNAKE_CASE : Optional[int] = parent_node.right _SCREAMING_SNAKE_CASE : Any = parent_node def __SCREAMING_SNAKE_CASE ( self , *snake_case__ ): """simple docstring""" for value in values: self.__insert(snake_case__ ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" if self.empty(): raise IndexError("Warning: Tree is empty! please use another." ) else: _SCREAMING_SNAKE_CASE : Optional[int] = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: _SCREAMING_SNAKE_CASE : List[Any] = node.left if value < node.value else node.right return node def __SCREAMING_SNAKE_CASE ( self , snake_case__ = None ): """simple docstring""" if node is None: if self.root is None: return None _SCREAMING_SNAKE_CASE : Optional[Any] = self.root if not self.empty(): while node.right is not None: _SCREAMING_SNAKE_CASE : Dict = node.right return node def __SCREAMING_SNAKE_CASE ( self , snake_case__ = None ): """simple docstring""" if node is None: _SCREAMING_SNAKE_CASE : List[Any] = self.root if self.root is None: return None if not self.empty(): _SCREAMING_SNAKE_CASE : Any = self.root while node.left is not None: _SCREAMING_SNAKE_CASE : Optional[int] = node.left return node def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = self.search(snake_case__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(snake_case__ , snake_case__ ) elif node.left is None: # Has only right children self.__reassign_nodes(snake_case__ , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(snake_case__ , node.left ) else: _SCREAMING_SNAKE_CASE : Dict = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore _SCREAMING_SNAKE_CASE : List[Any] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def __SCREAMING_SNAKE_CASE ( self , snake_case__=None ): """simple docstring""" if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ ): """simple docstring""" if node: self.inorder(snake_case__ , node.left ) arr.append(node.value ) self.inorder(snake_case__ , node.right ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : list[int] = [] self.inorder(snake_case__ , snake_case__ ) # append all values to list using inorder traversal return arr[k - 1] def _lowerCAmelCase ( lowerCamelCase__ : Node | None ) -> list[Node]: _SCREAMING_SNAKE_CASE : Optional[int] = [] if curr_node is not None: _SCREAMING_SNAKE_CASE : int = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def _lowerCAmelCase ( ) -> None: _SCREAMING_SNAKE_CASE : Any = (8, 3, 6, 1, 1_0, 1_4, 1_3, 4, 7) _SCREAMING_SNAKE_CASE : List[Any] = BinarySearchTree() for i in testlist: t.insert(lowerCamelCase__ ) # Prints all the elements of the list in order traversal print(lowerCamelCase__ ) if t.search(6 ) is not None: print("The value 6 exists" ) else: print("The value 6 doesn't exist" ) if t.search(-1 ) is not None: print("The value -1 exists" ) else: print("The value -1 doesn't exist" ) if not t.empty(): print("Max Value: ", t.get_max().value ) # type: ignore print("Min Value: ", t.get_min().value ) # type: ignore for i in testlist: t.remove(lowerCamelCase__ ) print(lowerCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
295
1
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel a__ : Dict = HfApi() a__ : List[str] = {} # fmt: off a__ : Dict = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) a__ : Dict = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) a__ : str = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) a__ : Dict = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) a__ : Any = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) a__ : Optional[int] = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) a__ : Optional[int] = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) a__ : str = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) a__ : Union[str, Any] = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) a__ : int = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) a__ : List[str] = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) a__ : Union[str, Any] = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) a__ : Any = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) a__ : List[Any] = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) a__ : List[Any] = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on a__ : Optional[Any] = api.list_models(filter='diffusers') for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": a__ : Tuple = '/home/patrick/google_checkpoints/' + mod.modelId.split('/')[-1] print(F"""Started running {mod.modelId}!!!""") if mod.modelId.startswith('CompVis'): a__ : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder='unet') else: a__ : List[Any] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) a__ : Tuple = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) a__ : int = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): a__ : int = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results['_'.join('_'.join(mod.modelId.split('/')).split('-'))], atol=1e-3 ) print(F"""{mod.modelId} has passed successfully!!!""")
51
'''simple docstring''' import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() a__ : Tuple = logging.get_logger(__name__) def __snake_case ( SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[int]: """simple docstring""" print('''Loading config file...''' ) def flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int]="" , SCREAMING_SNAKE_CASE_ : Dict="." ): UpperCAmelCase = [] for k, v in d.items(): UpperCAmelCase = parent_key + sep + k if parent_key else k if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , sep=SCREAMING_SNAKE_CASE_ ).items() ) else: items.append((new_key, v) ) return dict(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = argparse.Namespace() with open(SCREAMING_SNAKE_CASE_ , '''r''' ) as yaml_file: try: UpperCAmelCase = yaml.load(SCREAMING_SNAKE_CASE_ , Loader=yaml.FullLoader ) UpperCAmelCase = flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ ) for k, v in flat_cfg.items(): setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except yaml.YAMLError as exc: logger.error('''Error while loading config file: {}. Error message: {}'''.format(SCREAMING_SNAKE_CASE_ , str(SCREAMING_SNAKE_CASE_ ) ) ) return config def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: """simple docstring""" UpperCAmelCase = MobileViTVaConfig() UpperCAmelCase = False # dataset if task_name.startswith('''imagenet1k_''' ): UpperCAmelCase = 1_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: UpperCAmelCase = 384 else: UpperCAmelCase = 256 UpperCAmelCase = '''imagenet-1k-id2label.json''' elif task_name.startswith('''imagenet21k_to_1k_''' ): UpperCAmelCase = 21_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: UpperCAmelCase = 384 else: UpperCAmelCase = 256 UpperCAmelCase = '''imagenet-22k-id2label.json''' elif task_name.startswith('''ade20k_''' ): UpperCAmelCase = 151 UpperCAmelCase = 512 UpperCAmelCase = '''ade20k-id2label.json''' UpperCAmelCase = True elif task_name.startswith('''voc_''' ): UpperCAmelCase = 21 UpperCAmelCase = 512 UpperCAmelCase = '''pascal-voc-id2label.json''' UpperCAmelCase = True # orig_config UpperCAmelCase = load_orig_config_file(SCREAMING_SNAKE_CASE_ ) assert getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model" UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.mitv2.width_multiplier''' , 1.0 ) assert ( getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.classification.activation.name''' , '''swish''' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.output_stride''' , 16 ) if "_deeplabv3" in task_name: UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] ) UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 ) UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 ) # id2label UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def __snake_case ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] ) -> str: """simple docstring""" UpperCAmelCase = dct.pop(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = val def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str=False ) -> int: """simple docstring""" if base_model: UpperCAmelCase = '''''' else: UpperCAmelCase = '''mobilevitv2.''' UpperCAmelCase = [] for k in state_dict.keys(): if k[:8] == "encoder.": UpperCAmelCase = k[8:] else: UpperCAmelCase = k if ".block." in k: UpperCAmelCase = k_new.replace('''.block.''' , '''.''' ) if ".conv." in k: UpperCAmelCase = k_new.replace('''.conv.''' , '''.convolution.''' ) if ".norm." in k: UpperCAmelCase = k_new.replace('''.norm.''' , '''.normalization.''' ) if "conv_1." in k: UpperCAmelCase = k_new.replace('''conv_1.''' , f"{model_prefix}conv_stem." ) for i in [1, 2]: if f"layer_{i}." in k: UpperCAmelCase = k_new.replace(f"layer_{i}." , f"{model_prefix}encoder.layer.{i-1}.layer." ) if ".exp_1x1." in k: UpperCAmelCase = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' ) if ".red_1x1." in k: UpperCAmelCase = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' ) for i in [3, 4, 5]: if f"layer_{i}.0." in k: UpperCAmelCase = k_new.replace(f"layer_{i}.0." , f"{model_prefix}encoder.layer.{i-1}.downsampling_layer." ) if f"layer_{i}.1.local_rep.0." in k: UpperCAmelCase = k_new.replace(f"layer_{i}.1.local_rep.0." , f"{model_prefix}encoder.layer.{i-1}.conv_kxk." ) if f"layer_{i}.1.local_rep.1." in k: UpperCAmelCase = k_new.replace(f"layer_{i}.1.local_rep.1." , f"{model_prefix}encoder.layer.{i-1}.conv_1x1." ) for i in [3, 4, 5]: if i == 3: UpperCAmelCase = [0, 1] elif i == 4: UpperCAmelCase = [0, 1, 2, 3] elif i == 5: UpperCAmelCase = [0, 1, 2] for j in j_in: if f"layer_{i}.1.global_rep.{j}." in k: UpperCAmelCase = k_new.replace( f"layer_{i}.1.global_rep.{j}." , f"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." ) if f"layer_{i}.1.global_rep.{j+1}." in k: UpperCAmelCase = k_new.replace( f"layer_{i}.1.global_rep.{j+1}." , f"{model_prefix}encoder.layer.{i-1}.layernorm." ) if f"layer_{i}.1.conv_proj." in k: UpperCAmelCase = k_new.replace(f"layer_{i}.1.conv_proj." , f"{model_prefix}encoder.layer.{i-1}.conv_projection." ) if "pre_norm_attn.0." in k: UpperCAmelCase = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' ) if "pre_norm_attn.1." in k: UpperCAmelCase = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' ) if "pre_norm_ffn.0." in k: UpperCAmelCase = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' ) if "pre_norm_ffn.1." in k: UpperCAmelCase = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' ) if "pre_norm_ffn.3." in k: UpperCAmelCase = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' ) if "classifier.1." in k: UpperCAmelCase = k_new.replace('''classifier.1.''' , '''classifier.''' ) if "seg_head." in k: UpperCAmelCase = k_new.replace('''seg_head.''' , '''segmentation_head.''' ) if ".aspp_layer." in k: UpperCAmelCase = k_new.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in k: UpperCAmelCase = k_new.replace('''.aspp_pool.''' , '''.''' ) rename_keys.append((k, k_new) ) return rename_keys def __snake_case ( SCREAMING_SNAKE_CASE_ : Tuple ) -> int: """simple docstring""" UpperCAmelCase = [] for k in state_dict.keys(): if k.startswith('''seg_head.aux_head.''' ): keys_to_ignore.append(SCREAMING_SNAKE_CASE_ ) for k in keys_to_ignore: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __snake_case ( ) -> List[Any]: """simple docstring""" UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def __snake_case ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Tuple: """simple docstring""" UpperCAmelCase = get_mobilevitva_config(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load original state_dict UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' ) # load huggingface model if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ): UpperCAmelCase = MobileViTVaForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ).eval() UpperCAmelCase = False else: UpperCAmelCase = MobileViTVaForImageClassification(SCREAMING_SNAKE_CASE_ ).eval() UpperCAmelCase = False # remove and rename some keys of load the original model UpperCAmelCase = checkpoint remove_unused_keys(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE_ , base_model=SCREAMING_SNAKE_CASE_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load modified state_dict model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image, prepared by MobileViTImageProcessor UpperCAmelCase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) # verify classification model if task_name.startswith('''imagenet''' ): UpperCAmelCase = outputs.logits UpperCAmelCase = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0: # expected_logits for base variant UpperCAmelCase = torch.tensor([-1.6_336e00, -7.3_204e-02, -5.1_883e-01] ) assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(f"Saving model {task_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": a__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='imagenet1k_256', type=str, help=( 'Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ' '\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n ' ), choices=[ 'imagenet1k_256', 'imagenet1k_384', 'imagenet21k_to_1k_256', 'imagenet21k_to_1k_384', 'ade20k_deeplabv3', 'voc_deeplabv3', ], ) parser.add_argument( '--orig_checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument('--orig_config_path', required=True, type=str, help='Path to the original config file.') parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) a__ : str = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
51
1
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): while a != 0: _lowercase , _lowercase : Optional[Any] = b % a, a return b def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): if gcd(__UpperCAmelCase , __UpperCAmelCase ) != 1: _lowercase : str = F"""mod inverse of {a!r} and {m!r} does not exist""" raise ValueError(__UpperCAmelCase ) _lowercase , _lowercase , _lowercase : Optional[Any] = 1, 0, a _lowercase , _lowercase , _lowercase : List[Any] = 0, 1, m while va != 0: _lowercase : List[Any] = ua // va _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : int = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
717
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase: str = logging.get_logger(__name__) UpperCAmelCase: Optional[Any] = { """facebook/wav2vec2-base-960h""": """https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json""", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = "wav2vec2" def __init__( self ,UpperCAmelCase_=32 ,UpperCAmelCase_=7_68 ,UpperCAmelCase_=12 ,UpperCAmelCase_=12 ,UpperCAmelCase_=30_72 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-5 ,UpperCAmelCase_="group" ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) ,UpperCAmelCase_=(5, 2, 2, 2, 2, 2, 2) ,UpperCAmelCase_=(10, 3, 3, 3, 3, 2, 2) ,UpperCAmelCase_=False ,UpperCAmelCase_=1_28 ,UpperCAmelCase_=16 ,UpperCAmelCase_=False ,UpperCAmelCase_=True ,UpperCAmelCase_=0.05 ,UpperCAmelCase_=10 ,UpperCAmelCase_=2 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=10 ,UpperCAmelCase_=0 ,UpperCAmelCase_=3_20 ,UpperCAmelCase_=2 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=1_00 ,UpperCAmelCase_=2_56 ,UpperCAmelCase_=2_56 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_="sum" ,UpperCAmelCase_=False ,UpperCAmelCase_=False ,UpperCAmelCase_=2_56 ,UpperCAmelCase_=(5_12, 5_12, 5_12, 5_12, 15_00) ,UpperCAmelCase_=(5, 3, 3, 1, 1) ,UpperCAmelCase_=(1, 2, 3, 1, 1) ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=0 ,UpperCAmelCase_=1 ,UpperCAmelCase_=2 ,UpperCAmelCase_=False ,UpperCAmelCase_=3 ,UpperCAmelCase_=2 ,UpperCAmelCase_=3 ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,**UpperCAmelCase_ ,): super().__init__(**UpperCAmelCase_ ,pad_token_id=UpperCAmelCase_ ,bos_token_id=UpperCAmelCase_ ,eos_token_id=UpperCAmelCase_ ) _lowercase : List[Any] = hidden_size _lowercase : Any = feat_extract_norm _lowercase : Tuple = feat_extract_activation _lowercase : Tuple = list(UpperCAmelCase_ ) _lowercase : List[str] = list(UpperCAmelCase_ ) _lowercase : List[Any] = list(UpperCAmelCase_ ) _lowercase : List[Any] = conv_bias _lowercase : Optional[Any] = num_conv_pos_embeddings _lowercase : Dict = num_conv_pos_embedding_groups _lowercase : List[Any] = len(self.conv_dim ) _lowercase : str = num_hidden_layers _lowercase : Any = intermediate_size _lowercase : int = hidden_act _lowercase : int = num_attention_heads _lowercase : Union[str, Any] = hidden_dropout _lowercase : Dict = attention_dropout _lowercase : Tuple = activation_dropout _lowercase : str = feat_proj_dropout _lowercase : List[str] = final_dropout _lowercase : Tuple = layerdrop _lowercase : List[str] = layer_norm_eps _lowercase : Any = initializer_range _lowercase : Any = vocab_size _lowercase : Optional[Any] = do_stable_layer_norm _lowercase : Union[str, Any] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowercase : Union[str, Any] = apply_spec_augment _lowercase : Optional[Any] = mask_time_prob _lowercase : Optional[int] = mask_time_length _lowercase : Dict = mask_time_min_masks _lowercase : Optional[int] = mask_feature_prob _lowercase : Tuple = mask_feature_length _lowercase : Optional[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowercase : str = num_codevectors_per_group _lowercase : Union[str, Any] = num_codevector_groups _lowercase : Optional[Any] = contrastive_logits_temperature _lowercase : Tuple = feat_quantizer_dropout _lowercase : Optional[int] = num_negatives _lowercase : str = codevector_dim _lowercase : Optional[int] = proj_codevector_dim _lowercase : int = diversity_loss_weight # ctc loss _lowercase : Optional[int] = ctc_loss_reduction _lowercase : str = ctc_zero_infinity # adapter _lowercase : str = add_adapter _lowercase : List[str] = adapter_kernel_size _lowercase : Any = adapter_stride _lowercase : List[Any] = num_adapter_layers _lowercase : Optional[Any] = output_hidden_size or hidden_size _lowercase : str = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowercase : int = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowercase : List[str] = list(UpperCAmelCase_ ) _lowercase : List[Any] = list(UpperCAmelCase_ ) _lowercase : Tuple = list(UpperCAmelCase_ ) _lowercase : List[Any] = xvector_output_dim @property def lowerCamelCase__ ( self ): return functools.reduce(operator.mul ,self.conv_stride ,1 )
600
0
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' if exponent == 1: return base if exponent % 2 == 0: __SCREAMING_SNAKE_CASE = _modexpt(__UpperCAmelCase , exponent // 2 , __UpperCAmelCase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__UpperCAmelCase , exponent - 1 , __UpperCAmelCase )) % modulo_value def __magic_name__ ( __UpperCAmelCase = 1777 , __UpperCAmelCase = 1855 , __UpperCAmelCase = 8 ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = base for _ in range(1 , __UpperCAmelCase ): __SCREAMING_SNAKE_CASE = _modexpt(__UpperCAmelCase , __UpperCAmelCase , 10**digits ) return result if __name__ == "__main__": print(F'''{solution() = }''')
109
'''simple docstring''' from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCamelCase ( self ): snake_case__ : Dict = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """embed_dim""" ) ) self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """num_heads""" ) ) class __snake_case : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1_3 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=[1_6, 4_8, 9_6] , __SCREAMING_SNAKE_CASE=[1, 3, 6] , __SCREAMING_SNAKE_CASE=[1, 2, 1_0] , __SCREAMING_SNAKE_CASE=[7, 3, 3] , __SCREAMING_SNAKE_CASE=[4, 2, 2] , __SCREAMING_SNAKE_CASE=[2, 1, 1] , __SCREAMING_SNAKE_CASE=[2, 2, 2] , __SCREAMING_SNAKE_CASE=[False, False, True] , __SCREAMING_SNAKE_CASE=[0.0, 0.0, 0.0] , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-1_2 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=2 , ): snake_case__ : List[str] = parent snake_case__ : Tuple = batch_size snake_case__ : Union[str, Any] = image_size snake_case__ : List[Any] = patch_sizes snake_case__ : Optional[int] = patch_stride snake_case__ : Optional[Any] = patch_padding snake_case__ : Any = is_training snake_case__ : int = use_labels snake_case__ : Dict = num_labels snake_case__ : Optional[Any] = num_channels snake_case__ : Optional[Any] = embed_dim snake_case__ : Optional[int] = num_heads snake_case__ : Optional[int] = stride_kv snake_case__ : int = depth snake_case__ : Optional[Any] = cls_token snake_case__ : List[Any] = attention_drop_rate snake_case__ : Union[str, Any] = initializer_range snake_case__ : List[Any] = layer_norm_eps def __UpperCamelCase ( self ): snake_case__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : List[Any] = None if self.use_labels: # create a random int32 tensor of given shape snake_case__ : List[str] = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ : List[str] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ): return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : int = TFCvtModel(config=__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = model(__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = (self.image_size, self.image_size) snake_case__ , snake_case__ : str = image_size[0], image_size[1] for i in range(len(self.depth ) ): snake_case__ : Any = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) snake_case__ : Optional[int] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Any = self.num_labels snake_case__ : str = TFCvtForImageClassification(__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self ): snake_case__ : List[Any] = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ : Any = config_and_inputs snake_case__ : Union[str, Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () lowerCamelCase__ = ( {'''feature-extraction''': TFCvtModel, '''image-classification''': TFCvtForImageClassification} if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = TFCvtModelTester(self ) snake_case__ : Any = TFCvtConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def __UpperCamelCase ( self ): self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="""Cvt does not output attentions""" ) def __UpperCamelCase ( self ): pass @unittest.skip(reason="""Cvt does not use inputs_embeds""" ) def __UpperCamelCase ( self ): pass @unittest.skip(reason="""Cvt does not support input and output embeddings""" ) def __UpperCamelCase ( self ): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) def __UpperCamelCase ( self ): super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def __UpperCamelCase ( self ): super().test_keras_fit() @unittest.skip(reason="""Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8""" ) def __UpperCamelCase ( self ): snake_case__ : List[str] = tf.keras.mixed_precision.Policy("""mixed_float16""" ) tf.keras.mixed_precision.set_global_policy(__SCREAMING_SNAKE_CASE ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("""float32""" ) def __UpperCamelCase ( self ): snake_case__ , snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Any = model_class(__SCREAMING_SNAKE_CASE ) snake_case__ : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Optional[Any] = [*signature.parameters.keys()] snake_case__ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): def check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : str = model_class(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) snake_case__ : Optional[int] = outputs.hidden_states snake_case__ : Tuple = len(self.model_tester.depth ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : List[Any] = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : List[str] = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) @slow def __UpperCamelCase ( self ): for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : str = TFCvtModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( ) -> str: '''simple docstring''' snake_case__ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCamelCase ( self ): return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) snake_case__ : Union[str, Any] = self.default_image_processor snake_case__ : int = prepare_img() snake_case__ : Dict = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""tf""" ) # forward pass snake_case__ : Optional[int] = model(**__SCREAMING_SNAKE_CASE ) # verify the logits snake_case__ : str = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) snake_case__ : int = tf.constant([0.9285, 0.9015, -0.3150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
38
0
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
515
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'vocab_file': 'spiece.model'} UpperCamelCase = { 'vocab_file': { 'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model', } } UpperCamelCase = { 'AI-Sweden/gpt-sw3-126m': 2048, 'AI-Sweden/gpt-sw3-350m': 2048, 'AI-Sweden/gpt-sw3-1.6b': 2048, 'AI-Sweden/gpt-sw3-6.7b': 2048, 'AI-Sweden/gpt-sw3-20b': 2048, } class _A ( UpperCAmelCase_ ): lowercase_ : Tuple = VOCAB_FILES_NAMES lowercase_ : str = PRETRAINED_VOCAB_FILES_MAP lowercase_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : str = ['''input_ids''', '''attention_mask'''] def __init__( self : Any , lowerCamelCase__ : List[str] , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : Any=False , lowerCamelCase__ : int=False , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : Optional[int]=None , lowerCamelCase__ : Any=None , lowerCamelCase__ : Any=None , lowerCamelCase__ : Optional[Dict[str, Any]] = None , **lowerCamelCase__ : Optional[Any] , ): """simple docstring""" __UpperCamelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs __UpperCamelCase : str = kwargs.get("""name_or_path""" ) if name_or_path is None: logger.warning( """name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,""" """ you are testing the model, this can safely be ignored""" ) __UpperCamelCase : List[Any] = """None""" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing __UpperCamelCase : Union[str, Any] = """<|endoftext|>""" if eos_token is None else eos_token __UpperCamelCase : Dict = """<unk>""" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: __UpperCamelCase : Dict = unk_token if pad_token is None else pad_token __UpperCamelCase : Any = eos_token if bos_token is None else bos_token else: __UpperCamelCase : List[Any] = """<pad>""" if pad_token is None else pad_token __UpperCamelCase : str = """<s>""" if bos_token is None else bos_token super().__init__( do_lower_case=lowerCamelCase__ , remove_space=lowerCamelCase__ , keep_accents=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase__ , ) __UpperCamelCase : List[str] = do_lower_case __UpperCamelCase : List[str] = remove_space __UpperCamelCase : Tuple = keep_accents __UpperCamelCase : Dict = vocab_file __UpperCamelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCamelCase__ ) # Used for whitespace normalization in input texts # fmt : off __UpperCamelCase : Optional[int] = {""" """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """""", """„"""} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing __UpperCamelCase : str = re.compile( f'[{"".join(map(lowerCamelCase__ , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(1_27 , 1_60 ) ) + [1_60, 1_73, 82_03] ) )}]' ) def __getstate__( self : str ): """simple docstring""" __UpperCamelCase : Dict = self.__dict__.copy() __UpperCamelCase : List[str] = None return state def __setstate__( self : Tuple , lowerCamelCase__ : Optional[Any] ): """simple docstring""" __UpperCamelCase : Optional[Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __UpperCamelCase : Tuple = {} __UpperCamelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def a ( self : Tuple ): """simple docstring""" return len(self.sp_model ) def a ( self : Tuple , lowerCamelCase__ : str ): """simple docstring""" __UpperCamelCase : List[str] = self.non_printing_characters_re.sub("""""" , lowerCamelCase__ ) # Normalize whitespaces __UpperCamelCase : int = """""".join([char if char not in self.whitespaces else """ """ for char in text] ) # NFC Unicode normalization __UpperCamelCase : Dict = unicodedata.normalize("""NFC""" , lowerCamelCase__ ) return text def a ( self : Optional[Any] , lowerCamelCase__ : str , **lowerCamelCase__ : Dict ): """simple docstring""" __UpperCamelCase : Optional[Any] = self.preprocess_text(lowerCamelCase__ ) return self.sp_model.encode(lowerCamelCase__ , out_type=lowerCamelCase__ ) def a ( self : Dict , lowerCamelCase__ : str ): """simple docstring""" return self.sp_model.PieceToId(lowerCamelCase__ ) def a ( self : Optional[int] , lowerCamelCase__ : int ): """simple docstring""" return self.sp_model.IdToPiece(lowerCamelCase__ ) @staticmethod def a ( lowerCamelCase__ : str ): """simple docstring""" return out_string def a ( self : Optional[Any] , lowerCamelCase__ : List[str] ): """simple docstring""" __UpperCamelCase : Optional[Any] = [] __UpperCamelCase : Tuple = """""" __UpperCamelCase : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCamelCase__ ) + token __UpperCamelCase : int = True __UpperCamelCase : int = [] else: current_sub_tokens.append(lowerCamelCase__ ) __UpperCamelCase : Dict = False out_string += self.sp_model.decode(lowerCamelCase__ ) return out_string def a ( self : Optional[Any] ): """simple docstring""" __UpperCamelCase : Optional[int] = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a ( self : Optional[int] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCamelCase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCamelCase : List[str] = os.path.join( lowerCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase__ , """wb""" ) as fi: __UpperCamelCase : Dict = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) return (out_vocab_file,) def a ( self : List[str] , lowerCamelCase__ : Union[str, List[str]] , lowerCamelCase__ : Union[str, bool] = False ): """simple docstring""" if isinstance(lowerCamelCase__ , lowerCamelCase__ ): __UpperCamelCase : List[Any] = self.preprocess_text(lowerCamelCase__ ) __UpperCamelCase : Optional[int] = self.sp_model.encode(lowerCamelCase__ ) else: __UpperCamelCase : Any = [self.preprocess_text(lowerCamelCase__ ) for t in text] __UpperCamelCase : Optional[int] = self.sp_model.encode(lowerCamelCase__ ) if return_tensors is True or return_tensors == "pt": __UpperCamelCase : str = torch.tensor(lowerCamelCase__ ) return token_ids def a ( self : Optional[int] , lowerCamelCase__ : Union[int, List[int]] ): """simple docstring""" return self.sp_model.decode(lowerCamelCase__ ) def a ( self : Optional[Any] , lowerCamelCase__ : "Conversation" ): """simple docstring""" __UpperCamelCase : Tuple = [f'User: {text}' if is_user else f'Bot: {text}' for is_user, text in conversation.iter_texts()] __UpperCamelCase : Any = ( f'{self.eos_token}{self.bos_token}' + f'{self.bos_token}'.join(lowerCamelCase__ ) + f'{self.bos_token}Bot:' ) return self.encode(text=lowerCamelCase__ )
515
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _lowerCamelCase ( lowerCamelCase__ : Dict ): lowercase__ : Tuple = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): """simple docstring""" _a : List[Any] = StableDiffusionLatentUpscalePipeline _a : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''height''', '''width''', '''cross_attention_kwargs''', '''negative_prompt_embeds''', '''prompt_embeds''', } _a : Tuple = PipelineTesterMixin.required_optional_params - {'''num_images_per_prompt'''} _a : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _a : List[str] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _a : List[str] = frozenset([] ) _a : Optional[Any] = True @property def UpperCAmelCase__( self ) -> Dict: lowercase__ : int = 1 lowercase__ : List[Any] = 4 lowercase__ : Optional[Any] = (16, 16) lowercase__ : List[str] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCamelCase__ ) return image def UpperCAmelCase__( self ) -> str: torch.manual_seed(0 ) lowercase__ : int = UNetaDConditionModel( act_fn="""gelu""" , attention_head_dim=8 , norm_num_groups=lowerCamelCase__ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( """KDownBlock2D""", """KCrossAttnDownBlock2D""", """KCrossAttnDownBlock2D""", """KCrossAttnDownBlock2D""", ) , in_channels=8 , mid_block_type=lowerCamelCase__ , only_cross_attention=lowerCamelCase__ , out_channels=5 , resnet_time_scale_shift="""scale_shift""" , time_embedding_type="""fourier""" , timestep_post_act="""gelu""" , up_block_types=("""KCrossAttnUpBlock2D""", """KCrossAttnUpBlock2D""", """KCrossAttnUpBlock2D""", """KUpBlock2D""") , ) lowercase__ : Dict = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ """DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D""", ] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) lowercase__ : Union[str, Any] = EulerDiscreteScheduler(prediction_type="""sample""" ) lowercase__ : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""quick_gelu""" , projection_dim=512 , ) lowercase__ : Any = CLIPTextModel(lowerCamelCase__ ) lowercase__ : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase__ : List[Any] = { """unet""": model.eval(), """vae""": vae.eval(), """scheduler""": scheduler, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__=0 ) -> str: if str(lowerCamelCase__ ).startswith("""mps""" ): lowercase__ : Tuple = torch.manual_seed(lowerCamelCase__ ) else: lowercase__ : List[Any] = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) lowercase__ : Tuple = { """prompt""": """A painting of a squirrel eating a burger""", """image""": self.dummy_image.cpu(), """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def UpperCAmelCase__( self ) -> Tuple: lowercase__ : str = """cpu""" lowercase__ : List[str] = self.get_dummy_components() lowercase__ : List[Any] = self.pipeline_class(**lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ : Optional[Any] = self.get_dummy_inputs(lowerCamelCase__ ) lowercase__ : Optional[Any] = pipe(**lowerCamelCase__ ).images lowercase__ : str = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) lowercase__ : Union[str, Any] = np.array( [0.4722_2412, 0.4192_1633, 0.4471_7434, 0.4687_4192, 0.4258_8258, 0.4615_0726, 0.467_7534, 0.4558_3832, 0.4857_9055] ) lowercase__ : Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase__ , 1E-3 ) def UpperCAmelCase__( self ) -> Dict: super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def UpperCAmelCase__( self ) -> List[Any]: super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def UpperCAmelCase__( self ) -> List[Any]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def UpperCAmelCase__( self ) -> Tuple: super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def UpperCAmelCase__( self ) -> Union[str, Any]: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def UpperCAmelCase__( self ) -> Tuple: super().test_save_load_local(expected_max_difference=3E-3 ) def UpperCAmelCase__( self ) -> Optional[int]: super().test_save_load_optional_components(expected_max_difference=3E-3 ) def UpperCAmelCase__( self ) -> Union[str, Any]: lowercase__ : Optional[Any] = [ """DDIMScheduler""", """DDPMScheduler""", """PNDMScheduler""", """HeunDiscreteScheduler""", """EulerAncestralDiscreteScheduler""", """KDPM2DiscreteScheduler""", """KDPM2AncestralDiscreteScheduler""", """DPMSolverSDEScheduler""", ] lowercase__ : Optional[int] = self.get_dummy_components() lowercase__ : Optional[int] = self.pipeline_class(**lowerCamelCase__ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ : Any = self.get_dummy_inputs(lowerCamelCase__ ) lowercase__ : Any = 2 lowercase__ : Union[str, Any] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue lowercase__ : Optional[int] = getattr(lowerCamelCase__ , scheduler_enum.name ) lowercase__ : str = scheduler_cls.from_config(pipe.scheduler.config ) lowercase__ : Any = pipe(**lowerCamelCase__ )[0] outputs.append(lowerCamelCase__ ) assert check_same_shape(lowerCamelCase__ ) @require_torch_gpu @slow class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__( self ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__( self ) -> Tuple: lowercase__ : Optional[int] = torch.manual_seed(33 ) lowercase__ : Union[str, Any] = StableDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" , torch_dtype=torch.floataa ) pipe.to("""cuda""" ) lowercase__ : Dict = StableDiffusionLatentUpscalePipeline.from_pretrained( """stabilityai/sd-x2-latent-upscaler""" , torch_dtype=torch.floataa ) upscaler.to("""cuda""" ) lowercase__ : Tuple = """a photo of an astronaut high resolution, unreal engine, ultra realistic""" lowercase__ : Tuple = pipe(lowerCamelCase__ , generator=lowerCamelCase__ , output_type="""latent""" ).images lowercase__ : Optional[int] = upscaler( prompt=lowerCamelCase__ , image=lowerCamelCase__ , num_inference_steps=20 , guidance_scale=0 , generator=lowerCamelCase__ , output_type="""np""" , ).images[0] lowercase__ : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy""" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def UpperCAmelCase__( self ) -> Dict: lowercase__ : int = torch.manual_seed(33 ) lowercase__ : int = StableDiffusionLatentUpscalePipeline.from_pretrained( """stabilityai/sd-x2-latent-upscaler""" , torch_dtype=torch.floataa ) upscaler.to("""cuda""" ) lowercase__ : Union[str, Any] = """the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas""" lowercase__ : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png""" ) lowercase__ : Optional[int] = upscaler( prompt=lowerCamelCase__ , image=lowerCamelCase__ , num_inference_steps=20 , guidance_scale=0 , generator=lowerCamelCase__ , output_type="""np""" , ).images[0] lowercase__ : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy""" ) assert np.abs((expected_image - image).max() ) < 5E-2
200
"""simple docstring""" import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=7 , lowerCamelCase__=3 , lowerCamelCase__=18 , lowerCamelCase__=30 , lowerCamelCase__=400 , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=True , ) -> int: lowercase__ : int = size if size is not None else {"""height""": 18, """width""": 18} lowercase__ : Optional[Any] = parent lowercase__ : Dict = batch_size lowercase__ : Union[str, Any] = num_channels lowercase__ : Tuple = image_size lowercase__ : str = min_resolution lowercase__ : Optional[Any] = max_resolution lowercase__ : Union[str, Any] = do_resize lowercase__ : Dict = size lowercase__ : Optional[Any] = do_normalize def UpperCAmelCase__( self ) -> Any: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866_4436_3403_3203, 0.6618_8293_6954_4983, 0.3891_7464_0178_6804], [-0.6042_5591_4688_1104, -0.0_2295_0088_6052_8469, 0.5423_7973_6900_3296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase , unittest.TestCase ): """simple docstring""" _a : List[Any] = ImageGPTImageProcessor if is_vision_available() else None def UpperCAmelCase__( self ) -> Optional[int]: lowercase__ : str = ImageGPTImageProcessingTester(self ) @property def UpperCAmelCase__( self ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__( self ) -> int: lowercase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , """clusters""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """size""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """do_normalize""" ) ) def UpperCAmelCase__( self ) -> Any: lowercase__ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) lowercase__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def UpperCAmelCase__( self ) -> List[str]: lowercase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) lowercase__ : Optional[Any] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCamelCase__ , obj[key] ) ) else: self.assertEqual(obj[key] , lowerCamelCase__ ) def UpperCAmelCase__( self ) -> Dict: lowercase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ : Optional[int] = os.path.join(lowerCamelCase__ , """image_processor.json""" ) image_processor_first.to_json_file(lowerCamelCase__ ) lowercase__ : str = self.image_processing_class.from_json_file(lowerCamelCase__ ).to_dict() lowercase__ : Optional[int] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCamelCase__ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowerCamelCase__ ) def UpperCAmelCase__( self ) -> List[str]: lowercase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowerCamelCase__ ) lowercase__ : Union[str, Any] = self.image_processing_class.from_pretrained(lowerCamelCase__ ).to_dict() lowercase__ : Dict = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCamelCase__ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowerCamelCase__ ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def UpperCAmelCase__( self ) -> Dict: pass def _lowerCamelCase ( ): lowercase__ : Tuple = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) lowercase__ : Optional[int] = Image.open(dataset[4]["""file"""] ) lowercase__ : Union[str, Any] = Image.open(dataset[5]["""file"""] ) lowercase__ : Optional[int] = [imagea, imagea] return images @require_vision @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__( self ) -> str: lowercase__ : Optional[int] = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) lowercase__ : int = prepare_images() # test non-batched lowercase__ : int = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) lowercase__ : Any = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowerCamelCase__ ) # test batched lowercase__ : str = image_processing(lowerCamelCase__ , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) lowercase__ : Optional[int] = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowerCamelCase__ )
200
1
