code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = {"""configuration_glpn""": ["""GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GLPNConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["""GLPNFeatureExtractor"""] lowerCAmelCase_ = ["""GLPNImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """GLPN_PRETRAINED_MODEL_ARCHIVE_LIST""", """GLPNForDepthEstimation""", """GLPNLayer""", """GLPNModel""", """GLPNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
def _A ( SCREAMING_SNAKE_CASE ): UpperCAmelCase__ , UpperCAmelCase__: int = [], [] while len(SCREAMING_SNAKE_CASE ) > 1: UpperCAmelCase__ , UpperCAmelCase__: str = min(SCREAMING_SNAKE_CASE ), max(SCREAMING_SNAKE_CASE ) start.append(SCREAMING_SNAKE_CASE ) end.append(SCREAMING_SNAKE_CASE ) collection.remove(SCREAMING_SNAKE_CASE ) collection.remove(SCREAMING_SNAKE_CASE ) end.reverse() return start + collection + end if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] =input("""Enter numbers separated by a comma:\n""").strip() _lowerCAmelCase : Dict =[int(item) for item in user_input.split(""",""")] print(*merge_sort(unsorted), sep=""",""")
113
0
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): # Initialise PyTorch model __snake_case : Optional[Any] = TaConfig.from_json_file(__lowerCamelCase ) print(F'Building PyTorch model from configuration: {config}' ) __snake_case : Dict = TaForConditionalGeneration(__lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _snake_case : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _snake_case : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
203
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor _snake_case : List[str] = logging.get_logger(__name__) class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : int , *lowerCamelCase : Any , **lowerCamelCase : Union[str, Any] ) -> None: warnings.warn( "The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PoolFormerImageProcessor instead." , lowerCamelCase , ) super().__init__(*lowerCamelCase , **lowerCamelCase )
203
1
from maths.prime_factors import prime_factors def a (lowerCAmelCase__ ): if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): __a = f'''Input value of [number={number}] must be an integer''' raise TypeError(UpperCamelCase__ ) if number < 1: raise ValueError("""Input must be a positive integer""" ) return -1 if len(prime_factors(UpperCamelCase__ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
99
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black UpperCAmelCase__ =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. UpperCAmelCase__ =" \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class lowerCamelCase__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' __lowercase = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , """schedulers/""" ) ) __lowercase = self.diffusers_dir shutil.copy( os.path.join(A_ , """src/diffusers/schedulers/scheduling_ddpm.py""" ) , os.path.join(self.diffusers_dir , """schedulers/scheduling_ddpm.py""" ) , ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' __lowercase = """src/diffusers""" shutil.rmtree(self.diffusers_dir ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , A_ : List[str] , A_ : int , A_ : Optional[Any] , A_ : str=None ): '''simple docstring''' __lowercase = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: __lowercase = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result __lowercase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 ) __lowercase = black.format_str(A_ , mode=A_ ) __lowercase = os.path.join(self.diffusers_dir , """new_code.py""" ) with open(A_ , """w""" , newline="""\n""" ) as f: f.write(A_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(A_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=A_ ) with open(A_ , """r""" ) as f: self.assertTrue(f.read() , A_ ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' __lowercase = check_copies.find_code_in_diffusers("""schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ) self.assertEqual(A_ , A_ ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , A_ , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , re.sub("""DDPM""" , """Test""" , A_ ) , ) # Copy consistency with a really long name __lowercase = """TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub("""Bert""" , A_ , A_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , A_ , overwrite_result=re.sub("""DDPM""" , """Test""" , A_ ) , )
616
0
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar _lowerCamelCase = TypeVar("""T""") class _SCREAMING_SNAKE_CASE (Generic[T] ): def __init__( self : Tuple , UpperCamelCase : list[T] , UpperCamelCase : Callable[[T, T], T] )->str: __SCREAMING_SNAKE_CASE : Optional[Any] = None __SCREAMING_SNAKE_CASE : Optional[int] = len(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Dict = [any_type for _ in range(self.N )] + arr __SCREAMING_SNAKE_CASE : Optional[Any] = fnc self.build() def __snake_case ( self : Optional[int] )->Tuple: for p in range(self.N - 1 , 0 , -1 ): __SCREAMING_SNAKE_CASE : Union[str, Any] = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __snake_case ( self : List[Any] , UpperCamelCase : int , UpperCamelCase : T )->List[str]: p += self.N __SCREAMING_SNAKE_CASE : Union[str, Any] = v while p > 1: __SCREAMING_SNAKE_CASE : Optional[Any] = p // 2 __SCREAMING_SNAKE_CASE : List[Any] = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __snake_case ( self : List[Any] , UpperCamelCase : int , UpperCamelCase : int )->Union[str, Any]: # noqa: E741 __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = l + self.N, r + self.N __SCREAMING_SNAKE_CASE : Optional[Any] = None while l <= r: if l % 2 == 1: __SCREAMING_SNAKE_CASE : Dict = self.st[l] if res is None else self.fn(__SCREAMING_SNAKE_CASE , self.st[l] ) if r % 2 == 0: __SCREAMING_SNAKE_CASE : Optional[Any] = self.st[r] if res is None else self.fn(__SCREAMING_SNAKE_CASE , self.st[r] ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : int = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce _lowerCamelCase = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] _lowerCamelCase = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } _lowerCamelCase = SegmentTree(test_array, min) _lowerCamelCase = SegmentTree(test_array, max) _lowerCamelCase = SegmentTree(test_array, lambda a, b: a + b) def _lowerCAmelCase ( ): """simple docstring""" for i in range(len(_UpperCAmelCase ) ): for j in range(_UpperCAmelCase , len(_UpperCAmelCase ) ): __SCREAMING_SNAKE_CASE : int = reduce(_UpperCAmelCase , test_array[i : j + 1] ) __SCREAMING_SNAKE_CASE : Optional[int] = reduce(_UpperCAmelCase , test_array[i : j + 1] ) __SCREAMING_SNAKE_CASE : List[Any] = reduce(lambda __lowerCamelCase , __lowerCamelCase : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(_UpperCAmelCase , _UpperCAmelCase ) assert max_range == max_segment_tree.query(_UpperCAmelCase , _UpperCAmelCase ) assert sum_range == sum_segment_tree.query(_UpperCAmelCase , _UpperCAmelCase ) test_all_segments() for index, value in test_updates.items(): _lowerCamelCase = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
716
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
447
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
7
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = XCLIPTextConfig() # derive patch size from model name __SCREAMING_SNAKE_CASE : Tuple = model_name.find('''patch''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = int(model_name[start_idx + len('''patch''' ) : start_idx + len('''patch''' ) + 2] ) __SCREAMING_SNAKE_CASE : Tuple = XCLIPVisionConfig(patch_size=snake_case , num_frames=snake_case ) if "large" in model_name: __SCREAMING_SNAKE_CASE : Optional[Any] = 768 __SCREAMING_SNAKE_CASE : Optional[int] = 3_072 __SCREAMING_SNAKE_CASE : Optional[Any] = 12 __SCREAMING_SNAKE_CASE : Optional[Any] = 1_024 __SCREAMING_SNAKE_CASE : int = 4_096 __SCREAMING_SNAKE_CASE : Tuple = 16 __SCREAMING_SNAKE_CASE : Optional[int] = 24 __SCREAMING_SNAKE_CASE : Optional[int] = 768 __SCREAMING_SNAKE_CASE : Optional[int] = 3_072 if model_name == "xclip-large-patch14-16-frames": __SCREAMING_SNAKE_CASE : Any = 336 __SCREAMING_SNAKE_CASE : Any = XCLIPConfig.from_text_vision_configs(snake_case , snake_case ) if "large" in model_name: __SCREAMING_SNAKE_CASE : Any = 768 return config def a__ ( snake_case ): """simple docstring""" # text encoder if name == "token_embedding.weight": __SCREAMING_SNAKE_CASE : List[str] = name.replace('''token_embedding.weight''' , '''text_model.embeddings.token_embedding.weight''' ) if name == "positional_embedding": __SCREAMING_SNAKE_CASE : List[str] = name.replace('''positional_embedding''' , '''text_model.embeddings.position_embedding.weight''' ) if "ln_1" in name: __SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace('''ln_1''' , '''layer_norm1''' ) if "ln_2" in name: __SCREAMING_SNAKE_CASE : str = name.replace('''ln_2''' , '''layer_norm2''' ) if "c_fc" in name: __SCREAMING_SNAKE_CASE : List[str] = name.replace('''c_fc''' , '''fc1''' ) if "c_proj" in name: __SCREAMING_SNAKE_CASE : Dict = name.replace('''c_proj''' , '''fc2''' ) if name.startswith('''transformer.resblocks''' ): __SCREAMING_SNAKE_CASE : Any = name.replace('''transformer.resblocks''' , '''text_model.encoder.layers''' ) if "attn.out_proj" in name and "message" not in name: __SCREAMING_SNAKE_CASE : Dict = name.replace('''attn.out_proj''' , '''self_attn.out_proj''' ) if "ln_final" in name: __SCREAMING_SNAKE_CASE : List[str] = name.replace('''ln_final''' , '''text_model.final_layer_norm''' ) # visual encoder if name == "visual.class_embedding": __SCREAMING_SNAKE_CASE : Optional[Any] = name.replace('''visual.class_embedding''' , '''vision_model.embeddings.class_embedding''' ) if name == "visual.positional_embedding": __SCREAMING_SNAKE_CASE : Tuple = name.replace('''visual.positional_embedding''' , '''vision_model.embeddings.position_embedding.weight''' ) if name.startswith('''visual.transformer.resblocks''' ): __SCREAMING_SNAKE_CASE : List[Any] = name.replace('''visual.transformer.resblocks''' , '''vision_model.encoder.layers''' ) if "visual.conv1" in name: __SCREAMING_SNAKE_CASE : Any = name.replace('''visual.conv1''' , '''vision_model.embeddings.patch_embedding''' ) if "visual.ln_pre" in name: __SCREAMING_SNAKE_CASE : List[str] = name.replace('''visual.ln_pre''' , '''vision_model.pre_layernorm''' ) if "visual.ln_post" in name: __SCREAMING_SNAKE_CASE : Dict = name.replace('''visual.ln_post''' , '''vision_model.post_layernorm''' ) if "visual.proj" in name: __SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace('''visual.proj''' , '''visual_projection.weight''' ) if "text_projection" in name: __SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace('''text_projection''' , '''text_projection.weight''' ) # things on top if "prompts_visual_proj" in name: __SCREAMING_SNAKE_CASE : str = name.replace('''prompts_visual_proj''' , '''prompts_visual_projection''' ) if "prompts_visual_ln" in name: __SCREAMING_SNAKE_CASE : Optional[int] = name.replace('''prompts_visual_ln''' , '''prompts_visual_layernorm''' ) # mit if name == "mit.positional_embedding": __SCREAMING_SNAKE_CASE : Any = name.replace('''positional''' , '''position''' ) if name.startswith('''mit.resblocks''' ): __SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace('''mit.resblocks''' , '''mit.encoder.layers''' ) # prompts generator if name.startswith('''prompts_generator.norm''' ): __SCREAMING_SNAKE_CASE : Tuple = name.replace('''prompts_generator.norm''' , '''prompts_generator.layernorm''' ) return name def a__ ( snake_case , snake_case ): """simple docstring""" for key in orig_state_dict.copy().keys(): __SCREAMING_SNAKE_CASE : Tuple = orig_state_dict.pop(snake_case ) if "attn.in_proj" in key: __SCREAMING_SNAKE_CASE : Optional[Any] = key.split('''.''' ) if key.startswith('''visual''' ): __SCREAMING_SNAKE_CASE : List[Any] = key_split[3] __SCREAMING_SNAKE_CASE : Any = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: __SCREAMING_SNAKE_CASE : Union[str, Any] = val[ :dim, : ] __SCREAMING_SNAKE_CASE : str = val[ dim : dim * 2, : ] __SCREAMING_SNAKE_CASE : Tuple = val[ -dim:, : ] else: __SCREAMING_SNAKE_CASE : Optional[Any] = val[ :dim ] __SCREAMING_SNAKE_CASE : Tuple = val[ dim : dim * 2 ] __SCREAMING_SNAKE_CASE : Tuple = val[ -dim: ] else: if "weight" in key: __SCREAMING_SNAKE_CASE : Tuple = val[ :dim, : ] __SCREAMING_SNAKE_CASE : str = val[ dim : dim * 2, : ] __SCREAMING_SNAKE_CASE : str = val[ -dim:, : ] else: __SCREAMING_SNAKE_CASE : Dict = val[:dim] __SCREAMING_SNAKE_CASE : str = val[ dim : dim * 2 ] __SCREAMING_SNAKE_CASE : Tuple = val[-dim:] elif key.startswith('''mit''' ): __SCREAMING_SNAKE_CASE : List[str] = key_split[2] __SCREAMING_SNAKE_CASE : Union[str, Any] = config.vision_config.mit_hidden_size if "weight" in key: __SCREAMING_SNAKE_CASE : str = val[:dim, :] __SCREAMING_SNAKE_CASE : Tuple = val[dim : dim * 2, :] __SCREAMING_SNAKE_CASE : Optional[int] = val[-dim:, :] else: __SCREAMING_SNAKE_CASE : Any = val[:dim] __SCREAMING_SNAKE_CASE : Any = val[dim : dim * 2] __SCREAMING_SNAKE_CASE : Optional[Any] = val[-dim:] else: __SCREAMING_SNAKE_CASE : Optional[Any] = key_split[2] __SCREAMING_SNAKE_CASE : Any = config.text_config.hidden_size if "weight" in key: __SCREAMING_SNAKE_CASE : Tuple = val[:dim, :] __SCREAMING_SNAKE_CASE : int = val[ dim : dim * 2, : ] __SCREAMING_SNAKE_CASE : Dict = val[-dim:, :] else: __SCREAMING_SNAKE_CASE : Tuple = val[:dim] __SCREAMING_SNAKE_CASE : str = val[ dim : dim * 2 ] __SCREAMING_SNAKE_CASE : int = val[-dim:] else: __SCREAMING_SNAKE_CASE : int = rename_key(snake_case ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: __SCREAMING_SNAKE_CASE : int = val.T __SCREAMING_SNAKE_CASE : Union[str, Any] = val return orig_state_dict def a__ ( snake_case ): """simple docstring""" if num_frames == 8: __SCREAMING_SNAKE_CASE : List[Any] = '''eating_spaghetti_8_frames.npy''' elif num_frames == 16: __SCREAMING_SNAKE_CASE : Tuple = '''eating_spaghetti.npy''' elif num_frames == 32: __SCREAMING_SNAKE_CASE : Dict = '''eating_spaghetti_32_frames.npy''' __SCREAMING_SNAKE_CASE : List[str] = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename=snake_case , repo_type='''dataset''' , ) __SCREAMING_SNAKE_CASE : int = np.load(snake_case ) return list(snake_case ) def a__ ( snake_case , snake_case=None , snake_case=False ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = { # fully supervised kinetics-400 checkpoints '''xclip-base-patch32''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth''', '''xclip-base-patch32-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth''' ), '''xclip-base-patch16''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth''', '''xclip-base-patch16-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth''' ), '''xclip-large-patch14''': '''https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb''', '''xclip-large-patch14-16-frames''': '''https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f''', # fully supervised kinetics-600 checkpoints '''xclip-base-patch16-kinetics-600''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth''' ), '''xclip-base-patch16-kinetics-600-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth''' ), '''xclip-large-patch14-kinetics-600''': '''https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be''', # few shot '''xclip-base-patch16-hmdb-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth''' ), '''xclip-base-patch16-hmdb-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth''' ), '''xclip-base-patch16-hmdb-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth''' ), '''xclip-base-patch16-hmdb-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth''' ), '''xclip-base-patch16-ucf-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth''' ), '''xclip-base-patch16-ucf-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth''' ), '''xclip-base-patch16-ucf-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth''' ), '''xclip-base-patch16-ucf-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth''' ), # zero shot '''xclip-base-patch16-zero-shot''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth''', } __SCREAMING_SNAKE_CASE : Optional[Any] = model_to_url[model_name] __SCREAMING_SNAKE_CASE : Any = 8 if "16-frames" in model_name: __SCREAMING_SNAKE_CASE : Optional[int] = 16 elif "shot" in model_name: __SCREAMING_SNAKE_CASE : Optional[Any] = 32 __SCREAMING_SNAKE_CASE : List[str] = get_xclip_config(snake_case , snake_case ) __SCREAMING_SNAKE_CASE : Tuple = XCLIPModel(snake_case ) model.eval() if "drive" in checkpoint_url: __SCREAMING_SNAKE_CASE : Union[str, Any] = '''pytorch_model.bin''' gdown.cached_download(snake_case , snake_case , quiet=snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.load(snake_case , map_location='''cpu''' )['''model'''] else: __SCREAMING_SNAKE_CASE : str = torch.hub.load_state_dict_from_url(snake_case )['''model'''] __SCREAMING_SNAKE_CASE : List[Any] = convert_state_dict(snake_case , snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = XCLIPModel(snake_case ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Any = model.load_state_dict(snake_case , strict=snake_case ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() __SCREAMING_SNAKE_CASE : Any = 336 if model_name == '''xclip-large-patch14-16-frames''' else 224 __SCREAMING_SNAKE_CASE : str = VideoMAEImageProcessor(size=snake_case ) __SCREAMING_SNAKE_CASE : int = CLIPTokenizer.from_pretrained('''openai/clip-vit-base-patch32''' ) __SCREAMING_SNAKE_CASE : Optional[int] = CLIPTokenizerFast.from_pretrained('''openai/clip-vit-base-patch32''' ) __SCREAMING_SNAKE_CASE : List[Any] = XCLIPProcessor(image_processor=snake_case , tokenizer=snake_case ) __SCREAMING_SNAKE_CASE : Dict = prepare_video(snake_case ) __SCREAMING_SNAKE_CASE : List[str] = processor( text=['''playing sports''', '''eating spaghetti''', '''go shopping'''] , videos=snake_case , return_tensors='''pt''' , padding=snake_case ) print('''Shape of pixel values:''' , inputs.pixel_values.shape ) with torch.no_grad(): __SCREAMING_SNAKE_CASE : Optional[Any] = model(**snake_case ) # Verify outputs __SCREAMING_SNAKE_CASE : Dict = outputs.logits_per_video __SCREAMING_SNAKE_CASE : Tuple = logits_per_video.softmax(dim=1 ) print('''Probs:''' , snake_case ) # kinetics-400 if model_name == "xclip-base-patch32": __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[7.0999E-04, 9.9883E-01, 4.5580E-04]] ) elif model_name == "xclip-base-patch16": __SCREAMING_SNAKE_CASE : Dict = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[7.6937E-04, 9.9728E-01, 1.9473E-03]] ) elif model_name == "xclip-large-patch14": __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[3.3877E-04, 9.9937E-01, 2.8888E-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[3.8554E-04, 9.9929E-01, 3.2754E-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": __SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": __SCREAMING_SNAKE_CASE : str = torch.tensor([[7.1890E-06, 9.9994E-01, 5.6559E-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": __SCREAMING_SNAKE_CASE : int = torch.tensor([[1.0320E-05, 9.9993E-01, 6.2435E-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": __SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[4.1377E-06, 9.9990E-01, 9.8386E-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": __SCREAMING_SNAKE_CASE : Dict = torch.tensor([[4.1347E-05, 9.9962E-01, 3.3411E-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": __SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[8.5857E-05, 9.9928E-01, 6.3291E-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[8.5857E-05, 9.9928E-01, 6.3291E-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": __SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[9.8219E-04, 9.9593E-01, 3.0863E-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[3.5082E-04, 9.9785E-01, 1.7966E-03]] ) else: raise ValueError(F'''Model name {model_name} not supported''' ) assert torch.allclose(snake_case , snake_case , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case ) if push_to_hub: print('''Pushing model, processor and slow tokenizer files to the hub...''' ) model.push_to_hub(snake_case , organization='''nielsr''' ) processor.push_to_hub(snake_case , organization='''nielsr''' ) slow_tokenizer.push_to_hub(snake_case , organization='''nielsr''' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""xclip-base-patch32""", type=str, help="""Name of the model.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowercase_ = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
74
0
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device lowercase_ = False class _snake_case ( unittest.TestCase): pass @nightly @require_torch_gpu class _snake_case ( unittest.TestCase): def A__ ( self : Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self : Any ): lowercase__ = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) lowercase__ = "A painting of a squirrel eating a burger " lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe( prompt=__lowercase, generator=__lowercase, guidance_scale=7.5, num_inference_steps=2, output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowercase ) lowercase__ = VersatileDiffusionTextToImagePipeline.from_pretrained(__lowercase ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) lowercase__ = generator.manual_seed(0 ) lowercase__ = pipe( prompt=__lowercase, generator=__lowercase, guidance_scale=7.5, num_inference_steps=2, output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def A__ ( self : str ): lowercase__ = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion", torch_dtype=torch.floataa ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) lowercase__ = "A painting of a squirrel eating a burger " lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe( prompt=__lowercase, generator=__lowercase, guidance_scale=7.5, num_inference_steps=50, output_type="numpy" ).images lowercase__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
37
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): if upper_limit < 0: raise ValueError("Limit for the Catalan sequence must be ≥ 0" ) lowercase__ = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 lowercase__ = 1 if upper_limit > 0: lowercase__ = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(SCREAMING_SNAKE_CASE_ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""") print("""\n*** Enter -1 at any time to quit ***""") print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""") try: while True: lowercase_ = int(input().strip()) if N < 0: print("""\n********* Goodbye!! ************""") break else: print(F'The Catalan numbers from 0 through {N} are:') print(catalan_numbers(N)) print("""Try another upper limit for the sequence: """, end="""""") except (NameError, ValueError): print("""\n********* Invalid input, goodbye! ************\n""") import doctest doctest.testmod()
37
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): A_ : str = 'data2vec-text' def __init__(self : str , a__ : Tuple=3_0522 , a__ : Dict=768 , a__ : Tuple=12 , a__ : Dict=12 , a__ : Tuple=3072 , a__ : int="gelu" , a__ : str=0.1 , a__ : str=0.1 , a__ : Tuple=512 , a__ : Any=2 , a__ : List[Any]=0.0_2 , a__ : Optional[Any]=1E-12 , a__ : List[str]=1 , a__ : List[Any]=0 , a__ : List[Any]=2 , a__ : Any="absolute" , a__ : List[str]=True , a__ : List[Any]=None , **a__ : Union[str, Any] , ): """simple docstring""" super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = classifier_dropout class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): @property def a (self : Optional[int] ): """simple docstring""" if self.task == "multiple-choice": __snake_case = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __snake_case = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
592
"""simple docstring""" from decimal import Decimal, getcontext from math import ceil, factorial def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) snake_case_ : str = precision snake_case_ : Any = ceil(precision / 1_4 ) snake_case_ : Dict = 4_2_6_8_8_0 * Decimal(1_0_0_0_5 ).sqrt() snake_case_ : Optional[Any] = 1 snake_case_ : List[str] = 1_3_5_9_1_4_0_9 snake_case_ : Optional[int] = Decimal(__UpperCamelCase ) for k in range(1 , __UpperCamelCase ): snake_case_ : Any = factorial(6 * k ) // (factorial(3 * k ) * factorial(__UpperCamelCase ) ** 3) linear_term += 5_4_5_1_4_0_1_3_4 exponential_term *= -2_6_2_5_3_7_4_1_2_6_4_0_7_6_8_0_0_0 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __lowerCAmelCase : int = 50 print(F'''The first {n} digits of pi is: {pi(n)}''')
58
0
"""simple docstring""" def snake_case__ ( _lowerCamelCase = 10_00 ) ->int: """simple docstring""" __lowercase : str = 3 __lowercase : List[Any] = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F"""{solution() = }""")
281
"""simple docstring""" def snake_case__ ( _lowerCamelCase, _lowerCamelCase ) ->int: """simple docstring""" return abs(_lowerCamelCase ) if a == 0 else greatest_common_divisor(b % a, _lowerCamelCase ) def snake_case__ ( _lowerCamelCase, _lowerCamelCase ) ->int: """simple docstring""" while y: # --> when y=0 then loop will terminate and return x as final GCD. __lowercase ,__lowercase : Any = y, x % y return abs(_lowerCamelCase ) def snake_case__ ( ) ->Optional[int]: """simple docstring""" try: __lowercase : Optional[int] = input("Enter two integers separated by comma (,): " ).split("," ) __lowercase : Optional[Any] = int(nums[0] ) __lowercase : str = int(nums[1] ) print( F'greatest_common_divisor({num_a}, {num_a}) = ' F'{greatest_common_divisor(_lowerCamelCase, _lowerCamelCase )}' ) print(F'By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(_lowerCamelCase, _lowerCamelCase )}' ) except (IndexError, UnboundLocalError, ValueError): print("Wrong input" ) if __name__ == "__main__": main()
281
1
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ : str = CustomTokenizer pass
100
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowerCamelCase : List[str] = { '''configuration_tapas''': ['''TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TapasConfig'''], '''tokenization_tapas''': ['''TapasTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = [ '''TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TapasForMaskedLM''', '''TapasForQuestionAnswering''', '''TapasForSequenceClassification''', '''TapasModel''', '''TapasPreTrainedModel''', '''load_tf_weights_in_tapas''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ '''TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFTapasForMaskedLM''', '''TFTapasForQuestionAnswering''', '''TFTapasForSequenceClassification''', '''TFTapasModel''', '''TFTapasPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _lowerCamelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
663
0
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType _lowercase , _lowercase , _lowercase = False, False, False @dataclass class UpperCAmelCase_ : '''simple docstring''' _lowercase : Optional[Any] = None _lowercase : Dict = True _lowercase : str = True _lowercase : Any = None # Automatically constructed _lowercase : Union[str, Any] = '''dict''' _lowercase : Optional[Any] = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) _lowercase : List[Any] = field(default='''Audio''' , init=__A , repr=__A ) def __call__( self ): """simple docstring""" return self.pa_type def _lowercase ( self , _lowercase ): """simple docstring""" try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("""To support encoding audio data, please install \'soundfile\'.""" ) from err if isinstance(_lowercase , _lowercase ): return {"bytes": None, "path": value} elif isinstance(_lowercase , _lowercase ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes _lowerCAmelCase = BytesIO() sf.write(_lowercase , value["""array"""] , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("""pcm""" ): # "PCM" only has raw audio bytes if value.get("""sampling_rate""" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("""To use PCM files, please specify a \'sampling_rate\' in Audio object""" ) if value.get("""bytes""" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) _lowerCAmelCase = np.frombuffer(value["""bytes"""] , dtype=np.intaa ).astype(np.floataa ) / 32_767 else: _lowerCAmelCase = np.memmap(value["""path"""] , dtype="""h""" , mode="""r""" ).astype(np.floataa ) / 32_767 _lowerCAmelCase = BytesIO(bytes() ) sf.write(_lowercase , _lowercase , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( F'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def _lowercase ( self , _lowercase , _lowercase = None ): """simple docstring""" if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Audio(decode=True) instead.""" ) _lowerCAmelCase = (value['''path'''], BytesIO(value["""bytes"""] )) if value['''bytes'''] is not None else (value['''path'''], None) if path is None and file is None: raise ValueError(F'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("""To support decoding audio files, please install \'librosa\' and \'soundfile\'.""" ) from err _lowerCAmelCase = xsplitext(_lowercase )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( """Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( """Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) if file is None: _lowerCAmelCase = token_per_repo_id or {} _lowerCAmelCase = path.split("""::""" )[-1] try: _lowerCAmelCase = string_to_dict(_lowercase , config.HUB_DATASETS_URL )['''repo_id'''] _lowerCAmelCase = token_per_repo_id[repo_id] except (ValueError, KeyError): _lowerCAmelCase = None with xopen(_lowercase , """rb""" , use_auth_token=_lowercase ) as f: _lowerCAmelCase = sf.read(_lowercase ) else: _lowerCAmelCase = sf.read(_lowercase ) _lowerCAmelCase = array.T if self.mono: _lowerCAmelCase = librosa.to_mono(_lowercase ) if self.sampling_rate and self.sampling_rate != sampling_rate: _lowerCAmelCase = librosa.resample(_lowercase , orig_sr=_lowercase , target_sr=self.sampling_rate ) _lowerCAmelCase = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def _lowercase ( self ): """simple docstring""" from .features import Value if self.decode: raise ValueError("""Cannot flatten a decoded Audio feature.""" ) return { "bytes": Value("""binary""" ), "path": Value("""string""" ), } def _lowercase ( self , _lowercase ): """simple docstring""" if pa.types.is_string(storage.type ): _lowerCAmelCase = pa.array([None] * len(_lowercase ) , type=pa.binary() ) _lowerCAmelCase = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _lowerCAmelCase = pa.array([None] * len(_lowercase ) , type=pa.string() ) _lowerCAmelCase = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("""array""" ): _lowerCAmelCase = pa.array([Audio().encode_example(_lowercase ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: _lowerCAmelCase = storage.field("""bytes""" ) else: _lowerCAmelCase = pa.array([None] * len(_lowercase ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: _lowerCAmelCase = storage.field("""path""" ) else: _lowerCAmelCase = pa.array([None] * len(_lowercase ) , type=pa.string() ) _lowerCAmelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) return array_cast(_lowercase , self.pa_type ) def _lowercase ( self , _lowercase ): """simple docstring""" @no_op_if_value_is_null def path_to_bytes(_lowercase ): with xopen(_lowercase , """rb""" ) as f: _lowerCAmelCase = f.read() return bytes_ _lowerCAmelCase = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) _lowerCAmelCase = pa.array( [os.path.basename(_lowercase ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) _lowerCAmelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(_lowercase , self.pa_type )
708
'''simple docstring''' import os def A (__lowerCamelCase :Dict ): _lowerCAmelCase = len(grid[0] ) _lowerCAmelCase = len(__lowerCamelCase ) _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(__lowerCamelCase ): for j in range(n_rows - 3 ): _lowerCAmelCase = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] _lowerCAmelCase = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: _lowerCAmelCase = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: _lowerCAmelCase = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) _lowerCAmelCase = max( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if max_product > largest: _lowerCAmelCase = max_product return largest def A (): _lowerCAmelCase = [] with open(os.path.dirname(__lowerCamelCase ) + """/grid.txt""" ) as file: for line in file: grid.append(line.strip("""\n""" ).split(""" """ ) ) _lowerCAmelCase = [[int(__lowerCamelCase ) for i in grid[j]] for j in range(len(__lowerCamelCase ) )] return largest_product(__lowerCamelCase ) if __name__ == "__main__": print(solution())
162
0
"""simple docstring""" def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> int: """simple docstring""" return number | (1 << position) def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> int: """simple docstring""" return number & ~(1 << position) def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> int: """simple docstring""" return number ^ (1 << position) def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> bool: """simple docstring""" return ((number >> position) & 1) == 1 def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> int: """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
77
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __magic_name__ : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : List[str] = ['''pixel_values'''] def __init__( self , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = PILImageResampling.BILINEAR , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = True , lowerCamelCase = 1 / 255 , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = None , **lowerCamelCase , ): super().__init__(**lowerCamelCase ) _snake_case = size if size is not None else {"shortest_edge": 256} _snake_case = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) _snake_case = crop_size if crop_size is not None else {"height": 224, "width": 224} _snake_case = get_size_dict(lowerCamelCase ) _snake_case = do_resize _snake_case = size _snake_case = resample _snake_case = do_center_crop _snake_case = crop_size _snake_case = do_rescale _snake_case = rescale_factor _snake_case = do_normalize _snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = PILImageResampling.BICUBIC , lowerCamelCase = None , **lowerCamelCase , ): _snake_case = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) _snake_case = get_resize_output_image_size(lowerCamelCase , size=size["shortest_edge"] , default_to_square=lowerCamelCase ) return resize(lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ): _snake_case = get_size_dict(lowerCamelCase ) return center_crop(lowerCamelCase , size=(size["height"], size["width"]) , data_format=lowerCamelCase , **lowerCamelCase ) def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase ): return rescale(lowerCamelCase , scale=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ): return normalize(lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def UpperCamelCase( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = ChannelDimension.FIRST , **lowerCamelCase , ): _snake_case = do_resize if do_resize is not None else self.do_resize _snake_case = size if size is not None else self.size _snake_case = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) _snake_case = resample if resample is not None else self.resample _snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop _snake_case = crop_size if crop_size is not None else self.crop_size _snake_case = get_size_dict(lowerCamelCase ) _snake_case = do_rescale if do_rescale is not None else self.do_rescale _snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case = do_normalize if do_normalize is not None else self.do_normalize _snake_case = image_mean if image_mean is not None else self.image_mean _snake_case = image_std if image_std is not None else self.image_std _snake_case = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _snake_case = [to_numpy_array(lowerCamelCase ) for image in images] if do_resize: _snake_case = [self.resize(image=lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase ) for image in images] if do_center_crop: _snake_case = [self.center_crop(image=lowerCamelCase , size=lowerCamelCase ) for image in images] if do_rescale: _snake_case = [self.rescale(image=lowerCamelCase , scale=lowerCamelCase ) for image in images] if do_normalize: _snake_case = [self.normalize(image=lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase ) for image in images] _snake_case = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images] _snake_case = {"pixel_values": images} return BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase )
672
0
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _SCREAMING_SNAKE_CASE (unittest.TestCase ): def __init__( self : List[str] , UpperCamelCase : Any , UpperCamelCase : Optional[Any]=1_3 , UpperCamelCase : int=7 , UpperCamelCase : str=True , UpperCamelCase : Tuple=True , UpperCamelCase : int=True , UpperCamelCase : Tuple=True , UpperCamelCase : Union[str, Any]=9_9 , UpperCamelCase : Union[str, Any]=3_2 , UpperCamelCase : Dict=5 , UpperCamelCase : List[Any]=4 , UpperCamelCase : List[str]=3_7 , UpperCamelCase : List[str]="gelu" , UpperCamelCase : Optional[int]=0.1 , UpperCamelCase : Optional[int]=0.1 , UpperCamelCase : Optional[int]=5_1_2 , UpperCamelCase : Union[str, Any]=1_6 , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Optional[int]=0.0_2 , UpperCamelCase : str=4 , )->Union[str, Any]: __SCREAMING_SNAKE_CASE : Optional[int] = parent __SCREAMING_SNAKE_CASE : Optional[int] = batch_size __SCREAMING_SNAKE_CASE : Any = seq_length __SCREAMING_SNAKE_CASE : str = is_training __SCREAMING_SNAKE_CASE : List[str] = use_attention_mask __SCREAMING_SNAKE_CASE : Dict = use_token_type_ids __SCREAMING_SNAKE_CASE : int = use_labels __SCREAMING_SNAKE_CASE : List[str] = vocab_size __SCREAMING_SNAKE_CASE : Optional[int] = hidden_size __SCREAMING_SNAKE_CASE : Dict = num_hidden_layers __SCREAMING_SNAKE_CASE : str = num_attention_heads __SCREAMING_SNAKE_CASE : Tuple = intermediate_size __SCREAMING_SNAKE_CASE : List[str] = hidden_act __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Dict = max_position_embeddings __SCREAMING_SNAKE_CASE : int = type_vocab_size __SCREAMING_SNAKE_CASE : List[Any] = type_sequence_label_size __SCREAMING_SNAKE_CASE : int = initializer_range __SCREAMING_SNAKE_CASE : Optional[Any] = num_choices def __snake_case ( self : Optional[Any] )->Union[str, Any]: __SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_attention_mask: __SCREAMING_SNAKE_CASE : str = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE : str = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __snake_case ( self : Dict )->Any: __SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE : Dict = config_and_inputs __SCREAMING_SNAKE_CASE : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class _SCREAMING_SNAKE_CASE (__UpperCamelCase , unittest.TestCase ): lowerCAmelCase = True lowerCAmelCase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def __snake_case ( self : List[str] )->Optional[int]: __SCREAMING_SNAKE_CASE : Optional[int] = FlaxRoFormerModelTester(self ) @slow def __snake_case ( self : Optional[Any] )->int: for model_class_name in self.all_model_classes: __SCREAMING_SNAKE_CASE : List[str] = model_class_name.from_pretrained("junnyu/roformer_chinese_small" , from_pt=UpperCamelCase ) __SCREAMING_SNAKE_CASE : int = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase ) @require_flax class _SCREAMING_SNAKE_CASE (unittest.TestCase ): @slow def __snake_case ( self : int )->Dict: __SCREAMING_SNAKE_CASE : Tuple = FlaxRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) __SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.array([[0, 1, 2, 3, 4, 5]] ) __SCREAMING_SNAKE_CASE : Tuple = model(UpperCamelCase )[0] __SCREAMING_SNAKE_CASE : Optional[Any] = 5_0_0_0_0 __SCREAMING_SNAKE_CASE : List[str] = (1, 6, vocab_size) self.assertEqual(output.shape , UpperCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = jnp.array( [[[-0.1_2_0_5, -1.0_2_6_5, 0.2_9_2_2], [-1.5_1_3_4, 0.1_9_7_4, 0.1_5_1_9], [-5.0_1_3_5, -3.9_0_0_3, -0.8_4_0_4]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , UpperCamelCase , atol=1E-4 ) )
708
from collections.abc import Generator from math import sin def _lowerCAmelCase ( __lowerCamelCase : bytes ): """simple docstring""" if len(__lowerCamelCase ) != 32: raise ValueError("Input must be of length 32" ) __SCREAMING_SNAKE_CASE : Union[str, Any] = b"" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _lowerCAmelCase ( __lowerCamelCase : int ): """simple docstring""" if i < 0: raise ValueError("Input must be non-negative" ) __SCREAMING_SNAKE_CASE : Any = format(__lowerCamelCase , "08x" )[-8:] __SCREAMING_SNAKE_CASE : Optional[Any] = b"" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" ) return little_endian_hex def _lowerCAmelCase ( __lowerCamelCase : bytes ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = b"" for char in message: bit_string += format(__lowerCamelCase , "08b" ).encode("utf-8" ) __SCREAMING_SNAKE_CASE : List[str] = format(len(__lowerCamelCase ) , "064b" ).encode("utf-8" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__lowerCamelCase ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def _lowerCAmelCase ( __lowerCamelCase : bytes ): """simple docstring""" if len(__lowerCamelCase ) % 512 != 0: raise ValueError("Input must have length that's a multiple of 512" ) for pos in range(0 , len(__lowerCamelCase ) , 512 ): __SCREAMING_SNAKE_CASE : int = bit_string[pos : pos + 512] __SCREAMING_SNAKE_CASE : Tuple = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def _lowerCAmelCase ( __lowerCamelCase : int ): """simple docstring""" if i < 0: raise ValueError("Input must be non-negative" ) __SCREAMING_SNAKE_CASE : Union[str, Any] = format(__lowerCamelCase , "032b" ) __SCREAMING_SNAKE_CASE : Union[str, Any] = "" for c in i_str: new_str += "1" if c == "0" else "0" return int(__lowerCamelCase , 2 ) def _lowerCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" return (a + b) % 2**32 def _lowerCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" if i < 0: raise ValueError("Input must be non-negative" ) if shift < 0: raise ValueError("Shift must be non-negative" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def _lowerCAmelCase ( __lowerCamelCase : bytes ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = preprocess(__lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states __SCREAMING_SNAKE_CASE : Tuple = 0X67452301 __SCREAMING_SNAKE_CASE : Optional[Any] = 0Xefcdab89 __SCREAMING_SNAKE_CASE : Optional[int] = 0X98badcfe __SCREAMING_SNAKE_CASE : Optional[Any] = 0X10325476 __SCREAMING_SNAKE_CASE : List[Any] = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__lowerCamelCase ): __SCREAMING_SNAKE_CASE : Any = aa __SCREAMING_SNAKE_CASE : Union[str, Any] = ba __SCREAMING_SNAKE_CASE : str = ca __SCREAMING_SNAKE_CASE : Dict = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __SCREAMING_SNAKE_CASE : Union[str, Any] = d ^ (b & (c ^ d)) __SCREAMING_SNAKE_CASE : Optional[Any] = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __SCREAMING_SNAKE_CASE : int = c ^ (d & (b ^ c)) __SCREAMING_SNAKE_CASE : int = (5 * i + 1) % 16 elif i <= 47: __SCREAMING_SNAKE_CASE : List[str] = b ^ c ^ d __SCREAMING_SNAKE_CASE : Union[str, Any] = (3 * i + 5) % 16 else: __SCREAMING_SNAKE_CASE : Any = c ^ (b | not_aa(__lowerCamelCase )) __SCREAMING_SNAKE_CASE : str = (7 * i) % 16 __SCREAMING_SNAKE_CASE : List[str] = (f + a + added_consts[i] + block_words[g]) % 2**32 __SCREAMING_SNAKE_CASE : Dict = d __SCREAMING_SNAKE_CASE : str = c __SCREAMING_SNAKE_CASE : Tuple = b __SCREAMING_SNAKE_CASE : Optional[int] = sum_aa(__lowerCamelCase , left_rotate_aa(__lowerCamelCase , shift_amounts[i] ) ) # Add hashed chunk to running total __SCREAMING_SNAKE_CASE : Dict = sum_aa(__lowerCamelCase , __lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = sum_aa(__lowerCamelCase , __lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = sum_aa(__lowerCamelCase , __lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = sum_aa(__lowerCamelCase , __lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[str] = reformat_hex(__lowerCamelCase ) + reformat_hex(__lowerCamelCase ) + reformat_hex(__lowerCamelCase ) + reformat_hex(__lowerCamelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
447
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @property def _lowerCamelCase ( self ): """simple docstring""" torch.manual_seed(0 ) __lowerCamelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = self.dummy_uncond_unet __lowerCamelCase = KarrasVeScheduler() __lowerCamelCase = KarrasVePipeline(unet=_snake_case , scheduler=_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe(num_inference_steps=2 , generator=_snake_case , output_type='''numpy''' ).images __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe(num_inference_steps=2 , generator=_snake_case , output_type='''numpy''' , return_dict=_snake_case )[0] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCamelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = '''google/ncsnpp-celebahq-256''' __lowerCamelCase = UNetaDModel.from_pretrained(_snake_case ) __lowerCamelCase = KarrasVeScheduler() __lowerCamelCase = KarrasVePipeline(unet=_snake_case , scheduler=_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe(num_inference_steps=20 , generator=_snake_case , output_type='''numpy''' ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) __lowerCamelCase = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
316
import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" lowercase__ = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING lowercase__ = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def lowercase__ ( self : Any, lowerCamelCase : Optional[Any], lowerCamelCase : Any, lowerCamelCase : Tuple ): '''simple docstring''' lowercase__ = AudioClassificationPipeline(model=lowerCamelCase, feature_extractor=lowerCamelCase ) # test with a raw waveform lowercase__ = np.zeros((34_000,) ) lowercase__ = np.zeros((14_000,) ) return audio_classifier, [audioa, audio] def lowercase__ ( self : str, lowerCamelCase : Dict, lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowercase__ , lowercase__ = examples lowercase__ = audio_classifier(lowerCamelCase ) # by default a model is initialized with num_labels=2 self.assertEqual( lowerCamelCase, [ {'''score''': ANY(lowerCamelCase ), '''label''': ANY(lowerCamelCase )}, {'''score''': ANY(lowerCamelCase ), '''label''': ANY(lowerCamelCase )}, ], ) lowercase__ = audio_classifier(lowerCamelCase, top_k=1 ) self.assertEqual( lowerCamelCase, [ {'''score''': ANY(lowerCamelCase ), '''label''': ANY(lowerCamelCase )}, ], ) self.run_torchaudio(lowerCamelCase ) @require_torchaudio def lowercase__ ( self : Optional[int], lowerCamelCase : List[Any] ): '''simple docstring''' import datasets # test with a local file lowercase__ = datasets.load_dataset('''hf-internal-testing/librispeech_asr_dummy''', '''clean''', split='''validation''' ) lowercase__ = dataset[0]['''audio''']['''array'''] lowercase__ = audio_classifier(lowerCamelCase ) self.assertEqual( lowerCamelCase, [ {'''score''': ANY(lowerCamelCase ), '''label''': ANY(lowerCamelCase )}, {'''score''': ANY(lowerCamelCase ), '''label''': ANY(lowerCamelCase )}, ], ) @require_torch def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = '''anton-l/wav2vec2-random-tiny-classifier''' lowercase__ = pipeline('''audio-classification''', model=lowerCamelCase ) lowercase__ = np.ones((8_000,) ) lowercase__ = audio_classifier(lowerCamelCase, top_k=4 ) lowercase__ = [ {'''score''': 0.0842, '''label''': '''no'''}, {'''score''': 0.0838, '''label''': '''up'''}, {'''score''': 0.0837, '''label''': '''go'''}, {'''score''': 0.0834, '''label''': '''right'''}, ] lowercase__ = [ {'''score''': 0.0845, '''label''': '''stop'''}, {'''score''': 0.0844, '''label''': '''on'''}, {'''score''': 0.0841, '''label''': '''right'''}, {'''score''': 0.0834, '''label''': '''left'''}, ] self.assertIn(nested_simplify(lowerCamelCase, decimals=4 ), [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) lowercase__ = {'''array''': np.ones((8_000,) ), '''sampling_rate''': audio_classifier.feature_extractor.sampling_rate} lowercase__ = audio_classifier(lowerCamelCase, top_k=4 ) self.assertIn(nested_simplify(lowerCamelCase, decimals=4 ), [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def lowercase__ ( self : List[str] ): '''simple docstring''' import datasets lowercase__ = '''superb/wav2vec2-base-superb-ks''' lowercase__ = pipeline('''audio-classification''', model=lowerCamelCase ) lowercase__ = datasets.load_dataset('''anton-l/superb_dummy''', '''ks''', split='''test''' ) lowercase__ = np.array(dataset[3]['''speech'''], dtype=np.floataa ) lowercase__ = audio_classifier(lowerCamelCase, top_k=4 ) self.assertEqual( nested_simplify(lowerCamelCase, decimals=3 ), [ {'''score''': 0.981, '''label''': '''go'''}, {'''score''': 0.007, '''label''': '''up'''}, {'''score''': 0.006, '''label''': '''_unknown_'''}, {'''score''': 0.001, '''label''': '''down'''}, ], ) @require_tf @unittest.skip('''Audio classification is not implemented for TF''' ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' pass
183
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer UpperCamelCase__ : str = logging.get_logger(__name__) UpperCamelCase__ : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase__ : Tuple = { """vocab_file""": { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt""" ), } } UpperCamelCase__ : Union[str, Any] = { """junnyu/roformer_chinese_small""": 15_36, """junnyu/roformer_chinese_base""": 15_36, """junnyu/roformer_chinese_char_small""": 5_12, """junnyu/roformer_chinese_char_base""": 5_12, """junnyu/roformer_small_discriminator""": 1_28, """junnyu/roformer_small_generator""": 1_28, } UpperCamelCase__ : Union[str, Any] = { """junnyu/roformer_chinese_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_base""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True}, """junnyu/roformer_small_discriminator""": {"""do_lower_case""": True}, """junnyu/roformer_small_generator""": {"""do_lower_case""": True}, } class _UpperCamelCase ( A_ ): '''simple docstring''' lowerCamelCase : int = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = PRETRAINED_INIT_CONFIGURATION lowerCamelCase : Tuple = RoFormerTokenizer def __init__( self : str , __lowercase : Tuple=None , __lowercase : List[str]=None , __lowercase : int=True , __lowercase : List[Any]="[UNK]" , __lowercase : Any="[SEP]" , __lowercase : List[str]="[PAD]" , __lowercase : int="[CLS]" , __lowercase : Optional[int]="[MASK]" , __lowercase : List[str]=True , __lowercase : Optional[Any]=None , **__lowercase : Optional[int] , ): '''simple docstring''' super().__init__( __lowercase , tokenizer_file=__lowercase , do_lower_case=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , tokenize_chinese_chars=__lowercase , strip_accents=__lowercase , **__lowercase , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("""lowercase""" , __lowercase ) != do_lower_case or pre_tok_state.get("""strip_accents""" , __lowercase ) != strip_accents ): UpperCAmelCase_ = getattr(__lowercase , pre_tok_state.pop("""type""" ) ) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = strip_accents UpperCAmelCase_ = pre_tok_class(**__lowercase ) UpperCAmelCase_ = do_lower_case def __getstate__( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = BertPreTokenizer() return state def __setstate__( self : int , __lowercase : Dict ): '''simple docstring''' UpperCAmelCase_ = d UpperCAmelCase_ = self.__dict__["""_tokenizer"""].get_vocab() UpperCAmelCase_ = PreTokenizer.custom(JiebaPreTokenizer(__lowercase ) ) def SCREAMING_SNAKE_CASE ( self : Tuple , __lowercase : Union[str, Any] , __lowercase : Any=None ): '''simple docstring''' UpperCAmelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE ( self : int , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowercase : str , __lowercase : Optional[str] = None ): '''simple docstring''' UpperCAmelCase_ = self._tokenizer.model.save(__lowercase , name=__lowercase ) return tuple(__lowercase ) def SCREAMING_SNAKE_CASE ( self : str , __lowercase : List[Any] , __lowercase : Optional[Any]=None , __lowercase : Dict=None , __lowercase : Tuple=False , **__lowercase : Any , ): '''simple docstring''' UpperCAmelCase_ = BertPreTokenizer() return super().save_pretrained(__lowercase , __lowercase , __lowercase , __lowercase , **__lowercase )
713
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def A_( A , A , **A ): UpperCAmelCase_ = AutoConfig.from_pretrained(A , **A ) UpperCAmelCase_ = AutoModelForSeqaSeqLM.from_config(A ) model.save_pretrained(A ) AutoTokenizer.from_pretrained(A ).save_pretrained(A ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
486
0
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __SCREAMING_SNAKE_CASE : Tuple = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right __SCREAMING_SNAKE_CASE : int = 25_00_04 __SCREAMING_SNAKE_CASE : Optional[int] = 25_00_20 @require_sentencepiece @require_tokenizers class __magic_name__ ( snake_case, unittest.TestCase ): _lowerCAmelCase = MBartTokenizer _lowerCAmelCase = MBartTokenizerFast _lowerCAmelCase = True _lowerCAmelCase = True def _A ( self : Dict ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase : Optional[int] = MBartTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _A ( self : Optional[Any] ): lowerCAmelCase : str = MBartTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) lowerCAmelCase : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCamelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowerCAmelCase : str = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowerCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowerCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def _A ( self : Dict ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCAmelCase : List[str] = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) lowerCAmelCase : str = tempfile.mkdtemp() lowerCAmelCase : Optional[Any] = tokenizer_r.save_pretrained(lowerCamelCase__ ) lowerCAmelCase : Optional[int] = tokenizer_p.save_pretrained(lowerCamelCase__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) lowerCAmelCase : str = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowerCamelCase__ , lowerCamelCase__ ) # Checks everything loads correctly in the same way lowerCAmelCase : Optional[Any] = tokenizer_r.from_pretrained(lowerCamelCase__ ) lowerCAmelCase : Tuple = tokenizer_p.from_pretrained(lowerCamelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase__ , lowerCamelCase__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCamelCase__ ) # Save tokenizer rust, legacy_format=True lowerCAmelCase : Optional[int] = tempfile.mkdtemp() lowerCAmelCase : List[str] = tokenizer_r.save_pretrained(lowerCamelCase__ , legacy_format=lowerCamelCase__ ) lowerCAmelCase : List[str] = tokenizer_p.save_pretrained(lowerCamelCase__ ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase__ , lowerCamelCase__ ) # Checks everything loads correctly in the same way lowerCAmelCase : Tuple = tokenizer_r.from_pretrained(lowerCamelCase__ ) lowerCAmelCase : List[Any] = tokenizer_p.from_pretrained(lowerCamelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase__ , lowerCamelCase__ ) ) shutil.rmtree(lowerCamelCase__ ) # Save tokenizer rust, legacy_format=False lowerCAmelCase : Optional[int] = tempfile.mkdtemp() lowerCAmelCase : List[Any] = tokenizer_r.save_pretrained(lowerCamelCase__ , legacy_format=lowerCamelCase__ ) lowerCAmelCase : List[str] = tokenizer_p.save_pretrained(lowerCamelCase__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCAmelCase : List[Any] = tokenizer_r.from_pretrained(lowerCamelCase__ ) lowerCAmelCase : Union[str, Any] = tokenizer_p.from_pretrained(lowerCamelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase__ , lowerCamelCase__ ) ) shutil.rmtree(lowerCamelCase__ ) @require_torch @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase ): _lowerCAmelCase = "facebook/mbart-large-en-ro" _lowerCAmelCase = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] _lowerCAmelCase = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] _lowerCAmelCase = [8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2, EN_CODE] @classmethod def _A ( cls : Optional[Any] ): lowerCAmelCase : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) lowerCAmelCase : List[str] = 1 return cls def _A ( self : Tuple ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 2_5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 2_5_0_0_0_4 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 2_5_0_0_2_0 ) def _A ( self : int ): lowerCAmelCase : Optional[int] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase__ ) def _A ( self : str ): self.assertIn(lowerCamelCase__ , self.tokenizer.all_special_ids ) lowerCAmelCase : Optional[int] = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] lowerCAmelCase : Tuple = self.tokenizer.decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) lowerCAmelCase : List[Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertNotIn(self.tokenizer.eos_token , lowerCamelCase__ ) def _A ( self : List[str] ): lowerCAmelCase : List[str] = ['''this is gunna be a long sentence ''' * 2_0] assert isinstance(src_text[0] , lowerCamelCase__ ) lowerCAmelCase : Union[str, Any] = 1_0 lowerCAmelCase : Tuple = self.tokenizer(lowerCamelCase__ , max_length=lowerCamelCase__ , truncation=lowerCamelCase__ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowerCamelCase__ ) self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) def _A ( self : Union[str, Any] ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [2_5_0_0_2_6, 2_5_0_0_0_1] ) def _A ( self : Optional[Any] ): lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() lowerCAmelCase : str = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCamelCase__ ) lowerCAmelCase : Dict = MBartTokenizer.from_pretrained(lowerCamelCase__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCamelCase__ ) @require_torch def _A ( self : Optional[int] ): lowerCAmelCase : List[str] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCamelCase__ , return_tensors='''pt''' ) lowerCAmelCase : Dict = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def _A ( self : Dict ): lowerCAmelCase : Optional[Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) lowerCAmelCase : Union[str, Any] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual((2, 1_4) , batch.input_ids.shape ) self.assertEqual((2, 1_4) , batch.attention_mask.shape ) lowerCAmelCase : int = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase__ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def _A ( self : List[Any] ): lowerCAmelCase : Tuple = self.tokenizer(self.src_text , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=3 , return_tensors='''pt''' ) lowerCAmelCase : Optional[Any] = self.tokenizer( text_target=self.tgt_text , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=1_0 , return_tensors='''pt''' ) lowerCAmelCase : Dict = targets['''input_ids'''] lowerCAmelCase : str = shift_tokens_right(lowerCamelCase__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def _A ( self : Dict ): lowerCAmelCase : Optional[Any] = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(lowerCamelCase__ ) , { # A, test, EOS, en_XX '''input_ids''': [[6_2, 3_0_3_4, 2, 2_5_0_0_0_4]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 2_5_0_0_0_1, } , )
348