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __snake_case : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name __snake_case : Dict = ''' Examples: ```py >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior") >>> pipe_prior.to("cuda") >>> prompt = "red cat, 4k photo" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> zero_image_emb = out.negative_image_embeds >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder") >>> pipe.to("cuda") >>> image = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=50, ... ).images >>> image[0].save("cat.png") ``` ''' def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : Optional[int], __snake_case : Optional[int]=8 ) -> int: """simple docstring""" A__ : Dict =height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 A__ : Dict =width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : UNetaDConditionModel , lowerCAmelCase_ : DDPMScheduler , lowerCAmelCase_ : VQModel , ) -> Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , movq=__lowerCAmelCase , ) A__ : List[Any] =2 ** (len(self.movq.config.block_out_channels ) - 1) def lowercase__ ( self : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict ) -> Optional[int]: '''simple docstring''' if latents is None: A__ : List[str] =randn_tensor(__lowerCAmelCase , generator=__lowerCAmelCase , device=__lowerCAmelCase , dtype=__lowerCAmelCase ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) A__ : int =latents.to(__lowerCAmelCase ) A__ : Dict =latents * scheduler.init_noise_sigma return latents def lowercase__ ( self : Any , lowerCAmelCase_ : Any=0 ) -> List[Any]: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) A__ : Tuple =torch.device(f"cuda:{gpu_id}" ) A__ : List[str] =[ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__lowerCAmelCase , __lowerCAmelCase ) def lowercase__ ( self : Dict , lowerCAmelCase_ : Any=0 ) -> Any: '''simple docstring''' if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) A__ : Optional[int] =torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=__lowerCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) A__ : Tuple =None for cpu_offloaded_model in [self.unet, self.movq]: A__ , A__ : Optional[int] =cpu_offload_with_hook(__lowerCAmelCase , __lowerCAmelCase , prev_module_hook=__lowerCAmelCase ) # We'll offload the last model manually. A__ : Tuple =hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowercase__ ( self : List[Any] ) -> str: '''simple docstring''' if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(__lowerCAmelCase , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__lowerCAmelCase ) def __call__( self : List[str] , lowerCAmelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCAmelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCAmelCase_ : int = 5_12 , lowerCAmelCase_ : int = 5_12 , lowerCAmelCase_ : int = 1_00 , lowerCAmelCase_ : float = 4.0 , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase_ : Optional[torch.FloatTensor] = None , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , ) -> List[str]: '''simple docstring''' A__ : Optional[Any] =self._execution_device A__ : str =guidance_scale > 1.0 if isinstance(__lowerCAmelCase , __lowerCAmelCase ): A__ : Tuple =torch.cat(__lowerCAmelCase , dim=0 ) A__ : str =image_embeds.shape[0] * num_images_per_prompt if isinstance(__lowerCAmelCase , __lowerCAmelCase ): A__ : Union[str, Any] =torch.cat(__lowerCAmelCase , dim=0 ) if do_classifier_free_guidance: A__ : Any =image_embeds.repeat_interleave(__lowerCAmelCase , dim=0 ) A__ : Optional[int] =negative_image_embeds.repeat_interleave(__lowerCAmelCase , dim=0 ) A__ : Optional[int] =torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__lowerCAmelCase ) self.scheduler.set_timesteps(__lowerCAmelCase , device=__lowerCAmelCase ) A__ : Optional[int] =self.scheduler.timesteps A__ : List[str] =self.unet.config.in_channels A__ , A__ : Optional[int] =downscale_height_and_width(__lowerCAmelCase , __lowerCAmelCase , self.movq_scale_factor ) # create initial latent A__ : Optional[Any] =self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance A__ : Dict =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A__ : Dict ={"""image_embeds""": image_embeds} A__ : Optional[Any] =self.unet( sample=__lowerCAmelCase , timestep=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , added_cond_kwargs=__lowerCAmelCase , return_dict=__lowerCAmelCase , )[0] if do_classifier_free_guidance: A__ , A__ : List[str] =noise_pred.split(latents.shape[1] , dim=1 ) A__ , A__ : int =noise_pred.chunk(2 ) A__ , A__ : Dict =variance_pred.chunk(2 ) A__ : Optional[int] =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) A__ : str =torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): A__ , A__ : Optional[int] =noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 A__ : Tuple =self.scheduler.step( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase , )[0] # post-processing A__ : Any =self.movq.decode(__lowerCAmelCase , force_not_quantize=__lowerCAmelCase )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: A__ : Union[str, Any] =image * 0.5 + 0.5 A__ : int =image.clamp(0 , 1 ) A__ : Dict =image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": A__ : List[str] =self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCAmelCase )
710
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __lowerCamelCase ( __snake_case : Tuple, __snake_case : List[Any] ) -> str: """simple docstring""" A__ : Optional[int] =[] for part_id in partition_order: A__ : int =df.where(f"SPARK_PARTITION_ID() = {part_id}" ).collect() for row_idx, row in enumerate(__snake_case ): expected_row_ids_and_row_dicts.append((f"{part_id}_{row_idx}", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : str =spark.range(100 ).repartition(1 ) A__ : List[str] =Spark(__snake_case ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Tuple: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Tuple =spark.range(10 ).repartition(2 ) A__ : List[str] =[1, 0] A__ : Tuple =_generate_iterable_examples(__snake_case, __snake_case ) # Reverse the partitions. A__ : Dict =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, __snake_case ) for i, (row_id, row_dict) in enumerate(generate_fn() ): A__ , A__ : Union[str, Any] =expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : Any =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Union[str, Any] =spark.range(10 ).repartition(1 ) A__ : List[str] =SparkExamplesIterable(__snake_case ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__snake_case ): assert row_id == f"0_{i}" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Any: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Union[str, Any] =spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""" ) as generator_mock: A__ : Tuple =lambda __snake_case : x.reverse() A__ : List[str] =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [2, 1, 0] ) A__ : Union[str, Any] =SparkExamplesIterable(__snake_case ).shuffle_data_sources(__snake_case ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : List[Any] =expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" A__ : List[Any] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Any =spark.range(20 ).repartition(4 ) # Partitions 0 and 2 A__ : str =SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=0, num_workers=2 ) assert shard_it_a.n_shards == 2 A__ : Any =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [0, 2] ) for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : Dict =expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 A__ : Union[str, Any] =SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=1, num_workers=2 ) assert shard_it_a.n_shards == 2 A__ : Union[str, Any] =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [1, 3] ) for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : Optional[int] =expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Any: """simple docstring""" A__ : Optional[int] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : List[str] =spark.range(100 ).repartition(1 ) A__ : List[Any] =Spark(__snake_case ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
687
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() snake_case__ : Any = logging.get_logger(__name__) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = original_name.split("." )[0] __lowercase = key.split("." ) __lowercase = int(key_list[key_list.index(_snake_case ) - 2] ) __lowercase = int(key_list[key_list.index(_snake_case ) - 1] ) __lowercase = orig_block_num - offset __lowercase = key.replace(F"""{orig_block_num}.{layer_num}.{original_name}""" , F"""block.{new_block_num}.{layer_num}.{new_name}""" ) return key def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = OrderedDict() __lowercase , __lowercase = 0, 0 for key, value in state_dict.items(): if key.startswith("network" ): __lowercase = key.replace("network" , "poolformer.encoder" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("bias" ) and "patch_embed" not in key: patch_emb_offset += 1 __lowercase = key[: key.find("proj" )] __lowercase = key.replace(_snake_case , F"""patch_embeddings.{total_embed_found}.""" ) __lowercase = key.replace("proj" , "projection" ) if key.endswith("bias" ): total_embed_found += 1 if "patch_embeddings" in key: __lowercase = "poolformer.encoder." + key if "mlp.fc1" in key: __lowercase = replace_key_with_offset(_snake_case , _snake_case , "mlp.fc1" , "output.conv1" ) if "mlp.fc2" in key: __lowercase = replace_key_with_offset(_snake_case , _snake_case , "mlp.fc2" , "output.conv2" ) if "norm1" in key: __lowercase = replace_key_with_offset(_snake_case , _snake_case , "norm1" , "before_norm" ) if "norm2" in key: __lowercase = replace_key_with_offset(_snake_case , _snake_case , "norm2" , "after_norm" ) if "layer_scale_1" in key: __lowercase = replace_key_with_offset(_snake_case , _snake_case , "layer_scale_1" , "layer_scale_1" ) if "layer_scale_2" in key: __lowercase = replace_key_with_offset(_snake_case , _snake_case , "layer_scale_2" , "layer_scale_2" ) if "head" in key: __lowercase = key.replace("head" , "classifier" ) __lowercase = value return new_state_dict def snake_case_ ( ): __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return image @torch.no_grad() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = PoolFormerConfig() # set attributes based on model_name __lowercase = "huggingface/label-files" __lowercase = model_name[-3:] __lowercase = 1_0_0_0 __lowercase = "imagenet-1k-id2label.json" __lowercase = (1, 1_0_0_0) # set config attributes __lowercase = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_snake_case ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} if size == "s12": __lowercase = [2, 2, 6, 2] __lowercase = [6_4, 1_2_8, 3_2_0, 5_1_2] __lowercase = 4.0 __lowercase = 0.9 elif size == "s24": __lowercase = [4, 4, 1_2, 4] __lowercase = [6_4, 1_2_8, 3_2_0, 5_1_2] __lowercase = 4.0 __lowercase = 0.9 elif size == "s36": __lowercase = [6, 6, 1_8, 6] __lowercase = [6_4, 1_2_8, 3_2_0, 5_1_2] __lowercase = 4.0 __lowercase = 1E-6 __lowercase = 0.9 elif size == "m36": __lowercase = [6, 6, 1_8, 6] __lowercase = [9_6, 1_9_2, 3_8_4, 7_6_8] __lowercase = 4.0 __lowercase = 1E-6 __lowercase = 0.9_5 elif size == "m48": __lowercase = [8, 8, 2_4, 8] __lowercase = [9_6, 1_9_2, 3_8_4, 7_6_8] __lowercase = 4.0 __lowercase = 1E-6 __lowercase = 0.9_5 else: raise ValueError(F"""Size {size} not supported""" ) # load image processor __lowercase = PoolFormerImageProcessor(crop_pct=_snake_case ) # Prepare image __lowercase = prepare_img() __lowercase = image_processor(images=_snake_case , return_tensors="pt" ).pixel_values logger.info(F"""Converting model {model_name}...""" ) # load original state dict __lowercase = torch.load(_snake_case , map_location=torch.device("cpu" ) ) # rename keys __lowercase = rename_keys(_snake_case ) # create HuggingFace model and load state dict __lowercase = PoolFormerForImageClassification(_snake_case ) model.load_state_dict(_snake_case ) model.eval() # Define image processor __lowercase = PoolFormerImageProcessor(crop_pct=_snake_case ) __lowercase = image_processor(images=prepare_img() , return_tensors="pt" ).pixel_values # forward pass __lowercase = model(_snake_case ) __lowercase = outputs.logits # define expected logit slices for different models if size == "s12": __lowercase = torch.tensor([-0.3_0_4_5, -0.6_7_5_8, -0.4_8_6_9] ) elif size == "s24": __lowercase = torch.tensor([0.4_4_0_2, -0.1_3_7_4, -0.8_0_4_5] ) elif size == "s36": __lowercase = torch.tensor([-0.6_0_8_0, -0.5_1_3_3, -0.5_8_9_8] ) elif size == "m36": __lowercase = torch.tensor([0.3_9_5_2, 0.2_2_6_3, -1.2_6_6_8] ) elif size == "m48": __lowercase = torch.tensor([0.1_1_6_7, -0.0_6_5_6, -0.3_4_2_3] ) else: raise ValueError(F"""Size {size} not supported""" ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , _snake_case , atol=1E-2 ) # finally, save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) model.save_pretrained(_snake_case ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_snake_case ) if __name__ == "__main__": snake_case__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""poolformer_s12""", type=str, help="""Name of the model you\'d like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) snake_case__ : List[str] = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
402
"""simple docstring""" import numpy as np def snake_case__ ( _snake_case : np.ndarray , _snake_case : float ): """simple docstring""" return np.where(vector > 0 , _snake_case , (alpha * (np.exp(_snake_case ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
516
0
"""simple docstring""" import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" snake_case_ : Dict = AlbertConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) print(f'Building PyTorch model from configuration: {config}' ) snake_case_ : List[str] = AlbertForPreTraining(SCREAMING_SNAKE_CASE__ ) # Load weights from tf checkpoint load_tf_weights_in_albert(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--albert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained ALBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) a_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
48
"""simple docstring""" import argparse import hashlib # hashlib is only used inside the Test class import struct class __lowercase : """simple docstring""" def __init__(self , lowercase__ ): snake_case_ : Union[str, Any] = data snake_case_ : List[str] = [0X6_7_4_5_2_3_0_1, 0Xe_f_c_d_a_b_8_9, 0X9_8_b_a_d_c_f_e, 0X1_0_3_2_5_4_7_6, 0Xc_3_d_2_e_1_f_0] @staticmethod def __UpperCamelCase (lowercase__ , lowercase__ ): return ((n << b) | (n >> (32 - b))) & 0Xf_f_f_f_f_f_f_f def __UpperCamelCase (self ): snake_case_ : Any = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) snake_case_ : Tuple = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def __UpperCamelCase (self ): return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = list(struct.unpack(""">16L""" , lowercase__ ) ) + [0] * 64 for i in range(16 , 80 ): snake_case_ : Dict = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def __UpperCamelCase (self ): snake_case_ : List[Any] = self.padding() snake_case_ : Any = self.split_blocks() for block in self.blocks: snake_case_ : Any = self.expand_block(lowercase__ ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = self.h for i in range(0 , 80 ): if 0 <= i < 20: snake_case_ : Optional[Any] = (b & c) | ((~b) & d) snake_case_ : List[str] = 0X5_a_8_2_7_9_9_9 elif 20 <= i < 40: snake_case_ : Union[str, Any] = b ^ c ^ d snake_case_ : Tuple = 0X6_e_d_9_e_b_a_1 elif 40 <= i < 60: snake_case_ : str = (b & c) | (b & d) | (c & d) snake_case_ : List[str] = 0X8_f_1_b_b_c_d_c elif 60 <= i < 80: snake_case_ : Tuple = b ^ c ^ d snake_case_ : str = 0Xc_a_6_2_c_1_d_6 snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Optional[Any] = ( self.rotate(lowercase__ , 5 ) + f + e + k + expanded_block[i] & 0Xf_f_f_f_f_f_f_f, a, self.rotate(lowercase__ , 30 ), c, d, ) snake_case_ : Any = ( self.h[0] + a & 0Xf_f_f_f_f_f_f_f, self.h[1] + b & 0Xf_f_f_f_f_f_f_f, self.h[2] + c & 0Xf_f_f_f_f_f_f_f, self.h[3] + d & 0Xf_f_f_f_f_f_f_f, self.h[4] + e & 0Xf_f_f_f_f_f_f_f, ) return ("{:08x}" * 5).format(*self.h ) def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Union[str, Any] = b"""Test String""" assert SHAaHash(SCREAMING_SNAKE_CASE__ ).final_hash() == hashlib.shaa(SCREAMING_SNAKE_CASE__ ).hexdigest() # noqa: S324 def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : int = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument("""--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) snake_case_ : Optional[int] = parser.parse_args() snake_case_ : Optional[int] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: snake_case_ : List[str] = f.read() else: snake_case_ : Dict = bytes(SCREAMING_SNAKE_CASE__ , """utf-8""" ) print(SHAaHash(SCREAMING_SNAKE_CASE__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
48
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
144
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a_ :List[str] = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :str = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :List[Any] = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys a_ :Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
0
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class a__ ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str]=1_3 , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : int=True , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : str=False , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Tuple=9_9 , UpperCAmelCase__ : List[str]=3_2 , UpperCAmelCase__ : Optional[int]=5 , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : int=3_7 , UpperCAmelCase__ : Union[str, Any]="gelu" , UpperCAmelCase__ : Tuple=0.1 , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : Union[str, Any]=5_1_2 , UpperCAmelCase__ : Optional[Any]=1_6 , UpperCAmelCase__ : List[str]=2 , UpperCAmelCase__ : int=0.02 , UpperCAmelCase__ : str=3 , UpperCAmelCase__ : Optional[int]=4 , UpperCAmelCase__ : Optional[int]=None , ) ->Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = parent SCREAMING_SNAKE_CASE : Dict = batch_size SCREAMING_SNAKE_CASE : List[str] = seq_length SCREAMING_SNAKE_CASE : Optional[Any] = is_training SCREAMING_SNAKE_CASE : Dict = use_input_mask SCREAMING_SNAKE_CASE : int = use_token_type_ids SCREAMING_SNAKE_CASE : Dict = use_labels SCREAMING_SNAKE_CASE : Optional[int] = vocab_size SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Dict = type_vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : Dict = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = num_labels SCREAMING_SNAKE_CASE : Optional[int] = num_choices SCREAMING_SNAKE_CASE : Optional[int] = scope def _lowercase ( self : Dict ) ->str: """simple docstring""" SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Dict = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Dict = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : Tuple = None if self.use_labels: SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self : Any ) ->List[Any]: """simple docstring""" return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _lowercase ( self : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] ) ->Any: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = DistilBertModel(config=_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[int] ) ->List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = DistilBertForMaskedLM(config=_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE : str = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] ) ->str: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = DistilBertForQuestionAnswering(config=_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE : Tuple = model( _lowercase , attention_mask=_lowercase , start_positions=_lowercase , end_positions=_lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict ) ->Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : Dict = DistilBertForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE : str = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] ) ->Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = self.num_labels SCREAMING_SNAKE_CASE : List[Any] = DistilBertForTokenClassification(config=_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE : Tuple = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] ) ->List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.num_choices SCREAMING_SNAKE_CASE : Optional[int] = DistilBertForMultipleChoice(config=_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Optional[int] = model( _lowercase , attention_mask=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self : int ) ->List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) : List[str] = config_and_inputs SCREAMING_SNAKE_CASE : int = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class a__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) UpperCAmelCase__ : str =( { """feature-extraction""": DistilBertModel, """fill-mask""": DistilBertForMaskedLM, """question-answering""": DistilBertForQuestionAnswering, """text-classification""": DistilBertForSequenceClassification, """token-classification""": DistilBertForTokenClassification, """zero-shot""": DistilBertForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : List[str] =True UpperCAmelCase__ : Any =True UpperCAmelCase__ : Optional[Any] =True UpperCAmelCase__ : Dict =True def _lowercase ( self : Dict ) ->Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : int = DistilBertModelTester(self ) SCREAMING_SNAKE_CASE : List[Any] = ConfigTester(self , config_class=_lowercase , dim=3_7 ) def _lowercase ( self : int ) ->Tuple: """simple docstring""" self.config_tester.run_common_tests() def _lowercase ( self : List[Any] ) ->List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*_lowercase ) def _lowercase ( self : str ) ->int: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*_lowercase ) def _lowercase ( self : Any ) ->Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*_lowercase ) def _lowercase ( self : int ) ->List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*_lowercase ) def _lowercase ( self : str ) ->int: """simple docstring""" SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*_lowercase ) def _lowercase ( self : str ) ->Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*_lowercase ) @slow def _lowercase ( self : Tuple ) ->Optional[int]: """simple docstring""" for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : List[str] = DistilBertModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @slow @require_torch_gpu def _lowercase ( self : Optional[int] ) ->Tuple: """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : Optional[int] = model_class(config=_lowercase ) SCREAMING_SNAKE_CASE : Any = self._prepare_for_class(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE : Dict = torch.jit.trace( _lowercase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_lowercase , os.path.join(_lowercase , """traced_model.pt""" ) ) SCREAMING_SNAKE_CASE : List[Any] = torch.jit.load(os.path.join(_lowercase , """traced_model.pt""" ) , map_location=_lowercase ) loaded(inputs_dict["""input_ids"""].to(_lowercase ) , inputs_dict["""attention_mask"""].to(_lowercase ) ) @require_torch class a__ ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : int ) ->Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = DistilBertModel.from_pretrained("""distilbert-base-uncased""" ) SCREAMING_SNAKE_CASE : Any = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) SCREAMING_SNAKE_CASE : Dict = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = model(_lowercase , attention_mask=_lowercase )[0] SCREAMING_SNAKE_CASE : Optional[int] = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , _lowercase ) SCREAMING_SNAKE_CASE : str = torch.tensor( [[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowercase , atol=1e-4 ) )
703
def __lowercase ( _A , _A ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def __lowercase ( ) -> None: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
446
0
'''simple docstring''' import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class __A ( _a ): '''simple docstring''' def a__ (self ) -> int: """simple docstring""" _a = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def a__ (self ) -> Optional[Any]: """simple docstring""" with self.assertRaises(A ): _a = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def a__ (self ) -> Optional[int]: """simple docstring""" with self.assertRaises(A ): _a = pa.array(TypedSequence([1, 2, 3] , try_type=Value('''bool''' ) , type=Value('''int64''' ) ) ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = pa.array(TypedSequence([1, 2, 3] , type=Value('''int32''' ) ) ) self.assertEqual(arr.type , pa.intaa() ) def a__ (self ) -> Any: """simple docstring""" with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): _a = pa.array(TypedSequence(['''foo''', '''bar'''] , type=Value('''int64''' ) ) ) def a__ (self ) -> Dict: """simple docstring""" _a = pa.array(TypedSequence([1, 2, 3] , try_type=Value('''int32''' ) ) ) self.assertEqual(arr.type , pa.intaa() ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = pa.array(TypedSequence(['''foo''', '''bar'''] , try_type=Value('''int64''' ) ) ) self.assertEqual(arr.type , pa.string() ) def a__ (self ) -> str: """simple docstring""" _a = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , '''int64''' ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , '''int64''' ) ) def a__ (self ) -> Union[str, Any]: """simple docstring""" with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): _a = pa.array(TypedSequence(['''foo''', '''bar'''] , type=ArrayaD((1, 3) , '''int64''' ) ) ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , '''int64''' ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , '''int64''' ) ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = pa.array(TypedSequence(['''foo''', '''bar'''] , try_type=ArrayaD((1, 3) , '''int64''' ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def a__ (self ) -> List[str]: """simple docstring""" import PIL.Image _a = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( '''datasets.arrow_writer.cast_to_python_objects''' , side_effect=A ) as mock_cast_to_python_objects: _a = pa.array(TypedSequence([{'''path''': None, '''bytes''': b'''image_bytes'''}, pil_image] , type=Image() ) ) _a = mock_cast_to_python_objects.call_args_list[-1] self.assertIn('''optimize_list_casting''' , A ) self.assertFalse(kwargs['''optimize_list_casting'''] ) def lowerCAmelCase (__A , __A): """simple docstring""" _a = pa.BufferReader(_lowerCAmelCase) if isinstance(_lowerCAmelCase , pa.Buffer) else pa.memory_map(_lowerCAmelCase) _a = pa.ipc.open_stream(_lowerCAmelCase) _a = f.read_all() assert len(pa_table.to_batches()) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10]) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}]) def lowerCAmelCase (__A , __A): """simple docstring""" _a = pa.BufferOutputStream() _a = pa.schema(_lowerCAmelCase) if fields else None with ArrowWriter(stream=_lowerCAmelCase , schema=_lowerCAmelCase , writer_batch_size=_lowerCAmelCase) as writer: writer.write({'''col_1''': '''foo''', '''col_2''': 1}) writer.write({'''col_1''': '''bar''', '''col_2''': 2}) _a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _a = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(_lowerCAmelCase , metadata=writer._schema.metadata) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1) def lowerCAmelCase (): """simple docstring""" _a = pa.BufferOutputStream() _a = Features({'''labels''': ClassLabel(names=['''neg''', '''pos'''])}) with ArrowWriter(stream=_lowerCAmelCase , features=_lowerCAmelCase) as writer: writer.write({'''labels''': 0}) writer.write({'''labels''': 1}) _a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata _a = pa.BufferReader(output.getvalue()) _a = pa.ipc.open_stream(_lowerCAmelCase) _a = f.read_all() _a = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(_lowerCAmelCase) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10]) def lowerCAmelCase (__A): """simple docstring""" _a = pa.BufferOutputStream() with ArrowWriter( stream=_lowerCAmelCase , writer_batch_size=_lowerCAmelCase , hash_salt='''split_name''' , check_duplicates=_lowerCAmelCase , ) as writer: with pytest.raises(_lowerCAmelCase): writer.write({'''col_1''': '''foo''', '''col_2''': 1} , key=[1, 2]) _a = writer.finalize() @pytest.mark.parametrize('''writer_batch_size''' , [None, 2, 10]) def lowerCAmelCase (__A): """simple docstring""" _a = pa.BufferOutputStream() with ArrowWriter( stream=_lowerCAmelCase , writer_batch_size=_lowerCAmelCase , hash_salt='''split_name''' , check_duplicates=_lowerCAmelCase , ) as writer: with pytest.raises(_lowerCAmelCase): writer.write({'''col_1''': '''foo''', '''col_2''': 1} , key=10) writer.write({'''col_1''': '''bar''', '''col_2''': 2} , key=10) _a = writer.finalize() @pytest.mark.parametrize('''writer_batch_size''' , [None, 2, 10]) def lowerCAmelCase (__A): """simple docstring""" _a = pa.BufferOutputStream() with ArrowWriter( stream=_lowerCAmelCase , writer_batch_size=_lowerCAmelCase , hash_salt='''split_name''' , check_duplicates=_lowerCAmelCase , ) as writer: writer.write({'''col_1''': '''foo''', '''col_2''': 1} , key=1) writer.write({'''col_1''': '''bar''', '''col_2''': 2} , key=2) _a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10]) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}]) def lowerCAmelCase (__A , __A): """simple docstring""" _a = pa.BufferOutputStream() _a = pa.schema(_lowerCAmelCase) if fields else None with ArrowWriter(stream=_lowerCAmelCase , schema=_lowerCAmelCase , writer_batch_size=_lowerCAmelCase) as writer: writer.write_batch({'''col_1''': ['''foo''', '''bar'''], '''col_2''': [1, 2]}) writer.write_batch({'''col_1''': [], '''col_2''': []}) _a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _a = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(_lowerCAmelCase , metadata=writer._schema.metadata) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10]) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}]) def lowerCAmelCase (__A , __A): """simple docstring""" _a = pa.BufferOutputStream() _a = pa.schema(_lowerCAmelCase) if fields else None with ArrowWriter(stream=_lowerCAmelCase , schema=_lowerCAmelCase , writer_batch_size=_lowerCAmelCase) as writer: writer.write_table(pa.Table.from_pydict({'''col_1''': ['''foo''', '''bar'''], '''col_2''': [1, 2]})) _a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _a = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(_lowerCAmelCase , metadata=writer._schema.metadata) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10]) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}]) def lowerCAmelCase (__A , __A): """simple docstring""" _a = pa.BufferOutputStream() _a = pa.schema(_lowerCAmelCase) if fields else None with ArrowWriter(stream=_lowerCAmelCase , schema=_lowerCAmelCase , writer_batch_size=_lowerCAmelCase) as writer: writer.write_row(pa.Table.from_pydict({'''col_1''': ['''foo'''], '''col_2''': [1]})) writer.write_row(pa.Table.from_pydict({'''col_1''': ['''bar'''], '''col_2''': [2]})) _a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _a = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(_lowerCAmelCase , metadata=writer._schema.metadata) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1) def lowerCAmelCase (): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _a = {'col_1': pa.string(), 'col_2': pa.intaa()} _a = os.path.join(_lowerCAmelCase , '''test.arrow''') with ArrowWriter(path=_lowerCAmelCase , schema=pa.schema(_lowerCAmelCase)) as writer: writer.write_batch({'''col_1''': ['''foo''', '''bar'''], '''col_2''': [1, 2]}) _a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(_lowerCAmelCase , metadata=writer._schema.metadata) _check_output(_lowerCAmelCase , 1) def lowerCAmelCase (__A): """simple docstring""" if pa.types.is_list(_lowerCAmelCase): return get_base_dtype(arr_type.value_type) else: return arr_type def lowerCAmelCase (__A , __A): """simple docstring""" if isinstance(lst[0] , _lowerCAmelCase): change_first_primitive_element_in_list(lst[0] , _lowerCAmelCase) else: _a = value @pytest.mark.parametrize('''optimized_int_type, expected_dtype''' , [(None, pa.intaa()), (Value('''int32'''), pa.intaa())]) @pytest.mark.parametrize('''sequence''' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]]) def lowerCAmelCase (__A , __A , __A): """simple docstring""" _a = pa.array(TypedSequence(_lowerCAmelCase , optimized_int_type=_lowerCAmelCase)) assert get_base_dtype(arr.type) == expected_dtype @pytest.mark.parametrize( '''col, expected_dtype''' , [ ('''attention_mask''', pa.inta()), ('''special_tokens_mask''', pa.inta()), ('''token_type_ids''', pa.inta()), ('''input_ids''', pa.intaa()), ('''other''', pa.intaa()), ] , ) @pytest.mark.parametrize('''sequence''' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]]) def lowerCAmelCase (__A , __A , __A): """simple docstring""" _a = pa.array(OptimizedTypedSequence(_lowerCAmelCase , col=_lowerCAmelCase)) assert get_base_dtype(arr.type) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications _a = copy.deepcopy(_lowerCAmelCase) _a = np.iinfo(expected_dtype.to_pandas_dtype()).max + 1 change_first_primitive_element_in_list(_lowerCAmelCase , _lowerCAmelCase) _a = pa.array(OptimizedTypedSequence(_lowerCAmelCase , col=_lowerCAmelCase)) assert get_base_dtype(arr.type) == pa.intaa() @pytest.mark.parametrize('''raise_exception''' , [False, True]) def lowerCAmelCase (__A , __A): """simple docstring""" _a = str(tmp_path / '''dataset-train.arrow''') try: with ArrowWriter(path=_lowerCAmelCase) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def lowerCAmelCase (__A): """simple docstring""" _a = 'mock://dataset-train.arrow' with ArrowWriter(path=_lowerCAmelCase , storage_options=mockfs.storage_options) as writer: assert isinstance(writer._fs , type(_lowerCAmelCase)) assert writer._fs.storage_options == mockfs.storage_options writer.write({'''col_1''': '''foo''', '''col_2''': 1}) writer.write({'''col_1''': '''bar''', '''col_2''': 2}) _a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(_lowerCAmelCase) def lowerCAmelCase (): """simple docstring""" _a = pa.BufferOutputStream() with ParquetWriter(stream=_lowerCAmelCase) as writer: writer.write({'''col_1''': '''foo''', '''col_2''': 1}) writer.write({'''col_1''': '''bar''', '''col_2''': 2}) _a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _a = pa.BufferReader(output.getvalue()) _a = pq.read_table(_lowerCAmelCase) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize('''embed_local_files''' , [False, True]) def lowerCAmelCase (__A , __A): """simple docstring""" import PIL.Image _a = str(tmp_path / '''test_image_rgb.jpg''') PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta)).save(_lowerCAmelCase , format='''png''') _a = pa.BufferOutputStream() with ParquetWriter( stream=_lowerCAmelCase , features=Features({'''image''': Image()}) , embed_local_files=_lowerCAmelCase) as writer: writer.write({'''image''': image_path}) writer.finalize() _a = pa.BufferReader(output.getvalue()) _a = pq.read_table(_lowerCAmelCase) _a = pa_table.to_pydict() if embed_local_files: assert isinstance(out['''image'''][0]['''path'''] , _lowerCAmelCase) with open(_lowerCAmelCase , '''rb''') as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def lowerCAmelCase (): """simple docstring""" _a = pa.schema([pa.field('''col_1''' , pa.string() , nullable=_lowerCAmelCase)]) _a = pa.BufferOutputStream() with ArrowWriter(stream=_lowerCAmelCase) as writer: writer._build_writer(inferred_schema=_lowerCAmelCase) assert writer._schema == pa.schema([pa.field('''col_1''' , pa.string())])
11
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device _UpperCamelCase : Any = False class UpperCAmelCase_ ( unittest.TestCase): pass @nightly @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Union[str, Any] = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase__ : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) lowercase__ : Optional[int] = torch.manual_seed(0 ) lowercase__ : int = pipe.dual_guided( prompt='first prompt' , image=a , text_to_image_strength=0.75 , generator=a , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a ) lowercase__ : Tuple = VersatileDiffusionPipeline.from_pretrained(a , torch_dtype=torch.floataa ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase__ : Any = generator.manual_seed(0 ) lowercase__ : List[Any] = pipe.dual_guided( prompt='first prompt' , image=a , text_to_image_strength=0.75 , generator=a , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Optional[Any] = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase__ : Optional[int] = 'cyberpunk 2077' lowercase__ : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) lowercase__ : Dict = torch.manual_seed(0 ) lowercase__ : List[Any] = pipe.dual_guided( prompt=a , image=a , text_to_image_strength=0.75 , generator=a , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy' , ).images lowercase__ : Any = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowercase__ : List[str] = np.array([0.1_448, 0.1_619, 0.1_741, 0.1_086, 0.1_147, 0.1_128, 0.1_199, 0.1_165, 0.1_001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 lowercase__ : Any = 'A painting of a squirrel eating a burger ' lowercase__ : Optional[int] = torch.manual_seed(0 ) lowercase__ : str = pipe.text_to_image( prompt=a , generator=a , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy' ).images lowercase__ : Optional[Any] = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowercase__ : Optional[int] = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 lowercase__ : List[Any] = pipe.image_variation(a , generator=a , output_type='numpy' ).images lowercase__ : int = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowercase__ : Optional[int] = np.array([0.3_076, 0.3_123, 0.3_284, 0.3_782, 0.3_770, 0.3_894, 0.4_297, 0.4_331, 0.4_456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
599
0
'''simple docstring''' from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING A : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(__UpperCAmelCase ) class lowerCamelCase ( __UpperCAmelCase ): def __init__( self : Optional[Any] , *__snake_case : List[Any] , **__snake_case : int ): '''simple docstring''' super().__init__(*__snake_case , **__snake_case ) requires_backends(self , 'vision' ) self.check_model_type(__snake_case ) def __call__( self : Optional[Any] , __snake_case : Union[str, List[str], "Image.Image", List["Image.Image"]] , **__snake_case : Optional[Any] ): '''simple docstring''' return super().__call__(__snake_case , **__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , **__snake_case : List[Any] ): '''simple docstring''' return {}, {}, {} def SCREAMING_SNAKE_CASE_ ( self : Dict , __snake_case : Union[str, Any] ): '''simple docstring''' _snake_case: int = load_image(__snake_case ) _snake_case: Any = image.size _snake_case: Optional[Any] = self.image_processor(images=__snake_case , return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , __snake_case : Tuple ): '''simple docstring''' _snake_case: List[str] = self.model(**__snake_case ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' _snake_case: List[str] = model_outputs.predicted_depth _snake_case: str = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='bicubic' , align_corners=__snake_case ) _snake_case: Optional[Any] = prediction.squeeze().cpu().numpy() _snake_case: Optional[Any] = (output * 2_55 / np.max(__snake_case )).astype('uint8' ) _snake_case: Optional[Any] = Image.fromarray(__snake_case ) _snake_case: Any = {} _snake_case: Dict = predicted_depth _snake_case: Any = depth return output_dict
273
'''simple docstring''' def lowercase_ ( lowercase__ = 50 ) ->int: _snake_case: Union[str, Any] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'{solution() = }')
273
1
"""simple docstring""" import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCAmelCase ( _lowerCamelCase, unittest.TestCase ): '''simple docstring''' lowercase : Any = LayoutLMTokenizer lowercase : Optional[int] = LayoutLMTokenizerFast lowercase : str = True lowercase : Tuple = True def UpperCamelCase_ ( self ): '''simple docstring''' super().setUp() _SCREAMING_SNAKE_CASE =[ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def UpperCamelCase_ ( self , **_A ): '''simple docstring''' return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **_A ) def UpperCamelCase_ ( self , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE ='''UNwant\u00E9d,running''' _SCREAMING_SNAKE_CASE ='''unwanted, running''' return input_text, output_text def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.tokenizer_class(self.vocab_file ) _SCREAMING_SNAKE_CASE =tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [7, 4, 5, 1_0, 8, 9] ) def UpperCamelCase_ ( self ): '''simple docstring''' pass
255
"""simple docstring""" import numpy as np from PIL import Image def _lowerCAmelCase(a : np.ndarray , a : int , a : int ) -> np.ndarray: _SCREAMING_SNAKE_CASE =np.array(a ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 # compute the shape of the output matrix _SCREAMING_SNAKE_CASE =(arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape _SCREAMING_SNAKE_CASE =np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix _SCREAMING_SNAKE_CASE =np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 return updated_arr def _lowerCAmelCase(a : np.ndarray , a : int , a : int ) -> np.ndarray: _SCREAMING_SNAKE_CASE =np.array(a ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 # compute the shape of the output matrix _SCREAMING_SNAKE_CASE =(arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape _SCREAMING_SNAKE_CASE =np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix _SCREAMING_SNAKE_CASE =int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image UpperCAmelCase_ : List[str] = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
255
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' __lowerCamelCase = create_tensor(A__ ) __lowerCamelCase = gather(A__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' __lowerCamelCase = [state.process_index] __lowerCamelCase = gather_object(A__ ) assert len(A__ ) == state.num_processes, f'{gathered_obj}, {len(A__ )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), f'{gathered_obj} != {list(range(state.num_processes ) )}' def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' __lowerCamelCase = create_tensor(A__ ) __lowerCamelCase = broadcast(A__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' if state.is_main_process: __lowerCamelCase = torch.arange(state.num_processes + 1 ).to(state.device ) else: __lowerCamelCase = torch.arange(state.num_processes ).to(state.device ) __lowerCamelCase = pad_across_processes(A__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def lowerCamelCase__ ( A__ : int ): '''simple docstring''' if state.num_processes != 2: return __lowerCamelCase = create_tensor(A__ ) __lowerCamelCase = reduce(A__ , """sum""" ) __lowerCamelCase = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(A__ , A__ ), f'{reduced_tensor} != {truth_tensor}' def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' if state.num_processes != 2: return __lowerCamelCase = create_tensor(A__ ) __lowerCamelCase = reduce(A__ , """mean""" ) __lowerCamelCase = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(A__ , A__ ), f'{reduced_tensor} != {truth_tensor}' def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' main() def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = PartialState() state.print(f'State: {state}' ) state.print("""testing gather""" ) test_gather(A__ ) state.print("""testing gather_object""" ) test_gather_object(A__ ) state.print("""testing broadcast""" ) test_broadcast(A__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(A__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(A__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(A__ ) if __name__ == "__main__": main()
80
import os from collections.abc import Iterator def lowerCamelCase__ ( A__ : str = "." ): '''simple docstring''' for dir_path, dir_names, filenames in os.walk(A__ ): __lowerCamelCase = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(A__ )[1] in (".py", ".ipynb"): yield os.path.join(A__ , A__ ).lstrip("""./""" ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return f'{i * " "}*' if i else "\n##" def lowerCamelCase__ ( A__ : str , A__ : str ): '''simple docstring''' __lowerCamelCase = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(A__ ) or old_parts[i] != new_part) and new_part: print(f'{md_prefix(A__ )} {new_part.replace("_" , " " ).title()}' ) return new_path def lowerCamelCase__ ( A__ : str = "." ): '''simple docstring''' __lowerCamelCase = """""" for filepath in sorted(good_file_paths(A__ ) ): __lowerCamelCase, __lowerCamelCase = os.path.split(A__ ) if filepath != old_path: __lowerCamelCase = print_path(A__ , A__ ) __lowerCamelCase = (filepath.count(os.sep ) + 1) if filepath else 0 __lowerCamelCase = f'{filepath}/{filename}'.replace(""" """ , """%20""" ) __lowerCamelCase = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(f'{md_prefix(A__ )} [{filename}]({url})' ) if __name__ == "__main__": print_directory_md('.')
80
1
def lowerCAmelCase_ ( lowerCamelCase ): if not isinstance(lowerCamelCase , lowerCamelCase ): raise ValueError("""Input must be an integer""" ) if input_num <= 0: raise ValueError("""Input must be positive""" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
21
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : int ={ '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[str] =[ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys A__ : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
207
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "sentencepiece.bpe.model"} UpperCAmelCase__ = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", } } UpperCAmelCase__ = { "camembert-base": 512, } UpperCAmelCase__ = "▁" class a ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase_ : str = VOCAB_FILES_NAMES UpperCamelCase_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : List[Any] = ['input_ids', 'attention_mask'] def __init__( self : List[Any] , lowerCamelCase__ : int , lowerCamelCase__ : Any="<s>" , lowerCamelCase__ : str="</s>" , lowerCamelCase__ : List[Any]="</s>" , lowerCamelCase__ : List[Any]="<s>" , lowerCamelCase__ : List[Any]="<unk>" , lowerCamelCase__ : Any="<pad>" , lowerCamelCase__ : int="<mask>" , lowerCamelCase__ : int=["<s>NOTUSED", "</s>NOTUSED"] , lowerCamelCase__ : Optional[Dict[str, Any]] = None , **lowerCamelCase__ : Optional[int] , ) -> None: """simple docstring""" __lowercase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token __lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , additional_special_tokens=lowerCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase__ , ) __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase__ ) ) __lowercase = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> __lowercase = {'''<s>NOTUSED''': 0, '''<pad>''': 1, '''</s>NOTUSED''': 2, '''<unk>''': 3} __lowercase = len(self.fairseq_tokens_to_ids ) __lowercase = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) __lowercase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCAmelCase_ ( self : List[Any] , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase = [self.cls_token_id] __lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self : Dict , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None , lowerCamelCase__ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1, 1] + ([0] * len(lowerCamelCase__ )) + [1] def UpperCAmelCase_ ( self : List[Any] , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase_ ( self : List[str] ) -> List[Any]: """simple docstring""" return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase_ ( self : Any , lowerCamelCase__ : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(lowerCamelCase__ , out_type=lowerCamelCase__ ) def UpperCAmelCase_ ( self : str , lowerCamelCase__ : str ) -> Any: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(lowerCamelCase__ ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(lowerCamelCase__ ) def UpperCAmelCase_ ( self : Optional[int] , lowerCamelCase__ : Optional[Any] ) -> str: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase_ ( self : List[Any] , lowerCamelCase__ : int ) -> Any: """simple docstring""" __lowercase = [] __lowercase = '''''' __lowercase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCamelCase__ ) + token __lowercase = True __lowercase = [] else: current_sub_tokens.append(lowerCamelCase__ ) __lowercase = False out_string += self.sp_model.decode(lowerCamelCase__ ) return out_string.strip() def __getstate__( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = self.__dict__.copy() __lowercase = None return state def __setstate__( self : Any , lowerCamelCase__ : Dict ) -> Tuple: """simple docstring""" __lowercase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __lowercase = {} __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase_ ( self : Tuple , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCamelCase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __lowercase = os.path.join( lowerCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase__ , '''wb''' ) as fi: __lowercase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) return (out_vocab_file,)
703
from __future__ import annotations def _A( UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ) -> tuple[float, list[float]]: '''simple docstring''' __lowercase = list(range(len(UpperCamelCase__ ) ) ) __lowercase = [v / w for v, w in zip(UpperCamelCase__ , UpperCamelCase__ )] index.sort(key=lambda UpperCamelCase__ : ratio[i] , reverse=UpperCamelCase__ ) __lowercase = 0 __lowercase = [0] * len(UpperCamelCase__ ) for i in index: if weight[i] <= capacity: __lowercase = 1 max_value += value[i] capacity -= weight[i] else: __lowercase = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
362
0
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : List[Any]=None ): '''simple docstring''' if "." in tensor_name: lowerCAmelCase = tensor_name.split(""".""" ) for split in splits[:-1]: lowerCAmelCase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if new_module is None: raise ValueError(F'{module} has no attribute {split}.' ) lowerCAmelCase = new_module lowerCAmelCase = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F'{module} does not have a parameter or a buffer named {tensor_name}.' ) lowerCAmelCase = tensor_name in module._buffers lowerCAmelCase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if old_value.device == torch.device("""meta""" ) and device not in ["meta", torch.device("""meta""" )] and value is None: raise ValueError(F'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) lowerCAmelCase = False lowerCAmelCase = False if is_buffer or not is_bitsandbytes_available(): lowerCAmelCase = False lowerCAmelCase = False else: lowerCAmelCase = hasattr(bnb.nn , """Params4bit""" ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) lowerCAmelCase = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: lowerCAmelCase = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: lowerCAmelCase = old_value.to(SCREAMING_SNAKE_CASE ) elif isinstance(SCREAMING_SNAKE_CASE , torch.Tensor ): lowerCAmelCase = value.to("""cpu""" ) if value.dtype == torch.inta: lowerCAmelCase = version.parse(importlib.metadata.version("""bitsandbytes""" ) ) > version.parse( """0.37.2""" ) if not is_abit_serializable: raise ValueError( """Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. """ """Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.""" ) else: lowerCAmelCase = torch.tensor(SCREAMING_SNAKE_CASE , device="""cpu""" ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , SCREAMING_SNAKE_CASE ) and fpaa_statistics is None: lowerCAmelCase = new_value.T lowerCAmelCase = old_value.__dict__ if is_abit: lowerCAmelCase = bnb.nn.IntaParams(SCREAMING_SNAKE_CASE , requires_grad=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) elif is_abit: lowerCAmelCase = bnb.nn.Paramsabit(SCREAMING_SNAKE_CASE , requires_grad=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) lowerCAmelCase = new_value if fpaa_statistics is not None: setattr(module.weight , """SCB""" , fpaa_statistics.to(SCREAMING_SNAKE_CASE ) ) else: if value is None: lowerCAmelCase = old_value.to(SCREAMING_SNAKE_CASE ) elif isinstance(SCREAMING_SNAKE_CASE , torch.Tensor ): lowerCAmelCase = value.to(SCREAMING_SNAKE_CASE ) else: lowerCAmelCase = torch.tensor(SCREAMING_SNAKE_CASE , device=SCREAMING_SNAKE_CASE ) if is_buffer: lowerCAmelCase = new_value else: lowerCAmelCase = nn.Parameter(SCREAMING_SNAKE_CASE , requires_grad=old_value.requires_grad ) lowerCAmelCase = new_value def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str=None , SCREAMING_SNAKE_CASE : Optional[Any]=None , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Optional[int]=False ): '''simple docstring''' for name, module in model.named_children(): if current_key_name is None: lowerCAmelCase = [] current_key_name.append(SCREAMING_SNAKE_CASE ) if (isinstance(SCREAMING_SNAKE_CASE , nn.Linear ) or isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in """.""".join(SCREAMING_SNAKE_CASE ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase , lowerCAmelCase = module.weight.shape else: lowerCAmelCase = module.in_features lowerCAmelCase = module.out_features if quantization_config.quantization_method() == "llm_int8": lowerCAmelCase = bnb.nn.LinearabitLt( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) lowerCAmelCase = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: lowerCAmelCase = bnb.nn.Linearabit( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) lowerCAmelCase = True # Store the module class in case we need to transpose the weight later lowerCAmelCase = type(SCREAMING_SNAKE_CASE ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(SCREAMING_SNAKE_CASE ) if len(list(module.children() ) ) > 0: lowerCAmelCase , lowerCAmelCase = _replace_with_bnb_linear( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , has_been_replaced=SCREAMING_SNAKE_CASE , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Dict=None , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : str=None ): '''simple docstring''' lowerCAmelCase = ["""lm_head"""] if modules_to_not_convert is None else modules_to_not_convert lowerCAmelCase , lowerCAmelCase = _replace_with_bnb_linear( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def UpperCAmelCase__ ( *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' warnings.warn( """`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead""" , SCREAMING_SNAKE_CASE , ) return replace_with_bnb_linear(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' warnings.warn( """`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead""" , SCREAMING_SNAKE_CASE , ) return set_module_quantized_tensor_to_device(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase = deepcopy(SCREAMING_SNAKE_CASE ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() lowerCAmelCase = find_tied_parameters(SCREAMING_SNAKE_CASE ) # For compatibility with Accelerate < 0.18 if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowerCAmelCase = sum(SCREAMING_SNAKE_CASE , [] ) lowerCAmelCase = len(SCREAMING_SNAKE_CASE ) > 0 # Check if it is a base model lowerCAmelCase = not hasattr(SCREAMING_SNAKE_CASE , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCAmelCase = list(model.named_children() ) lowerCAmelCase = [list_modules[-1][0]] # add last module together with tied weights lowerCAmelCase = set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) lowerCAmelCase = list(set(SCREAMING_SNAKE_CASE ) ) + list(SCREAMING_SNAKE_CASE ) # remove ".weight" from the keys lowerCAmelCase = [""".weight""", """.bias"""] lowerCAmelCase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCAmelCase = name.replace(SCREAMING_SNAKE_CASE , """""" ) filtered_module_names.append(SCREAMING_SNAKE_CASE ) return filtered_module_names
532
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { "configuration_roberta_prelayernorm": [ "ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaPreLayerNormConfig", "RobertaPreLayerNormOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaPreLayerNormForCausalLM", "RobertaPreLayerNormForMaskedLM", "RobertaPreLayerNormForMultipleChoice", "RobertaPreLayerNormForQuestionAnswering", "RobertaPreLayerNormForSequenceClassification", "RobertaPreLayerNormForTokenClassification", "RobertaPreLayerNormModel", "RobertaPreLayerNormPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaPreLayerNormForCausalLM", "TFRobertaPreLayerNormForMaskedLM", "TFRobertaPreLayerNormForMultipleChoice", "TFRobertaPreLayerNormForQuestionAnswering", "TFRobertaPreLayerNormForSequenceClassification", "TFRobertaPreLayerNormForTokenClassification", "TFRobertaPreLayerNormMainLayer", "TFRobertaPreLayerNormModel", "TFRobertaPreLayerNormPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "FlaxRobertaPreLayerNormForCausalLM", "FlaxRobertaPreLayerNormForMaskedLM", "FlaxRobertaPreLayerNormForMultipleChoice", "FlaxRobertaPreLayerNormForQuestionAnswering", "FlaxRobertaPreLayerNormForSequenceClassification", "FlaxRobertaPreLayerNormForTokenClassification", "FlaxRobertaPreLayerNormModel", "FlaxRobertaPreLayerNormPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
532
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class A__ ( _lowerCamelCase): A_ : Tuple = 'wavlm' def __init__( self , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=7_68 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=30_72 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1E-5 , _SCREAMING_SNAKE_CASE="group" , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , _SCREAMING_SNAKE_CASE=(5, 2, 2, 2, 2, 2, 2) , _SCREAMING_SNAKE_CASE=(10, 3, 3, 3, 3, 2, 2) , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1_28 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=3_20 , _SCREAMING_SNAKE_CASE=8_00 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.05 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=3_20 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1_00 , _SCREAMING_SNAKE_CASE=2_56 , _SCREAMING_SNAKE_CASE=2_56 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE="mean" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=2_56 , _SCREAMING_SNAKE_CASE=(5_12, 5_12, 5_12, 5_12, 15_00) , _SCREAMING_SNAKE_CASE=(5, 3, 3, 1, 1) , _SCREAMING_SNAKE_CASE=(1, 2, 3, 1, 1) , _SCREAMING_SNAKE_CASE=5_12 , _SCREAMING_SNAKE_CASE=80 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ): super().__init__(**_SCREAMING_SNAKE_CASE , pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = hidden_size __lowerCAmelCase : List[str] = feat_extract_norm __lowerCAmelCase : str = feat_extract_activation __lowerCAmelCase : Union[str, Any] = list(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = list(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = list(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = conv_bias __lowerCAmelCase : Tuple = num_buckets __lowerCAmelCase : List[Any] = max_bucket_distance __lowerCAmelCase : Union[str, Any] = num_conv_pos_embeddings __lowerCAmelCase : Optional[int] = num_conv_pos_embedding_groups __lowerCAmelCase : Dict = len(self.conv_dim ) __lowerCAmelCase : List[Any] = num_hidden_layers __lowerCAmelCase : Tuple = intermediate_size __lowerCAmelCase : int = hidden_act __lowerCAmelCase : Any = num_attention_heads __lowerCAmelCase : Optional[int] = hidden_dropout __lowerCAmelCase : Optional[Any] = attention_dropout __lowerCAmelCase : Dict = activation_dropout __lowerCAmelCase : Tuple = feat_proj_dropout __lowerCAmelCase : List[str] = final_dropout __lowerCAmelCase : Optional[int] = layerdrop __lowerCAmelCase : int = layer_norm_eps __lowerCAmelCase : List[Any] = initializer_range __lowerCAmelCase : str = num_ctc_classes __lowerCAmelCase : Tuple = vocab_size __lowerCAmelCase : List[Any] = do_stable_layer_norm __lowerCAmelCase : int = use_weighted_layer_sum __lowerCAmelCase : Tuple = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCAmelCase : Tuple = apply_spec_augment __lowerCAmelCase : int = mask_time_prob __lowerCAmelCase : List[str] = mask_time_length __lowerCAmelCase : str = mask_time_min_masks __lowerCAmelCase : Optional[Any] = mask_feature_prob __lowerCAmelCase : Dict = mask_feature_length # parameters for pretraining with codevector quantized representations __lowerCAmelCase : Optional[int] = num_codevectors_per_group __lowerCAmelCase : Dict = num_codevector_groups __lowerCAmelCase : Optional[int] = contrastive_logits_temperature __lowerCAmelCase : int = num_negatives __lowerCAmelCase : str = codevector_dim __lowerCAmelCase : Any = proj_codevector_dim __lowerCAmelCase : Union[str, Any] = diversity_loss_weight # ctc loss __lowerCAmelCase : Tuple = ctc_loss_reduction __lowerCAmelCase : Dict = ctc_zero_infinity # adapter __lowerCAmelCase : str = add_adapter __lowerCAmelCase : List[Any] = adapter_kernel_size __lowerCAmelCase : List[str] = adapter_stride __lowerCAmelCase : List[Any] = num_adapter_layers __lowerCAmelCase : Union[str, Any] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowerCAmelCase : Dict = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowerCAmelCase : Optional[Any] = list(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = list(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = list(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = xvector_output_dim @property def __lowerCamelCase ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
708
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer lowerCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCamelCase__ = """ Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\") >>> repo = \"openai/shap-e-img2img\" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\" >>> image = load_image(image_url).convert(\"RGB\") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\") ``` """ @dataclass class A__ ( _lowerCamelCase): A_ : Union[PIL.Image.Image, np.ndarray] class A__ ( _lowerCamelCase): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): super().__init__() self.register_modules( prior=_SCREAMING_SNAKE_CASE , image_encoder=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , renderer=_SCREAMING_SNAKE_CASE , ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if latents is None: __lowerCAmelCase : List[str] = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) __lowerCAmelCase : Any = latents.to(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = latents * scheduler.init_noise_sigma return latents def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) __lowerCAmelCase : Tuple = torch.device(f"cuda:{gpu_id}" ) __lowerCAmelCase : Union[str, Any] = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @property def __lowerCamelCase ( self ): if self.device != torch.device('meta' ) or not hasattr(self.image_encoder , '_hf_hook' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(_SCREAMING_SNAKE_CASE , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(image[0] , torch.Tensor ): __lowerCAmelCase : str = torch.cat(_SCREAMING_SNAKE_CASE , axis=0 ) if image[0].ndim == 4 else torch.stack(_SCREAMING_SNAKE_CASE , axis=0 ) if not isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): __lowerCAmelCase : Optional[int] = self.image_processor(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values[0].unsqueeze(0 ) __lowerCAmelCase : Dict = image.to(dtype=self.image_encoder.dtype , device=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = self.image_encoder(_SCREAMING_SNAKE_CASE )['last_hidden_state'] __lowerCAmelCase : Optional[int] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 __lowerCAmelCase : Tuple = image_embeds.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) if do_classifier_free_guidance: __lowerCAmelCase : List[Any] = torch.zeros_like(_SCREAMING_SNAKE_CASE ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowerCAmelCase : Any = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 25 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 4.0 , _SCREAMING_SNAKE_CASE = 64 , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , ): if isinstance(_SCREAMING_SNAKE_CASE , PIL.Image.Image ): __lowerCAmelCase : Union[str, Any] = 1 elif isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): __lowerCAmelCase : Tuple = image.shape[0] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): __lowerCAmelCase : Any = len(_SCREAMING_SNAKE_CASE ) else: raise ValueError( f"`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_SCREAMING_SNAKE_CASE )}" ) __lowerCAmelCase : Optional[Any] = self._execution_device __lowerCAmelCase : Optional[Any] = batch_size * num_images_per_prompt __lowerCAmelCase : Any = guidance_scale > 1.0 __lowerCAmelCase : List[Any] = self._encode_image(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # prior self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = self.scheduler.timesteps __lowerCAmelCase : Optional[int] = self.prior.config.num_embeddings __lowerCAmelCase : List[str] = self.prior.config.embedding_dim __lowerCAmelCase : Any = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim __lowerCAmelCase : str = latents.reshape(latents.shape[0] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for i, t in enumerate(self.progress_bar(_SCREAMING_SNAKE_CASE ) ): # expand the latents if we are doing classifier free guidance __lowerCAmelCase : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowerCAmelCase : Optional[int] = self.scheduler.scale_model_input(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = self.prior( _SCREAMING_SNAKE_CASE , timestep=_SCREAMING_SNAKE_CASE , proj_embedding=_SCREAMING_SNAKE_CASE , ).predicted_image_embedding # remove the variance __lowerCAmelCase , __lowerCAmelCase : Tuple = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: __lowerCAmelCase , __lowerCAmelCase : List[Any] = noise_pred.chunk(2 ) __lowerCAmelCase : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) __lowerCAmelCase : Dict = self.scheduler.step( _SCREAMING_SNAKE_CASE , timestep=_SCREAMING_SNAKE_CASE , sample=_SCREAMING_SNAKE_CASE , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = [] for i, latent in enumerate(_SCREAMING_SNAKE_CASE ): print() __lowerCAmelCase : int = self.renderer.decode( latent[None, :] , _SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , ray_batch_size=40_96 , n_coarse_samples=64 , n_fine_samples=1_28 , ) images.append(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = torch.stack(_SCREAMING_SNAKE_CASE ) if output_type not in ["np", "pil"]: raise ValueError(f"Only the output types `pil` and `np` are supported not output_type={output_type}" ) __lowerCAmelCase : int = images.cpu().numpy() if output_type == "pil": __lowerCAmelCase : Dict = [self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) for image in images] # Offload last model to CPU if hasattr(self , 'final_offload_hook' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=_SCREAMING_SNAKE_CASE )
549
0
def lowercase__ ( A_: str , A_: str ) -> Optional[Any]: """simple docstring""" assert x is not None assert y is not None __UpperCAmelCase =len(A_ ) __UpperCAmelCase =len(A_ ) # declaring the array for storing the dp values __UpperCAmelCase =[[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): __UpperCAmelCase =1 if x[i - 1] == y[j - 1] else 0 __UpperCAmelCase =max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) __UpperCAmelCase ="""""" __UpperCAmelCase , __UpperCAmelCase =m, n while i > 0 and j > 0: __UpperCAmelCase =1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: __UpperCAmelCase =x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": __A = "AGGTAB" __A = "GXTXAYB" __A = 4 __A = "GTAB" __A , __A = longest_common_subsequence(a, b) print("len =", ln, ", sub-sequence =", subseq) import doctest doctest.testmod()
68
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters SCREAMING_SNAKE_CASE__ = (720, 1_280) # Height, Width SCREAMING_SNAKE_CASE__ = (0.4, 0.6) # if height or width lower than this scale, drop it. SCREAMING_SNAKE_CASE__ = 1 / 100 SCREAMING_SNAKE_CASE__ = "" SCREAMING_SNAKE_CASE__ = "" SCREAMING_SNAKE_CASE__ = "" SCREAMING_SNAKE_CASE__ = 250 def lowercase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :str = get_dataset(a , a ) for index in range(a ): SCREAMING_SNAKE_CASE_ :Any = random.sample(range(len(a ) ) , 4 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Optional[Any] = update_image_and_anno( a , a , a , a , a , filter_scale=a , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' SCREAMING_SNAKE_CASE_ :int = random_chars(32 ) SCREAMING_SNAKE_CASE_ :Dict = path.split(os.sep )[-1].rsplit("." , 1 )[0] SCREAMING_SNAKE_CASE_ :Dict = F"{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}" cva.imwrite(F"{file_root}.jpg" , a , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}" ) SCREAMING_SNAKE_CASE_ :Union[str, Any] = [] for anno in new_annos: SCREAMING_SNAKE_CASE_ :Any = anno[3] - anno[1] SCREAMING_SNAKE_CASE_ :Union[str, Any] = anno[4] - anno[2] SCREAMING_SNAKE_CASE_ :Any = anno[1] + width / 2 SCREAMING_SNAKE_CASE_ :Optional[int] = anno[2] + height / 2 SCREAMING_SNAKE_CASE_ :Optional[int] = F"{anno[0]} {x_center} {y_center} {width} {height}" annos_list.append(a ) with open(F"{file_root}.txt" , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def lowercase ( a , a ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :int = [] SCREAMING_SNAKE_CASE_ :Optional[Any] = [] for label_file in glob.glob(os.path.join(a , "*.txt" ) ): SCREAMING_SNAKE_CASE_ :List[str] = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(a ) as in_file: SCREAMING_SNAKE_CASE_ :List[Any] = in_file.readlines() SCREAMING_SNAKE_CASE_ :Optional[Any] = os.path.join(a , F"{label_name}.jpg" ) SCREAMING_SNAKE_CASE_ :Dict = [] for obj_list in obj_lists: SCREAMING_SNAKE_CASE_ :Dict = obj_list.rstrip("\n" ).split(" " ) SCREAMING_SNAKE_CASE_ :Optional[Any] = float(obj[1] ) - float(obj[3] ) / 2 SCREAMING_SNAKE_CASE_ :Dict = float(obj[2] ) - float(obj[4] ) / 2 SCREAMING_SNAKE_CASE_ :List[Any] = float(obj[1] ) + float(obj[3] ) / 2 SCREAMING_SNAKE_CASE_ :List[str] = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(a ) labels.append(a ) return img_paths, labels def lowercase ( a , a , a , a , a , a = 0.0 , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :int = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) SCREAMING_SNAKE_CASE_ :Tuple = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) SCREAMING_SNAKE_CASE_ :List[str] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) SCREAMING_SNAKE_CASE_ :Any = int(scale_x * output_size[1] ) SCREAMING_SNAKE_CASE_ :List[Any] = int(scale_y * output_size[0] ) SCREAMING_SNAKE_CASE_ :Any = [] SCREAMING_SNAKE_CASE_ :Optional[Any] = [] for i, index in enumerate(a ): SCREAMING_SNAKE_CASE_ :Optional[int] = all_img_list[index] path_list.append(a ) SCREAMING_SNAKE_CASE_ :Tuple = all_annos[index] SCREAMING_SNAKE_CASE_ :Any = cva.imread(a ) if i == 0: # top-left SCREAMING_SNAKE_CASE_ :int = cva.resize(a , (divid_point_x, divid_point_y) ) SCREAMING_SNAKE_CASE_ :Any = img for bbox in img_annos: SCREAMING_SNAKE_CASE_ :Tuple = bbox[1] * scale_x SCREAMING_SNAKE_CASE_ :Optional[Any] = bbox[2] * scale_y SCREAMING_SNAKE_CASE_ :List[Any] = bbox[3] * scale_x SCREAMING_SNAKE_CASE_ :Tuple = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right SCREAMING_SNAKE_CASE_ :Dict = cva.resize(a , (output_size[1] - divid_point_x, divid_point_y) ) SCREAMING_SNAKE_CASE_ :Optional[int] = img for bbox in img_annos: SCREAMING_SNAKE_CASE_ :Optional[Any] = scale_x + bbox[1] * (1 - scale_x) SCREAMING_SNAKE_CASE_ :Dict = bbox[2] * scale_y SCREAMING_SNAKE_CASE_ :Optional[int] = scale_x + bbox[3] * (1 - scale_x) SCREAMING_SNAKE_CASE_ :Tuple = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left SCREAMING_SNAKE_CASE_ :List[str] = cva.resize(a , (divid_point_x, output_size[0] - divid_point_y) ) SCREAMING_SNAKE_CASE_ :int = img for bbox in img_annos: SCREAMING_SNAKE_CASE_ :Tuple = bbox[1] * scale_x SCREAMING_SNAKE_CASE_ :Dict = scale_y + bbox[2] * (1 - scale_y) SCREAMING_SNAKE_CASE_ :Union[str, Any] = bbox[3] * scale_x SCREAMING_SNAKE_CASE_ :List[str] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right SCREAMING_SNAKE_CASE_ :Optional[Any] = cva.resize( a , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) SCREAMING_SNAKE_CASE_ :Optional[Any] = img for bbox in img_annos: SCREAMING_SNAKE_CASE_ :Optional[int] = scale_x + bbox[1] * (1 - scale_x) SCREAMING_SNAKE_CASE_ :Optional[Any] = scale_y + bbox[2] * (1 - scale_y) SCREAMING_SNAKE_CASE_ :Dict = scale_x + bbox[3] * (1 - scale_x) SCREAMING_SNAKE_CASE_ :List[Any] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: SCREAMING_SNAKE_CASE_ :Optional[int] = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def lowercase ( a ): '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" SCREAMING_SNAKE_CASE_ :Dict = ascii_lowercase + digits return "".join(random.choice(a ) for _ in range(a ) ) if __name__ == "__main__": main() print("DONE ✅")
631
0
'''simple docstring''' def __UpperCAmelCase ( a_: list ): if len(a_ ) <= 1: return lst _UpperCAmelCase : List[Any] = 1 while i < len(a_ ): if lst[i - 1] <= lst[i]: i += 1 else: _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = lst[i], lst[i - 1] i -= 1 if i == 0: _UpperCAmelCase : Optional[Any] = 1 return lst if __name__ == "__main__": __a = input('Enter numbers separated by a comma:\n').strip() __a = [int(item) for item in user_input.split(',')] print(gnome_sort(unsorted))
257
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = '''ibert''' def __init__( self : List[str] , lowerCAmelCase__ : List[Any]=3_0_5_2_2 , lowerCAmelCase__ : Optional[int]=7_6_8 , lowerCAmelCase__ : Union[str, Any]=1_2 , lowerCAmelCase__ : Union[str, Any]=1_2 , lowerCAmelCase__ : Dict=3_0_7_2 , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : Any=5_1_2 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : Union[str, Any]=0.02 , lowerCAmelCase__ : List[Any]=1e-12 , lowerCAmelCase__ : Any=1 , lowerCAmelCase__ : List[Any]=0 , lowerCAmelCase__ : Tuple=2 , lowerCAmelCase__ : Any="absolute" , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : Dict="none" , **lowerCAmelCase__ : List[str] , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = vocab_size _UpperCAmelCase : List[str] = hidden_size _UpperCAmelCase : Dict = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : int = intermediate_size _UpperCAmelCase : Any = hidden_dropout_prob _UpperCAmelCase : List[Any] = attention_probs_dropout_prob _UpperCAmelCase : Optional[Any] = max_position_embeddings _UpperCAmelCase : Tuple = type_vocab_size _UpperCAmelCase : int = initializer_range _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : int = position_embedding_type _UpperCAmelCase : List[str] = quant_mode _UpperCAmelCase : Optional[int] = force_dequant class A__ ( UpperCamelCase ): """simple docstring""" @property def _lowerCAmelCase ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCAmelCase : List[str] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
257
1
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={"""vocab_file""": """spiece.model"""} __SCREAMING_SNAKE_CASE ={ """vocab_file""": { """AI-Sweden/gpt-sw3-126m""": """https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-350m""": """https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-1.6b""": """https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-6.7b""": """https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-20b""": """https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model""", } } __SCREAMING_SNAKE_CASE ={ """AI-Sweden/gpt-sw3-126m""": 2_048, """AI-Sweden/gpt-sw3-350m""": 2_048, """AI-Sweden/gpt-sw3-1.6b""": 2_048, """AI-Sweden/gpt-sw3-6.7b""": 2_048, """AI-Sweden/gpt-sw3-20b""": 2_048, } class __magic_name__ ( __UpperCAmelCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Optional[Any] = ["input_ids", "attention_mask"] def __init__( self: Optional[Any] , _lowerCamelCase: Optional[int] , _lowerCamelCase: Any=False , _lowerCamelCase: Union[str, Any]=False , _lowerCamelCase: str=False , _lowerCamelCase: Optional[Any]=None , _lowerCamelCase: Any=None , _lowerCamelCase: int=None , _lowerCamelCase: List[Any]=None , _lowerCamelCase: Optional[Dict[str, Any]] = None , **_lowerCamelCase: List[str] , ): SCREAMING_SNAKE_CASE_ = {} if sp_model_kwargs is None else sp_model_kwargs SCREAMING_SNAKE_CASE_ = kwargs.get('''name_or_path''' ) if name_or_path is None: logger.warning( '''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,''' ''' you are testing the model, this can safely be ignored''' ) SCREAMING_SNAKE_CASE_ = '''None''' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing SCREAMING_SNAKE_CASE_ = '''<|endoftext|>''' if eos_token is None else eos_token SCREAMING_SNAKE_CASE_ = '''<unk>''' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: SCREAMING_SNAKE_CASE_ = unk_token if pad_token is None else pad_token SCREAMING_SNAKE_CASE_ = eos_token if bos_token is None else bos_token else: SCREAMING_SNAKE_CASE_ = '''<pad>''' if pad_token is None else pad_token SCREAMING_SNAKE_CASE_ = '''<s>''' if bos_token is None else bos_token super().__init__( do_lower_case=_lowerCamelCase , remove_space=_lowerCamelCase , keep_accents=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE_ = do_lower_case SCREAMING_SNAKE_CASE_ = remove_space SCREAMING_SNAKE_CASE_ = keep_accents SCREAMING_SNAKE_CASE_ = vocab_file SCREAMING_SNAKE_CASE_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) # Used for whitespace normalization in input texts # fmt : off SCREAMING_SNAKE_CASE_ = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', '''„'''} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing SCREAMING_SNAKE_CASE_ = re.compile( f"[{''.join(map(_lowerCamelCase , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(1_27 , 1_60 ) ) + [1_60, 1_73, 82_03] ) )}]" ) def __getstate__( self: int ): SCREAMING_SNAKE_CASE_ = self.__dict__.copy() SCREAMING_SNAKE_CASE_ = None return state def __setstate__( self: List[Any] , _lowerCamelCase: Optional[Any] ): SCREAMING_SNAKE_CASE_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def _A ( self: int ): return len(self.sp_model ) def _A ( self: int , _lowerCamelCase: str ): SCREAMING_SNAKE_CASE_ = self.non_printing_characters_re.sub('''''' , _lowerCamelCase ) # Normalize whitespaces SCREAMING_SNAKE_CASE_ = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] ) # NFC Unicode normalization SCREAMING_SNAKE_CASE_ = unicodedata.normalize('''NFC''' , _lowerCamelCase ) return text def _A ( self: Tuple , _lowerCamelCase: str , **_lowerCamelCase: Optional[Any] ): SCREAMING_SNAKE_CASE_ = self.preprocess_text(_lowerCamelCase ) return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def _A ( self: Union[str, Any] , _lowerCamelCase: str ): return self.sp_model.PieceToId(_lowerCamelCase ) def _A ( self: Optional[int] , _lowerCamelCase: int ): return self.sp_model.IdToPiece(_lowerCamelCase ) @staticmethod def _A ( _lowerCamelCase: str ): return out_string def _A ( self: Tuple , _lowerCamelCase: List[str] ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = '''''' SCREAMING_SNAKE_CASE_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowerCamelCase ) + token SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = [] else: current_sub_tokens.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = False out_string += self.sp_model.decode(_lowerCamelCase ) return out_string def _A ( self: Any ): SCREAMING_SNAKE_CASE_ = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _A ( self: Any , _lowerCamelCase: str , _lowerCamelCase: Optional[str] = None ): if not os.path.isdir(_lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE_ = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , '''wb''' ) as fi: SCREAMING_SNAKE_CASE_ = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,) def _A ( self: Dict , _lowerCamelCase: Union[str, List[str]] , _lowerCamelCase: Union[str, bool] = False ): if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE_ = self.preprocess_text(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = self.sp_model.encode(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = [self.preprocess_text(_lowerCamelCase ) for t in text] SCREAMING_SNAKE_CASE_ = self.sp_model.encode(_lowerCamelCase ) if return_tensors is True or return_tensors == "pt": SCREAMING_SNAKE_CASE_ = torch.tensor(_lowerCamelCase ) return token_ids def _A ( self: List[Any] , _lowerCamelCase: Union[int, List[int]] ): return self.sp_model.decode(_lowerCamelCase ) def _A ( self: Union[str, Any] , _lowerCamelCase: "Conversation" ): SCREAMING_SNAKE_CASE_ = [f"User: {text}" if is_user else f"Bot: {text}" for is_user, text in conversation.iter_texts()] SCREAMING_SNAKE_CASE_ = ( f"{self.eos_token}{self.bos_token}" + f"{self.bos_token}".join(_lowerCamelCase ) + f"{self.bos_token}Bot:" ) return self.encode(text=_lowerCamelCase )
234
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def a (): raise RuntimeError('''CUDA out of memory.''' ) class __magic_name__ ( nn.Module): '''simple docstring''' def __init__( self: Optional[Any] ): super().__init__() SCREAMING_SNAKE_CASE_ = nn.Linear(3 , 4 ) SCREAMING_SNAKE_CASE_ = nn.BatchNormad(4 ) SCREAMING_SNAKE_CASE_ = nn.Linear(4 , 5 ) def _A ( self: int , _lowerCamelCase: List[Any] ): return self.lineara(self.batchnorm(self.lineara(_lowerCamelCase ) ) ) class __magic_name__ ( unittest.TestCase): '''simple docstring''' def _A ( self: List[Any] ): SCREAMING_SNAKE_CASE_ = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(_lowerCamelCase: str ): nonlocal batch_sizes batch_sizes.append(_lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(_lowerCamelCase , [1_28, 64, 32, 16, 8] ) def _A ( self: int ): SCREAMING_SNAKE_CASE_ = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(_lowerCamelCase: Optional[Any] , _lowerCamelCase: Optional[int] ): nonlocal batch_sizes batch_sizes.append(_lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = mock_training_loop_function('''hello''' ) self.assertListEqual(_lowerCamelCase , [1_28, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def _A ( self: str ): @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(_lowerCamelCase: Union[str, Any] ): pass with self.assertRaises(_lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def _A ( self: int ): @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(_lowerCamelCase: str ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(_lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def _A ( self: List[Any] ): @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(_lowerCamelCase: str , _lowerCamelCase: int , _lowerCamelCase: Tuple ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(_lowerCamelCase ) as cm: mock_training_loop_function(1_28 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def _A ( self: Dict ): @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(_lowerCamelCase: Dict ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(_lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def _A ( self: str ): SCREAMING_SNAKE_CASE_ = torch.cuda.memory_allocated() SCREAMING_SNAKE_CASE_ = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , _lowerCamelCase ) SCREAMING_SNAKE_CASE_ = release_memory(_lowerCamelCase ) self.assertEqual(torch.cuda.memory_allocated() , _lowerCamelCase )
234
1
'''simple docstring''' import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCamelCase__ : Optional[Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" for pegasus_name, hf_name in PATTERNS: SCREAMING_SNAKE_CASE_ = k.replace(a__ , a__ ) return k def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ = DEFAULTS.copy() cfg_kwargs.update(a__ ) SCREAMING_SNAKE_CASE_ = PegasusConfig(**a__ ) SCREAMING_SNAKE_CASE_ = PegasusForConditionalGeneration(a__ ) SCREAMING_SNAKE_CASE_ = torch_model.model.state_dict() SCREAMING_SNAKE_CASE_ = {} for k, v in tf_weights.items(): SCREAMING_SNAKE_CASE_ = rename_state_dict_key(a__ ) if new_k not in sd: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: SCREAMING_SNAKE_CASE_ = v.T SCREAMING_SNAKE_CASE_ = torch.tensor(a__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected SCREAMING_SNAKE_CASE_ = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) SCREAMING_SNAKE_CASE_ = mapping['shared.weight'] SCREAMING_SNAKE_CASE_ = mapping['shared.weight'] SCREAMING_SNAKE_CASE_ = {k: torch.zeros_like(a__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**a__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = torch_model.model.load_state_dict(a__ , strict=a__ ) SCREAMING_SNAKE_CASE_ = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : Tuple="./ckpt/aeslc/model.ckpt-32000" ): """simple docstring""" SCREAMING_SNAKE_CASE_ = tf.train.list_variables(a__ ) SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = ['Adafactor', 'global_step'] for name, shape in tqdm(a__ , desc='converting tf checkpoint to dict' ): SCREAMING_SNAKE_CASE_ = any(pat in name for pat in ignore_name ) if skip_key: continue SCREAMING_SNAKE_CASE_ = tf.train.load_variable(a__ , a__ ) SCREAMING_SNAKE_CASE_ = array return tf_weights def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = Path(a__ ).parent.name SCREAMING_SNAKE_CASE_ = task_specific_params[f"""summarization_{dataset}"""]['max_position_embeddings'] SCREAMING_SNAKE_CASE_ = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=a__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(a__ ) # convert model SCREAMING_SNAKE_CASE_ = get_tf_weights_as_numpy(a__ ) SCREAMING_SNAKE_CASE_ = task_specific_params[f"""summarization_{dataset}"""] if dataset == "large": SCREAMING_SNAKE_CASE_ = task_specific_params SCREAMING_SNAKE_CASE_ = convert_pegasus(a__ , a__ ) torch_model.save_pretrained(a__ ) SCREAMING_SNAKE_CASE_ = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(a__ , Path(a__ ) / 'pytorch_model.bin' ) if __name__ == "__main__": UpperCamelCase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") UpperCamelCase__ : Dict = parser.parse_args() if args.save_dir is None: UpperCamelCase__ : Tuple = Path(args.tf_ckpt_path).parent.name UpperCamelCase__ : Tuple = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
714
def _UpperCAmelCase ( ): """simple docstring""" for n in range(1 , 1_000_000 ): yield n * (n + 1) // 2 def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 2 while i * i <= n: SCREAMING_SNAKE_CASE_ = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def _UpperCAmelCase ( ): """simple docstring""" return next(i for i in triangle_number_generator() if count_divisors(_SCREAMING_SNAKE_CASE ) > 500 ) if __name__ == "__main__": print(solution())
620
0
"""simple docstring""" from itertools import permutations def lowercase ( _SCREAMING_SNAKE_CASE : tuple ): '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False _UpperCAmelCase = [7, 11, 13, 17] for i, test in enumerate(_SCREAMING_SNAKE_CASE ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowercase ( _SCREAMING_SNAKE_CASE : int = 10 ): '''simple docstring''' return sum( int(''''''.join(map(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) ) for num in permutations(range(_SCREAMING_SNAKE_CASE ) ) if is_substring_divisible(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": print(f'''{solution() = }''')