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed __SCREAMING_SNAKE_CASE : Optional[int] = { 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def UpperCAmelCase__ ( __magic_name__ : Tuple ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def UpperCAmelCase__ ( __magic_name__ : int , __magic_name__ : List[Any] ): '''simple docstring''' if args.student_type == "roberta": lowerCAmelCase : Tuple = False elif args.student_type == "gpt2": lowerCAmelCase : Optional[int] = False def UpperCAmelCase__ ( __magic_name__ : Tuple , __magic_name__ : int ): '''simple docstring''' if args.student_type == "roberta": lowerCAmelCase : Optional[Any] = False def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase : Tuple = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=__magic_name__ , required=__magic_name__ , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=__magic_name__ , required=__magic_name__ , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=__magic_name__ , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=__magic_name__ , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=__magic_name__ , required=__magic_name__ , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=__magic_name__ , type=__magic_name__ , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=__magic_name__ , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=__magic_name__ , required=__magic_name__ , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=__magic_name__ , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=__magic_name__ , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=__magic_name__ , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=__magic_name__ , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=__magic_name__ , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=__magic_name__ , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=__magic_name__ , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=__magic_name__ , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=__magic_name__ , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=__magic_name__ , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=__magic_name__ , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=__magic_name__ , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=__magic_name__ , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=__magic_name__ , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=__magic_name__ , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=__magic_name__ , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=__magic_name__ , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5e-4 , type=__magic_name__ , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1e-6 , type=__magic_name__ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=__magic_name__ , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=__magic_name__ , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=__magic_name__ , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=__magic_name__ , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=__magic_name__ , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=__magic_name__ , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=__magic_name__ , default=5_00 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=__magic_name__ , default=40_00 , help='''Checkpoint interval.''' ) lowerCAmelCase : List[Any] = parser.parse_args() sanity_checks(__magic_name__ ) # ARGS # init_gpu_params(__magic_name__ ) set_seed(__magic_name__ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(f'''Param: {args}''' ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(__magic_name__ ) , __magic_name__ , indent=4 ) git_log(args.dump_path ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[str] = MODEL_CLASSES[args.student_type] lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = MODEL_CLASSES[args.teacher_type] # TOKENIZER # lowerCAmelCase : Optional[int] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) lowerCAmelCase : Union[str, Any] = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): lowerCAmelCase : List[Any] = tokenizer.all_special_tokens.index(__magic_name__ ) lowerCAmelCase : Dict = tokenizer.all_special_ids[idx] logger.info(f'''Special tokens {special_tok_ids}''' ) lowerCAmelCase : Optional[int] = special_tok_ids lowerCAmelCase : Any = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f'''Loading data from {args.data_file}''' ) with open(args.data_file , '''rb''' ) as fp: lowerCAmelCase : Optional[int] = pickle.load(__magic_name__ ) if args.mlm: logger.info(f'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , '''rb''' ) as fp: lowerCAmelCase : Tuple = pickle.load(__magic_name__ ) lowerCAmelCase : Tuple = np.maximum(__magic_name__ , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): lowerCAmelCase : List[str] = 0.0 # do not predict special tokens lowerCAmelCase : Any = torch.from_numpy(__magic_name__ ) else: lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : Union[str, Any] = LmSeqsDataset(params=__magic_name__ , data=__magic_name__ ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(f'''Loading student config from {args.student_config}''' ) lowerCAmelCase : Tuple = student_config_class.from_pretrained(args.student_config ) lowerCAmelCase : str = True if args.student_pretrained_weights is not None: logger.info(f'''Loading pretrained weights from {args.student_pretrained_weights}''' ) lowerCAmelCase : str = student_model_class.from_pretrained(args.student_pretrained_weights , config=__magic_name__ ) else: lowerCAmelCase : str = student_model_class(__magic_name__ ) if args.n_gpu > 0: student.to(f'''cuda:{args.local_rank}''' ) logger.info('''Student loaded.''' ) # TEACHER # lowerCAmelCase : str = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=__magic_name__ ) if args.n_gpu > 0: teacher.to(f'''cuda:{args.local_rank}''' ) logger.info(f'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(__magic_name__ , __magic_name__ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(__magic_name__ , __magic_name__ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() lowerCAmelCase : List[Any] = Distiller( params=__magic_name__ , dataset=__magic_name__ , token_probs=__magic_name__ , student=__magic_name__ , teacher=__magic_name__ ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
348
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""", } class A__ ( _lowerCamelCase , _lowerCamelCase): A_ : Any = 'resnet' A_ : Optional[int] = ['basic', 'bottleneck'] def __init__( self , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=[2_56, 5_12, 10_24, 20_48] , _SCREAMING_SNAKE_CASE=[3, 4, 6, 3] , _SCREAMING_SNAKE_CASE="bottleneck" , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ): super().__init__(**_SCREAMING_SNAKE_CASE ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) __lowerCAmelCase : int = num_channels __lowerCAmelCase : Optional[Any] = embedding_size __lowerCAmelCase : int = hidden_sizes __lowerCAmelCase : Optional[int] = depths __lowerCAmelCase : Optional[int] = layer_type __lowerCAmelCase : int = hidden_act __lowerCAmelCase : List[str] = downsample_in_first_stage __lowerCAmelCase : Union[str, Any] = ['stem'] + [f"stage{idx}" for idx in range(1 , len(_SCREAMING_SNAKE_CASE ) + 1 )] __lowerCAmelCase , __lowerCAmelCase : str = get_aligned_output_features_output_indices( out_features=_SCREAMING_SNAKE_CASE , out_indices=_SCREAMING_SNAKE_CASE , stage_names=self.stage_names ) class A__ ( _lowerCamelCase): A_ : int = version.parse('1.11') @property def __lowerCamelCase ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __lowerCamelCase ( self ): return 1E-3
549
"""simple docstring""" # Imports import numpy as np class A__ : def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ): self.set_matricies(red=_SCREAMING_SNAKE_CASE , green=_SCREAMING_SNAKE_CASE , blue=_SCREAMING_SNAKE_CASE , red_edge=_SCREAMING_SNAKE_CASE , nir=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ): if red is not None: __lowerCAmelCase : Optional[int] = red if green is not None: __lowerCAmelCase : Any = green if blue is not None: __lowerCAmelCase : str = blue if red_edge is not None: __lowerCAmelCase : Dict = red_edge if nir is not None: __lowerCAmelCase : Dict = nir return True def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE="" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ): self.set_matricies(red=_SCREAMING_SNAKE_CASE , green=_SCREAMING_SNAKE_CASE , blue=_SCREAMING_SNAKE_CASE , red_edge=_SCREAMING_SNAKE_CASE , nir=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = { 'ARVI2': self.arvaa, 'CCCI': self.ccci, 'CVI': self.cvi, 'GLI': self.gli, 'NDVI': self.ndvi, 'BNDVI': self.bndvi, 'redEdgeNDVI': self.red_edge_ndvi, 'GNDVI': self.gndvi, 'GBNDVI': self.gbndvi, 'GRNDVI': self.grndvi, 'RBNDVI': self.rbndvi, 'PNDVI': self.pndvi, 'ATSAVI': self.atsavi, 'BWDRVI': self.bwdrvi, 'CIgreen': self.ci_green, 'CIrededge': self.ci_rededge, 'CI': self.ci, 'CTVI': self.ctvi, 'GDVI': self.gdvi, 'EVI': self.evi, 'GEMI': self.gemi, 'GOSAVI': self.gosavi, 'GSAVI': self.gsavi, 'Hue': self.hue, 'IVI': self.ivi, 'IPVI': self.ipvi, 'I': self.i, 'RVI': self.rvi, 'MRVI': self.mrvi, 'MSAVI': self.m_savi, 'NormG': self.norm_g, 'NormNIR': self.norm_nir, 'NormR': self.norm_r, 'NGRDI': self.ngrdi, 'RI': self.ri, 'S': self.s, 'IF': self._if, 'DVI': self.dvi, 'TVI': self.tvi, 'NDRE': self.ndre, } try: return funcs[index]() except KeyError: print('Index not in the list!' ) return False def __lowerCamelCase ( self ): return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def __lowerCamelCase ( self ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def __lowerCamelCase ( self ): return self.nir * (self.red / (self.green**2)) def __lowerCamelCase ( self ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def __lowerCamelCase ( self ): return (self.nir - self.red) / (self.nir + self.red) def __lowerCamelCase ( self ): return (self.nir - self.blue) / (self.nir + self.blue) def __lowerCamelCase ( self ): return (self.redEdge - self.red) / (self.redEdge + self.red) def __lowerCamelCase ( self ): return (self.nir - self.green) / (self.nir + self.green) def __lowerCamelCase ( self ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def __lowerCamelCase ( self ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def __lowerCamelCase ( self ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def __lowerCamelCase ( self ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE=0.08 , _SCREAMING_SNAKE_CASE=1.22 , _SCREAMING_SNAKE_CASE=0.03 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def __lowerCamelCase ( self ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def __lowerCamelCase ( self ): return (self.nir / self.green) - 1 def __lowerCamelCase ( self ): return (self.nir / self.redEdge) - 1 def __lowerCamelCase ( self ): return (self.red - self.blue) / self.red def __lowerCamelCase ( self ): __lowerCAmelCase : Dict = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def __lowerCamelCase ( self ): return self.nir - self.green def __lowerCamelCase ( self ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE=0.16 ): return (self.nir - self.green) / (self.nir + self.green + y) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def __lowerCamelCase ( self ): return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ): return (self.nir - b) / (a * self.red) def __lowerCamelCase ( self ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def __lowerCamelCase ( self ): return (self.red + self.green + self.blue) / 30.5 def __lowerCamelCase ( self ): return self.nir / self.red def __lowerCamelCase ( self ): return (self.rvi() - 1) / (self.rvi() + 1) def __lowerCamelCase ( self ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def __lowerCamelCase ( self ): return self.green / (self.nir + self.red + self.green) def __lowerCamelCase ( self ): return self.nir / (self.nir + self.red + self.green) def __lowerCamelCase ( self ): return self.red / (self.nir + self.red + self.green) def __lowerCamelCase ( self ): return (self.green - self.red) / (self.green + self.red) def __lowerCamelCase ( self ): return (self.red - self.green) / (self.red + self.green) def __lowerCamelCase ( self ): __lowerCAmelCase : List[Any] = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) __lowerCAmelCase : Dict = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def __lowerCamelCase ( self ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def __lowerCamelCase ( self ): return self.nir / self.red def __lowerCamelCase ( self ): return (self.ndvi() + 0.5) ** (1 / 2) def __lowerCamelCase ( self ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
549
1
import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py A_ : Dict = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. A_ : str = importlib.util.spec_from_file_location( 'transformers', os.path.join(PATH_TO_TRANSFORMERS, '__init__.py'), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) A_ : Tuple = spec.loader.load_module() A_ : str = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` A_ : Any = re.compile('\[(.+?)\]\((https://huggingface\.co/.+?)\)') A_ : Optional[int] = { 'CLIPConfigMixin', 'DecisionTransformerConfigMixin', 'EncoderDecoderConfigMixin', 'RagConfigMixin', 'SpeechEncoderDecoderConfigMixin', 'VisionEncoderDecoderConfigMixin', 'VisionTextDualEncoderConfigMixin', } def snake_case () -> Optional[Any]: UpperCamelCase_: str = [] for config_class in list(CONFIG_MAPPING.values() ): UpperCamelCase_: int = False # source code of `config_class` UpperCamelCase_: int = inspect.getsource(UpperCAmelCase__ ) UpperCamelCase_: List[Any] = _re_checkpoint.findall(UpperCAmelCase__ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` UpperCamelCase_ ,UpperCamelCase_: int = checkpoint # verify the checkpoint name corresponds to the checkpoint link UpperCamelCase_: List[str] = F'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: UpperCamelCase_: Optional[Any] = True break UpperCamelCase_: Tuple = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > 0: UpperCamelCase_: List[Any] = '\n'.join(sorted(UpperCAmelCase__ ) ) raise ValueError(F'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
57
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): raise ValueError('''multiplicative_persistence() only accepts integral values''') if num < 0: raise ValueError('''multiplicative_persistence() does not accept negative values''') _a = 0 _a = str(__A) while len(__A) != 1: _a = [int(__A) for i in num_string] _a = 1 for i in range(0 , len(__A)): total *= numbers[i] _a = str(__A) steps += 1 return steps def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): raise ValueError('''additive_persistence() only accepts integral values''') if num < 0: raise ValueError('''additive_persistence() does not accept negative values''') _a = 0 _a = str(__A) while len(__A) != 1: _a = [int(__A) for i in num_string] _a = 0 for i in range(0 , len(__A)): total += numbers[i] _a = str(__A) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
11
0
"""simple docstring""" def lowercase__ ( snake_case_ :int = 1_000 ): __UpperCAmelCase , __UpperCAmelCase = 1, 1 __UpperCAmelCase = 2 while True: __UpperCAmelCase = 0 __UpperCAmelCase = fa + fa __UpperCAmelCase , __UpperCAmelCase = fa, f index += 1 for _ in str(snake_case_ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
721
"""simple docstring""" import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _lowercase : int = logging.get_logger(__name__) _lowercase : List[str] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _lowercase : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : a__ : str = field( default=_lowerCAmelCase , metadata={"help": "Model type selected in the list: " + ", ".join(_lowerCAmelCase )} ) a__ : str = field( default=_lowerCAmelCase , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."} ) a__ : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) a__ : int = field( default=128 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , ) a__ : int = field( default=64 , metadata={ "help": ( "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length." ) } , ) a__ : int = field( default=30 , metadata={ "help": ( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ) } , ) a__ : bool = field( default=_lowerCAmelCase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) a__ : bool = field( default=_lowerCAmelCase , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."} ) a__ : float = field( default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) a__ : int = field( default=20 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) a__ : int = field( default=0 , metadata={ "help": ( "language id of input for language-specific xlm models (see" " tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)" ) } , ) a__ : int = field(default=1 , metadata={"help": "multiple threads for converting example to features"} ) class _UpperCAmelCase ( _lowerCAmelCase ): a__ : List[str] = "train" a__ : List[Any] = "dev" class _UpperCAmelCase ( _lowerCAmelCase ): a__ : SquadDataTrainingArguments a__ : List[SquadFeatures] a__ : Split a__ : bool def __init__( self : Optional[Any] , _lowercase : SquadDataTrainingArguments , _lowercase : PreTrainedTokenizer , _lowercase : Optional[int] = None , _lowercase : Union[str, Split] = Split.train , _lowercase : Optional[bool] = False , _lowercase : Optional[str] = None , _lowercase : Optional[str] = "pt" , ): __UpperCAmelCase = args __UpperCAmelCase = is_language_sensitive __UpperCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_lowercase , _lowercase ): try: __UpperCAmelCase = Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) __UpperCAmelCase = mode # Load data features from cache or dataset file __UpperCAmelCase = '''v2''' if args.version_2_with_negative else '''v1''' __UpperCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __UpperCAmelCase = cached_features_file + '''.lock''' with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not args.overwrite_cache: __UpperCAmelCase = time.time() __UpperCAmelCase = torch.load(_lowercase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __UpperCAmelCase = self.old_features['''features'''] __UpperCAmelCase = self.old_features.get('''dataset''' , _lowercase ) __UpperCAmelCase = self.old_features.get('''examples''' , _lowercase ) logger.info( F'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ''' future run''' ) else: if mode == Split.dev: __UpperCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: __UpperCAmelCase = self.processor.get_train_examples(args.data_dir ) __UpperCAmelCase , __UpperCAmelCase = squad_convert_examples_to_features( examples=self.examples , tokenizer=_lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_lowercase , ) __UpperCAmelCase = time.time() torch.save( {'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples} , _lowercase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self : Dict ): return len(self.features ) def __getitem__( self : Any , _lowercase : Optional[int] ): # Convert to Tensors and build dataset __UpperCAmelCase = self.features[i] __UpperCAmelCase = torch.tensor(feature.input_ids , dtype=torch.long ) __UpperCAmelCase = torch.tensor(feature.attention_mask , dtype=torch.long ) __UpperCAmelCase = torch.tensor(feature.token_type_ids , dtype=torch.long ) __UpperCAmelCase = torch.tensor(feature.cls_index , dtype=torch.long ) __UpperCAmelCase = torch.tensor(feature.p_mask , dtype=torch.float ) __UpperCAmelCase = torch.tensor(feature.is_impossible , dtype=torch.float ) __UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': attention_mask, '''token_type_ids''': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} ) if self.args.version_2_with_negative: inputs.update({'''is_impossible''': is_impossible} ) if self.is_language_sensitive: inputs.update({'''langs''': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __UpperCAmelCase = torch.tensor(feature.start_position , dtype=torch.long ) __UpperCAmelCase = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} ) return inputs
397
0
UpperCAmelCase_ = """Alexander Joslin""" import operator as op from .stack import Stack def SCREAMING_SNAKE_CASE_ ( _snake_case :str ) -> int: _A = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} _A = Stack() _A = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_snake_case ) ) elif i in operators: # RULE 2 operator_stack.push(_snake_case ) elif i == ")": # RULE 4 _A = operator_stack.peek() operator_stack.pop() _A = operand_stack.peek() operand_stack.pop() _A = operand_stack.peek() operand_stack.pop() _A = operators[opr](_snake_case , _snake_case ) operand_stack.push(_snake_case ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": UpperCAmelCase_ = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(f'{equation} = {dijkstras_two_stack_algorithm(equation)}')
2
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """post_extract_proj""": """feature_projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.upsample.0""": """encoder.upsample.projection""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[str, Any] , _snake_case :str , _snake_case :Any , _snake_case :int , _snake_case :List[Any] ) -> Optional[int]: for attribute in key.split('''.''' ): _A = getattr(_snake_case , _snake_case ) if weight_type is not None: _A = getattr(_snake_case , _snake_case ).shape else: _A = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _A = value elif weight_type == "weight_g": _A = value elif weight_type == "weight_v": _A = value elif weight_type == "bias": _A = value else: _A = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[str, Any] , _snake_case :Any , _snake_case :int ) -> Any: _A = [] _A = fairseq_model.state_dict() _A = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _A = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == '''group''' , ) _A = True else: for key, mapped_key in MAPPING.items(): _A = '''sew.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _A = True if "*" in mapped_key: _A = name.split(_snake_case )[0].split('''.''' )[-2] _A = mapped_key.replace('''*''' , _snake_case ) if "weight_g" in name: _A = '''weight_g''' elif "weight_v" in name: _A = '''weight_v''' elif "weight" in name: _A = '''weight''' elif "bias" in name: _A = '''bias''' else: _A = None set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) continue if not is_used: unused_weights.append(_snake_case ) logger.warning(F'''Unused weights: {unused_weights}''' ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Tuple , _snake_case :List[str] , _snake_case :List[str] , _snake_case :Optional[int] , _snake_case :List[Any] ) -> Any: _A = full_name.split('''conv_layers.''' )[-1] _A = name.split('''.''' ) _A = int(items[0] ) _A = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _A = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _A = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _A = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _A = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_snake_case ) def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :Dict ) -> Tuple: _A = SEWConfig() if is_finetuned: _A = model.wav_encoder.wav_model.cfg else: _A = model.cfg _A = fs_config.conv_bias _A = eval(fs_config.conv_feature_layers ) _A = [x[0] for x in conv_layers] _A = [x[1] for x in conv_layers] _A = [x[2] for x in conv_layers] _A = '''gelu''' _A = '''layer''' if fs_config.extractor_mode == '''layer_norm''' else '''group''' _A = 0.0 _A = fs_config.activation_fn.name _A = fs_config.encoder_embed_dim _A = 0.02 _A = fs_config.encoder_ffn_embed_dim _A = 1E-5 _A = fs_config.encoder_layerdrop _A = fs_config.encoder_attention_heads _A = fs_config.conv_pos_groups _A = fs_config.conv_pos _A = len(_snake_case ) _A = fs_config.encoder_layers _A = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: _A = model.cfg _A = fs_config.final_dropout _A = fs_config.layerdrop _A = fs_config.activation_dropout _A = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 _A = fs_config.attention_dropout _A = fs_config.dropout_input _A = fs_config.dropout _A = fs_config.mask_channel_length _A = fs_config.mask_channel_prob _A = fs_config.mask_length _A = fs_config.mask_prob _A = '''Wav2Vec2FeatureExtractor''' _A = '''Wav2Vec2CTCTokenizer''' return config @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[int] , _snake_case :Union[str, Any] , _snake_case :Optional[Any]=None , _snake_case :Optional[int]=None , _snake_case :Dict=True ) -> List[Any]: if is_finetuned: _A , _A , _A = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: _A , _A , _A = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: _A = SEWConfig.from_pretrained(_snake_case ) else: _A = convert_config(model[0] , _snake_case ) _A = model[0].eval() _A = True if config.feat_extract_norm == '''layer''' else False _A = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) if is_finetuned: if dict_path: _A = Dictionary.load(_snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _A = target_dict.pad_index _A = target_dict.bos_index _A = target_dict.pad_index _A = target_dict.bos_index _A = target_dict.eos_index _A = len(target_dict.symbols ) _A = os.path.join(_snake_case , '''vocab.json''' ) if not os.path.isdir(_snake_case ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_snake_case ) ) return os.makedirs(_snake_case , exist_ok=_snake_case ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices , _snake_case ) _A = WavaVecaCTCTokenizer( _snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_snake_case , ) _A = WavaVecaProcessor(feature_extractor=_snake_case , tokenizer=_snake_case ) processor.save_pretrained(_snake_case ) _A = SEWForCTC(_snake_case ) else: _A = SEWModel(_snake_case ) feature_extractor.save_pretrained(_snake_case ) recursively_load_weights(_snake_case , _snake_case , _snake_case ) hf_model.save_pretrained(_snake_case ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--is_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) UpperCAmelCase_ = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
2
1
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self :int , __magic_name__ :Tuple , __magic_name__ :int=2 , __magic_name__ :Dict=True , __magic_name__ :Optional[int]=False , __magic_name__ :Optional[Any]=10 , __magic_name__ :Tuple=3 , __magic_name__ :List[Any]=32 * 8 , __magic_name__ :Union[str, Any]=32 * 8 , __magic_name__ :Optional[Any]=4 , __magic_name__ :Optional[Any]=64 , ) -> str: '''simple docstring''' a__ = parent a__ = batch_size a__ = is_training a__ = use_auxiliary_loss a__ = num_queries a__ = num_channels a__ = min_size a__ = max_size a__ = num_labels a__ = hidden_dim a__ = hidden_dim def _UpperCamelCase ( self :Tuple ) -> int: '''simple docstring''' a__ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __magic_name__ ) a__ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=__magic_name__ ) a__ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__magic_name__ ) > 0.5 ).float() a__ = (torch.rand((self.batch_size, self.num_labels) , device=__magic_name__ ) > 0.5).long() a__ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _UpperCamelCase ( self :Union[str, Any] ) -> List[Any]: '''simple docstring''' a__ = MaskaFormerConfig( hidden_size=self.hidden_dim , ) a__ = self.num_queries a__ = self.num_labels a__ = [1, 1, 1, 1] a__ = self.num_channels a__ = 64 a__ = 128 a__ = self.hidden_dim a__ = self.hidden_dim a__ = self.hidden_dim return config def _UpperCamelCase ( self :str ) -> int: '''simple docstring''' a__ , a__ , a__ , a__ , a__ = self.prepare_config_and_inputs() a__ = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def _UpperCamelCase ( self :Any , __magic_name__ :Union[str, Any] , __magic_name__ :Tuple ) -> Dict: '''simple docstring''' a__ = output.encoder_hidden_states a__ = output.pixel_decoder_hidden_states a__ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(__magic_name__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__magic_name__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__magic_name__ ) , config.decoder_layers ) def _UpperCamelCase ( self :Optional[int] , __magic_name__ :Union[str, Any] , __magic_name__ :str , __magic_name__ :Optional[int] , __magic_name__ :List[str]=False ) -> Any: '''simple docstring''' with torch.no_grad(): a__ = MaskaFormerModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() a__ = model(pixel_values=__magic_name__ , pixel_mask=__magic_name__ ) a__ = model(__magic_name__ , output_hidden_states=__magic_name__ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__magic_name__ , __magic_name__ ) def _UpperCamelCase ( self :Any , __magic_name__ :Optional[Any] , __magic_name__ :List[str] , __magic_name__ :Any , __magic_name__ :Union[str, Any] , __magic_name__ :int ) -> Any: '''simple docstring''' a__ = MaskaFormerForUniversalSegmentation(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() def comm_check_on_output(__magic_name__ :Optional[Any] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): a__ = model(pixel_values=__magic_name__ , pixel_mask=__magic_name__ ) a__ = model(__magic_name__ ) comm_check_on_output(__magic_name__ ) a__ = model( pixel_values=__magic_name__ , pixel_mask=__magic_name__ , mask_labels=__magic_name__ , class_labels=__magic_name__ ) comm_check_on_output(__magic_name__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' snake_case__ : Optional[Any] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () snake_case__ : Dict = {'feature-extraction': MaskaFormerModel} if is_torch_available() else {} snake_case__ : str = False snake_case__ : int = False snake_case__ : int = False snake_case__ : List[Any] = False def _UpperCamelCase ( self :str ) -> List[str]: '''simple docstring''' a__ = MaskaFormerModelTester(self ) a__ = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ ) def _UpperCamelCase ( self :List[str] ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCamelCase ( self :Any ) -> str: '''simple docstring''' a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__magic_name__ , **__magic_name__ , output_hidden_states=__magic_name__ ) def _UpperCamelCase ( self :List[Any] ) -> List[Any]: '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__magic_name__ ) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''' ) def _UpperCamelCase ( self :Union[str, Any] ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' ) def _UpperCamelCase ( self :str ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason='''Mask2Former is not a generative model''' ) def _UpperCamelCase ( self :str ) -> Dict: '''simple docstring''' pass @unittest.skip(reason='''Mask2Former does not use token embeddings''' ) def _UpperCamelCase ( self :Union[str, Any] ) -> Dict: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def _UpperCamelCase ( self :Dict ) -> Any: '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _UpperCamelCase ( self :Dict ) -> Optional[int]: '''simple docstring''' pass def _UpperCamelCase ( self :Optional[Any] ) -> Any: '''simple docstring''' a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(__magic_name__ ) a__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ = [*signature.parameters.keys()] a__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __magic_name__ ) @slow def _UpperCamelCase ( self :Optional[Any] ) -> int: '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: a__ = MaskaFormerModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def _UpperCamelCase ( self :Union[str, Any] ) -> Any: '''simple docstring''' a__ = (self.model_tester.min_size,) * 2 a__ = { '''pixel_values''': torch.randn((2, 3, *size) , device=__magic_name__ ), '''mask_labels''': torch.randn((2, 10, *size) , device=__magic_name__ ), '''class_labels''': torch.zeros(2 , 10 , device=__magic_name__ ).long(), } a__ = self.model_tester.get_config() a__ = MaskaFormerForUniversalSegmentation(__magic_name__ ).to(__magic_name__ ) a__ = model(**__magic_name__ ) self.assertTrue(outputs.loss is not None ) def _UpperCamelCase ( self :Union[str, Any] ) -> Dict: '''simple docstring''' a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__magic_name__ , **__magic_name__ , output_hidden_states=__magic_name__ ) def _UpperCamelCase ( self :int ) -> Tuple: '''simple docstring''' a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(__magic_name__ ).to(__magic_name__ ) a__ = model(**__magic_name__ , output_attentions=__magic_name__ ) self.assertTrue(outputs.attentions is not None ) def _UpperCamelCase ( self :Optional[int] ) -> Any: '''simple docstring''' if not self.model_tester.is_training: return a__ = self.all_model_classes[1] a__ , a__ , a__ , a__ , a__ = self.model_tester.prepare_config_and_inputs() a__ = model_class(__magic_name__ ) model.to(__magic_name__ ) model.train() a__ = model(__magic_name__ , mask_labels=__magic_name__ , class_labels=__magic_name__ ).loss loss.backward() def _UpperCamelCase ( self :List[Any] ) -> str: '''simple docstring''' a__ = self.all_model_classes[1] a__ , a__ , a__ , a__ , a__ = self.model_tester.prepare_config_and_inputs() a__ = True a__ = True a__ = model_class(__magic_name__ ).to(__magic_name__ ) model.train() a__ = model(__magic_name__ , mask_labels=__magic_name__ , class_labels=__magic_name__ ) a__ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() a__ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() a__ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() a__ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__magic_name__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __lowerCAmelCase : str = 1E-4 def __snake_case ( ) -> Dict: """simple docstring""" a__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _UpperCamelCase ( self :List[Any] ) -> int: '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def _UpperCamelCase ( self :Optional[Any] ) -> Optional[Any]: '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _UpperCamelCase ( self :Dict ) -> Tuple: '''simple docstring''' a__ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(__magic_name__ ) a__ = self.default_image_processor a__ = prepare_img() a__ = image_processor(__magic_name__ , return_tensors='''pt''' ).to(__magic_name__ ) a__ = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__magic_name__ , (1, 3, 384, 384) ) with torch.no_grad(): a__ = model(**__magic_name__ ) a__ = torch.tensor( [[-0.2_790, -1.0_717, -1.1_668], [-0.5_128, -0.3_128, -0.4_987], [-0.5_832, 0.1_971, -0.0_197]] ).to(__magic_name__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __magic_name__ , atol=__magic_name__ ) ) a__ = torch.tensor( [[0.8_973, 1.1_847, 1.1_776], [1.1_934, 1.5_040, 1.5_128], [1.1_153, 1.4_486, 1.4_951]] ).to(__magic_name__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __magic_name__ , atol=__magic_name__ ) ) a__ = torch.tensor( [[2.1_152, 1.7_000, -0.8_603], [1.5_808, 1.8_004, -0.9_353], [1.6_043, 1.7_495, -0.5_999]] ).to(__magic_name__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __magic_name__ , atol=__magic_name__ ) ) def _UpperCamelCase ( self :List[Any] ) -> Union[str, Any]: '''simple docstring''' a__ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__magic_name__ ).eval() a__ = self.default_image_processor a__ = prepare_img() a__ = image_processor(__magic_name__ , return_tensors='''pt''' ).to(__magic_name__ ) a__ = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__magic_name__ , (1, 3, 384, 384) ) with torch.no_grad(): a__ = model(**__magic_name__ ) # masks_queries_logits a__ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) a__ = [ [-8.7_839, -9.0_056, -8.8_121], [-7.4_104, -7.0_313, -6.5_401], [-6.6_105, -6.3_427, -6.4_675], ] a__ = torch.tensor(__magic_name__ ).to(__magic_name__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __magic_name__ , atol=__magic_name__ ) ) # class_queries_logits a__ = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) a__ = torch.tensor( [ [1.8_324, -8.0_835, -4.1_922], [0.8_450, -9.0_050, -3.6_053], [0.3_045, -7.7_293, -3.0_275], ] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __magic_name__ , atol=__magic_name__ ) ) def _UpperCamelCase ( self :Dict ) -> str: '''simple docstring''' a__ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__magic_name__ ).eval() a__ = self.default_image_processor a__ = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , ) a__ = inputs['''pixel_values'''].to(__magic_name__ ) a__ = [el.to(__magic_name__ ) for el in inputs['''mask_labels''']] a__ = [el.to(__magic_name__ ) for el in inputs['''class_labels''']] with torch.no_grad(): a__ = model(**__magic_name__ ) self.assertTrue(outputs.loss is not None )
158
"""simple docstring""" import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' snake_case__ : str = ['image_processor', 'tokenizer'] snake_case__ : List[str] = 'FlavaImageProcessor' snake_case__ : Dict = ('BertTokenizer', 'BertTokenizerFast') def __init__( self :List[Any] , __magic_name__ :List[Any]=None , __magic_name__ :int=None , **__magic_name__ :List[Any] ) -> List[str]: '''simple docstring''' a__ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __magic_name__ , ) a__ = kwargs.pop('''feature_extractor''' ) a__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__magic_name__ , __magic_name__ ) a__ = self.image_processor def __call__( self :Any , __magic_name__ :Optional[ImageInput] = None , __magic_name__ :Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , __magic_name__ :bool = True , __magic_name__ :Union[bool, str, PaddingStrategy] = False , __magic_name__ :Union[bool, str, TruncationStrategy] = False , __magic_name__ :Optional[int] = None , __magic_name__ :int = 0 , __magic_name__ :Optional[int] = None , __magic_name__ :Optional[bool] = None , __magic_name__ :Optional[bool] = None , __magic_name__ :Optional[bool] = None , __magic_name__ :Optional[bool] = None , __magic_name__ :bool = False , __magic_name__ :bool = False , __magic_name__ :bool = False , __magic_name__ :bool = False , __magic_name__ :bool = True , __magic_name__ :Optional[Union[str, TensorType]] = None , **__magic_name__ :Any , ) -> Tuple: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: a__ = self.tokenizer( text=__magic_name__ , add_special_tokens=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , stride=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_token_type_ids=__magic_name__ , return_attention_mask=__magic_name__ , return_overflowing_tokens=__magic_name__ , return_special_tokens_mask=__magic_name__ , return_offsets_mapping=__magic_name__ , return_length=__magic_name__ , verbose=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , ) if images is not None: a__ = self.image_processor( __magic_name__ , return_image_mask=__magic_name__ , return_codebook_pixels=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , ) if text is not None and images is not None: encoding.update(__magic_name__ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__magic_name__ ) , tensor_type=__magic_name__ ) def _UpperCamelCase ( self :Union[str, Any] , *__magic_name__ :List[str] , **__magic_name__ :Dict ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def _UpperCamelCase ( self :Tuple , *__magic_name__ :Tuple , **__magic_name__ :List[str] ) -> List[Any]: '''simple docstring''' return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) @property def _UpperCamelCase ( self :List[Any] ) -> str: '''simple docstring''' a__ = self.tokenizer.model_input_names a__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _UpperCamelCase ( self :int ) -> Optional[Any]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __magic_name__ , ) return self.image_processor_class @property def _UpperCamelCase ( self :int ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __magic_name__ , ) return self.image_processor
158
1
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef UpperCAmelCase_ : List[Any] = ( "This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py" ) def UpperCamelCase ( _A : int , _A : Tuple )-> Tuple: """simple docstring""" warnings.warn(_A , _A ) requires_backends(_A , "sklearn" ) return (preds == labels).mean() def UpperCamelCase ( _A : int , _A : Any )-> List[Any]: """simple docstring""" warnings.warn(_A , _A ) requires_backends(_A , "sklearn" ) A__ = simple_accuracy(_A , _A ) A__ = fa_score(y_true=_A , y_pred=_A ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def UpperCamelCase ( _A : Optional[int] , _A : List[str] )-> Tuple: """simple docstring""" warnings.warn(_A , _A ) requires_backends(_A , "sklearn" ) A__ = pearsonr(_A , _A )[0] A__ = spearmanr(_A , _A )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def UpperCamelCase ( _A : Optional[int] , _A : List[Any] , _A : Optional[Any] )-> Dict: """simple docstring""" warnings.warn(_A , _A ) requires_backends(_A , "sklearn" ) assert len(_A ) == len(_A ), f"""Predictions and labels have mismatched lengths {len(_A )} and {len(_A )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(_A , _A )} elif task_name == "sst-2": return {"acc": simple_accuracy(_A , _A )} elif task_name == "mrpc": return acc_and_fa(_A , _A ) elif task_name == "sts-b": return pearson_and_spearman(_A , _A ) elif task_name == "qqp": return acc_and_fa(_A , _A ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(_A , _A )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(_A , _A )} elif task_name == "qnli": return {"acc": simple_accuracy(_A , _A )} elif task_name == "rte": return {"acc": simple_accuracy(_A , _A )} elif task_name == "wnli": return {"acc": simple_accuracy(_A , _A )} elif task_name == "hans": return {"acc": simple_accuracy(_A , _A )} else: raise KeyError(_A ) def UpperCamelCase ( _A : List[str] , _A : int , _A : str )-> Dict: """simple docstring""" warnings.warn(_A , _A ) requires_backends(_A , "sklearn" ) if len(_A ) != len(_A ): raise ValueError(f"""Predictions and labels have mismatched lengths {len(_A )} and {len(_A )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(_A , _A )} else: raise KeyError(_A )
491
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys UpperCAmelCase_ : Any = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") UpperCAmelCase_ : Union[str, Any] = subprocess.check_output(F'''git diff --name-only {fork_point_sha}'''.split()).decode("utf-8").split() UpperCAmelCase_ : Optional[int] = "|".join(sys.argv[1:]) UpperCAmelCase_ : List[Any] = re.compile(RF'''^({joined_dirs}).*?\.py$''') UpperCAmelCase_ : List[Any] = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
491
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowercase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
710
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowercase_ = get_tests_dir("fixtures") lowercase_ = get_tests_dir("fixtures/dummy_feature_extractor_config.json") lowercase_ = get_tests_dir("fixtures/dummy-config.json") class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def snake_case__ ( self : Any ): __snake_case : Tuple = 0 def snake_case__ ( self : int ): __snake_case : int = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Dict ): __snake_case : Optional[Any] = AutoFeatureExtractor.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : List[Any] ): with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : Optional[Any] = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally __snake_case : Optional[Any] = AutoFeatureExtractor.from_pretrained(_lowerCAmelCase ).to_dict() config_dict.pop("""feature_extractor_type""" ) __snake_case : Tuple = WavaVecaFeatureExtractor(**_lowerCAmelCase ) # save in new folder model_config.save_pretrained(_lowerCAmelCase ) config.save_pretrained(_lowerCAmelCase ) __snake_case : Optional[Any] = AutoFeatureExtractor.from_pretrained(_lowerCAmelCase ) # make sure private variable is not incorrectly saved __snake_case : Any = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Dict ): __snake_case : Dict = AutoFeatureExtractor.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : List[str] ): with self.assertRaisesRegex( _lowerCAmelCase , """bert-base is not a local folder and is not a valid model identifier""" ): __snake_case : Any = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def snake_case__ ( self : Dict ): with self.assertRaisesRegex( _lowerCAmelCase , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __snake_case : Dict = AutoFeatureExtractor.from_pretrained(_lowerCAmelCase , revision="""aaaaaa""" ) def snake_case__ ( self : str ): with self.assertRaisesRegex( _lowerCAmelCase , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): __snake_case : Union[str, Any] = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def snake_case__ ( self : str ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_lowerCAmelCase ): __snake_case : Optional[int] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_lowerCAmelCase ): __snake_case : List[str] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=_lowerCAmelCase ) __snake_case : Tuple = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=_lowerCAmelCase ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_lowerCAmelCase ) __snake_case : Optional[int] = AutoFeatureExtractor.from_pretrained(_lowerCAmelCase , trust_remote_code=_lowerCAmelCase ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def snake_case__ ( self : List[Any] ): try: AutoConfig.register("""custom""" , _lowerCAmelCase ) AutoFeatureExtractor.register(_lowerCAmelCase , _lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowerCAmelCase ): AutoFeatureExtractor.register(_lowerCAmelCase , _lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API __snake_case : List[str] = CustomFeatureExtractor.from_pretrained(_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_lowerCAmelCase ) __snake_case : Optional[int] = AutoFeatureExtractor.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def snake_case__ ( self : Union[str, Any] ): class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Tuple = True try: AutoConfig.register("""custom""" , _lowerCAmelCase ) AutoFeatureExtractor.register(_lowerCAmelCase , _lowerCAmelCase ) # If remote code is not set, the default is to use local __snake_case : Any = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. __snake_case : List[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=_lowerCAmelCase ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub __snake_case : List[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=_lowerCAmelCase ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(_lowerCAmelCase , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
390
0
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class snake_case_ : '''simple docstring''' lowerCamelCase = 42 lowerCamelCase = None lowerCamelCase = None snake_case_ : Optional[int] = namedtuple("CoinsDistribResult", "moves excess") def __a ( __UpperCAmelCase : TreeNode | None ) -> int: """simple docstring""" if root is None: return 0 # Validation def count_nodes(__UpperCAmelCase : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(__UpperCAmelCase : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(__UpperCAmelCase ) != count_coins(__UpperCAmelCase ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(__UpperCAmelCase : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowerCamelCase_ , lowerCamelCase_ : Optional[Any] = get_distrib(node.left ) lowerCamelCase_ , lowerCamelCase_ : Tuple = get_distrib(node.right ) lowerCamelCase_ : Any = 1 - left_distrib_excess lowerCamelCase_ : List[str] = 1 - right_distrib_excess lowerCamelCase_ : str = ( left_distrib_moves + right_distrib_moves + abs(__UpperCAmelCase ) + abs(__UpperCAmelCase ) ) lowerCamelCase_ : Any = node.data - coins_to_left - coins_to_right return CoinsDistribResult(__UpperCAmelCase , __UpperCAmelCase ) return get_distrib(__UpperCAmelCase )[0] if __name__ == "__main__": import doctest doctest.testmod()
488
def __a ( __UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ : List[str] = [0] * len(__UpperCAmelCase ) lowerCamelCase_ : Dict = [] lowerCamelCase_ : int = [] lowerCamelCase_ : Any = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__UpperCAmelCase ) ): if indegree[i] == 0: queue.append(__UpperCAmelCase ) while queue: lowerCamelCase_ : int = queue.pop(0 ) cnt += 1 topo.append(__UpperCAmelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(__UpperCAmelCase ) if cnt != len(__UpperCAmelCase ): print("Cycle exists" ) else: print(__UpperCAmelCase ) # Adjacency List of Graph snake_case_ : Optional[int] = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
488
1
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class _A : def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple=13 , __SCREAMING_SNAKE_CASE : List[Any]=7 , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : List[str]=99 , __SCREAMING_SNAKE_CASE : int=32 , __SCREAMING_SNAKE_CASE : Optional[Any]=5 , __SCREAMING_SNAKE_CASE : Dict=4 , __SCREAMING_SNAKE_CASE : Dict=37 , __SCREAMING_SNAKE_CASE : List[Any]="gelu" , __SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : Optional[Any]=512 , __SCREAMING_SNAKE_CASE : List[Any]=16 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : Optional[int]=0.02 , __SCREAMING_SNAKE_CASE : str=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=4 , __SCREAMING_SNAKE_CASE : Dict=None , ): '''simple docstring''' __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_input_mask __a = use_token_type_ids __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = type_sequence_label_size __a = initializer_range __a = num_labels __a = num_choices __a = scope def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __a = None if self.use_input_mask: __a = random_attention_mask([self.batch_size, self.seq_length]) __a = None if self.use_token_type_ids: __a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __a = None __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size) __a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __a = ids_tensor([self.batch_size] , self.num_choices) __a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int): '''simple docstring''' __a = BioGptModel(config=__lowerCamelCase) model.to(__lowerCamelCase) model.eval() __a = model(__lowerCamelCase , attention_mask=__lowerCamelCase) __a = model(__lowerCamelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , ): '''simple docstring''' __a = BioGptForCausalLM(config=__lowerCamelCase) model.to(__lowerCamelCase) model.eval() __a = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , *__SCREAMING_SNAKE_CASE : Optional[int]): '''simple docstring''' __a = BioGptModel(config=__lowerCamelCase) model.to(__lowerCamelCase) model.eval() # create attention mask __a = torch.ones(input_ids.shape , dtype=torch.long , device=__lowerCamelCase) __a = self.seq_length // 2 __a = 0 # first forward pass __a = model(__lowerCamelCase , attention_mask=__lowerCamelCase).to_tuple() # create hypothetical next token and extent to next_input_ids __a = ids_tensor((self.batch_size, 1) , config.vocab_size) # change a random masked slice from input_ids __a = ids_tensor((1,) , __lowerCamelCase).item() + 1 __a = ids_tensor((self.batch_size, 1) , config.vocab_size).squeeze(-1) __a = random_other_next_tokens # append to next input_ids and attn_mask __a = torch.cat([input_ids, next_tokens] , dim=-1) __a = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__lowerCamelCase)] , dim=1 , ) # get two different outputs __a = model(__lowerCamelCase , attention_mask=__lowerCamelCase)['''last_hidden_state'''] __a = model(__lowerCamelCase , past_key_values=__lowerCamelCase , attention_mask=__lowerCamelCase)['''last_hidden_state'''] # select random slice __a = ids_tensor((1,) , output_from_past.shape[-1]).item() __a = output_from_no_past[:, -1, random_slice_idx].detach() __a = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3)) def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int , *__SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a = BioGptModel(config=__lowerCamelCase).to(__lowerCamelCase).eval() __a = torch.ones(input_ids.shape , dtype=torch.long , device=__lowerCamelCase) # first forward pass __a = model(__lowerCamelCase , attention_mask=__lowerCamelCase , use_cache=__lowerCamelCase) __a = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __a = ids_tensor((self.batch_size, 3) , config.vocab_size) __a = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and __a = torch.cat([input_ids, next_tokens] , dim=-1) __a = torch.cat([attention_mask, next_attn_mask] , dim=-1) __a = model(__lowerCamelCase , attention_mask=__lowerCamelCase)['''last_hidden_state'''] __a = model(__lowerCamelCase , attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase)[ '''last_hidden_state''' ] # select random slice __a = ids_tensor((1,) , output_from_past.shape[-1]).item() __a = output_from_no_past[:, -3:, random_slice_idx].detach() __a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3)) def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , *__SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any]=False): '''simple docstring''' __a = BioGptForCausalLM(__lowerCamelCase) model.to(__lowerCamelCase) if gradient_checkpointing: model.gradient_checkpointing_enable() __a = model(__lowerCamelCase , labels=__lowerCamelCase) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , *__SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a = BioGptModel(__lowerCamelCase) __a = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std) , 0.0_01) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0) , 0.01) def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , *__SCREAMING_SNAKE_CASE : int): '''simple docstring''' __a = self.num_labels __a = BioGptForTokenClassification(__lowerCamelCase) model.to(__lowerCamelCase) model.eval() __a = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = self.prepare_config_and_inputs() ( __a ) = config_and_inputs __a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _A ( lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,unittest.TestCase ): UpperCamelCase__ : List[Any] = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) UpperCamelCase__ : List[Any] = (BioGptForCausalLM,) if is_torch_available() else () UpperCamelCase__ : Union[str, Any] = ( { '''feature-extraction''': BioGptModel, '''text-classification''': BioGptForSequenceClassification, '''text-generation''': BioGptForCausalLM, '''token-classification''': BioGptForTokenClassification, '''zero-shot''': BioGptForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ : List[Any] = False def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a = BioGptModelTester(self) __a = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37) def _lowerCamelCase ( self : str): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase) def _lowerCamelCase ( self : Any): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __a = type self.model_tester.create_and_check_model(*__lowerCamelCase) def _lowerCamelCase ( self : str): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__lowerCamelCase) def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*__lowerCamelCase , gradient_checkpointing=__lowerCamelCase) def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__lowerCamelCase) def _lowerCamelCase ( self : str): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*__lowerCamelCase) def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*__lowerCamelCase) @slow def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(__lowerCamelCase) __a = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __a = '''left''' # Define PAD Token = EOS Token = 50256 __a = tokenizer.eos_token __a = model.config.eos_token_id # use different length sentences to test batching __a = [ '''Hello, my dog is a little''', '''Today, I''', ] __a = tokenizer(__lowerCamelCase , return_tensors='''pt''' , padding=__lowerCamelCase) __a = inputs['''input_ids'''].to(__lowerCamelCase) __a = model.generate( input_ids=__lowerCamelCase , attention_mask=inputs['''attention_mask'''].to(__lowerCamelCase) , ) __a = tokenizer(sentences[0] , return_tensors='''pt''').input_ids.to(__lowerCamelCase) __a = model.generate(input_ids=__lowerCamelCase) __a = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() __a = tokenizer(sentences[1] , return_tensors='''pt''').input_ids.to(__lowerCamelCase) __a = model.generate(input_ids=__lowerCamelCase , max_length=model.config.max_length - num_paddings) __a = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase) __a = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__lowerCamelCase) __a = tokenizer.decode(output_padded[0] , skip_special_tokens=__lowerCamelCase) __a = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(__lowerCamelCase , __lowerCamelCase) self.assertListEqual(__lowerCamelCase , [non_padded_sentence, padded_sentence]) @slow def _lowerCamelCase ( self : Dict): '''simple docstring''' for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = BioGptModel.from_pretrained(__lowerCamelCase) self.assertIsNotNone(__lowerCamelCase) def _lowerCamelCase ( self : Any): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs_for_common() __a = 3 __a = input_dict['''input_ids'''] __a = input_ids.ne(1).to(__lowerCamelCase) __a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __a = BioGptForSequenceClassification(__lowerCamelCase) model.to(__lowerCamelCase) model.eval() __a = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs_for_common() __a = 3 __a = '''multi_label_classification''' __a = input_dict['''input_ids'''] __a = input_ids.ne(1).to(__lowerCamelCase) __a = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __a = BioGptForSequenceClassification(__lowerCamelCase) model.to(__lowerCamelCase) model.eval() __a = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @require_torch class _A ( unittest.TestCase ): @slow def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') __a = torch.tensor([[2, 4_805, 9, 656, 21]]) __a = model(__lowerCamelCase)[0] __a = 42_384 __a = torch.Size((1, 5, vocab_size)) self.assertEqual(output.shape , __lowerCamelCase) __a = torch.tensor( [[[-9.52_36, -9.89_18, 10.45_57], [-11.04_69, -9.64_23, 8.10_22], [-8.86_64, -7.88_26, 5.53_25]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCamelCase , atol=1E-4)) @slow def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __a = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(__lowerCamelCase) torch.manual_seed(0) __a = tokenizer('''COVID-19 is''' , return_tensors='''pt''').to(__lowerCamelCase) __a = model.generate( **__lowerCamelCase , min_length=100 , max_length=1_024 , num_beams=5 , early_stopping=__lowerCamelCase , ) __a = tokenizer.decode(output_ids[0] , skip_special_tokens=__lowerCamelCase) __a = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(__lowerCamelCase , __lowerCamelCase)
701
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __snake_case :List[Any] = None __snake_case :Dict = logging.get_logger(__name__) __snake_case :Optional[int] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __snake_case :Union[str, Any] = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } __snake_case :Optional[Any] = { '''moussaKam/mbarthez''': 1024, '''moussaKam/barthez''': 1024, '''moussaKam/barthez-orangesum-title''': 1024, } __snake_case :Optional[int] = '''▁''' class _A ( __UpperCAmelCase ): UpperCamelCase__ : Tuple = VOCAB_FILES_NAMES UpperCamelCase__ : Tuple = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : str = ['''input_ids''', '''attention_mask'''] UpperCamelCase__ : Dict = BarthezTokenizer def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int]=None , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Tuple="<s>" , __SCREAMING_SNAKE_CASE : List[str]="</s>" , __SCREAMING_SNAKE_CASE : Tuple="</s>" , __SCREAMING_SNAKE_CASE : int="<s>" , __SCREAMING_SNAKE_CASE : Any="<unk>" , __SCREAMING_SNAKE_CASE : int="<pad>" , __SCREAMING_SNAKE_CASE : Any="<mask>" , **__SCREAMING_SNAKE_CASE : Any , ): '''simple docstring''' __a = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) else mask_token super().__init__( __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __a = vocab_file __a = False if not self.vocab_file else True def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __a = [self.cls_token_id] __a = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''') if not os.path.isdir(__SCREAMING_SNAKE_CASE): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return __a = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(__SCREAMING_SNAKE_CASE): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE) return (out_vocab_file,)
60
0
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE ( UpperCamelCase : list[float] ): if len(UpperCamelCase ) < 2: raise ValueError("""Monogons and Digons are not polygons in the Euclidean space""" ) if any(i <= 0 for i in nums ): raise ValueError("""All values must be greater than 0""" ) A__ = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
574
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class _UpperCamelCase ( __snake_case): __lowerCamelCase = "xlm-roberta-xl" def __init__(self , lowerCamelCase__=2_5_0_8_8_0 , lowerCamelCase__=2_5_6_0 , lowerCamelCase__=3_6 , lowerCamelCase__=3_2 , lowerCamelCase__=1_0_2_4_0 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=5_1_4 , lowerCamelCase__=1 , lowerCamelCase__=0.0_2 , lowerCamelCase__=1E-05 , lowerCamelCase__=1 , lowerCamelCase__=0 , lowerCamelCase__=2 , lowerCamelCase__="absolute" , lowerCamelCase__=True , lowerCamelCase__=None , **lowerCamelCase__ , ): """simple docstring""" super().__init__(pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = classifier_dropout class _UpperCamelCase ( __snake_case): @property def A (self ): """simple docstring""" if self.task == "multiple-choice": A__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
574
1