602
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : List[Any] , __UpperCamelCase : str = "▁" , __UpperCamelCase : bool = True , __UpperCamelCase : Union[str, AddedToken] = "<unk>" , __UpperCamelCase : Union[str, AddedToken] = "</s>" , __UpperCamelCase : Union[str, AddedToken] = "<pad>" , )->List[Any]: _UpperCAmelCase = { '''pad''': {'''id''': 0, '''token''': pad_token}, '''eos''': {'''id''': 1, '''token''': eos_token}, '''unk''': {'''id''': 2, '''token''': unk_token}, } _UpperCAmelCase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): _UpperCAmelCase = token_dict['''token'''] _UpperCAmelCase = Tokenizer(Unigram() ) _UpperCAmelCase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(''' {2,}''' ) , ''' ''' ), normalizers.Lowercase(), ] ) _UpperCAmelCase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=__UpperCamelCase , add_prefix_space=__UpperCamelCase ), pre_tokenizers.Digits(individual_digits=__UpperCamelCase ), pre_tokenizers.Punctuation(), ] ) _UpperCAmelCase = decoders.Metaspace(replacement=__UpperCamelCase , add_prefix_space=__UpperCamelCase ) _UpperCAmelCase = TemplateProcessing( single=F'$A {self.special_tokens["eos"]["token"]}' , special_tokens=[(self.special_tokens['''eos''']['''token'''], self.special_tokens['''eos''']['''id'''])] , ) _UpperCAmelCase = { '''model''': '''SentencePieceUnigram''', '''replacement''': replacement, '''add_prefix_space''': add_prefix_space, } super().__init__(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : int , __UpperCamelCase : Union[str, List[str]] , __UpperCamelCase : int = 8_0_0_0 , __UpperCamelCase : bool = True , )->Any: _UpperCAmelCase = trainers.UnigramTrainer( vocab_size=__UpperCamelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCamelCase , ) if isinstance(__UpperCamelCase , __UpperCamelCase ): _UpperCAmelCase = [files] self._tokenizer.train(__UpperCamelCase , trainer=__UpperCamelCase ) self.add_unk_id() def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Union[Iterator[str], Iterator[Iterator[str]]] , __UpperCamelCase : int = 8_0_0_0 , __UpperCamelCase : bool = True , )->int: _UpperCAmelCase = trainers.UnigramTrainer( vocab_size=__UpperCamelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCamelCase , ) self._tokenizer.train_from_iterator(__UpperCamelCase , trainer=__UpperCamelCase ) self.add_unk_id() def lowercase__ ( self : int )->Dict: _UpperCAmelCase = json.loads(self._tokenizer.to_str() ) _UpperCAmelCase = self.special_tokens['''unk''']['''id'''] _UpperCAmelCase = Tokenizer.from_str(json.dumps(__UpperCamelCase ) )
602
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={ "uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json", } class __magic_name__ ( _a): _UpperCAmelCase : Optional[Any] = 'mra' def __init__( self : Union[str, Any] ,__SCREAMING_SNAKE_CASE : Any=5_0_2_6_5 ,__SCREAMING_SNAKE_CASE : Tuple=7_6_8 ,__SCREAMING_SNAKE_CASE : Tuple=1_2 ,__SCREAMING_SNAKE_CASE : List[Any]=1_2 ,__SCREAMING_SNAKE_CASE : List[Any]=3_0_7_2 ,__SCREAMING_SNAKE_CASE : Union[str, Any]="gelu" ,__SCREAMING_SNAKE_CASE : Optional[Any]=0.1 ,__SCREAMING_SNAKE_CASE : Optional[Any]=0.1 ,__SCREAMING_SNAKE_CASE : Optional[Any]=5_1_2 ,__SCREAMING_SNAKE_CASE : Optional[int]=1 ,__SCREAMING_SNAKE_CASE : List[str]=0.02 ,__SCREAMING_SNAKE_CASE : Dict=1e-5 ,__SCREAMING_SNAKE_CASE : Union[str, Any]="absolute" ,__SCREAMING_SNAKE_CASE : Dict=4 ,__SCREAMING_SNAKE_CASE : Optional[Any]="full" ,__SCREAMING_SNAKE_CASE : str=0 ,__SCREAMING_SNAKE_CASE : Union[str, Any]=0 ,__SCREAMING_SNAKE_CASE : Tuple=1 ,__SCREAMING_SNAKE_CASE : Dict=0 ,__SCREAMING_SNAKE_CASE : str=2 ,**__SCREAMING_SNAKE_CASE : Any ,): super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE ,bos_token_id=__SCREAMING_SNAKE_CASE ,eos_token_id=__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) UpperCAmelCase = vocab_size UpperCAmelCase = max_position_embeddings UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = initializer_range UpperCAmelCase = type_vocab_size UpperCAmelCase = layer_norm_eps UpperCAmelCase = position_embedding_type UpperCAmelCase = block_per_row UpperCAmelCase = approx_mode UpperCAmelCase = initial_prior_first_n_blocks UpperCAmelCase = initial_prior_diagonal_n_blocks
405
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __magic_name__ ( _a): _UpperCAmelCase : Optional[int] = ['image_processor', 'tokenizer'] _UpperCAmelCase : str = 'Pix2StructImageProcessor' _UpperCAmelCase : Any = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self : Optional[int] ,__SCREAMING_SNAKE_CASE : Optional[int] ,__SCREAMING_SNAKE_CASE : Tuple ): UpperCAmelCase = False super().__init__(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) def __call__( self : Any ,__SCREAMING_SNAKE_CASE : Optional[Any]=None ,__SCREAMING_SNAKE_CASE : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,__SCREAMING_SNAKE_CASE : bool = True ,__SCREAMING_SNAKE_CASE : Union[bool, str, PaddingStrategy] = False ,__SCREAMING_SNAKE_CASE : Union[bool, str, TruncationStrategy] = None ,__SCREAMING_SNAKE_CASE : Optional[int] = None ,__SCREAMING_SNAKE_CASE : Optional[int] = 2_0_4_8 ,__SCREAMING_SNAKE_CASE : int = 0 ,__SCREAMING_SNAKE_CASE : Optional[int] = None ,__SCREAMING_SNAKE_CASE : Optional[bool] = None ,__SCREAMING_SNAKE_CASE : bool = False ,__SCREAMING_SNAKE_CASE : bool = False ,__SCREAMING_SNAKE_CASE : bool = False ,__SCREAMING_SNAKE_CASE : bool = False ,__SCREAMING_SNAKE_CASE : bool = False ,__SCREAMING_SNAKE_CASE : bool = True ,__SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None ,**__SCREAMING_SNAKE_CASE : Union[str, Any] ,): if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None and not self.image_processor.is_vqa: UpperCAmelCase = self.tokenizer UpperCAmelCase = self.tokenizer( text=__SCREAMING_SNAKE_CASE ,add_special_tokens=__SCREAMING_SNAKE_CASE ,padding=__SCREAMING_SNAKE_CASE ,truncation=__SCREAMING_SNAKE_CASE ,max_length=__SCREAMING_SNAKE_CASE ,stride=__SCREAMING_SNAKE_CASE ,pad_to_multiple_of=__SCREAMING_SNAKE_CASE ,return_attention_mask=__SCREAMING_SNAKE_CASE ,return_overflowing_tokens=__SCREAMING_SNAKE_CASE ,return_special_tokens_mask=__SCREAMING_SNAKE_CASE ,return_offsets_mapping=__SCREAMING_SNAKE_CASE ,return_token_type_ids=__SCREAMING_SNAKE_CASE ,return_length=__SCREAMING_SNAKE_CASE ,verbose=__SCREAMING_SNAKE_CASE ,return_tensors=__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ,) return text_encoding if not self.image_processor.is_vqa: # add pixel_values UpperCAmelCase = self.image_processor( __SCREAMING_SNAKE_CASE ,return_tensors=__SCREAMING_SNAKE_CASE ,max_patches=__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) else: # add pixel_values and bbox UpperCAmelCase = self.image_processor( __SCREAMING_SNAKE_CASE ,return_tensors=__SCREAMING_SNAKE_CASE ,max_patches=__SCREAMING_SNAKE_CASE ,header_text=__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) if text is not None and not self.image_processor.is_vqa: UpperCAmelCase = self.tokenizer( text=__SCREAMING_SNAKE_CASE ,add_special_tokens=__SCREAMING_SNAKE_CASE ,padding=__SCREAMING_SNAKE_CASE ,truncation=__SCREAMING_SNAKE_CASE ,max_length=__SCREAMING_SNAKE_CASE ,stride=__SCREAMING_SNAKE_CASE ,pad_to_multiple_of=__SCREAMING_SNAKE_CASE ,return_attention_mask=__SCREAMING_SNAKE_CASE ,return_overflowing_tokens=__SCREAMING_SNAKE_CASE ,return_special_tokens_mask=__SCREAMING_SNAKE_CASE ,return_offsets_mapping=__SCREAMING_SNAKE_CASE ,return_token_type_ids=__SCREAMING_SNAKE_CASE ,return_length=__SCREAMING_SNAKE_CASE ,verbose=__SCREAMING_SNAKE_CASE ,return_tensors=__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ,) if "attention_mask" in text_encoding: UpperCAmelCase = text_encoding.pop("attention_mask" ) if "input_ids" in text_encoding: UpperCAmelCase = text_encoding.pop("input_ids" ) else: UpperCAmelCase = None if text_encoding is not None: encoding_image_processor.update(__SCREAMING_SNAKE_CASE ) return encoding_image_processor def _UpperCAmelCase ( self : Union[str, Any] ,*__SCREAMING_SNAKE_CASE : Union[str, Any] ,**__SCREAMING_SNAKE_CASE : str ): return self.tokenizer.batch_decode(*__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : List[str] ,*__SCREAMING_SNAKE_CASE : Optional[int] ,**__SCREAMING_SNAKE_CASE : Dict ): return self.tokenizer.decode(*__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) @property def _UpperCAmelCase ( self : List[Any] ): UpperCAmelCase = self.tokenizer.model_input_names UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
405
1
import flax.linen as nn import jax import jax.numpy as jnp class lowercase ( nn.Module ): """simple docstring""" snake_case_ = 42 snake_case_ = jnp.floataa def _UpperCamelCase ( self : int ): """simple docstring""" lowerCamelCase__ = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : List[Any] , a_ : Union[str, Any] ): """simple docstring""" lowerCamelCase__ = hidden_states.shape lowerCamelCase__ = jax.image.resize( _A , shape=(batch, height * 2, width * 2, channels) , method="""nearest""" , ) lowerCamelCase__ = self.conv(_A ) return hidden_states class lowercase ( nn.Module ): """simple docstring""" snake_case_ = 42 snake_case_ = jnp.floataa def _UpperCamelCase ( self : Tuple ): """simple docstring""" lowerCamelCase__ = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : List[str] , a_ : List[Any] ): """simple docstring""" lowerCamelCase__ = self.conv(_A ) return hidden_states class lowercase ( nn.Module ): """simple docstring""" snake_case_ = 42 snake_case_ = None snake_case_ = 0.0 snake_case_ = None snake_case_ = jnp.floataa def _UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" lowerCamelCase__ = self.in_channels if self.out_channels is None else self.out_channels lowerCamelCase__ = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) lowerCamelCase__ = nn.Conv( _A , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase__ = nn.Dense(_A , dtype=self.dtype ) lowerCamelCase__ = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) lowerCamelCase__ = nn.Dropout(self.dropout_prob ) lowerCamelCase__ = nn.Conv( _A , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase__ = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut lowerCamelCase__ = None if use_nin_shortcut: lowerCamelCase__ = nn.Conv( _A , kernel_size=(1, 1) , strides=(1, 1) , padding="""VALID""" , dtype=self.dtype , ) def __call__( self : List[Any] , a_ : Dict , a_ : List[str] , a_ : Any=True ): """simple docstring""" lowerCamelCase__ = hidden_states lowerCamelCase__ = self.norma(_A ) lowerCamelCase__ = nn.swish(_A ) lowerCamelCase__ = self.conva(_A ) lowerCamelCase__ = self.time_emb_proj(nn.swish(_A ) ) lowerCamelCase__ = jnp.expand_dims(jnp.expand_dims(_A , 1 ) , 1 ) lowerCamelCase__ = hidden_states + temb lowerCamelCase__ = self.norma(_A ) lowerCamelCase__ = nn.swish(_A ) lowerCamelCase__ = self.dropout(_A , _A ) lowerCamelCase__ = self.conva(_A ) if self.conv_shortcut is not None: lowerCamelCase__ = self.conv_shortcut(_A ) return hidden_states + residual
165
import os def _SCREAMING_SNAKE_CASE ( a ) -> int: __A : Any = len(grid[0] ) __A : Tuple = len(a ) __A : Tuple = 0 __A : Any = 0 __A : Optional[Any] = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(a ): for j in range(n_rows - 3 ): __A : Dict = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] __A : Optional[int] = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: __A : str = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: __A : List[str] = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) __A : int = max( a , a , a , a ) if max_product > largest: __A : Union[str, Any] = max_product return largest def _SCREAMING_SNAKE_CASE ( ) -> int: __A : Optional[int] = [] with open(os.path.dirname(a ) + '/grid.txt' ) as file: for line in file: grid.append(line.strip('\n' ).split(' ' ) ) __A : Optional[Any] = [[int(a ) for i in grid[j]] for j in range(len(a ) )] return largest_product(a ) if __name__ == "__main__": print(solution())
239
0
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _snake_case ( _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : np.ndarray ) -> float: """simple docstring""" return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) ) def _snake_case ( _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : np.ndarray ) -> list[list[list[float] | float]]: """simple docstring""" if dataset.ndim != value_array.ndim: lowerCAmelCase = ( """Wrong input data's dimensions... """ f'dataset : {dataset.ndim}, value_array : {value_array.ndim}' ) raise ValueError(_SCREAMING_SNAKE_CASE ) try: if dataset.shape[1] != value_array.shape[1]: lowerCAmelCase = ( """Wrong input data's shape... """ f'dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}' ) raise ValueError(_SCREAMING_SNAKE_CASE ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("""Wrong shape""" ) if dataset.dtype != value_array.dtype: lowerCAmelCase = ( """Input data have different datatype... """ f'dataset : {dataset.dtype}, value_array : {value_array.dtype}' ) raise TypeError(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = [] for value in value_array: lowerCAmelCase = euclidean(_SCREAMING_SNAKE_CASE , dataset[0] ) lowerCAmelCase = dataset[0].tolist() for dataset_value in dataset[1:]: lowerCAmelCase = euclidean(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if dist > temp_dist: lowerCAmelCase = temp_dist lowerCAmelCase = dataset_value.tolist() answer.append([vector, dist] ) return answer def _snake_case ( _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : np.ndarray ) -> float: """simple docstring""" return np.dot(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) / (norm(_SCREAMING_SNAKE_CASE ) * norm(_SCREAMING_SNAKE_CASE )) if __name__ == "__main__": import doctest doctest.testmod()
344
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _snake_case ( _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : np.ndarray ) -> float: """simple docstring""" return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) ) def _snake_case ( _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : np.ndarray ) -> list[list[list[float] | float]]: """simple docstring""" if dataset.ndim != value_array.ndim: lowerCAmelCase = ( """Wrong input data's dimensions... """ f'dataset : {dataset.ndim}, value_array : {value_array.ndim}' ) raise ValueError(_SCREAMING_SNAKE_CASE ) try: if dataset.shape[1] != value_array.shape[1]: lowerCAmelCase = ( """Wrong input data's shape... """ f'dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}' ) raise ValueError(_SCREAMING_SNAKE_CASE ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("""Wrong shape""" ) if dataset.dtype != value_array.dtype: lowerCAmelCase = ( """Input data have different datatype... """ f'dataset : {dataset.dtype}, value_array : {value_array.dtype}' ) raise TypeError(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = [] for value in value_array: lowerCAmelCase = euclidean(_SCREAMING_SNAKE_CASE , dataset[0] ) lowerCAmelCase = dataset[0].tolist() for dataset_value in dataset[1:]: lowerCAmelCase = euclidean(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if dist > temp_dist: lowerCAmelCase = temp_dist lowerCAmelCase = dataset_value.tolist() answer.append([vector, dist] ) return answer def _snake_case ( _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : np.ndarray ) -> float: """simple docstring""" return np.dot(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) / (norm(_SCREAMING_SNAKE_CASE ) * norm(_SCREAMING_SNAKE_CASE )) if __name__ == "__main__": import doctest doctest.testmod()
344
1
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __SCREAMING_SNAKE_CASE ( ): _snake_case = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } _snake_case = Dataset.from_dict(_SCREAMING_SNAKE_CASE ) return dataset class _lowerCAmelCase ( A__ ): '''simple docstring''' def lowercase (self ) -> Optional[int]: _snake_case = get_dataset() _snake_case = make_duplicate_clusters(_A , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def lowercase (self ) -> int: _snake_case = get_dataset() _snake_case = deduplicate_dataset(_A ) self.assertEqual(len(_A ) , 2 ) print(_A ) self.assertEqual(duplicate_clusters[0][0]["""copies"""] , 2 ) self.assertEqual(duplicate_clusters[0][0]["""is_extreme"""] , _A )
585
from scipy.stats import pearsonr import datasets __lowerCamelCase : Union[str, Any] = ''' Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. ''' __lowerCamelCase : Optional[int] = ''' Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results[\'pearsonr\'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) [\'p-value\', \'pearsonr\'] >>> print(round(results[\'pearsonr\'], 2)) -0.74 >>> print(round(results[\'p-value\'], 2)) 0.15 ''' __lowerCamelCase : Tuple = ''' @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def __UpperCamelCase ( self : int ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ),reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"],) def __UpperCamelCase ( self : int,_A : List[str],_A : Optional[int],_A : int=False ): """simple docstring""" if return_pvalue: SCREAMING_SNAKE_CASE_ : Any = pearsonr(_A,_A ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(_A,_A )[0] )}
216
0
"""simple docstring""" def lowerCamelCase_(__SCREAMING_SNAKE_CASE = 1_000 )-> int: _SCREAMING_SNAKE_CASE : List[str] = 1, 1 _SCREAMING_SNAKE_CASE : Union[str, Any] = [] for i in range(1 , n + 1 ): _SCREAMING_SNAKE_CASE : int = prev_numerator + 2 * prev_denominator _SCREAMING_SNAKE_CASE : Optional[int] = prev_numerator + prev_denominator if len(str(__SCREAMING_SNAKE_CASE ) ) > len(str(__SCREAMING_SNAKE_CASE ) ): result.append(__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Dict = numerator _SCREAMING_SNAKE_CASE : Union[str, Any] = denominator return len(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F"{solution() = }")
706
"""simple docstring""" def lowerCamelCase_(__SCREAMING_SNAKE_CASE )-> int: if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise TypeError("""only integers accepted as input""" ) else: _SCREAMING_SNAKE_CASE : List[Any] = str(abs(__SCREAMING_SNAKE_CASE ) ) _SCREAMING_SNAKE_CASE : List[str] = [list(__SCREAMING_SNAKE_CASE ) for char in range(len(__SCREAMING_SNAKE_CASE ) )] for index in range(len(__SCREAMING_SNAKE_CASE ) ): num_transpositions[index].pop(__SCREAMING_SNAKE_CASE ) return max( int("""""".join(list(__SCREAMING_SNAKE_CASE ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
635
0
"""simple docstring""" import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def lowerCamelCase_( _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : Any = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = emb.weight.shape _lowerCamelCase : Dict = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) _lowerCamelCase : Any = emb.weight.data return lin_layer def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=None ) -> Any: '''simple docstring''' _lowerCamelCase : Union[str, Any] = {} for old_key in state_dict.keys(): _lowerCamelCase : List[str] = old_key if "moe_layer.experts." in key: if expert_idx is not None: _lowerCamelCase : Any = key.replace("moe_layer.experts.0" , F"""ffn.experts.expert_{expert_idx}""" ) else: _lowerCamelCase : Optional[Any] = key.replace("moe_layer.experts." , "ffn.experts.expert_" ) if "gate" in key: _lowerCamelCase : int = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" ) if "fc2" and "experts" not in key: _lowerCamelCase : Tuple = key.replace(".fc2." , ".ffn.fc2." ) if "fc1" and "experts" not in key: _lowerCamelCase : Union[str, Any] = key.replace(".fc1." , ".ffn.fc1." ) if ".encoder_attn." in key: _lowerCamelCase : Union[str, Any] = key.replace(".encoder_attn." , ".cross_attention." ) if "encoder_attn_layer_norm" in key: _lowerCamelCase : int = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" ) if "final_layer_norm" in key: _lowerCamelCase : Tuple = key.replace("final_layer_norm" , "ff_layer_norm" ) _lowerCamelCase : List[str] = state_dict[old_key] return new_dict def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = WEIGHTS_NAME ) -> List[str]: '''simple docstring''' _lowerCamelCase : List[str] = [] _lowerCamelCase : List[Any] = 0 os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) for expert in range(_lowerCamelCase ): _lowerCamelCase : Dict = switch_checkpoint_path + F"""-rank-{expert}.pt""" if os.path.isfile(_lowerCamelCase ): _lowerCamelCase : List[str] = torch.load(_lowerCamelCase )["model"] remove_ignore_keys_(_lowerCamelCase ) _lowerCamelCase : Any = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : Tuple = os.path.join( _lowerCamelCase , weights_name.replace(".bin" , F"""-{len(_lowerCamelCase )+1:05d}-of-???.bin""" ) ) torch.save(_lowerCamelCase , _lowerCamelCase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_lowerCamelCase )[0]].dtype ) # Add the last block _lowerCamelCase : List[str] = os.path.join(_lowerCamelCase , weights_name.replace(".bin" , F"""-{len(_lowerCamelCase )+1:05d}-of-???.bin""" ) ) _lowerCamelCase : List[str] = torch.load(switch_checkpoint_path + "-shared.pt" )["model"] remove_ignore_keys_(_lowerCamelCase ) _lowerCamelCase : int = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : List[Any] = shared_weights["decoder.embed_tokens.weight"] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_lowerCamelCase ) == 1: _lowerCamelCase : Union[str, Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) torch.save(_lowerCamelCase , _lowerCamelCase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_lowerCamelCase , _lowerCamelCase ) # Otherwise, let's build the index _lowerCamelCase : Optional[int] = {} for idx, shard in enumerate(_lowerCamelCase ): _lowerCamelCase : int = weights_name.replace(".bin" , F"""-{idx+1:05d}-of-{len(_lowerCamelCase ):05d}.bin""" ) _lowerCamelCase : str = os.path.join(_lowerCamelCase , weights_name.replace(".bin" , F"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) for key in shard: _lowerCamelCase : Optional[Any] = shard_file # Add the metadata _lowerCamelCase : Union[str, Any] = {"total_size": total_size} _lowerCamelCase : Optional[Any] = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(_lowerCamelCase , _lowerCamelCase ) , "w" , encoding="utf-8" ) as f: _lowerCamelCase : Union[str, Any] = json.dumps(_lowerCamelCase , indent=2 , sort_keys=_lowerCamelCase ) + "\n" f.write(_lowerCamelCase ) return metadata, index if __name__ == "__main__": _lowerCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) _lowerCAmelCase : List[str] = parser.parse_args() _lowerCAmelCase , _lowerCAmelCase : Any = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) _lowerCAmelCase : List[Any] = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) _lowerCAmelCase : Union[str, Any] = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
46
def UpperCamelCase_( lowerCamelCase_ ) -> int: if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError('multiplicative_persistence() only accepts integral values' ) if num < 0: raise ValueError('multiplicative_persistence() does not accept negative values' ) _lowercase : List[str] = 0 _lowercase : Optional[int] = str(lowerCamelCase_ ) while len(lowerCamelCase_ ) != 1: _lowercase : Any = [int(lowerCamelCase_ ) for i in num_string] _lowercase : List[Any] = 1 for i in range(0 , len(lowerCamelCase_ ) ): total *= numbers[i] _lowercase : Optional[Any] = str(lowerCamelCase_ ) steps += 1 return steps def UpperCamelCase_( lowerCamelCase_ ) -> int: if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError('additive_persistence() only accepts integral values' ) if num < 0: raise ValueError('additive_persistence() does not accept negative values' ) _lowercase : Optional[int] = 0 _lowercase : str = str(lowerCamelCase_ ) while len(lowerCamelCase_ ) != 1: _lowercase : Dict = [int(lowerCamelCase_ ) for i in num_string] _lowercase : Any = 0 for i in range(0 , len(lowerCamelCase_ ) ): total += numbers[i] _lowercase : Dict = str(lowerCamelCase_ ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
89
0
from __future__ import annotations class __magic_name__ : '''simple docstring''' def __init__( self:Union[str, Any] , _a:list[list[int]] ): snake_case__ = TypeError( '''Matrices must be formed from a list of zero or more lists containing at ''' '''least one and the same number of values, each of which must be of type ''' '''int or float.''' ) if len(_a ) != 0: snake_case__ = len(rows[0] ) if cols == 0: raise error for row in rows: if len(_a ) != cols: raise error for value in row: if not isinstance(_a , (int, float) ): raise error snake_case__ = rows else: snake_case__ = [] def SCREAMING_SNAKE_CASE__ ( self:Dict ): return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): return len(self.rows ) @property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): return len(self.rows[0] ) @property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): return (self.num_rows, self.num_columns) @property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): return self.order[0] == self.order[1] def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(_a ) def SCREAMING_SNAKE_CASE__ ( self:Any ): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return bool(self.determinant() ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:int , _a:int ): snake_case__ = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(_a ).determinant() def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:int , _a:int ): if (row + column) % 2 == 0: return self.get_minor(_a , _a ) return -1 * self.get_minor(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): return Matrix( [ [self.get_minor(_a , _a ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def SCREAMING_SNAKE_CASE__ ( self:str ): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(_a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.determinant() if not determinant: raise TypeError('''Only matrices with a non-zero determinant have an inverse''' ) return self.adjugate() * (1 / determinant) def __repr__( self:Any ): return str(self.rows ) def __str__( self:int ): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '''[''' + '''. '''.join([str(_a ) for value in row] ) + '''.]''' for row in self.rows ] ) + "]" ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , _a:list[int] , _a:int | None = None ): snake_case__ = TypeError('''Row must be a list containing all ints and/or floats''' ) if not isinstance(_a , _a ): raise type_error for value in row: if not isinstance(_a , (int, float) ): raise type_error if len(_a ) != self.num_columns: raise ValueError( '''Row must be equal in length to the other rows in the matrix''' ) if position is None: self.rows.append(_a ) else: snake_case__ = self.rows[0:position] + [row] + self.rows[position:] def SCREAMING_SNAKE_CASE__ ( self:str , _a:list[int] , _a:int | None = None ): snake_case__ = TypeError( '''Column must be a list containing all ints and/or floats''' ) if not isinstance(_a , _a ): raise type_error for value in column: if not isinstance(_a , (int, float) ): raise type_error if len(_a ) != self.num_rows: raise ValueError( '''Column must be equal in length to the other columns in the matrix''' ) if position is None: snake_case__ = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: snake_case__ = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self:Any , _a:object ): if not isinstance(_a , _a ): return NotImplemented return self.rows == other.rows def __ne__( self:int , _a:object ): return not self == other def __neg__( self:int ): return self * -1 def __add__( self:Dict , _a:Matrix ): if self.order != other.order: raise ValueError('''Addition requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self:Any , _a:Matrix ): if self.order != other.order: raise ValueError('''Subtraction requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self:List[Any] , _a:Matrix | int | float ): if isinstance(_a , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(_a , _a ): if self.num_columns != other.num_rows: raise ValueError( '''The number of columns in the first matrix must ''' '''be equal to the number of rows in the second''' ) return Matrix( [ [Matrix.dot_product(_a , _a ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( '''A Matrix can only be multiplied by an int, float, or another matrix''' ) def __pow__( self:Tuple , _a:int ): if not isinstance(_a , _a ): raise TypeError('''A Matrix can only be raised to the power of an int''' ) if not self.is_square: raise ValueError('''Only square matrices can be raised to a power''' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( '''Only invertable matrices can be raised to a negative power''' ) snake_case__ = self for _ in range(other - 1 ): result *= self return result @classmethod def SCREAMING_SNAKE_CASE__ ( cls:List[str] , _a:list[int] , _a:list[int] ): return sum(row[i] * column[i] for i in range(len(_a ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
716
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCamelCase__ : int = logging.get_logger(__name__) if is_vision_available(): import PIL class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : int = ['pixel_values'] def __init__( self:List[str] , _a:bool = True , _a:Dict[str, int] = None , _a:PILImageResampling = PILImageResampling.BICUBIC , _a:bool = True , _a:Dict[str, int] = None , _a:bool = True , _a:Union[int, float] = 1 / 2_55 , _a:bool = True , _a:Optional[Union[float, List[float]]] = None , _a:Optional[Union[float, List[float]]] = None , _a:bool = True , **_a:Union[str, Any] , ): super().__init__(**_a ) snake_case__ = size if size is not None else {'''shortest_edge''': 2_24} snake_case__ = get_size_dict(_a , default_to_square=_a ) snake_case__ = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} snake_case__ = get_size_dict(_a , default_to_square=_a , param_name='''crop_size''' ) snake_case__ = do_resize snake_case__ = size snake_case__ = resample snake_case__ = do_center_crop snake_case__ = crop_size snake_case__ = do_rescale snake_case__ = rescale_factor snake_case__ = do_normalize snake_case__ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN snake_case__ = image_std if image_std is not None else OPENAI_CLIP_STD snake_case__ = do_convert_rgb def SCREAMING_SNAKE_CASE__ ( self:str , _a:np.ndarray , _a:Dict[str, int] , _a:PILImageResampling = PILImageResampling.BICUBIC , _a:Optional[Union[str, ChannelDimension]] = None , **_a:str , ): snake_case__ = get_size_dict(_a , default_to_square=_a ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) snake_case__ = get_resize_output_image_size(_a , size=size['''shortest_edge'''] , default_to_square=_a ) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:np.ndarray , _a:Dict[str, int] , _a:Optional[Union[str, ChannelDimension]] = None , **_a:Any , ): snake_case__ = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(_a , size=(size['''height'''], size['''width''']) , data_format=_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , _a:np.ndarray , _a:Union[int, float] , _a:Optional[Union[str, ChannelDimension]] = None , **_a:List[Any] , ): return rescale(_a , scale=_a , data_format=_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:np.ndarray , _a:Union[float, List[float]] , _a:Union[float, List[float]] , _a:Optional[Union[str, ChannelDimension]] = None , **_a:Tuple , ): return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:ImageInput , _a:bool = None , _a:Dict[str, int] = None , _a:PILImageResampling = None , _a:bool = None , _a:int = None , _a:bool = None , _a:float = None , _a:bool = None , _a:Optional[Union[float, List[float]]] = None , _a:Optional[Union[float, List[float]]] = None , _a:bool = None , _a:Optional[Union[str, TensorType]] = None , _a:Optional[ChannelDimension] = ChannelDimension.FIRST , **_a:Any , ): snake_case__ = do_resize if do_resize is not None else self.do_resize snake_case__ = size if size is not None else self.size snake_case__ = get_size_dict(_a , param_name='''size''' , default_to_square=_a ) snake_case__ = resample if resample is not None else self.resample snake_case__ = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case__ = crop_size if crop_size is not None else self.crop_size snake_case__ = get_size_dict(_a , param_name='''crop_size''' , default_to_square=_a ) snake_case__ = do_rescale if do_rescale is not None else self.do_rescale snake_case__ = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case__ = do_normalize if do_normalize is not None else self.do_normalize snake_case__ = image_mean if image_mean is not None else self.image_mean snake_case__ = image_std if image_std is not None else self.image_std snake_case__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb snake_case__ = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: snake_case__ = [convert_to_rgb(_a ) for image in images] # All transformations expect numpy arrays. snake_case__ = [to_numpy_array(_a ) for image in images] if do_resize: snake_case__ = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_center_crop: snake_case__ = [self.center_crop(image=_a , size=_a ) for image in images] if do_rescale: snake_case__ = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: snake_case__ = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] snake_case__ = [to_channel_dimension_format(_a , _a ) for image in images] snake_case__ = {'''pixel_values''': images} return BatchFeature(data=_a , tensor_type=_a )
208
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name _SCREAMING_SNAKE_CASE : Optional[Any] = "\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n\n >>> repo = \"openai/shap-e-img2img\"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\"\n >>> image = load_image(image_url).convert(\"RGB\")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\")\n ```\n" @dataclass class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = 42 class A__ ( snake_case__ ): """simple docstring""" def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ): super().__init__() self.register_modules( prior=__snake_case , image_encoder=__snake_case , image_processor=__snake_case , scheduler=__snake_case , renderer=__snake_case , ) def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ): if latents is None: snake_case = randn_tensor(__snake_case , generator=__snake_case , device=__snake_case , dtype=__snake_case ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) snake_case = latents.to(__snake_case ) snake_case = latents * scheduler.init_noise_sigma return latents def a_ ( self , __snake_case=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) snake_case = torch.device(F'''cuda:{gpu_id}''' ) snake_case = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__snake_case , __snake_case ) @property def a_ ( self ): if self.device != torch.device('''meta''' ) or not hasattr(self.image_encoder , '''_hf_hook''' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(__snake_case , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case , ): if isinstance(__snake_case , __snake_case ) and isinstance(image[0] , torch.Tensor ): snake_case = torch.cat(__snake_case , axis=0 ) if image[0].ndim == 4 else torch.stack(__snake_case , axis=0 ) if not isinstance(__snake_case , torch.Tensor ): snake_case = self.image_processor(__snake_case , return_tensors='''pt''' ).pixel_values[0].unsqueeze(0 ) snake_case = image.to(dtype=self.image_encoder.dtype , device=__snake_case ) snake_case = self.image_encoder(__snake_case )['''last_hidden_state'''] snake_case = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 snake_case = image_embeds.repeat_interleave(__snake_case , dim=0 ) if do_classifier_free_guidance: snake_case = torch.zeros_like(__snake_case ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes snake_case = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(__snake_case ) def __call__( self , __snake_case , __snake_case = 1 , __snake_case = 2_5 , __snake_case = None , __snake_case = None , __snake_case = 4.0 , __snake_case = 6_4 , __snake_case = "pil" , __snake_case = True , ): if isinstance(__snake_case , PIL.Image.Image ): snake_case = 1 elif isinstance(__snake_case , torch.Tensor ): snake_case = image.shape[0] elif isinstance(__snake_case , __snake_case ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): snake_case = len(__snake_case ) else: raise ValueError( F'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(__snake_case )}''' ) snake_case = self._execution_device snake_case = batch_size * num_images_per_prompt snake_case = guidance_scale > 1.0 snake_case = self._encode_image(__snake_case , __snake_case , __snake_case , __snake_case ) # prior self.scheduler.set_timesteps(__snake_case , device=__snake_case ) snake_case = self.scheduler.timesteps snake_case = self.prior.config.num_embeddings snake_case = self.prior.config.embedding_dim snake_case = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , __snake_case , __snake_case , __snake_case , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim snake_case = latents.reshape(latents.shape[0] , __snake_case , __snake_case ) for i, t in enumerate(self.progress_bar(__snake_case ) ): # expand the latents if we are doing classifier free guidance snake_case = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case = self.scheduler.scale_model_input(__snake_case , __snake_case ) snake_case = self.prior( __snake_case , timestep=__snake_case , proj_embedding=__snake_case , ).predicted_image_embedding # remove the variance snake_case , snake_case = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: snake_case , snake_case = noise_pred.chunk(2 ) snake_case = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) snake_case = self.scheduler.step( __snake_case , timestep=__snake_case , sample=__snake_case , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=__snake_case ) snake_case = [] for i, latent in enumerate(__snake_case ): print() snake_case = self.renderer.decode( latent[None, :] , __snake_case , size=__snake_case , ray_batch_size=4_0_9_6 , n_coarse_samples=6_4 , n_fine_samples=1_2_8 , ) images.append(__snake_case ) snake_case = torch.stack(__snake_case ) if output_type not in ["np", "pil"]: raise ValueError(F'''Only the output types `pil` and `np` are supported not output_type={output_type}''' ) snake_case = images.cpu().numpy() if output_type == "pil": snake_case = [self.numpy_to_pil(__snake_case ) for image in images] # Offload last model to CPU if hasattr(self , '''final_offload_hook''' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=__snake_case )
550
from math import factorial class A__ : """simple docstring""" def __init__( self , __snake_case , __snake_case ): snake_case = real if isinstance(__snake_case , __snake_case ): snake_case = [1] * rank else: snake_case = rank def __repr__( self ): return ( F'''{self.real}+''' F'''{"+".join(str(__snake_case )+"E"+str(n+1 )for n,dual in enumerate(self.duals ) )}''' ) def a_ ( self ): snake_case = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , __snake_case ) def __add__( self , __snake_case ): if not isinstance(__snake_case , __snake_case ): return Dual(self.real + other , self.duals ) snake_case = self.duals.copy() snake_case = other.duals.copy() if len(__snake_case ) > len(__snake_case ): o_dual.extend([1] * (len(__snake_case ) - len(__snake_case )) ) elif len(__snake_case ) < len(__snake_case ): s_dual.extend([1] * (len(__snake_case ) - len(__snake_case )) ) snake_case = [] for i in range(len(__snake_case ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , __snake_case ) __magic_name__ = __add__ def __sub__( self , __snake_case ): return self + other * -1 def __mul__( self , __snake_case ): if not isinstance(__snake_case , __snake_case ): snake_case = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , __snake_case ) snake_case = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , __snake_case ) __magic_name__ = __mul__ def __truediv__( self , __snake_case ): if not isinstance(__snake_case , __snake_case ): snake_case = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , __snake_case ) raise ValueError def __floordiv__( self , __snake_case ): if not isinstance(__snake_case , __snake_case ): snake_case = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , __snake_case ) raise ValueError def __pow__( self , __snake_case ): if n < 0 or isinstance(__snake_case , __snake_case ): raise ValueError('''power must be a positive integer''' ) if n == 0: return 1 if n == 1: return self snake_case = self for _ in range(n - 1 ): x *= self return x def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" if not callable(UpperCamelCase_ ): raise ValueError('''differentiate() requires a function as input for func''' ) if not isinstance(UpperCamelCase_ ,(float, int) ): raise ValueError('''differentiate() requires a float as input for position''' ) if not isinstance(UpperCamelCase_ ,UpperCamelCase_ ): raise ValueError('''differentiate() requires an int as input for order''' ) snake_case = Dual(UpperCamelCase_ ,1 ) snake_case = func(UpperCamelCase_ ) if order == 0: return result.real return result.duals[order - 1] * factorial(UpperCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" return y**2 * y**4 print(differentiate(f, 9, 2))
550
1
from typing import Any def __lowerCAmelCase ( __snake_case ): if not input_list: return [] __lowerCAmelCase = [input_list.count(lowercase__ ) for value in input_list] __lowerCAmelCase = max(lowercase__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
702