"""simple docstring""" from string import ascii_uppercase lowerCAmelCase_ = {char: i for i, char in enumerate(ascii_uppercase)} lowerCAmelCase_ = dict(enumerate(ascii_uppercase)) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: lowercase__ : Optional[int] = len(__lowerCamelCase ) lowercase__ : List[Any] = 0 while True: if x == i: lowercase__ : Dict = 0 if len(__lowerCamelCase ) == len(__lowerCamelCase ): break key += key[i] i += 1 return key def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: lowercase__ : List[str] = '''''' lowercase__ : Any = 0 for letter in message: if letter == " ": cipher_text += " " else: lowercase__ : Optional[int] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: lowercase__ : int = '''''' lowercase__ : Any = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: lowercase__ : Tuple = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __UpperCAmelCase ( ) -> None: lowercase__ : Optional[int] = '''THE GERMAN ATTACK''' lowercase__ : Optional[Any] = '''SECRET''' lowercase__ : Any = generate_key(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Optional[Any] = cipher_text(__lowerCamelCase , __lowerCamelCase ) print(f"""Encrypted Text = {s}""" ) print(f"""Original Text = {original_text(__lowerCamelCase , __lowerCamelCase )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
709
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A_ ) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : str = field(default="language-modeling" ,metadata={"include_in_asdict_even_if_is_default": True} ) lowerCAmelCase : ClassVar[Features] = Features({"text": Value("string" )} ) lowerCAmelCase : ClassVar[Features] = Features({} ) lowerCAmelCase : str = "text" @property def UpperCAmelCase ( self : Tuple ) -> Dict[str, str]: """simple docstring""" return {self.text_column: "text"}
122
0
"""simple docstring""" import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" __snake_case = UniSpeechSatForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__ , config=SCREAMING_SNAKE_CASE__ ) __snake_case = downstream_dict["""projector.weight"""] __snake_case = downstream_dict["""projector.bias"""] __snake_case = downstream_dict["""model.post_net.linear.weight"""] __snake_case = downstream_dict["""model.post_net.linear.bias"""] return model def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" __snake_case = UniSpeechSatForAudioFrameClassification.from_pretrained(SCREAMING_SNAKE_CASE__ , config=SCREAMING_SNAKE_CASE__ ) __snake_case = downstream_dict["""model.linear.weight"""] __snake_case = downstream_dict["""model.linear.bias"""] return model def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" __snake_case = UniSpeechSatForXVector.from_pretrained(SCREAMING_SNAKE_CASE__ , config=SCREAMING_SNAKE_CASE__ ) __snake_case = downstream_dict["""connector.weight"""] __snake_case = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __snake_case = downstream_dict[ F'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] __snake_case = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] __snake_case = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] __snake_case = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] __snake_case = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] __snake_case = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] __snake_case = downstream_dict["""objective.W"""] return model @torch.no_grad() def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" __snake_case = torch.load(SCREAMING_SNAKE_CASE__ , map_location="cpu" ) __snake_case = checkpoint["""Downstream"""] __snake_case = UniSpeechSatConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) __snake_case = WavaVecaFeatureExtractor.from_pretrained( SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , do_normalize=SCREAMING_SNAKE_CASE__ ) __snake_case = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): __snake_case = convert_classification(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif arch.endswith("ForAudioFrameClassification" ): __snake_case = convert_diarization(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif arch.endswith("ForXVector" ): __snake_case = convert_xvector(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: __snake_case = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") _SCREAMING_SNAKE_CASE = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
163
"""simple docstring""" a_ = 256 # Modulus to hash a string a_ = 1000003 def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : str = len(SCREAMING_SNAKE_CASE__ ) snake_case_ : int = len(SCREAMING_SNAKE_CASE__ ) if p_len > t_len: return False snake_case_ : str = 0 snake_case_ : Dict = 0 snake_case_ : List[str] = 1 # Calculating the hash of pattern and substring of text for i in range(SCREAMING_SNAKE_CASE__ ): snake_case_ : Optional[int] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus snake_case_ : int = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue snake_case_ : int = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash snake_case_ : List[str] = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Optional[int] = """abc1abc12""" snake_case_ : Any = """alskfjaldsabc1abc1abc12k23adsfabcabc""" snake_case_ : List[str] = """alskfjaldsk23adsfabcabc""" assert rabin_karp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and not rabin_karp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Test 2) snake_case_ : Union[str, Any] = """ABABX""" snake_case_ : Optional[Any] = """ABABZABABYABABX""" assert rabin_karp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Test 3) snake_case_ : Union[str, Any] = """AAAB""" snake_case_ : Union[str, Any] = """ABAAAAAB""" assert rabin_karp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Test 4) snake_case_ : Optional[Any] = """abcdabcy""" snake_case_ : Union[str, Any] = """abcxabcdabxabcdabcdabcy""" assert rabin_karp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Test 5) snake_case_ : List[str] = """Lü""" snake_case_ : Optional[int] = """Lüsai""" assert rabin_karp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : Any = """Lue""" assert not rabin_karp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print("""Success.""" ) if __name__ == "__main__": test_rabin_karp()
480
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class _a : """simple docstring""" snake_case =None snake_case =None snake_case =None # sigma(t_i) @classmethod def SCREAMING_SNAKE_CASE ( cls ): return cls() @dataclass class _a ( A__ ): """simple docstring""" snake_case =4_2 snake_case =4_2 snake_case =4_2 class _a ( A__ , A__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self ): return True @register_to_config def __init__( self , _snake_case = 0.02 , _snake_case = 100 , _snake_case = 1.007 , _snake_case = 80 , _snake_case = 0.05 , _snake_case = 50 , ): pass def SCREAMING_SNAKE_CASE ( self ): return KarrasVeSchedulerState.create() def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case , _snake_case = () ): _UpperCAmelCase =jnp.arange(0 , _snake_case )[::-1].copy() _UpperCAmelCase =[ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=_snake_case , schedule=jnp.array(_snake_case , dtype=jnp.floataa ) , timesteps=_snake_case , ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case , _snake_case , _snake_case , ): if self.config.s_min <= sigma <= self.config.s_max: _UpperCAmelCase =min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: _UpperCAmelCase =0 # sample eps ~ N(0, S_noise^2 * I) _UpperCAmelCase =random.split(_snake_case , num=1 ) _UpperCAmelCase =self.config.s_noise * random.normal(key=_snake_case , shape=sample.shape ) _UpperCAmelCase =sigma + gamma * sigma _UpperCAmelCase =sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = True , ): _UpperCAmelCase =sample_hat + sigma_hat * model_output _UpperCAmelCase =(sample_hat - pred_original_sample) / sigma_hat _UpperCAmelCase =sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=_snake_case , derivative=_snake_case , state=_snake_case ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = True , ): _UpperCAmelCase =sample_prev + sigma_prev * model_output _UpperCAmelCase =(sample_prev - pred_original_sample) / sigma_prev _UpperCAmelCase =sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=_snake_case , derivative=_snake_case , state=_snake_case ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case , _snake_case , _snake_case ): raise NotImplementedError()
711
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _a ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase ="ylacombe/bark-small" _UpperCAmelCase =tempfile.mkdtemp() _UpperCAmelCase ="en_speaker_1" _UpperCAmelCase ="This is a test string" _UpperCAmelCase ="speaker_embeddings_path.json" _UpperCAmelCase ="speaker_embeddings" def SCREAMING_SNAKE_CASE ( self , **_snake_case ): return AutoTokenizer.from_pretrained(self.checkpoint , **_snake_case ) def SCREAMING_SNAKE_CASE ( self ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.get_tokenizer() _UpperCAmelCase =BarkProcessor(tokenizer=_snake_case ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase =BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _UpperCAmelCase =self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) _UpperCAmelCase =BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="(BOS)" , eos_token="(EOS)" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _UpperCAmelCase =35 _UpperCAmelCase =2 _UpperCAmelCase =8 _UpperCAmelCase ={ "semantic_prompt": np.ones(_snake_case ), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len) ), "fine_prompt": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset _UpperCAmelCase =processor(text=self.input_string , voice_preset=_snake_case ) _UpperCAmelCase =inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_snake_case , np.array([] ) ).tolist() ) # test loading voice preset from npz file _UpperCAmelCase =os.path.join(self.tmpdirname , "file.npz" ) np.savez(_snake_case , **_snake_case ) _UpperCAmelCase =processor(text=self.input_string , voice_preset=_snake_case ) _UpperCAmelCase =inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_snake_case , np.array([] ) ).tolist() ) # test loading voice preset from the hub _UpperCAmelCase =processor(text=self.input_string , voice_preset=self.voice_preset ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.get_tokenizer() _UpperCAmelCase =BarkProcessor(tokenizer=_snake_case ) _UpperCAmelCase =processor(text=self.input_string ) _UpperCAmelCase =tokenizer( self.input_string , padding="max_length" , max_length=256 , add_special_tokens=_snake_case , return_attention_mask=_snake_case , return_token_type_ids=_snake_case , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
592
0
"""simple docstring""" def _UpperCamelCase ( UpperCamelCase ) -> bool: """simple docstring""" if not isinstance(UpperCamelCase , UpperCamelCase ): raise ValueError("check_bouncy() accepts only integer arguments" ) __UpperCAmelCase : Optional[int] = str(UpperCamelCase ) __UpperCAmelCase : List[Any] = "".join(sorted(UpperCamelCase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def _UpperCamelCase ( UpperCamelCase = 99 ) -> int: """simple docstring""" if not 0 < percent < 100: raise ValueError("solution() only accepts values from 0 to 100" ) __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : List[Any] = 1 while True: if check_bouncy(UpperCamelCase ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f'''{solution(99)}''')
77
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _A ( ): """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __lowercase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , A__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _A ( ): """simple docstring""" assert _test_patching.open is open __lowercase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , A__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , A__ ): pass def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , A__ ) is None with patch_submodule(_test_patching , '''len''' , A__ ): assert _test_patching.len is mock assert _test_patching.len is len def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_start_and_stop_mock__''' __lowercase = patch_submodule(_test_patching , '''open''' , A__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _A ( ): """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __lowercase = '''__test_patch_submodule_successive_join__''' __lowercase = '''__test_patch_submodule_successive_dirname__''' __lowercase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , A__ ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , A__ ): pass
41
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) a : Optional[Any] = { '''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''], '''processing_layoutlmv2''': ['''LayoutLMv2Processor'''], '''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = ['''LayoutLMv2TokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = ['''LayoutLMv2FeatureExtractor'''] a : str = ['''LayoutLMv2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ '''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv2ForQuestionAnswering''', '''LayoutLMv2ForSequenceClassification''', '''LayoutLMv2ForTokenClassification''', '''LayoutLMv2Layer''', '''LayoutLMv2Model''', '''LayoutLMv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys a : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
31
"""simple docstring""" import baseaa def _SCREAMING_SNAKE_CASE ( _lowercase : str ) ->bytes: '''simple docstring''' return baseaa.aaaencode(string.encode("utf-8" ) ) def _SCREAMING_SNAKE_CASE ( _lowercase : bytes ) ->str: '''simple docstring''' return baseaa.aaadecode(_lowercase ).decode("utf-8" ) if __name__ == "__main__": import doctest doctest.testmod()
31
1
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar a_ = TypeVar("""T""") class UpperCAmelCase__ ( Generic[T] ): """simple docstring""" def __init__( self: Tuple , __lowerCAmelCase: T ) -> str: '''simple docstring''' __UpperCAmelCase = data __UpperCAmelCase = None def __str__( self: Union[str, Any] ) -> str: '''simple docstring''' return F'''{self.data}''' class UpperCAmelCase__ ( Generic[T] ): """simple docstring""" def __init__( self: Any ) -> None: '''simple docstring''' __UpperCAmelCase = None def __iter__( self: Dict ) -> Iterator[T]: '''simple docstring''' __UpperCAmelCase = self.top while node: yield node.data __UpperCAmelCase = node.next def __str__( self: Dict ) -> str: '''simple docstring''' return "->".join([str(__lowerCAmelCase ) for item in self] ) def __len__( self: str ) -> int: '''simple docstring''' return len(tuple(iter(self ) ) ) def _UpperCAmelCase ( self: Optional[int] ) -> bool: '''simple docstring''' return self.top is None def _UpperCAmelCase ( self: List[Any] , __lowerCAmelCase: T ) -> None: '''simple docstring''' __UpperCAmelCase = Node(__lowerCAmelCase ) if not self.is_empty(): __UpperCAmelCase = self.top __UpperCAmelCase = node def _UpperCAmelCase ( self: List[str] ) -> T: '''simple docstring''' if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , __lowerCAmelCase ) __UpperCAmelCase = self.top __UpperCAmelCase = self.top.next return pop_node.data def _UpperCAmelCase ( self: Union[str, Any] ) -> T: '''simple docstring''' if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def _UpperCAmelCase ( self: List[str] ) -> None: '''simple docstring''' __UpperCAmelCase = None if __name__ == "__main__": from doctest import testmod testmod()
221
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right a_ = 250004 a_ = 250020 @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( snake_case , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ : Optional[int] = MBartaaTokenizer lowerCAmelCase__ : List[Any] = MBartaaTokenizerFast lowerCAmelCase__ : str = True lowerCAmelCase__ : Optional[Any] = True def _UpperCAmelCase ( self: int ) -> List[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase = MBartaaTokenizer(__lowerCAmelCase , src_lang="en_XX" , tgt_lang="ro_RO" , keep_accents=__lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCAmelCase ( self: Dict ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = "<s>" __UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) , __lowerCAmelCase ) def _UpperCAmelCase ( self: List[str] ) -> Tuple: '''simple docstring''' __UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(__lowerCAmelCase ) , 1_054 ) def _UpperCAmelCase ( self: Any ) -> List[str]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_054 ) def _UpperCAmelCase ( self: Optional[Any] ) -> Any: '''simple docstring''' __UpperCAmelCase = MBartaaTokenizer(__lowerCAmelCase , src_lang="en_XX" , tgt_lang="ro_RO" , keep_accents=__lowerCAmelCase ) __UpperCAmelCase = tokenizer.tokenize("This is a test" ) self.assertListEqual(__lowerCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __UpperCAmelCase = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __lowerCAmelCase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , ) __UpperCAmelCase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , ) @slow def _UpperCAmelCase ( self: List[str] ) -> List[str]: '''simple docstring''' __UpperCAmelCase = {"input_ids": [[250_004, 11_062, 82_772, 7, 15, 82_772, 538, 51_529, 237, 17_198, 1_290, 206, 9, 215_175, 1_314, 136, 17_198, 1_290, 206, 9, 56_359, 42, 122_009, 9, 16_466, 16, 87_344, 4_537, 9, 4_717, 78_381, 6, 159_958, 7, 15, 24_480, 618, 4, 527, 22_693, 5_428, 4, 2_777, 24_480, 9_874, 4, 43_523, 594, 4, 803, 18_392, 33_189, 18, 4, 43_523, 24_447, 12_399, 100, 24_955, 83_658, 9_626, 144_057, 15, 839, 22_335, 16, 136, 24_955, 83_658, 83_479, 15, 39_102, 724, 16, 678, 645, 2_789, 1_328, 4_589, 42, 122_009, 115_774, 23, 805, 1_328, 46_876, 7, 136, 53_894, 1_940, 42_227, 41_159, 17_721, 823, 425, 4, 27_512, 98_722, 206, 136, 5_531, 4_970, 919, 17_336, 5, 2], [250_004, 20_080, 618, 83, 82_775, 47, 479, 9, 1_517, 73, 53_894, 333, 80_581, 110_117, 18_811, 5_256, 1_295, 51, 152_526, 297, 7_986, 390, 124_416, 538, 35_431, 214, 98, 15_044, 25_737, 136, 7_108, 43_701, 23, 756, 135_355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250_004, 581, 63_773, 119_455, 6, 147_797, 88_203, 7, 645, 70, 21, 3_285, 10_269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase , model_name="facebook/mbart-large-50" , revision="d3913889c59cd5c9e456b269c376325eabad57e2" , ) def _UpperCAmelCase ( self: Union[str, Any] ) -> Optional[Any]: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __UpperCAmelCase = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart50", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) __UpperCAmelCase = self.tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = tokenizer_r.save_pretrained(__lowerCAmelCase ) __UpperCAmelCase = tokenizer_p.save_pretrained(__lowerCAmelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) __UpperCAmelCase = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(__lowerCAmelCase , __lowerCAmelCase ) # Checks everything loads correctly in the same way __UpperCAmelCase = tokenizer_r.from_pretrained(__lowerCAmelCase ) __UpperCAmelCase = tokenizer_p.from_pretrained(__lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__lowerCAmelCase ) # Save tokenizer rust, legacy_format=True __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = tokenizer_r.save_pretrained(__lowerCAmelCase , legacy_format=__lowerCAmelCase ) __UpperCAmelCase = tokenizer_p.save_pretrained(__lowerCAmelCase ) # Checks it save with the same files self.assertSequenceEqual(__lowerCAmelCase , __lowerCAmelCase ) # Checks everything loads correctly in the same way __UpperCAmelCase = tokenizer_r.from_pretrained(__lowerCAmelCase ) __UpperCAmelCase = tokenizer_p.from_pretrained(__lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase ) ) shutil.rmtree(__lowerCAmelCase ) # Save tokenizer rust, legacy_format=False __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = tokenizer_r.save_pretrained(__lowerCAmelCase , legacy_format=__lowerCAmelCase ) __UpperCAmelCase = tokenizer_p.save_pretrained(__lowerCAmelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __UpperCAmelCase = tokenizer_r.from_pretrained(__lowerCAmelCase ) __UpperCAmelCase = tokenizer_p.from_pretrained(__lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase ) ) shutil.rmtree(__lowerCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" lowerCAmelCase__ : Dict = 'facebook/mbart-large-50-one-to-many-mmt' lowerCAmelCase__ : Optional[int] = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] lowerCAmelCase__ : Union[str, Any] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] lowerCAmelCase__ : Optional[int] = [EN_CODE, 8274, 12_7873, 2_5916, 7, 8622, 2071, 438, 6_7485, 53, 18_7895, 23, 5_1712, 2] @classmethod def _UpperCAmelCase ( cls: Any ) -> Tuple: '''simple docstring''' __UpperCAmelCase = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO" ) __UpperCAmelCase = 1 return cls def _UpperCAmelCase ( self: List[Any] ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 250_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 250_004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 250_020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["mr_IN"] , 250_038 ) def _UpperCAmelCase ( self: Any ) -> Dict: '''simple docstring''' __UpperCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __lowerCAmelCase ) def _UpperCAmelCase ( self: str ) -> Any: '''simple docstring''' self.assertIn(__lowerCAmelCase , self.tokenizer.all_special_ids ) __UpperCAmelCase = [RO_CODE, 884, 9_019, 96, 9, 916, 86_792, 36, 18_743, 15_596, 5, 2] __UpperCAmelCase = self.tokenizer.decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase ) __UpperCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , __lowerCAmelCase ) def _UpperCAmelCase ( self: Union[str, Any] ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , __lowerCAmelCase ) __UpperCAmelCase = 10 __UpperCAmelCase = self.tokenizer(__lowerCAmelCase , max_length=__lowerCAmelCase , truncation=__lowerCAmelCase ).input_ids[0] self.assertEqual(ids[0] , __lowerCAmelCase ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(__lowerCAmelCase ) , __lowerCAmelCase ) def _UpperCAmelCase ( self: int ) -> Dict: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [250_053, 250_001] ) def _UpperCAmelCase ( self: str ) -> Tuple: '''simple docstring''' __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__lowerCAmelCase ) __UpperCAmelCase = MBartaaTokenizer.from_pretrained(__lowerCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __lowerCAmelCase ) @require_torch def _UpperCAmelCase ( self: Any ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__lowerCAmelCase , return_tensors="pt" ) __UpperCAmelCase = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def _UpperCAmelCase ( self: Union[str, Any] ) -> Tuple: '''simple docstring''' __UpperCAmelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) __UpperCAmelCase = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __lowerCAmelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def _UpperCAmelCase ( self: Union[str, Any] ) -> Dict: '''simple docstring''' __UpperCAmelCase = self.tokenizer(self.src_text , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=3 , return_tensors="pt" ) __UpperCAmelCase = self.tokenizer( text_target=self.tgt_text , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=10 , return_tensors="pt" ) __UpperCAmelCase = targets["input_ids"] __UpperCAmelCase = shift_tokens_right(__lowerCAmelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _UpperCAmelCase ( self: str ) -> Dict: '''simple docstring''' __UpperCAmelCase = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR" ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , { # en_XX, A, test, EOS "input_ids": [[250_004, 62, 3_034, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 250_001, } , )
221
1
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class A_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = AutoencoderKL __snake_case = """sample""" __snake_case = 1e-2 @property def _snake_case ( self: int ): __lowerCamelCase : str = 4 __lowerCamelCase : Union[str, Any] = 3 __lowerCamelCase : List[Any] = (32, 32) __lowerCamelCase : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ).to(a ) return {"sample": image} @property def _snake_case ( self: int ): return (3, 32, 32) @property def _snake_case ( self: List[str] ): return (3, 32, 32) def _snake_case ( self: Optional[int] ): __lowerCamelCase : Optional[int] = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } __lowerCamelCase : Optional[int] = self.dummy_input return init_dict, inputs_dict def _snake_case ( self: List[Any] ): pass def _snake_case ( self: List[Any] ): pass @unittest.skipIf(torch_device == 'mps' , 'Gradient checkpointing skipped on MPS' ) def _snake_case ( self: List[str] ): # enable deterministic behavior for gradient checkpointing __lowerCamelCase : Any = self.prepare_init_args_and_inputs_for_common() __lowerCamelCase : int = self.model_class(**a ) model.to(a ) assert not model.is_gradient_checkpointing and model.training __lowerCamelCase : Optional[Any] = model(**a ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __lowerCamelCase : Optional[int] = torch.randn_like(a ) __lowerCamelCase : str = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __lowerCamelCase : int = self.model_class(**a ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(a ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __lowerCamelCase : int = model_a(**a ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __lowerCamelCase : str = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) __lowerCamelCase : Optional[int] = dict(model.named_parameters() ) __lowerCamelCase : Union[str, Any] = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def _snake_case ( self: List[Any] ): __lowerCamelCase : Optional[int] = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' , output_loading_info=a ) self.assertIsNotNone(a ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(a ) __lowerCamelCase : Dict = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def _snake_case ( self: List[str] ): __lowerCamelCase : Any = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' ) __lowerCamelCase : List[Any] = model.to(a ) model.eval() if torch_device == "mps": __lowerCamelCase : List[str] = torch.manual_seed(0 ) else: __lowerCamelCase : Any = torch.Generator(device=a ).manual_seed(0 ) __lowerCamelCase : List[str] = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __lowerCamelCase : Optional[int] = image.to(a ) with torch.no_grad(): __lowerCamelCase : Dict = model(a , sample_posterior=a , generator=a ).sample __lowerCamelCase : List[str] = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __lowerCamelCase : Tuple = torch.tensor( [ -4.0078e-01, -3.8323e-04, -1.2681e-01, -1.1462e-01, 2.0095e-01, 1.0893e-01, -8.8247e-02, -3.0361e-01, -9.8644e-03, ] ) elif torch_device == "cpu": __lowerCamelCase : Any = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: __lowerCamelCase : Union[str, Any] = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(a , a , rtol=1e-2 ) ) @slow class A_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self: str , a: Optional[int] , a: Any ): return F'gaussian_noise_s={seed}_shape={"_".join([str(a ) for s in shape] )}.npy' def _snake_case ( self: List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self: int , a: List[str]=0 , a: Tuple=(4, 3, 512, 512) , a: Dict=False ): __lowerCamelCase : Optional[Any] = torch.floataa if fpaa else torch.floataa __lowerCamelCase : Optional[int] = torch.from_numpy(load_hf_numpy(self.get_file_format(a , a ) ) ).to(a ).to(a ) return image def _snake_case ( self: Dict , a: Any="CompVis/stable-diffusion-v1-4" , a: Dict=False ): __lowerCamelCase : List[Any] = 'fp16' if fpaa else None __lowerCamelCase : Optional[Any] = torch.floataa if fpaa else torch.floataa __lowerCamelCase : Union[str, Any] = AutoencoderKL.from_pretrained( a , subfolder='vae' , torch_dtype=a , revision=a , ) model.to(a ).eval() return model def _snake_case ( self: Optional[int] , a: int=0 ): if torch_device == "mps": return torch.manual_seed(a ) return torch.Generator(device=a ).manual_seed(a ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def _snake_case ( self: int , a: str , a: int , a: int ): __lowerCamelCase : List[str] = self.get_sd_vae_model() __lowerCamelCase : Dict = self.get_sd_image(a ) __lowerCamelCase : Dict = self.get_generator(a ) with torch.no_grad(): __lowerCamelCase : Optional[Any] = model(a , generator=a , sample_posterior=a ).sample assert sample.shape == image.shape __lowerCamelCase : List[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() __lowerCamelCase : int = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(a , a , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def _snake_case ( self: str , a: List[Any] , a: Any ): __lowerCamelCase : Optional[Any] = self.get_sd_vae_model(fpaa=a ) __lowerCamelCase : Optional[int] = self.get_sd_image(a , fpaa=a ) __lowerCamelCase : Union[str, Any] = self.get_generator(a ) with torch.no_grad(): __lowerCamelCase : Dict = model(a , generator=a , sample_posterior=a ).sample assert sample.shape == image.shape __lowerCamelCase : Optional[Any] = sample[-1, -2:, :2, -2:].flatten().float().cpu() __lowerCamelCase : int = torch.tensor(a ) assert torch_all_close(a , a , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def _snake_case ( self: str , a: Optional[Any] , a: Dict , a: Optional[Any] ): __lowerCamelCase : Optional[Any] = self.get_sd_vae_model() __lowerCamelCase : List[Any] = self.get_sd_image(a ) with torch.no_grad(): __lowerCamelCase : Any = model(a ).sample assert sample.shape == image.shape __lowerCamelCase : List[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() __lowerCamelCase : List[Any] = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(a , a , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def _snake_case ( self: Union[str, Any] , a: List[str] , a: int ): __lowerCamelCase : str = self.get_sd_vae_model() __lowerCamelCase : Tuple = self.get_sd_image(a , shape=(3, 4, 64, 64) ) with torch.no_grad(): __lowerCamelCase : Optional[int] = model.decode(a ).sample assert list(sample.shape ) == [3, 3, 512, 512] __lowerCamelCase : Dict = sample[-1, -2:, :2, -2:].flatten().cpu() __lowerCamelCase : Optional[Any] = torch.tensor(a ) assert torch_all_close(a , a , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def _snake_case ( self: int , a: str , a: str ): __lowerCamelCase : Any = self.get_sd_vae_model(fpaa=a ) __lowerCamelCase : str = self.get_sd_image(a , shape=(3, 4, 64, 64) , fpaa=a ) with torch.no_grad(): __lowerCamelCase : Tuple = model.decode(a ).sample assert list(sample.shape ) == [3, 3, 512, 512] __lowerCamelCase : Optional[int] = sample[-1, -2:, :2, -2:].flatten().float().cpu() __lowerCamelCase : List[Any] = torch.tensor(a ) assert torch_all_close(a , a , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def _snake_case ( self: Any , a: List[Any] ): __lowerCamelCase : List[Any] = self.get_sd_vae_model(fpaa=a ) __lowerCamelCase : int = self.get_sd_image(a , shape=(3, 4, 64, 64) , fpaa=a ) with torch.no_grad(): __lowerCamelCase : List[Any] = model.decode(a ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __lowerCamelCase : Optional[Any] = model.decode(a ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(a , a , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def _snake_case ( self: int , a: Union[str, Any] ): __lowerCamelCase : str = self.get_sd_vae_model() __lowerCamelCase : str = self.get_sd_image(a , shape=(3, 4, 64, 64) ) with torch.no_grad(): __lowerCamelCase : Tuple = model.decode(a ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __lowerCamelCase : List[Any] = model.decode(a ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(a , a , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def _snake_case ( self: Any , a: Optional[Any] , a: int ): __lowerCamelCase : int = self.get_sd_vae_model() __lowerCamelCase : int = self.get_sd_image(a ) __lowerCamelCase : Any = self.get_generator(a ) with torch.no_grad(): __lowerCamelCase : Tuple = model.encode(a ).latent_dist __lowerCamelCase : List[str] = dist.sample(generator=a ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __lowerCamelCase : Optional[int] = sample[0, -1, -3:, -3:].flatten().cpu() __lowerCamelCase : int = torch.tensor(a ) __lowerCamelCase : int = 3e-3 if torch_device != 'mps' else 1e-2 assert torch_all_close(a , a , atol=a )
710
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): return getitem, k def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return setitem, k, v def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): return delitem, k def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ): try: return fun(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ), None except Exception as e: return None, e lowercase_ = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) lowercase_ = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] lowercase_ = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] lowercase_ = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] lowercase_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] lowercase_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( 'operations' , ( pytest.param(_add_items , id='add items' ), pytest.param(_overwrite_items , id='overwrite items' ), pytest.param(_delete_items , id='delete items' ), pytest.param(_access_absent_items , id='access absent items' ), pytest.param(_add_with_resize_up , id='add with resize up' ), pytest.param(_add_with_resize_down , id='add with resize down' ), ) , ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : int = HashMap(initial_block_size=4 ) __lowerCamelCase : Dict = {} for _, (fun, *args) in enumerate(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase , __lowerCamelCase : Union[str, Any] = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) __lowerCamelCase , __lowerCamelCase : str = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) assert my_res == py_res assert str(SCREAMING_SNAKE_CASE__ ) == str(SCREAMING_SNAKE_CASE__ ) assert set(SCREAMING_SNAKE_CASE__ ) == set(SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) assert set(my.items() ) == set(py.items() ) def UpperCamelCase__ ( ): def is_public(SCREAMING_SNAKE_CASE__ ) -> bool: return not name.startswith('_' ) __lowerCamelCase : Optional[Any] = {name for name in dir({} ) if is_public(SCREAMING_SNAKE_CASE__ )} __lowerCamelCase : Dict = {name for name in dir(HashMap() ) if is_public(SCREAMING_SNAKE_CASE__ )} assert dict_public_names > hash_public_names
230
0
def A(__a: str , __a: int ): lowerCAmelCase_ = word.split() def justify(__a: list , __a: int , __a: int ) -> str: lowerCAmelCase_ = max_width - width lowerCAmelCase_ = len(__a ) if len(__a ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: lowerCAmelCase_ = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] lowerCAmelCase_ = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] lowerCAmelCase_ = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(__a ): num_spaces_between_words_list[i] += 1 lowerCAmelCase_ = [] for i in range(__a ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * " " ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(__a ) lowerCAmelCase_ = [] lowerCAmelCase_ = [] lowerCAmelCase_ = 0 for word in words: if width + len(__a ) + len(__a ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(__a ) width += len(__a ) else: # justify the line and add it to result answer.append(justify(__a , __a , __a ) ) # reset new line and new width lowerCAmelCase_ , lowerCAmelCase_ = [word], len(__a ) lowerCAmelCase_ = max_width - width - len(__a ) answer.append(" ".join(__a ) + (remaining_spaces + 1) * " " ) return answer if __name__ == "__main__": from doctest import testmod testmod()
122
import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py lowerCamelCase__ = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase__ = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. lowerCamelCase__ = re.compile(R'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') lowerCamelCase__ = re.compile(R'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCamelCase__ = re.compile(R'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) lowerCamelCase__ = [ ('''pretraining''', '''MODEL_FOR_PRETRAINING_MAPPING_NAMES''', '''AutoModelForPreTraining'''), ('''feature-extraction''', '''MODEL_MAPPING_NAMES''', '''AutoModel'''), ('''audio-classification''', '''MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForAudioClassification'''), ('''text-generation''', '''MODEL_FOR_CAUSAL_LM_MAPPING_NAMES''', '''AutoModelForCausalLM'''), ('''automatic-speech-recognition''', '''MODEL_FOR_CTC_MAPPING_NAMES''', '''AutoModelForCTC'''), ('''image-classification''', '''MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForImageClassification'''), ('''image-segmentation''', '''MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES''', '''AutoModelForImageSegmentation'''), ('''fill-mask''', '''MODEL_FOR_MASKED_LM_MAPPING_NAMES''', '''AutoModelForMaskedLM'''), ('''object-detection''', '''MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES''', '''AutoModelForObjectDetection'''), ( '''zero-shot-object-detection''', '''MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES''', '''AutoModelForZeroShotObjectDetection''', ), ('''question-answering''', '''MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForQuestionAnswering'''), ('''text2text-generation''', '''MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES''', '''AutoModelForSeq2SeqLM'''), ('''text-classification''', '''MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForSequenceClassification'''), ('''automatic-speech-recognition''', '''MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES''', '''AutoModelForSpeechSeq2Seq'''), ( '''table-question-answering''', '''MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForTableQuestionAnswering''', ), ('''token-classification''', '''MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForTokenClassification'''), ('''multiple-choice''', '''MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES''', '''AutoModelForMultipleChoice'''), ( '''next-sentence-prediction''', '''MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES''', '''AutoModelForNextSentencePrediction''', ), ( '''audio-frame-classification''', '''MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForAudioFrameClassification''', ), ('''audio-xvector''', '''MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES''', '''AutoModelForAudioXVector'''), ( '''document-question-answering''', '''MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForDocumentQuestionAnswering''', ), ( '''visual-question-answering''', '''MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForVisualQuestionAnswering''', ), ('''image-to-text''', '''MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES''', '''AutoModelForVision2Seq'''), ( '''zero-shot-image-classification''', '''MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForZeroShotImageClassification''', ), ('''depth-estimation''', '''MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES''', '''AutoModelForDepthEstimation'''), ('''video-classification''', '''MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForVideoClassification'''), ('''mask-generation''', '''MODEL_FOR_MASK_GENERATION_MAPPING_NAMES''', '''AutoModelForMaskGeneration'''), ] def A(__a: List[Any] ): lowerCAmelCase_ = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" , __a ) return [m.group(0 ) for m in matches] def A(): lowerCAmelCase_ = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowerCAmelCase_ = { config.replace("Config" , "" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. lowerCAmelCase_ = collections.defaultdict(__a ) lowerCAmelCase_ = collections.defaultdict(__a ) lowerCAmelCase_ = collections.defaultdict(__a ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(__a ): lowerCAmelCase_ = None if _re_tf_models.match(__a ) is not None: lowerCAmelCase_ = tf_models lowerCAmelCase_ = _re_tf_models.match(__a ).groups()[0] elif _re_flax_models.match(__a ) is not None: lowerCAmelCase_ = flax_models lowerCAmelCase_ = _re_flax_models.match(__a ).groups()[0] elif _re_pt_models.match(__a ) is not None: lowerCAmelCase_ = pt_models lowerCAmelCase_ = _re_pt_models.match(__a ).groups()[0] if lookup_dict is not None: while len(__a ) > 0: if attr_name in model_prefix_to_model_type: lowerCAmelCase_ = True break # Try again after removing the last word in the name lowerCAmelCase_ = "".join(camel_case_split(__a )[:-1] ) lowerCAmelCase_ = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) lowerCAmelCase_ = list(__a ) all_models.sort() lowerCAmelCase_ = {"model_type": all_models} lowerCAmelCase_ = [pt_models[t] for t in all_models] lowerCAmelCase_ = [tf_models[t] for t in all_models] lowerCAmelCase_ = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure lowerCAmelCase_ = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: lowerCAmelCase_ = "AutoProcessor" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: lowerCAmelCase_ = "AutoTokenizer" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: lowerCAmelCase_ = "AutoFeatureExtractor" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. lowerCAmelCase_ = "AutoTokenizer" lowerCAmelCase_ = [processors[t] for t in all_models] return pd.DataFrame(__a ) def A(__a: List[str] ): lowerCAmelCase_ = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: lowerCAmelCase_ = [model_mapping, F"TF_{model_mapping}", F"FLAX_{model_mapping}"] lowerCAmelCase_ = [auto_class, F"TF_{auto_class}", F"Flax_{auto_class}"] # Loop through all three frameworks for module, cls, mapping in zip(__a , __a , __a ): # The type of pipeline may not exist in this framework if not hasattr(__a , __a ): continue # First extract all model_names lowerCAmelCase_ = [] for name in getattr(__a , __a ).values(): if isinstance(__a , __a ): model_names.append(__a ) else: model_names.extend(list(__a ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def A(__a: Tuple , __a: int ): lowerCAmelCase_ = get_frameworks_table() lowerCAmelCase_ = Dataset.from_pandas(__a ) lowerCAmelCase_ = hf_hub_download( "huggingface/transformers-metadata" , "pipeline_tags.json" , repo_type="dataset" , token=__a ) lowerCAmelCase_ = Dataset.from_json(__a ) lowerCAmelCase_ = { tags_dataset[i]["model_class"]: (tags_dataset[i]["pipeline_tag"], tags_dataset[i]["auto_class"]) for i in range(len(__a ) ) } lowerCAmelCase_ = update_pipeline_and_auto_class_table(__a ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. lowerCAmelCase_ = sorted(table.keys() ) lowerCAmelCase_ = pd.DataFrame( { "model_class": model_classes, "pipeline_tag": [table[m][0] for m in model_classes], "auto_class": [table[m][1] for m in model_classes], } ) lowerCAmelCase_ = Dataset.from_pandas(__a ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(__a , "frameworks.json" ) ) tags_dataset.to_json(os.path.join(__a , "pipeline_tags.json" ) ) if commit_sha is not None: lowerCAmelCase_ = ( F"Update with commit {commit_sha}\n\nSee: " F"https://github.com/huggingface/transformers/commit/{commit_sha}" ) else: lowerCAmelCase_ = "Update" upload_folder( repo_id="huggingface/transformers-metadata" , folder_path=__a , repo_type="dataset" , token=__a , commit_message=__a , ) def A(): lowerCAmelCase_ = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} lowerCAmelCase_ = transformers_module.pipelines.SUPPORTED_TASKS lowerCAmelCase_ = [] for key in pipeline_tasks: if key not in in_table: lowerCAmelCase_ = pipeline_tasks[key]["pt"] if isinstance(__a , (list, tuple) ): lowerCAmelCase_ = model[0] lowerCAmelCase_ = model.__name__ if model not in in_table.values(): missing.append(__a ) if len(__a ) > 0: lowerCAmelCase_ = ", ".join(__a ) raise ValueError( "The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside " F"`utils/update_metadata.py`: {msg}. Please add them!" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--token''', type=str, help='''The token to use to push to the transformers-metadata dataset.''') parser.add_argument('''--commit_sha''', type=str, help='''The sha of the commit going with this update.''') parser.add_argument('''--check-only''', action='''store_true''', help='''Activate to just check all pipelines are present.''') lowerCamelCase__ = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
122
1
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class a ( unittest.TestCase ): def __lowerCamelCase ( self :Dict ): with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights snake_case__ : Union[str, Any] = FlaxDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' ,safety_checker=__lowercase ,cache_dir=__lowercase ) snake_case__ : Tuple = [t[-1] for t in os.walk(os.path.join(__lowercase ,os.listdir(__lowercase )[0] ,'''snapshots''' ) )] snake_case__ : Any = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('''.bin''' ) for f in files ) @slow @require_flax class a ( unittest.TestCase ): def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ , snake_case__ : Dict = FlaxStableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' ,safety_checker=__lowercase ) snake_case__ : int = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) snake_case__ : Tuple = jax.random.PRNGKey(0 ) snake_case__ : int = 4 snake_case__ : Optional[int] = jax.device_count() snake_case__ : List[Any] = num_samples * [prompt] snake_case__ : Tuple = pipeline.prepare_inputs(__lowercase ) # shard inputs and rng snake_case__ : str = replicate(__lowercase ) snake_case__ : List[Any] = jax.random.split(__lowercase ,__lowercase ) snake_case__ : List[str] = shard(__lowercase ) snake_case__ : str = pipeline(__lowercase ,__lowercase ,__lowercase ,__lowercase ,jit=__lowercase ).images assert images.shape == (num_samples, 1, 6_4, 6_4, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 4.151_4745 ) < 1e-3 assert np.abs(np.abs(__lowercase ,dtype=np.floataa ).sum() - 4_9947.875 ) < 5e-1 snake_case__ : Optional[Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(__lowercase ) == num_samples def __lowerCamelCase ( self :Tuple ): snake_case__ , snake_case__ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' ,revision='''flax''' ,safety_checker=__lowercase ) snake_case__ : Tuple = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) snake_case__ : Union[str, Any] = jax.random.PRNGKey(0 ) snake_case__ : List[Any] = 5_0 snake_case__ : Union[str, Any] = jax.device_count() snake_case__ : Optional[int] = num_samples * [prompt] snake_case__ : Any = pipeline.prepare_inputs(__lowercase ) # shard inputs and rng snake_case__ : str = replicate(__lowercase ) snake_case__ : Optional[int] = jax.random.split(__lowercase ,__lowercase ) snake_case__ : Dict = shard(__lowercase ) snake_case__ : str = pipeline(__lowercase ,__lowercase ,__lowercase ,__lowercase ,jit=__lowercase ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 0.0565_2401) ) < 1e-3 assert np.abs((np.abs(__lowercase ,dtype=np.floataa ).sum() - 238_3808.2) ) < 5e-1 def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ , snake_case__ : Tuple = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' ,revision='''bf16''' ,dtype=jnp.bfloataa ,safety_checker=__lowercase ) snake_case__ : Tuple = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) snake_case__ : Dict = jax.random.PRNGKey(0 ) snake_case__ : Any = 5_0 snake_case__ : Tuple = jax.device_count() snake_case__ : str = num_samples * [prompt] snake_case__ : int = pipeline.prepare_inputs(__lowercase ) # shard inputs and rng snake_case__ : Dict = replicate(__lowercase ) snake_case__ : Union[str, Any] = jax.random.split(__lowercase ,__lowercase ) snake_case__ : Tuple = shard(__lowercase ) snake_case__ : Optional[Any] = pipeline(__lowercase ,__lowercase ,__lowercase ,__lowercase ,jit=__lowercase ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 0.0400_3906) ) < 1e-3 assert np.abs((np.abs(__lowercase ,dtype=np.floataa ).sum() - 237_3516.75) ) < 5e-1 def __lowerCamelCase ( self :str ): snake_case__ , snake_case__ : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' ,revision='''bf16''' ,dtype=jnp.bfloataa ) snake_case__ : Tuple = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) snake_case__ : int = jax.random.PRNGKey(0 ) snake_case__ : Optional[int] = 5_0 snake_case__ : List[str] = jax.device_count() snake_case__ : int = num_samples * [prompt] snake_case__ : List[str] = pipeline.prepare_inputs(__lowercase ) # shard inputs and rng snake_case__ : Optional[int] = replicate(__lowercase ) snake_case__ : str = jax.random.split(__lowercase ,__lowercase ) snake_case__ : Dict = shard(__lowercase ) snake_case__ : Union[str, Any] = pipeline(__lowercase ,__lowercase ,__lowercase ,__lowercase ,jit=__lowercase ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 0.0400_3906) ) < 1e-3 assert np.abs((np.abs(__lowercase ,dtype=np.floataa ).sum() - 237_3516.75) ) < 5e-1 def __lowerCamelCase ( self :List[Any] ): snake_case__ : Union[str, Any] = FlaxDDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule='''scaled_linear''' ,set_alpha_to_one=__lowercase ,steps_offset=1 ,) snake_case__ , snake_case__ : Any = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' ,revision='''bf16''' ,dtype=jnp.bfloataa ,scheduler=__lowercase ,safety_checker=__lowercase ,) snake_case__ : Dict = scheduler.create_state() snake_case__ : List[str] = scheduler_state snake_case__ : Any = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) snake_case__ : Tuple = jax.random.PRNGKey(0 ) snake_case__ : int = 5_0 snake_case__ : int = jax.device_count() snake_case__ : List[Any] = num_samples * [prompt] snake_case__ : Tuple = pipeline.prepare_inputs(__lowercase ) # shard inputs and rng snake_case__ : Tuple = replicate(__lowercase ) snake_case__ : Dict = jax.random.split(__lowercase ,__lowercase ) snake_case__ : Optional[Any] = shard(__lowercase ) snake_case__ : List[Any] = pipeline(__lowercase ,__lowercase ,__lowercase ,__lowercase ,jit=__lowercase ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 0.0_4504_3945) ) < 1e-3 assert np.abs((np.abs(__lowercase ,dtype=np.floataa ).sum() - 234_7693.5) ) < 5e-1 def __lowerCamelCase ( self :Tuple ): snake_case__ : int = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) snake_case__ : Dict = jax.device_count() snake_case__ : List[str] = num_samples * [prompt] snake_case__ : Tuple = jax.random.split(jax.random.PRNGKey(0 ) ,__lowercase ) snake_case__ , snake_case__ : Dict = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' ,revision='''bf16''' ,dtype=jnp.bfloataa ,safety_checker=__lowercase ,) snake_case__ : Union[str, Any] = replicate(__lowercase ) snake_case__ : Union[str, Any] = pipeline.prepare_inputs(__lowercase ) snake_case__ : str = shard(__lowercase ) snake_case__ : Optional[Any] = pipeline(__lowercase ,__lowercase ,__lowercase ,jit=__lowercase ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) snake_case__ : List[Any] = images[2, 0, 2_5_6, 1_0:1_7, 1] # With memory efficient attention snake_case__ , snake_case__ : int = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' ,revision='''bf16''' ,dtype=jnp.bfloataa ,safety_checker=__lowercase ,use_memory_efficient_attention=__lowercase ,) snake_case__ : Optional[Any] = replicate(__lowercase ) snake_case__ : List[Any] = pipeline.prepare_inputs(__lowercase ) snake_case__ : List[str] = shard(__lowercase ) snake_case__ : Tuple = pipeline(__lowercase ,__lowercase ,__lowercase ,jit=__lowercase ).images assert images_eff.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) snake_case__ : Optional[int] = images[2, 0, 2_5_6, 1_0:1_7, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
219
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class a ( __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : str = ShapEPipeline __lowerCAmelCase : Union[str, Any] = ["""prompt"""] __lowerCAmelCase : Union[str, Any] = ["""prompt"""] __lowerCAmelCase : Tuple = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] __lowerCAmelCase : Optional[Any] = False @property def __lowerCamelCase ( self :Dict ): return 3_2 @property def __lowerCamelCase ( self :str ): return 3_2 @property def __lowerCamelCase ( self :Optional[int] ): return self.time_input_dim * 4 @property def __lowerCamelCase ( self :int ): return 8 @property def __lowerCamelCase ( self :int ): snake_case__ : Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def __lowerCamelCase ( self :int ): torch.manual_seed(0 ) snake_case__ : Optional[Any] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=3_7 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,) return CLIPTextModelWithProjection(__lowercase ) @property def __lowerCamelCase ( self :str ): torch.manual_seed(0 ) snake_case__ : Optional[Any] = { '''num_attention_heads''': 2, '''attention_head_dim''': 1_6, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 3_2, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } snake_case__ : Optional[int] = PriorTransformer(**__lowercase ) return model @property def __lowerCamelCase ( self :Optional[int] ): torch.manual_seed(0 ) snake_case__ : Dict = { '''param_shapes''': ( (self.renderer_dim, 9_3), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 1_2, '''background''': ( 0.1, 0.1, 0.1, ), } snake_case__ : List[str] = ShapERenderer(**__lowercase ) return model def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : str = self.dummy_prior snake_case__ : Optional[Any] = self.dummy_text_encoder snake_case__ : List[Any] = self.dummy_tokenizer snake_case__ : Optional[int] = self.dummy_renderer snake_case__ : str = HeunDiscreteScheduler( beta_schedule='''exp''' ,num_train_timesteps=1_0_2_4 ,prediction_type='''sample''' ,use_karras_sigmas=__lowercase ,clip_sample=__lowercase ,clip_sample_range=1.0 ,) snake_case__ : Tuple = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :int ,__lowercase :str=0 ): if str(__lowercase ).startswith('''mps''' ): snake_case__ : List[str] = torch.manual_seed(__lowercase ) else: snake_case__ : Optional[Any] = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) snake_case__ : Optional[int] = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 3_2, '''output_type''': '''np''', } return inputs def __lowerCamelCase ( self :Tuple ): snake_case__ : str = '''cpu''' snake_case__ : str = self.get_dummy_components() snake_case__ : Optional[Any] = self.pipeline_class(**__lowercase ) snake_case__ : Tuple = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) snake_case__ : Tuple = pipe(**self.get_dummy_inputs(__lowercase ) ) snake_case__ : Dict = output.images[0] snake_case__ : Dict = image[0, -3:, -3:, -1] assert image.shape == (2_0, 3_2, 3_2, 3) snake_case__ : Tuple = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCamelCase ( self :Any ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Optional[int] = torch_device == '''cpu''' snake_case__ : Dict = True self._test_inference_batch_single_identical( batch_size=2 ,test_max_difference=__lowercase ,relax_max_difference=__lowercase ,) def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : List[Any] = self.get_dummy_components() snake_case__ : Any = self.pipeline_class(**__lowercase ) snake_case__ : str = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) snake_case__ : Any = 1 snake_case__ : str = 2 snake_case__ : Any = self.get_dummy_inputs(__lowercase ) for key in inputs.keys(): if key in self.batch_params: snake_case__ : Optional[Any] = batch_size * [inputs[key]] snake_case__ : Any = pipe(**__lowercase ,num_images_per_prompt=__lowercase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class a ( unittest.TestCase ): def __lowerCamelCase ( self :List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) snake_case__ : Optional[int] = ShapEPipeline.from_pretrained('''openai/shap-e''' ) snake_case__ : Any = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) snake_case__ : Optional[int] = torch.Generator(device=__lowercase ).manual_seed(0 ) snake_case__ : Tuple = pipe( '''a shark''' ,generator=__lowercase ,guidance_scale=15.0 ,num_inference_steps=6_4 ,frame_size=6_4 ,output_type='''np''' ,).images[0] assert images.shape == (2_0, 6_4, 6_4, 3) assert_mean_pixel_difference(__lowercase ,__lowercase )
219
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json""", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''gpt_neox''' def __init__( self : int , lowerCamelCase_ : Dict=5_04_32 , lowerCamelCase_ : Tuple=61_44 , lowerCamelCase_ : Any=44 , lowerCamelCase_ : Optional[int]=64 , lowerCamelCase_ : List[str]=2_45_76 , lowerCamelCase_ : Tuple="gelu" , lowerCamelCase_ : Tuple=0.25 , lowerCamelCase_ : Optional[int]=1_00_00 , lowerCamelCase_ : Dict=0.0 , lowerCamelCase_ : int=0.0 , lowerCamelCase_ : Union[str, Any]=0.1 , lowerCamelCase_ : str=20_48 , lowerCamelCase_ : List[str]=0.02 , lowerCamelCase_ : str=1e-5 , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : str=0 , lowerCamelCase_ : Dict=2 , lowerCamelCase_ : Any=False , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : Dict=None , **lowerCamelCase_ : Tuple , ): '''simple docstring''' super().__init__(bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE : Dict = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = rotary_pct SCREAMING_SNAKE_CASE : List[str] = rotary_emb_base SCREAMING_SNAKE_CASE : str = attention_dropout SCREAMING_SNAKE_CASE : Dict = hidden_dropout SCREAMING_SNAKE_CASE : Any = classifier_dropout SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Any = layer_norm_eps SCREAMING_SNAKE_CASE : Tuple = use_cache SCREAMING_SNAKE_CASE : Union[str, Any] = tie_word_embeddings SCREAMING_SNAKE_CASE : Tuple = use_parallel_residual SCREAMING_SNAKE_CASE : str = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( """The hidden size is not divisble by the number of attention heads! Make sure to update them!""" ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowerCamelCase_ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f'''got {self.rope_scaling}''' ) SCREAMING_SNAKE_CASE : str = self.rope_scaling.get("""type""" , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = self.rope_scaling.get("""factor""" , lowerCamelCase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
379
'''simple docstring''' from __future__ import annotations from statistics import mean def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = [0] * no_of_processes SCREAMING_SNAKE_CASE : int = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Optional[int] = burst_time[i] SCREAMING_SNAKE_CASE : list[int] = [] SCREAMING_SNAKE_CASE : List[str] = 0 SCREAMING_SNAKE_CASE : List[Any] = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Any = -1 for i in range(lowerCamelCase_ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: SCREAMING_SNAKE_CASE : Union[str, Any] = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: SCREAMING_SNAKE_CASE : Any = i total_time += burst_time[target_process] completed += 1 SCREAMING_SNAKE_CASE : Any = 0 SCREAMING_SNAKE_CASE : Optional[int] = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = [0] * no_of_processes for i in range(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Union[str, Any] = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") __UpperCAmelCase = 4 __UpperCAmelCase = [2, 5, 3, 7] __UpperCAmelCase = [0, 0, 0, 0] __UpperCAmelCase = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __UpperCAmelCase = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( f'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t''' f'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}''' ) print(f'''\nAverage waiting time = {mean(waiting_time):.5f}''') print(f'''Average turnaround time = {mean(turn_around_time):.5f}''')
379
1
import argparse import importlib from pathlib import Path # Test all the extensions added in the setup lowercase : str = [ """kernels/rwkv/wkv_cuda.cu""", """kernels/rwkv/wkv_op.cpp""", """kernels/deformable_detr/ms_deform_attn.h""", """kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh""", """models/graphormer/algos_graphormer.pyx""", ] def UpperCAmelCase_ ( _UpperCAmelCase ): # Test all the extensions added in the setup for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": lowercase : List[str] = argparse.ArgumentParser() parser.add_argument("""--check_lib""", action="""store_true""", help="""Whether to check the build or the actual package.""") lowercase : Optional[Any] = parser.parse_args() if args.check_lib: lowercase : List[Any] = importlib.import_module("""transformers""") lowercase : List[str] = Path(transformers_module.__file__).parent else: lowercase : int = Path.cwd() / """build/lib/transformers""" if not test_custom_files_are_present(transformers_path): raise ValueError("""The built release does not contain the custom files. Fix this before going further!""")
705
class a__ ( __SCREAMING_SNAKE_CASE ): pass class a__ ( __SCREAMING_SNAKE_CASE ): pass class a__ : def __init__( self : int ) -> Tuple: """simple docstring""" lowerCamelCase_: Any = [ [], [], [], ] def lowerCAmelCase ( self : int , A_ : int , A_ : int ) -> None: """simple docstring""" try: if len(self.queues[priority] ) >= 1_00: raise OverflowError("""Maximum queue size is 100""" ) self.queues[priority].append(A_ ) except IndexError: raise ValueError("""Valid priorities are 0, 1, and 2""" ) def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("""All queues are empty""" ) def __str__( self : List[str] ) -> str: """simple docstring""" return "\n".join(f"""Priority {i}: {q}""" for i, q in enumerate(self.queues ) ) class a__ : def __init__( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_: Optional[Any] = [] def lowerCAmelCase ( self : List[str] , A_ : int ) -> None: """simple docstring""" if len(self.queue ) == 1_00: raise OverFlowError("""Maximum queue size is 100""" ) self.queue.append(A_ ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" if not self.queue: raise UnderFlowError("""The queue is empty""" ) else: lowerCamelCase_: str = min(self.queue ) self.queue.remove(A_ ) return data def __str__( self : str ) -> str: """simple docstring""" return str(self.queue ) def UpperCAmelCase_ ( ): lowerCamelCase_: Union[str, Any] = FixedPriorityQueue() fpq.enqueue(0 , 1_0 ) fpq.enqueue(1 , 7_0 ) fpq.enqueue(0 , 1_0_0 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 6_4 ) fpq.enqueue(0 , 1_2_8 ) print(_UpperCAmelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_UpperCAmelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def UpperCAmelCase_ ( ): lowerCamelCase_: str = ElementPriorityQueue() epq.enqueue(1_0 ) epq.enqueue(7_0 ) epq.enqueue(1_0_0 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(6_4 ) epq.enqueue(1_2_8 ) print(_UpperCAmelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_UpperCAmelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
584
0
import os from distutils.util import strtobool def A ( lowercase__ : List[str] , lowercase__ : Union[str, Any] ) -> List[str]: for e in env_keys: UpperCamelCase__ :Optional[Any] = int(os.environ.get(lowercase__ , -1 ) ) if val >= 0: return val return default def A ( lowercase__ : Optional[int] , lowercase__ : int=False ) -> Optional[int]: UpperCamelCase__ :Optional[Any] = os.environ.get(lowercase__ , str(lowercase__ ) ) return strtobool(lowercase__ ) == 1 # As its name indicates `strtobool` actually returns an int... def A ( lowercase__ : Tuple , lowercase__ : Dict="no" ) -> List[Any]: UpperCamelCase__ :Optional[int] = os.environ.get(lowercase__ , str(lowercase__ ) ) return value
45
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A :int = ["image_processor", "tokenizer"] A :Any = "LayoutLMv3ImageProcessor" A :str = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast") def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): """simple docstring""" a__ : str = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __UpperCAmelCase , ) a__ : List[str] = kwargs.pop("feature_extractor" ) a__ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ): """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) # first, apply the image processor a__ : List[str] = self.image_processor(images=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): a__ : Union[str, Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) a__ : Optional[Any] = features["words"] a__ : Union[str, Any] = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , stride=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , return_length=__UpperCAmelCase , verbose=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , ) # add pixel values a__ : Dict = features.pop("pixel_values" ) if return_overflowing_tokens is True: a__ : str = self.get_overflowing_images(__UpperCAmelCase , encoded_inputs["overflow_to_sample_mapping"] ) a__ : Tuple = images return encoded_inputs def _A ( self , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" a__ : Any = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" f' {len(__UpperCAmelCase )} and {len(__UpperCAmelCase )}' ) return images_with_overflow def _A ( self , *__UpperCAmelCase , **__UpperCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def _A ( self , *__UpperCAmelCase , **__UpperCAmelCase ): """simple docstring""" return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def _A ( self ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def _A ( self ): """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __UpperCAmelCase , ) return self.image_processor_class @property def _A ( self ): """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __UpperCAmelCase , ) return self.image_processor
191
0
'''simple docstring''' def UpperCAmelCase_ (__a : str , __a : str = " " ): """simple docstring""" _a : Union[str, Any] = [] _a : Dict = 0 for index, char in enumerate(__a ): if char == separator: split_words.append(string[last_index:index] ) _a : Optional[int] = index + 1 elif index + 1 == len(__a ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
319
'''simple docstring''' import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup __lowerCAmelCase = logging.get_logger(__name__) class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __init__( self : str ,**_a : List[Any] ): '''simple docstring''' requires_backends(self ,['bs4'] ) super().__init__(**_a ) def __lowercase ( self : Tuple ,_a : List[str] ): '''simple docstring''' _a : List[str] = [] _a : Any = [] _a : int = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag _a : Dict = parent.find_all(child.name ,recursive=_a ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(_a ) else next(i for i, s in enumerate(_a ,1 ) if s is child ) ) _a : Optional[Any] = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def __lowercase ( self : int ,_a : Any ): '''simple docstring''' _a : List[str] = BeautifulSoup(_a ,'html.parser' ) _a : int = [] _a : int = [] _a : Optional[Any] = [] for element in html_code.descendants: if type(_a ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue _a : Tuple = html.unescape(_a ).strip() if not text_in_this_tag: continue all_doc_strings.append(_a ) _a, _a : Tuple = self.xpath_soup(_a ) stringaxtag_seq.append(_a ) stringaxsubs_seq.append(_a ) if len(_a ) != len(_a ): raise ValueError('Number of doc strings and xtags does not correspond' ) if len(_a ) != len(_a ): raise ValueError('Number of doc strings and xsubs does not correspond' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def __lowercase ( self : List[Any] ,_a : List[str] ,_a : Any ): '''simple docstring''' _a : List[str] = '' for tagname, subs in zip(_a ,_a ): xpath += F"""/{tagname}""" if subs != 0: xpath += F"""[{subs}]""" return xpath def __call__( self : str ,_a : Tuple ): '''simple docstring''' _a : Optional[int] = False # Check that strings has a valid type if isinstance(_a ,_a ): _a : Optional[int] = True elif isinstance(_a ,(list, tuple) ): if len(_a ) == 0 or isinstance(html_strings[0] ,_a ): _a : int = True if not valid_strings: raise ValueError( 'HTML strings must of type `str`, `List[str]` (batch of examples), ' F"""but is of type {type(_a )}.""" ) _a : List[str] = bool(isinstance(_a ,(list, tuple) ) and (isinstance(html_strings[0] ,_a )) ) if not is_batched: _a : Optional[int] = [html_strings] # Get nodes + xpaths _a : Union[str, Any] = [] _a : int = [] for html_string in html_strings: _a, _a, _a : Any = self.get_three_from_single(_a ) nodes.append(_a ) _a : Tuple = [] for node, tag_list, sub_list in zip(_a ,_a ,_a ): _a : Dict = self.construct_xpath(_a ,_a ) xpath_strings.append(_a ) xpaths.append(_a ) # return as Dict _a : Optional[Any] = {'nodes': nodes, 'xpaths': xpaths} _a : Tuple = BatchFeature(data=_a ,tensor_type=_a ) return encoded_inputs
319
1
def A ( _lowerCamelCase ): # noqa: E741 '''simple docstring''' _lowerCAmelCase : Optional[Any] = len(a_ ) _lowerCAmelCase : Any = 0 _lowerCAmelCase : List[Any] = [0] * n _lowerCAmelCase : Tuple = [False] * n _lowerCAmelCase : Tuple = [False] * n def dfs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if parent == root: out_edge_count += 1 _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Any = at for to in l[at]: if to == parent: pass elif not visited[to]: _lowerCAmelCase : Optional[int] = dfs(a_ , a_ , a_ , a_ ) _lowerCAmelCase : Optional[int] = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: _lowerCAmelCase : Any = True # AP found via cycle if at == low[to]: _lowerCAmelCase : List[str] = True else: _lowerCAmelCase : Any = min(low[at] , a_ ) return out_edge_count for i in range(a_ ): if not visited[i]: _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Union[str, Any] = dfs(a_ , a_ , -1 , a_ ) _lowerCAmelCase : List[str] = out_edge_count > 1 for x in range(len(a_ ) ): if is_art[x] is True: print(a_ ) # Adjacency list of graph _snake_case = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
500
'''simple docstring''' import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch UpperCAmelCase_ = random.Random() def SCREAMING_SNAKE_CASE ( a_ : Optional[Any] , a_ : Any=1.0 , a_ : Optional[Any]=None , a_ : Union[str, Any]=None ): if rng is None: __a = global_rng __a = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __lowercase ( unittest.TestCase ): def __init__( self , UpperCamelCase , UpperCamelCase=7 , UpperCamelCase=400 , UpperCamelCase=2000 , UpperCamelCase=10 , UpperCamelCase=160 , UpperCamelCase=8 , UpperCamelCase=0.0 , UpperCamelCase=4000 , UpperCamelCase=False , UpperCamelCase=True , ) -> Optional[Any]: __a = parent __a = batch_size __a = min_seq_length __a = max_seq_length __a = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __a = padding_value __a = sampling_rate __a = return_attention_mask __a = do_normalize __a = feature_size __a = chunk_length __a = hop_length def UpperCamelCase__ ( self ) -> Tuple: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCamelCase__ ( self , UpperCamelCase=False , UpperCamelCase=False ) -> int: def _flatten(UpperCamelCase ): return list(itertools.chain(*UpperCamelCase ) ) if equal_length: __a = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __a = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __a = [np.asarray(UpperCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowercase ( __magic_name__ , unittest.TestCase ): _a = WhisperFeatureExtractor if is_speech_available() else None def UpperCamelCase__ ( self ) -> str: __a = WhisperFeatureExtractionTester(self ) def UpperCamelCase__ ( self ) -> Union[str, Any]: __a = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __a = feat_extract_first.save_pretrained(UpperCamelCase )[0] check_json_file_has_correct_format(UpperCamelCase ) __a = self.feature_extraction_class.from_pretrained(UpperCamelCase ) __a = feat_extract_first.to_dict() __a = feat_extract_second.to_dict() __a = feat_extract_first.mel_filters __a = feat_extract_second.mel_filters self.assertTrue(np.allclose(UpperCamelCase , UpperCamelCase ) ) self.assertEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ ( self ) -> Dict: __a = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __a = os.path.join(UpperCamelCase , 'feat_extract.json' ) feat_extract_first.to_json_file(UpperCamelCase ) __a = self.feature_extraction_class.from_json_file(UpperCamelCase ) __a = feat_extract_first.to_dict() __a = feat_extract_second.to_dict() __a = feat_extract_first.mel_filters __a = feat_extract_second.mel_filters self.assertTrue(np.allclose(UpperCamelCase , UpperCamelCase ) ) self.assertEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ ( self ) -> Optional[Any]: # Tests that all call wrap to encode_plus and batch_encode_plus __a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __a = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __a = [np.asarray(UpperCamelCase ) for speech_input in speech_inputs] # Test feature size __a = feature_extractor(UpperCamelCase , padding='max_length' , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input __a = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features __a = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) ) # Test batched __a = feature_extractor(UpperCamelCase , return_tensors='np' ).input_features __a = feature_extractor(UpperCamelCase , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase , UpperCamelCase ): self.assertTrue(np.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. __a = [floats_list((1, x) )[0] for x in (800, 800, 800)] __a = np.asarray(UpperCamelCase ) __a = feature_extractor(UpperCamelCase , return_tensors='np' ).input_features __a = feature_extractor(UpperCamelCase , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase , UpperCamelCase ): self.assertTrue(np.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) ) # Test truncation required __a = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] __a = [np.asarray(UpperCamelCase ) for speech_input in speech_inputs] __a = [x[: feature_extractor.n_samples] for x in speech_inputs] __a = [np.asarray(UpperCamelCase ) for speech_input in speech_inputs_truncated] __a = feature_extractor(UpperCamelCase , return_tensors='np' ).input_features __a = feature_extractor(UpperCamelCase , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase , UpperCamelCase ): self.assertTrue(np.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) ) def UpperCamelCase__ ( self ) -> int: import torch __a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __a = np.random.rand(100 , 32 ).astype(np.floataa ) __a = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __a = feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) __a = feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def UpperCamelCase__ ( self , UpperCamelCase ) -> Tuple: __a = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech __a = ds.sort('id' ).select(range(UpperCamelCase ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def UpperCamelCase__ ( self ) -> int: # fmt: off __a = torch.tensor( [ 0.1_193, -0.0_946, -0.1_098, -0.0_196, 0.0_225, -0.0_690, -0.1_736, 0.0_951, 0.0_971, -0.0_817, -0.0_702, 0.0_162, 0.0_260, 0.0_017, -0.0_192, -0.1_678, 0.0_709, -0.1_867, -0.0_655, -0.0_274, -0.0_234, -0.1_884, -0.0_516, -0.0_554, -0.0_274, -0.1_425, -0.1_423, 0.0_837, 0.0_377, -0.0_854 ] ) # fmt: on __a = self._load_datasamples(1 ) __a = WhisperFeatureExtractor() __a = feature_extractor(UpperCamelCase , return_tensors='pt' ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , UpperCamelCase , atol=1e-4 ) ) def UpperCamelCase__ ( self ) -> List[Any]: __a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __a = self._load_datasamples(1 )[0] __a = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue __a = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=UpperCamelCase )[0] self.assertTrue(np.all(np.mean(UpperCamelCase ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(UpperCamelCase ) - 1 ) < 1e-3 ) )
539
0
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class _A : """simple docstring""" def __init__( self : str , A_ : List[str] , A_ : Dict=13 , A_ : Union[str, Any]=32 , A_ : int=2 , A_ : int=3 , A_ : Optional[Any]=16 , A_ : Optional[int]=[1, 2, 1] , A_ : str=[2, 2, 4] , A_ : Optional[Any]=2 , A_ : Any=2.0 , A_ : Optional[Any]=True , A_ : Optional[Any]=0.0 , A_ : Union[str, Any]=0.0 , A_ : List[str]=0.1 , A_ : Optional[int]="gelu" , A_ : Tuple=False , A_ : Any=True , A_ : Tuple=0.02 , A_ : Dict=1E-5 , A_ : str=True , A_ : int=None , A_ : Union[str, Any]=True , A_ : int=10 , A_ : Optional[int]=8 , A_ : Union[str, Any]=["stage1", "stage2", "stage3"] , A_ : List[Any]=[1, 2, 3] , ) -> Optional[Any]: __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = embed_dim __snake_case = depths __snake_case = num_heads __snake_case = window_size __snake_case = mlp_ratio __snake_case = qkv_bias __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = drop_path_rate __snake_case = hidden_act __snake_case = use_absolute_embeddings __snake_case = patch_norm __snake_case = layer_norm_eps __snake_case = initializer_range __snake_case = is_training __snake_case = scope __snake_case = use_labels __snake_case = type_sequence_label_size __snake_case = encoder_stride __snake_case = out_features __snake_case = out_indices def lowercase ( self : List[Any] ) -> Optional[Any]: __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = self.get_config() return config, pixel_values, labels def lowercase ( self : int ) -> int: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowercase ( self : Optional[int] , A_ : Optional[Any] , A_ : List[str] , A_ : List[str] ) -> Union[str, Any]: __snake_case = MaskFormerSwinModel(config=A_ ) model.to(A_ ) model.eval() __snake_case = model(A_ ) __snake_case = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __snake_case = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowercase ( self : Optional[Any] , A_ : str , A_ : Optional[int] , A_ : Tuple ) -> int: __snake_case = MaskFormerSwinBackbone(config=A_ ) model.to(A_ ) model.eval() __snake_case = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(A_ ): __snake_case = ['''stem'''] __snake_case = MaskFormerSwinBackbone(config=A_ ) def lowercase ( self : List[Any] ) -> Optional[Any]: __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _A ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) UpperCamelCase_ : Union[str, Any] = {'''feature-extraction''': MaskFormerSwinModel} if is_torch_available() else {} UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : Union[str, Any] = False UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : Dict = False UpperCamelCase_ : List[Any] = False def lowercase ( self : int ) -> List[str]: __snake_case = MaskFormerSwinModelTester(self ) __snake_case = ConfigTester(self , config_class=A_ , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '''`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with''' ''' `nn.DataParallel`''' ) ) def lowercase ( self : Any ) -> Any: pass def lowercase ( self : str ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : int ) -> Dict: return def lowercase ( self : Tuple ) -> Any: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def lowercase ( self : List[str] ) -> Optional[int]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*A_ ) @unittest.skip('''Swin does not use inputs_embeds''' ) def lowercase ( self : List[str] ) -> List[str]: pass @unittest.skip('''Swin does not support feedforward chunking''' ) def lowercase ( self : str ) -> Any: pass def lowercase ( self : List[str] ) -> int: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def lowercase ( self : Union[str, Any] ) -> Union[str, Any]: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(A_ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A_ ) @unittest.skip(reason='''MaskFormerSwin is only used as backbone and doesn\'t support output_attentions''' ) def lowercase ( self : Tuple ) -> Any: pass @unittest.skip(reason='''MaskFormerSwin is only used as an internal backbone''' ) def lowercase ( self : Any ) -> List[Any]: pass def lowercase ( self : Dict , A_ : List[Any] , A_ : Tuple , A_ : List[Any] , A_ : Union[str, Any] ) -> int: __snake_case = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(A_ , A_ ) ) __snake_case = outputs.hidden_states __snake_case = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(A_ ) , A_ ) # Swin has a different seq_length __snake_case = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __snake_case = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowercase ( self : Dict ) -> Union[str, Any]: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __snake_case = True self.check_hidden_states_output(A_ , A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case = True self.check_hidden_states_output(A_ , A_ , A_ , A_ ) def lowercase ( self : Any ) -> Dict: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __snake_case = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __snake_case = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __snake_case = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __snake_case = True self.check_hidden_states_output(A_ , A_ , A_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case = True self.check_hidden_states_output(A_ , A_ , A_ , (padded_height, padded_width) ) @unittest.skip(reason='''MaskFormerSwin doesn\'t have pretrained checkpoints''' ) def lowercase ( self : Optional[Any] ) -> List[str]: pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def lowercase ( self : Tuple ) -> Optional[int]: pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def lowercase ( self : List[str] ) -> Union[str, Any]: pass def lowercase ( self : Optional[Any] ) -> int: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(A_ : List[str] ): __snake_case = 0 return t def check_equivalence(A_ : Union[str, Any] , A_ : List[Any] , A_ : Optional[int] , A_ : List[str]={} ): with torch.no_grad(): __snake_case = model(**A_ , return_dict=A_ , **A_ ) __snake_case = model(**A_ , return_dict=A_ , **A_ ).to_tuple() def recursive_check(A_ : List[Any] , A_ : List[str] ): if isinstance(A_ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(A_ , A_ ): recursive_check(A_ , A_ ) elif isinstance(A_ , A_ ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(A_ , A_ ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(A_ ) , set_nan_tensor_to_zero(A_ ) , atol=1E-5 ) , msg=( '''Tuple and dict output are not equal. Difference:''' f" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:" f" {torch.isnan(A_ ).any()} and `inf`: {torch.isinf(A_ )}. Dict has" f" `nan`: {torch.isnan(A_ ).any()} and `inf`: {torch.isinf(A_ )}." ) , ) recursive_check(A_ , A_ ) for model_class in self.all_model_classes: __snake_case = model_class(A_ ) model.to(A_ ) model.eval() __snake_case = self._prepare_for_class(A_ , A_ ) __snake_case = self._prepare_for_class(A_ , A_ ) check_equivalence(A_ , A_ , A_ ) __snake_case = self._prepare_for_class(A_ , A_ , return_labels=A_ ) __snake_case = self._prepare_for_class(A_ , A_ , return_labels=A_ ) check_equivalence(A_ , A_ , A_ ) __snake_case = self._prepare_for_class(A_ , A_ ) __snake_case = self._prepare_for_class(A_ , A_ ) check_equivalence(A_ , A_ , A_ , {'''output_hidden_states''': True} ) __snake_case = self._prepare_for_class(A_ , A_ , return_labels=A_ ) __snake_case = self._prepare_for_class(A_ , A_ , return_labels=A_ ) check_equivalence(A_ , A_ , A_ , {'''output_hidden_states''': True} ) @require_torch class _A ( unittest.TestCase , _UpperCAmelCase ): """simple docstring""" UpperCamelCase_ : Tuple = (MaskFormerSwinBackbone,) if is_torch_available() else () UpperCamelCase_ : int = MaskFormerSwinConfig def lowercase ( self : Optional[Any] ) -> List[str]: __snake_case = MaskFormerSwinModelTester(self ) def lowercase ( self : Optional[int] ) -> List[Any]: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = inputs_dict['''pixel_values'''].shape[0] for backbone_class in self.all_model_classes: __snake_case = backbone_class(A_ ) backbone.to(A_ ) backbone.eval() __snake_case = backbone(**A_ ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , A_ ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True __snake_case = backbone(**A_ , output_hidden_states=A_ ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __snake_case , __snake_case , __snake_case = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: __snake_case = backbone(**A_ , output_attentions=A_ ) self.assertIsNotNone(outputs.attentions )
93
"""simple docstring""" import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL __lowercase : int = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case, snake_case, snake_case, snake_case, snake_case, snake_case=False, ): output_path.parent.mkdir(parents=snake_case, exist_ok=snake_case) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( snake_case, snake_case, f=output_path.as_posix(), input_names=snake_case, output_names=snake_case, dynamic_axes=snake_case, do_constant_folding=snake_case, use_external_data_format=snake_case, enable_onnx_checker=snake_case, opset_version=snake_case, ) else: export( snake_case, snake_case, f=output_path.as_posix(), input_names=snake_case, output_names=snake_case, dynamic_axes=snake_case, do_constant_folding=snake_case, opset_version=snake_case, ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case, snake_case = False): __snake_case = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __snake_case = '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''') else: __snake_case = '''cpu''' __snake_case = Path(snake_case) # VAE DECODER __snake_case = AutoencoderKL.from_pretrained(model_path + '''/vae''') __snake_case = vae_decoder.config.latent_channels # forward only through the decoder part __snake_case = vae_decoder.decode onnx_export( snake_case, model_args=( torch.randn(1, snake_case, 25, 25).to(device=snake_case, dtype=snake_case), False, ), output_path=output_path / '''vae_decoder''' / '''model.onnx''', ordered_input_names=['''latent_sample''', '''return_dict'''], output_names=['''sample'''], dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, }, opset=snake_case, ) del vae_decoder if __name__ == "__main__": __lowercase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") __lowercase : List[Any] = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
93
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__) lowerCamelCase__ : str = { "google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json", } class lowercase__( _UpperCAmelCase , _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """bit""" UpperCamelCase = ["""preactivation""", """bottleneck"""] UpperCamelCase = ["""SAME""", """VALID"""] def __init__( self :Union[str, Any] , lowerCamelCase_ :int=3 , lowerCamelCase_ :List[Any]=64 , lowerCamelCase_ :Any=[2_56, 5_12, 10_24, 20_48] , lowerCamelCase_ :Union[str, Any]=[3, 4, 6, 3] , lowerCamelCase_ :Dict="preactivation" , lowerCamelCase_ :List[Any]="relu" , lowerCamelCase_ :Optional[int]=None , lowerCamelCase_ :Union[str, Any]=32 , lowerCamelCase_ :List[Any]=0.0 , lowerCamelCase_ :Any=False , lowerCamelCase_ :List[Any]=32 , lowerCamelCase_ :Dict=1 , lowerCamelCase_ :List[Any]=None , lowerCamelCase_ :Optional[Any]=None , **lowerCamelCase_ :str , ) -> Any: '''simple docstring''' super().__init__(**lowerCamelCase_ ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: SCREAMING_SNAKE_CASE : Any = global_padding.upper() else: raise ValueError(f"Padding strategy {global_padding} not supported" ) SCREAMING_SNAKE_CASE : List[Any] = num_channels SCREAMING_SNAKE_CASE : Tuple = embedding_size SCREAMING_SNAKE_CASE : Dict = hidden_sizes SCREAMING_SNAKE_CASE : Optional[Any] = depths SCREAMING_SNAKE_CASE : Tuple = layer_type SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE : Any = global_padding SCREAMING_SNAKE_CASE : int = num_groups SCREAMING_SNAKE_CASE : Tuple = drop_path_rate SCREAMING_SNAKE_CASE : Any = embedding_dynamic_padding SCREAMING_SNAKE_CASE : List[Any] = output_stride SCREAMING_SNAKE_CASE : List[str] = width_factor SCREAMING_SNAKE_CASE : Any = ['''stem'''] + [f"stage{idx}" for idx in range(1 , len(lowerCamelCase_ ) + 1 )] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = get_aligned_output_features_output_indices( out_features=lowerCamelCase_ , out_indices=lowerCamelCase_ , stage_names=self.stage_names )
698
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : int = logging.get_logger(__name__) lowerCamelCase__ : str = { "studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json", "studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """luke""" def __init__( self :List[Any] , lowerCamelCase_ :Optional[int]=5_02_67 , lowerCamelCase_ :List[Any]=50_00_00 , lowerCamelCase_ :str=7_68 , lowerCamelCase_ :Optional[Any]=2_56 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :Any=30_72 , lowerCamelCase_ :Optional[int]="gelu" , lowerCamelCase_ :Dict=0.1 , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :str=5_12 , lowerCamelCase_ :Tuple=2 , lowerCamelCase_ :Optional[Any]=0.0_2 , lowerCamelCase_ :Optional[int]=1E-12 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :int=None , lowerCamelCase_ :Dict=1 , lowerCamelCase_ :str=0 , lowerCamelCase_ :int=2 , **lowerCamelCase_ :List[str] , ) -> int: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = entity_vocab_size SCREAMING_SNAKE_CASE : int = hidden_size SCREAMING_SNAKE_CASE : Dict = entity_emb_size SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : str = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Dict = type_vocab_size SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = use_entity_aware_attention SCREAMING_SNAKE_CASE : str = classifier_dropout
698
1
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging _lowerCamelCase : str = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class lowercase ( a ): def __init__( self : int , _UpperCamelCase : int = 101 ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = length def __len__( self : List[str] ) -> Dict: '''simple docstring''' return self.length def __getitem__( self : Dict , _UpperCamelCase : Union[str, Any] ) -> int: '''simple docstring''' return i class lowercase : def __call__( self : List[str] , _UpperCamelCase : Optional[Any] ) -> int: '''simple docstring''' return {"input_ids": torch.tensor(_UpperCamelCase ), "labels": torch.tensor(_UpperCamelCase )} class lowercase ( nn.Module ): def __init__( self : Dict ) -> List[Any]: '''simple docstring''' super().__init__() # Add some (unused) params otherwise DDP will complain. SCREAMING_SNAKE_CASE = nn.Linear(120 , 80 ) def __snake_case( self : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[Any]=None ) -> Tuple: '''simple docstring''' if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class lowercase ( a ): @require_torch_neuroncore def __snake_case( self : Dict ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = F"--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n ".split() SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE = F"--output_dir {output_dir}".split() SCREAMING_SNAKE_CASE = ["torchrun"] + distributed_args + args execute_subprocess_async(_UpperCamelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class lowercase ( a ): @require_torch_multi_gpu def __snake_case( self : Dict ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = F"--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n ".split() SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE = F"--output_dir {output_dir}".split() SCREAMING_SNAKE_CASE = ["torchrun"] + distributed_args + args execute_subprocess_async(_UpperCamelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py _lowerCamelCase : Optional[Any] = HfArgumentParser((TrainingArguments,)) _lowerCamelCase : Optional[int] = parser.parse_args_into_dataclasses()[0] logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, """ f"""distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}""" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [1_01, 40, 7]: _lowerCamelCase : List[str] = DummyDataset(dataset_length) def __lowerCamelCase (UpperCAmelCase__ : EvalPrediction ): SCREAMING_SNAKE_CASE = list(range(len(UpperCAmelCase__ ) ) ) SCREAMING_SNAKE_CASE = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( "Predictions and/or labels do not match expected results:\n - predictions: " F"{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}" ) return {"success": success} _lowerCamelCase : str = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) _lowerCamelCase : List[Any] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) _lowerCamelCase : Dict = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) _lowerCamelCase : Union[str, Any] = 2 _lowerCamelCase : Any = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) _lowerCamelCase : Dict = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) _lowerCamelCase : int = None
647
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def __lowerCamelCase (UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict=False ): SCREAMING_SNAKE_CASE = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"module.blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"module.blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"module.blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"module.blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"module.blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" SCREAMING_SNAKE_CASE = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def __lowerCamelCase (UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : str=False ): for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE = "" else: SCREAMING_SNAKE_CASE = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE = state_dict.pop(F"module.blocks.{i}.attn.qkv.weight" ) SCREAMING_SNAKE_CASE = state_dict.pop(F"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE = in_proj_bias[-config.hidden_size :] def __lowerCamelCase (UpperCAmelCase__ : Tuple ): SCREAMING_SNAKE_CASE = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(UpperCAmelCase__ , UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : Any ): # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. SCREAMING_SNAKE_CASE = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(UpperCAmelCase__ , UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict ): SCREAMING_SNAKE_CASE = dct.pop(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = val def __lowerCamelCase (UpperCAmelCase__ : Tuple , UpperCAmelCase__ : str ): SCREAMING_SNAKE_CASE = ViTMSNConfig() SCREAMING_SNAKE_CASE = 1_0_0_0 SCREAMING_SNAKE_CASE = "datasets/huggingface/label-files" SCREAMING_SNAKE_CASE = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(UpperCAmelCase__ , UpperCAmelCase__ ) , "r" ) ) SCREAMING_SNAKE_CASE = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: SCREAMING_SNAKE_CASE = 3_8_4 SCREAMING_SNAKE_CASE = 1_5_3_6 SCREAMING_SNAKE_CASE = 6 elif "l16" in checkpoint_url: SCREAMING_SNAKE_CASE = 1_0_2_4 SCREAMING_SNAKE_CASE = 4_0_9_6 SCREAMING_SNAKE_CASE = 2_4 SCREAMING_SNAKE_CASE = 1_6 SCREAMING_SNAKE_CASE = 0.1 elif "b4" in checkpoint_url: SCREAMING_SNAKE_CASE = 4 elif "l7" in checkpoint_url: SCREAMING_SNAKE_CASE = 7 SCREAMING_SNAKE_CASE = 1_0_2_4 SCREAMING_SNAKE_CASE = 4_0_9_6 SCREAMING_SNAKE_CASE = 2_4 SCREAMING_SNAKE_CASE = 1_6 SCREAMING_SNAKE_CASE = 0.1 SCREAMING_SNAKE_CASE = ViTMSNModel(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(UpperCAmelCase__ , map_location="cpu" )["target_encoder"] SCREAMING_SNAKE_CASE = ViTImageProcessor(size=config.image_size ) remove_projection_head(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = create_rename_keys(UpperCAmelCase__ , base_model=UpperCAmelCase__ ) for src, dest in rename_keys: rename_key(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) read_in_q_k_v(UpperCAmelCase__ , UpperCAmelCase__ , base_model=UpperCAmelCase__ ) model.load_state_dict(UpperCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE = Image.open(requests.get(UpperCAmelCase__ , stream=UpperCAmelCase__ ).raw ) SCREAMING_SNAKE_CASE = ViTImageProcessor( size=config.image_size , image_mean=UpperCAmelCase__ , image_std=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = image_processor(images=UpperCAmelCase__ , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) SCREAMING_SNAKE_CASE = model(**UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: SCREAMING_SNAKE_CASE = torch.tensor([[-1.0915, -1.4876, -1.1809]] ) elif "b16" in checkpoint_url: SCREAMING_SNAKE_CASE = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: SCREAMING_SNAKE_CASE = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: SCREAMING_SNAKE_CASE = torch.tensor([[-4.3868, 5.2932, -0.4137]] ) else: SCREAMING_SNAKE_CASE = torch.tensor([[-0.1792, -0.6465, 2.4263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , UpperCAmelCase__ , atol=1e-4 ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCAmelCase__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowerCamelCase : Optional[Any] = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
647
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """yjernite/retribert-base-uncased""": 512, } lowerCAmelCase_ = { """yjernite/retribert-base-uncased""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : str =VOCAB_FILES_NAMES a_ : int =PRETRAINED_VOCAB_FILES_MAP a_ : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : str =PRETRAINED_INIT_CONFIGURATION a_ : Union[str, Any] =RetriBertTokenizer a_ : List[Any] =["""input_ids""", """attention_mask"""] def __init__( self : Optional[int] , UpperCamelCase : Any=None , UpperCamelCase : Dict=None , UpperCamelCase : Dict=True , UpperCamelCase : List[str]="[UNK]" , UpperCamelCase : List[Any]="[SEP]" , UpperCamelCase : Any="[PAD]" , UpperCamelCase : Tuple="[CLS]" , UpperCamelCase : str="[MASK]" , UpperCamelCase : Any=True , UpperCamelCase : Optional[Any]=None , **UpperCamelCase : List[Any] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : Dict = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : str = do_lower_case _snake_case : str = strip_accents _snake_case : Union[str, Any] = tokenize_chinese_chars _snake_case : Optional[int] = normalizer_class(**UpperCamelCase ) _snake_case : Any = do_lower_case def UpperCamelCase_ ( self : Any , UpperCamelCase : int , UpperCamelCase : Tuple=None ): '''simple docstring''' _snake_case : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : int = [self.sep_token_id] _snake_case : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : Tuple = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
411
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase_ = { """configuration_clip""": [ """CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPConfig""", """CLIPOnnxConfig""", """CLIPTextConfig""", """CLIPVisionConfig""", ], """processing_clip""": ["""CLIPProcessor"""], """tokenization_clip""": ["""CLIPTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["""CLIPTokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["""CLIPFeatureExtractor"""] lowerCAmelCase_ = ["""CLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPModel""", """CLIPPreTrainedModel""", """CLIPTextModel""", """CLIPTextModelWithProjection""", """CLIPVisionModel""", """CLIPVisionModelWithProjection""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCLIPModel""", """TFCLIPPreTrainedModel""", """TFCLIPTextModel""", """TFCLIPVisionModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """FlaxCLIPModel""", """FlaxCLIPPreTrainedModel""", """FlaxCLIPTextModel""", """FlaxCLIPTextPreTrainedModel""", """FlaxCLIPVisionModel""", """FlaxCLIPVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
411
1
"""simple docstring""" # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar _UpperCamelCase : Optional[Any] = TypeVar("T") class UpperCAmelCase_ ( Generic[T]): def __init__( self , a = True ) -> None: lowercase__ : dict[T, list[T]] = {} # dictionary of lists lowercase__ : str = directed def _UpperCAmelCase ( self , a , a ) -> GraphAdjacencyList[T]: if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(a ) self.adj_list[destination_vertex].append(a ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(a ) lowercase__ : int = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(a ) lowercase__ : Any = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: lowercase__ : Optional[Any] = [destination_vertex] lowercase__ : List[str] = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(a ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(a ) lowercase__ : Union[str, Any] = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: lowercase__ : Dict = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: lowercase__ : Tuple = [destination_vertex] lowercase__ : int = [] return self def __repr__( self ) -> str: return pformat(self.adj_list )
645
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch _UpperCamelCase : int = logging.get_logger(__name__) @dataclass class UpperCAmelCase_ : def __init__( self , a=False , a=False , a=6.0 , a=None , a=False , a=False , a=None , a="fp4" , a=False , **a , ) -> Tuple: lowercase__ : str = load_in_abit lowercase__ : str = load_in_abit lowercase__ : List[str] = llm_inta_threshold lowercase__ : Dict = llm_inta_skip_modules lowercase__ : Tuple = llm_inta_enable_fpaa_cpu_offload lowercase__ : Any = llm_inta_has_fpaa_weight lowercase__ : Any = bnb_abit_quant_type lowercase__ : Dict = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: lowercase__ : Dict = torch.floataa elif isinstance(a , a ): lowercase__ : Any = getattr(a , a ) elif isinstance(a , torch.dtype ): lowercase__ : Any = bnb_abit_compute_dtype else: raise ValueError('bnb_4bit_compute_dtype must be a string or a torch.dtype' ) self.post_init() def _UpperCAmelCase ( self ) -> str: if not isinstance(self.llm_inta_threshold , a ): raise ValueError('llm_int8_threshold must be a float' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , a ): raise ValueError('llm_int8_skip_modules must be a list of strings' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , a ): raise ValueError('llm_int8_enable_fp32_cpu_offload must be a boolean' ) if not isinstance(self.llm_inta_has_fpaa_weight , a ): raise ValueError('llm_int8_has_fp16_weight must be a boolean' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('bnb_4bit_compute_dtype must be torch.dtype' ) if not isinstance(self.bnb_abit_quant_type , a ): raise ValueError('bnb_4bit_quant_type must be a string' ) if not isinstance(self.bnb_abit_use_double_quant , a ): raise ValueError('bnb_4bit_use_double_quant must be a boolean' ) if self.load_in_abit and not version.parse(importlib.metadata.version('bitsandbytes' ) ) >= version.parse( '0.39.0' ): raise ValueError( '4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version' ) def _UpperCAmelCase ( self ) -> Tuple: return self.load_in_abit or self.load_in_abit def _UpperCAmelCase ( self ) -> List[str]: if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def _UpperCAmelCase ( cls , a , a , **a ) -> Optional[Any]: lowercase__ : List[Any] = cls(**a ) lowercase__ : Union[str, Any] = [] for key, value in kwargs.items(): if hasattr(a , a ): setattr(a , a , a ) to_remove.append(a ) for key in to_remove: kwargs.pop(a , a ) if return_unused_kwargs: return config, kwargs else: return config def _UpperCAmelCase ( self , a ) -> Dict: with open(a , 'w' , encoding='utf-8' ) as writer: lowercase__ : Any = self.to_dict() lowercase__ : str = json.dumps(a , indent=2 , sort_keys=a ) + '\n' writer.write(a ) def _UpperCAmelCase ( self ) -> Dict[str, Any]: lowercase__ : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase__ : Any = str(output['bnb_4bit_compute_dtype'] ).split('.' )[1] return output def __repr__( self ) -> Dict: return f"""{self.__class__.__name__} {self.to_json_string()}""" def _UpperCAmelCase ( self , a = True ) -> str: if use_diff is True: lowercase__ : List[Any] = self.to_diff_dict() else: lowercase__ : List[str] = self.to_dict() return json.dumps(a , indent=2 , sort_keys=a ) + "\n" def _UpperCAmelCase ( self ) -> Dict[str, Any]: lowercase__ : Tuple = self.to_dict() # get the default config dict lowercase__ : Optional[Any] = BitsAndBytesConfig().to_dict() lowercase__ : int = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: lowercase__ : Optional[int] = value return serializable_config_dict
645
1
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''google/owlvit-base-patch32''': '''https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json''', '''google/owlvit-base-patch16''': '''https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json''', '''google/owlvit-large-patch14''': '''https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json''', } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[str] = "owlvit_text_model" def __init__( self , _a=4_9_4_0_8 , _a=5_1_2 , _a=2_0_4_8 , _a=1_2 , _a=8 , _a=1_6 , _a="quick_gelu" , _a=1e-5 , _a=0.0 , _a=0.02 , _a=1.0 , _a=0 , _a=4_9_4_0_6 , _a=4_9_4_0_7 , **_a , ) -> int: super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) _a : Tuple = vocab_size _a : Tuple = hidden_size _a : Optional[int] = intermediate_size _a : Any = num_hidden_layers _a : int = num_attention_heads _a : Tuple = max_position_embeddings _a : List[Any] = hidden_act _a : str = layer_norm_eps _a : Dict = attention_dropout _a : Any = initializer_range _a : Union[str, Any] = initializer_factor @classmethod def __lowercase ( cls , _a , **_a ) -> "PretrainedConfig": cls._set_token_in_kwargs(_a ) _a , _a : Optional[int] = cls.get_config_dict(_a , **_a ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": _a : int = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_a , **_a ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : int = "owlvit_vision_model" def __init__( self , _a=7_6_8 , _a=3_0_7_2 , _a=1_2 , _a=1_2 , _a=3 , _a=7_6_8 , _a=3_2 , _a="quick_gelu" , _a=1e-5 , _a=0.0 , _a=0.02 , _a=1.0 , **_a , ) -> Dict: super().__init__(**_a ) _a : Dict = hidden_size _a : Optional[Any] = intermediate_size _a : Optional[Any] = num_hidden_layers _a : int = num_attention_heads _a : int = num_channels _a : int = image_size _a : Dict = patch_size _a : List[str] = hidden_act _a : Tuple = layer_norm_eps _a : int = attention_dropout _a : Any = initializer_range _a : Dict = initializer_factor @classmethod def __lowercase ( cls , _a , **_a ) -> "PretrainedConfig": cls._set_token_in_kwargs(_a ) _a , _a : Tuple = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": _a : str = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_a , **_a ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "owlvit" UpperCAmelCase__ : str = True def __init__( self , _a=None , _a=None , _a=5_1_2 , _a=2.6592 , _a=True , **_a , ) -> Any: super().__init__(**_a ) if text_config is None: _a : Union[str, Any] = {} logger.info('''text_config is None. Initializing the OwlViTTextConfig with default values.''' ) if vision_config is None: _a : List[str] = {} logger.info('''vision_config is None. initializing the OwlViTVisionConfig with default values.''' ) _a : str = OwlViTTextConfig(**_a ) _a : Dict = OwlViTVisionConfig(**_a ) _a : int = projection_dim _a : Optional[int] = logit_scale_init_value _a : List[Any] = return_dict _a : Optional[Any] = 1.0 @classmethod def __lowercase ( cls , _a , **_a ) -> "PretrainedConfig": cls._set_token_in_kwargs(_a ) _a , _a : Dict = cls.get_config_dict(_a , **_a ) if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_a , **_a ) @classmethod def __lowercase ( cls , _a , _a , **_a ) -> Dict: _a : int = {} _a : Optional[int] = text_config _a : Optional[Any] = vision_config return cls.from_dict(_a , **_a ) def __lowercase ( self ) -> Union[str, Any]: _a : Any = copy.deepcopy(self.__dict__ ) _a : Optional[int] = self.text_config.to_dict() _a : Optional[Any] = self.vision_config.to_dict() _a : Union[str, Any] = self.__class__.model_type return output class UpperCAmelCase_ ( __lowercase ): """simple docstring""" @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ] ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''logits_per_image''', {0: '''batch'''}), ('''logits_per_text''', {0: '''batch'''}), ('''text_embeds''', {0: '''batch'''}), ('''image_embeds''', {0: '''batch'''}), ] ) @property def __lowercase ( self ) -> float: return 1e-4 def __lowercase ( self , _a , _a = -1 , _a = -1 , _a = None , ) -> Mapping[str, Any]: _a : Dict = super().generate_dummy_inputs( processor.tokenizer , batch_size=_a , seq_length=_a , framework=_a ) _a : Optional[Any] = super().generate_dummy_inputs( processor.image_processor , batch_size=_a , framework=_a ) return {**text_input_dict, **image_input_dict} @property def __lowercase ( self ) -> int: return 1_4
14
'''simple docstring''' from __future__ import annotations import time import numpy as np _UpperCAmelCase : int = [8, 5, 9, 7] _UpperCAmelCase : List[str] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] _UpperCAmelCase : Union[str, Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class __magic_name__ : def __init__( self , snake_case_ , snake_case_ , snake_case_ , ): lowercase =claim_vector lowercase =allocated_resources_table lowercase =maximum_claim_table def _A( self ): return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def _A( self ): return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def _A( self ): return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(snake_case_ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def _A( self ): return {self.__need().index(snake_case_ ): i for i in self.__need()} def _A( self , **snake_case_ ): lowercase =self.__need() lowercase =self.__allocated_resources_table lowercase =self.__available_resources() lowercase =self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('''_''' * 50 + '''\n''' ) while need_list: lowercase =False for each_need in need_list: lowercase =True for index, need in enumerate(snake_case_ ): if need > available_resources[index]: lowercase =False break if execution: lowercase =True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: lowercase =original_need_index print(f'Process {process_number + 1} is executing.' ) # remove the process run from stack need_list.remove(snake_case_ ) # update available/freed resources stack lowercase =np.array(snake_case_ ) + np.array( alloc_resources_table[process_number] ) print( '''Updated available resource stack for processes: ''' + ''' '''.join([str(snake_case_ ) for x in available_resources] ) ) break if safe: print('''The process is in a safe state.\n''' ) else: print('''System in unsafe state. Aborting...\n''' ) break def _A( self ): print(''' ''' * 9 + '''Allocated Resource Table''' ) for item in self.__allocated_resources_table: print( f'P{self.__allocated_resources_table.index(snake_case_ ) + 1}' + ''' '''.join(f'{it:>8}' for it in item ) + '''\n''' ) print(''' ''' * 9 + '''System Resource Table''' ) for item in self.__maximum_claim_table: print( f'P{self.__maximum_claim_table.index(snake_case_ ) + 1}' + ''' '''.join(f'{it:>8}' for it in item ) + '''\n''' ) print( '''Current Usage by Active Processes: ''' + ''' '''.join(str(snake_case_ ) for x in self.__claim_vector ) ) print( '''Initial Available Resources: ''' + ''' '''.join(str(snake_case_ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
72
0
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def UpperCAmelCase__( *__UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Union[Dict, Any]] = None , __UpperCAmelCase : str=True , __UpperCAmelCase : Dict=2 ): from .. import __version__ __snake_case : Tuple = take_from __snake_case : Tuple = () if not isinstance(args[0] , snake_case__ ): __snake_case : Optional[int] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(snake_case__ ).base_version ) >= version.parse(snake_case__ ): raise ValueError( F"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" F""" version {__version__} is >= {version_name}""" ) __snake_case : Optional[Any] = None if isinstance(snake_case__ , snake_case__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(snake_case__ ),) __snake_case : List[Any] = F"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(snake_case__ , snake_case__ ): values += (getattr(snake_case__ , snake_case__ ),) __snake_case : Union[str, Any] = F"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: __snake_case : List[Any] = F"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: __snake_case : Any = warning + """ """ if standard_warn else """""" warnings.warn(warning + message , snake_case__ , stacklevel=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) > 0: __snake_case : Dict = inspect.getouterframes(inspect.currentframe() )[1] __snake_case : str = call_frame.filename __snake_case : int = call_frame.lineno __snake_case : Any = call_frame.function __snake_case : List[Any] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(snake_case__ ) == 0: return elif len(snake_case__ ) == 1: return values[0] return values
706