import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def __lowerCAmelCase ( __snake_case ): __lowerCAmelCase = fname.split(os.path.sep )[-1] return re.search(r"^(.*)_\d+\.jpg$" , __snake_case ).groups()[0] class _UpperCamelCase (a_ ): def __init__( self , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None )-> Dict: __lowerCAmelCase = file_names __lowerCAmelCase = image_transform __lowerCAmelCase = label_to_id def __len__( self )-> Optional[int]: return len(self.file_names ) def __getitem__( self , __UpperCamelCase )-> Union[str, Any]: __lowerCAmelCase = self.file_names[idx] __lowerCAmelCase = PIL.Image.open(__UpperCamelCase ) __lowerCAmelCase = raw_image.convert("RGB" ) if self.image_transform is not None: __lowerCAmelCase = self.image_transform(__UpperCamelCase ) __lowerCAmelCase = extract_label(__UpperCamelCase ) if self.label_to_id is not None: __lowerCAmelCase = self.label_to_id[label] return {"image": image, "label": label} def __lowerCAmelCase ( __snake_case , __snake_case ): # Initialize accelerator if args.with_tracking: __lowerCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: __lowerCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCAmelCase = config["lr"] __lowerCAmelCase = int(config["num_epochs"] ) __lowerCAmelCase = int(config["seed"] ) __lowerCAmelCase = int(config["batch_size"] ) __lowerCAmelCase = config["image_size"] if not isinstance(__snake_case , (list, tuple) ): __lowerCAmelCase = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , "isdigit" ): if args.checkpointing_steps == "epoch": __lowerCAmelCase = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): __lowerCAmelCase = int(args.checkpointing_steps ) else: raise ValueError( F"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" ) else: __lowerCAmelCase = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: __lowerCAmelCase = os.path.split(__snake_case )[-1].split("." )[0] accelerator.init_trackers(__snake_case , __snake_case ) # Grab all the image filenames __lowerCAmelCase = [os.path.join(args.data_dir , __snake_case ) for fname in os.listdir(args.data_dir ) if fname.endswith(".jpg" )] # Build the label correspondences __lowerCAmelCase = [extract_label(__snake_case ) for fname in file_names] __lowerCAmelCase = list(set(__snake_case ) ) id_to_label.sort() __lowerCAmelCase = {lbl: i for i, lbl in enumerate(__snake_case )} # Set the seed before splitting the data. np.random.seed(__snake_case ) torch.manual_seed(__snake_case ) torch.cuda.manual_seed_all(__snake_case ) # Split our filenames between train and validation __lowerCAmelCase = np.random.permutation(len(__snake_case ) ) __lowerCAmelCase = int(0.8 * len(__snake_case ) ) __lowerCAmelCase = random_perm[:cut] __lowerCAmelCase = random_perm[cut:] # For training we use a simple RandomResizedCrop __lowerCAmelCase = Compose([RandomResizedCrop(__snake_case , scale=(0.5, 1.0) ), ToTensor()] ) __lowerCAmelCase = PetsDataset( [file_names[i] for i in train_split] , image_transform=__snake_case , label_to_id=__snake_case ) # For evaluation, we use a deterministic Resize __lowerCAmelCase = Compose([Resize(__snake_case ), ToTensor()] ) __lowerCAmelCase = PetsDataset([file_names[i] for i in eval_split] , image_transform=__snake_case , label_to_id=__snake_case ) # Instantiate dataloaders. __lowerCAmelCase = DataLoader(__snake_case , shuffle=__snake_case , batch_size=__snake_case , num_workers=4 ) __lowerCAmelCase = DataLoader(__snake_case , shuffle=__snake_case , batch_size=__snake_case , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCAmelCase = create_model("resnet50d" , pretrained=__snake_case , num_classes=len(__snake_case ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCAmelCase = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): __lowerCAmelCase = False for param in model.get_classifier().parameters(): __lowerCAmelCase = True # We normalize the batches of images to be a bit faster. __lowerCAmelCase = torch.tensor(model.default_cfg["mean"] )[None, :, None, None].to(accelerator.device ) __lowerCAmelCase = torch.tensor(model.default_cfg["std"] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer __lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler __lowerCAmelCase = OneCycleLR(optimizer=__snake_case , max_lr=__snake_case , epochs=__snake_case , steps_per_epoch=len(__snake_case ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # We need to keep track of how many total steps we have iterated over __lowerCAmelCase = 0 # We also need to keep track of the starting epoch so files are named properly __lowerCAmelCase = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F"""Resumed from checkpoint: {args.resume_from_checkpoint}""" ) accelerator.load_state(args.resume_from_checkpoint ) __lowerCAmelCase = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint __lowerCAmelCase = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) __lowerCAmelCase = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` __lowerCAmelCase = os.path.splitext(__snake_case )[0] if "epoch" in training_difference: __lowerCAmelCase = int(training_difference.replace("epoch_" , "" ) ) + 1 __lowerCAmelCase = None else: __lowerCAmelCase = int(training_difference.replace("step_" , "" ) ) __lowerCAmelCase = resume_step // len(__snake_case ) resume_step -= starting_epoch * len(__snake_case ) # Now we train the model for epoch in range(__snake_case , __snake_case ): model.train() if args.with_tracking: __lowerCAmelCase = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step __lowerCAmelCase = accelerator.skip_first_batches(__snake_case , __snake_case ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader __lowerCAmelCase = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. __lowerCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} __lowerCAmelCase = (batch["image"] - mean) / std __lowerCAmelCase = model(__snake_case ) __lowerCAmelCase = torch.nn.functional.cross_entropy(__snake_case , batch["label"] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(__snake_case ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(__snake_case , __snake_case ): __lowerCAmelCase = F"""step_{overall_step}""" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: __lowerCAmelCase = os.path.join(args.output_dir , __snake_case ) accelerator.save_state(__snake_case ) model.eval() __lowerCAmelCase = 0 __lowerCAmelCase = 0 for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. __lowerCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} __lowerCAmelCase = (batch["image"] - mean) / std with torch.no_grad(): __lowerCAmelCase = model(__snake_case ) __lowerCAmelCase = outputs.argmax(dim=-1 ) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((predictions, batch["label"]) ) __lowerCAmelCase = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() __lowerCAmelCase = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}: {100 * eval_metric:.2f}""" ) if args.with_tracking: accelerator.log( { "accuracy": 100 * eval_metric, "train_loss": total_loss.item() / len(__snake_case ), "epoch": epoch, } , step=__snake_case , ) if checkpointing_steps == "epoch": __lowerCAmelCase = F"""epoch_{epoch}""" if args.output_dir is not None: __lowerCAmelCase = os.path.join(args.output_dir , __snake_case ) accelerator.save_state(__snake_case ) if args.with_tracking: accelerator.end_training() def __lowerCAmelCase ( ): __lowerCAmelCase = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument("--data_dir" , required=__snake_case , help="The data folder on disk." ) parser.add_argument("--fp16" , action="store_true" , help="If passed, will use FP16 training." ) parser.add_argument( "--mixed_precision" , type=__snake_case , default=__snake_case , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--checkpointing_steps" , type=__snake_case , default=__snake_case , help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch." , ) parser.add_argument( "--output_dir" , type=__snake_case , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=__snake_case , default=__snake_case , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=__snake_case , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = {"lr": 3E-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 224} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
290
0
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants _UpperCamelCase : Optional[int] =Mapping[str, np.ndarray] _UpperCamelCase : Optional[int] =Mapping[str, Any] # Is a nested dict. _UpperCamelCase : Union[str, Any] =0.01 @dataclasses.dataclass(frozen=__snake_case ) class UpperCAmelCase__ : __snake_case : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. __snake_case : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. __snake_case : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. __snake_case : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. __snake_case : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions __snake_case : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files __snake_case : Optional[str] = None # Templates used to generate this protein (prediction-only) __snake_case : Optional[Sequence[str]] = None # Chain corresponding to each parent __snake_case : Optional[Sequence[int]] = None def a__ (__lowercase :str ) -> Protein: _A : List[str] = R'''(\[[A-Z]+\]\n)''' _A : List[str] = [tag.strip() for tag in re.split(__lowercase , __lowercase ) if len(__lowercase ) > 0] _A : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split('''\n''' ) for l in tags[1::2]] ) _A : List[str] = ["N", "CA", "C"] _A : int = None _A : List[Any] = None _A : Any = None for g in groups: if "[PRIMARY]" == g[0]: _A : int = g[1][0].strip() for i in range(len(__lowercase ) ): if seq[i] not in residue_constants.restypes: _A : Optional[Any] = '''X''' # FIXME: strings are immutable _A : Optional[int] = np.array( [residue_constants.restype_order.get(__lowercase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: _A : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(__lowercase , g[1][axis].split() ) ) ) _A : Tuple = np.array(__lowercase ) _A : Optional[int] = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__lowercase ): _A : Union[str, Any] = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: _A : Union[str, Any] = np.array(list(map({'''-''': 0, '''+''': 1}.get , g[1][0].strip() ) ) ) _A : Union[str, Any] = np.zeros( ( len(__lowercase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__lowercase ): _A : List[str] = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__lowercase , atom_mask=__lowercase , aatype=__lowercase , residue_index=np.arange(len(__lowercase ) ) , b_factors=__lowercase , ) def a__ (__lowercase :Protein , __lowercase :int = 0 ) -> List[str]: _A : List[str] = [] _A : str = prot.remark if remark is not None: pdb_headers.append(f"""REMARK {remark}""" ) _A : str = prot.parents _A : List[str] = prot.parents_chain_index if parents is not None and parents_chain_index is not None: _A : str = [p for i, p in zip(__lowercase , __lowercase ) if i == chain_id] if parents is None or len(__lowercase ) == 0: _A : Any = ['''N/A'''] pdb_headers.append(f"""PARENT {' '.join(__lowercase )}""" ) return pdb_headers def a__ (__lowercase :Protein , __lowercase :str ) -> str: _A : List[str] = [] _A : List[str] = pdb_str.split('''\n''' ) _A : Optional[Any] = prot.remark if remark is not None: out_pdb_lines.append(f"""REMARK {remark}""" ) _A : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: _A : Union[str, Any] = [] if prot.parents_chain_index is not None: _A : Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(__lowercase ) , [] ) parent_dict[str(__lowercase )].append(__lowercase ) _A : Optional[int] = max([int(__lowercase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): _A : Optional[Any] = parent_dict.get(str(__lowercase ) , ['''N/A'''] ) parents_per_chain.append(__lowercase ) else: parents_per_chain.append(list(prot.parents ) ) else: _A : Union[str, Any] = [['''N/A''']] def make_parent_line(__lowercase :Sequence[str] ) -> str: return f"""PARENT {' '.join(__lowercase )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) _A : List[Any] = 0 for i, l in enumerate(__lowercase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__lowercase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__lowercase ): _A : Any = parents_per_chain[chain_counter] else: _A : List[str] = ['''N/A'''] out_pdb_lines.append(make_parent_line(__lowercase ) ) return "\n".join(__lowercase ) def a__ (__lowercase :Protein ) -> str: _A : List[Any] = residue_constants.restypes + ['''X'''] def res_atoa(__lowercase :int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , '''UNK''' ) _A : int = residue_constants.atom_types _A : List[str] = [] _A : Dict = prot.atom_mask _A : str = prot.aatype _A : Optional[int] = prot.atom_positions _A : List[Any] = prot.residue_index.astype(np.intaa ) _A : Tuple = prot.b_factors _A : int = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('''Invalid aatypes.''' ) _A : Dict = get_pdb_headers(__lowercase ) if len(__lowercase ) > 0: pdb_lines.extend(__lowercase ) _A : str = aatype.shape[0] _A : List[str] = 1 _A : List[str] = 0 _A : Optional[int] = string.ascii_uppercase _A : List[Any] = None # Add all atom sites. for i in range(__lowercase ): _A : Optional[int] = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__lowercase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue _A : Optional[int] = '''ATOM''' _A : int = atom_name if len(__lowercase ) == 4 else f""" {atom_name}""" _A : int = '''''' _A : Optional[int] = '''''' _A : str = 1.00 _A : Any = atom_name[0] # Protein supports only C, N, O, S, this works. _A : Optional[Any] = '''''' _A : int = '''A''' if chain_index is not None: _A : int = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! _A : Tuple = ( f"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" f"""{res_name_a:>3} {chain_tag:>1}""" f"""{residue_index[i]:>4}{insertion_code:>1} """ f"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" f"""{occupancy:>6.2f}{b_factor:>6.2f} """ f"""{element:>2}{charge:>2}""" ) pdb_lines.append(__lowercase ) atom_index += 1 _A : str = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: _A : int = True _A : int = chain_index[i + 1] if should_terminate: # Close the chain. _A : Optional[Any] = '''TER''' _A : int = ( f"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(__lowercase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__lowercase , __lowercase ) ) pdb_lines.append('''END''' ) pdb_lines.append('''''' ) return "\n".join(__lowercase ) def a__ (__lowercase :Protein ) -> np.ndarray: return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def a__ (__lowercase :FeatureDict , __lowercase :ModelOutput , __lowercase :Optional[np.ndarray] = None , __lowercase :Optional[np.ndarray] = None , __lowercase :Optional[str] = None , __lowercase :Optional[Sequence[str]] = None , __lowercase :Optional[Sequence[int]] = None , ) -> Protein: return Protein( aatype=features['''aatype'''] , atom_positions=result['''final_atom_positions'''] , atom_mask=result['''final_atom_mask'''] , residue_index=features['''residue_index'''] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['''final_atom_mask'''] ) , chain_index=__lowercase , remark=__lowercase , parents=__lowercase , parents_chain_index=__lowercase , )
206
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration _UpperCamelCase : List[str] =HfArgumentParser(InitializationArguments) _UpperCamelCase : Dict =parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization _UpperCamelCase : List[Any] =AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks _UpperCamelCase : str ={ 'vocab_size': len(tokenizer), 'scale_attn_by_inverse_layer_idx': True, 'reorder_and_upcast_attn': True, } # Load model config (GPT-2 large in this case) _UpperCamelCase : int =AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config _UpperCamelCase : List[str] =AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
206
1
import string from math import logaa def lowerCamelCase__ ( A__ : str , A__ : str ): '''simple docstring''' __lowerCamelCase = document.translate( str.maketrans("""""" , """""" , string.punctuation ) ).replace("""\n""" , """""" ) __lowerCamelCase = document_without_punctuation.split(""" """ ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def lowerCamelCase__ ( A__ : str , A__ : str ): '''simple docstring''' __lowerCamelCase = corpus.lower().translate( str.maketrans("""""" , """""" , string.punctuation ) ) # strip all punctuation and replace it with '' __lowerCamelCase = corpus_without_punctuation.split("""\n""" ) __lowerCamelCase = term.lower() return (len([doc for doc in docs if term in doc] ), len(UpperCamelCase__ )) def lowerCamelCase__ ( A__ : int , A__ : int , A__ : Any=False ): '''simple docstring''' if smoothing: if n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("""df must be > 0""" ) elif n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(logaa(n / df ) , 3 ) def lowerCamelCase__ ( A__ : int , A__ : int ): '''simple docstring''' return round(tf * idf , 3 )
720
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase): UpperCAmelCase__ : Any = 'maskformer-swin' UpperCAmelCase__ : List[Any] = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self: Any , UpperCamelCase_: Any=2_24 , UpperCamelCase_: List[str]=4 , UpperCamelCase_: Optional[int]=3 , UpperCamelCase_: Optional[int]=96 , UpperCamelCase_: List[str]=[2, 2, 6, 2] , UpperCamelCase_: Optional[Any]=[3, 6, 12, 24] , UpperCamelCase_: str=7 , UpperCamelCase_: int=4.0 , UpperCamelCase_: Optional[int]=True , UpperCamelCase_: Union[str, Any]=0.0 , UpperCamelCase_: Optional[int]=0.0 , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Union[str, Any]="gelu" , UpperCamelCase_: int=False , UpperCamelCase_: Optional[int]=0.02 , UpperCamelCase_: Optional[Any]=1E-5 , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: List[Any]=None , **UpperCamelCase_: Union[str, Any] , ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = image_size __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = embed_dim __lowerCamelCase = depths __lowerCamelCase = len(UpperCamelCase_ ) __lowerCamelCase = num_heads __lowerCamelCase = window_size __lowerCamelCase = mlp_ratio __lowerCamelCase = qkv_bias __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = drop_path_rate __lowerCamelCase = hidden_act __lowerCamelCase = use_absolute_embeddings __lowerCamelCase = layer_norm_eps __lowerCamelCase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowerCamelCase = int(embed_dim * 2 ** (len(UpperCamelCase_ ) - 1) ) __lowerCamelCase = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(UpperCamelCase_ ) + 1 )] __lowerCamelCase, __lowerCamelCase = get_aligned_output_features_output_indices( out_features=UpperCamelCase_ , out_indices=UpperCamelCase_ , stage_names=self.stage_names )
80
0
"""simple docstring""" import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def snake_case ( A__ ): if isinstance(A__ ,collections.abc.Iterable ): return x return (x, x) @require_flax class UpperCamelCase_ : def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] ) -> Optional[Any]: pass def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: pass def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: pass def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : float ) -> Dict: UpperCAmelCase_ : Tuple = np.abs((a - b) ).max() self.assertLessEqual(lowerCAmelCase_ , lowerCAmelCase_ , f"""Difference between torch and flax is {diff} (>= {tol}).""" ) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : int=None , **lowerCAmelCase_ : str ) -> List[Any]: UpperCAmelCase_ : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = FlaxVisionTextDualEncoderModel(lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = model(input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim) ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int]=None , **lowerCAmelCase_ : List[str] ) -> Dict: UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.get_vision_text_model(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = {"vision_model": vision_model, "text_model": text_model} UpperCAmelCase_ : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = model(input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : Optional[int] ) -> Tuple: UpperCAmelCase_ , UpperCAmelCase_ : str = self.get_vision_text_model(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = {"vision_model": vision_model, "text_model": text_model} UpperCAmelCase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = model(input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase_ ) UpperCAmelCase_ : Dict = model(input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = after_output[0] UpperCAmelCase_ : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase_ , 1e-3 ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : Union[str, Any] ) -> Dict: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.get_vision_text_model(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = {"vision_model": vision_model, "text_model": text_model} UpperCAmelCase_ : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = model( input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , output_attentions=lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = output.vision_model_output.attentions self.assertEqual(len(lowerCAmelCase_ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ : str = to_atuple(vision_model.config.image_size ) UpperCAmelCase_ : Optional[Any] = to_atuple(vision_model.config.patch_size ) UpperCAmelCase_ : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) UpperCAmelCase_ : Dict = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) UpperCAmelCase_ : List[str] = output.text_model_output.attentions self.assertEqual(len(lowerCAmelCase_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict ) -> str: pt_model.to(lowerCAmelCase_ ) pt_model.eval() # prepare inputs UpperCAmelCase_ : Dict = inputs_dict UpperCAmelCase_ : List[str] = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): UpperCAmelCase_ : int = pt_model(**lowerCAmelCase_ ).to_tuple() UpperCAmelCase_ : int = fx_model(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowerCAmelCase_ , pt_output.numpy() , 4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = fx_model_loaded(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowerCAmelCase_ , pt_output.numpy() , 4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = VisionTextDualEncoderModel.from_pretrained(lowerCAmelCase_ , from_flax=lowerCAmelCase_ ) pt_model_loaded.to(lowerCAmelCase_ ) pt_model_loaded.eval() with torch.no_grad(): UpperCAmelCase_ : Tuple = pt_model_loaded(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(lowerCAmelCase_ , pt_output_loaded.numpy() , 4e-2 ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any ) -> Any: UpperCAmelCase_ : Union[str, Any] = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = VisionTextDualEncoderModel(lowerCAmelCase_ ) UpperCAmelCase_ : Dict = FlaxVisionTextDualEncoderModel(lowerCAmelCase_ ) UpperCAmelCase_ : Any = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCAmelCase_ ) UpperCAmelCase_ : Dict = fx_state self.check_pt_flax_equivalence(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] ) -> Tuple: UpperCAmelCase_ : str = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = VisionTextDualEncoderModel(lowerCAmelCase_ ) UpperCAmelCase_ : Dict = FlaxVisionTextDualEncoderModel(lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = load_flax_weights_in_pytorch_model(lowerCAmelCase_ , fx_model.params ) self.check_pt_flax_equivalence(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: UpperCAmelCase_ : str = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs() self.check_save_load(**lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: UpperCAmelCase_ : str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowerCAmelCase_ ) @is_pt_flax_cross_test def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: UpperCAmelCase_ : int = self.prepare_config_and_inputs() UpperCAmelCase_ : int = config_inputs_dict.pop("vision_config" ) UpperCAmelCase_ : int = config_inputs_dict.pop("text_config" ) UpperCAmelCase_ : Optional[Any] = config_inputs_dict self.check_equivalence_pt_to_flax(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) self.check_equivalence_flax_to_pt(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: UpperCAmelCase_ , UpperCAmelCase_ : int = self.get_pretrained_model_and_inputs() UpperCAmelCase_ : List[Any] = model_a(**lowerCAmelCase_ ) UpperCAmelCase_ : int = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase_ ) UpperCAmelCase_ : Any = model_a(**lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = after_outputs[0] UpperCAmelCase_ : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase_ , 1e-5 ) @require_flax class UpperCamelCase_ (__A , unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: UpperCAmelCase_ : Optional[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-bert" , vision_from_pt=lowerCAmelCase_ , text_from_pt=lowerCAmelCase_ , ) UpperCAmelCase_ : List[Any] = 13 UpperCAmelCase_ : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) UpperCAmelCase_ : Tuple = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) UpperCAmelCase_ : Optional[Any] = random_attention_mask([batch_size, 4] ) UpperCAmelCase_ : str = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] ) -> List[str]: UpperCAmelCase_ : List[str] = FlaxViTModel(lowerCAmelCase_ ) UpperCAmelCase_ : Any = FlaxBertModel(lowerCAmelCase_ ) return vision_model, text_model def _SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = FlaxViTModelTester(self ) UpperCAmelCase_ : Optional[int] = FlaxBertModelTester(self ) UpperCAmelCase_ : Any = vit_model_tester.prepare_config_and_inputs() UpperCAmelCase_ : Optional[Any] = bert_model_tester.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ : Any = vision_config_and_inputs UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class UpperCamelCase_ (__A , unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: UpperCAmelCase_ : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-clip" , "hf-internal-testing/tiny-bert" , vision_from_pt=lowerCAmelCase_ , text_from_pt=lowerCAmelCase_ , ) UpperCAmelCase_ : Any = 13 UpperCAmelCase_ : Union[str, Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) UpperCAmelCase_ : Optional[int] = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) UpperCAmelCase_ : int = random_attention_mask([batch_size, 4] ) UpperCAmelCase_ : int = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str ) -> str: UpperCAmelCase_ : Tuple = FlaxCLIPVisionModel(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = FlaxBertModel(lowerCAmelCase_ ) return vision_model, text_model def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: UpperCAmelCase_ : List[Any] = FlaxCLIPVisionModelTester(self ) UpperCAmelCase_ : Union[str, Any] = FlaxBertModelTester(self ) UpperCAmelCase_ : List[str] = clip_model_tester.prepare_config_and_inputs() UpperCAmelCase_ : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ : Any = vision_config_and_inputs UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Dict = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class UpperCamelCase_ (unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: UpperCAmelCase_ : Any = FlaxVisionTextDualEncoderModel.from_pretrained("clip-italian/clip-italian" , logit_scale_init_value=1.0 ) UpperCAmelCase_ : Tuple = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" ) UpperCAmelCase_ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCAmelCase_ : int = processor( text=["una foto di un gatto", "una foto di un cane"] , images=lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors="np" ) UpperCAmelCase_ : Optional[int] = model(**lowerCAmelCase_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) UpperCAmelCase_ : List[str] = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image , lowerCAmelCase_ , atol=1e-3 ) )
95
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowerCamelCase__ : Any = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ : str = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ : Any = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ : Optional[Any] = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } lowerCamelCase__ : Tuple = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } lowerCamelCase__ : Dict = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } lowerCamelCase__ : int = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } lowerCamelCase__ : Tuple = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } lowerCamelCase__ : Dict = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = DPRContextEncoderTokenizer class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = DPRQuestionEncoderTokenizer lowerCamelCase__ : Union[str, Any] = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) lowerCamelCase__ : int = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) lowerCamelCase__ : str = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(_UpperCAmelCase ) class lowercase__: '''simple docstring''' def __call__( self :str , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Optional[str] = None , lowerCamelCase_ :Optional[str] = None , lowerCamelCase_ :Union[bool, str] = False , lowerCamelCase_ :Union[bool, str] = False , lowerCamelCase_ :Optional[int] = None , lowerCamelCase_ :Optional[Union[str, TensorType]] = None , lowerCamelCase_ :Optional[bool] = None , **lowerCamelCase_ :Tuple , ) -> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , **lowerCamelCase_ , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE : List[str] = titles if texts is None else texts return super().__call__( lowerCamelCase_ , lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , **lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Dict = titles if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) else [titles] SCREAMING_SNAKE_CASE : Dict = texts if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) else [texts] SCREAMING_SNAKE_CASE : Optional[int] = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = questions if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) else [questions] * n_passages assert len(lowerCamelCase_ ) == len( lowerCamelCase_ ), f"There should be as many titles than texts but got {len(lowerCamelCase_ )} titles and {len(lowerCamelCase_ )} texts." SCREAMING_SNAKE_CASE : Any = super().__call__(lowerCamelCase_ , lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ )['''input_ids'''] SCREAMING_SNAKE_CASE : Dict = super().__call__(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ )['''input_ids'''] SCREAMING_SNAKE_CASE : int = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCamelCase_ , lowerCamelCase_ ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE : List[str] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE : int = attention_mask return self.pad(lowerCamelCase_ , padding=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors=lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :BatchEncoding , lowerCamelCase_ :DPRReaderOutput , lowerCamelCase_ :int = 16 , lowerCamelCase_ :int = 64 , lowerCamelCase_ :int = 4 , ) -> List[DPRSpanPrediction]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = reader_input['''input_ids'''] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = reader_output[:3] SCREAMING_SNAKE_CASE : Dict = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = sorted(range(lowerCamelCase_ ) , reverse=lowerCamelCase_ , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE : List[DPRReaderOutput] = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE : Union[str, Any] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE : int = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE : Dict = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE : Optional[int] = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowerCamelCase_ , top_spans=lowerCamelCase_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowerCamelCase_ , start_index=lowerCamelCase_ , end_index=lowerCamelCase_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowerCamelCase_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :List[int] , lowerCamelCase_ :List[int] , lowerCamelCase_ :int , lowerCamelCase_ :int , ) -> List[DPRSpanPrediction]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = [] for start_index, start_score in enumerate(lowerCamelCase_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE : Dict = sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] , reverse=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"Wrong span indices: [{start_index}:{end_index}]" SCREAMING_SNAKE_CASE : Optional[int] = end_index - start_index + 1 assert length <= max_answer_length, f"Span is too long: {length} > {max_answer_length}" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCamelCase_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCAmelCase ) class lowercase__( _UpperCAmelCase , _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = READER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = READER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = ["""input_ids""", """attention_mask"""] UpperCamelCase = DPRReaderTokenizer
698
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case = { '''configuration_bigbird_pegasus''': [ '''BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BigBirdPegasusConfig''', '''BigBirdPegasusOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BigBirdPegasusForCausalLM''', '''BigBirdPegasusForConditionalGeneration''', '''BigBirdPegasusForQuestionAnswering''', '''BigBirdPegasusForSequenceClassification''', '''BigBirdPegasusModel''', '''BigBirdPegasusPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
714
'''simple docstring''' class lowercase : """simple docstring""" def __init__( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = n UpperCamelCase__ :Tuple = [None] * self.n UpperCamelCase__ :str = 0 # index of the first element UpperCamelCase__ :List[Any] = 0 UpperCamelCase__ :Dict = 0 def __len__( self ): '''simple docstring''' return self.size def lowerCAmelCase__ ( self ): '''simple docstring''' return self.size == 0 def lowerCAmelCase__ ( self ): '''simple docstring''' return False if self.is_empty() else self.array[self.front] def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' if self.size >= self.n: raise Exception('''QUEUE IS FULL''' ) UpperCamelCase__ :List[Any] = data UpperCamelCase__ :List[Any] = (self.rear + 1) % self.n self.size += 1 return self def lowerCAmelCase__ ( self ): '''simple docstring''' if self.size == 0: raise Exception('''UNDERFLOW''' ) UpperCamelCase__ :Dict = self.array[self.front] UpperCamelCase__ :Union[str, Any] = None UpperCamelCase__ :Union[str, Any] = (self.front + 1) % self.n self.size -= 1 return temp
280
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class snake_case ( metaclass=lowercase ): """simple docstring""" _lowerCamelCase = ["onnx"] def __init__( self , *UpperCamelCase , **UpperCamelCase ): """simple docstring""" requires_backends(self , ["onnx"] ) @classmethod def snake_case ( cls , *UpperCamelCase , **UpperCamelCase ): """simple docstring""" requires_backends(cls , ["onnx"] ) @classmethod def snake_case ( cls , *UpperCamelCase , **UpperCamelCase ): """simple docstring""" requires_backends(cls , ["onnx"] )
675
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer a_ : Optional[int] = logging.get_logger(__name__) a_ : Dict = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} a_ : int = { """vocab_file""": { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt""" ), } } a_ : Any = { """junnyu/roformer_chinese_small""": 1536, """junnyu/roformer_chinese_base""": 1536, """junnyu/roformer_chinese_char_small""": 512, """junnyu/roformer_chinese_char_base""": 512, """junnyu/roformer_small_discriminator""": 128, """junnyu/roformer_small_generator""": 128, } a_ : List[Any] = { """junnyu/roformer_chinese_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_base""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True}, """junnyu/roformer_small_discriminator""": {"""do_lower_case""": True}, """junnyu/roformer_small_generator""": {"""do_lower_case""": True}, } class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase = RoFormerTokenizer def __init__( self , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=True , UpperCamelCase="[UNK]" , UpperCamelCase="[SEP]" , UpperCamelCase="[PAD]" , UpperCamelCase="[CLS]" , UpperCamelCase="[MASK]" , UpperCamelCase=True , UpperCamelCase=None , **UpperCamelCase , ): """simple docstring""" super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) lowerCamelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("lowercase" , UpperCamelCase ) != do_lower_case or pre_tok_state.get("strip_accents" , UpperCamelCase ) != strip_accents ): lowerCamelCase_ = getattr(UpperCamelCase , pre_tok_state.pop("type" ) ) lowerCamelCase_ = do_lower_case lowerCamelCase_ = strip_accents lowerCamelCase_ = pre_tok_class(**UpperCamelCase ) lowerCamelCase_ = do_lower_case def __getstate__( self ): """simple docstring""" lowerCamelCase_ = self.__dict__.copy() lowerCamelCase_ = BertPreTokenizer() return state def __setstate__( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = d lowerCamelCase_ = self.__dict__["_tokenizer"].get_vocab() lowerCamelCase_ = PreTokenizer.custom(JiebaPreTokenizer(UpperCamelCase ) ) def snake_case ( self , UpperCamelCase , UpperCamelCase=None ): """simple docstring""" lowerCamelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case ( self , UpperCamelCase , UpperCamelCase = None ): """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case ( self , UpperCamelCase , UpperCamelCase = None ): """simple docstring""" lowerCamelCase_ = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase ) def snake_case ( self , UpperCamelCase , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=False , **UpperCamelCase , ): """simple docstring""" lowerCamelCase_ = BertPreTokenizer() return super().save_pretrained(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , **UpperCamelCase )
675
1
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def __lowercase ( snake_case ): """simple docstring""" if ( (cp >= 0x4_e_0_0 and cp <= 0x9_f_f_f) or (cp >= 0x3_4_0_0 and cp <= 0x4_d_b_f) # or (cp >= 0x2_0_0_0_0 and cp <= 0x2_a_6_d_f) # or (cp >= 0x2_a_7_0_0 and cp <= 0x2_b_7_3_f) # or (cp >= 0x2_b_7_4_0 and cp <= 0x2_b_8_1_f) # or (cp >= 0x2_b_8_2_0 and cp <= 0x2_c_e_a_f) # or (cp >= 0xf_9_0_0 and cp <= 0xf_a_f_f) or (cp >= 0x2_f_8_0_0 and cp <= 0x2_f_a_1_f) # ): # return True return False def __lowercase ( snake_case ): """simple docstring""" for char in word: __magic_name__ :Union[str, Any] = ord(snake_case ) if not _is_chinese_char(snake_case ): return 0 return 1 def __lowercase ( snake_case ): """simple docstring""" __magic_name__ :Any = set() for token in tokens: __magic_name__ :Dict = len(snake_case ) > 1 and is_chinese(snake_case ) if chinese_word: word_set.add(snake_case ) __magic_name__ :str = list(snake_case ) return word_list def __lowercase ( snake_case, snake_case ): """simple docstring""" if not chinese_word_set: return bert_tokens __magic_name__ :int = max([len(snake_case ) for w in chinese_word_set] ) __magic_name__ :Any = bert_tokens __magic_name__ , __magic_name__ :List[Any] = 0, len(snake_case ) while start < end: __magic_name__ :str = True if is_chinese(bert_word[start] ): __magic_name__ :Optional[Any] = min(end - start, snake_case ) for i in range(snake_case, 1, -1 ): __magic_name__ :Any = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): __magic_name__ :Optional[int] = '''##''' + bert_word[j] __magic_name__ :List[str] = start + i __magic_name__ :Optional[Any] = False break if single_word: start += 1 return bert_word def __lowercase ( snake_case, snake_case, snake_case ): """simple docstring""" __magic_name__ :Optional[int] = [] for i in range(0, len(snake_case ), 1_0_0 ): __magic_name__ :List[str] = ltp_tokenizer.seg(lines[i : i + 1_0_0] )[0] __magic_name__ :List[str] = [get_chinese_word(snake_case ) for r in res] ltp_res.extend(snake_case ) assert len(snake_case ) == len(snake_case ) __magic_name__ :Union[str, Any] = [] for i in range(0, len(snake_case ), 1_0_0 ): __magic_name__ :str = bert_tokenizer(lines[i : i + 1_0_0], add_special_tokens=snake_case, truncation=snake_case, max_length=5_1_2 ) bert_res.extend(res['''input_ids'''] ) assert len(snake_case ) == len(snake_case ) __magic_name__ :Union[str, Any] = [] for input_ids, chinese_word in zip(snake_case, snake_case ): __magic_name__ :Any = [] for id in input_ids: __magic_name__ :List[Any] = bert_tokenizer._convert_id_to_token(snake_case ) input_tokens.append(snake_case ) __magic_name__ :Dict = add_sub_symbol(snake_case, snake_case ) __magic_name__ :Optional[Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(snake_case ): if token[:2] == "##": __magic_name__ :Optional[int] = token[2:] # save chinese tokens' pos if len(snake_case ) == 1 and _is_chinese_char(ord(snake_case ) ): ref_id.append(snake_case ) ref_ids.append(snake_case ) assert len(snake_case ) == len(snake_case ) return ref_ids def __lowercase ( snake_case ): """simple docstring""" with open(args.file_name, '''r''', encoding='''utf-8''' ) as f: __magic_name__ :Union[str, Any] = f.readlines() __magic_name__ :int = [line.strip() for line in data if len(snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' __magic_name__ :List[Any] = LTP(args.ltp ) # faster in GPU device __magic_name__ :List[str] = BertTokenizer.from_pretrained(args.bert ) __magic_name__ :Optional[int] = prepare_ref(snake_case, snake_case, snake_case ) with open(args.save_path, '''w''', encoding='''utf-8''' ) as f: __magic_name__ :Dict = [json.dumps(snake_case ) + '''\n''' for ref in ref_ids] f.writelines(snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Tuple = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") SCREAMING_SNAKE_CASE__ : int = parser.parse_args() main(args)
180