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __magic_name__ = '''pt''' elif is_tf_available(): __magic_name__ = '''tf''' else: __magic_name__ = '''jax''' class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = PerceiverTokenizer __UpperCAmelCase = False def lowercase_ ( self ): super().setUp() __snake_case : str = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase_ ( self ): return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def lowercase_ ( self , **_UpperCAmelCase ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=20 , _UpperCAmelCase=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __snake_case : List[Any] = [] for i in range(len(_UpperCAmelCase ) ): try: __snake_case : Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) __snake_case : List[Any] = list(filter(lambda _UpperCAmelCase : re.match(R'^[ a-zA-Z]+$' , t[1] ) , _UpperCAmelCase ) ) __snake_case : Dict = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_UpperCAmelCase ) , _UpperCAmelCase ) ) if max_length is not None and len(_UpperCAmelCase ) > max_length: __snake_case : List[str] = toks[:max_length] if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0: while len(_UpperCAmelCase ) < min_length: __snake_case : Optional[int] = toks + toks # toks_str = [t[1] for t in toks] __snake_case : List[Any] = [t[0] for t in toks] # Ensure consistency __snake_case : Optional[Any] = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) if " " not in output_txt and len(_UpperCAmelCase ) > 1: __snake_case : List[str] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_UpperCAmelCase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_UpperCAmelCase ) ) if with_prefix_space: __snake_case : List[Any] = ' ' + output_txt __snake_case : Optional[int] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) return output_txt, output_ids def lowercase_ ( self ): __snake_case : List[Any] = self.perceiver_tokenizer __snake_case : Dict = 'Unicode €.' __snake_case : Union[str, Any] = tokenizer(_UpperCAmelCase ) __snake_case : Dict = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , _UpperCAmelCase ) # decoding __snake_case : int = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , '[CLS]Unicode €.[SEP]' ) __snake_case : Optional[Any] = tokenizer('e è é ê ë' ) __snake_case : Dict = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , _UpperCAmelCase ) # decoding __snake_case : str = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def lowercase_ ( self ): __snake_case : Union[str, Any] = self.perceiver_tokenizer __snake_case : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __snake_case : str = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on __snake_case : Dict = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) if FRAMEWORK != "jax": __snake_case : List[str] = list(batch.input_ids.numpy()[0] ) else: __snake_case : List[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def lowercase_ ( self ): __snake_case : Dict = self.perceiver_tokenizer __snake_case : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __snake_case : str = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _UpperCAmelCase ) self.assertIn('attention_mask' , _UpperCAmelCase ) self.assertNotIn('decoder_input_ids' , _UpperCAmelCase ) self.assertNotIn('decoder_attention_mask' , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : List[str] = self.perceiver_tokenizer __snake_case : Tuple = [ 'Summary of the text.', 'Another summary.', ] __snake_case : int = tokenizer( text_target=_UpperCAmelCase , max_length=32 , padding='max_length' , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def lowercase_ ( self ): # safety check on max_len default value so we are sure the test works __snake_case : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __snake_case : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Tuple = tempfile.mkdtemp() __snake_case : Optional[Any] = ' He is very happy, UNwant\u00E9d,running' __snake_case : Tuple = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) __snake_case : str = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) __snake_case : List[str] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) shutil.rmtree(_UpperCAmelCase ) __snake_case : Dict = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Tuple = tempfile.mkdtemp() __snake_case : Optional[int] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __snake_case : Optional[int] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __snake_case : Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) __snake_case : List[Any] = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) __snake_case : Optional[Any] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __snake_case : List[Any] = tokenizer.__class__.from_pretrained(_UpperCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __snake_case : Any = json.load(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __snake_case : List[str] = json.load(_UpperCAmelCase ) __snake_case : List[str] = [F"""<extra_id_{i}>""" for i in range(125 )] __snake_case : Dict = added_tokens_extra_ids + [ 'an_additional_special_token' ] __snake_case : List[Any] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __snake_case : Optional[Any] = tokenizer_class.from_pretrained( _UpperCAmelCase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __snake_case : Any = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_UpperCAmelCase )] __snake_case : str = tokenizer_class.from_pretrained( _UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def lowercase_ ( self ): __snake_case : Tuple = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens __snake_case : Optional[Any] = self.get_tokenizers(fast=_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __snake_case : Union[str, Any] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] __snake_case : Tuple = tokenizer.convert_tokens_to_string(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
679
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_: int = { 'configuration_mobilenet_v2': [ 'MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileNetV2Config', 'MobileNetV2OnnxConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_: Optional[Any] = ['MobileNetV2FeatureExtractor'] lowercase_: Union[str, Any] = ['MobileNetV2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_: List[str] = [ 'MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileNetV2ForImageClassification', 'MobileNetV2ForSemanticSegmentation', 'MobileNetV2Model', 'MobileNetV2PreTrainedModel', 'load_tf_weights_in_mobilenet_v2', ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys lowercase_: Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
648
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowercase_: Optional[int] = get_tests_dir('fixtures/test_sentencepiece.model') if is_sentencepiece_available(): import sentencepiece as sp lowercase_: str = 5 lowercase_: int = 10 @require_sentencepiece @require_tokenizers class lowercase__ (__snake_case , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[int] = SpeechaTextTokenizer __UpperCamelCase : Dict = False __UpperCamelCase : Tuple = True def lowercase ( self : Tuple ): super().setUp() snake_case__ : str = sp.SentencePieceProcessor() spm_model.Load(__a ) snake_case__ : List[str] = ["""<s>""", """<pad>""", """</s>""", """<unk>"""] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(__a ) )] snake_case__ : Dict = dict(zip(__a , range(len(__a ) ) ) ) snake_case__ : Optional[Any] = Path(self.tmpdirname ) save_json(__a , save_dir / VOCAB_FILES_NAMES["""vocab_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__a , save_dir / VOCAB_FILES_NAMES["""spm_file"""] ) snake_case__ : str = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self : int ): snake_case__ : Any = """<pad>""" snake_case__ : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def lowercase ( self : Any ): snake_case__ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(__a ) , 1_0_0_1 ) def lowercase ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_1 ) def lowercase ( self : Dict ): snake_case__ : List[Any] = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) snake_case__ : Tuple = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__a , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [2_8_9, 5_0, 1_4, 1_7_4, 3_8_6] , ) snake_case__ : Union[str, Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __a , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , ) snake_case__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual(__a , [1_2, 2_5, 8_8, 5_9, 2_8, 2_3, 1_1, 4, 6_0_6, 3_5_1, 3_5_1, 3_5_1, 7, 1_6, 7_0, 5_0, 7_6, 8_4, 1_0, 4, 8] ) snake_case__ : int = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , ) @slow def lowercase ( self : List[str] ): # fmt: off snake_case__ : Union[str, Any] = {"""input_ids""": [[3_7_9_1, 7_9_7, 3_1, 1_1, 6_4, 7_9_7, 3_1, 2_4_2_9, 4_3_3, 1_2, 1_1_7_6, 1_2, 2_0, 7_8_6, 9_1_5, 1_4_2, 2_4_1_3, 2_4_0, 3_7, 3_2_3_8, 7_9_7, 3_1, 1_1, 3_5, 9_3, 9_1_5, 1_4_2, 2_4_1_3, 2_4_0, 3_7, 5_5_4_0, 5_6_7, 1_2_7_6, 9_3, 3_7, 6_1_0, 4_0, 6_2, 4_5_5, 6_5_7, 1_0_4_2, 1_2_3, 7_8_0, 1_7_7, 3_7, 3_0_9, 2_4_1, 1_2_9_8, 5_1_4, 2_0, 2_9_2, 2_7_3_7, 1_1_4, 2_4_6_9, 2_4_1, 8_5, 6_4, 3_0_2, 5_4_8, 5_2_8, 4_2_3, 4, 5_0_9, 4_0_6, 4_2_3, 3_7, 6_0_1, 4, 7_7_7, 3_0_2, 5_4_8, 5_2_8, 4_2_3, 2_8_4, 4, 3_3_8_8, 5_1_1, 4_5_9, 4, 3_5_5_5, 4_0, 3_2_1, 3_0_2, 7_0_5, 4, 3_3_8_8, 5_1_1, 5_8_3, 3_2_6, 5, 5, 5, 6_2, 3_3_1_0, 5_6_0, 1_7_7, 2_6_8_0, 2_1_7, 1_5_0_8, 3_2, 3_1, 8_5_3, 4_1_8, 6_4, 5_8_3, 5_1_1, 1_6_0_5, 6_2, 3_5, 9_3, 5_6_0, 1_7_7, 2_6_8_0, 2_1_7, 1_5_0_8, 1_5_2_1, 6_4, 5_8_3, 5_1_1, 5_1_9, 6_2, 2_0, 1_5_1_5, 7_6_4, 2_0, 1_4_9, 2_6_1, 5_6_2_5, 7_9_7_2, 2_0, 5_5_4_0, 5_6_7, 1_2_7_6, 9_3, 3_9_2_5, 1_6_7_5, 1_1, 1_5, 8_0_2, 7_9_7_2, 5_7_6, 2_1_7, 1_5_0_8, 1_1, 3_5, 9_3, 1_2_5_3, 2_4_4_1, 1_5, 2_8_9, 6_5_2, 3_1, 4_1_6, 3_2_1, 3_8_4_2, 1_1_5, 4_0, 9_1_1, 8, 4_7_6, 6_1_9, 4, 3_8_0, 1_4_2, 4_2_3, 3_3_5, 2_4_0, 3_5, 9_3, 2_6_4, 8, 1_1, 3_3_5, 5_6_9, 4_2_0, 1_6_3, 5, 2], [2_6_0, 5_4_8, 5_2_8, 4_2_3, 2_0, 4_5_1, 2_0, 2_6_8_1, 1_1_5_3, 3_4_3_4, 2_0, 5_5_4_0, 3_7, 5_6_7, 1_2_6, 1_2_5_3, 2_4_4_1, 3_3_7_6, 4_4_9, 2_1_0, 4_3_1, 1_5_6_3, 1_7_7, 7_6_7, 5_5_4_0, 1_1, 1_2_0_3, 4_7_2, 1_1, 2_9_5_3, 6_8_5, 2_8_5, 3_6_4, 7_0_6, 1_1_5_3, 2_0, 6_7_9_9, 2_0, 2_8_6_9, 2_0, 4_4_6_4, 1_2_6, 4_0, 2_4_2_9, 2_0, 1_0_4_0, 8_6_6, 2_6_6_4, 4_1_8, 2_0, 3_1_8, 2_0, 1_7_2_6, 1_8_6, 2_0, 2_6_5, 5_2_2, 3_5, 9_3, 2_1_9_1, 4_6_3_4, 2_0, 1_0_4_0, 1_2, 6_7_9_9, 1_5, 2_2_8, 2_3_5_6, 1_4_2, 3_1, 1_1, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_5_7_5, 2_6_6_6, 6_8_4, 1_5_8_2, 1_1_7_6, 1_2, 6_2_7, 1_4_9, 6_1_9, 2_0, 4_9_0_2, 5_6_3, 1_1, 2_0, 1_4_9, 2_6_1, 3_4_2_0, 2_3_5_6, 1_7_4, 1_4_2, 4_7_1_4, 1_3_1, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name="""facebook/s2t-small-mustc-en-de-st""" , revision="""a14f04cf0776c02f62a8cb800cf7909e15ea23ad""" , ) @require_sentencepiece class lowercase__ (unittest.TestCase ): """simple docstring""" __UpperCamelCase : List[str] = 'valhalla/s2t_mustc_multilinguial_medium' __UpperCamelCase : Union[str, Any] = 'C\'est trop cool' __UpperCamelCase : List[str] = 'Esto es genial' @classmethod def lowercase ( cls : str ): snake_case__ : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def lowercase ( self : List[str] ): self.assertEqual(self.tokenizer.lang_code_to_id["""pt"""] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id["""ru"""] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id["""it"""] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id["""de"""] , 1_1 ) def lowercase ( self : List[str] ): self.assertEqual(self.tokenizer.vocab_size , 1_0_0_0_0 ) def lowercase ( self : List[Any] ): self.assertIn(__a , self.tokenizer.all_special_ids ) snake_case__ : Union[str, Any] = [ES_CODE, 4, 1_6_0_1, 4_7, 7_6_4_7, 2] snake_case__ : Optional[int] = self.tokenizer.decode(__a , skip_special_tokens=__a ) snake_case__ : List[Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__a ) self.assertEqual(__a , __a ) self.assertNotIn(self.tokenizer.eos_token , __a ) def lowercase ( self : str ): snake_case__ : Optional[int] = """fr""" snake_case__ : List[Any] = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , __a ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def lowercase ( self : int ): snake_case__ : Any = """fr""" self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) snake_case__ : Dict = """es""" self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
648
1
def __a ( __lowerCAmelCase = 1000 ) -> int: SCREAMING_SNAKE_CASE : int = 2**power SCREAMING_SNAKE_CASE : Optional[Any] = str(__lowerCAmelCase ) SCREAMING_SNAKE_CASE : List[Any] = list(__lowerCAmelCase ) SCREAMING_SNAKE_CASE : int = 0 for i in list_num: sum_of_num += int(__lowerCAmelCase ) return sum_of_num if __name__ == "__main__": _lowerCamelCase : Dict = int(input("""Enter the power of 2: """).strip()) print("""2 ^ """, power, """ = """, 2**power) _lowerCamelCase : Tuple = solution(power) print("""Sum of the digits is: """, result)
308
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( """The `inpainting.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionInpaintPipeline` instead.""" )
308
1
import cva import numpy as np class snake_case : '''simple docstring''' def __init__( self : Any , lowerCAmelCase_ : float , lowerCAmelCase_ : int ) -> List[Any]: """simple docstring""" if k in (0.04, 0.06): SCREAMING_SNAKE_CASE_ = k SCREAMING_SNAKE_CASE_ = window_size else: raise ValueError('''invalid k value''' ) def __str__( self : Tuple ) -> str: """simple docstring""" return str(self.k ) def _lowercase ( self : List[str] , lowerCAmelCase_ : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" SCREAMING_SNAKE_CASE_ = cva.imread(lowerCAmelCase_ , 0 ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = img.shape SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = img.copy() SCREAMING_SNAKE_CASE_ = cva.cvtColor(lowerCAmelCase_ , cva.COLOR_GRAY2RGB ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = np.gradient(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = dx**2 SCREAMING_SNAKE_CASE_ = dy**2 SCREAMING_SNAKE_CASE_ = dx * dy SCREAMING_SNAKE_CASE_ = 0.04 SCREAMING_SNAKE_CASE_ = self.window_size // 2 for y in range(lowerCAmelCase_ , h - offset ): for x in range(lowerCAmelCase_ , w - offset ): SCREAMING_SNAKE_CASE_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ = (wxx * wyy) - (wxy**2) SCREAMING_SNAKE_CASE_ = wxx + wyy SCREAMING_SNAKE_CASE_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": A_ = HarrisCorner(0.04, 3) A_ ,A_ = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
393
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType A_ = None A_ = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image A_ = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class snake_case : '''simple docstring''' UpperCAmelCase : bool = True UpperCAmelCase : Optional[str] = None # Automatically constructed UpperCAmelCase : ClassVar[str] = "PIL.Image.Image" UpperCAmelCase : ClassVar[Any] = pa.struct({"""bytes""": pa.binary(), """path""": pa.string()} ) UpperCAmelCase : str = field(default="""Image""" , init=lowerCAmelCase__ , repr=lowerCAmelCase__ ) def __call__( self : Union[str, Any] ) -> str: """simple docstring""" return self.pa_type def _lowercase ( self : Tuple , lowerCAmelCase_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ) -> dict: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): SCREAMING_SNAKE_CASE_ = np.array(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return {"path": value, "bytes": None} elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return {"path": None, "bytes": value} elif isinstance(lowerCAmelCase_ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(lowerCAmelCase_ ) elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( F'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def _lowercase ( self : Dict , lowerCAmelCase_ : dict , lowerCAmelCase_ : Any=None ) -> "PIL.Image.Image": """simple docstring""" if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Image(decode=True) instead.''' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support decoding images, please install \'Pillow\'.''' ) if token_per_repo_id is None: SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = value['''path'''], value['''bytes'''] if bytes_ is None: if path is None: raise ValueError(F'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE_ = PIL.Image.open(lowerCAmelCase_ ) else: SCREAMING_SNAKE_CASE_ = path.split('''::''' )[-1] try: SCREAMING_SNAKE_CASE_ = string_to_dict(lowerCAmelCase_ , config.HUB_DATASETS_URL )['''repo_id'''] SCREAMING_SNAKE_CASE_ = token_per_repo_id.get(lowerCAmelCase_ ) except ValueError: SCREAMING_SNAKE_CASE_ = None with xopen(lowerCAmelCase_ , '''rb''' , use_auth_token=lowerCAmelCase_ ) as f: SCREAMING_SNAKE_CASE_ = BytesIO(f.read() ) SCREAMING_SNAKE_CASE_ = PIL.Image.open(bytes_ ) else: SCREAMING_SNAKE_CASE_ = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def _lowercase ( self : int ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return ( self if self.decode else { "bytes": Value('''binary''' ), "path": Value('''string''' ), } ) def _lowercase ( self : List[Any] , lowerCAmelCase_ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ) -> pa.StructArray: """simple docstring""" if pa.types.is_string(storage.type ): SCREAMING_SNAKE_CASE_ = pa.array([None] * len(lowerCAmelCase_ ) , type=pa.binary() ) SCREAMING_SNAKE_CASE_ = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): SCREAMING_SNAKE_CASE_ = pa.array([None] * len(lowerCAmelCase_ ) , type=pa.string() ) SCREAMING_SNAKE_CASE_ = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: SCREAMING_SNAKE_CASE_ = storage.field('''bytes''' ) else: SCREAMING_SNAKE_CASE_ = pa.array([None] * len(lowerCAmelCase_ ) , type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: SCREAMING_SNAKE_CASE_ = storage.field('''path''' ) else: SCREAMING_SNAKE_CASE_ = pa.array([None] * len(lowerCAmelCase_ ) , type=pa.string() ) SCREAMING_SNAKE_CASE_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): SCREAMING_SNAKE_CASE_ = pa.array( [encode_np_array(np.array(lowerCAmelCase_ ) )['''bytes'''] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) SCREAMING_SNAKE_CASE_ = pa.array([None] * len(lowerCAmelCase_ ) , type=pa.string() ) SCREAMING_SNAKE_CASE_ = pa.StructArray.from_arrays( [bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(lowerCAmelCase_ , self.pa_type ) def _lowercase ( self : Dict , lowerCAmelCase_ : pa.StructArray ) -> pa.StructArray: """simple docstring""" @no_op_if_value_is_null def path_to_bytes(lowerCAmelCase_ : List[str] ): with xopen(lowerCAmelCase_ , '''rb''' ) as f: SCREAMING_SNAKE_CASE_ = f.read() return bytes_ SCREAMING_SNAKE_CASE_ = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) SCREAMING_SNAKE_CASE_ = pa.array( [os.path.basename(lowerCAmelCase_ ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] , type=pa.string() , ) SCREAMING_SNAKE_CASE_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(lowerCAmelCase_ , self.pa_type ) def UpperCAmelCase ( )-> List[str]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() SCREAMING_SNAKE_CASE_ = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def UpperCAmelCase ( UpperCAmelCase )-> bytes: '''simple docstring''' SCREAMING_SNAKE_CASE_ = BytesIO() if image.format in list_image_compression_formats(): SCREAMING_SNAKE_CASE_ = image.format else: SCREAMING_SNAKE_CASE_ = '''PNG''' if image.mode in ['''1''', '''L''', '''LA''', '''RGB''', '''RGBA'''] else '''TIFF''' image.save(UpperCAmelCase ,format=UpperCAmelCase ) return buffer.getvalue() def UpperCAmelCase ( UpperCAmelCase )-> dict: '''simple docstring''' if hasattr(UpperCAmelCase ,'''filename''' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(UpperCAmelCase )} def UpperCAmelCase ( UpperCAmelCase )-> dict: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) SCREAMING_SNAKE_CASE_ = array.dtype SCREAMING_SNAKE_CASE_ = dtype.byteorder if dtype.byteorder != '''=''' else _NATIVE_BYTEORDER SCREAMING_SNAKE_CASE_ = dtype.kind SCREAMING_SNAKE_CASE_ = dtype.itemsize SCREAMING_SNAKE_CASE_ = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: SCREAMING_SNAKE_CASE_ = np.dtype('''|u1''' ) if dtype_kind not in ["u", "i"]: raise TypeError( f'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: SCREAMING_SNAKE_CASE_ = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: SCREAMING_SNAKE_CASE_ = dtype_byteorder + dtype_kind + str(UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = np.dtype(UpperCAmelCase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) SCREAMING_SNAKE_CASE_ = PIL.Image.fromarray(array.astype(UpperCAmelCase ) ) return {"path": None, "bytes": image_to_bytes(UpperCAmelCase )} def UpperCAmelCase ( UpperCAmelCase )-> List[dict]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if objs: SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = first_non_null_value(UpperCAmelCase ) if isinstance(UpperCAmelCase ,UpperCAmelCase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(UpperCAmelCase ,np.ndarray ): SCREAMING_SNAKE_CASE_ = no_op_if_value_is_null(UpperCAmelCase ) return [obj_to_image_dict_func(UpperCAmelCase ) for obj in objs] elif isinstance(UpperCAmelCase ,PIL.Image.Image ): SCREAMING_SNAKE_CASE_ = no_op_if_value_is_null(UpperCAmelCase ) return [obj_to_image_dict_func(UpperCAmelCase ) for obj in objs] else: return objs else: return objs
393
1
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = checkpoint __lowercase = {} __lowercase = vae_state_dict["""encoder.conv_in.weight"""] __lowercase = vae_state_dict["""encoder.conv_in.bias"""] __lowercase = vae_state_dict["""encoder.conv_out.weight"""] __lowercase = vae_state_dict["""encoder.conv_out.bias"""] __lowercase = vae_state_dict["""encoder.norm_out.weight"""] __lowercase = vae_state_dict["""encoder.norm_out.bias"""] __lowercase = vae_state_dict["""decoder.conv_in.weight"""] __lowercase = vae_state_dict["""decoder.conv_in.bias"""] __lowercase = vae_state_dict["""decoder.conv_out.weight"""] __lowercase = vae_state_dict["""decoder.conv_out.bias"""] __lowercase = vae_state_dict["""decoder.norm_out.weight"""] __lowercase = vae_state_dict["""decoder.norm_out.bias"""] __lowercase = vae_state_dict["""quant_conv.weight"""] __lowercase = vae_state_dict["""quant_conv.bias"""] __lowercase = vae_state_dict["""post_quant_conv.weight"""] __lowercase = vae_state_dict["""post_quant_conv.bias"""] # Retrieves the keys for the encoder down blocks only __lowercase = len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """encoder.down""" in layer} ) __lowercase = { layer_id: [key for key in vae_state_dict if F'down.{layer_id}' in key] for layer_id in range(lowerCamelCase ) } # Retrieves the keys for the decoder up blocks only __lowercase = len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """decoder.up""" in layer} ) __lowercase = { layer_id: [key for key in vae_state_dict if F'up.{layer_id}' in key] for layer_id in range(lowerCamelCase ) } for i in range(lowerCamelCase ): __lowercase = [key for key in down_blocks[i] if F'down.{i}' in key and F'down.{i}.downsample' not in key] if F'encoder.down.{i}.downsample.conv.weight' in vae_state_dict: __lowercase = vae_state_dict.pop( F'encoder.down.{i}.downsample.conv.weight' ) __lowercase = vae_state_dict.pop( F'encoder.down.{i}.downsample.conv.bias' ) __lowercase = renew_vae_resnet_paths(lowerCamelCase ) __lowercase = {"""old""": F'down.{i}.block', """new""": F'down_blocks.{i}.resnets'} assign_to_checkpoint(lowerCamelCase , lowerCamelCase , lowerCamelCase , additional_replacements=[meta_path] , config=lowerCamelCase ) __lowercase = [key for key in vae_state_dict if """encoder.mid.block""" in key] __lowercase = 2 for i in range(1 , num_mid_res_blocks + 1 ): __lowercase = [key for key in mid_resnets if F'encoder.mid.block_{i}' in key] __lowercase = renew_vae_resnet_paths(lowerCamelCase ) __lowercase = {"""old""": F'mid.block_{i}', """new""": F'mid_block.resnets.{i - 1}'} assign_to_checkpoint(lowerCamelCase , lowerCamelCase , lowerCamelCase , additional_replacements=[meta_path] , config=lowerCamelCase ) __lowercase = [key for key in vae_state_dict if """encoder.mid.attn""" in key] __lowercase = renew_vae_attention_paths(lowerCamelCase ) __lowercase = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""} assign_to_checkpoint(lowerCamelCase , lowerCamelCase , lowerCamelCase , additional_replacements=[meta_path] , config=lowerCamelCase ) conv_attn_to_linear(lowerCamelCase ) for i in range(lowerCamelCase ): __lowercase = num_up_blocks - 1 - i __lowercase = [ key for key in up_blocks[block_id] if F'up.{block_id}' in key and F'up.{block_id}.upsample' not in key ] if F'decoder.up.{block_id}.upsample.conv.weight' in vae_state_dict: __lowercase = vae_state_dict[ F'decoder.up.{block_id}.upsample.conv.weight' ] __lowercase = vae_state_dict[ F'decoder.up.{block_id}.upsample.conv.bias' ] __lowercase = renew_vae_resnet_paths(lowerCamelCase ) __lowercase = {"""old""": F'up.{block_id}.block', """new""": F'up_blocks.{i}.resnets'} assign_to_checkpoint(lowerCamelCase , lowerCamelCase , lowerCamelCase , additional_replacements=[meta_path] , config=lowerCamelCase ) __lowercase = [key for key in vae_state_dict if """decoder.mid.block""" in key] __lowercase = 2 for i in range(1 , num_mid_res_blocks + 1 ): __lowercase = [key for key in mid_resnets if F'decoder.mid.block_{i}' in key] __lowercase = renew_vae_resnet_paths(lowerCamelCase ) __lowercase = {"""old""": F'mid.block_{i}', """new""": F'mid_block.resnets.{i - 1}'} assign_to_checkpoint(lowerCamelCase , lowerCamelCase , lowerCamelCase , additional_replacements=[meta_path] , config=lowerCamelCase ) __lowercase = [key for key in vae_state_dict if """decoder.mid.attn""" in key] __lowercase = renew_vae_attention_paths(lowerCamelCase ) __lowercase = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""} assign_to_checkpoint(lowerCamelCase , lowerCamelCase , lowerCamelCase , additional_replacements=[meta_path] , config=lowerCamelCase ) conv_attn_to_linear(lowerCamelCase ) return new_checkpoint def snake_case ( lowerCamelCase , lowerCamelCase , ): '''simple docstring''' __lowercase = requests.get( """ https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml""" ) __lowercase = io.BytesIO(r.content ) __lowercase = OmegaConf.load(lowerCamelCase ) __lowercase = 512 __lowercase = """cuda""" if torch.cuda.is_available() else """cpu""" if checkpoint_path.endswith("""safetensors""" ): from safetensors import safe_open __lowercase = {} with safe_open(lowerCamelCase , framework="""pt""" , device="""cpu""" ) as f: for key in f.keys(): __lowercase = f.get_tensor(lowerCamelCase ) else: __lowercase = torch.load(lowerCamelCase , map_location=lowerCamelCase )["""state_dict"""] # Convert the VAE model. __lowercase = create_vae_diffusers_config(lowerCamelCase , image_size=lowerCamelCase ) __lowercase = custom_convert_ldm_vae_checkpoint(lowerCamelCase , lowerCamelCase ) __lowercase = AutoencoderKL(**lowerCamelCase ) vae.load_state_dict(lowerCamelCase ) vae.save_pretrained(lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--vae_pt_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") __UpperCamelCase : Tuple = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
714
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' if not nums: return 0 __lowercase = nums[0] __lowercase = 0 for num in nums[1:]: __lowercase , __lowercase = ( max_excluding + num, max(lowerCamelCase , lowerCamelCase ), ) return max(lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
53
0
"""simple docstring""" import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class a__ : def __init__( self :Any , _lowerCamelCase :str , _lowerCamelCase :Dict=13 , _lowerCamelCase :str=7 , _lowerCamelCase :Union[str, Any]=True , _lowerCamelCase :str=True , _lowerCamelCase :Optional[Any]=True , _lowerCamelCase :List[Any]=True , _lowerCamelCase :Union[str, Any]=99 , _lowerCamelCase :Dict=32 , _lowerCamelCase :Any=5 , _lowerCamelCase :Optional[Any]=4 , _lowerCamelCase :Optional[int]=37 , _lowerCamelCase :List[Any]="gelu" , _lowerCamelCase :Any=0.1 , _lowerCamelCase :List[str]=0.1 , _lowerCamelCase :Any=512 , _lowerCamelCase :List[Any]=16 , _lowerCamelCase :List[Any]=2 , _lowerCamelCase :Optional[Any]=0.02 , _lowerCamelCase :Tuple=3 , _lowerCamelCase :List[str]=4 , _lowerCamelCase :List[Any]=None , ): '''simple docstring''' UpperCamelCase_ : Any =parent UpperCamelCase_ : Any =batch_size UpperCamelCase_ : Any =seq_length UpperCamelCase_ : Tuple =is_training UpperCamelCase_ : int =use_input_mask UpperCamelCase_ : List[Any] =use_token_type_ids UpperCamelCase_ : Dict =use_labels UpperCamelCase_ : Union[str, Any] =vocab_size UpperCamelCase_ : Optional[int] =hidden_size UpperCamelCase_ : Union[str, Any] =num_hidden_layers UpperCamelCase_ : int =num_attention_heads UpperCamelCase_ : Optional[Any] =intermediate_size UpperCamelCase_ : int =hidden_act UpperCamelCase_ : int =hidden_dropout_prob UpperCamelCase_ : int =attention_probs_dropout_prob UpperCamelCase_ : Optional[int] =max_position_embeddings UpperCamelCase_ : Union[str, Any] =type_vocab_size UpperCamelCase_ : Dict =type_sequence_label_size UpperCamelCase_ : int =initializer_range UpperCamelCase_ : Tuple =num_labels UpperCamelCase_ : str =num_choices UpperCamelCase_ : List[str] =scope def lowerCamelCase_ ( self :Optional[Any] ): '''simple docstring''' UpperCamelCase_ : int =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ : List[Any] =None if self.use_input_mask: UpperCamelCase_ : List[Any] =random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_ : str =None if self.use_token_type_ids: UpperCamelCase_ : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase_ : Tuple =None UpperCamelCase_ : Tuple =None UpperCamelCase_ : Dict =None if self.use_labels: UpperCamelCase_ : int =ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_ : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase_ : Optional[Any] =ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase_ : str =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self :List[Any] ): '''simple docstring''' return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self :Optional[Any] , _lowerCamelCase :List[Any] , _lowerCamelCase :Optional[Any] , _lowerCamelCase :Dict , _lowerCamelCase :Union[str, Any] , _lowerCamelCase :Tuple , _lowerCamelCase :Dict , _lowerCamelCase :List[Any] ): '''simple docstring''' UpperCamelCase_ : str =NystromformerModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_ : Optional[int] =model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase ) UpperCamelCase_ : Optional[int] =model(_lowerCamelCase , token_type_ids=_lowerCamelCase ) UpperCamelCase_ : Optional[Any] =model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self :Union[str, Any] , _lowerCamelCase :Tuple , _lowerCamelCase :Any , _lowerCamelCase :Optional[int] , _lowerCamelCase :int , _lowerCamelCase :int , _lowerCamelCase :List[Any] , _lowerCamelCase :Dict ): '''simple docstring''' UpperCamelCase_ : Tuple =NystromformerForMaskedLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_ : List[Any] =model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self :Any , _lowerCamelCase :List[Any] , _lowerCamelCase :Dict , _lowerCamelCase :Union[str, Any] , _lowerCamelCase :Union[str, Any] , _lowerCamelCase :Tuple , _lowerCamelCase :Optional[Any] , _lowerCamelCase :Dict ): '''simple docstring''' UpperCamelCase_ : Optional[Any] =NystromformerForQuestionAnswering(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_ : Any =model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , start_positions=_lowerCamelCase , end_positions=_lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self :List[str] , _lowerCamelCase :Tuple , _lowerCamelCase :int , _lowerCamelCase :Optional[int] , _lowerCamelCase :List[str] , _lowerCamelCase :Optional[int] , _lowerCamelCase :Any , _lowerCamelCase :int ): '''simple docstring''' UpperCamelCase_ : Any =self.num_labels UpperCamelCase_ : Union[str, Any] =NystromformerForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_ : Union[str, Any] =model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self :Optional[int] , _lowerCamelCase :Dict , _lowerCamelCase :str , _lowerCamelCase :Dict , _lowerCamelCase :int , _lowerCamelCase :Optional[int] , _lowerCamelCase :Optional[Any] , _lowerCamelCase :Optional[Any] ): '''simple docstring''' UpperCamelCase_ : Optional[Any] =self.num_labels UpperCamelCase_ : Any =NystromformerForTokenClassification(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_ : Dict =model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self :str , _lowerCamelCase :Dict , _lowerCamelCase :Tuple , _lowerCamelCase :Tuple , _lowerCamelCase :Any , _lowerCamelCase :List[Any] , _lowerCamelCase :int , _lowerCamelCase :List[str] ): '''simple docstring''' UpperCamelCase_ : str =self.num_choices UpperCamelCase_ : Dict =NystromformerForMultipleChoice(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_ : Tuple =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase_ : Dict =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase_ : int =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase_ : Dict =model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase_ ( self :int ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] =self.prepare_config_and_inputs() ( ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ) : str =config_and_inputs UpperCamelCase_ : List[Any] ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a__ ( A__ , A__ , unittest.TestCase ): UpperCAmelCase__ = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) UpperCAmelCase__ = ( { '''feature-extraction''': NystromformerModel, '''fill-mask''': NystromformerForMaskedLM, '''question-answering''': NystromformerForQuestionAnswering, '''text-classification''': NystromformerForSequenceClassification, '''token-classification''': NystromformerForTokenClassification, '''zero-shot''': NystromformerForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False def lowerCamelCase_ ( self :List[Any] ): '''simple docstring''' UpperCamelCase_ : List[Any] =NystromformerModelTester(self ) UpperCamelCase_ : str =ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37 ) def lowerCamelCase_ ( self :Optional[int] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase_ ( self :List[Any] ): '''simple docstring''' UpperCamelCase_ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def lowerCamelCase_ ( self :Any ): '''simple docstring''' UpperCamelCase_ : str =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase_ : List[Any] =type self.model_tester.create_and_check_model(*_lowerCamelCase ) def lowerCamelCase_ ( self :Tuple ): '''simple docstring''' UpperCamelCase_ : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCamelCase ) def lowerCamelCase_ ( self :Tuple ): '''simple docstring''' UpperCamelCase_ : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCamelCase ) def lowerCamelCase_ ( self :Any ): '''simple docstring''' UpperCamelCase_ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCamelCase ) def lowerCamelCase_ ( self :List[str] ): '''simple docstring''' UpperCamelCase_ : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCamelCase ) def lowerCamelCase_ ( self :Dict ): '''simple docstring''' UpperCamelCase_ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCamelCase ) @slow def lowerCamelCase_ ( self :Optional[int] ): '''simple docstring''' for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_ : Optional[int] =NystromformerModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @require_torch class a__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self :List[Any] ): '''simple docstring''' UpperCamelCase_ : Optional[Any] =NystromformerModel.from_pretrained('uw-madison/nystromformer-512' ) UpperCamelCase_ : Optional[Any] =torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): UpperCamelCase_ : Optional[int] =model(_lowerCamelCase )[0] UpperCamelCase_ : Optional[Any] =torch.Size((1, 6, 768) ) self.assertEqual(output.shape , _lowerCamelCase ) UpperCamelCase_ : Optional[int] =torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCamelCase , atol=1E-4 ) ) @slow def lowerCamelCase_ ( self :List[str] ): '''simple docstring''' UpperCamelCase_ : Optional[Any] ='the [MASK] of Belgium is Brussels' UpperCamelCase_ : Optional[int] =AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' ) UpperCamelCase_ : Optional[int] =NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' ) UpperCamelCase_ : str =tokenizer(_lowerCamelCase , return_tensors='pt' ) with torch.no_grad(): UpperCamelCase_ : Optional[Any] =model(encoding.input_ids ).logits UpperCamelCase_ : Tuple =token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(_lowerCamelCase ) , 'capital' )
357
"""simple docstring""" import math import flax.linen as nn import jax.numpy as jnp def A_ ( __lowercase , __lowercase , __lowercase = 1 , __lowercase = 1 , __lowercase = 1.0e4 , __lowercase = False , __lowercase = 1.0 , ): assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F'''Embedding dimension {embedding_dim} should be even''' UpperCamelCase_ : Optional[int] =float(embedding_dim // 2 ) UpperCamelCase_ : Optional[Any] =math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) UpperCamelCase_ : List[Any] =min_timescale * jnp.exp(jnp.arange(__lowercase , dtype=jnp.floataa ) * -log_timescale_increment ) UpperCamelCase_ : int =jnp.expand_dims(__lowercase , 1 ) * jnp.expand_dims(__lowercase , 0 ) # scale embeddings UpperCamelCase_ : List[str] =scale * emb if flip_sin_to_cos: UpperCamelCase_ : Tuple =jnp.concatenate([jnp.cos(__lowercase ), jnp.sin(__lowercase )] , axis=1 ) else: UpperCamelCase_ : Tuple =jnp.concatenate([jnp.sin(__lowercase ), jnp.cos(__lowercase )] , axis=1 ) UpperCamelCase_ : List[Any] =jnp.reshape(__lowercase , [jnp.shape(__lowercase )[0], embedding_dim] ) return signal class a__ ( nn.Module ): UpperCAmelCase__ = 32 UpperCAmelCase__ = jnp.floataa @nn.compact def __call__( self :Optional[Any] , _lowerCamelCase :List[str] ): '''simple docstring''' UpperCamelCase_ : Dict =nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_1' )(_lowerCamelCase ) UpperCamelCase_ : Any =nn.silu(_lowerCamelCase ) UpperCamelCase_ : Tuple =nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_2' )(_lowerCamelCase ) return temb class a__ ( nn.Module ): UpperCAmelCase__ = 32 UpperCAmelCase__ = False UpperCAmelCase__ = 1 @nn.compact def __call__( self :Union[str, Any] , _lowerCamelCase :Dict ): '''simple docstring''' return get_sinusoidal_embeddings( _lowerCamelCase , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
357
1
def lowerCamelCase__ ( _lowerCamelCase ) ->Tuple: _UpperCAmelCase =[] _UpperCAmelCase =[] _UpperCAmelCase ={ "^": 3, "*": 2, "/": 2, "%": 2, "+": 1, "-": 1, } # Priority of each operator _UpperCAmelCase =len(_lowerCamelCase ) if (len(_lowerCamelCase ) > 7) else 7 # Print table header for output print( "Symbol".center(8 ) , "Stack".center(_lowerCamelCase ) , "Postfix".center(_lowerCamelCase ) , sep=" | " , ) print("-" * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(_lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(_lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(_lowerCamelCase ) == 0: stack.append(_lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(_lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(_lowerCamelCase ) # push x to stack print( x.center(8 ) , ("".join(_lowerCamelCase )).ljust(_lowerCamelCase ) , ("".join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=" | " , ) # Output in tabular format while len(_lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( " ".center(8 ) , ("".join(_lowerCamelCase )).ljust(_lowerCamelCase ) , ("".join(_lowerCamelCase )).ljust(_lowerCamelCase ) , sep=" | " , ) # Output in tabular format return "".join(_lowerCamelCase ) # return Postfix as str def lowerCamelCase__ ( _lowerCamelCase ) ->List[str]: _UpperCAmelCase =list(infix[::-1] ) # reverse the infix equation for i in range(len(_lowerCamelCase ) ): if infix[i] == "(": _UpperCAmelCase =")" # change "(" to ")" elif infix[i] == ")": _UpperCAmelCase ="(" # change ")" to "(" return (infix_2_postfix("".join(_lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": snake_case__ : List[str] = input('\nEnter an Infix Equation = ') # Input an Infix equation snake_case__ : int = ''.join(Infix.split()) # Remove spaces from the input print('\n\t', Infix, '(Infix) -> ', infix_2_prefix(Infix), '(Prefix)')
592
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case__ : Union[str, Any] = logging.get_logger(__name__) snake_case__ : Union[str, Any] = {'vocab_file': 'sentencepiece.bpe.model'} snake_case__ : List[Any] = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } snake_case__ : str = { 'moussaKam/mbarthez': 1_0_2_4, 'moussaKam/barthez': 1_0_2_4, 'moussaKam/barthez-orangesum-title': 1_0_2_4, } snake_case__ : Tuple = '▁' class _a ( A__ ): """simple docstring""" snake_case =VOCAB_FILES_NAMES snake_case =PRETRAINED_VOCAB_FILES_MAP snake_case =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case =["""input_ids""", """attention_mask"""] def __init__( self , _snake_case , _snake_case="<s>" , _snake_case="</s>" , _snake_case="</s>" , _snake_case="<s>" , _snake_case="<unk>" , _snake_case="<pad>" , _snake_case="<mask>" , _snake_case = None , **_snake_case , ): # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase =AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else mask_token _UpperCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , cls_token=_snake_case , pad_token=_snake_case , mask_token=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) _UpperCAmelCase =vocab_file _UpperCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_snake_case ) ) _UpperCAmelCase ={"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} _UpperCAmelCase =len(self.sp_model ) - 1 _UpperCAmelCase ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase =[self.cls_token_id] _UpperCAmelCase =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case = None , _snake_case = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case ) if token_ids_a is None: return [1] + ([0] * len(_snake_case )) + [1] return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) + [1] def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case = None ): _UpperCAmelCase =[self.sep_token_id] _UpperCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self ): return len(self.sp_model ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase ={self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self , _snake_case ): return self.sp_model.encode(_snake_case , out_type=_snake_case ) def SCREAMING_SNAKE_CASE ( self , _snake_case ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCAmelCase =self.sp_model.PieceToId(_snake_case ) return spm_id if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE ( self , _snake_case ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(_snake_case ) def SCREAMING_SNAKE_CASE ( self , _snake_case ): _UpperCAmelCase =[] _UpperCAmelCase ="" _UpperCAmelCase =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_snake_case ) + token _UpperCAmelCase =True _UpperCAmelCase =[] else: current_sub_tokens.append(_snake_case ) _UpperCAmelCase =False out_string += self.sp_model.decode(_snake_case ) return out_string.strip() def __getstate__( self ): _UpperCAmelCase =self.__dict__.copy() _UpperCAmelCase =None return state def __setstate__( self , _snake_case ): _UpperCAmelCase =d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCAmelCase ={} _UpperCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case = None ): if not os.path.isdir(_snake_case ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _UpperCAmelCase =os.path.join( _snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case , "wb" ) as fi: _UpperCAmelCase =self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
592
1
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __a :Tuple = logging.get_logger(__name__) __a :int = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, 'constant': get_constant_schedule, 'constant_w_warmup': get_constant_schedule_with_warmup, } class _a ( snake_case_ ): """simple docstring""" def __init__( self : str , UpperCAmelCase : str=None , UpperCAmelCase : Union[str, Any]=None , *UpperCAmelCase : int , **UpperCAmelCase : List[str] ): super().__init__(*UpperCAmelCase , **UpperCAmelCase ) if config is None: assert isinstance(self.model , UpperCAmelCase ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f''' {self.model.__class__}''' ) A_ = self.model.config else: A_ = config A_ = data_args A_ = self.config.tgt_vocab_size if isinstance(self.config , UpperCAmelCase ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' " padding.." ) if self.args.label_smoothing == 0: A_ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss A_ = label_smoothed_nll_loss def __A ( self : Dict , UpperCAmelCase : int ): if self.optimizer is None: A_ = ["bias", "LayerNorm.weight"] A_ = [ { "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] A_ = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: A_ = Adafactor A_ = {"scale_parameter": False, "relative_step": False} else: A_ = AdamW A_ = { "betas": (self.args.adam_betaa, self.args.adam_betaa), "eps": self.args.adam_epsilon, } A_ = self.args.learning_rate if self.sharded_ddp: A_ = OSS( params=UpperCAmelCase , optim=UpperCAmelCase , **UpperCAmelCase , ) else: A_ = optimizer_cls(UpperCAmelCase , **UpperCAmelCase ) if self.lr_scheduler is None: A_ = self._get_lr_scheduler(UpperCAmelCase ) else: # ignoring --lr_scheduler logger.warning("scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored." ) def __A ( self : Tuple , UpperCAmelCase : List[Any] ): A_ = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": A_ = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": A_ = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: A_ = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=UpperCAmelCase ) return scheduler def __A ( self : Optional[int] ): if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def __A ( self : Dict , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : str ): if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token A_ = model(**UpperCAmelCase , use_cache=UpperCAmelCase )[0] A_ = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models A_ , A_ = model(**UpperCAmelCase , labels=UpperCAmelCase , use_cache=UpperCAmelCase )[:2] else: # compute label smoothed loss A_ = model(**UpperCAmelCase , use_cache=UpperCAmelCase )[0] A_ = torch.nn.functional.log_softmax(UpperCAmelCase , dim=-1 ) A_ , A_ = self.loss_fn(UpperCAmelCase , UpperCAmelCase , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def __A ( self : int , UpperCAmelCase : str , UpperCAmelCase : int ): A_ = inputs.pop("labels" ) A_ , A_ = self._compute_loss(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return loss def __A ( self : Optional[Any] , UpperCAmelCase : nn.Module , UpperCAmelCase : Dict[str, Union[torch.Tensor, Any]] , UpperCAmelCase : bool , UpperCAmelCase : Optional[List[str]] = None , ): A_ = self._prepare_inputs(UpperCAmelCase ) A_ = { "max_length": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, "num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: A_ = self.model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , **UpperCAmelCase , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: A_ = self._pad_tensors_to_max_len(UpperCAmelCase , gen_kwargs["max_length"] ) A_ = inputs.pop("labels" ) with torch.no_grad(): # compute loss on predict data A_ , A_ = self._compute_loss(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) A_ = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) A_ = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: A_ = self._pad_tensors_to_max_len(UpperCAmelCase , gen_kwargs["max_length"] ) return (loss, logits, labels) def __A ( self : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Tuple ): # If PAD token is not defined at least EOS token has to be defined A_ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( "Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be" f''' padded to `max_length`={max_length}''' ) A_ = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) A_ = tensor return padded_tensor
86
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { 'configuration_timesformer': ['TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimesformerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimesformerModel', 'TimesformerForVideoClassification', 'TimesformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
291
0
import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class snake_case_ (lowercase__ ): """simple docstring""" def A_ ( self): """simple docstring""" UpperCAmelCase_ : Any = tempfile.mkdtemp() UpperCAmelCase_ : List[str] = 5 # Realm tok UpperCAmelCase_ : List[str] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "test", "question", "this", "is", "the", "first", "second", "third", "fourth", "fifth", "record", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname ,"realm_tokenizer") os.makedirs(lowercase ,exist_ok=lowercase) UpperCAmelCase_ : Optional[int] = os.path.join(lowercase ,VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file ,"w" ,encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) UpperCAmelCase_ : int = os.path.join(self.tmpdirname ,"realm_block_records") os.makedirs(lowercase ,exist_ok=lowercase) def A_ ( self): """simple docstring""" return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"realm_tokenizer")) def A_ ( self): """simple docstring""" shutil.rmtree(self.tmpdirname) def A_ ( self): """simple docstring""" UpperCAmelCase_ : str = RealmConfig(num_block_records=self.num_block_records) return config def A_ ( self): """simple docstring""" UpperCAmelCase_ : Dict = Dataset.from_dict( { "id": ["0", "1"], "question": ["foo", "bar"], "answers": [["Foo", "Bar"], ["Bar"]], }) return dataset def A_ ( self): """simple docstring""" UpperCAmelCase_ : str = np.array( [ b"This is the first record", b"This is the second record", b"This is the third record", b"This is the fourth record", b"This is the fifth record", b"This is a longer longer longer record", ] ,dtype=lowercase ,) return block_records def A_ ( self): """simple docstring""" UpperCAmelCase_ : List[str] = RealmRetriever( block_records=self.get_dummy_block_records() ,tokenizer=self.get_tokenizer() ,) return retriever def A_ ( self): """simple docstring""" UpperCAmelCase_ : Any = self.get_config() UpperCAmelCase_ : Union[str, Any] = self.get_dummy_retriever() UpperCAmelCase_ : Tuple = retriever.tokenizer UpperCAmelCase_ : str = np.array([0, 3] ,dtype="long") UpperCAmelCase_ : Tuple = tokenizer(["Test question"]).input_ids UpperCAmelCase_ : Union[str, Any] = tokenizer( ["the fourth"] ,add_special_tokens=lowercase ,return_token_type_ids=lowercase ,return_attention_mask=lowercase ,).input_ids UpperCAmelCase_ : str = config.reader_seq_len UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Dict = retriever( lowercase ,lowercase ,answer_ids=lowercase ,max_length=lowercase ,return_tensors="np") self.assertEqual(len(lowercase) ,2) self.assertEqual(len(lowercase) ,2) self.assertEqual(len(lowercase) ,2) self.assertEqual(concat_inputs.input_ids.shape ,(2, 10)) self.assertEqual(concat_inputs.attention_mask.shape ,(2, 10)) self.assertEqual(concat_inputs.token_type_ids.shape ,(2, 10)) self.assertEqual(concat_inputs.special_tokens_mask.shape ,(2, 10)) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0]) ,["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] ,) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1]) ,["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] ,) def A_ ( self): """simple docstring""" UpperCAmelCase_ : List[str] = self.get_config() UpperCAmelCase_ : List[str] = self.get_dummy_retriever() UpperCAmelCase_ : Optional[int] = retriever.tokenizer UpperCAmelCase_ : Dict = np.array([0, 3, 5] ,dtype="long") UpperCAmelCase_ : Optional[int] = tokenizer(["Test question"]).input_ids UpperCAmelCase_ : Union[str, Any] = tokenizer( ["the fourth", "longer longer"] ,add_special_tokens=lowercase ,return_token_type_ids=lowercase ,return_attention_mask=lowercase ,).input_ids UpperCAmelCase_ : Any = config.reader_seq_len UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = retriever( lowercase ,lowercase ,answer_ids=lowercase ,max_length=lowercase ,return_tensors="np") self.assertEqual([False, True, True] ,lowercase) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] ,lowercase) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] ,lowercase) def A_ ( self): """simple docstring""" UpperCAmelCase_ : Optional[int] = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname ,"realm_block_records")) # Test local path UpperCAmelCase_ : str = retriever.from_pretrained(os.path.join(self.tmpdirname ,"realm_block_records")) self.assertEqual(retriever.block_records[0] ,b"This is the first record") # Test mocked remote path with patch("transformers.models.realm.retrieval_realm.hf_hub_download") as mock_hf_hub_download: UpperCAmelCase_ : Optional[int] = os.path.join( os.path.join(self.tmpdirname ,"realm_block_records") ,_REALM_BLOCK_RECORDS_FILENAME) UpperCAmelCase_ : Tuple = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa") self.assertEqual(retriever.block_records[0] ,b"This is the first record")
455
import logging from transformers import PretrainedConfig __lowerCamelCase = logging.getLogger(__name__) __lowerCamelCase = { '''bertabs-finetuned-cnndm''': '''https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json''', } class snake_case_ (lowercase__ ): """simple docstring""" _lowerCamelCase = """bertabs""" def __init__( self ,lowercase=30522 ,lowercase=512 ,lowercase=6 ,lowercase=512 ,lowercase=8 ,lowercase=512 ,lowercase=0.2 ,lowercase=6 ,lowercase=768 ,lowercase=8 ,lowercase=2048 ,lowercase=0.2 ,**lowercase ,): """simple docstring""" super().__init__(**lowercase) UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : int = max_pos UpperCAmelCase_ : List[str] = enc_layers UpperCAmelCase_ : List[str] = enc_hidden_size UpperCAmelCase_ : Any = enc_heads UpperCAmelCase_ : Any = enc_ff_size UpperCAmelCase_ : Optional[int] = enc_dropout UpperCAmelCase_ : List[str] = dec_layers UpperCAmelCase_ : List[Any] = dec_hidden_size UpperCAmelCase_ : List[str] = dec_heads UpperCAmelCase_ : List[Any] = dec_ff_size UpperCAmelCase_ : List[str] = dec_dropout
455
1
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class UpperCAmelCase : def __init__(self : Any , A__ : List[str]=2 , A__ : Union[str, Any]=3 , A__ : Optional[Any]=6_4 , A__ : Optional[int]=None ) -> List[Any]: lowercase = np.random.default_rng(A__ ) lowercase = length lowercase = rng.normal(size=(length,) ).astype(np.floataa ) lowercase = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__(self : Any ) -> str: return self.length def __getitem__(self : Any , A__ : Optional[int] ) -> Any: return {"x": self.x[i], "y": self.y[i]} class UpperCAmelCase ( torch.nn.Module ): def __init__(self : Tuple , A__ : str=0 , A__ : str=0 , A__ : Union[str, Any]=False ) -> Tuple: super().__init__() lowercase = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowercase = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowercase = True def UpperCAmelCase__ (self : Optional[int] , A__ : str=None ) -> Dict: if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) lowercase = False return x * self.a[0] + self.b[0] class UpperCAmelCase ( torch.nn.Module ): def __init__(self : Optional[int] , A__ : List[Any]=0 , A__ : Any=0 , A__ : Optional[Any]=False ) -> Optional[int]: super().__init__() lowercase = torch.nn.Parameter(torch.tensor(A__ ).float() ) lowercase = torch.nn.Parameter(torch.tensor(A__ ).float() ) lowercase = True def UpperCAmelCase__ (self : str , A__ : str=None ) -> List[Any]: if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) lowercase = False return x * self.a + self.b def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer lowercase = AutoTokenizer.from_pretrained("bert-base-cased" ) lowercase = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"} lowercase = load_dataset("csv" , data_files=lowerCAmelCase_ ) lowercase = datasets["train"].unique("label" ) lowercase = {v: i for i, v in enumerate(lowerCAmelCase_ )} def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) lowercase = tokenizer( examples["sentence1"] , examples["sentence2"] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="max_length" ) if "label" in examples: lowercase = [label_to_id[l] for l in examples["label"]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["sentence1", "sentence2", "label"] , ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase_ , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(lowerCAmelCase_ , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. lowercase = DataLoader(tokenized_datasets["train"] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=2 ) lowercase = DataLoader(tokenized_datasets["validation"] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=1 ) return train_dataloader, eval_dataloader
310
'''simple docstring''' def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" lowercase = [] lowercase = set({"(", "[", "{"} ) lowercase = set({")", "]", "}"} ) lowercase = {"{": "}", "[": "]", "(": ")"} for i in range(len(lowerCAmelCase_ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(lowerCAmelCase_ ) == 0 or (len(lowerCAmelCase_ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(lowerCAmelCase_ ) == 0 def UpperCAmelCase_ ( ): """simple docstring""" lowercase = input("Enter sequence of brackets: " ) if is_balanced(lowerCAmelCase_ ): print(lowerCAmelCase_ , "is balanced" ) else: print(lowerCAmelCase_ , "is not balanced" ) if __name__ == "__main__": main()
310
1
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise TypeError("only integers accepted as input" ) else: UpperCAmelCase_ = str(abs(__SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ = [list(__SCREAMING_SNAKE_CASE ) for char in range(len(__SCREAMING_SNAKE_CASE ) )] for index in range(len(__SCREAMING_SNAKE_CASE ) ): num_transpositions[index].pop(__SCREAMING_SNAKE_CASE ) return max( int("".join(list(__SCREAMING_SNAKE_CASE ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("doctest").testmod()
23
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase=13 , lowerCAmelCase=3 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=224 , lowerCAmelCase=1000 , lowerCAmelCase=[3, 3, 6, 4] , lowerCAmelCase=[48, 56, 112, 220] , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = num_labels UpperCAmelCase_ = image_size UpperCAmelCase_ = layer_depths UpperCAmelCase_ = embed_dims def A__ ( self ): UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels def A__ ( self ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="gelu" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowerCAmelCase , layer_scale_init_value=1e-5 , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = SwiftFormerModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) UpperCAmelCase_ = SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self ): ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) = self.prepare_config_and_inputs() UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( lowercase__, lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () lowerCAmelCase_ : int = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ : List[Any] = False lowerCAmelCase_ : Dict = False lowerCAmelCase_ : int = False lowerCAmelCase_ : str = False lowerCAmelCase_ : Optional[Any] = False def A__ ( self ): UpperCAmelCase_ = SwiftFormerModelTester(self ) UpperCAmelCase_ = ConfigTester( self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def A__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="SwiftFormer does not use inputs_embeds" ) def A__ ( self ): pass def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(lowerCAmelCase ) UpperCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase , nn.Linear ) ) def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(lowerCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @slow def A__ ( self ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = SwiftFormerModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @unittest.skip(reason="SwiftFormer does not output attentions" ) def A__ ( self ): pass def A__ ( self ): def check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = 8 self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): def _config_zero_init(lowerCAmelCase ): UpperCAmelCase_ = copy.deepcopy(lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowerCAmelCase , lowerCAmelCase , 1e-1_0 ) if isinstance(getattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ): UpperCAmelCase_ = _config_zero_init(getattr(lowerCAmelCase , lowerCAmelCase ) ) setattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return configs_no_init UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = _config_zero_init(lowerCAmelCase ) for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(config=lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A__ ( self ): pass def snake_case__ ( ) -> str: UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self ): return ViTImageProcessor.from_pretrained("MBZUAI/swiftformer-xs" ) if is_vision_available() else None @slow def A__ ( self ): UpperCAmelCase_ = SwiftFormerForImageClassification.from_pretrained("MBZUAI/swiftformer-xs" ).to(lowerCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=lowerCAmelCase , return_tensors="pt" ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase_ = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1e-4 ) )
23
1
from typing import Any def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" if not input_list: return [] lowercase__ : List[Any] = [input_list.count(lowerCAmelCase_ ) for value in input_list] lowercase__ : Union[str, Any] = max(lowerCAmelCase_ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowerCAmelCase_ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
496
from collections import deque from .hash_table import HashTable class __lowerCAmelCase ( a ): """simple docstring""" def __init__( self : int , *_lowerCAmelCase : List[Any] , **_lowerCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] ) -> List[Any]: """simple docstring""" snake_case_ = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_lowerCAmelCase ) snake_case_ = self.values[key] def lowerCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" return ( sum(self.charge_factor - len(_lowerCAmelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def lowerCAmelCase__ ( self : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : List[str]=None ) -> int: """simple docstring""" if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_lowerCAmelCase ) == 0 ): return key return super()._collision_resolution(_lowerCAmelCase , _lowerCAmelCase )
283
0
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: _lowerCAmelCase : List[str] = None _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : List[str] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} _lowerCAmelCase : Optional[Any] = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", }, "tokenizer_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/tokenizer.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/tokenizer.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/tokenizer.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/tokenizer.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/tokenizer.json", }, } # TODO(PVP) - this should be removed in Transformers v5 _lowerCAmelCase : Union[str, Any] = { "t5-small": 5_1_2, "t5-base": 5_1_2, "t5-large": 5_1_2, "t5-3b": 5_1_2, "t5-11b": 5_1_2, } class __snake_case ( SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ = ['input_ids', 'attention_mask'] SCREAMING_SNAKE_CASE__ = TaTokenizer SCREAMING_SNAKE_CASE__ = [] def __init__( self ,a_=None ,a_=None ,a_="</s>" ,a_="<unk>" ,a_="<pad>" ,a_=100 ,a_=None ,**a_ ,): """simple docstring""" # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: lowerCAmelCase__ = [f'<extra_id_{i}>' for i in range(a_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowerCAmelCase__ = len(set(filter(lambda a_ : bool('extra_id_' in str(a_ ) ) ,a_ ) ) ) if extra_tokens != extra_ids: raise ValueError( f'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) super().__init__( a_ ,tokenizer_file=a_ ,eos_token=a_ ,unk_token=a_ ,pad_token=a_ ,extra_ids=a_ ,additional_special_tokens=a_ ,**a_ ,) lowerCAmelCase__ = vocab_file lowerCAmelCase__ = False if not self.vocab_file else True lowerCAmelCase__ = extra_ids @staticmethod def SCREAMING_SNAKE_CASE_ ( a_ ,a_ ,a_ ): """simple docstring""" if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowerCAmelCase__ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' f' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' f' {pretrained_model_name_or_path} automatically truncating your input to' f' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' f' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' ,a_ ,) return max_model_length def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(a_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase__ = os.path.join( a_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ): copyfile(self.vocab_file ,a_ ) logger.info(f'Copy vocab file to {out_vocab_file}' ) return (out_vocab_file,) def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ = None ): """simple docstring""" lowerCAmelCase__ = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowerCAmelCase__ = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ = None ): """simple docstring""" lowerCAmelCase__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return list( set(filter(lambda a_ : bool(re.search(r'<extra_id_\d+>' ,a_ ) ) is not None ,self.additional_special_tokens ) ) ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return [self.convert_tokens_to_ids(a_ ) for token in self.get_sentinel_tokens()]
707
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowerCAmelCase : Tuple = logging.getLogger(__name__) _lowerCAmelCase : Any = "Hello world! cécé herlolip" _lowerCAmelCase : Union[str, Any] = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def UpperCAmelCase_ ( snake_case__ , snake_case__ ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = BertAbsConfig( temp_dir='.' , finetune_bert=snake_case__ , large=snake_case__ , share_emb=snake_case__ , use_bert_emb=snake_case__ , encoder='bert' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) lowerCAmelCase__ = torch.load(snake_case__ , lambda snake_case__ , snake_case__ : storage ) lowerCAmelCase__ = AbsSummarizer(snake_case__ , torch.device('cpu' ) , snake_case__ ) original.eval() lowerCAmelCase__ = BertAbsSummarizer(snake_case__ , torch.device('cpu' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('convert the model' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('Make sure that the models\' outputs are identical' ) lowerCAmelCase__ = BertTokenizer.from_pretrained('bert-base-uncased' ) # prepare the model inputs lowerCAmelCase__ = tokenizer.encode('This is sample éàalj\'-.' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case__ )) ) lowerCAmelCase__ = torch.tensor(snake_case__ ).unsqueeze(0 ) lowerCAmelCase__ = tokenizer.encode('This is sample 3 éàalj\'-.' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case__ )) ) lowerCAmelCase__ = torch.tensor(snake_case__ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass lowerCAmelCase__ = encoder_input_ids lowerCAmelCase__ = decoder_input_ids lowerCAmelCase__ = lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = lowerCAmelCase__ = None lowerCAmelCase__ = lowerCAmelCase__ = None lowerCAmelCase__ = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical lowerCAmelCase__ = original(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )[0] lowerCAmelCase__ = original.generator(snake_case__ ) lowerCAmelCase__ = new_model( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )[0] lowerCAmelCase__ = new_model.generator(snake_case__ ) lowerCAmelCase__ = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(snake_case__ ) ) lowerCAmelCase__ = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(snake_case__ ) ) lowerCAmelCase__ = torch.allclose(snake_case__ , snake_case__ , atol=1E-3 ) if are_identical: logging.info('all weights are equal up to 1e-3' ) else: raise ValueError('the weights are different. The new model is likely different from the original one.' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('saving the model\'s state dictionary' ) torch.save( new_model.state_dict() , './bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' ) if __name__ == "__main__": _lowerCAmelCase : str = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) _lowerCAmelCase : Optional[Any] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
604
0
'''simple docstring''' def __snake_case ( lowerCAmelCase : str ): __UpperCAmelCase = '' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def __snake_case ( lowerCAmelCase : str ): __UpperCAmelCase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __UpperCAmelCase = remove_duplicates(key.upper() ) __UpperCAmelCase = len(lowerCAmelCase ) # First fill cipher with key characters __UpperCAmelCase = {alphabet[i]: char for i, char in enumerate(lowerCAmelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(lowerCAmelCase ) , 26 ): __UpperCAmelCase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __UpperCAmelCase = alphabet[i - offset] __UpperCAmelCase = char return cipher_alphabet def __snake_case ( lowerCAmelCase : str , lowerCAmelCase : dict[str, str] ): return "".join(cipher_map.get(lowerCAmelCase , lowerCAmelCase ) for ch in message.upper() ) def __snake_case ( lowerCAmelCase : str , lowerCAmelCase : dict[str, str] ): __UpperCAmelCase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(lowerCAmelCase , lowerCAmelCase ) for ch in message.upper() ) def __snake_case ( ): __UpperCAmelCase = input('Enter message to encode or decode: ' ).strip() __UpperCAmelCase = input('Enter keyword: ' ).strip() __UpperCAmelCase = input('Encipher or decipher? E/D:' ).strip()[0].lower() try: __UpperCAmelCase = {'e': encipher, 'd': decipher}[option] except KeyError: raise KeyError('invalid input option' ) __UpperCAmelCase = create_cipher_map(lowerCAmelCase ) print(func(lowerCAmelCase , lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
396
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def __snake_case ( lowerCAmelCase : int = 200_0000 ): __UpperCAmelCase = [0] __UpperCAmelCase = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target __UpperCAmelCase = 0 # the area corresponding to the grid that gives the product closest to target __UpperCAmelCase = 0 # an estimate of b, using the quadratic formula __UpperCAmelCase = 42 # the largest integer less than b_estimate __UpperCAmelCase = 42 # the largest integer less than b_estimate __UpperCAmelCase = 42 # the triangle number corresponding to b_floor __UpperCAmelCase = 42 # the triangle number corresponding to b_ceil __UpperCAmelCase = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): __UpperCAmelCase = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 __UpperCAmelCase = floor(lowerCAmelCase ) __UpperCAmelCase = ceil(lowerCAmelCase ) __UpperCAmelCase = triangle_numbers[b_floor] __UpperCAmelCase = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): __UpperCAmelCase = triangle_b_first_guess * triangle_a __UpperCAmelCase = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): __UpperCAmelCase = triangle_b_second_guess * triangle_a __UpperCAmelCase = idx_a * b_ceil return area if __name__ == "__main__": print(f"{solution() = }")
396
1
from __future__ import annotations def _snake_case ( __snake_case , __snake_case ) -> list[str]: '''simple docstring''' if partitions <= 0: raise ValueError("partitions must be a positive number!" ) if partitions > number_of_bytes: raise ValueError("partitions can not > number_of_bytes!" ) UpperCAmelCase_ : int = number_of_bytes // partitions UpperCAmelCase_ : Any = [] for i in range(__snake_case ): UpperCAmelCase_ : List[str] = i * bytes_per_partition + 1 UpperCAmelCase_ : List[str] = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(F"""{start_bytes}-{end_bytes}""" ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
708
import operator def _snake_case ( __snake_case , __snake_case = False , __snake_case = None ) -> list: '''simple docstring''' UpperCAmelCase_ : Optional[int] = operator.lt if reverse else operator.gt UpperCAmelCase_ : int = solution or [] if not arr: return solution UpperCAmelCase_ : Union[str, Any] = [arr.pop(0 )] for i, item in enumerate(__snake_case ): if _operator(__snake_case , sublist[-1] ): sublist.append(__snake_case ) arr.pop(__snake_case ) # merging sublist into solution list if not solution: solution.extend(__snake_case ) else: while sublist: UpperCAmelCase_ : Optional[int] = sublist.pop(0 ) for i, xx in enumerate(__snake_case ): if not _operator(__snake_case , __snake_case ): solution.insert(__snake_case , __snake_case ) break else: solution.append(__snake_case ) strand_sort(__snake_case , __snake_case , __snake_case ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
455
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a_ : Any = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[int] = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys a_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
194
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class a ( unittest.TestCase ): """simple docstring""" def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=4 , ) -> Dict: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_attention_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_choices def __A ( self ) -> Optional[Any]: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_attention_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=snake_case_ , ) return config, input_ids, attention_mask def __A ( self ) -> Union[str, Any]: _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class a ( _SCREAMING_SNAKE_CASE, unittest.TestCase ): """simple docstring""" A__ : int = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def __A ( self ) -> Optional[int]: _UpperCAmelCase = FlaxDistilBertModelTester(self ) @slow def __A ( self ) -> Any: for model_class_name in self.all_model_classes: _UpperCAmelCase = model_class_name.from_pretrained("distilbert-base-uncased" ) _UpperCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(snake_case_ ) @require_flax class a ( unittest.TestCase ): """simple docstring""" @slow def __A ( self ) -> Optional[int]: _UpperCAmelCase = FlaxDistilBertModel.from_pretrained("distilbert-base-uncased" ) _UpperCAmelCase = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _UpperCAmelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _UpperCAmelCase = model(snake_case_ , attention_mask=snake_case_ )[0] _UpperCAmelCase = (1, 11, 768) self.assertEqual(output.shape , snake_case_ ) _UpperCAmelCase = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , snake_case_ , atol=1e-4 ) )
426
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class A_ ( snake_case_ ): UpperCAmelCase__ = '''openai/whisper-base''' UpperCAmelCase__ = ( '''This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the ''' '''transcribed text.''' ) UpperCAmelCase__ = '''transcriber''' UpperCAmelCase__ = WhisperProcessor UpperCAmelCase__ = WhisperForConditionalGeneration UpperCAmelCase__ = ['''audio'''] UpperCAmelCase__ = ['''text'''] def _snake_case ( self : Optional[int] , __lowerCamelCase : List[Any] ) -> Dict: return self.pre_processor(__lowerCamelCase , return_tensors="pt" ).input_features def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict ) -> List[str]: return self.model.generate(inputs=__lowerCamelCase ) def _snake_case ( self : int , __lowerCamelCase : int ) -> List[str]: return self.pre_processor.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )[0]
468
"""simple docstring""" from __future__ import annotations from random import choice def _lowerCAmelCase ( __lowerCamelCase:Optional[int] ): '''simple docstring''' return choice(__lowerCamelCase ) def _lowerCAmelCase ( __lowerCamelCase:list[int] , __lowerCamelCase:int ): '''simple docstring''' __magic_name__ = random_pivot(__lowerCamelCase ) # partition based on pivot # linear time __magic_name__ = [e for e in lst if e < pivot] __magic_name__ = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(__lowerCamelCase ) == k - 1: return pivot # pivot is in elements bigger than k elif len(__lowerCamelCase ) < k - 1: return kth_number(__lowerCamelCase , k - len(__lowerCamelCase ) - 1 ) # pivot is in elements smaller than k else: return kth_number(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
468
1
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class lowerCamelCase_ ( _lowercase ): def lowerCAmelCase_ ( self : Dict ): __A : Union[str, Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__A , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(__A , """num_attention_heads""" ) ) self.parent.assertTrue(hasattr(__A , """num_encoder_blocks""" ) ) class lowerCamelCase_ : def __init__( self : List[str] , __A : str , __A : str=13 , __A : str=64 , __A : Any=3 , __A : List[str]=4 , __A : Union[str, Any]=[2, 2, 2, 2] , __A : Any=[8, 4, 2, 1] , __A : int=[16, 32, 64, 128] , __A : List[str]=[1, 4, 8, 16] , __A : Optional[int]=[1, 2, 4, 8] , __A : Optional[int]=True , __A : List[Any]=True , __A : List[Any]="gelu" , __A : Union[str, Any]=0.1 , __A : Tuple=0.1 , __A : Optional[int]=0.0_2 , __A : Dict=3 , __A : Any=None , ): __A : Optional[Any] = parent __A : int = batch_size __A : Optional[int] = image_size __A : Tuple = num_channels __A : List[Any] = num_encoder_blocks __A : List[Any] = sr_ratios __A : Optional[int] = depths __A : str = hidden_sizes __A : str = downsampling_rates __A : Any = num_attention_heads __A : Optional[int] = is_training __A : Union[str, Any] = use_labels __A : Any = hidden_act __A : Union[str, Any] = hidden_dropout_prob __A : Tuple = attention_probs_dropout_prob __A : Any = initializer_range __A : Dict = num_labels __A : List[Any] = scope def lowerCAmelCase_ ( self : int ): __A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A : Optional[Any] = None if self.use_labels: __A : List[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __A : Any = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self : Union[str, Any] ): return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self : Dict , __A : Dict , __A : List[Any] , __A : str ): __A : List[Any] = SegformerModel(config=__A ) model.to(__A ) model.eval() __A : Dict = model(__A ) __A : Union[str, Any] = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def lowerCAmelCase_ ( self : List[str] , __A : int , __A : Tuple , __A : List[str] ): __A : int = self.num_labels __A : int = SegformerForSemanticSegmentation(__A ) model.to(__A ) model.eval() __A : int = model(__A ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) __A : Union[str, Any] = model(__A , labels=__A ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def lowerCAmelCase_ ( self : Union[str, Any] , __A : List[Any] , __A : List[str] , __A : Optional[Any] ): __A : List[str] = 1 __A : Union[str, Any] = SegformerForSemanticSegmentation(config=__A ) model.to(__A ) model.eval() __A : Any = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(__A ) __A : int = model(__A , labels=__A ) self.parent.assertGreater(result.loss , 0.0 ) def lowerCAmelCase_ ( self : List[Any] ): __A : Optional[int] = self.prepare_config_and_inputs() __A , __A , __A : Tuple = config_and_inputs __A : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase_ ( _lowercase , _lowercase , unittest.TestCase ): _lowercase : List[Any] = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) _lowercase : List[Any] = ( { '''feature-extraction''': SegformerModel, '''image-classification''': SegformerForImageClassification, '''image-segmentation''': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) _lowercase : int = True _lowercase : Optional[int] = False _lowercase : Union[str, Any] = False _lowercase : int = False def lowerCAmelCase_ ( self : Tuple ): __A : str = SegformerModelTester(self ) __A : Optional[int] = SegformerConfigTester(self , config_class=__A ) def lowerCAmelCase_ ( self : List[str] ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : int ): __A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCAmelCase_ ( self : Optional[int] ): __A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*__A ) def lowerCAmelCase_ ( self : Optional[int] ): __A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*__A ) @unittest.skip("""SegFormer does not use inputs_embeds""" ) def lowerCAmelCase_ ( self : Union[str, Any] ): pass @unittest.skip("""SegFormer does not have get_input_embeddings method and get_output_embeddings methods""" ) def lowerCAmelCase_ ( self : Tuple ): pass def lowerCAmelCase_ ( self : Optional[int] ): __A , __A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : int = model_class(__A ) __A : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : Tuple = [*signature.parameters.keys()] __A : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __A ) def lowerCAmelCase_ ( self : int ): __A , __A : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __A : Union[str, Any] = True for model_class in self.all_model_classes: __A : Optional[Any] = True __A : Tuple = False __A : Union[str, Any] = True __A : List[str] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): __A : Any = model(**self._prepare_for_class(__A , __A ) ) __A : Optional[int] = outputs.attentions __A : List[str] = sum(self.model_tester.depths ) self.assertEqual(len(__A ) , __A ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __A : Optional[Any] = True __A : Union[str, Any] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): __A : Optional[Any] = model(**self._prepare_for_class(__A , __A ) ) __A : str = outputs.attentions self.assertEqual(len(__A ) , __A ) # verify the first attentions (first block, first layer) __A : Union[str, Any] = (self.model_tester.image_size // 4) ** 2 __A : Any = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) __A : Tuple = (self.model_tester.image_size // 32) ** 2 __A : Optional[int] = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) __A : Union[str, Any] = len(__A ) # Check attention is always last and order is fine __A : Union[str, Any] = True __A : List[Any] = True __A : Any = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): __A : str = model(**self._prepare_for_class(__A , __A ) ) self.assertEqual(out_len + 1 , len(__A ) ) __A : List[Any] = outputs.attentions self.assertEqual(len(__A ) , __A ) # verify the first attentions (first block, first layer) __A : Tuple = (self.model_tester.image_size // 4) ** 2 __A : Any = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def lowerCAmelCase_ ( self : Tuple ): def check_hidden_states_output(__A : Optional[int] , __A : int , __A : Dict ): __A : List[str] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): __A : Any = model(**self._prepare_for_class(__A , __A ) ) __A : Optional[Any] = outputs.hidden_states __A : Dict = self.model_tester.num_encoder_blocks self.assertEqual(len(__A ) , __A ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __A , __A : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : Optional[int] = True check_hidden_states_output(__A , __A , __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A : Any = True check_hidden_states_output(__A , __A , __A ) def lowerCAmelCase_ ( self : str ): if not self.model_tester.is_training: return __A , __A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __A : List[str] = True for model_class in self.all_model_classes: if model_class in get_values(__A ): continue __A : List[str] = model_class(__A ) model.to(__A ) model.train() __A : Any = self._prepare_for_class(__A , __A , return_labels=__A ) __A : Optional[int] = model(**__A ).loss loss.backward() @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase_ ( self : List[Any] ): pass @slow def lowerCAmelCase_ ( self : Optional[int] ): for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : Dict = SegformerModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def __SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: __A : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class lowerCamelCase_ ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self : str ): # only resize + normalize __A : Optional[int] = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=__A , align=__A , do_random_crop=__A ) __A : Optional[int] = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( __A ) __A : int = prepare_img() __A : List[Any] = image_processor(images=__A , return_tensors="""pt""" ) __A : Any = encoded_inputs.pixel_values.to(__A ) with torch.no_grad(): __A : List[str] = model(__A ) __A : Tuple = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , __A ) __A : Any = torch.tensor( [ [[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]], [[-1_2.1_3_9_1, -1_3.3_1_2_2, -1_3.9_5_5_4], [-1_2.8_7_3_2, -1_3.9_3_5_2, -1_4.3_5_6_3], [-1_2.9_4_3_8, -1_3.8_2_2_6, -1_4.2_5_1_3]], [[-1_2.5_1_3_4, -1_3.4_6_8_6, -1_4.4_9_1_5], [-1_2.8_6_6_9, -1_4.4_3_4_3, -1_4.7_7_5_8], [-1_3.2_5_2_3, -1_4.5_8_1_9, -1_5.0_6_9_4]], ] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , __A , atol=1e-4 ) ) @slow def lowerCAmelCase_ ( self : Optional[Any] ): # only resize + normalize __A : str = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=__A , align=__A , do_random_crop=__A ) __A : Tuple = SegformerForSemanticSegmentation.from_pretrained( """nvidia/segformer-b1-finetuned-cityscapes-1024-1024""" ).to(__A ) __A : Optional[int] = prepare_img() __A : int = image_processor(images=__A , return_tensors="""pt""" ) __A : List[Any] = encoded_inputs.pixel_values.to(__A ) with torch.no_grad(): __A : Dict = model(__A ) __A : int = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , __A ) __A : Optional[int] = torch.tensor( [ [[-1_3.5_7_4_8, -1_3.9_1_1_1, -1_2.6_5_0_0], [-1_4.3_5_0_0, -1_5.3_6_8_3, -1_4.2_3_2_8], [-1_4.7_5_3_2, -1_6.0_4_2_4, -1_5.6_0_8_7]], [[-1_7.1_6_5_1, -1_5.8_7_2_5, -1_2.9_6_5_3], [-1_7.2_5_8_0, -1_7.3_7_1_8, -1_4.8_2_2_3], [-1_6.6_0_5_8, -1_6.8_7_8_3, -1_6.7_4_5_2]], [[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]], ] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , __A , atol=1e-1 ) ) @slow def lowerCAmelCase_ ( self : Optional[int] ): # only resize + normalize __A : Tuple = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=__A , align=__A , do_random_crop=__A ) __A : List[Any] = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( __A ) __A : Any = prepare_img() __A : str = image_processor(images=__A , return_tensors="""pt""" ) __A : int = encoded_inputs.pixel_values.to(__A ) with torch.no_grad(): __A : int = model(__A ) __A : Optional[int] = outputs.logits.detach().cpu() __A : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=__A , target_sizes=[(500, 300)] ) __A : Tuple = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , __A ) __A : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=__A ) __A : Dict = torch.Size((128, 128) ) self.assertEqual(segmentation[0].shape , __A )
17
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class lowerCamelCase_ ( _lowercase ): _lowercase : Union[str, Any] = '''EncodecFeatureExtractor''' _lowercase : Any = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self : List[Any] , __A : Any , __A : Tuple ): super().__init__(__A , __A ) __A : Dict = self.feature_extractor __A : List[str] = False def lowerCAmelCase_ ( self : Union[str, Any] , __A : str=None , __A : Tuple=None , __A : Dict=True ): return self.tokenizer.get_decoder_prompt_ids(task=__A , language=__A , no_timestamps=__A ) def __call__( self : Optional[Any] , *__A : Tuple , **__A : Tuple ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__A , **__A ) __A : str = kwargs.pop("""audio""" , __A ) __A : Optional[Any] = kwargs.pop("""sampling_rate""" , __A ) __A : int = kwargs.pop("""text""" , __A ) if len(__A ) > 0: __A : int = args[0] __A : Dict = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if text is not None: __A : Dict = self.tokenizer(__A , **__A ) if audio is not None: __A : Optional[int] = self.feature_extractor(__A , *__A , sampling_rate=__A , **__A ) if audio is None: return inputs elif text is None: return audio_inputs else: __A : List[Any] = audio_inputs["""input_values"""] if "padding_mask" in audio_inputs: __A : int = audio_inputs["""padding_mask"""] return inputs def lowerCAmelCase_ ( self : List[str] , *__A : int , **__A : Tuple ): __A : Optional[int] = kwargs.pop("""audio""" , __A ) __A : List[str] = kwargs.pop("""padding_mask""" , __A ) if len(__A ) > 0: __A : Dict = args[0] __A : Optional[int] = args[1:] if audio_values is not None: return self._decode_audio(__A , padding_mask=__A ) else: return self.tokenizer.batch_decode(*__A , **__A ) def lowerCAmelCase_ ( self : Optional[Any] , *__A : Dict , **__A : Any ): return self.tokenizer.decode(*__A , **__A ) def lowerCAmelCase_ ( self : Tuple , __A : Union[str, Any] , __A : Optional = None ): __A : List[str] = to_numpy(__A ) __A , __A , __A : Tuple = audio_values.shape if padding_mask is None: return list(__A ) __A : Union[str, Any] = to_numpy(__A ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __A : List[str] = seq_len - padding_mask.shape[-1] __A : Tuple = 1 - self.feature_extractor.padding_value __A : Optional[int] = np.pad(__A , ((0, 0), (0, difference)) , """constant""" , constant_values=__A ) __A : int = audio_values.tolist() for i in range(__A ): __A : str = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __A : List[Any] = sliced_audio.reshape(__A , -1 ) return audio_values
17
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process snake_case__ = logging.getLogger(__name__) def lowerCamelCase__ ( a : int , a : List[Any] ) -> Any: """simple docstring""" return (preds == labels).mean() @dataclass class lowerCAmelCase_ : lowerCamelCase_ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'}) lowerCamelCase_ = field( default=_a ,metadata={'help': 'Pretrained config name or path if not the same as model_name'}) lowerCamelCase_ = field( default=_a ,metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'}) lowerCamelCase_ = field( default=_a ,metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} ,) @dataclass class lowerCAmelCase_ : lowerCamelCase_ = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(processors.keys())}) lowerCamelCase_ = field(metadata={'help': 'Should contain the data files for the task.'}) lowerCamelCase_ = field( default=128 ,metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } ,) lowerCamelCase_ = field( default=_a ,metadata={'help': 'Overwrite the cached training and evaluation sets'}) def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. a__ :Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) a__ , a__ , a__ :Dict = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , a ) # Set seed set_seed(training_args.seed ) try: a__ :Tuple = processors[data_args.task_name]() a__ :str = processor.get_labels() a__ :Any = len(a ) except KeyError: raise ValueError("Task not found: %s" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a__ :str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=a , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) a__ :Dict = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) a__ :str = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=a , cache_dir=model_args.cache_dir , ) # Get datasets a__ :Tuple = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=a , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) a__ :Any = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=a , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(a : EvalPrediction ) -> Dict: a__ :List[Any] = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(a , p.label_ids )} # Data collator a__ :str = DataCollatorWithPadding(a , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer a__ :List[Any] = Trainer( model=a , args=a , train_dataset=a , eval_dataset=a , compute_metrics=a , data_collator=a , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation a__ :str = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) a__ :Optional[Any] = trainer.evaluate() a__ :List[str] = os.path.join(training_args.output_dir , "eval_results.txt" ) if trainer.is_world_master(): with open(a , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s" , a , a ) writer.write("%s = %s\n" % (key, value) ) results.update(a ) return results def lowerCamelCase__ ( a : Optional[Any] ) -> Tuple: """simple docstring""" # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
373
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowerCAmelCase_ ( _a): lowerCamelCase_ = 'speech_to_text_2' lowerCamelCase_ = ['past_key_values'] lowerCamelCase_ = {'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Dict , __A : Union[str, Any]=10000 , __A : Tuple=6 , __A : Tuple=2048 , __A : Any=4 , __A : str=0.0 , __A : Tuple=True , __A : List[Any]="relu" , __A : Union[str, Any]=256 , __A : str=0.1 , __A : Optional[Any]=0.0 , __A : Tuple=0.0 , __A : Any=0.02 , __A : int=2 , __A : Union[str, Any]=True , __A : Tuple=1 , __A : List[str]=0 , __A : List[str]=2 , __A : Union[str, Any]=1024 , **__A : Tuple , ) ->List[str]: """simple docstring""" a__ :Tuple = vocab_size a__ :Dict = d_model a__ :Optional[int] = decoder_ffn_dim a__ :Optional[int] = decoder_layers a__ :Optional[int] = decoder_attention_heads a__ :Dict = dropout a__ :Optional[Any] = attention_dropout a__ :Any = activation_dropout a__ :int = activation_function a__ :Optional[int] = init_std a__ :List[Any] = decoder_layerdrop a__ :Optional[Any] = use_cache a__ :List[str] = decoder_layers a__ :int = scale_embedding # scale factor will be sqrt(d_model) if True a__ :Optional[int] = max_target_positions super().__init__( pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , decoder_start_token_id=__A , **__A , )
373
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCamelCase ( __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =StableDiffusionXLImgaImgPipeline lowerCamelCase__ =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} lowerCamelCase__ =PipelineTesterMixin.required_optional_params - {'latents'} lowerCamelCase__ =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCamelCase__ =IMAGE_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__ =IMAGE_TO_IMAGE_IMAGE_PARAMS def __UpperCamelCase ( self : Any ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , attention_head_dim=(2, 4) , use_linear_projection=a , addition_embed_type="text_time" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) SCREAMING_SNAKE_CASE : str = EulerDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , steps_offset=1 , beta_schedule="scaled_linear" , timestep_spacing="leading" , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=32 , ) SCREAMING_SNAKE_CASE : Optional[int] = CLIPTextModel(a ) SCREAMING_SNAKE_CASE : Dict = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=a ) SCREAMING_SNAKE_CASE : str = CLIPTextModelWithProjection(a ) SCREAMING_SNAKE_CASE : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=a ) SCREAMING_SNAKE_CASE : Optional[int] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_encoder_2": text_encoder_a, "tokenizer_2": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def __UpperCamelCase ( self : Tuple , a : Any , a : Optional[int]=0 ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(a ) ).to(a ) SCREAMING_SNAKE_CASE : Optional[Any] = image / 2 + 0.5 if str(a ).startswith("mps" ): SCREAMING_SNAKE_CASE : int = torch.manual_seed(a ) else: SCREAMING_SNAKE_CASE : int = torch.Generator(device=a ).manual_seed(a ) SCREAMING_SNAKE_CASE : List[Any] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 5.0, "output_type": "numpy", "strength": 0.75, } return inputs def __UpperCamelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Tuple = StableDiffusionXLImgaImgPipeline(**a ) SCREAMING_SNAKE_CASE : Tuple = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Any = self.get_dummy_inputs(a ) SCREAMING_SNAKE_CASE : Dict = sd_pipe(**a ).images SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : str = np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def __UpperCamelCase ( self : int ) -> str: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def __UpperCamelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" pass def __UpperCamelCase ( self : str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Tuple = StableDiffusionXLImgaImgPipeline(**a ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe.to(a ) SCREAMING_SNAKE_CASE : Tuple = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) # forward without prompt embeds SCREAMING_SNAKE_CASE : Any = self.get_dummy_inputs(a ) SCREAMING_SNAKE_CASE : Any = 3 * ["this is a negative prompt"] SCREAMING_SNAKE_CASE : Union[str, Any] = negative_prompt SCREAMING_SNAKE_CASE : int = 3 * [inputs["prompt"]] SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe(**a ) SCREAMING_SNAKE_CASE : int = output.images[0, -3:, -3:, -1] # forward with prompt embeds SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inputs(a ) SCREAMING_SNAKE_CASE : Tuple = 3 * ["this is a negative prompt"] SCREAMING_SNAKE_CASE : List[Any] = 3 * [inputs.pop("prompt" )] ( ( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) , ) : Tuple = sd_pipe.encode_prompt(a , negative_prompt=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe( **a , prompt_embeds=a , negative_prompt_embeds=a , pooled_prompt_embeds=a , negative_pooled_prompt_embeds=a , ) SCREAMING_SNAKE_CASE : int = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : str ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Any , a : int , a : str="cpu" , a : Dict=torch.floataa , a : Any=0 ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = torch.Generator(device=a ).manual_seed(a ) SCREAMING_SNAKE_CASE : List[str] = np.random.RandomState(a ).standard_normal((1, 4, 64, 64) ) SCREAMING_SNAKE_CASE : Optional[int] = torch.from_numpy(a ).to(device=a , dtype=a ) SCREAMING_SNAKE_CASE : Dict = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : Dict ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : str = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base" ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_inputs(a ) SCREAMING_SNAKE_CASE : List[str] = pipe(**a ).images SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.4_9493, 0.4_7896, 0.4_0798, 0.5_4214, 0.5_3212, 0.4_8202, 0.4_7656, 0.4_6329, 0.4_8506] ) assert np.abs(image_slice - expected_slice ).max() < 7e-3
25
from __future__ import annotations import time A_ : Optional[Any] = list[tuple[int, int]] A_ : Tuple = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] A_ : Optional[Any] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class A_ : '''simple docstring''' def __init__(self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Union[str, Any]: __UpperCAmelCase = pos_x __UpperCAmelCase = pos_y __UpperCAmelCase = (pos_y, pos_x) __UpperCAmelCase = goal_x __UpperCAmelCase = goal_y __UpperCAmelCase = parent class A_ : '''simple docstring''' def __init__(self , lowercase__ , lowercase__ ) -> int: __UpperCAmelCase = Node(start[1] , start[0] , goal[1] , goal[0] , lowercase__ ) __UpperCAmelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , lowercase__ ) __UpperCAmelCase = [self.start] __UpperCAmelCase = False def lowerCAmelCase_ (self ) -> Path | None: while self.node_queue: __UpperCAmelCase = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: __UpperCAmelCase = True return self.retrace_path(lowercase__ ) __UpperCAmelCase = self.get_successors(lowercase__ ) for node in successors: self.node_queue.append(lowercase__ ) if not self.reached: return [self.start.pos] return None def lowerCAmelCase_ (self , lowercase__ ) -> list[Node]: __UpperCAmelCase = [] for action in delta: __UpperCAmelCase = parent.pos_x + action[1] __UpperCAmelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowercase__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(lowercase__ , lowercase__ , self.target.pos_y , self.target.pos_x , lowercase__ ) ) return successors def lowerCAmelCase_ (self , lowercase__ ) -> Path: __UpperCAmelCase = node __UpperCAmelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __UpperCAmelCase = current_node.parent path.reverse() return path class A_ : '''simple docstring''' def __init__(self , lowercase__ , lowercase__ ) -> str: __UpperCAmelCase = BreadthFirstSearch(lowercase__ , lowercase__ ) __UpperCAmelCase = BreadthFirstSearch(lowercase__ , lowercase__ ) __UpperCAmelCase = False def lowerCAmelCase_ (self ) -> Path | None: while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: __UpperCAmelCase = self.fwd_bfs.node_queue.pop(0 ) __UpperCAmelCase = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: __UpperCAmelCase = True return self.retrace_bidirectional_path( lowercase__ , lowercase__ ) __UpperCAmelCase = current_bwd_node __UpperCAmelCase = current_fwd_node __UpperCAmelCase = { self.fwd_bfs: self.fwd_bfs.get_successors(lowercase__ ), self.bwd_bfs: self.bwd_bfs.get_successors(lowercase__ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(lowercase__ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> Path: __UpperCAmelCase = self.fwd_bfs.retrace_path(lowercase__ ) __UpperCAmelCase = self.bwd_bfs.retrace_path(lowercase__ ) bwd_path.pop() bwd_path.reverse() __UpperCAmelCase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() A_ : Dict = (0, 0) A_ : Optional[int] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) A_ : Optional[int] = time.time() A_ : Optional[int] = BreadthFirstSearch(init, goal) A_ : Union[str, Any] = bfs.search() A_ : str = time.time() - start_bfs_time print('Unidirectional BFS computation time : ', bfs_time) A_ : int = time.time() A_ : Optional[Any] = BidirectionalBreadthFirstSearch(init, goal) A_ : Optional[int] = bd_bfs.search() A_ : Tuple = time.time() - start_bd_bfs_time print('Bidirectional BFS computation time : ', bd_bfs_time)
303
0
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def lowerCAmelCase__ ( UpperCamelCase_ : List[str] )-> int: A__ = [False] * len(UpperCamelCase_ ) A__ = [-1] * len(UpperCamelCase_ ) def dfs(UpperCamelCase_ : str , UpperCamelCase_ : Optional[int] ): A__ = True A__ = c for u in graph[v]: if not visited[u]: dfs(UpperCamelCase_ , 1 - c ) for i in range(len(UpperCamelCase_ ) ): if not visited[i]: dfs(UpperCamelCase_ , 0 ) for i in range(len(UpperCamelCase_ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph _lowercase = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
526
import numpy as np def lowerCAmelCase__ ( UpperCamelCase_ : np.array )-> np.array: return 1 / (1 + np.exp(-vector )) def lowerCAmelCase__ ( UpperCamelCase_ : np.array )-> np.array: return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
526
1
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger UpperCAmelCase_ = get_logger(__name__) class __UpperCamelCase ( enum.Enum ): __A : int = """all_checks""" __A : Tuple = """basic_checks""" __A : List[Any] = """no_checks""" class __UpperCamelCase ( A__ ): pass class __UpperCamelCase ( A__ ): pass class __UpperCamelCase ( A__ ): pass class __UpperCamelCase ( A__ ): pass def A__ ( SCREAMING_SNAKE_CASE_ : Optional[dict] , SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : Dict=None ) -> Union[str, Any]: """simple docstring""" if expected_checksums is None: logger.info('''Unable to verify checksums.''' ) return if len(set(SCREAMING_SNAKE_CASE_ ) - set(SCREAMING_SNAKE_CASE_ ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(SCREAMING_SNAKE_CASE_ ) - set(SCREAMING_SNAKE_CASE_ ) ) ) if len(set(SCREAMING_SNAKE_CASE_ ) - set(SCREAMING_SNAKE_CASE_ ) ) > 0: raise UnexpectedDownloadedFile(str(set(SCREAMING_SNAKE_CASE_ ) - set(SCREAMING_SNAKE_CASE_ ) ) ) _UpperCAmelCase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] _UpperCAmelCase = ''' for ''' + verification_name if verification_name is not None else '''''' if len(SCREAMING_SNAKE_CASE_ ) > 0: raise NonMatchingChecksumError( F'''Checksums didn\'t match{for_verification_name}:\n''' F'''{bad_urls}\n''' '''Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error''' ) logger.info('''All the checksums matched successfully''' + for_verification_name ) class __UpperCamelCase ( A__ ): pass class __UpperCamelCase ( A__ ): pass class __UpperCamelCase ( A__ ): pass class __UpperCamelCase ( A__ ): pass def A__ ( SCREAMING_SNAKE_CASE_ : Optional[dict] , SCREAMING_SNAKE_CASE_ : dict ) -> int: """simple docstring""" if expected_splits is None: logger.info('''Unable to verify splits sizes.''' ) return if len(set(SCREAMING_SNAKE_CASE_ ) - set(SCREAMING_SNAKE_CASE_ ) ) > 0: raise ExpectedMoreSplits(str(set(SCREAMING_SNAKE_CASE_ ) - set(SCREAMING_SNAKE_CASE_ ) ) ) if len(set(SCREAMING_SNAKE_CASE_ ) - set(SCREAMING_SNAKE_CASE_ ) ) > 0: raise UnexpectedSplits(str(set(SCREAMING_SNAKE_CASE_ ) - set(SCREAMING_SNAKE_CASE_ ) ) ) _UpperCAmelCase = [ {'''expected''': expected_splits[name], '''recorded''': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(SCREAMING_SNAKE_CASE_ ) > 0: raise NonMatchingSplitsSizesError(str(SCREAMING_SNAKE_CASE_ ) ) logger.info('''All the splits matched successfully.''' ) def A__ ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool = True ) -> dict: """simple docstring""" if record_checksum: _UpperCAmelCase = shaaaa() with open(SCREAMING_SNAKE_CASE_ , '''rb''' ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , B'''''' ): m.update(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = m.hexdigest() else: _UpperCAmelCase = None return {"num_bytes": os.path.getsize(SCREAMING_SNAKE_CASE_ ), "checksum": checksum} def A__ ( SCREAMING_SNAKE_CASE_ : Any ) -> Optional[Any]: """simple docstring""" if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
32
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class lowerCAmelCase_ : """simple docstring""" def __init__( self :Dict , lowerCamelCase__ :List[str] , ): UpperCamelCase__ :Optional[int] = parent UpperCamelCase__ :int = 13 UpperCamelCase__ :Optional[int] = 7 UpperCamelCase__ :Dict = True UpperCamelCase__ :Dict = True UpperCamelCase__ :str = True UpperCamelCase__ :List[Any] = True UpperCamelCase__ :Any = True UpperCamelCase__ :Optional[int] = False UpperCamelCase__ :Optional[int] = False UpperCamelCase__ :Tuple = False UpperCamelCase__ :Optional[int] = 2 UpperCamelCase__ :List[str] = 99 UpperCamelCase__ :Optional[Any] = 0 UpperCamelCase__ :Any = 32 UpperCamelCase__ :List[str] = 2 UpperCamelCase__ :int = 4 UpperCamelCase__ :List[str] = 0.1 UpperCamelCase__ :Union[str, Any] = 0.1 UpperCamelCase__ :Union[str, Any] = 5_12 UpperCamelCase__ :List[str] = 16 UpperCamelCase__ :str = 2 UpperCamelCase__ :Optional[int] = 0.02 UpperCamelCase__ :Optional[int] = 3 UpperCamelCase__ :Optional[int] = 4 UpperCamelCase__ :Optional[int] = """last""" UpperCamelCase__ :Tuple = True UpperCamelCase__ :int = None UpperCamelCase__ :Dict = 0 def __a ( self :int ): UpperCamelCase__ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :Any = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) UpperCamelCase__ :Union[str, Any] = None if self.use_input_lengths: UpperCamelCase__ :Union[str, Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCamelCase__ :List[str] = None if self.use_token_type_ids: UpperCamelCase__ :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCamelCase__ :int = None UpperCamelCase__ :List[str] = None UpperCamelCase__ :List[str] = None if self.use_labels: UpperCamelCase__ :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ :str = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) UpperCamelCase__ :int = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ :List[Any] = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __a ( self :Union[str, Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :int , lowerCamelCase__ :List[Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :int , ): UpperCamelCase__ :int = TFFlaubertModel(config=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = [input_ids, input_mask] UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self :Tuple , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Any , lowerCamelCase__ :int , lowerCamelCase__ :int , lowerCamelCase__ :List[str] , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] , ): UpperCamelCase__ :List[str] = TFFlaubertWithLMHeadModel(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} UpperCamelCase__ :Any = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self :Dict , lowerCamelCase__ :List[str] , lowerCamelCase__ :Dict , lowerCamelCase__ :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Tuple , lowerCamelCase__ :Any , lowerCamelCase__ :int , lowerCamelCase__ :Tuple , ): UpperCamelCase__ :int = TFFlaubertForQuestionAnsweringSimple(lowerCamelCase__ ) UpperCamelCase__ :int = {"""input_ids""": input_ids, """lengths""": input_lengths} UpperCamelCase__ :Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self :List[Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Tuple , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :int , lowerCamelCase__ :Optional[int] , ): UpperCamelCase__ :List[Any] = TFFlaubertForSequenceClassification(lowerCamelCase__ ) UpperCamelCase__ :List[str] = {"""input_ids""": input_ids, """lengths""": input_lengths} UpperCamelCase__ :List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str , lowerCamelCase__ :Any , ): UpperCamelCase__ :Any = self.num_labels UpperCamelCase__ :Tuple = TFFlaubertForTokenClassification(config=lowerCamelCase__ ) UpperCamelCase__ :Any = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCamelCase__ :List[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self :Tuple , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Tuple , lowerCamelCase__ :Any , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :str , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :List[str] , ): UpperCamelCase__ :Optional[int] = self.num_choices UpperCamelCase__ :Dict = TFFlaubertForMultipleChoice(config=lowerCamelCase__ ) UpperCamelCase__ :Any = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :str = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :Any = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ :int = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } UpperCamelCase__ :List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self :Tuple ): UpperCamelCase__ :str = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) :str = config_and_inputs UpperCamelCase__ :Optional[Any] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """langs""": token_type_ids, """lengths""": input_lengths, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : List[str] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) _snake_case : List[Any] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _snake_case : Optional[int] = ( { """feature-extraction""": TFFlaubertModel, """fill-mask""": TFFlaubertWithLMHeadModel, """question-answering""": TFFlaubertForQuestionAnsweringSimple, """text-classification""": TFFlaubertForSequenceClassification, """token-classification""": TFFlaubertForTokenClassification, """zero-shot""": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) _snake_case : List[Any] = False _snake_case : Tuple = False def __a ( self :Optional[int] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :int , lowerCamelCase__ :str , lowerCamelCase__ :List[Any] ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __a ( self :List[str] ): UpperCamelCase__ :List[str] = TFFlaubertModelTester(self ) UpperCamelCase__ :Tuple = ConfigTester(self , config_class=lowerCamelCase__ , emb_dim=37 ) def __a ( self :int ): self.config_tester.run_common_tests() def __a ( self :List[str] ): UpperCamelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowerCamelCase__ ) def __a ( self :Tuple ): UpperCamelCase__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowerCamelCase__ ) def __a ( self :List[Any] ): UpperCamelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowerCamelCase__ ) def __a ( self :Any ): UpperCamelCase__ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*lowerCamelCase__ ) def __a ( self :List[Any] ): UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*lowerCamelCase__ ) @slow def __a ( self :str ): for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :Dict = TFFlaubertModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def __a ( self :str ): UpperCamelCase__ :Tuple = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) UpperCamelCase__ :Optional[int] = tf.convert_to_tensor( [[0, 1_58, 7_35, 25_92, 14_24, 67_27, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ )[0] UpperCamelCase__ :Optional[int] = tf.TensorShape((1, 8, 5_12) ) self.assertEqual(output.shape , lowerCamelCase__ ) # compare the actual values for a slice. UpperCamelCase__ :str = tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