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('''repo_id''', ['''canonical_dataset_name''', '''org-name/dataset-name'''] ) @pytest.mark.parametrize('''path''', ['''filename.csv''', '''filename with blanks.csv'''] ) @pytest.mark.parametrize('''revision''', [None, '''v2'''] ) def __lowercase ( snake_case, snake_case, snake_case ): """simple docstring""" __magic_name__ :Tuple = hf_hub_url(repo_id=snake_case, path=snake_case, revision=snake_case ) assert url == f'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(snake_case )}'''
180
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class A ( unittest.TestCase ): def __init__( self : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[Any]=7 , __magic_name__ : Optional[Any]=3 , __magic_name__ : Union[str, Any]=18 , __magic_name__ : Optional[int]=30 , __magic_name__ : int=400 , __magic_name__ : Any=True , __magic_name__ : Tuple=None , __magic_name__ : Optional[int]=True , __magic_name__ : str=None , __magic_name__ : Optional[Any]=True , ): """simple docstring""" lowerCAmelCase__ = size if size is not None else {"shortest_edge": 20} lowerCAmelCase__ = crop_size if crop_size is not None else {"height": 18, "width": 18} lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = image_size lowerCAmelCase__ = min_resolution lowerCAmelCase__ = max_resolution lowerCAmelCase__ = do_resize lowerCAmelCase__ = size lowerCAmelCase__ = do_center_crop lowerCAmelCase__ = crop_size lowerCAmelCase__ = do_flip_channel_order def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :Dict = MobileViTImageProcessor if is_vision_available() else None def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = MobileViTImageProcessingTester(self ) @property def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__magic_name__ , "do_resize" ) ) self.assertTrue(hasattr(__magic_name__ , "size" ) ) self.assertTrue(hasattr(__magic_name__ , "do_center_crop" ) ) self.assertTrue(hasattr(__magic_name__ , "center_crop" ) ) self.assertTrue(hasattr(__magic_name__ , "do_flip_channel_order" ) ) def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 20} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) lowerCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , Image.Image ) # Test not batched input lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCAmelCase__ = image_processing(__magic_name__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , numpify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , np.ndarray ) # Test not batched input lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCAmelCase__ = image_processing(__magic_name__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , torch.Tensor ) # Test not batched input lowerCAmelCase__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCAmelCase__ = image_processing(__magic_name__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
48
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class _lowerCAmelCase ( unittest.TestCase ): def __init__( self , _UpperCamelCase , _UpperCamelCase=7 , _UpperCamelCase=3 , _UpperCamelCase=18 , _UpperCamelCase=30 , _UpperCamelCase=400 , _UpperCamelCase=True , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase=[0.48145466, 0.4578275, 0.40821073] , _UpperCamelCase=[0.26862954, 0.26130258, 0.27577711] , _UpperCamelCase=True , ) -> Dict: lowerCAmelCase_ = size if size is not None else {"height": 224, "width": 224} lowerCAmelCase_ = crop_size if crop_size is not None else {"height": 18, "width": 18} lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = image_size lowerCAmelCase_ = min_resolution lowerCAmelCase_ = max_resolution lowerCAmelCase_ = do_resize lowerCAmelCase_ = size lowerCAmelCase_ = do_center_crop lowerCAmelCase_ = crop_size lowerCAmelCase_ = do_normalize lowerCAmelCase_ = image_mean lowerCAmelCase_ = image_std lowerCAmelCase_ = do_convert_rgb def __a ( self ) -> List[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def __a ( self , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=False ) -> Dict: assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: lowerCAmelCase_ = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: lowerCAmelCase_ = [] for i in range(self.batch_size ): lowerCAmelCase_ , lowerCAmelCase_ = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension lowerCAmelCase_ = [Image.fromarray(np.moveaxis(_UpperCamelCase , 0 , -1 ) ) for x in image_inputs] if torchify: lowerCAmelCase_ = [torch.from_numpy(_UpperCamelCase ) for x in image_inputs] return image_inputs @require_torch @require_vision class _lowerCAmelCase ( __a , unittest.TestCase ): _lowercase =ChineseCLIPImageProcessor if is_vision_available() else None def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = ChineseCLIPImageProcessingTester(self , do_center_crop=_UpperCamelCase ) @property def __a ( self ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def __a ( self ) -> Any: lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase , "do_resize" ) ) self.assertTrue(hasattr(_UpperCamelCase , "size" ) ) self.assertTrue(hasattr(_UpperCamelCase , "do_center_crop" ) ) self.assertTrue(hasattr(_UpperCamelCase , "center_crop" ) ) self.assertTrue(hasattr(_UpperCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(_UpperCamelCase , "image_mean" ) ) self.assertTrue(hasattr(_UpperCamelCase , "image_std" ) ) self.assertTrue(hasattr(_UpperCamelCase , "do_convert_rgb" ) ) def __a ( self ) -> List[str]: lowerCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 224, "width": 224} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) lowerCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def __a ( self ) -> str: pass def __a ( self ) -> Any: # Initialize image_processing lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , Image.Image ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCAmelCase_ = image_processing(_UpperCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __a ( self ) -> str: # Initialize image_processing lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=_UpperCamelCase , numpify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , np.ndarray ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCAmelCase_ = image_processing(_UpperCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __a ( self ) -> Union[str, Any]: # Initialize image_processing lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=_UpperCamelCase , torchify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , torch.Tensor ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCAmelCase_ = image_processing(_UpperCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) @require_torch @require_vision class _lowerCAmelCase ( __a , unittest.TestCase ): _lowercase =ChineseCLIPImageProcessor if is_vision_available() else None def __a ( self ) -> List[Any]: lowerCAmelCase_ = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=_UpperCamelCase ) lowerCAmelCase_ = 3 @property def __a ( self ) -> List[str]: return self.image_processor_tester.prepare_image_processor_dict() def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase , "do_resize" ) ) self.assertTrue(hasattr(_UpperCamelCase , "size" ) ) self.assertTrue(hasattr(_UpperCamelCase , "do_center_crop" ) ) self.assertTrue(hasattr(_UpperCamelCase , "center_crop" ) ) self.assertTrue(hasattr(_UpperCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(_UpperCamelCase , "image_mean" ) ) self.assertTrue(hasattr(_UpperCamelCase , "image_std" ) ) self.assertTrue(hasattr(_UpperCamelCase , "do_convert_rgb" ) ) def __a ( self ) -> int: pass def __a ( self ) -> str: # Initialize image_processing lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , Image.Image ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCAmelCase_ = image_processing(_UpperCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
290
0
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip snake_case = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( snake_case__ :List[Any] ) -> Optional[Any]: if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def SCREAMING_SNAKE_CASE__ ( snake_case__ :List[str] , snake_case__ :Dict , snake_case__ :List[Any] ) -> int: return max(metric_fn(snake_case__ , snake_case__ ) for gt in ground_truths ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :int , snake_case__ :int , snake_case__ :List[str] ) -> Dict: _lowercase = [line.strip() for line in open(snake_case__ , 'r' ).readlines()] _lowercase = [] if args.gold_data_mode == "qa": _lowercase = pd.read_csv(snake_case__ , sep='\t' , header=snake_case__ ) for answer_list in data[1]: _lowercase = ast.literal_eval(snake_case__ ) answers.append(snake_case__ ) else: _lowercase = [line.strip() for line in open(snake_case__ , 'r' ).readlines()] _lowercase = [[reference] for reference in references] _lowercase = _lowercase = _lowercase = 0 for prediction, ground_truths in zip(snake_case__ , snake_case__ ): total += 1 em += metric_max_over_ground_truths(snake_case__ , snake_case__ , snake_case__ ) fa += metric_max_over_ground_truths(snake_case__ , snake_case__ , snake_case__ ) _lowercase = 100.0 * em / total _lowercase = 100.0 * fa / total logger.info(F"""F1: {fa:.2f}""" ) logger.info(F"""EM: {em:.2f}""" ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :List[Any] , snake_case__ :Union[str, Any] , snake_case__ :List[str] ) -> Tuple: _lowercase = args.k _lowercase = [line.strip() for line in open(snake_case__ , 'r' ).readlines()] _lowercase = [line.strip() for line in open(snake_case__ , 'r' ).readlines()] _lowercase = _lowercase = 0 for hypo, reference in zip(snake_case__ , snake_case__ ): _lowercase = set(hypo.split('\t' )[:k] ) _lowercase = set(reference.split('\t' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k _lowercase = 100.0 * em / total logger.info(F"""Precision@{k}: {em: .2f}""" ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :Union[str, Any] , snake_case__ :List[str] , snake_case__ :str ) -> Dict: def strip_title(snake_case__ :Any ): if title.startswith('"' ): _lowercase = title[1:] if title.endswith('"' ): _lowercase = title[:-1] return title _lowercase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( snake_case__ , return_tensors='pt' , padding=snake_case__ , truncation=snake_case__ , )['input_ids'].to(args.device ) _lowercase = rag_model.rag.question_encoder(snake_case__ ) _lowercase = question_enc_outputs[0] _lowercase = rag_model.retriever( snake_case__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='pt' , ) _lowercase = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) _lowercase = [] for docs in all_docs: _lowercase = [strip_title(snake_case__ ) for title in docs['title']] provenance_strings.append('\t'.join(snake_case__ ) ) return provenance_strings def SCREAMING_SNAKE_CASE__ ( snake_case__ :List[str] , snake_case__ :Dict , snake_case__ :Tuple ) -> int: with torch.no_grad(): _lowercase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( snake_case__ , return_tensors='pt' , padding=snake_case__ , truncation=snake_case__ ) _lowercase = inputs_dict.input_ids.to(args.device ) _lowercase = inputs_dict.attention_mask.to(args.device ) _lowercase = rag_model.generate( # rag_model overwrites generate snake_case__ , attention_mask=snake_case__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=snake_case__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) _lowercase = rag_model.retriever.generator_tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ ) if args.print_predictions: for q, a in zip(snake_case__ , snake_case__ ): logger.info('Q: {} - A: {}'.format(snake_case__ , snake_case__ ) ) return answers def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: _lowercase = argparse.ArgumentParser() parser.add_argument( '--model_type' , choices=['rag_sequence', 'rag_token', 'bart'] , type=snake_case__ , help=( 'RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the' ' model_name_or_path' ) , ) parser.add_argument( '--index_name' , default=snake_case__ , choices=['exact', 'compressed', 'legacy'] , type=snake_case__ , help='RAG model retriever type' , ) parser.add_argument( '--index_path' , default=snake_case__ , type=snake_case__ , help='Path to the retrieval index' , ) parser.add_argument('--n_docs' , default=5 , type=snake_case__ , help='Number of retrieved docs' ) parser.add_argument( '--model_name_or_path' , default=snake_case__ , type=snake_case__ , required=snake_case__ , help='Path to pretrained checkpoints or model identifier from huggingface.co/models' , ) parser.add_argument( '--eval_mode' , choices=['e2e', 'retrieval'] , default='e2e' , type=snake_case__ , help=( 'Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates' ' precision@k.' ) , ) parser.add_argument('--k' , default=1 , type=snake_case__ , help='k for the precision@k calculation' ) parser.add_argument( '--evaluation_set' , default=snake_case__ , type=snake_case__ , required=snake_case__ , help='Path to a file containing evaluation samples' , ) parser.add_argument( '--gold_data_path' , default=snake_case__ , type=snake_case__ , required=snake_case__ , help='Path to a tab-separated file with gold samples' , ) parser.add_argument( '--gold_data_mode' , default='qa' , type=snake_case__ , choices=['qa', 'ans'] , help=( 'Format of the gold data file' 'qa - a single line in the following format: question [tab] answer_list' 'ans - a single line of the gold file contains the expected answer string' ) , ) parser.add_argument( '--predictions_path' , type=snake_case__ , default='predictions.txt' , help='Name of the predictions file, to be stored in the checkpoints directory' , ) parser.add_argument( '--eval_all_checkpoints' , action='store_true' , help='Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number' , ) parser.add_argument( '--eval_batch_size' , default=8 , type=snake_case__ , help='Batch size per GPU/CPU for evaluation.' , ) parser.add_argument( '--recalculate' , help='Recalculate predictions even if the prediction file exists' , action='store_true' , ) parser.add_argument( '--num_beams' , default=4 , type=snake_case__ , help='Number of beams to be used when generating answers' , ) parser.add_argument('--min_length' , default=1 , type=snake_case__ , help='Min length of the generated answers' ) parser.add_argument('--max_length' , default=50 , type=snake_case__ , help='Max length of the generated answers' ) parser.add_argument( '--print_predictions' , action='store_true' , help='If True, prints predictions while evaluating.' , ) parser.add_argument( '--print_docs' , action='store_true' , help='If True, prints docs retried while generating.' , ) _lowercase = parser.parse_args() _lowercase = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) return args def SCREAMING_SNAKE_CASE__ ( snake_case__ :Any ) -> Any: _lowercase = {} if args.model_type is None: _lowercase = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('rag' ): _lowercase = RagTokenForGeneration if args.model_type == 'rag_token' else RagSequenceForGeneration _lowercase = args.n_docs if args.index_name is not None: _lowercase = args.index_name if args.index_path is not None: _lowercase = args.index_path else: _lowercase = BartForConditionalGeneration _lowercase = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('Evaluate the following checkpoints: %s' , snake_case__ ) _lowercase = get_scores if args.eval_mode == 'e2e' else get_precision_at_k _lowercase = evaluate_batch_eae if args.eval_mode == 'e2e' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('Calculating metrics based on an existing predictions file: {}'.format(args.predictions_path ) ) score_fn(snake_case__ , args.predictions_path , args.gold_data_path ) continue logger.info('***** Running evaluation for {} *****'.format(snake_case__ ) ) logger.info(' Batch size = %d' , args.eval_batch_size ) logger.info(' Predictions will be stored under {}'.format(args.predictions_path ) ) if args.model_type.startswith('rag' ): _lowercase = RagRetriever.from_pretrained(snake_case__ , **snake_case__ ) _lowercase = model_class.from_pretrained(snake_case__ , retriever=snake_case__ , **snake_case__ ) model.retriever.init_retrieval() else: _lowercase = model_class.from_pretrained(snake_case__ , **snake_case__ ) model.to(args.device ) with open(args.evaluation_set , 'r' ) as eval_file, open(args.predictions_path , 'w' ) as preds_file: _lowercase = [] for line in tqdm(snake_case__ ): questions.append(line.strip() ) if len(snake_case__ ) == args.eval_batch_size: _lowercase = evaluate_batch_fn(snake_case__ , snake_case__ , snake_case__ ) preds_file.write('\n'.join(snake_case__ ) + '\n' ) preds_file.flush() _lowercase = [] if len(snake_case__ ) > 0: _lowercase = evaluate_batch_fn(snake_case__ , snake_case__ , snake_case__ ) preds_file.write('\n'.join(snake_case__ ) ) preds_file.flush() score_fn(snake_case__ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": snake_case = get_args() main(args)
701
snake_case = 8.3_144_598 def SCREAMING_SNAKE_CASE__ ( snake_case__ :float , snake_case__ :float ) -> float: if temperature < 0: raise Exception('Temperature cannot be less than 0 K' ) if molar_mass <= 0: raise Exception('Molar mass cannot be less than or equal to 0 kg/mol' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example snake_case = 3_0_0 snake_case = 2_8 snake_case = rms_speed_of_molecule(temperature, molar_mass) print(F"""Vrms of Nitrogen gas at 300 K is {vrms} m/s""")
535
0
"""simple docstring""" class a : def __init__( self , _snake_case ): """simple docstring""" lowerCAmelCase = val lowerCAmelCase = None lowerCAmelCase = None def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if self.val: if val < self.val: if self.left is None: lowerCAmelCase = Node(_snake_case ) else: self.left.insert(_snake_case ) elif val > self.val: if self.right is None: lowerCAmelCase = Node(_snake_case ) else: self.right.insert(_snake_case ) else: lowerCAmelCase = val def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : str ): # Recursive traversal if root: inorder(root.left , _UpperCAmelCase ) res.append(root.val ) inorder(root.right , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): # Build BST if len(_UpperCAmelCase ) == 0: return arr lowerCAmelCase = Node(arr[0] ) for i in range(1 , len(_UpperCAmelCase ) ): root.insert(arr[i] ) # Traverse BST in order. lowerCAmelCase = [] inorder(_UpperCAmelCase , _UpperCAmelCase ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
4
'''simple docstring''' def __lowercase ( __SCREAMING_SNAKE_CASE = 10**9 ) -> int: """simple docstring""" __a = 1 __a = 2 __a = 0 __a = 0 __a = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __a = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"""{solution() = }""")
582
0
"""simple docstring""" __UpperCAmelCase = { "A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.", "H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.", "O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-", "V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----", "2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...", "8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.", ":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.", "?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-", "(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/" } # Exclamation mark is not in ITU-R recommendation # fmt: on __UpperCAmelCase = {value: key for key, value in MORSE_CODE_DICT.items()} def lowercase__ ( lowerCAmelCase__ : str ) -> str: '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def lowercase__ ( lowerCAmelCase__ : Dict ) -> str: '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def lowercase__ ( ) -> None: '''simple docstring''' a__ : int = "Morse code here!" print(lowerCAmelCase__ ) a__ : Any = encrypt(lowerCAmelCase__ ) print(lowerCAmelCase__ ) a__ : int = decrypt(lowerCAmelCase__ ) print(lowerCAmelCase__ ) if __name__ == "__main__": main()
703
"""simple docstring""" import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __UpperCAmelCase : def __init__( self : List[str] , a_ : Any , a_ : Dict=13 , a_ : Optional[Any]=7 , a_ : int=6 , a_ : Union[str, Any]=17 , a_ : List[str]=23 , a_ : Optional[int]=11 , a_ : Optional[int]=True , ) -> Union[str, Any]: '''simple docstring''' a__ : List[str] = parent a__ : Tuple = batch_size a__ : List[str] = seq_length a__ : List[str] = act_dim a__ : List[str] = state_dim a__ : Tuple = hidden_size a__ : int = max_length a__ : Tuple = is_training def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' a__ : str = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) a__ : str = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) a__ : int = floats_tensor((self.batch_size, self.seq_length, 1) ) a__ : Tuple = floats_tensor((self.batch_size, self.seq_length, 1) ) a__ : List[Any] = ids_tensor((self.batch_size, self.seq_length) , vocab_size=10_00 ) a__ : str = random_attention_mask((self.batch_size, self.seq_length) ) a__ : Tuple = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def UpperCAmelCase ( self : Tuple , a_ : List[str] , a_ : str , a_ : Optional[Any] , a_ : Dict , a_ : Union[str, Any] , a_ : Union[str, Any] , a_ : List[Any] , ) -> str: '''simple docstring''' a__ : Union[str, Any] = DecisionTransformerModel(config=a_ ) model.to(a_ ) model.eval() a__ : int = model(a_ , a_ , a_ , a_ , a_ , a_ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def UpperCAmelCase ( self : Any ) -> Union[str, Any]: '''simple docstring''' a__ : List[str] = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) : List[Any] = config_and_inputs a__ : int = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __lowerCamelCase : Optional[Any] = (DecisionTransformerModel,) if is_torch_available() else () __lowerCamelCase : Optional[int] = () __lowerCamelCase : Dict = {"feature-extraction": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __lowerCamelCase : Dict = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __lowerCamelCase : Tuple = False __lowerCamelCase : List[Any] = False __lowerCamelCase : str = False __lowerCamelCase : List[str] = False __lowerCamelCase : Any = False __lowerCamelCase : Dict = False __lowerCamelCase : Tuple = False __lowerCamelCase : Any = False __lowerCamelCase : Tuple = False def UpperCAmelCase ( self : List[str] ) -> Optional[int]: '''simple docstring''' a__ : int = DecisionTransformerModelTester(self ) a__ : Optional[int] = ConfigTester(self , config_class=a_ , hidden_size=37 ) def UpperCAmelCase ( self : str ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: '''simple docstring''' a__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) @slow def UpperCAmelCase ( self : str ) -> List[Any]: '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : List[str] = DecisionTransformerModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' a__ , a__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : str = model_class(a_ ) a__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : Optional[Any] = [*signature.parameters.keys()] a__ : Optional[Any] = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(a_ )] , a_ ) @require_torch class __UpperCAmelCase ( unittest.TestCase ): @slow def UpperCAmelCase ( self : str ) -> str: '''simple docstring''' a__ : int = 2 # number of steps of autoregressive prediction we will perform a__ : Union[str, Any] = 10 # defined by the RL environment, may be normalized a__ : Union[str, Any] = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) a__ : Optional[Any] = model.to(a_ ) a__ : Tuple = model.config torch.manual_seed(0 ) a__ : Optional[Any] = torch.randn(1 , 1 , config.state_dim ).to(device=a_ , dtype=torch.floataa ) # env.reset() a__ : str = torch.tensor( [[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]] , device=a_ ) a__ : List[Any] = torch.tensor(a_ , device=a_ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) a__ : Tuple = state a__ : Optional[int] = torch.zeros(1 , 0 , config.act_dim , device=a_ , dtype=torch.floataa ) a__ : Optional[Any] = torch.zeros(1 , 0 , device=a_ , dtype=torch.floataa ) a__ : List[str] = torch.tensor(0 , device=a_ , dtype=torch.long ).reshape(1 , 1 ) for step in range(a_ ): a__ : Tuple = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=a_ )] , dim=1 ) a__ : List[str] = torch.cat([rewards, torch.zeros(1 , 1 , device=a_ )] , dim=1 ) a__ : Any = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): a__ , a__ , a__ : List[Any] = model( states=a_ , actions=a_ , rewards=a_ , returns_to_go=a_ , timesteps=a_ , attention_mask=a_ , return_dict=a_ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) ) a__ , a__ , a__ , a__ : List[str] = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=a_ , dtype=torch.floataa ), 1.0, False, {}, ) a__ : List[Any] = action_pred[0, -1] a__ : Any = torch.cat([states, state] , dim=1 ) a__ : Dict = returns_to_go[0, -1] - reward a__ : int = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) a__ : int = torch.cat( [timesteps, torch.ones((1, 1) , device=a_ , dtype=torch.long ) * (step + 1)] , dim=1 )
251
0
import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig SCREAMING_SNAKE_CASE__ : Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Optional[Any] = "T5Config" def _a ( lowercase__ : jnp.array , lowercase__ : int , lowercase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = jnp.zeros_like(lowercase__ ) SCREAMING_SNAKE_CASE__ : List[str] = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) SCREAMING_SNAKE_CASE__ : int = shifted_input_ids.at[:, 0].set(lowercase__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = jnp.where(shifted_input_ids == -1_00 , lowercase__ , lowercase__ ) return shifted_input_ids class snake_case ( UpperCamelCase_ ): lowercase_ = 'mt5' lowercase_ = MTaConfig class snake_case ( UpperCamelCase_ ): lowercase_ = 'mt5' lowercase_ = MTaConfig class snake_case ( UpperCamelCase_ ): lowercase_ = 'mt5' lowercase_ = MTaConfig
85
import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_tests_dir("fixtures/test_sentencepiece.model") SCREAMING_SNAKE_CASE__ : Optional[int] = get_tests_dir("fixtures/test_sentencepiece_bpe.model") SCREAMING_SNAKE_CASE__ : Any = "pt" if is_torch_available() else "tf" @require_sentencepiece @require_tokenizers class snake_case ( UpperCamelCase_ , unittest.TestCase ): lowercase_ = CamembertTokenizer lowercase_ = CamembertTokenizerFast lowercase_ = True lowercase_ = True def __lowercase( self : Tuple )-> str: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE__ : Dict = CamembertTokenizer(a_ ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase( self : Any )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = '<pad>' SCREAMING_SNAKE_CASE__ : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a_ ) , a_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a_ ) , a_ ) def __lowercase( self : Optional[Any] )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>NOTUSED' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(a_ ) , 1004 ) def __lowercase( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1005 ) def __lowercase( self : List[Any] )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = CamembertTokenizer(a_ ) tokenizer.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : int = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : str = 'I was born in 92000, and this is falsé.' SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.encode(a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = rust_tokenizer.encode(a_ ) self.assertListEqual(a_ , a_ ) SCREAMING_SNAKE_CASE__ : str = tokenizer.encode(a_ , add_special_tokens=a_ ) SCREAMING_SNAKE_CASE__ : List[str] = rust_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.convert_ids_to_tokens(a_ ) SCREAMING_SNAKE_CASE__ : List[Any] = rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) def __lowercase( self : Union[str, Any] )-> str: """simple docstring""" if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ : Tuple = 'I was born in 92000, and this is falsé.' SCREAMING_SNAKE_CASE__ : str = tokenizer.tokenize(a_ ) SCREAMING_SNAKE_CASE__ : List[Any] = rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.encode(a_ , add_special_tokens=a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = rust_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) SCREAMING_SNAKE_CASE__ : int = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer.encode(a_ ) SCREAMING_SNAKE_CASE__ : Tuple = rust_tokenizer.encode(a_ ) self.assertListEqual(a_ , a_ ) @slow def __lowercase( self : List[str] )-> Dict: """simple docstring""" # fmt: off SCREAMING_SNAKE_CASE__ : Union[str, Any] = {'input_ids': [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 2_7575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 2_2804, 1_8818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 1_0326, 24, 2267, 20, 416, 5072, 1_5612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. SCREAMING_SNAKE_CASE__ : str = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=a_ , model_name='camembert-base' , revision='3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf' , sequences=a_ , )
85
1
"""simple docstring""" def __UpperCamelCase ( snake_case__ ): return " ".join( """""".join(word[::-1] ) if len(snake_case__ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("Hey wollef sroirraw"))
480
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
480
1
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets lowerCAmelCase_ = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ lowerCAmelCase_ = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ lowerCAmelCase_ = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): def __magic_name__( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/krishnap25/mauve''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/krishnap25/mauve'''] , reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] , ) def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="auto" , __UpperCAmelCase=-1 , __UpperCAmelCase=0.9 , __UpperCAmelCase=5 , __UpperCAmelCase=500 , __UpperCAmelCase="gpt2-large" , __UpperCAmelCase=-1 , __UpperCAmelCase=1024 , __UpperCAmelCase=25 , __UpperCAmelCase=5 , __UpperCAmelCase=True , __UpperCAmelCase=25 , ): lowerCAmelCase__ : Tuple = compute_mauve( p_text=__UpperCAmelCase , q_text=__UpperCAmelCase , p_features=__UpperCAmelCase , q_features=__UpperCAmelCase , p_tokens=__UpperCAmelCase , q_tokens=__UpperCAmelCase , num_buckets=__UpperCAmelCase , pca_max_data=__UpperCAmelCase , kmeans_explained_var=__UpperCAmelCase , kmeans_num_redo=__UpperCAmelCase , kmeans_max_iter=__UpperCAmelCase , featurize_model_name=__UpperCAmelCase , device_id=__UpperCAmelCase , max_text_length=__UpperCAmelCase , divergence_curve_discretization_size=__UpperCAmelCase , mauve_scaling_factor=__UpperCAmelCase , verbose=__UpperCAmelCase , seed=__UpperCAmelCase , ) return out
678
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class _lowerCAmelCase ( unittest.TestCase ): A__ = MODEL_FOR_CAUSAL_LM_MAPPING A__ = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def __magic_name__( self ): lowerCAmelCase__ : Tuple = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output lowerCAmelCase__ : Optional[int] = text_generator('''This is a test''' , do_sample=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) lowerCAmelCase__ : List[str] = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( __UpperCAmelCase , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) lowerCAmelCase__ : str = text_generator('''This is a test''' , do_sample=__UpperCAmelCase , num_return_sequences=2 , return_tensors=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ {'''generated_token_ids''': ANY(__UpperCAmelCase )}, {'''generated_token_ids''': ANY(__UpperCAmelCase )}, ] , ) lowerCAmelCase__ : List[Any] = text_generator.model.config.eos_token_id lowerCAmelCase__ : List[Any] = '''<pad>''' lowerCAmelCase__ : List[Any] = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=__UpperCAmelCase , num_return_sequences=2 , batch_size=2 , return_tensors=__UpperCAmelCase , ) self.assertEqual( __UpperCAmelCase , [ [ {'''generated_token_ids''': ANY(__UpperCAmelCase )}, {'''generated_token_ids''': ANY(__UpperCAmelCase )}, ], [ {'''generated_token_ids''': ANY(__UpperCAmelCase )}, {'''generated_token_ids''': ANY(__UpperCAmelCase )}, ], ] , ) @require_tf def __magic_name__( self ): lowerCAmelCase__ : int = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output lowerCAmelCase__ : List[Any] = text_generator('''This is a test''' , do_sample=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) lowerCAmelCase__ : List[str] = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ : Dict = TextGenerationPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) return text_generator, ["This is a test", "Another test"] def __magic_name__( self ): lowerCAmelCase__ : Any = '''Hello I believe in''' lowerCAmelCase__ : List[Any] = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase__ : Optional[int] = text_generator(__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) lowerCAmelCase__ : List[str] = text_generator(__UpperCAmelCase , stop_sequence=''' fe''' ) self.assertEqual(__UpperCAmelCase , [{'''generated_text''': '''Hello I believe in fe'''}] ) def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ : str = text_generator.model lowerCAmelCase__ : Optional[int] = text_generator.tokenizer lowerCAmelCase__ : Tuple = text_generator('''This is a test''' ) self.assertEqual(__UpperCAmelCase , [{'''generated_text''': ANY(__UpperCAmelCase )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) lowerCAmelCase__ : Optional[int] = text_generator('''This is a test''' , return_full_text=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , [{'''generated_text''': ANY(__UpperCAmelCase )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) lowerCAmelCase__ : Dict = pipeline(task='''text-generation''' , model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , return_full_text=__UpperCAmelCase ) lowerCAmelCase__ : Dict = text_generator('''This is a test''' ) self.assertEqual(__UpperCAmelCase , [{'''generated_text''': ANY(__UpperCAmelCase )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) lowerCAmelCase__ : List[str] = text_generator('''This is a test''' , return_full_text=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , [{'''generated_text''': ANY(__UpperCAmelCase )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) lowerCAmelCase__ : Optional[int] = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ [{'''generated_text''': ANY(__UpperCAmelCase )}, {'''generated_text''': ANY(__UpperCAmelCase )}], [{'''generated_text''': ANY(__UpperCAmelCase )}, {'''generated_text''': ANY(__UpperCAmelCase )}], ] , ) if text_generator.tokenizer.pad_token is not None: lowerCAmelCase__ : List[str] = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ [{'''generated_text''': ANY(__UpperCAmelCase )}, {'''generated_text''': ANY(__UpperCAmelCase )}], [{'''generated_text''': ANY(__UpperCAmelCase )}, {'''generated_text''': ANY(__UpperCAmelCase )}], ] , ) with self.assertRaises(__UpperCAmelCase ): lowerCAmelCase__ : Any = text_generator('''test''' , return_full_text=__UpperCAmelCase , return_text=__UpperCAmelCase ) with self.assertRaises(__UpperCAmelCase ): lowerCAmelCase__ : Optional[int] = text_generator('''test''' , return_full_text=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) with self.assertRaises(__UpperCAmelCase ): lowerCAmelCase__ : str = text_generator('''test''' , return_text=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): lowerCAmelCase__ : str = text_generator('''''' ) self.assertEqual(__UpperCAmelCase , [{'''generated_text''': ANY(__UpperCAmelCase )}] ) else: with self.assertRaises((ValueError, AssertionError) ): lowerCAmelCase__ : List[str] = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. lowerCAmelCase__ : Optional[Any] = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 500 , max_new_tokens=20 ) lowerCAmelCase__ : Optional[Any] = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(__UpperCAmelCase ): text_generator( '''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def __magic_name__( self ): import torch # Classic `model_kwargs` lowerCAmelCase__ : List[str] = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCAmelCase__ : Any = pipe('''This is a test''' ) self.assertEqual( __UpperCAmelCase , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) lowerCAmelCase__ : Dict = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCAmelCase__ : Union[str, Any] = pipe('''This is a test''' ) self.assertEqual( __UpperCAmelCase , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 lowerCAmelCase__ : str = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) lowerCAmelCase__ : Any = pipe('''This is a test''' ) self.assertEqual( __UpperCAmelCase , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def __magic_name__( self ): import torch lowerCAmelCase__ : List[str] = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def __magic_name__( self ): import torch lowerCAmelCase__ : Any = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=__UpperCAmelCase , top_p=0.5 ) def __magic_name__( self ): lowerCAmelCase__ : int = '''Hello world''' lowerCAmelCase__ : Union[str, Any] = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": lowerCAmelCase__ : List[Any] = logging.get_logger('''transformers.generation.tf_utils''' ) else: lowerCAmelCase__ : Dict = logging.get_logger('''transformers.generation.utils''' ) lowerCAmelCase__ : Optional[Any] = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(__UpperCAmelCase ) as cl: lowerCAmelCase__ : List[str] = text_generator(__UpperCAmelCase , max_length=10 , max_new_tokens=1 ) self.assertIn(__UpperCAmelCase , cl.out ) # The user only sets one -> no warning with CaptureLogger(__UpperCAmelCase ) as cl: lowerCAmelCase__ : Any = text_generator(__UpperCAmelCase , max_new_tokens=1 ) self.assertNotIn(__UpperCAmelCase , cl.out ) with CaptureLogger(__UpperCAmelCase ) as cl: lowerCAmelCase__ : Union[str, Any] = text_generator(__UpperCAmelCase , max_length=10 ) self.assertNotIn(__UpperCAmelCase , cl.out )
678
1
'''simple docstring''' import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : Union[str, Any] = BertConfig.from_json_file(lowerCamelCase__ ) print(f'Building PyTorch model from configuration: {config}' ) A_ : List[str] = BertForPreTraining(lowerCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_bert(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , lowerCamelCase__ ) if __name__ == "__main__": lowerCamelCase :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase :Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
686
'''simple docstring''' import pytest lowerCamelCase :Optional[Any] = '''__dummy_dataset1__''' lowerCamelCase :List[Any] = ''' import json import os import datasets REPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/" URLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", ] ) ), "langs": datasets.Sequence(datasets.Value("string")), "spans": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}), ] def _generate_examples(self, filepath): with open(filepath, "r", encoding="utf-8") as f: for i, line in enumerate(f): yield i, json.loads(line) ''' @pytest.fixture def a ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def a ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : List[str] = dataset_loading_script_name A_ : int = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=lowerCamelCase__ ) A_ : Tuple = script_dir / f'{script_name}.py' with open(lowerCamelCase__ , """w""" ) as f: f.write(lowerCamelCase__ ) return str(lowerCamelCase__ )
686
1
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() _A : Any = logging.get_logger(__name__) _A : str = [ ['attention', 'attn'], ['encoder_attention', 'encoder_attn'], ['q_lin', 'q_proj'], ['k_lin', 'k_proj'], ['v_lin', 'v_proj'], ['out_lin', 'out_proj'], ['norm_embeddings', 'layernorm_embedding'], ['position_embeddings', 'embed_positions'], ['embeddings', 'embed_tokens'], ['ffn.lin', 'fc'], ] def _a ( UpperCAmelCase ) -> List[str]: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: lowerCamelCase__ : Any = k.replace(UpperCAmelCase , UpperCAmelCase ) if k.startswith('''encoder''' ): lowerCamelCase__ : Any = k.replace('''.attn''' , '''.self_attn''' ) lowerCamelCase__ : Optional[Any] = k.replace('''norm1''' , '''self_attn_layer_norm''' ) lowerCamelCase__ : Tuple = k.replace('''norm2''' , '''final_layer_norm''' ) elif k.startswith('''decoder''' ): lowerCamelCase__ : List[Any] = k.replace('''norm1''' , '''self_attn_layer_norm''' ) lowerCamelCase__ : Optional[int] = k.replace('''norm2''' , '''encoder_attn_layer_norm''' ) lowerCamelCase__ : Dict = k.replace('''norm3''' , '''final_layer_norm''' ) return k def _a ( UpperCAmelCase ) -> List[str]: """simple docstring""" lowerCamelCase__ : Optional[Any] = [ '''model.encoder.layernorm_embedding.weight''', '''model.encoder.layernorm_embedding.bias''', '''model.decoder.layernorm_embedding.weight''', '''model.decoder.layernorm_embedding.bias''', ] for k in keys: lowerCamelCase__ : List[str] = sd.pop(UpperCAmelCase ) lowerCamelCase__ : Optional[int] = k.replace('''layernorm_embedding''' , '''layer_norm''' ) assert new_k not in sd lowerCamelCase__ : Any = v _A : int = ['START'] @torch.no_grad() def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: """simple docstring""" lowerCamelCase__ : int = torch.load(UpperCAmelCase , map_location='''cpu''' ) lowerCamelCase__ : Dict = model['''model'''] lowerCamelCase__ : List[str] = BlenderbotConfig.from_json_file(UpperCAmelCase ) lowerCamelCase__ : Tuple = BlenderbotForConditionalGeneration(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = m.model.state_dict().keys() lowerCamelCase__ : List[Any] = [] lowerCamelCase__ : Any = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue lowerCamelCase__ : List[str] = rename_state_dict_key(UpperCAmelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: lowerCamelCase__ : List[str] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(UpperCAmelCase ) m.model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) m.half() m.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": _A : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin') parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.') parser.add_argument( '--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use' ) _A : Optional[Any] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
315
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _a ( UpperCAmelCase ) -> Tuple: """simple docstring""" lowerCamelCase__ : Union[str, Any] = SwinConfig(image_size=192 ) if "base" in model_name: lowerCamelCase__ : List[str] = 6 lowerCamelCase__ : Any = 128 lowerCamelCase__ : Tuple = (2, 2, 18, 2) lowerCamelCase__ : int = (4, 8, 16, 32) elif "large" in model_name: lowerCamelCase__ : Any = 12 lowerCamelCase__ : List[Any] = 192 lowerCamelCase__ : Any = (2, 2, 18, 2) lowerCamelCase__ : Optional[int] = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) lowerCamelCase__ : List[str] = window_size lowerCamelCase__ : Optional[int] = embed_dim lowerCamelCase__ : Optional[int] = depths lowerCamelCase__ : int = num_heads return config def _a ( UpperCAmelCase ) -> Any: """simple docstring""" if "encoder.mask_token" in name: lowerCamelCase__ : str = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: lowerCamelCase__ : int = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: lowerCamelCase__ : Optional[int] = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: lowerCamelCase__ : int = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowerCamelCase__ : Optional[Any] = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowerCamelCase__ : int = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowerCamelCase__ : Optional[Any] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowerCamelCase__ : Tuple = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowerCamelCase__ : Union[str, Any] = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": lowerCamelCase__ : Union[str, Any] = '''layernorm.weight''' if name == "encoder.norm.bias": lowerCamelCase__ : List[Any] = '''layernorm.bias''' if "decoder" in name: pass else: lowerCamelCase__ : List[str] = '''swin.''' + name return name def _a ( UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCamelCase__ : Optional[Any] = orig_state_dict.pop(UpperCAmelCase ) if "attn_mask" in key: pass elif "qkv" in key: lowerCamelCase__ : str = key.split('''.''' ) lowerCamelCase__ : Tuple = int(key_split[2] ) lowerCamelCase__ : Any = int(key_split[4] ) lowerCamelCase__ : int = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCamelCase__ : Optional[Any] = val[:dim, :] lowerCamelCase__ : Union[str, Any] = val[ dim : dim * 2, : ] lowerCamelCase__ : List[str] = val[-dim:, :] else: lowerCamelCase__ : Tuple = val[ :dim ] lowerCamelCase__ : List[Any] = val[ dim : dim * 2 ] lowerCamelCase__ : Tuple = val[ -dim: ] else: lowerCamelCase__ : Any = val return orig_state_dict def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: """simple docstring""" lowerCamelCase__ : int = torch.load(UpperCAmelCase , map_location='''cpu''' )['''model'''] lowerCamelCase__ : Dict = get_swin_config(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = SwinForMaskedImageModeling(UpperCAmelCase ) model.eval() lowerCamelCase__ : Optional[int] = convert_state_dict(UpperCAmelCase , UpperCAmelCase ) model.load_state_dict(UpperCAmelCase ) lowerCamelCase__ : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase__ : Any = ViTImageProcessor(size={'''height''': 192, '''width''': 192} ) lowerCamelCase__ : str = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) lowerCamelCase__ : Any = image_processor(images=UpperCAmelCase , return_tensors='''pt''' ) with torch.no_grad(): lowerCamelCase__ : List[Any] = model(**UpperCAmelCase ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(UpperCAmelCase ) if push_to_hub: print(f"Pushing model and image processor for {model_name} to hub" ) model.push_to_hub(f"microsoft/{model_name}" ) image_processor.push_to_hub(f"microsoft/{model_name}" ) if __name__ == "__main__": _A : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='swin-base-simmim-window6-192', type=str, choices=['swin-base-simmim-window6-192', 'swin-large-simmim-window12-192'], help='Name of the Swin SimMIM model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth', type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _A : List[str] = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
315
1
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated lowercase : List[Any] = collections.namedtuple("_Datasets", ["train", "validation", "test"]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ lowercase : Any = "https://storage.googleapis.com/cvdf-datasets/mnist/" def snake_case__ ( lowerCamelCase_ ): A : int = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=lowerCamelCase_ )[0] @deprecated(lowerCamelCase_ , '''Please use tf.data to implement this functionality.''' ) def snake_case__ ( lowerCamelCase_ ): print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=lowerCamelCase_ ) as bytestream: A : int = _readaa(lowerCamelCase_ ) if magic != 2051: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) A : Tuple = _readaa(lowerCamelCase_ ) A : Union[str, Any] = _readaa(lowerCamelCase_ ) A : Tuple = _readaa(lowerCamelCase_ ) A : Tuple = bytestream.read(rows * cols * num_images ) A : List[str] = numpy.frombuffer(lowerCamelCase_ , dtype=numpy.uinta ) A : Dict = data.reshape(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , 1 ) return data @deprecated(lowerCamelCase_ , '''Please use tf.one_hot on tensors.''' ) def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ ): A : List[str] = labels_dense.shape[0] A : List[Any] = numpy.arange(lowerCamelCase_ ) * num_classes A : Any = numpy.zeros((num_labels, num_classes) ) A : Optional[Any] = 1 return labels_one_hot @deprecated(lowerCamelCase_ , '''Please use tf.data to implement this functionality.''' ) def snake_case__ ( lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=10 ): print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=lowerCamelCase_ ) as bytestream: A : Optional[int] = _readaa(lowerCamelCase_ ) if magic != 2049: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) A : List[str] = _readaa(lowerCamelCase_ ) A : Optional[Any] = bytestream.read(lowerCamelCase_ ) A : List[str] = numpy.frombuffer(lowerCamelCase_ , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(lowerCamelCase_ , lowerCamelCase_ ) return labels class __lowercase : """simple docstring""" @deprecated( __UpperCAmelCase , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=dtypes.floataa , __UpperCAmelCase=True , __UpperCAmelCase=None , ) -> Optional[Any]: A , A : Any = random_seed.get_seed(__UpperCAmelCase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) A : Optional[int] = dtypes.as_dtype(__UpperCAmelCase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: A : int = 1_00_00 A : Union[str, Any] = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'images.shape: {images.shape} labels.shape: {labels.shape}' A : int = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 A : Dict = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. A : Dict = images.astype(numpy.floataa ) A : Optional[Any] = numpy.multiply(__UpperCAmelCase , 1.0 / 2_5_5.0 ) A : Optional[Any] = images A : int = labels A : Tuple = 0 A : int = 0 @property def snake_case ( self ) -> Optional[Any]: return self._images @property def snake_case ( self ) -> List[str]: return self._labels @property def snake_case ( self ) -> Tuple: return self._num_examples @property def snake_case ( self ) -> List[str]: return self._epochs_completed def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True ) -> Optional[int]: if fake_data: A : int = [1] * 7_84 A : List[Any] = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(__UpperCAmelCase )], [fake_label for _ in range(__UpperCAmelCase )], ) A : Optional[int] = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: A : Any = numpy.arange(self._num_examples ) numpy.random.shuffle(__UpperCAmelCase ) A : Dict = self.images[perma] A : Tuple = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch A : Union[str, Any] = self._num_examples - start A : str = self._images[start : self._num_examples] A : Union[str, Any] = self._labels[start : self._num_examples] # Shuffle the data if shuffle: A : Dict = numpy.arange(self._num_examples ) numpy.random.shuffle(__UpperCAmelCase ) A : str = self.images[perm] A : Dict = self.labels[perm] # Start next epoch A : Dict = 0 A : List[Any] = batch_size - rest_num_examples A : int = self._index_in_epoch A : Dict = self._images[start:end] A : Optional[Any] = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size A : Union[str, Any] = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(lowerCamelCase_ , '''Please write your own downloading logic.''' ) def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): if not gfile.Exists(lowerCamelCase_ ): gfile.MakeDirs(lowerCamelCase_ ) A : List[str] = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) if not gfile.Exists(lowerCamelCase_ ): urllib.request.urlretrieve(lowerCamelCase_ , lowerCamelCase_ ) # noqa: S310 with gfile.GFile(lowerCamelCase_ ) as f: A : int = f.size() print('''Successfully downloaded''' , lowerCamelCase_ , lowerCamelCase_ , '''bytes.''' ) return filepath @deprecated( lowerCamelCase_ , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def snake_case__ ( lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=False , lowerCamelCase_=dtypes.floataa , lowerCamelCase_=True , lowerCamelCase_=5000 , lowerCamelCase_=None , lowerCamelCase_=DEFAULT_SOURCE_URL , ): if fake_data: def fake(): return _DataSet( [] , [] , fake_data=lowerCamelCase_ , one_hot=lowerCamelCase_ , dtype=lowerCamelCase_ , seed=lowerCamelCase_ ) A : List[str] = fake() A : int = fake() A : Optional[int] = fake() return _Datasets(train=lowerCamelCase_ , validation=lowerCamelCase_ , test=lowerCamelCase_ ) if not source_url: # empty string check A : str = DEFAULT_SOURCE_URL A : List[Any] = '''train-images-idx3-ubyte.gz''' A : Dict = '''train-labels-idx1-ubyte.gz''' A : List[Any] = '''t10k-images-idx3-ubyte.gz''' A : Optional[Any] = '''t10k-labels-idx1-ubyte.gz''' A : Tuple = _maybe_download( lowerCamelCase_ , lowerCamelCase_ , source_url + train_images_file ) with gfile.Open(lowerCamelCase_ , '''rb''' ) as f: A : Tuple = _extract_images(lowerCamelCase_ ) A : List[str] = _maybe_download( lowerCamelCase_ , lowerCamelCase_ , source_url + train_labels_file ) with gfile.Open(lowerCamelCase_ , '''rb''' ) as f: A : Tuple = _extract_labels(lowerCamelCase_ , one_hot=lowerCamelCase_ ) A : Any = _maybe_download( lowerCamelCase_ , lowerCamelCase_ , source_url + test_images_file ) with gfile.Open(lowerCamelCase_ , '''rb''' ) as f: A : Union[str, Any] = _extract_images(lowerCamelCase_ ) A : List[Any] = _maybe_download( lowerCamelCase_ , lowerCamelCase_ , source_url + test_labels_file ) with gfile.Open(lowerCamelCase_ , '''rb''' ) as f: A : str = _extract_labels(lowerCamelCase_ , one_hot=lowerCamelCase_ ) if not 0 <= validation_size <= len(lowerCamelCase_ ): A : Union[str, Any] = ( '''Validation size should be between 0 and ''' F'{len(lowerCamelCase_ )}. Received: {validation_size}.' ) raise ValueError(lowerCamelCase_ ) A : Tuple = train_images[:validation_size] A : str = train_labels[:validation_size] A : int = train_images[validation_size:] A : Optional[Any] = train_labels[validation_size:] A : List[Any] = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} A : Optional[int] = _DataSet(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) A : Any = _DataSet(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) A : Union[str, Any] = _DataSet(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) return _Datasets(train=lowerCamelCase_ , validation=lowerCamelCase_ , test=lowerCamelCase_ )
423
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase : List[str] = logging.get_logger(__name__) lowercase : Optional[int] = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowercase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ : Dict = '''segformer''' def __init__( self , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=[2, 2, 2, 2] , __UpperCAmelCase=[8, 4, 2, 1] , __UpperCAmelCase=[32, 64, 1_60, 2_56] , __UpperCAmelCase=[7, 3, 3, 3] , __UpperCAmelCase=[4, 2, 2, 2] , __UpperCAmelCase=[1, 2, 5, 8] , __UpperCAmelCase=[4, 4, 4, 4] , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1E-6 , __UpperCAmelCase=2_56 , __UpperCAmelCase=2_55 , **__UpperCAmelCase , ) -> Union[str, Any]: super().__init__(**__UpperCAmelCase ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( '''Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be''' ''' removed, as the behaviour will default to that of reshape_last_stage = True.''' , __UpperCAmelCase , ) A : Optional[int] = num_channels A : int = num_encoder_blocks A : Optional[Any] = depths A : List[str] = sr_ratios A : List[Any] = hidden_sizes A : Optional[Any] = patch_sizes A : Any = strides A : Dict = mlp_ratios A : Optional[Any] = num_attention_heads A : int = hidden_act A : Optional[int] = hidden_dropout_prob A : Any = attention_probs_dropout_prob A : Optional[int] = classifier_dropout_prob A : List[Any] = initializer_range A : int = drop_path_rate A : Union[str, Any] = layer_norm_eps A : Union[str, Any] = decoder_hidden_size A : int = kwargs.get('''reshape_last_stage''' , __UpperCAmelCase ) A : str = semantic_loss_ignore_index class __lowercase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ : List[Any] = version.parse('''1.11''' ) @property def snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def snake_case ( self ) -> float: return 1E-4 @property def snake_case ( self ) -> int: return 12
423
1
"""simple docstring""" import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor _UpperCamelCase = logging.getLogger(__name__) _UpperCamelCase = 50 # max width of layer names _UpperCamelCase = 70 # max width of quantizer names def _A( lowerCAmelCase ): A__ : Union[str, Any] = parser.add_argument_group("""quant_trainer arguments""" ) group.add_argument("""--wprec""" , type=lowerCAmelCase , default=8 , help="""weight precision""" ) group.add_argument("""--aprec""" , type=lowerCAmelCase , default=8 , help="""activation precision""" ) group.add_argument("""--quant-per-tensor""" , action="""store_true""" , help="""per tensor weight scaling""" ) group.add_argument("""--quant-disable""" , action="""store_true""" , help="""disable all quantizers""" ) group.add_argument("""--quant-disable-embeddings""" , action="""store_true""" , help="""disable all embeddings quantizers""" ) group.add_argument("""--quant-disable-keyword""" , type=lowerCAmelCase , nargs="""+""" , help="""disable quantizers by keyword""" ) group.add_argument("""--quant-disable-layer-module""" , type=lowerCAmelCase , help="""disable quantizers by keyword under layer.""" ) group.add_argument("""--quant-enable-layer-module""" , type=lowerCAmelCase , help="""enable quantizers by keyword under layer""" ) group.add_argument("""--calibrator""" , default="""max""" , help="""which quantization range calibrator to use""" ) group.add_argument("""--percentile""" , default=lowerCAmelCase , type=lowerCAmelCase , help="""percentile for PercentileCalibrator""" ) group.add_argument("""--fuse-qkv""" , action="""store_true""" , help="""use the same scale factor for qkv""" ) group.add_argument("""--clip-gelu""" , metavar="""N""" , type=lowerCAmelCase , help="""clip gelu output maximum value to N""" ) group.add_argument( """--recalibrate-weights""" , action="""store_true""" , help=( """recalibrate weight amaxes by taking the max of the weights.""" """ amaxes will be computed with the current quantization granularity (axis).""" ) , ) def _A( lowerCAmelCase ): if args.calibrator == "max": A__ : Optional[Any] = """max""" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError("""Specify --percentile when using percentile calibrator""" ) A__ : Optional[Any] = """histogram""" elif args.calibrator == "mse": A__ : int = """histogram""" else: raise ValueError(F'''Invalid calibrator {args.calibrator}''' ) A__ : Dict = QuantDescriptor(num_bits=args.aprec , calib_method=lowerCAmelCase ) A__ : Optional[Any] = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(lowerCAmelCase ) quant_nn.QuantLinear.set_default_quant_desc_weight(lowerCAmelCase ) def _A( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False , lowerCAmelCase=False ): logger.info("""Configuring Model for Quantization""" ) logger.info(F'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(lowerCAmelCase , ["""embeddings"""] , which="""weight""" , _disabled=lowerCAmelCase ) if args.quant_disable: set_quantizer_by_name(lowerCAmelCase , [""""""] , _disabled=lowerCAmelCase ) if args.quant_disable_keyword: set_quantizer_by_name(lowerCAmelCase , args.quant_disable_keyword , _disabled=lowerCAmelCase ) if args.quant_disable_layer_module: set_quantizer_by_name(lowerCAmelCase , [r"""layer.\d+.""" + args.quant_disable_layer_module] , _disabled=lowerCAmelCase ) if args.quant_enable_layer_module: set_quantizer_by_name(lowerCAmelCase , [r"""layer.\d+.""" + args.quant_enable_layer_module] , _disabled=lowerCAmelCase ) if args.recalibrate_weights: recalibrate_weights(lowerCAmelCase ) if args.fuse_qkv: fuse_qkv(lowerCAmelCase , lowerCAmelCase ) if args.clip_gelu: clip_gelu(lowerCAmelCase , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(lowerCAmelCase ) def _A( lowerCAmelCase ): logger.info("""Enabling Calibration""" ) for name, module in model.named_modules(): if name.endswith("""_quantizer""" ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F'''{name:80}: {module}''' ) def _A( lowerCAmelCase , lowerCAmelCase ): logger.info("""Loading calibrated amax""" ) for name, module in model.named_modules(): if name.endswith("""_quantizer""" ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax("""percentile""" , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(lowerCAmelCase ) def _A( lowerCAmelCase , lowerCAmelCase ): def fusea(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): for mod in [qq, qk, qv]: if not hasattr(lowerCAmelCase , """_amax""" ): print(""" WARNING: NO AMAX BUFFER""" ) return A__ : str = qq._amax.detach().item() A__ : List[str] = qk._amax.detach().item() A__ : str = qv._amax.detach().item() A__ : int = max(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) qq._amax.fill_(lowerCAmelCase ) qk._amax.fill_(lowerCAmelCase ) qv._amax.fill_(lowerCAmelCase ) logger.info(F''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith(""".attention.self""" ): logger.info(F'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _A( lowerCAmelCase , lowerCAmelCase ): for name, mod in model.named_modules(): if name.endswith(""".output.dense""" ) and not name.endswith("""attention.output.dense""" ): A__ : Tuple = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=lowerCAmelCase ) A__ : List[Any] = mod._input_quantizer._amax.data.detach().item() logger.info(F'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def _A( lowerCAmelCase ): for name, mod in model.named_modules(): if hasattr(lowerCAmelCase , """_weight_quantizer""" ) and mod._weight_quantizer.axis is not None: A__ : int = mod.weight.shape[0] A__ : Optional[Any] = mod._weight_quantizer._amax.detach() A__ : Any = torch.ones(lowerCAmelCase , dtype=amax.dtype , device=amax.device ) * amax print(F'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def _A( lowerCAmelCase ): for name, mod in model.named_modules(): if hasattr(lowerCAmelCase , """_weight_quantizer""" ): if not hasattr(mod.weight_quantizer , """_amax""" ): print("""RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER""" ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) A__ : List[Any] = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) A__ : Union[str, Any] = set(range(len(mod.weight.size() ) ) ) - axis_set A__ : str = pytorch_quantization.utils.reduce_amax(mod.weight , axis=lowerCAmelCase , keepdims=lowerCAmelCase ).detach() logger.info(F'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) A__ : Tuple = amax def _A( lowerCAmelCase , lowerCAmelCase=25 , lowerCAmelCase=180 , lowerCAmelCase=None ): if ignore is None: A__ : Optional[int] = [] elif not isinstance(lowerCAmelCase , lowerCAmelCase ): A__ : List[Any] = [ignore] A__ : List[Any] = 0 for name, mod in model.named_modules(): if not hasattr(lowerCAmelCase , """weight""" ): continue A__ : List[str] = max(lowerCAmelCase , len(lowerCAmelCase ) ) for name, mod in model.named_modules(): A__ : List[str] = getattr(lowerCAmelCase , """_input_quantizer""" , lowerCAmelCase ) A__ : Union[str, Any] = getattr(lowerCAmelCase , """_weight_quantizer""" , lowerCAmelCase ) if not hasattr(lowerCAmelCase , """weight""" ): continue if type(lowerCAmelCase ) in ignore: continue if [True for s in ignore if type(lowerCAmelCase ) is str and s in name]: continue A__ : int = F'''Act:{input_q.extra_repr()}''' A__ : Union[str, Any] = F'''Wgt:{weight_q.extra_repr()}''' A__ : List[str] = F'''{name:{name_width}} {act_str} {wgt_str}''' if len(lowerCAmelCase ) <= line_width: logger.info(lowerCAmelCase ) else: logger.info(F'''{name:{name_width}} {act_str}''' ) logger.info(F'''{" ":{name_width}} {wgt_str}''' ) def _A( lowerCAmelCase ): A__ : List[str] = 0 for name, mod in model.named_modules(): if isinstance(lowerCAmelCase , pytorch_quantization.nn.TensorQuantizer ): print(F'''{name:80} {mod}''' ) count += 1 print(F'''{count} TensorQuantizers found in model''' ) def _A( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): A__ : Tuple = getattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) if quantizer_mod is not None: assert hasattr(lowerCAmelCase , lowerCAmelCase ) setattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else: logger.warning(F'''{name} has no {quantizer}''' ) def _A( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase="both" , **lowerCAmelCase ): A__ : Union[str, Any] = F'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' if which in ["input", "both"]: set_quantizer(lowerCAmelCase , lowerCAmelCase , """_input_quantizer""" , lowerCAmelCase , lowerCAmelCase ) if which in ["weight", "both"]: set_quantizer(lowerCAmelCase , lowerCAmelCase , """_weight_quantizer""" , lowerCAmelCase , lowerCAmelCase ) logger.info(lowerCAmelCase ) def _A( lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ): for name, mod in model.named_modules(): if hasattr(lowerCAmelCase , """_input_quantizer""" ) or hasattr(lowerCAmelCase , """_weight_quantizer""" ): for n in names: if re.search(lowerCAmelCase , lowerCAmelCase ): set_quantizers(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) elif name.endswith("""_quantizer""" ): for n in names: if re.search(lowerCAmelCase , lowerCAmelCase ): A__ : Dict = F'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' setattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) logger.info(lowerCAmelCase )
363
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { "asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json", # See all SEW models at https://huggingface.co/models?filter=sew } class __UpperCAmelCase (__A ): '''simple docstring''' _UpperCamelCase : Dict = 'sew' def __init__( self , snake_case_=32 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3_072 , snake_case_=2 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_="group" , snake_case_="gelu" , snake_case_=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , snake_case_=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , snake_case_=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , snake_case_=False , snake_case_=128 , snake_case_=16 , snake_case_=True , snake_case_=0.05 , snake_case_=10 , snake_case_=2 , snake_case_=0.0 , snake_case_=10 , snake_case_=0 , snake_case_="mean" , snake_case_=False , snake_case_=False , snake_case_=256 , snake_case_=0 , snake_case_=1 , snake_case_=2 , **snake_case_ , ): '''simple docstring''' super().__init__(**snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ ) A__ : Dict = hidden_size A__ : Dict = feat_extract_norm A__ : str = feat_extract_activation A__ : Optional[Any] = list(snake_case_ ) A__ : str = list(snake_case_ ) A__ : Any = list(snake_case_ ) A__ : Any = conv_bias A__ : Any = num_conv_pos_embeddings A__ : Any = num_conv_pos_embedding_groups A__ : str = len(self.conv_dim ) A__ : Tuple = num_hidden_layers A__ : int = intermediate_size A__ : Union[str, Any] = squeeze_factor A__ : Union[str, Any] = hidden_act A__ : List[str] = num_attention_heads A__ : List[str] = hidden_dropout A__ : Dict = attention_dropout A__ : Tuple = activation_dropout A__ : Optional[int] = feat_proj_dropout A__ : Optional[Any] = final_dropout A__ : int = layerdrop A__ : List[Any] = layer_norm_eps A__ : int = initializer_range A__ : Dict = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A__ : Optional[Any] = apply_spec_augment A__ : int = mask_time_prob A__ : Tuple = mask_time_length A__ : Optional[Any] = mask_time_min_masks A__ : Any = mask_feature_prob A__ : List[Any] = mask_feature_length A__ : Any = mask_feature_min_masks # ctc loss A__ : str = ctc_loss_reduction A__ : List[Any] = ctc_zero_infinity # sequence classification A__ : Union[str, Any] = use_weighted_layer_sum A__ : str = classifier_proj_size @property def lowerCamelCase ( self ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
363
1
"""simple docstring""" from manim import * class _lowerCAmelCase ( __snake_case ): def _lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" lowercase = Rectangle(height=0.5 , width=0.5 ) lowercase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowercase = [mem.copy() for i in range(6 )] lowercase = [mem.copy() for i in range(6 )] lowercase = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) lowercase = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) lowercase = VGroup(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) lowercase = Text('''CPU''' , font_size=24 ) lowercase = Group(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0.5 , aligned_edge=UpperCAmelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCAmelCase__ ) lowercase = [mem.copy() for i in range(1 )] lowercase = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) lowercase = Text('''GPU''' , font_size=24 ) lowercase = Group(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0.5 , aligned_edge=UpperCAmelCase__ ) gpu.align_to(UpperCAmelCase__ , UpperCAmelCase__ ) gpu.set_x(gpu.get_x() - 1 ) self.add(UpperCAmelCase__ ) lowercase = [mem.copy() for i in range(6 )] lowercase = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) lowercase = Text('''Model''' , font_size=24 ) lowercase = Group(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0.5 , aligned_edge=UpperCAmelCase__ ) model.move_to([3, -1.0, 0] ) self.play( Create(UpperCAmelCase__ , run_time=1 ) , Create(UpperCAmelCase__ , run_time=1 ) , Create(UpperCAmelCase__ , run_time=1 ) , ) lowercase = MarkupText( f"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=24 , ) lowercase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowercase = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase__ , run_time=2.5 ) , Write(UpperCAmelCase__ ) , Write(UpperCAmelCase__ ) ) self.add(UpperCAmelCase__ ) lowercase = [] lowercase = [] lowercase = [] for i, rect in enumerate(UpperCAmelCase__ ): lowercase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase__ , opacity=0.7 ) cpu_target.move_to(UpperCAmelCase__ ) cpu_target.generate_target() lowercase = 0.46 / 4 lowercase = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=UpperCAmelCase__ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=UpperCAmelCase__ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=UpperCAmelCase__ , buff=0.0 ) cpu_targs.append(UpperCAmelCase__ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(UpperCAmelCase__ ) ) second_animations.append(MoveToTarget(UpperCAmelCase__ , run_time=1.5 ) ) self.play(*UpperCAmelCase__ ) self.play(*UpperCAmelCase__ ) self.wait()
721
"""simple docstring""" def A_ ( __UpperCamelCase : int = 1 , __UpperCamelCase : int = 10_00 ): lowercase = 1 lowercase = 0 for divide_by_number in range(__UpperCamelCase , digit + 1 ): lowercase = [] lowercase = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(__UpperCamelCase ): lowercase = len(__UpperCamelCase ) lowercase = divide_by_number else: has_been_divided.append(__UpperCamelCase ) lowercase = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
396
0
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": lowerCAmelCase : Tuple = pd.read_csv('sample_data.csv', header=None) lowerCAmelCase : Dict = df.shape[:1][0] # If you're using some other dataset input the target column lowerCAmelCase : int = df.iloc[:, 1:2] lowerCAmelCase : List[str] = actual_data.values.reshape(len_data, 1) lowerCAmelCase : int = MinMaxScaler().fit_transform(actual_data) lowerCAmelCase : Tuple = 10 lowerCAmelCase : str = 5 lowerCAmelCase : str = 20 lowerCAmelCase : Optional[Any] = len_data - periods * look_back lowerCAmelCase : Optional[int] = actual_data[:division] lowerCAmelCase : Dict = actual_data[division - look_back :] lowerCAmelCase , lowerCAmelCase : Optional[Any] = [], [] lowerCAmelCase , lowerCAmelCase : Tuple = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) lowerCAmelCase : List[str] = np.array(train_x) lowerCAmelCase : Optional[int] = np.array(test_x) lowerCAmelCase : Any = np.array([list(i.ravel()) for i in train_y]) lowerCAmelCase : int = np.array([list(i.ravel()) for i in test_y]) lowerCAmelCase : Tuple = Sequential() model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(1_28, 1))) model.add(Dense(forward_days)) model.compile(loss='mean_squared_error', optimizer='adam') lowerCAmelCase : Optional[int] = model.fit( x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4 ) lowerCAmelCase : List[str] = model.predict(x_test)
3
"""simple docstring""" import os from pathlib import Path def snake_case ( ) -> Tuple: from torch.utils.cpp_extension import load _snake_case = Path(lowerCAmelCase_ ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' _snake_case = [ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , lowerCAmelCase_ , with_cuda=lowerCAmelCase_ , extra_include_paths=[str(lowerCAmelCase_ )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
103
0
"""simple docstring""" import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): _lowerCAmelCase = { """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: _lowerCAmelCase = { """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = (images / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase : Union[str, Any] = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _lowerCAmelCase : Optional[int] = numpy_to_pil(__a ) return images def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if images.ndim == 3: _lowerCAmelCase : List[str] = images[None, ...] _lowerCAmelCase : List[Any] = (images * 255).round().astype('uint8' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images _lowerCAmelCase : Any = [Image.fromarray(image.squeeze() , mode='L' ) for image in images] else: _lowerCAmelCase : Optional[int] = [Image.fromarray(__a ) for image in images] return pil_images
719
"""simple docstring""" from collections.abc import Callable class __UpperCamelCase : def __init__( self ,_A = None ): '''simple docstring''' _lowerCAmelCase : list = [] # Stores indexes of each item for supporting updates and deletion. _lowerCAmelCase : dict = {} # Stores current size of heap. _lowerCAmelCase : Union[str, Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. _lowerCAmelCase : Union[str, Any] = key or (lambda _A : x) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return int((i - 1) / 2 ) if i > 0 else None def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = int(2 * i + 1 ) return left if 0 < left < self.size else None def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = int(2 * i + 2 ) return right if 0 < right < self.size else None def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Tuple = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. _lowerCAmelCase, _lowerCAmelCase : Tuple = self.arr[j], self.arr[i] def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self._left(_A ) _lowerCAmelCase : str = self._right(_A ) _lowerCAmelCase : Tuple = i if left is not None and not self._cmp(_A ,_A ): _lowerCAmelCase : int = left if right is not None and not self._cmp(_A ,_A ): _lowerCAmelCase : Optional[int] = right return valid_parent def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Any = self._parent(_A ) while parent is not None and not self._cmp(_A ,_A ): self._swap(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : List[str] = parent, self._parent(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self._get_valid_parent(_A ) while valid_parent != index: self._swap(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : Optional[int] = valid_parent, self._get_valid_parent(_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' if item not in self.pos_map: return _lowerCAmelCase : int = self.pos_map[item] _lowerCAmelCase : Dict = [item, self.key(_A )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(_A ) self._heapify_down(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if item not in self.pos_map: return _lowerCAmelCase : List[str] = self.pos_map[item] del self.pos_map[item] _lowerCAmelCase : Dict = self.arr[self.size - 1] _lowerCAmelCase : Optional[Any] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(_A ) self._heapify_down(_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(_A )] ) else: _lowerCAmelCase : Any = [item, self.key(_A )] _lowerCAmelCase : str = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __lowerCamelCase ( self ): '''simple docstring''' return self.arr[0] if self.size else None def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def lowerCamelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
16
0
"""simple docstring""" from __future__ import annotations import requests def A_ ( snake_case__ ) -> dict: _UpperCamelCase :Any = f"https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty" return requests.get(lowercase_ ).json() def A_ ( snake_case__ = 10 ) -> list[dict]: _UpperCamelCase :str = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' _UpperCamelCase :Tuple = requests.get(lowercase_ ).json()[:max_stories] return [get_hackernews_story(lowercase_ ) for story_id in story_ids] def A_ ( snake_case__ = 10 ) -> str: _UpperCamelCase :Union[str, Any] = hackernews_top_stories(lowercase_ ) return "\n".join('''* [{title}]({url})'''.format(**lowercase_ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
355
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _lowerCamelCase : Optional[Any] = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def SCREAMING_SNAKE_CASE ( ) -> Dict: """simple docstring""" A__ = _ask_options( '''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: A__ = get_sagemaker_input() else: A__ = get_cluster_input() return config def SCREAMING_SNAKE_CASE ( lowercase_=None ) -> List[Any]: """simple docstring""" if subparsers is not None: A__ = subparsers.add_parser('''config''' , description=lowercase_ ) else: A__ = argparse.ArgumentParser('''Accelerate config command''' , description=lowercase_ ) parser.add_argument( '''--config_file''' , default=lowercase_ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=lowercase_ ) return parser def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: """simple docstring""" A__ = get_user_input() if args.config_file is not None: A__ = args.config_file else: if not os.path.isdir(lowercase_ ): os.makedirs(lowercase_ ) A__ = default_yaml_config_file if config_file.endswith('''.json''' ): config.to_json_file(lowercase_ ) else: config.to_yaml_file(lowercase_ ) print(f"""accelerate configuration saved at {config_file}""" ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" A__ = config_command_parser() A__ = parser.parse_args() config_command(lowercase_ ) if __name__ == "__main__": main()
87
0
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , __A ): __a = parent def snake_case_ ( self ): return {} def a (): __a = """<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR=\"FFFFFF\"> <HR> <a href=\"http://google.com\">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style=\"color:#0000FF\"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>""" __a = """ <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> """ return [html_string_a, html_string_a] @require_bsa class __UpperCAmelCase ( __A , unittest.TestCase ): """simple docstring""" _lowerCamelCase = MarkupLMFeatureExtractor if is_bsa_available() else None def snake_case_ ( self ): __a = MarkupLMFeatureExtractionTester(self ) @property def snake_case_ ( self ): return self.feature_extract_tester.prepare_feat_extract_dict() def snake_case_ ( self ): # Initialize feature_extractor __a = self.feature_extraction_class() # Test not batched input __a = get_html_strings()[0] __a = feature_extractor(__A ) # fmt: off __a = [["""sample document""", """Goog""", """This is one header""", """This is a another Header""", """Travel from""", """SFO to JFK""", """on May 2, 2015 at 2:00 pm. For details go to confirm.com""", """Traveler""", """name""", """is""", """John Doe"""]] __a = [["""/html/head/title""", """/html/body/a""", """/html/body/h1""", """/html/body/h2""", """/html/body/p""", """/html/body/p/p/b[1]""", """/html/body/p/p/b[2]/i""", """/html/body/p/p/div/h3""", """/html/body/p/p/div/h3/b""", """/html/body/p/p/div/h3""", """/html/body/p/p/div/h3/p"""]] # fmt: on self.assertEqual(encoding.nodes , __A ) self.assertEqual(encoding.xpaths , __A ) # Test batched __a = get_html_strings() __a = feature_extractor(__A ) # fmt: off __a = expected_nodes + [["""My First Heading""", """My first paragraph."""]] __a = expected_xpaths + [["""/html/body/h1""", """/html/body/p"""]] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , __A ) self.assertEqual(encoding.xpaths , __A )
713
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def a (lowerCAmelCase__ ): __a = botoa.client("""iam""" ) __a = { """Version""": """2012-10-17""", """Statement""": [ {"""Effect""": """Allow""", """Principal""": {"""Service""": """sagemaker.amazonaws.com"""}, """Action""": """sts:AssumeRole"""} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=lowerCAmelCase__ , AssumeRolePolicyDocument=json.dumps(lowerCAmelCase__ , indent=2 ) ) __a = { """Version""": """2012-10-17""", """Statement""": [ { """Effect""": """Allow""", """Action""": [ """sagemaker:*""", """ecr:GetDownloadUrlForLayer""", """ecr:BatchGetImage""", """ecr:BatchCheckLayerAvailability""", """ecr:GetAuthorizationToken""", """cloudwatch:PutMetricData""", """cloudwatch:GetMetricData""", """cloudwatch:GetMetricStatistics""", """cloudwatch:ListMetrics""", """logs:CreateLogGroup""", """logs:CreateLogStream""", """logs:DescribeLogStreams""", """logs:PutLogEvents""", """logs:GetLogEvents""", """s3:CreateBucket""", """s3:ListBucket""", """s3:GetBucketLocation""", """s3:GetObject""", """s3:PutObject""", ], """Resource""": """*""", } ], } # attach policy to role iam_client.put_role_policy( RoleName=lowerCAmelCase__ , PolicyName=f'''{role_name}_policy_permission''' , PolicyDocument=json.dumps(lowerCAmelCase__ , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(f'''role {role_name} already exists. Using existing one''' ) def a (lowerCAmelCase__ ): __a = botoa.client("""iam""" ) return iam_client.get_role(RoleName=lowerCAmelCase__ )["Role"]["Arn"] def a (): __a = _ask_options( """How do you want to authorize?""" , ["""AWS Profile""", """Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) """] , lowerCAmelCase__ , ) __a = None if credentials_configuration == 0: __a = _ask_field("""Enter your AWS Profile name: [default] """ , default="""default""" ) __a = aws_profile else: print( """Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,""" """`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`""" ) __a = _ask_field("""AWS Access Key ID: """ ) __a = aws_access_key_id __a = _ask_field("""AWS Secret Access Key: """ ) __a = aws_secret_access_key __a = _ask_field("""Enter your AWS Region: [us-east-1]""" , default="""us-east-1""" ) __a = aws_region __a = _ask_options( """Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?""" , ["""Provide IAM Role name""", """Create new IAM role using credentials"""] , lowerCAmelCase__ , ) if role_management == 0: __a = _ask_field("""Enter your IAM role name: """ ) else: __a = """accelerate_sagemaker_execution_role""" print(f'''Accelerate will create an iam role "{iam_role_name}" using the provided credentials''' ) _create_iam_role_for_sagemaker(lowerCAmelCase__ ) __a = _ask_field( """Do you want to use custom Docker image? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowerCAmelCase__ , error_message="""Please enter yes or no.""" , ) __a = None if is_custom_docker_image: __a = _ask_field("""Enter your Docker image: """ , lambda lowerCAmelCase__ : str(lowerCAmelCase__ ).lower() ) __a = _ask_field( """Do you want to provide SageMaker input channels with data locations? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowerCAmelCase__ , error_message="""Please enter yes or no.""" , ) __a = None if is_sagemaker_inputs_enabled: __a = _ask_field( """Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): """ , lambda lowerCAmelCase__ : str(lowerCAmelCase__ ).lower() , ) __a = _ask_field( """Do you want to enable SageMaker metrics? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowerCAmelCase__ , error_message="""Please enter yes or no.""" , ) __a = None if is_sagemaker_metrics_enabled: __a = _ask_field( """Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): """ , lambda lowerCAmelCase__ : str(lowerCAmelCase__ ).lower() , ) __a = _ask_options( """What is the distributed mode?""" , ["""No distributed training""", """Data parallelism"""] , _convert_sagemaker_distributed_mode , ) __a = {} __a = _ask_field( """Do you wish to optimize your script with torch dynamo?[yes/NO]:""" , _convert_yes_no_to_bool , default=lowerCAmelCase__ , error_message="""Please enter yes or no.""" , ) if use_dynamo: __a = """dynamo_""" __a = _ask_options( """Which dynamo backend would you like to use?""" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) __a = _ask_field( """Do you want to customize the defaults sent to torch.compile? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowerCAmelCase__ , error_message="""Please enter yes or no.""" , ) if use_custom_options: __a = _ask_options( """Which mode do you want to use?""" , lowerCAmelCase__ , lambda lowerCAmelCase__ : TORCH_DYNAMO_MODES[int(lowerCAmelCase__ )] , default="""default""" , ) __a = _ask_field( """Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowerCAmelCase__ , error_message="""Please enter yes or no.""" , ) __a = _ask_field( """Do you want to enable dynamic shape tracing? [yes/NO]: """ , _convert_yes_no_to_bool , default=lowerCAmelCase__ , error_message="""Please enter yes or no.""" , ) __a = """Which EC2 instance type you want to use for your training?""" if distributed_type != SageMakerDistributedType.NO: __a = _ask_options( lowerCAmelCase__ , lowerCAmelCase__ , lambda lowerCAmelCase__ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(lowerCAmelCase__ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" __a = _ask_field(lowerCAmelCase__ , lambda lowerCAmelCase__ : str(lowerCAmelCase__ ).lower() , default="""ml.p3.2xlarge""" ) __a = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): __a = _ask_field( """How many machines do you want use? [1]: """ , lowerCAmelCase__ , default=1 , ) __a = _ask_options( """Do you wish to use FP16 or BF16 (mixed precision)?""" , ["""no""", """fp16""", """bf16""", """fp8"""] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( """Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.""" ) return SageMakerConfig( image_uri=lowerCAmelCase__ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=lowerCAmelCase__ , use_cpu=lowerCAmelCase__ , dynamo_config=lowerCAmelCase__ , eca_instance_type=lowerCAmelCase__ , profile=lowerCAmelCase__ , region=lowerCAmelCase__ , iam_role_name=lowerCAmelCase__ , mixed_precision=lowerCAmelCase__ , num_machines=lowerCAmelCase__ , sagemaker_inputs_file=lowerCAmelCase__ , sagemaker_metrics_file=lowerCAmelCase__ , )