45
0
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : Optional[int] = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4') UpperCamelCase__ : Optional[int] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) sd_pipe.set_scheduler('sample_euler') UpperCamelCase__ : Optional[Any] = 'A painting of a squirrel eating a burger' UpperCamelCase__ : List[Any] = torch.manual_seed(0) UpperCamelCase__ : Dict = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='np') UpperCamelCase__ : Dict = output.images UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase__ : List[str] = np.array([0.04_47, 0.04_92, 0.04_68, 0.04_08, 0.03_83, 0.04_08, 0.03_54, 0.03_80, 0.03_39]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : str): UpperCamelCase__ : Union[str, Any] = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base') UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) sd_pipe.set_scheduler('sample_euler') UpperCamelCase__ : Tuple = 'A painting of a squirrel eating a burger' UpperCamelCase__ : Union[str, Any] = torch.manual_seed(0) UpperCamelCase__ : Any = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='np') UpperCamelCase__ : Optional[int] = output.images UpperCamelCase__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase__ : str = np.array([0.12_37, 0.13_20, 0.14_38, 0.13_59, 0.13_90, 0.11_32, 0.12_77, 0.11_75, 0.11_12]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-1 def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Tuple = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base') UpperCamelCase__ : Tuple = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) sd_pipe.set_scheduler('sample_dpmpp_2m') UpperCamelCase__ : int = 'A painting of a squirrel eating a burger' UpperCamelCase__ : Union[str, Any] = torch.manual_seed(0) UpperCamelCase__ : Union[str, Any] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=7.5 , num_inference_steps=15 , output_type='np' , use_karras_sigmas=UpperCAmelCase_ , ) UpperCamelCase__ : List[Any] = output.images UpperCamelCase__ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase__ : Union[str, Any] = np.array( [0.11_38_16_89, 0.12_11_29_21, 0.1_38_94_57, 0.12_54_96_06, 0.1_24_49_64, 0.10_83_15_17, 0.11_56_28_66, 0.10_86_78_16, 0.10_49_90_48]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
701
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''segformer''' def __init__( self : Tuple , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Tuple=[2, 2, 2, 2] , UpperCAmelCase_ : List[str]=[8, 4, 2, 1] , UpperCAmelCase_ : Union[str, Any]=[32, 64, 160, 256] , UpperCAmelCase_ : Any=[7, 3, 3, 3] , UpperCAmelCase_ : Any=[4, 2, 2, 2] , UpperCAmelCase_ : Union[str, Any]=[1, 2, 5, 8] , UpperCAmelCase_ : Tuple=[4, 4, 4, 4] , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=1e-6 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[int]=255 , **UpperCAmelCase_ : Tuple , ): super().__init__(**UpperCAmelCase_) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , UpperCAmelCase_ , ) UpperCamelCase__ : List[Any] = num_channels UpperCamelCase__ : Any = num_encoder_blocks UpperCamelCase__ : Dict = depths UpperCamelCase__ : int = sr_ratios UpperCamelCase__ : str = hidden_sizes UpperCamelCase__ : List[str] = patch_sizes UpperCamelCase__ : Optional[int] = strides UpperCamelCase__ : Dict = mlp_ratios UpperCamelCase__ : List[str] = num_attention_heads UpperCamelCase__ : int = hidden_act UpperCamelCase__ : Any = hidden_dropout_prob UpperCamelCase__ : str = attention_probs_dropout_prob UpperCamelCase__ : List[str] = classifier_dropout_prob UpperCamelCase__ : List[Any] = initializer_range UpperCamelCase__ : Union[str, Any] = drop_path_rate UpperCamelCase__ : int = layer_norm_eps UpperCamelCase__ : Dict = decoder_hidden_size UpperCamelCase__ : List[Any] = kwargs.get('reshape_last_stage' , UpperCAmelCase_) UpperCamelCase__ : List[str] = semantic_loss_ignore_index class __lowercase (__lowerCamelCase ): _lowerCamelCase = version.parse('''1.11''' ) @property def __UpperCamelCase ( self : Optional[Any]): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def __UpperCamelCase ( self : Optional[Any]): return 1e-4 @property def __UpperCamelCase ( self : Any): return 12
6
0
from __future__ import annotations def a_ ( SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): _lowerCamelCase , _lowerCamelCase : Optional[int] =array[indexa], array[indexa] def a_ ( SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' if length > 1: _lowerCamelCase : List[str] =int(length / 2 ) for i in range(SCREAMING_SNAKE_CASE__ , low + middle ): comp_and_swap(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , i + middle , SCREAMING_SNAKE_CASE__ ) bitonic_merge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) bitonic_merge(SCREAMING_SNAKE_CASE__ , low + middle , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def a_ ( SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' if length > 1: _lowerCamelCase : Tuple =int(length / 2 ) bitonic_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) bitonic_sort(SCREAMING_SNAKE_CASE__ , low + middle , SCREAMING_SNAKE_CASE__ , 0 ) bitonic_merge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCamelCase = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
464
def a_ ( SCREAMING_SNAKE_CASE__ : bytes ): '''simple docstring''' return "".join([hex(SCREAMING_SNAKE_CASE__ )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE__ )] ) def a_ ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' if (len(SCREAMING_SNAKE_CASE__ ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE__ ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE__ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
464
1
import pytest __UpperCamelCase : int = '__dummy_dataset1__' __UpperCamelCase : Optional[int] = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def snake_case_ ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def snake_case_ ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = dataset_loading_script_name UpperCAmelCase_ : Union[str, Any] = tmp_path / '''datasets''' / script_name script_dir.mkdir(parents=__lowercase ) UpperCAmelCase_ : List[str] = script_dir / F'''{script_name}.py''' with open(__lowercase , '''w''' ) as f: f.write(__lowercase ) return str(__lowercase )
641
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : int = multiprocessing.Manager() UpperCAmelCase_ : Union[str, Any] = manager.list() UpperCAmelCase_ : int = multiprocessing.Process(target=__lowercase , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def snake_case_ ( __lowercase , __lowercase , __lowercase ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil UpperCAmelCase_ : str = shutil.rmtree UpperCAmelCase_ : Tuple = os.rmdir UpperCAmelCase_ : Dict = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: UpperCAmelCase_ : Optional[int] = {} with swallow_io(): with time_limit(__lowercase ): exec(__lowercase , __lowercase ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(F'''failed: {e}''' ) # Needed for cleaning up. UpperCAmelCase_ : Optional[int] = rmtree UpperCAmelCase_ : Optional[Any] = rmdir UpperCAmelCase_ : Optional[Any] = chdir @contextlib.contextmanager def snake_case_ ( __lowercase ): def signal_handler(__lowercase , __lowercase ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , __lowercase ) signal.signal(signal.SIGALRM , __lowercase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def snake_case_ ( ): UpperCAmelCase_ : Optional[Any] = WriteOnlyStringIO() with contextlib.redirect_stdout(__lowercase ): with contextlib.redirect_stderr(__lowercase ): with redirect_stdin(__lowercase ): yield @contextlib.contextmanager def snake_case_ ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(__lowercase ): yield dirname class lowerCAmelCase__( snake_case__ ): '''simple docstring''' pass class lowerCAmelCase__( io.StringIO ): '''simple docstring''' def _lowerCamelCase ( self : Dict , *__snake_case : List[Any] , **__snake_case : int ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Dict , *__snake_case : int , **__snake_case : Any ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : int , *__snake_case : List[str] , **__snake_case : Optional[Any] ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): '''simple docstring''' return False class lowerCAmelCase__( contextlib._RedirectStream ): # type: ignore '''simple docstring''' A_ : Optional[Any] = 'stdin' @contextlib.contextmanager def snake_case_ ( __lowercase ): if root == ".": yield return UpperCAmelCase_ : Tuple = os.getcwd() os.chdir(__lowercase ) try: yield except BaseException as exc: raise exc finally: os.chdir(__lowercase ) def snake_case_ ( __lowercase=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = None import os UpperCAmelCase_ : Union[str, Any] = '''1''' UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None import shutil UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Tuple = None import subprocess UpperCAmelCase_ : Dict = None # type: ignore UpperCAmelCase_ : Union[str, Any] = None import sys UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None
641
1
'''simple docstring''' from string import ascii_uppercase __lowerCAmelCase : Union[str, Any] ={str(ord(c) - 55): c for c in ascii_uppercase} def UpperCamelCase ( _lowerCamelCase : int , _lowerCamelCase : int ): if isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("int() can't convert non-string with explicit base" ) if num < 0: raise ValueError("parameter must be positive int" ) if isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("'str' object cannot be interpreted as an integer" ) if isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("'float' object cannot be interpreted as an integer" ) if base in (0, 1): raise ValueError("base must be >= 2" ) if base > 36: raise ValueError("base must be <= 36" ) A__ = "" A__ = 0 A__ = 0 while div != 1: A__, A__ = divmod(_lowerCamelCase , _lowerCamelCase ) if base >= 11 and 9 < mod < 36: A__ = ALPHABET_VALUES[str(_lowerCamelCase )] else: A__ = str(_lowerCamelCase ) new_value += actual_value A__ = num // base A__ = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(_lowerCamelCase ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
440
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class UpperCAmelCase : @staticmethod def UpperCAmelCase_ ( *lowercase_ :Optional[Any] , **lowercase_ :List[Any] )-> Optional[int]: pass def UpperCamelCase ( _lowerCamelCase : List[Any] ): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __lowerCAmelCase : int =( "https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png" ) @is_pipeline_test @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): __lowercase = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def UpperCAmelCase_ ( self :int , lowercase_ :Optional[Any] , lowercase_ :Optional[Any] , lowercase_ :Dict )-> int: A__ = pipeline( "document-question-answering" , model=lowercase_ , tokenizer=lowercase_ , image_processor=lowercase_ ) A__ = INVOICE_URL A__ = list(zip(*apply_tesseract(load_image(lowercase_ ) , lowercase_ , "" ) ) ) A__ = "What is the placebo?" A__ = [ { "image": load_image(lowercase_ ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def UpperCAmelCase_ ( self :str , lowercase_ :List[Any] , lowercase_ :List[str] )-> List[str]: A__ = dqa_pipeline(lowercase_ , top_k=2 ) self.assertEqual( lowercase_ , [ [ {"score": ANY(lowercase_ ), "answer": ANY(lowercase_ ), "start": ANY(lowercase_ ), "end": ANY(lowercase_ )}, {"score": ANY(lowercase_ ), "answer": ANY(lowercase_ ), "start": ANY(lowercase_ ), "end": ANY(lowercase_ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def UpperCAmelCase_ ( self :Dict )-> Optional[Any]: A__ = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" ) A__ = INVOICE_URL A__ = "How many cats are there?" A__ = [ {"score": 0.0_0_0_1, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.0_0_0_1, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] A__ = dqa_pipeline(image=lowercase_ , question=lowercase_ , top_k=2 ) self.assertEqual(nested_simplify(lowercase_ , decimals=4 ) , lowercase_ ) A__ = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual(nested_simplify(lowercase_ , decimals=4 ) , lowercase_ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably A__ = "./tests/fixtures/tests_samples/COCO/000000039769.png" A__ = dqa_pipeline(image=lowercase_ , question=lowercase_ , top_k=2 ) self.assertEqual(lowercase_ , [] ) # We can optionnally pass directly the words and bounding boxes A__ = "./tests/fixtures/tests_samples/COCO/000000039769.png" A__ = [] A__ = [] A__ = dqa_pipeline(image=lowercase_ , question=lowercase_ , words=lowercase_ , boxes=lowercase_ , top_k=2 ) self.assertEqual(lowercase_ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def UpperCAmelCase_ ( self :Optional[Any] )-> Tuple: A__ = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) A__ = INVOICE_URL A__ = "What is the invoice number?" A__ = dqa_pipeline(image=lowercase_ , question=lowercase_ , top_k=2 ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {"score": 0.9_9_4_4, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_0_0_9, "answer": "us-001", "start": 16, "end": 16}, ] , ) A__ = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {"score": 0.9_9_4_4, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_0_0_9, "answer": "us-001", "start": 16, "end": 16}, ] , ) A__ = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ [ {"score": 0.9_9_4_4, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_0_0_9, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def UpperCAmelCase_ ( self :Tuple )-> Optional[Any]: A__ = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , ) A__ = INVOICE_URL A__ = "What is the invoice number?" A__ = dqa_pipeline(image=lowercase_ , question=lowercase_ , top_k=2 ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {"score": 0.9_9_7_4, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_9_4_8, "answer": "us-001", "start": 16, "end": 16}, ] , ) A__ = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {"score": 0.9_9_7_4, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_9_4_8, "answer": "us-001", "start": 16, "end": 16}, ] , ) A__ = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ [ {"score": 0.9_9_7_4, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_9_4_8, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def UpperCAmelCase_ ( self :List[Any] )-> Any: A__ = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=lowercase_ ) A__ = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=lowercase_ , revision="3dc6de3" , ) A__ = INVOICE_URL A__ = "What is the invoice number?" A__ = dqa_pipeline(image=lowercase_ , question=lowercase_ , top_k=2 ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {"score": 0.4_2_5_1, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_8_1_9, "answer": "1110212019", "start": 23, "end": 23}, ] , ) A__ = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {"score": 0.4_2_5_1, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_8_1_9, "answer": "1110212019", "start": 23, "end": 23}, ] , ) A__ = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ [ {"score": 0.4_2_5_1, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_8_1_9, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 , ) A__ = list(zip(*apply_tesseract(load_image(lowercase_ ) , lowercase_ , "" ) ) ) # This model should also work if `image` is set to None A__ = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {"score": 0.4_2_5_1, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_8_1_9, "answer": "1110212019", "start": 23, "end": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def UpperCAmelCase_ ( self :Optional[int] )-> Union[str, Any]: A__ = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=lowercase_ ) A__ = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=lowercase_ , revision="3dc6de3" , max_seq_len=50 , ) A__ = INVOICE_URL A__ = "What is the invoice number?" A__ = dqa_pipeline(image=lowercase_ , question=lowercase_ , top_k=2 ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {"score": 0.9_9_9_9, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_9_9_8, "answer": "us-001", "start": 16, "end": 16}, ] , ) A__ = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ [ {"score": 0.9_9_9_9, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_9_9_8, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) A__ = list(zip(*apply_tesseract(load_image(lowercase_ ) , lowercase_ , "" ) ) ) # This model should also work if `image` is set to None A__ = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {"score": 0.9_9_9_9, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_9_9_8, "answer": "us-001", "start": 16, "end": 16}, ] , ) @slow @require_torch def UpperCAmelCase_ ( self :Optional[int] )-> Tuple: A__ = pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) A__ = INVOICE_URL A__ = "What is the invoice number?" A__ = dqa_pipeline(image=lowercase_ , question=lowercase_ , top_k=2 ) self.assertEqual(nested_simplify(lowercase_ , decimals=4 ) , [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def UpperCAmelCase_ ( self :Optional[Any] )-> List[str]: pass
440
1
from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker snake_case__ : int = """CompVis/stable-diffusion-v1-1""" snake_case__ : Dict = """CompVis/stable-diffusion-v1-2""" snake_case__ : Dict = """CompVis/stable-diffusion-v1-3""" snake_case__ : Optional[Any] = """CompVis/stable-diffusion-v1-4""" class _A ( _lowercase ): '''simple docstring''' def __init__( self : Tuple , lowerCamelCase : AutoencoderKL , lowerCamelCase : CLIPTextModel , lowerCamelCase : CLIPTokenizer , lowerCamelCase : UNetaDConditionModel , lowerCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCamelCase : StableDiffusionSafetyChecker , lowerCamelCase : CLIPImageProcessor , lowerCamelCase : bool = True , ): '''simple docstring''' super()._init_() __lowercase = StableDiffusionPipeline.from_pretrained(lowerCamelCase ) __lowercase = StableDiffusionPipeline.from_pretrained(lowerCamelCase ) __lowercase = StableDiffusionPipeline.from_pretrained(lowerCamelCase ) __lowercase = StableDiffusionPipeline( vae=lowerCamelCase , text_encoder=lowerCamelCase , tokenizer=lowerCamelCase , unet=lowerCamelCase , scheduler=lowerCamelCase , safety_checker=lowerCamelCase , feature_extractor=lowerCamelCase , requires_safety_checker=lowerCamelCase , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return {k: getattr(self , lowerCamelCase ) for k in self.config.keys() if not k.startswith("_" )} def _snake_case ( self : Optional[Any] , lowerCamelCase : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase ) def _snake_case ( self : Tuple ): '''simple docstring''' self.enable_attention_slicing(lowerCamelCase ) @torch.no_grad() def _snake_case ( self : Union[str, Any] , lowerCamelCase : Union[str, List[str]] , lowerCamelCase : int = 512 , lowerCamelCase : int = 512 , lowerCamelCase : int = 50 , lowerCamelCase : float = 7.5 , lowerCamelCase : Optional[Union[str, List[str]]] = None , lowerCamelCase : Optional[int] = 1 , lowerCamelCase : float = 0.0 , lowerCamelCase : Optional[torch.Generator] = None , lowerCamelCase : Optional[torch.FloatTensor] = None , lowerCamelCase : Optional[str] = "pil" , lowerCamelCase : bool = True , lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase : int = 1 , **lowerCamelCase : Tuple , ): '''simple docstring''' return self.pipea( prompt=lowerCamelCase , height=lowerCamelCase , width=lowerCamelCase , num_inference_steps=lowerCamelCase , guidance_scale=lowerCamelCase , negative_prompt=lowerCamelCase , num_images_per_prompt=lowerCamelCase , eta=lowerCamelCase , generator=lowerCamelCase , latents=lowerCamelCase , output_type=lowerCamelCase , return_dict=lowerCamelCase , callback=lowerCamelCase , callback_steps=lowerCamelCase , **lowerCamelCase , ) @torch.no_grad() def _snake_case ( self : int , lowerCamelCase : Union[str, List[str]] , lowerCamelCase : int = 512 , lowerCamelCase : int = 512 , lowerCamelCase : int = 50 , lowerCamelCase : float = 7.5 , lowerCamelCase : Optional[Union[str, List[str]]] = None , lowerCamelCase : Optional[int] = 1 , lowerCamelCase : float = 0.0 , lowerCamelCase : Optional[torch.Generator] = None , lowerCamelCase : Optional[torch.FloatTensor] = None , lowerCamelCase : Optional[str] = "pil" , lowerCamelCase : bool = True , lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase : int = 1 , **lowerCamelCase : Any , ): '''simple docstring''' return self.pipea( prompt=lowerCamelCase , height=lowerCamelCase , width=lowerCamelCase , num_inference_steps=lowerCamelCase , guidance_scale=lowerCamelCase , negative_prompt=lowerCamelCase , num_images_per_prompt=lowerCamelCase , eta=lowerCamelCase , generator=lowerCamelCase , latents=lowerCamelCase , output_type=lowerCamelCase , return_dict=lowerCamelCase , callback=lowerCamelCase , callback_steps=lowerCamelCase , **lowerCamelCase , ) @torch.no_grad() def _snake_case ( self : List[Any] , lowerCamelCase : Union[str, List[str]] , lowerCamelCase : int = 512 , lowerCamelCase : int = 512 , lowerCamelCase : int = 50 , lowerCamelCase : float = 7.5 , lowerCamelCase : Optional[Union[str, List[str]]] = None , lowerCamelCase : Optional[int] = 1 , lowerCamelCase : float = 0.0 , lowerCamelCase : Optional[torch.Generator] = None , lowerCamelCase : Optional[torch.FloatTensor] = None , lowerCamelCase : Optional[str] = "pil" , lowerCamelCase : bool = True , lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase : int = 1 , **lowerCamelCase : Union[str, Any] , ): '''simple docstring''' return self.pipea( prompt=lowerCamelCase , height=lowerCamelCase , width=lowerCamelCase , num_inference_steps=lowerCamelCase , guidance_scale=lowerCamelCase , negative_prompt=lowerCamelCase , num_images_per_prompt=lowerCamelCase , eta=lowerCamelCase , generator=lowerCamelCase , latents=lowerCamelCase , output_type=lowerCamelCase , return_dict=lowerCamelCase , callback=lowerCamelCase , callback_steps=lowerCamelCase , **lowerCamelCase , ) @torch.no_grad() def _snake_case ( self : Any , lowerCamelCase : Union[str, List[str]] , lowerCamelCase : int = 512 , lowerCamelCase : int = 512 , lowerCamelCase : int = 50 , lowerCamelCase : float = 7.5 , lowerCamelCase : Optional[Union[str, List[str]]] = None , lowerCamelCase : Optional[int] = 1 , lowerCamelCase : float = 0.0 , lowerCamelCase : Optional[torch.Generator] = None , lowerCamelCase : Optional[torch.FloatTensor] = None , lowerCamelCase : Optional[str] = "pil" , lowerCamelCase : bool = True , lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase : int = 1 , **lowerCamelCase : Optional[Any] , ): '''simple docstring''' return self.pipea( prompt=lowerCamelCase , height=lowerCamelCase , width=lowerCamelCase , num_inference_steps=lowerCamelCase , guidance_scale=lowerCamelCase , negative_prompt=lowerCamelCase , num_images_per_prompt=lowerCamelCase , eta=lowerCamelCase , generator=lowerCamelCase , latents=lowerCamelCase , output_type=lowerCamelCase , return_dict=lowerCamelCase , callback=lowerCamelCase , callback_steps=lowerCamelCase , **lowerCamelCase , ) @torch.no_grad() def _snake_case ( self : Optional[Any] , lowerCamelCase : Union[str, List[str]] , lowerCamelCase : int = 512 , lowerCamelCase : int = 512 , lowerCamelCase : int = 50 , lowerCamelCase : float = 7.5 , lowerCamelCase : Optional[Union[str, List[str]]] = None , lowerCamelCase : Optional[int] = 1 , lowerCamelCase : float = 0.0 , lowerCamelCase : Optional[torch.Generator] = None , lowerCamelCase : Optional[torch.FloatTensor] = None , lowerCamelCase : Optional[str] = "pil" , lowerCamelCase : bool = True , lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase : int = 1 , **lowerCamelCase : Optional[Any] , ): '''simple docstring''' __lowercase = "cuda" if torch.cuda.is_available() else "cpu" self.to(lowerCamelCase ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 __lowercase = self.textaimg_sda_a( prompt=lowerCamelCase , height=lowerCamelCase , width=lowerCamelCase , num_inference_steps=lowerCamelCase , guidance_scale=lowerCamelCase , negative_prompt=lowerCamelCase , num_images_per_prompt=lowerCamelCase , eta=lowerCamelCase , generator=lowerCamelCase , latents=lowerCamelCase , output_type=lowerCamelCase , return_dict=lowerCamelCase , callback=lowerCamelCase , callback_steps=lowerCamelCase , **lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.2 __lowercase = self.textaimg_sda_a( prompt=lowerCamelCase , height=lowerCamelCase , width=lowerCamelCase , num_inference_steps=lowerCamelCase , guidance_scale=lowerCamelCase , negative_prompt=lowerCamelCase , num_images_per_prompt=lowerCamelCase , eta=lowerCamelCase , generator=lowerCamelCase , latents=lowerCamelCase , output_type=lowerCamelCase , return_dict=lowerCamelCase , callback=lowerCamelCase , callback_steps=lowerCamelCase , **lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.3 __lowercase = self.textaimg_sda_a( prompt=lowerCamelCase , height=lowerCamelCase , width=lowerCamelCase , num_inference_steps=lowerCamelCase , guidance_scale=lowerCamelCase , negative_prompt=lowerCamelCase , num_images_per_prompt=lowerCamelCase , eta=lowerCamelCase , generator=lowerCamelCase , latents=lowerCamelCase , output_type=lowerCamelCase , return_dict=lowerCamelCase , callback=lowerCamelCase , callback_steps=lowerCamelCase , **lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.4 __lowercase = self.textaimg_sda_a( prompt=lowerCamelCase , height=lowerCamelCase , width=lowerCamelCase , num_inference_steps=lowerCamelCase , guidance_scale=lowerCamelCase , negative_prompt=lowerCamelCase , num_images_per_prompt=lowerCamelCase , eta=lowerCamelCase , generator=lowerCamelCase , latents=lowerCamelCase , output_type=lowerCamelCase , return_dict=lowerCamelCase , callback=lowerCamelCase , callback_steps=lowerCamelCase , **lowerCamelCase , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
655
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ : Any = logging.get_logger(__name__) class _A ( _lowercase , _lowercase ): '''simple docstring''' _snake_case : Dict = """maskformer-swin""" _snake_case : List[str] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : List[str] , lowerCamelCase : Any=224 , lowerCamelCase : Optional[Any]=4 , lowerCamelCase : Dict=3 , lowerCamelCase : Tuple=96 , lowerCamelCase : str=[2, 2, 6, 2] , lowerCamelCase : Dict=[3, 6, 12, 24] , lowerCamelCase : Optional[Any]=7 , lowerCamelCase : Any=4.0 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : List[str]=0.0 , lowerCamelCase : Optional[int]=0.0 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : int="gelu" , lowerCamelCase : Optional[int]=False , lowerCamelCase : List[Any]=0.02 , lowerCamelCase : Tuple=1e-5 , lowerCamelCase : Dict=None , lowerCamelCase : Dict=None , **lowerCamelCase : int , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = embed_dim __lowercase = depths __lowercase = len(lowerCamelCase ) __lowercase = num_heads __lowercase = window_size __lowercase = mlp_ratio __lowercase = qkv_bias __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = drop_path_rate __lowercase = hidden_act __lowercase = use_absolute_embeddings __lowercase = layer_norm_eps __lowercase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowercase = int(embed_dim * 2 ** (len(lowerCamelCase ) - 1) ) __lowercase = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase ) + 1 )] __lowercase , __lowercase = get_aligned_output_features_output_indices( out_features=lowerCamelCase , out_indices=lowerCamelCase , stage_names=self.stage_names )
655
1
def A_ ( _UpperCAmelCase , _UpperCAmelCase ): if digit_amount > 0: return round(number - int(_UpperCAmelCase ) , _UpperCAmelCase ) return number - int(_UpperCAmelCase ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
671
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase : Optional[int] = { """configuration_longformer""": [ """LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongformerConfig""", """LongformerOnnxConfig""", ], """tokenization_longformer""": ["""LongformerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] = ["""LongformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Union[str, Any] = [ """LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """LongformerForMaskedLM""", """LongformerForMultipleChoice""", """LongformerForQuestionAnswering""", """LongformerForSequenceClassification""", """LongformerForTokenClassification""", """LongformerModel""", """LongformerPreTrainedModel""", """LongformerSelfAttention""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int = [ """TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFLongformerForMaskedLM""", """TFLongformerForMultipleChoice""", """TFLongformerForQuestionAnswering""", """TFLongformerForSequenceClassification""", """TFLongformerForTokenClassification""", """TFLongformerModel""", """TFLongformerPreTrainedModel""", """TFLongformerSelfAttention""", ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
671
1
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): a_ : Tuple = True from torch.cuda.amp import autocast a_ : int = logging.getLogger(__name__) def __lowerCAmelCase ( _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : int=None ) -> str: '''simple docstring''' return field(default_factory=lambda: default , metadata=_UpperCamelCase ) @dataclass class UpperCamelCase : __UpperCamelCase =field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __UpperCamelCase =field( default=SCREAMING_SNAKE_CASE , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __UpperCamelCase =field( default=SCREAMING_SNAKE_CASE , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) __UpperCamelCase =field( default=0.1 , metadata={"help": "The dropout ratio for the attention probabilities."} ) __UpperCamelCase =field( default=0.1 , metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) __UpperCamelCase =field( default=0.1 , metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." } , ) __UpperCamelCase =field( default=0.1 , metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."} , ) __UpperCamelCase =field( default=0.05 , metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) } , ) __UpperCamelCase =field(default=0.0 , metadata={"help": "The LayerDrop probability."} ) @dataclass class UpperCamelCase : __UpperCamelCase =field( default=SCREAMING_SNAKE_CASE , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) __UpperCamelCase =field( default="train+validation" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) __UpperCamelCase =field( default=SCREAMING_SNAKE_CASE , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) __UpperCamelCase =field( default=SCREAMING_SNAKE_CASE , metadata={"help": "The number of processes to use for the preprocessing."} , ) __UpperCamelCase =field( default=SCREAMING_SNAKE_CASE , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __UpperCamelCase =field( default=SCREAMING_SNAKE_CASE , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) } , ) __UpperCamelCase =list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"] , metadata={"help": "A list of characters to remove from the transcripts."} , ) @dataclass class UpperCamelCase : __UpperCamelCase =42 __UpperCamelCase =True __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None def __call__( self : Optional[Any] , snake_case__ : List[Dict[str, Union[List[int], torch.Tensor]]] ): """simple docstring""" SCREAMING_SNAKE_CASE = [{'input_values': feature['input_values']} for feature in features] SCREAMING_SNAKE_CASE = [{'input_ids': feature['labels']} for feature in features] SCREAMING_SNAKE_CASE = self.processor.pad( snake_case__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) SCREAMING_SNAKE_CASE = self.processor.pad( labels=snake_case__ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='pt' , ) # replace padding with -100 to ignore loss correctly SCREAMING_SNAKE_CASE = labels_batch['input_ids'].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_0_0 ) SCREAMING_SNAKE_CASE = labels return batch class UpperCamelCase ( SCREAMING_SNAKE_CASE ): def UpperCamelCase ( self : List[str] , snake_case__ : nn.Module , snake_case__ : Dict[str, Union[torch.Tensor, Any]] ): """simple docstring""" model.train() SCREAMING_SNAKE_CASE = self._prepare_inputs(snake_case__ ) if self.use_amp: with autocast(): SCREAMING_SNAKE_CASE = self.compute_loss(snake_case__ , snake_case__ ) else: SCREAMING_SNAKE_CASE = self.compute_loss(snake_case__ , snake_case__ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": SCREAMING_SNAKE_CASE = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": SCREAMING_SNAKE_CASE = loss.sum() / (inputs['labels'] >= 0).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: SCREAMING_SNAKE_CASE = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(snake_case__ ).backward() elif self.use_apex: with amp.scale_loss(snake_case__ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(snake_case__ ) else: loss.backward() return loss.detach() def __lowerCAmelCase ( ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() # Detecting last checkpoint. SCREAMING_SNAKE_CASE = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , _UpperCamelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: SCREAMING_SNAKE_CASE = datasets.load_dataset( 'common_voice' , data_args.dataset_config_name , split=data_args.train_split_name ) SCREAMING_SNAKE_CASE = datasets.load_dataset('common_voice' , data_args.dataset_config_name , split='test' ) # Create and save tokenizer SCREAMING_SNAKE_CASE = f"""[{''.join(data_args.chars_to_ignore )}]""" def remove_special_characters(_UpperCamelCase : Any ): SCREAMING_SNAKE_CASE = re.sub(_UpperCamelCase , '' , batch['sentence'] ).lower() + ' ' return batch SCREAMING_SNAKE_CASE = train_dataset.map(_UpperCamelCase , remove_columns=['sentence'] ) SCREAMING_SNAKE_CASE = eval_dataset.map(_UpperCamelCase , remove_columns=['sentence'] ) def extract_all_chars(_UpperCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = ' '.join(batch['text'] ) SCREAMING_SNAKE_CASE = list(set(_UpperCamelCase ) ) return {"vocab": [vocab], "all_text": [all_text]} SCREAMING_SNAKE_CASE = train_dataset.map( _UpperCamelCase , batched=_UpperCamelCase , batch_size=-1 , keep_in_memory=_UpperCamelCase , remove_columns=train_dataset.column_names , ) SCREAMING_SNAKE_CASE = train_dataset.map( _UpperCamelCase , batched=_UpperCamelCase , batch_size=-1 , keep_in_memory=_UpperCamelCase , remove_columns=eval_dataset.column_names , ) SCREAMING_SNAKE_CASE = list(set(vocab_train['vocab'][0] ) | set(vocab_test['vocab'][0] ) ) SCREAMING_SNAKE_CASE = {v: k for k, v in enumerate(_UpperCamelCase )} SCREAMING_SNAKE_CASE = vocab_dict[' '] del vocab_dict[" "] SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) with open('vocab.json' , 'w' ) as vocab_file: json.dump(_UpperCamelCase , _UpperCamelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE = WavaVecaCTCTokenizer( 'vocab.json' , unk_token='[UNK]' , pad_token='[PAD]' , word_delimiter_token='|' , ) SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0.0 , do_normalize=_UpperCamelCase , return_attention_mask=_UpperCamelCase ) SCREAMING_SNAKE_CASE = WavaVecaProcessor(feature_extractor=_UpperCamelCase , tokenizer=_UpperCamelCase ) SCREAMING_SNAKE_CASE = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='mean' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE = min(len(_UpperCamelCase ) , data_args.max_train_samples ) SCREAMING_SNAKE_CASE = train_dataset.select(range(_UpperCamelCase ) ) if data_args.max_val_samples is not None: SCREAMING_SNAKE_CASE = eval_dataset.select(range(data_args.max_val_samples ) ) SCREAMING_SNAKE_CASE = torchaudio.transforms.Resample(4_80_00 , 1_60_00 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(_UpperCamelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = torchaudio.load(batch['path'] ) SCREAMING_SNAKE_CASE = resampler(_UpperCamelCase ).squeeze().numpy() SCREAMING_SNAKE_CASE = 1_60_00 SCREAMING_SNAKE_CASE = batch['text'] return batch SCREAMING_SNAKE_CASE = train_dataset.map( _UpperCamelCase , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) SCREAMING_SNAKE_CASE = eval_dataset.map( _UpperCamelCase , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(_UpperCamelCase : Union[str, Any] ): # check that all files have the correct sampling rate assert ( len(set(batch['sampling_rate'] ) ) == 1 ), f"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" SCREAMING_SNAKE_CASE = processor( audio=batch['speech'] , text=batch['target_text'] , sampling_rate=batch['sampling_rate'][0] ) batch.update(_UpperCamelCase ) return batch SCREAMING_SNAKE_CASE = train_dataset.map( _UpperCamelCase , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=_UpperCamelCase , num_proc=data_args.preprocessing_num_workers , ) SCREAMING_SNAKE_CASE = eval_dataset.map( _UpperCamelCase , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=_UpperCamelCase , num_proc=data_args.preprocessing_num_workers , ) # Metric SCREAMING_SNAKE_CASE = datasets.load_metric('wer' ) def compute_metrics(_UpperCamelCase : Dict ): SCREAMING_SNAKE_CASE = pred.predictions SCREAMING_SNAKE_CASE = np.argmax(_UpperCamelCase , axis=-1 ) SCREAMING_SNAKE_CASE = processor.tokenizer.pad_token_id SCREAMING_SNAKE_CASE = processor.batch_decode(_UpperCamelCase ) # we do not want to group tokens when computing the metrics SCREAMING_SNAKE_CASE = processor.batch_decode(pred.label_ids , group_tokens=_UpperCamelCase ) SCREAMING_SNAKE_CASE = wer_metric.compute(predictions=_UpperCamelCase , references=_UpperCamelCase ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator SCREAMING_SNAKE_CASE = DataCollatorCTCWithPadding(processor=_UpperCamelCase , padding=_UpperCamelCase ) # Initialize our Trainer SCREAMING_SNAKE_CASE = CTCTrainer( model=_UpperCamelCase , data_collator=_UpperCamelCase , args=_UpperCamelCase , compute_metrics=_UpperCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: SCREAMING_SNAKE_CASE = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): SCREAMING_SNAKE_CASE = model_args.model_name_or_path else: SCREAMING_SNAKE_CASE = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) SCREAMING_SNAKE_CASE = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() SCREAMING_SNAKE_CASE = train_result.metrics SCREAMING_SNAKE_CASE = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = min(_UpperCamelCase , len(_UpperCamelCase ) ) trainer.log_metrics('train' , _UpperCamelCase ) trainer.save_metrics('train' , _UpperCamelCase ) trainer.save_state() # Evaluation SCREAMING_SNAKE_CASE = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) SCREAMING_SNAKE_CASE = trainer.evaluate() SCREAMING_SNAKE_CASE = data_args.max_val_samples if data_args.max_val_samples is not None else len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = min(_UpperCamelCase , len(_UpperCamelCase ) ) trainer.log_metrics('eval' , _UpperCamelCase ) trainer.save_metrics('eval' , _UpperCamelCase ) return results if __name__ == "__main__": main()
673
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="facebook/bart-large-mnli" __UpperCamelCase =( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) __UpperCamelCase ="text_classifier" __UpperCamelCase =AutoTokenizer __UpperCamelCase =AutoModelForSequenceClassification __UpperCamelCase =["text", ["text"]] __UpperCamelCase =["text"] def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" super().setup() SCREAMING_SNAKE_CASE = self.model.config SCREAMING_SNAKE_CASE = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail' ): SCREAMING_SNAKE_CASE = int(snake_case__ ) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' ) def UpperCamelCase ( self : Optional[Any] , snake_case__ : List[str] , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = labels return self.pre_processor( [text] * len(snake_case__ ) , [F"""This example is {label}""" for label in labels] , return_tensors='pt' , padding='max_length' , ) def UpperCamelCase ( self : Dict , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = outputs.logits SCREAMING_SNAKE_CASE = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
673
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase__ : Dict = logging.get_logger(__name__) UpperCamelCase__ : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase__ : Optional[Any] = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } UpperCamelCase__ : Optional[Any] = { "gpt-neox-20b": 2_048, } class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] def __init__( self , A__=None , A__=None , A__=None , A__="<|endoftext|>" , A__="<|endoftext|>" , A__="<|endoftext|>" , A__=False , **A__ , ) -> Any: super().__init__( A__ , A__ , tokenizer_file=A__ , unk_token=A__ , bos_token=A__ , eos_token=A__ , add_prefix_space=A__ , **A__ , ) _SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , A__ ) != add_prefix_space: _SCREAMING_SNAKE_CASE = getattr(A__ , pre_tok_state.pop("""type""" ) ) _SCREAMING_SNAKE_CASE = add_prefix_space _SCREAMING_SNAKE_CASE = pre_tok_class(**A__ ) _SCREAMING_SNAKE_CASE = add_prefix_space def UpperCamelCase ( self , A__ , A__ = None ) -> Tuple[str]: _SCREAMING_SNAKE_CASE = self._tokenizer.model.save(A__ , name=A__ ) return tuple(A__ ) def UpperCamelCase ( self , A__ ) -> List[int]: _SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(A__ , add_special_tokens=A__ ) + [self.eos_token_id] ) if len(A__ ) > self.model_max_length: _SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] return input_ids
591
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class _a : """simple docstring""" def __init__( self , A__ , A__=2 , A__=32 , A__=16 , A__=3 , A__=True , A__=True , A__=32 , A__=4 , A__=[0, 1, 2, 3] , A__=4 , A__=37 , A__="gelu" , A__=0.1 , A__=0.1 , A__=0.02 , A__=3 , A__=[1, 3_84, 24, 24] , A__=True , A__=None , ) -> int: _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = image_size _SCREAMING_SNAKE_CASE = patch_size _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = backbone_out_indices _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = backbone_featmap_shape _SCREAMING_SNAKE_CASE = scope _SCREAMING_SNAKE_CASE = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) _SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2 _SCREAMING_SNAKE_CASE = num_patches + 1 def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [96, 1_92, 3_84, 7_68], """num_groups""": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A__ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=A__ , backbone_featmap_shape=self.backbone_featmap_shape , ) def UpperCamelCase ( self , A__ , A__ , A__ ) -> Tuple: _SCREAMING_SNAKE_CASE = DPTModel(config=A__ ) model.to(A__ ) model.eval() _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self , A__ , A__ , A__ ) -> List[str]: _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = DPTForDepthEstimation(A__ ) model.to(A__ ) model.eval() _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def UpperCamelCase ( self , A__ , A__ , A__ ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = DPTForSemanticSegmentation(A__ ) model.to(A__ ) model.eval() _SCREAMING_SNAKE_CASE = model(A__ , labels=A__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def UpperCamelCase ( self ) -> int: _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = config_and_inputs _SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _a (_lowerCamelCase , _lowerCamelCase , unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () SCREAMING_SNAKE_CASE = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = DPTModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=A__ , has_text_modality=A__ , hidden_size=37 ) def UpperCamelCase ( self ) -> str: self.config_tester.run_common_tests() @unittest.skip(reason="""DPT does not use inputs_embeds""" ) def UpperCamelCase ( self ) -> List[str]: pass def UpperCamelCase ( self ) -> Dict: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class(A__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A__ , nn.Linear ) ) def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class(A__ ) _SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] _SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A__ ) def UpperCamelCase ( self ) -> int: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*A__ ) def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A__ ) def UpperCamelCase ( self ) -> Union[str, Any]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE = True if model_class in get_values(A__ ): continue _SCREAMING_SNAKE_CASE = model_class(A__ ) model.to(A__ ) model.train() _SCREAMING_SNAKE_CASE = self._prepare_for_class(A__ , A__ , return_labels=A__ ) _SCREAMING_SNAKE_CASE = model(**A__ ).loss loss.backward() def UpperCamelCase ( self ) -> Union[str, Any]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = True if model_class in get_values(A__ ) or not model_class.supports_gradient_checkpointing: continue _SCREAMING_SNAKE_CASE = model_class(A__ ) model.to(A__ ) model.gradient_checkpointing_enable() model.train() _SCREAMING_SNAKE_CASE = self._prepare_for_class(A__ , A__ , return_labels=A__ ) _SCREAMING_SNAKE_CASE = model(**A__ ).loss loss.backward() def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE = _config_zero_init(A__ ) for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class(config=A__ ) # Skip the check for the backbone _SCREAMING_SNAKE_CASE = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": _SCREAMING_SNAKE_CASE = [F"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase ( self ) -> Any: pass @slow def UpperCamelCase ( self ) -> List[Any]: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: _SCREAMING_SNAKE_CASE = DPTModel.from_pretrained(A__ ) self.assertIsNotNone(A__ ) def UpperCamelCase ( self ) -> List[Any]: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE = """add""" with self.assertRaises(A__ ): _SCREAMING_SNAKE_CASE = DPTForDepthEstimation(A__ ) def lowerCAmelCase_ ( ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision @slow class _a (unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" ) _SCREAMING_SNAKE_CASE = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(A__ ) _SCREAMING_SNAKE_CASE = prepare_img() _SCREAMING_SNAKE_CASE = image_processor(images=A__ , return_tensors="""pt""" ).to(A__ ) # forward pass with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(**A__ ) _SCREAMING_SNAKE_CASE = outputs.predicted_depth # verify the predicted depth _SCREAMING_SNAKE_CASE = torch.Size((1, 3_84, 3_84) ) self.assertEqual(predicted_depth.shape , A__ ) _SCREAMING_SNAKE_CASE = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(A__ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_00 , A__ , atol=1E-4 ) )
591
1
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase( lowerCAmelCase__ ): __snake_case : List[str] = ['image_processor', 'tokenizer'] __snake_case : Optional[int] = 'Pix2StructImageProcessor' __snake_case : Optional[int] = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Optional[Any] = False super().__init__(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __call__( self : Tuple , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : Union[bool, str, PaddingStrategy] = False , SCREAMING_SNAKE_CASE : Union[bool, str, TruncationStrategy] = None , SCREAMING_SNAKE_CASE : Optional[int] = None , SCREAMING_SNAKE_CASE : Optional[int] = 2_048 , SCREAMING_SNAKE_CASE : int = 0 , SCREAMING_SNAKE_CASE : Optional[int] = None , SCREAMING_SNAKE_CASE : Optional[bool] = None , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , **SCREAMING_SNAKE_CASE : str , ): """simple docstring""" if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None and not self.image_processor.is_vqa: SCREAMING_SNAKE_CASE_ :Union[str, Any] = self.tokenizer SCREAMING_SNAKE_CASE_ :Tuple = self.tokenizer( text=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , stride=SCREAMING_SNAKE_CASE , pad_to_multiple_of=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , return_overflowing_tokens=SCREAMING_SNAKE_CASE , return_special_tokens_mask=SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , return_token_type_ids=SCREAMING_SNAKE_CASE , return_length=SCREAMING_SNAKE_CASE , verbose=SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values SCREAMING_SNAKE_CASE_ :Any = self.image_processor( SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , max_patches=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) else: # add pixel_values and bbox SCREAMING_SNAKE_CASE_ :Union[str, Any] = self.image_processor( SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , max_patches=SCREAMING_SNAKE_CASE , header_text=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if text is not None and not self.image_processor.is_vqa: SCREAMING_SNAKE_CASE_ :Any = self.tokenizer( text=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , stride=SCREAMING_SNAKE_CASE , pad_to_multiple_of=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , return_overflowing_tokens=SCREAMING_SNAKE_CASE , return_special_tokens_mask=SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , return_token_type_ids=SCREAMING_SNAKE_CASE , return_length=SCREAMING_SNAKE_CASE , verbose=SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) if "attention_mask" in text_encoding: SCREAMING_SNAKE_CASE_ :List[Any] = text_encoding.pop('attention_mask' ) if "input_ids" in text_encoding: SCREAMING_SNAKE_CASE_ :Any = text_encoding.pop('input_ids' ) else: SCREAMING_SNAKE_CASE_ :Any = None if text_encoding is not None: encoding_image_processor.update(SCREAMING_SNAKE_CASE ) return encoding_image_processor def _lowercase ( self : Tuple , *SCREAMING_SNAKE_CASE : Optional[int] , **SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def _lowercase ( self : Tuple , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" return self.tokenizer.decode(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) @property def _lowercase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Tuple = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE_ :Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
233
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests SCREAMING_SNAKE_CASE__ : Any = """https://api.github.com""" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user SCREAMING_SNAKE_CASE__ : int = BASE_URL + """/user""" # https://github.com/settings/tokens SCREAMING_SNAKE_CASE__ : Union[str, Any] = os.environ.get("""USER_TOKEN""", """""") def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ :Dict = { 'Authorization': F'token {auth_token}', 'Accept': 'application/vnd.github.v3+json', } return requests.get(SCREAMING_SNAKE_CASE , headers=SCREAMING_SNAKE_CASE ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f"""{key}: {value}""") else: raise ValueError("""'USER_TOKEN' field cannot be empty.""")