209
0
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } __A = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> Dict: """simple docstring""" for attribute in key.split("." ): lowerCamelCase__: Dict =getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: lowerCamelCase__: str =getattr(__lowerCamelCase , __lowerCamelCase ).shape else: lowerCamelCase__: Union[str, Any] =hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCamelCase__: Optional[Any] =value elif weight_type == "weight_g": lowerCamelCase__: int =value elif weight_type == "weight_v": lowerCamelCase__: Optional[int] =value elif weight_type == "bias": lowerCamelCase__: Dict =value else: lowerCamelCase__: Any =value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Union[str, Any] =[] lowerCamelCase__: Dict =fairseq_model.state_dict() lowerCamelCase__: int =hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight lowerCamelCase__: Tuple =None for name, value in fairseq_dict.items(): lowerCamelCase__: Any =False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) lowerCamelCase__: Tuple =True elif name.split("." )[0] == "proj": lowerCamelCase__: Tuple =fairseq_model.proj lowerCamelCase__: Optional[int] =True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCamelCase__: Optional[int] =True if "*" in mapped_key: lowerCamelCase__: str =name.split(__lowerCamelCase )[0].split("." )[-2] lowerCamelCase__: Optional[int] =mapped_key.replace("*" , __lowerCamelCase ) if "weight_g" in name: lowerCamelCase__: Dict ='''weight_g''' elif "weight_v" in name: lowerCamelCase__: Optional[Any] ='''weight_v''' elif "bias" in name: lowerCamelCase__: Tuple ='''bias''' elif "weight" in name: lowerCamelCase__: Optional[int] ='''weight''' else: lowerCamelCase__: Optional[Any] =None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) return proj_weight def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> List[str]: """simple docstring""" lowerCamelCase__: Any =full_name.split("conv_layers." )[-1] lowerCamelCase__: Tuple =name.split("." ) lowerCamelCase__: List[str] =int(items[0] ) lowerCamelCase__: Union[str, Any] =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCamelCase__: Any =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCamelCase__: Optional[Any] =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCamelCase__: List[Any] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCamelCase__: Any =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCamelCase ) def lowerCAmelCase_ ( __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Tuple =emb.weight.shape lowerCamelCase__: str =nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) lowerCamelCase__: List[str] =emb.weight.data return lin_layer def lowerCAmelCase_ ( __a ) -> Dict: """simple docstring""" with open(__lowerCamelCase , "r" , encoding="utf-8" ) as f: lowerCamelCase__: List[Any] =f.readlines() lowerCamelCase__: int =[line.split(" " )[0] for line in lines] lowerCamelCase__: List[str] =len(__lowerCamelCase ) lowerCamelCase__: int ={ '''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3, } vocab_dict.update(dict(zip(__lowerCamelCase , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a , __a , __a , __a , __a , ) -> Dict: """simple docstring""" lowerCamelCase__: int =WavaVecaConfig.from_pretrained(__lowerCamelCase ) lowerCamelCase__: int =SpeechaTextaConfig.from_pretrained( __lowerCamelCase , vocab_size=__lowerCamelCase , decoder_layers=__lowerCamelCase , do_stable_layer_norm=__lowerCamelCase ) lowerCamelCase__: Dict =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) lowerCamelCase__: Dict =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) lowerCamelCase__: Union[str, Any] =model[0].eval() # set weights for wav2vec2 encoder lowerCamelCase__: str =WavaVecaModel(__lowerCamelCase ) lowerCamelCase__: List[Any] =recursively_load_weights_wavaveca(model.encoder , __lowerCamelCase ) lowerCamelCase__: Union[str, Any] =SpeechaTextaForCausalLM(__lowerCamelCase ) lowerCamelCase__: Optional[int] =hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__lowerCamelCase ) # set output linear layer unexpected_keys.remove("embed_out" ) lowerCamelCase__: Union[str, Any] =nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) lowerCamelCase__: List[str] =SpeechEncoderDecoderModel(encoder=__lowerCamelCase , decoder=__lowerCamelCase ) lowerCamelCase__: List[str] =False # add projection layer lowerCamelCase__: Tuple =nn.Parameter(projection_layer.weight ) lowerCamelCase__: Optional[int] =nn.Parameter(projection_layer.bias ) lowerCamelCase__: Dict =create_vocab_dict(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "vocab.json" ) , "w" ) as fp: json.dump(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__: Optional[Any] =SpeechaTextaTokenizer(os.path.join(__lowerCamelCase , "vocab.json" ) ) tokenizer.save_pretrained(__lowerCamelCase ) lowerCamelCase__: int =hf_wavavec.config.to_dict() lowerCamelCase__: List[Any] =tokenizer.pad_token_id lowerCamelCase__: int =tokenizer.bos_token_id lowerCamelCase__: List[str] =tokenizer.eos_token_id lowerCamelCase__: Dict ='''speech_to_text_2''' lowerCamelCase__: Optional[int] ='''wav2vec2''' lowerCamelCase__: Any =SpeechEncoderDecoderConfig.from_dict(__lowerCamelCase ) hf_wavavec.save_pretrained(__lowerCamelCase ) feature_extractor.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=1_0224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") __A = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
59
"""simple docstring""" import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __A : '''simple docstring''' @staticmethod def UpperCAmelCase ( *_snake_case : Any ,**_snake_case : List[str] ) -> List[str]: """simple docstring""" pass def __UpperCAmelCase ( __lowerCamelCase ) -> str: lowercase__ : Optional[Any] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __A ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def UpperCAmelCase ( self : str ,_snake_case : Union[str, Any] ,_snake_case : Union[str, Any] ,_snake_case : Union[str, Any] ) -> str: """simple docstring""" lowercase__ : List[str] = DepthEstimationPipeline(model=_snake_case ,image_processor=_snake_case ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def UpperCAmelCase ( self : str ,_snake_case : Optional[Any] ,_snake_case : Optional[Any] ) -> Any: """simple docstring""" lowercase__ : int = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) self.assertEqual({'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )} ,_snake_case ) import datasets lowercase__ : str = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' ,'''image''' ,split='''test''' ) lowercase__ : Union[str, Any] = depth_estimator( [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] ) self.assertEqual( [ {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, ] ,_snake_case ,) @require_tf @unittest.skip('''Depth estimation is not implemented in TF''' ) def UpperCAmelCase ( self : str ) -> List[Any]: """simple docstring""" pass @slow @require_torch def UpperCAmelCase ( self : int ) -> Dict: """simple docstring""" lowercase__ : int = '''Intel/dpt-large''' lowercase__ : Tuple = pipeline('''depth-estimation''' ,model=_snake_case ) lowercase__ : Dict = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) lowercase__ : Dict = hashimage(outputs['''depth'''] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item() ) ,29.304 ) self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item() ) ,2.662 ) @require_torch def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''' )
560
0
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A_ : def __init__( self : str , snake_case_ : Union[str, Any] , snake_case_ : List[Any]=1_3 , snake_case_ : int=3_2 , snake_case_ : Union[str, Any]=3 , snake_case_ : Optional[Any]=4 , snake_case_ : List[str]=[1_0, 2_0, 3_0, 4_0] , snake_case_ : Union[str, Any]=[2, 2, 3, 2] , snake_case_ : List[Any]=True , snake_case_ : Tuple=True , snake_case_ : Union[str, Any]=3_7 , snake_case_ : str="gelu" , snake_case_ : List[Any]=1_0 , snake_case_ : Optional[int]=0.0_2 , snake_case_ : List[Any]=["stage2", "stage3", "stage4"] , snake_case_ : Optional[int]=[2, 3, 4] , snake_case_ : Optional[Any]=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = num_stages _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = num_labels _UpperCAmelCase = initializer_range _UpperCAmelCase = out_features _UpperCAmelCase = out_indices _UpperCAmelCase = scope def lowercase ( self : List[str] ): _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowercase ( self : Any ): return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=lowercase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowercase ( self : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Tuple , snake_case_ : Tuple ): _UpperCAmelCase = ConvNextVaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() _UpperCAmelCase = model(lowercase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowercase ( self : Dict , snake_case_ : str , snake_case_ : Optional[int] , snake_case_ : Tuple ): _UpperCAmelCase = ConvNextVaForImageClassification(lowercase_ ) model.to(lowercase_ ) model.eval() _UpperCAmelCase = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : Dict , snake_case_ : Union[str, Any] , snake_case_ : str , snake_case_ : Union[str, Any] ): _UpperCAmelCase = ConvNextVaBackbone(config=lowercase_ ) model.to(lowercase_ ) model.eval() _UpperCAmelCase = model(lowercase_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _UpperCAmelCase = None _UpperCAmelCase = ConvNextVaBackbone(config=lowercase_ ) model.to(lowercase_ ) model.eval() _UpperCAmelCase = model(lowercase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowercase ( self : Tuple ): _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict def lowercase ( self : Dict ): _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class A_ ( snake_case__ , snake_case__ , unittest.TestCase ): _lowerCamelCase : Dict = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) _lowerCamelCase : List[Any] = ( {"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification} if is_torch_available() else {} ) _lowerCamelCase : Optional[Any] = False _lowerCamelCase : int = False _lowerCamelCase : Tuple = False _lowerCamelCase : Dict = False _lowerCamelCase : Dict = False def lowercase ( self : Dict ): _UpperCAmelCase = ConvNextVaModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=3_7 ) def lowercase ( self : str ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : int ): return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def lowercase ( self : List[Any] ): pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def lowercase ( self : Union[str, Any] ): pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def lowercase ( self : str ): pass def lowercase ( self : List[Any] ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_with_labels() _UpperCAmelCase = True if model_class.__name__ in [ *get_values(lowercase_ ), *get_values(lowercase_ ), ]: continue _UpperCAmelCase = model_class(lowercase_ ) model.to(lowercase_ ) model.train() _UpperCAmelCase = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) _UpperCAmelCase = model(**lowercase_ ).loss loss.backward() def lowercase ( self : Tuple ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_with_labels() _UpperCAmelCase = False _UpperCAmelCase = True if ( model_class.__name__ in [*get_values(lowercase_ ), *get_values(lowercase_ )] or not model_class.supports_gradient_checkpointing ): continue _UpperCAmelCase = model_class(lowercase_ ) model.to(lowercase_ ) model.gradient_checkpointing_enable() model.train() _UpperCAmelCase = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) _UpperCAmelCase = model(**lowercase_ ).loss loss.backward() def lowercase ( self : Dict ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(lowercase_ ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase_ ) def lowercase ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def lowercase ( self : Optional[int] ): def check_hidden_states_output(snake_case_ : List[Any] , snake_case_ : Dict , snake_case_ : Union[str, Any] ): _UpperCAmelCase = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) _UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowercase_ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def lowercase ( self : Optional[Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @slow def lowercase ( self : Optional[Any] ): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = ConvNextVaModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def UpperCAmelCase_ ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): @cached_property def lowercase ( self : int ): return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def lowercase ( self : List[Any] ): _UpperCAmelCase = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(lowercase_ ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = preprocessor(images=lowercase_ , return_tensors="pt" ).to(lowercase_ ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**lowercase_ ) # verify the logits _UpperCAmelCase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowercase_ ) _UpperCAmelCase = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4 ) )
704
'''simple docstring''' import sys from collections import defaultdict class A_ : def __init__( self : Dict ): _UpperCAmelCase = [] def lowercase ( self : Union[str, Any] , snake_case_ : List[str] ): return self.node_position[vertex] def lowercase ( self : Optional[Any] , snake_case_ : str , snake_case_ : Union[str, Any] ): _UpperCAmelCase = pos def lowercase ( self : Optional[Any] , snake_case_ : Dict , snake_case_ : Tuple , snake_case_ : Optional[int] , snake_case_ : Optional[Any] ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _UpperCAmelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _UpperCAmelCase = 2 * start + 1 else: _UpperCAmelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: _UpperCAmelCase , _UpperCAmelCase = heap[smallest_child], positions[smallest_child] _UpperCAmelCase , _UpperCAmelCase = ( heap[start], positions[start], ) _UpperCAmelCase , _UpperCAmelCase = temp, tempa _UpperCAmelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , snake_case_ ) self.top_to_bottom(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def lowercase ( self : List[Any] , snake_case_ : Optional[Any] , snake_case_ : Optional[int] , snake_case_ : Optional[int] , snake_case_ : Any ): _UpperCAmelCase = position[index] while index != 0: _UpperCAmelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: _UpperCAmelCase = heap[parent] _UpperCAmelCase = position[parent] self.set_position(position[parent] , snake_case_ ) else: _UpperCAmelCase = val _UpperCAmelCase = temp self.set_position(snake_case_ , snake_case_ ) break _UpperCAmelCase = parent else: _UpperCAmelCase = val _UpperCAmelCase = temp self.set_position(snake_case_ , 0 ) def lowercase ( self : Optional[int] , snake_case_ : List[str] , snake_case_ : Any ): _UpperCAmelCase = len(snake_case_ ) // 2 - 1 for i in range(snake_case_ , -1 , -1 ): self.top_to_bottom(snake_case_ , snake_case_ , len(snake_case_ ) , snake_case_ ) def lowercase ( self : Any , snake_case_ : str , snake_case_ : str ): _UpperCAmelCase = positions[0] _UpperCAmelCase = sys.maxsize self.top_to_bottom(snake_case_ , 0 , len(snake_case_ ) , snake_case_ ) return temp def UpperCAmelCase_ ( __lowercase : Any ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = Heap() _UpperCAmelCase = [0] * len(__lowercase ) _UpperCAmelCase = [-1] * len(__lowercase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _UpperCAmelCase = [] # Heap of Distance of vertices from their neighboring vertex _UpperCAmelCase = [] for vertex in range(len(__lowercase ) ): distance_tv.append(sys.maxsize ) positions.append(__lowercase ) heap.node_position.append(__lowercase ) _UpperCAmelCase = [] _UpperCAmelCase = 1 _UpperCAmelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: _UpperCAmelCase = 0 _UpperCAmelCase = distance heap.heapify(__lowercase , __lowercase ) for _ in range(1 , len(__lowercase ) ): _UpperCAmelCase = heap.delete_minimum(__lowercase , __lowercase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _UpperCAmelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__lowercase )] ): _UpperCAmelCase = distance heap.bottom_to_top( __lowercase , heap.get_position(__lowercase ) , __lowercase , __lowercase ) _UpperCAmelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __SCREAMING_SNAKE_CASE :Optional[int] = int(input('''Enter number of edges: ''').strip()) __SCREAMING_SNAKE_CASE :Optional[int] = defaultdict(list) for _ in range(edges_number): __SCREAMING_SNAKE_CASE :Dict = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
119
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging A__ : Optional[Any] = logging.get_logger(__name__) A__ : Any = """▁""" A__ : str = {"""vocab_file""": """sentencepiece.bpe.model"""} A__ : int = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model""" ), } } A__ : Any = { """facebook/nllb-200-distilled-600M""": 1_0_2_4, } # fmt: off A__ : Union[str, Any] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class lowercase ( __UpperCamelCase ): __a = VOCAB_FILES_NAMES __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a = PRETRAINED_VOCAB_FILES_MAP __a = ["""input_ids""", """attention_mask"""] __a = [] __a = [] def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="<unk>" , SCREAMING_SNAKE_CASE__="<pad>" , SCREAMING_SNAKE_CASE__="<mask>" , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=False , **SCREAMING_SNAKE_CASE__ , ): """simple docstring""" lowerCAmelCase__ : int = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token lowerCAmelCase__ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs lowerCAmelCase__ : List[str] = legacy_behaviour super().__init__( bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , src_lang=SCREAMING_SNAKE_CASE__ , tgt_lang=SCREAMING_SNAKE_CASE__ , additional_special_tokens=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ : int = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token lowerCAmelCase__ : Optional[Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCAmelCase__ : Any = 1 lowerCAmelCase__ : Optional[int] = len(self.sp_model ) lowerCAmelCase__ : Any = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(SCREAMING_SNAKE_CASE__ ) } lowerCAmelCase__ : Optional[Any] = {v: k for k, v in self.lang_code_to_id.items()} lowerCAmelCase__ : Optional[Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowerCAmelCase__ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowerCAmelCase__ : List[Any] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) lowerCAmelCase__ : Any = src_lang if src_lang is not None else '''eng_Latn''' lowerCAmelCase__ : List[str] = self.lang_code_to_id[self._src_lang] lowerCAmelCase__ : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = self.__dict__.copy() lowerCAmelCase__ : List[Any] = None lowerCAmelCase__ : Optional[int] = self.sp_model.serialized_model_proto() return state def __setstate__( self , SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCAmelCase__ : int = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCAmelCase__ : List[Any] = {} lowerCAmelCase__ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def lowercase_ ( self ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowercase_ ( self ): """simple docstring""" return self._src_lang @src_lang.setter def lowercase_ ( self , SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCAmelCase__ : str = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowercase_ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ : int = [1] * len(self.prefix_tokens ) lowerCAmelCase__ : int = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(SCREAMING_SNAKE_CASE__ )) + suffix_ones return prefix_ones + ([0] * len(SCREAMING_SNAKE_CASE__ )) + ([0] * len(SCREAMING_SNAKE_CASE__ )) + suffix_ones def lowercase_ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowercase_ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): """simple docstring""" lowerCAmelCase__ : Tuple = [self.sep_token_id] lowerCAmelCase__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase_ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) lowerCAmelCase__ : Union[str, Any] = src_lang lowerCAmelCase__ : List[Any] = self(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ : Union[str, Any] = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ : Tuple = tgt_lang_id return inputs def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : List[str] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase_ ( self , SCREAMING_SNAKE_CASE__ ): """simple docstring""" return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE__ ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCAmelCase__ : Optional[int] = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowercase_ ( self , SCREAMING_SNAKE_CASE__ ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowercase_ ( self , SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCAmelCase__ : Optional[int] = ''''''.join(SCREAMING_SNAKE_CASE__ ).replace(SCREAMING_SNAKE_CASE__ , ''' ''' ).strip() return out_string def lowercase_ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): """simple docstring""" if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase__ : Union[str, Any] = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , '''wb''' ) as fi: lowerCAmelCase__ : Dict = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,) def lowercase_ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = "eng_Latn" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "fra_Latn" , **SCREAMING_SNAKE_CASE__ , ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = src_lang lowerCAmelCase__ : Any = tgt_lang return super().prepare_seqaseq_batch(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def lowercase_ ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def lowercase_ ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowercase_ ( self , SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCAmelCase__ : Tuple = self.lang_code_to_id[src_lang] if self.legacy_behaviour: lowerCAmelCase__ : Tuple = [] lowerCAmelCase__ : List[Any] = [self.eos_token_id, self.cur_lang_code] else: lowerCAmelCase__ : str = [self.cur_lang_code] lowerCAmelCase__ : List[str] = [self.eos_token_id] def lowercase_ ( self , SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCAmelCase__ : str = self.lang_code_to_id[lang] if self.legacy_behaviour: lowerCAmelCase__ : Any = [] lowerCAmelCase__ : List[str] = [self.eos_token_id, self.cur_lang_code] else: lowerCAmelCase__ : Tuple = [self.cur_lang_code] lowerCAmelCase__ : List[Any] = [self.eos_token_id]
233
def _a ( __UpperCamelCase : str ): assert column_title.isupper() lowerCAmelCase__ : List[Any] = 0 lowerCAmelCase__ : List[Any] = len(__UpperCamelCase ) - 1 lowerCAmelCase__ : str = 0 while index >= 0: lowerCAmelCase__ : Any = (ord(column_title[index] ) - 64) * pow(26 ,__UpperCamelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
233
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } SCREAMING_SNAKE_CASE = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models UpperCAmelCase_ = "lm_head" UpperCAmelCase_ = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if weight_type is not None: UpperCAmelCase_ = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).shape else: UpperCAmelCase_ = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCAmelCase_ = value elif weight_type == "weight_g": UpperCAmelCase_ = value elif weight_type == "weight_v": UpperCAmelCase_ = value elif weight_type == "bias": UpperCAmelCase_ = value else: UpperCAmelCase_ = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: UpperCAmelCase_ = [] UpperCAmelCase_ = fairseq_model.state_dict() UpperCAmelCase_ = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase_ = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , hf_model.config.feat_extract_norm == "group" , ) UpperCAmelCase_ = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase_ = "unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCAmelCase_ = True if "*" in mapped_key: UpperCAmelCase_ = name.split(SCREAMING_SNAKE_CASE_ )[0].split("." )[-2] UpperCAmelCase_ = mapped_key.replace("*" , SCREAMING_SNAKE_CASE_ ) if "weight_g" in name: UpperCAmelCase_ = "weight_g" elif "weight_v" in name: UpperCAmelCase_ = "weight_v" elif "bias" in name: UpperCAmelCase_ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase_ = "weight" else: UpperCAmelCase_ = None set_recursively(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE_ ) logger.warning(f'''Unused weights: {unused_weights}''' ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = full_name.split("conv_layers." )[-1] UpperCAmelCase_ = name.split("." ) UpperCAmelCase_ = int(items[0] ) UpperCAmelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCAmelCase_ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCAmelCase_ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) UpperCAmelCase_ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCAmelCase_ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True ) -> List[Any]: if config_path is not None: UpperCAmelCase_ = UniSpeechConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) else: UpperCAmelCase_ = UniSpeechConfig() if is_finetuned: if dict_path: UpperCAmelCase_ = Dictionary.load_from_json(SCREAMING_SNAKE_CASE_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase_ = target_dict.pad_index UpperCAmelCase_ = target_dict.bos_index UpperCAmelCase_ = target_dict.eos_index UpperCAmelCase_ = len(target_dict.symbols ) UpperCAmelCase_ = os.path.join(SCREAMING_SNAKE_CASE_ , "vocab.json" ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(SCREAMING_SNAKE_CASE_ ) ) return os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase_ = 42 UpperCAmelCase_ = 43 with open(SCREAMING_SNAKE_CASE_ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ = WavaVecaPhonemeCTCTokenizer( SCREAMING_SNAKE_CASE_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=SCREAMING_SNAKE_CASE_ , ) UpperCAmelCase_ = True if config.feat_extract_norm == "layer" else False UpperCAmelCase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , ) UpperCAmelCase_ = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ = UniSpeechForCTC(SCREAMING_SNAKE_CASE_ ) else: UpperCAmelCase_ = UniSpeechForPreTraining(SCREAMING_SNAKE_CASE_ ) if is_finetuned: UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) UpperCAmelCase_ = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) hf_unispeech.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
701
import heapq as hq import math from collections.abc import Iterator class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase ): UpperCAmelCase_ = str(id_ ) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = [] UpperCAmelCase_ = {} # {vertex:distance} def __lt__( self , lowerCAmelCase ): return self.key < other.key def __repr__( self ): return self.id def A__ ( self , lowerCAmelCase ): self.neighbors.append(lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = weight def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]: # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __SCREAMING_SNAKE_CASE ) graph[b - 1].add_edge(graph[a - 1] , __SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> list: UpperCAmelCase_ = [] for u in graph: UpperCAmelCase_ = math.inf UpperCAmelCase_ = None UpperCAmelCase_ = 0 UpperCAmelCase_ = graph[:] while q: UpperCAmelCase_ = min(__SCREAMING_SNAKE_CASE ) q.remove(__SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): UpperCAmelCase_ = u UpperCAmelCase_ = u.edges[v.id] for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Iterator[tuple]: for u in graph: UpperCAmelCase_ = math.inf UpperCAmelCase_ = None UpperCAmelCase_ = 0 UpperCAmelCase_ = list(__SCREAMING_SNAKE_CASE ) hq.heapify(__SCREAMING_SNAKE_CASE ) while h: UpperCAmelCase_ = hq.heappop(__SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): UpperCAmelCase_ = u UpperCAmelCase_ = u.edges[v.id] hq.heapify(__SCREAMING_SNAKE_CASE ) for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def snake_case__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
23
0
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __UpperCamelCase = "<<<<<<< This should probably be modified because it mentions: " __UpperCamelCase = "=======\n>>>>>>>\n" __UpperCamelCase = [ "TextEncoderConfig", "ByteTextEncoder", "SubwordTextEncoder", "encoder_config", "maybe_build_from_corpus", "manual_dir", ] __UpperCamelCase = [ # (pattern, replacement) # Order is important here for some replacements (R"tfds\.core", R"datasets"), (R"tf\.io\.gfile\.GFile", R"open"), (R"tf\.([\w\d]+)", R"datasets.Value(\'\1\')"), (R"tfds\.features\.Text\(\)", R"datasets.Value(\'string\')"), (R"tfds\.features\.Text\(", R"datasets.Value(\'string\'),"), (R"features\s*=\s*tfds.features.FeaturesDict\(", R"features=datasets.Features("), (R"tfds\.features\.FeaturesDict\(", R"dict("), (R"The TensorFlow Datasets Authors", R"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"), (R"tfds\.", R"datasets."), (R"dl_manager\.manual_dir", R"self.config.data_dir"), (R"self\.builder_config", R"self.config"), ] def _a ( _lowerCamelCase ) -> List[Any]: """simple docstring""" return ConvertCommand(args.tfds_path , args.datasets_directory ) class _A ( _UpperCAmelCase ): @staticmethod def lowercase__ ( __magic_name__ : ArgumentParser ) -> Optional[int]: """simple docstring""" __snake_case : Tuple = parser.add_parser( """convert""" , help="""Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.""" , ) train_parser.add_argument( """--tfds_path""" , type=a__ , required=a__ , help="""Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.""" , ) train_parser.add_argument( """--datasets_directory""" , type=a__ , required=a__ , help="""Path to the HuggingFace Datasets folder.""" ) train_parser.set_defaults(func=a__ ) def __init__( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : str , *__magic_name__ : str ) -> int: """simple docstring""" __snake_case : Union[str, Any] = get_logger("""datasets-cli/converting""" ) __snake_case : Tuple = tfds_path __snake_case : int = datasets_directory def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if os.path.isdir(self._tfds_path ): __snake_case : Dict = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): __snake_case : List[str] = os.path.dirname(self._tfds_path ) else: raise ValueError("""--tfds_path is neither a directory nor a file. Please check path.""" ) __snake_case : Optional[Any] = os.path.abspath(self._datasets_directory ) self._logger.info(f'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''' ) __snake_case : Any = [] __snake_case : str = [] __snake_case : Optional[Any] = {} if os.path.isdir(self._tfds_path ): __snake_case : int = os.listdir(a__ ) else: __snake_case : int = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f'''Looking at file {f_name}''' ) __snake_case : Optional[Any] = os.path.join(a__ , a__ ) __snake_case : str = os.path.join(a__ , a__ ) if not os.path.isfile(a__ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("""Skipping file""" ) continue with open(a__ , encoding="""utf-8""" ) as f: __snake_case : str = f.readlines() __snake_case : Optional[Any] = [] __snake_case : Optional[int] = False __snake_case : Union[str, Any] = False __snake_case : Optional[Any] = [] for line in lines: __snake_case : Optional[int] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: __snake_case : Optional[int] = """import datasets\n""" elif "import tensorflow" in out_line: # order is important here __snake_case : List[Any] = """""" continue elif "from absl import logging" in out_line: __snake_case : Any = """from datasets import logging\n""" elif "getLogger" in out_line: __snake_case : Dict = out_line.replace("""getLogger""" , """get_logger""" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): __snake_case : Optional[int] = True __snake_case : Union[str, Any] = list(filter(lambda __magic_name__ : e in out_line , a__ ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(a__ ) + """\n""" ) out_lines.append(a__ ) out_lines.append(a__ ) continue else: for pattern, replacement in TO_CONVERT: __snake_case : Dict = re.sub(a__ , a__ , a__ ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: __snake_case : Any = re.match(r"""from\stensorflow_datasets.*import\s([^\.\r\n]+)""" , a__ ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(""",""" ) ) __snake_case : int = """from . import """ + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'''Error converting {out_line.strip()}''' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: __snake_case : Optional[int] = True out_lines.append(a__ ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset __snake_case : Any = f_name.replace(""".py""" , """""" ) __snake_case : Dict = os.path.join(a__ , a__ ) __snake_case : List[Any] = os.path.join(a__ , a__ ) os.makedirs(a__ , exist_ok=a__ ) self._logger.info(f'''Adding directory {output_dir}''' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(a__ ) if needs_manual_update: with_manual_update.append(a__ ) with open(a__ , """w""" , encoding="""utf-8""" ) as f: f.writelines(a__ ) self._logger.info(f'''Converted in {output_file}''' ) for utils_file in utils_files: try: __snake_case : int = os.path.basename(a__ ) __snake_case : int = imports_to_builder_map[f_name.replace(""".py""" , """""" )] self._logger.info(f'''Moving {dest_folder} to {utils_file}''' ) shutil.copy(a__ , a__ ) except KeyError: self._logger.error(f'''Cannot find destination folder for {utils_file}. Please copy manually.''' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''' )
26
def lowerCamelCase__ ( snake_case_ : str , snake_case_ : list[str] ) -> str: __snake_case = '''''' for word_or_phrase in separated: if not isinstance(snake_case_ , snake_case_ ): raise Exception('''join() accepts only strings to be joined''' ) joined += word_or_phrase + separator return joined.strip(snake_case_ ) if __name__ == "__main__": from doctest import testmod testmod()
592
0
'''simple docstring''' import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class a__: '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=99 , __lowerCAmelCase=32 , __lowerCAmelCase=5 , __lowerCAmelCase=4 , __lowerCAmelCase=4 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.1 , __lowerCAmelCase=True , __lowerCAmelCase=512 , __lowerCAmelCase=16 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=None , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_multiple_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout lowerCAmelCase = attention_dropout lowerCAmelCase = weight_tying lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope def a_ ( self): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length]) lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowerCAmelCase = self.get_config() return config, input_ids, input_mask, token_labels def a_ ( self): """simple docstring""" return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A_ , initializer_range=self.initializer_range , ) def a_ ( self): """simple docstring""" lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase = True return config, input_ids, input_mask, token_labels def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = GPTNeoXJapaneseModel(config=A_) model.to(A_) model.eval() lowerCAmelCase = model(A_ , attention_mask=A_) lowerCAmelCase = model(A_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = GPTNeoXJapaneseModel(A_) model.to(A_) model.eval() lowerCAmelCase = model(A_ , attention_mask=A_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = GPTNeoXJapaneseForCausalLM(config=A_) model.to(A_) model.eval() lowerCAmelCase = model(A_ , attention_mask=A_ , labels=A_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = GPTNeoXJapaneseForCausalLM(config=A_) model.to(A_) model.eval() # first forward pass lowerCAmelCase = model(A_ , attention_mask=A_ , use_cache=A_) lowerCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size) lowerCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1) lowerCAmelCase = torch.cat([input_mask, next_mask] , dim=-1) lowerCAmelCase = model(A_ , attention_mask=A_ , output_hidden_states=A_) lowerCAmelCase = output_from_no_past["""hidden_states"""][0] lowerCAmelCase = model( A_ , attention_mask=A_ , past_key_values=A_ , output_hidden_states=A_ , )["""hidden_states"""][0] # select random slice lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1]).item() lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A_ , A_ , atol=1E-3)) def a_ ( self): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = config_and_inputs lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class a__( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : int = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () UpperCAmelCase_ : Any = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () UpperCAmelCase_ : Union[str, Any] = ( {"feature-extraction": GPTNeoXJapaneseModel, "text-generation": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) UpperCAmelCase_ : str = False UpperCAmelCase_ : Optional[Any] = False UpperCAmelCase_ : Any = False UpperCAmelCase_ : Optional[int] = False def a_ ( self): """simple docstring""" lowerCAmelCase = GPTNeoXJapaneseModelTester(self) lowerCAmelCase = ConfigTester(self , config_class=A_ , hidden_size=37) def a_ ( self): """simple docstring""" self.config_tester.run_common_tests() def a_ ( self): """simple docstring""" lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(A_ , A_ , A_) def a_ ( self): """simple docstring""" lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(A_ , A_ , A_) def a_ ( self): """simple docstring""" lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() lowerCAmelCase = None self.model_tester.create_and_check_model_as_decoder(A_ , A_ , A_) def a_ ( self): """simple docstring""" lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(A_ , A_ , A_) def a_ ( self): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*A_) @slow def a_ ( self): """simple docstring""" lowerCAmelCase = """abeja/gpt-neox-japanese-2.7b""" lowerCAmelCase = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""] lowerCAmelCase = [ """データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""", """100年後に必要とされる会社は、「人」が中心の会社です。""", """フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""", """国境の長いトンネルを抜けると、そこは雪国だった。""", """美味しい日本食といえば、やっぱりお寿司ですよね。""", ] lowerCAmelCase = GPTNeoXJapaneseTokenizer.from_pretrained(A_) lowerCAmelCase = GPTNeoXJapaneseForCausalLM.from_pretrained(A_) lowerCAmelCase = [] for prompt in prompts: lowerCAmelCase = tokenizer(A_ , return_tensors="""pt""").input_ids lowerCAmelCase = model.generate(A_ , max_length=50) lowerCAmelCase = tokenizer.batch_decode(A_ , skip_special_tokens=A_) predicted_outputs += generated_string self.assertListEqual(A_ , A_)
703
'''simple docstring''' # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __lowercase = '''2.13.1''' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('''3.7'''): raise ImportWarning( '''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.''' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( '''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n''' '''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.''' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __lowercase = concatenate_datasets __lowercase = DownloadConfig __lowercase = DownloadManager __lowercase = DownloadMode __lowercase = DownloadConfig __lowercase = DownloadMode __lowercase = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
605
0