233
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Optional[Any] = logging.get_logger(__name__) A_ : Optional[Any] = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Dict ='''distilbert''' a : List[str] ={ '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self , _lowerCamelCase=3_0_5_2_2 , _lowerCamelCase=5_1_2 , _lowerCamelCase=False , _lowerCamelCase=6 , _lowerCamelCase=1_2 , _lowerCamelCase=7_6_8 , _lowerCamelCase=4 * 7_6_8 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=0.0_2 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2 , _lowerCamelCase=0 , **_lowerCamelCase , ): UpperCamelCase_: Tuple = vocab_size UpperCamelCase_: str = max_position_embeddings UpperCamelCase_: Optional[int] = sinusoidal_pos_embds UpperCamelCase_: Union[str, Any] = n_layers UpperCamelCase_: Optional[int] = n_heads UpperCamelCase_: int = dim UpperCamelCase_: Tuple = hidden_dim UpperCamelCase_: Any = dropout UpperCamelCase_: Optional[Any] = attention_dropout UpperCamelCase_: List[str] = activation UpperCamelCase_: Optional[Any] = initializer_range UpperCamelCase_: Optional[Any] = qa_dropout UpperCamelCase_: List[str] = seq_classif_dropout super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase ) class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" @property def _a ( self ): if self.task == "multiple-choice": UpperCamelCase_: Any = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase_: List[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
57
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch _snake_case = random.Random() def __snake_case ( SCREAMING_SNAKE_CASE: str , SCREAMING_SNAKE_CASE: List[Any]=1.0 , SCREAMING_SNAKE_CASE: Any=None , SCREAMING_SNAKE_CASE: Any=None ): """simple docstring""" if rng is None: _lowerCAmelCase = global_rng _lowerCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any=7 , UpperCAmelCase_ : Optional[int]=400 , UpperCAmelCase_ : List[str]=2_000 , UpperCAmelCase_ : List[Any]=10 , UpperCAmelCase_ : Optional[Any]=160 , UpperCAmelCase_ : List[str]=8 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : str=4_000 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Tuple=True , ) -> List[str]: """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = min_seq_length _lowerCAmelCase = max_seq_length _lowerCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _lowerCAmelCase = padding_value _lowerCAmelCase = sampling_rate _lowerCAmelCase = return_attention_mask _lowerCAmelCase = do_normalize _lowerCAmelCase = feature_size _lowerCAmelCase = chunk_length _lowerCAmelCase = hop_length def __lowerCamelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __lowerCamelCase ( self : int , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : str=False ) -> Union[str, Any]: """simple docstring""" def _flatten(UpperCAmelCase_ : Optional[Any] ): return list(itertools.chain(*UpperCAmelCase_ ) ) if equal_length: _lowerCAmelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _lowerCAmelCase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _lowerCAmelCase = [np.asarray(UpperCAmelCase_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _SCREAMING_SNAKE_CASE ( UpperCAmelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] = WhisperFeatureExtractor if is_speech_available() else None def __lowerCamelCase ( self : Any ) -> Any: """simple docstring""" _lowerCAmelCase = WhisperFeatureExtractionTester(self ) def __lowerCamelCase ( self : int ) -> int: """simple docstring""" _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase = feat_extract_first.save_pretrained(UpperCAmelCase_ )[0] check_json_file_has_correct_format(UpperCAmelCase_ ) _lowerCAmelCase = self.feature_extraction_class.from_pretrained(UpperCAmelCase_ ) _lowerCAmelCase = feat_extract_first.to_dict() _lowerCAmelCase = feat_extract_second.to_dict() _lowerCAmelCase = feat_extract_first.mel_filters _lowerCAmelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ ) ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def __lowerCamelCase ( self : str ) -> Optional[int]: """simple docstring""" _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase = os.path.join(UpperCAmelCase_ , 'feat_extract.json' ) feat_extract_first.to_json_file(UpperCAmelCase_ ) _lowerCAmelCase = self.feature_extraction_class.from_json_file(UpperCAmelCase_ ) _lowerCAmelCase = feat_extract_first.to_dict() _lowerCAmelCase = feat_extract_second.to_dict() _lowerCAmelCase = feat_extract_first.mel_filters _lowerCAmelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ ) ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def __lowerCamelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _lowerCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] _lowerCAmelCase = [np.asarray(UpperCAmelCase_ ) for speech_input in speech_inputs] # Test feature size _lowerCAmelCase = feature_extractor(UpperCAmelCase_ , padding='max_length' , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _lowerCAmelCase = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features _lowerCAmelCase = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) ) # Test batched _lowerCAmelCase = feature_extractor(UpperCAmelCase_ , return_tensors='np' ).input_features _lowerCAmelCase = feature_extractor(UpperCAmelCase_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. _lowerCAmelCase = [floats_list((1, x) )[0] for x in (800, 800, 800)] _lowerCAmelCase = np.asarray(UpperCAmelCase_ ) _lowerCAmelCase = feature_extractor(UpperCAmelCase_ , return_tensors='np' ).input_features _lowerCAmelCase = feature_extractor(UpperCAmelCase_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) ) # Test truncation required _lowerCAmelCase = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] _lowerCAmelCase = [np.asarray(UpperCAmelCase_ ) for speech_input in speech_inputs] _lowerCAmelCase = [x[: feature_extractor.n_samples] for x in speech_inputs] _lowerCAmelCase = [np.asarray(UpperCAmelCase_ ) for speech_input in speech_inputs_truncated] _lowerCAmelCase = feature_extractor(UpperCAmelCase_ , return_tensors='np' ).input_features _lowerCAmelCase = feature_extractor(UpperCAmelCase_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) ) def __lowerCamelCase ( self : int ) -> str: """simple docstring""" import torch _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase = np.random.rand(100 , 32 ).astype(np.floataa ) _lowerCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _lowerCAmelCase = feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _lowerCAmelCase = feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def __lowerCamelCase ( self : List[str] , UpperCAmelCase_ : Any ) -> Dict: """simple docstring""" _lowerCAmelCase = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech _lowerCAmelCase = ds.sort('id' ).select(range(UpperCAmelCase_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def __lowerCamelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on _lowerCAmelCase = self._load_datasamples(1 ) _lowerCAmelCase = WhisperFeatureExtractor() _lowerCAmelCase = feature_extractor(UpperCAmelCase_ , return_tensors='pt' ).input_features self.assertEqual(input_features.shape , (1, 80, 3_000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , UpperCAmelCase_ , atol=1E-4 ) ) def __lowerCamelCase ( self : Tuple ) -> int: """simple docstring""" _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase = self._load_datasamples(1 )[0] _lowerCAmelCase = ((audio - audio.min()) / (audio.max() - audio.min())) * 65_535 # Rescale to [0, 65535] to show issue _lowerCAmelCase = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=UpperCAmelCase_ )[0] self.assertTrue(np.all(np.mean(UpperCAmelCase_ ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(UpperCAmelCase_ ) - 1 ) < 1E-3 ) )
580
0
"""simple docstring""" from pathlib import Path import fire from tqdm import tqdm def __lowerCAmelCase( __UpperCAmelCase="ro" ,__UpperCAmelCase="en" ,__UpperCAmelCase="wmt16" ,__UpperCAmelCase=None ): """simple docstring""" try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('run pip install datasets' ) _lowercase : Optional[int] = F'''{src_lang}-{tgt_lang}''' print(F'''Converting {dataset}-{pair}''' ) _lowercase : str = datasets.load_dataset(__UpperCAmelCase ,__UpperCAmelCase ) if save_dir is None: _lowercase : List[str] = F'''{dataset}-{pair}''' _lowercase : List[str] = Path(__UpperCAmelCase ) save_dir.mkdir(exist_ok=__UpperCAmelCase ) for split in ds.keys(): print(F'''Splitting {split} with {ds[split].num_rows} records''' ) # to save to val.source, val.target like summary datasets _lowercase : int = 'val' if split == 'validation' else split _lowercase : Union[str, Any] = save_dir.joinpath(F'''{fn}.source''' ) _lowercase : Optional[Any] = save_dir.joinpath(F'''{fn}.target''' ) _lowercase : str = src_path.open('w+' ) _lowercase : List[Any] = tgt_path.open('w+' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): _lowercase : Union[str, Any] = x['translation'] src_fp.write(ex[src_lang] + '\n' ) tgt_fp.write(ex[tgt_lang] + '\n' ) print(F'''Saved {dataset} dataset to {save_dir}''' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
283
"""simple docstring""" def __lowerCAmelCase( __UpperCAmelCase ): """simple docstring""" stooge(__UpperCAmelCase ,0 ,len(__UpperCAmelCase ) - 1 ) return arr def __lowerCAmelCase( __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ): """simple docstring""" if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: _lowercase , _lowercase : List[str] = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: _lowercase : Optional[int] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(__UpperCAmelCase ,__UpperCAmelCase ,(h - t) ) # Recursively sort last 2/3 elements stooge(__UpperCAmelCase ,i + t ,(__UpperCAmelCase) ) # Recursively sort first 2/3 elements stooge(__UpperCAmelCase ,__UpperCAmelCase ,(h - t) ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = input('Enter numbers separated by a comma:\n').strip() SCREAMING_SNAKE_CASE = [int(item) for item in user_input.split(',')] print(stooge_sort(unsorted))
283
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase : Tuple = logging.get_logger(__name__) def A__ ( __lowerCAmelCase : int ): lowerCamelCase__ = DPTConfig(embedding_type="""hybrid""" ) if "large" in checkpoint_url: lowerCamelCase__ = 1024 lowerCamelCase__ = 4096 lowerCamelCase__ = 24 lowerCamelCase__ = 16 lowerCamelCase__ = [5, 11, 17, 23] lowerCamelCase__ = [256, 512, 1024, 1024] lowerCamelCase__ = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: lowerCamelCase__ = 768 lowerCamelCase__ = [1, 1, 1, 0.5] lowerCamelCase__ = [256, 512, 768, 768] lowerCamelCase__ = 150 lowerCamelCase__ = 16 lowerCamelCase__ = (1, 384, 384) lowerCamelCase__ = False lowerCamelCase__ = """project""" if "ade" in checkpoint_url: lowerCamelCase__ = True lowerCamelCase__ = 768 lowerCamelCase__ = [1, 1, 1, 0.5] lowerCamelCase__ = 150 lowerCamelCase__ = 16 lowerCamelCase__ = """huggingface/label-files""" lowerCamelCase__ = """ade20k-id2label.json""" lowerCamelCase__ = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) ) , """r""" ) ) lowerCamelCase__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase__ = idalabel lowerCamelCase__ = {v: k for k, v in idalabel.items()} lowerCamelCase__ = [1, 150, 480, 480] return config, expected_shape def A__ ( __lowerCAmelCase : Optional[int] ): lowerCamelCase__ = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase : List[Any] ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowerCamelCase__ = name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: lowerCamelCase__ = name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: lowerCamelCase__ = name.replace("""patch_embed""" , """""" ) if "pos_embed" in name: lowerCamelCase__ = name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: lowerCamelCase__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: lowerCamelCase__ = name.replace("""proj""" , """projection""" ) if "blocks" in name: lowerCamelCase__ = name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: lowerCamelCase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCamelCase__ = name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name and "backbone" not in name: lowerCamelCase__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name and "backbone" not in name: lowerCamelCase__ = name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: lowerCamelCase__ = name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: lowerCamelCase__ = name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: lowerCamelCase__ = name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: lowerCamelCase__ = name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: lowerCamelCase__ = name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: lowerCamelCase__ = name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: lowerCamelCase__ = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowerCamelCase__ = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: lowerCamelCase__ = name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: lowerCamelCase__ = name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: lowerCamelCase__ = name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: lowerCamelCase__ = name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: lowerCamelCase__ = name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: lowerCamelCase__ = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: lowerCamelCase__ = name.replace("""pretrained""" , """dpt""" ) if "bn" in name: lowerCamelCase__ = name.replace("""bn""" , """batch_norm""" ) if "head" in name: lowerCamelCase__ = name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: lowerCamelCase__ = name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: lowerCamelCase__ = name.replace("""auxlayer""" , """auxiliary_head.head""" ) if "backbone" in name: lowerCamelCase__ = name.replace("""backbone""" , """backbone.bit.encoder""" ) if ".." in name: lowerCamelCase__ = name.replace("""..""" , """.""" ) if "stem.conv" in name: lowerCamelCase__ = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: lowerCamelCase__ = name.replace("""blocks""" , """layers""" ) if "convolution" in name and "backbone" in name: lowerCamelCase__ = name.replace("""convolution""" , """conv""" ) if "layer" in name and "backbone" in name: lowerCamelCase__ = name.replace("""layer""" , """layers""" ) if "backbone.bit.encoder.bit" in name: lowerCamelCase__ = name.replace("""backbone.bit.encoder.bit""" , """backbone.bit""" ) if "embedder.conv" in name: lowerCamelCase__ = name.replace("""embedder.conv""" , """embedder.convolution""" ) if "backbone.bit.encoder.stem.norm" in name: lowerCamelCase__ = name.replace("""backbone.bit.encoder.stem.norm""" , """backbone.bit.embedder.norm""" ) return name def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : int ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) lowerCamelCase__ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ = in_proj_weight[: config.hidden_size, :] lowerCamelCase__ = in_proj_bias[: config.hidden_size] lowerCamelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__ = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase__ = in_proj_bias[-config.hidden_size :] def A__ ( ): lowerCamelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCamelCase__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def A__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any ): lowerCamelCase__ , lowerCamelCase__ = get_dpt_config(__lowerCAmelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") lowerCamelCase__ = torch.load(__lowerCAmelCase , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(__lowerCAmelCase ) # rename keys for key in state_dict.copy().keys(): lowerCamelCase__ = state_dict.pop(__lowerCAmelCase ) lowerCamelCase__ = val # read in qkv matrices read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model lowerCamelCase__ = DPTForSemanticSegmentation(__lowerCAmelCase ) if """ade""" in checkpoint_url else DPTForDepthEstimation(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() # Check outputs on an image lowerCamelCase__ = 480 if """ade""" in checkpoint_url else 384 lowerCamelCase__ = DPTImageProcessor(size=__lowerCAmelCase ) lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(__lowerCAmelCase , return_tensors="""pt""" ) # forward pass lowerCamelCase__ = model(**__lowerCAmelCase ).logits if """ade""" in checkpoint_url else model(**__lowerCAmelCase ).predicted_depth if show_prediction: lowerCamelCase__ = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="""bicubic""" , align_corners=__lowerCAmelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: model.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) parser.add_argument( '--show_prediction', action='store_true', ) UpperCamelCase : List[str] = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
50
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase : Any = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : List[str] = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : List[str] = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
50
1
"""simple docstring""" lowerCamelCase = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/""" def a__ ( lowerCAmelCase__ ): # Make sure the supplied data is a bytes-like object if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = f"""a bytes-like object is required, not '{data.__class__.__name__}'""" raise TypeError(lowerCAmelCase__ ) UpperCAmelCase_ = "".join(bin(lowerCAmelCase__ )[2:].zfill(8 ) for byte in data ) UpperCAmelCase_ = len(lowerCAmelCase__ ) % 6 != 0 if padding_needed: # The padding that will be added later UpperCAmelCase_ = b"=" * ((6 - len(lowerCAmelCase__ ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(lowerCAmelCase__ ) % 6) else: UpperCAmelCase_ = b"" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(lowerCAmelCase__ ) , 6 ) ).encode() + padding ) def a__ ( lowerCAmelCase__ ): # Make sure encoded_data is either a string or a bytes-like object if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = ( "argument should be a bytes-like object or ASCII string, " f"""not '{encoded_data.__class__.__name__}'""" ) raise TypeError(lowerCAmelCase__ ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): try: UpperCAmelCase_ = encoded_data.decode("utf-8" ) except UnicodeDecodeError: raise ValueError("base64 encoded data should only contain ASCII characters" ) UpperCAmelCase_ = encoded_data.count("=" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(lowerCAmelCase__ ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one UpperCAmelCase_ = encoded_data[:-padding] UpperCAmelCase_ = "".join( bin(B64_CHARSET.index(lowerCAmelCase__ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: UpperCAmelCase_ = "".join( bin(B64_CHARSET.index(lowerCAmelCase__ ) )[2:].zfill(6 ) for char in encoded_data ) UpperCAmelCase_ = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(lowerCAmelCase__ ) , 8 ) ] return bytes(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
14
"""simple docstring""" import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right lowerCamelCase = 50_003 lowerCamelCase = 50_002 @require_sentencepiece @require_tokenizers class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = PLBartTokenizer UpperCamelCase = None UpperCamelCase = False def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="base" , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="base" , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) UpperCAmelCase_ = tokenizer.vocab_size UpperCAmelCase_ = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 4 , _UpperCAmelCase )] self.assertListEqual(_UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "<mask>"] ) UpperCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" UpperCAmelCase_ = tokenizer(_UpperCAmelCase ).input_ids self.assertEqual( tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , ) def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="multi" , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) UpperCAmelCase_ = tokenizer.vocab_size UpperCAmelCase_ = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 7 , _UpperCAmelCase )] self.assertListEqual( _UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] ) UpperCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" UpperCAmelCase_ = tokenizer(_UpperCAmelCase ).input_ids self.assertEqual( tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , ) @require_torch @require_sentencepiece @require_tokenizers class lowercase__ ( unittest.TestCase ): '''simple docstring''' UpperCamelCase = '''uclanlp/plbart-python-en_XX''' UpperCamelCase = [ '''def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])''', '''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''', ] UpperCamelCase = [ '''Returns the maximum value of a b c.''', '''Sums the values of a b c.''', ] UpperCamelCase = [ 1_34, 54_52, 3_34_60, 3_34_41, 3_34_63, 3_34_65, 3_34_63, 3_34_49, 9_88, 20, 3_34_56, 19, 3_34_56, 7_71, 39, 42_58, 8_89, 33_18, 3_34_41, 3_34_63, 3_34_65, 3_34_63, 3_34_49, 24_71, 2, PYTHON_CODE, ] @classmethod def lowercase__ ( cls : int ) -> Dict: '''simple docstring''' UpperCAmelCase_ = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" ) UpperCAmelCase_ = 1 return cls def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 50001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 50002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 50003 ) def lowercase__ ( self : int ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids ) UpperCAmelCase_ = [EN_CODE, 9037, 33442, 57, 752, 153, 14, 56, 18, 9, 2] UpperCAmelCase_ = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase ) def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 20] self.assertIsInstance(src_text[0] , _UpperCAmelCase ) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.tokenizer(_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , _UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [50004, 50001] ) def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = PLBartTokenizer.from_pretrained(_UpperCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _UpperCAmelCase ) @require_torch def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , return_tensors="pt" ) UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , _UpperCAmelCase ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowercase__ ( self : int ) -> str: '''simple docstring''' UpperCAmelCase_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) UpperCAmelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowercase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer(self.src_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=3 , return_tensors="pt" ) UpperCAmelCase_ = self.tokenizer( text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=10 , return_tensors="pt" ) UpperCAmelCase_ = targets["input_ids"] UpperCAmelCase_ = shift_tokens_right(_UpperCAmelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { # A, test, EOS, en_XX "input_ids": [[150, 242, 2, 50003]], "attention_mask": [[1, 1, 1, 1]], # java "forced_bos_token_id": 50001, } , )
14
1
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : List[Any] = { "EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = '''gptj''' lowerCAmelCase_ = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : str , __lowercase : List[Any]=5_04_00 , __lowercase : str=20_48 , __lowercase : int=40_96 , __lowercase : Union[str, Any]=28 , __lowercase : str=16 , __lowercase : Dict=64 , __lowercase : List[Any]=None , __lowercase : Tuple="gelu_new" , __lowercase : Dict=0.0 , __lowercase : str=0.0 , __lowercase : Optional[Any]=0.0 , __lowercase : Optional[Any]=1E-5 , __lowercase : Dict=0.02 , __lowercase : Any=True , __lowercase : Optional[Any]=5_02_56 , __lowercase : Tuple=5_02_56 , __lowercase : List[Any]=False , **__lowercase : List[str] , ): """simple docstring""" snake_case_ = vocab_size snake_case_ = n_positions snake_case_ = n_embd snake_case_ = n_layer snake_case_ = n_head snake_case_ = n_inner snake_case_ = rotary_dim snake_case_ = activation_function snake_case_ = resid_pdrop snake_case_ = embd_pdrop snake_case_ = attn_pdrop snake_case_ = layer_norm_epsilon snake_case_ = initializer_range snake_case_ = use_cache snake_case_ = bos_token_id snake_case_ = eos_token_id super().__init__( bos_token_id=__lowercase , eos_token_id=__lowercase , tie_word_embeddings=__lowercase , **__lowercase ) class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Tuple , __lowercase : PretrainedConfig , __lowercase : str = "default" , __lowercase : List[PatchingSpec] = None , __lowercase : bool = False , ): """simple docstring""" super().__init__(__lowercase , task=__lowercase , patching_specs=__lowercase , use_past=__lowercase ) if not getattr(self._config , "pad_token_id" , __lowercase ): # TODO: how to do that better? snake_case_ = 0 @property def snake_case__ ( self : int ): """simple docstring""" snake_case_ = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(__lowercase , direction="inputs" ) snake_case_ = {0: "batch", 1: "past_sequence + sequence"} else: snake_case_ = {0: "batch", 1: "sequence"} return common_inputs @property def snake_case__ ( self : List[Any] ): """simple docstring""" return self._config.n_layer @property def snake_case__ ( self : Optional[int] ): """simple docstring""" return self._config.n_head def snake_case__ ( self : Any , __lowercase : PreTrainedTokenizer , __lowercase : int = -1 , __lowercase : int = -1 , __lowercase : bool = False , __lowercase : Optional[TensorType] = None , ): """simple docstring""" snake_case_ = super(__lowercase , self ).generate_dummy_inputs( __lowercase , batch_size=__lowercase , seq_length=__lowercase , is_pair=__lowercase , framework=__lowercase ) # We need to order the input in the way they appears in the forward() snake_case_ = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch snake_case_ , snake_case_ = common_inputs["input_ids"].shape # Not using the same length for past_key_values snake_case_ = seqlen + 2 snake_case_ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) snake_case_ = [ (torch.zeros(__lowercase ), torch.zeros(__lowercase )) for _ in range(self.num_layers ) ] snake_case_ = common_inputs["attention_mask"] if self.use_past: snake_case_ = ordered_inputs["attention_mask"].dtype snake_case_ = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__lowercase , __lowercase , dtype=__lowercase )] , dim=1 ) return ordered_inputs @property def snake_case__ ( self : Optional[int] ): """simple docstring""" return 13
376
from __future__ import annotations from dataclasses import dataclass @dataclass class UpperCAmelCase : '''simple docstring''' lowerCAmelCase_ = 42 lowerCAmelCase_ = None lowerCAmelCase_ = None def lowerCamelCase__ ( _A ): '''simple docstring''' def is_valid_tree(_A ) -> bool: if node is None: return True if not isinstance(_A , _A ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(_A ): raise ValueError( "Each node should be type of TreeNode and data should be float." ) def is_binary_search_tree_recursive_check( _A , _A , _A ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , _A , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , _A ) ) return is_binary_search_tree_recursive_check(_A , -float("inf" ) , float("inf" ) ) if __name__ == "__main__": import doctest doctest.testmod()
376
1
'''simple docstring''' import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml A_ :str = NewType('''DataClass''', Any) A_ :List[str] = NewType('''DataClassType''', Any) def A ( a_ ) -> Dict: if isinstance(a_ ,a_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F'Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).' ) def A ( a_ ) -> Callable[[str], Any]: __UpperCamelCase : Optional[Any] ={str(a_ ): choice for choice in choices} return lambda a_ : str_to_choice.get(a_ ,a_ ) def A ( *, a_ = None ,a_ = None ,a_ = dataclasses.MISSING ,a_ = dataclasses.MISSING ,a_ = None ,**a_ ,) -> dataclasses.Field: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls __UpperCamelCase : List[Any] ={} if aliases is not None: __UpperCamelCase : Optional[int] =aliases if help is not None: __UpperCamelCase : int =help return dataclasses.field(metadata=a_ ,default=a_ ,default_factory=a_ ,**a_ ) class __A ( a ): """simple docstring""" UpperCamelCase__ : Iterable[DataClassType] def __init__( self , lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" if "formatter_class" not in kwargs: __UpperCamelCase : str =ArgumentDefaultsHelpFormatter super().__init__(**lowerCamelCase__ ) if dataclasses.is_dataclass(lowerCamelCase__ ): __UpperCamelCase : Tuple =[dataclass_types] __UpperCamelCase : Any =list(lowerCamelCase__ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(lowerCamelCase__ ) @staticmethod def __lowercase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Optional[Any] =f'--{field.name}' __UpperCamelCase : List[Any] =field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , lowerCamelCase__ ): raise RuntimeError( 'Unresolved type detected, which should have been done with the help of ' '`typing.get_type_hints` method by default' ) __UpperCamelCase : List[str] =kwargs.pop('aliases' , [] ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): __UpperCamelCase : int =[aliases] __UpperCamelCase : Union[str, Any] =getattr(field.type , '__origin__' , field.type ) if origin_type is Union or (hasattr(lowerCamelCase__ , 'UnionType' ) and isinstance(lowerCamelCase__ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(lowerCamelCase__ ) not in field.type.__args__ ): raise ValueError( 'Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because' ' the argument parser only supports one type per argument.' f' Problem encountered in field \'{field.name}\'.' ) if type(lowerCamelCase__ ) not in field.type.__args__: # filter `str` in Union __UpperCamelCase : Optional[int] =field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] __UpperCamelCase : Optional[int] =getattr(field.type , '__origin__' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) __UpperCamelCase : str =( field.type.__args__[0] if isinstance(lowerCamelCase__ , field.type.__args__[1] ) else field.type.__args__[1] ) __UpperCamelCase : Tuple =getattr(field.type , '__origin__' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) __UpperCamelCase : List[str] ={} if origin_type is Literal or (isinstance(field.type , lowerCamelCase__ ) and issubclass(field.type , lowerCamelCase__ )): if origin_type is Literal: __UpperCamelCase : Union[str, Any] =field.type.__args__ else: __UpperCamelCase : int =[x.value for x in field.type] __UpperCamelCase : str =make_choice_type_function(kwargs['choices'] ) if field.default is not dataclasses.MISSING: __UpperCamelCase : List[str] =field.default else: __UpperCamelCase : Optional[Any] =True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument __UpperCamelCase : int =copy(lowerCamelCase__ ) # Hack because type=bool in argparse does not behave as we want. __UpperCamelCase : Union[str, Any] =string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. __UpperCamelCase : Union[str, Any] =False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way __UpperCamelCase : Any =default # This tells argparse we accept 0 or 1 value after --field_name __UpperCamelCase : Union[str, Any] ='?' # This is the value that will get picked if we do --field_name (without value) __UpperCamelCase : Any =True elif isclass(lowerCamelCase__ ) and issubclass(lowerCamelCase__ , lowerCamelCase__ ): __UpperCamelCase : Any =field.type.__args__[0] __UpperCamelCase : Optional[int] ='+' if field.default_factory is not dataclasses.MISSING: __UpperCamelCase : List[str] =field.default_factory() elif field.default is dataclasses.MISSING: __UpperCamelCase : Dict =True else: __UpperCamelCase : Any =field.type if field.default is not dataclasses.MISSING: __UpperCamelCase : List[str] =field.default elif field.default_factory is not dataclasses.MISSING: __UpperCamelCase : Dict =field.default_factory() else: __UpperCamelCase : Union[str, Any] =True parser.add_argument(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): __UpperCamelCase : List[str] =False parser.add_argument(f'--no_{field.name}' , action='store_false' , dest=field.name , **lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" if hasattr(lowerCamelCase__ , '_argument_group_name' ): __UpperCamelCase : List[Any] =self.add_argument_group(dtype._argument_group_name ) else: __UpperCamelCase : Union[str, Any] =self try: __UpperCamelCase : Dict[str, type] =get_type_hints(lowerCamelCase__ ) except NameError: raise RuntimeError( f'Type resolution failed for {dtype}. Try declaring the class in global scope or ' 'removing line of `from __future__ import annotations` which opts in Postponed ' 'Evaluation of Annotations (PEP 563)' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(lowerCamelCase__ ): __UpperCamelCase : Tuple ='.'.join(map(lowerCamelCase__ , sys.version_info[:3] ) ) raise RuntimeError( f'Type resolution failed for {dtype} on Python {python_version}. Try removing ' 'line of `from __future__ import annotations` which opts in union types as ' '`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ' 'support Python versions that lower than 3.10, you need to use ' '`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ' '`X | None`.' ) from ex raise for field in dataclasses.fields(lowerCamelCase__ ): if not field.init: continue __UpperCamelCase : List[Any] =type_hints[field.name] self._parse_dataclass_field(lowerCamelCase__ , lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__=None , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=None , ): """simple docstring""" if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): __UpperCamelCase : Union[str, Any] =[] if args_filename: args_files.append(Path(lowerCamelCase__ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('.args' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values __UpperCamelCase : List[str] =ArgumentParser() args_file_parser.add_argument(lowerCamelCase__ , type=lowerCamelCase__ , action='append' ) # Use only remaining args for further parsing (remove the args_file_flag) __UpperCamelCase : int =args_file_parser.parse_known_args(args=lowerCamelCase__ ) __UpperCamelCase : Dict =vars(lowerCamelCase__ ).get(args_file_flag.lstrip('-' ) , lowerCamelCase__ ) if cmd_args_file_paths: args_files.extend([Path(lowerCamelCase__ ) for p in cmd_args_file_paths] ) __UpperCamelCase : Optional[int] =[] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last __UpperCamelCase : Any =file_args + args if args is not None else file_args + sys.argv[1:] __UpperCamelCase : Dict =self.parse_known_args(args=lowerCamelCase__ ) __UpperCamelCase : int =[] for dtype in self.dataclass_types: __UpperCamelCase : List[Any] ={f.name for f in dataclasses.fields(lowerCamelCase__ ) if f.init} __UpperCamelCase : List[Any] ={k: v for k, v in vars(lowerCamelCase__ ).items() if k in keys} for k in keys: delattr(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Optional[Any] =dtype(**lowerCamelCase__ ) outputs.append(lowerCamelCase__ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(lowerCamelCase__ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f'Some specified arguments are not used by the HfArgumentParser: {remaining_args}' ) return (*outputs,) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = False ): """simple docstring""" __UpperCamelCase : Optional[int] =set(args.keys() ) __UpperCamelCase : str =[] for dtype in self.dataclass_types: __UpperCamelCase : Tuple ={f.name for f in dataclasses.fields(lowerCamelCase__ ) if f.init} __UpperCamelCase : Optional[int] ={k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) __UpperCamelCase : List[str] =dtype(**lowerCamelCase__ ) outputs.append(lowerCamelCase__ ) if not allow_extra_keys and unused_keys: raise ValueError(f'Some keys are not used by the HfArgumentParser: {sorted(lowerCamelCase__ )}' ) return tuple(lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = False ): """simple docstring""" with open(Path(lowerCamelCase__ ) , encoding='utf-8' ) as open_json_file: __UpperCamelCase : int =json.loads(open_json_file.read() ) __UpperCamelCase : str =self.parse_dict(lowerCamelCase__ , allow_extra_keys=lowerCamelCase__ ) return tuple(lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = False ): """simple docstring""" __UpperCamelCase : Optional[int] =self.parse_dict(yaml.safe_load(Path(lowerCamelCase__ ).read_text() ) , allow_extra_keys=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
714
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() A_ :Optional[int] = logging.get_logger() @dataclass class __A : """simple docstring""" UpperCamelCase__ : nn.Module UpperCamelCase__ : List[nn.Module] =field(default_factory=a ) UpperCamelCase__ : list =field(default_factory=a ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Dict =len(list(m.modules() ) ) == 1 or isinstance(lowerCamelCase__ , nn.Convad ) or isinstance(lowerCamelCase__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(lowerCamelCase__ ) def __call__( self , lowerCamelCase__ ): """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(lowerCamelCase__ ) [x.remove() for x in self.handles] return self @property def __lowercase ( self ): """simple docstring""" return list(filter(lambda lowerCamelCase__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class __A : """simple docstring""" UpperCamelCase__ : nn.Module UpperCamelCase__ : nn.Module UpperCamelCase__ : int =0 UpperCamelCase__ : List =field(default_factory=a ) UpperCamelCase__ : List =field(default_factory=a ) def __call__( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : int =Tracker(self.dest )(lowerCamelCase__ ).parametrized __UpperCamelCase : int =Tracker(self.src )(lowerCamelCase__ ).parametrized __UpperCamelCase : Optional[int] =list(filter(lambda lowerCamelCase__ : type(lowerCamelCase__ ) not in self.src_skip , lowerCamelCase__ ) ) __UpperCamelCase : Optional[int] =list(filter(lambda lowerCamelCase__ : type(lowerCamelCase__ ) not in self.dest_skip , lowerCamelCase__ ) ) if len(lowerCamelCase__ ) != len(lowerCamelCase__ ): raise Exception( f'Numbers of operations are different. Source module has {len(lowerCamelCase__ )} operations while' f' destination module has {len(lowerCamelCase__ )}.' ) for dest_m, src_m in zip(lowerCamelCase__ , lowerCamelCase__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) def A ( a_ ,a_ ,a_ ,a_ = True ) -> Dict: print(F'Converting {name}...' ) with torch.no_grad(): __UpperCamelCase : Tuple =timm.create_model(a_ ,pretrained=a_ ).eval() __UpperCamelCase : Tuple =ResNetForImageClassification(a_ ).eval() __UpperCamelCase : Optional[int] =ModuleTransfer(src=a_ ,dest=a_ ) __UpperCamelCase : Optional[int] =torch.randn((1, 3, 224, 224) ) module_transfer(a_ ) assert torch.allclose(from_model(a_ ) ,our_model(a_ ).logits ), "The model logits don't match the original one." __UpperCamelCase : int =F'resnet{"-".join(name.split("resnet" ) )}' print(a_ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name ,commit_message='Add model' ,use_temp_dir=a_ ,) # we can use the convnext one __UpperCamelCase : Optional[int] =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name ,commit_message='Add image processor' ,use_temp_dir=a_ ,) print(F'Pushed {checkpoint_name}' ) def A ( a_ ,a_ = None ,a_ = True ) -> int: __UpperCamelCase : Any ='imagenet-1k-id2label.json' __UpperCamelCase : Optional[Any] =1_000 __UpperCamelCase : Optional[int] =(1, num_labels) __UpperCamelCase : Any ='huggingface/label-files' __UpperCamelCase : List[Any] =num_labels __UpperCamelCase : int =json.load(open(hf_hub_download(a_ ,a_ ,repo_type='dataset' ) ,'r' ) ) __UpperCamelCase : Union[str, Any] ={int(a_ ): v for k, v in idalabel.items()} __UpperCamelCase : str =idalabel __UpperCamelCase : List[str] ={v: k for k, v in idalabel.items()} __UpperCamelCase : Union[str, Any] =partial(a_ ,num_labels=a_ ,idalabel=a_ ,labelaid=a_ ) __UpperCamelCase : Optional[Any] ={ 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] ,hidden_sizes=[64, 128, 256, 512] ,layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] ,hidden_sizes=[256, 512, 1_024, 2_048] ,layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] ,hidden_sizes=[64, 128, 256, 512] ,layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] ,hidden_sizes=[256, 512, 1_024, 2_048] ,layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] ,hidden_sizes=[256, 512, 1_024, 2_048] ,layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] ,hidden_sizes=[256, 512, 1_024, 2_048] ,layer_type='bottleneck' ), } if model_name: convert_weight_and_push(a_ ,names_to_config[model_name] ,a_ ,a_ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(a_ ,a_ ,a_ ,a_ ) return config, expected_shape if __name__ == "__main__": A_ :Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported resnet* architecture,''' ''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) A_ :Optional[int] = parser.parse_args() A_ :Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
154
0
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE :str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Tuple = { """vinvino02/glpn-kitti""": """https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json""", # See all GLPN models at https://huggingface.co/models?filter=glpn } class __magic_name__ ( snake_case ): UpperCamelCase_ :Dict = """glpn""" def __init__( self , _lowercase=3 , _lowercase=4 , _lowercase=[2, 2, 2, 2] , _lowercase=[8, 4, 2, 1] , _lowercase=[32, 64, 160, 256] , _lowercase=[7, 3, 3, 3] , _lowercase=[4, 2, 2, 2] , _lowercase=[1, 2, 5, 8] , _lowercase=[4, 4, 4, 4] , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=0.1 , _lowercase=1e-6 , _lowercase=64 , _lowercase=10 , _lowercase=-1 , **_lowercase , )-> str: super().__init__(**_lowercase ) UpperCamelCase_ = num_channels UpperCamelCase_ = num_encoder_blocks UpperCamelCase_ = depths UpperCamelCase_ = sr_ratios UpperCamelCase_ = hidden_sizes UpperCamelCase_ = patch_sizes UpperCamelCase_ = strides UpperCamelCase_ = mlp_ratios UpperCamelCase_ = num_attention_heads UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = initializer_range UpperCamelCase_ = drop_path_rate UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = decoder_hidden_size UpperCamelCase_ = max_depth UpperCamelCase_ = head_in_index
628
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __magic_name__ ( snake_case ): UpperCamelCase_ :Dict = ["""image_processor""", """tokenizer"""] UpperCamelCase_ :str = """BridgeTowerImageProcessor""" UpperCamelCase_ :Tuple = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self , _lowercase , _lowercase )-> Any: super().__init__(_lowercase , _lowercase ) def __call__( self , _lowercase , _lowercase = None , _lowercase = True , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = 0 , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = False , _lowercase = False , _lowercase = False , _lowercase = False , _lowercase = True , _lowercase = None , **_lowercase , )-> BatchEncoding: UpperCamelCase_ = self.tokenizer( text=_lowercase , add_special_tokens=_lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , stride=_lowercase , pad_to_multiple_of=_lowercase , return_token_type_ids=_lowercase , return_attention_mask=_lowercase , return_overflowing_tokens=_lowercase , return_special_tokens_mask=_lowercase , return_offsets_mapping=_lowercase , return_length=_lowercase , verbose=_lowercase , return_tensors=_lowercase , **_lowercase , ) # add pixel_values + pixel_mask UpperCamelCase_ = self.image_processor( _lowercase , return_tensors=_lowercase , do_normalize=_lowercase , do_center_crop=_lowercase , **_lowercase ) encoding.update(_lowercase ) return encoding def UpperCAmelCase_ ( self , *_lowercase , **_lowercase )-> Union[str, Any]: return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def UpperCAmelCase_ ( self , *_lowercase , **_lowercase )-> List[Any]: return self.tokenizer.decode(*_lowercase , **_lowercase ) @property def UpperCAmelCase_ ( self )-> Any: UpperCamelCase_ = self.tokenizer.model_input_names UpperCamelCase_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
628
1
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Tuple , A : int = 1_6 , A : int = 8_8 , A : Optional[int] = None , A : int = 1 , A : float = 0.0 , A : int = 3_2 , A : Optional[int] = None , A : bool = False , A : Optional[int] = None , A : Optional[int] = None , A : str = "geglu" , A : Optional[int] = None , ) ->List[Any]: super().__init__() lowerCamelCase__ : Tuple = nn.ModuleList( [ TransformeraDModel( num_attention_heads=UpperCAmelCase__ , attention_head_dim=UpperCAmelCase__ , in_channels=UpperCAmelCase__ , num_layers=UpperCAmelCase__ , dropout=UpperCAmelCase__ , norm_num_groups=UpperCAmelCase__ , cross_attention_dim=UpperCAmelCase__ , attention_bias=UpperCAmelCase__ , sample_size=UpperCAmelCase__ , num_vector_embeds=UpperCAmelCase__ , activation_fn=UpperCAmelCase__ , num_embeds_ada_norm=UpperCAmelCase__ , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference lowerCamelCase__ : Tuple = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` lowerCamelCase__ : Optional[Any] = [7_7, 2_5_7] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` lowerCamelCase__ : int = [1, 0] def __lowerCamelCase ( self : Tuple , A : int , A : Optional[Any] , A : int=None , A : Optional[int]=None , A : Optional[Any]=None , A : bool = True , ) ->Dict: lowerCamelCase__ : Tuple = hidden_states lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : Tuple = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens lowerCamelCase__ : Union[str, Any] = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] lowerCamelCase__ : Dict = self.transformer_index_for_condition[i] lowerCamelCase__ : Tuple = self.transformers[transformer_index]( UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , timestep=UpperCAmelCase__ , cross_attention_kwargs=UpperCAmelCase__ , return_dict=UpperCAmelCase__ , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] lowerCamelCase__ : Optional[int] = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) lowerCamelCase__ : Optional[int] = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=UpperCAmelCase__ )
718
import math def _a ( UpperCAmelCase ) -> str: """simple docstring""" lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : List[Any] = 0 while num > 0: lowerCamelCase__ : Tuple = num % 8 lowerCamelCase__ : List[str] = octal + (remainder * math.floor(math.pow(10 , UpperCAmelCase ) )) counter += 1 lowerCamelCase__ : Optional[Any] = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f"0o{int(UpperCAmelCase )}" def _a ( ) -> None: """simple docstring""" print('''\n2 in octal is:''' ) print(decimal_to_octal(2 ) ) # = 2 print('''\n8 in octal is:''' ) print(decimal_to_octal(8 ) ) # = 10 print('''\n65 in octal is:''' ) print(decimal_to_octal(65 ) ) # = 101 print('''\n216 in octal is:''' ) print(decimal_to_octal(216 ) ) # = 330 print('''\n512 in octal is:''' ) print(decimal_to_octal(512 ) ) # = 1000 print('''\n''' ) if __name__ == "__main__": main()
130
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ : str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Tuple = {"""vocab_file""": """sentencepiece.bpe.model"""} SCREAMING_SNAKE_CASE__ : Any = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, } SCREAMING_SNAKE_CASE__ : int = { """moussaKam/mbarthez""": 10_24, """moussaKam/barthez""": 10_24, """moussaKam/barthez-orangesum-title""": 10_24, } SCREAMING_SNAKE_CASE__ : Optional[Any] = """▁""" class UpperCAmelCase_ ( __lowerCamelCase ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = ['input_ids', 'attention_mask'] def __init__( self , _lowerCAmelCase , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="<mask>" , _lowerCAmelCase = None , **_lowerCAmelCase , ): # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase__ : str = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token UpperCAmelCase__ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) UpperCAmelCase__ : int = vocab_file UpperCAmelCase__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCAmelCase ) ) UpperCAmelCase__ : Dict = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} UpperCAmelCase__ : Union[str, Any] = len(self.sp_model ) - 1 UpperCAmelCase__ : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase__ : int = [self.cls_token_id] UpperCAmelCase__ : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1] def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): UpperCAmelCase__ : int = [self.sep_token_id] UpperCAmelCase__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __UpperCAmelCase ( self ): return len(self.sp_model ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : List[str] = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __UpperCAmelCase ( self , _lowerCAmelCase ): return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def __UpperCAmelCase ( self , _lowerCAmelCase ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase__ : int = self.sp_model.PieceToId(_lowerCAmelCase ) return spm_id if spm_id else self.unk_token_id def __UpperCAmelCase ( self , _lowerCAmelCase ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(_lowerCAmelCase ) def __UpperCAmelCase ( self , _lowerCAmelCase ): UpperCAmelCase__ : int = [] UpperCAmelCase__ : List[str] = """""" UpperCAmelCase__ : Optional[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowerCAmelCase ) + token UpperCAmelCase__ : Dict = True UpperCAmelCase__ : Tuple = [] else: current_sub_tokens.append(_lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = False out_string += self.sp_model.decode(_lowerCAmelCase ) return out_string.strip() def __getstate__( self ): UpperCAmelCase__ : str = self.__dict__.copy() UpperCAmelCase__ : List[Any] = None return state def __setstate__( self , _lowerCAmelCase ): UpperCAmelCase__ : Union[str, Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCAmelCase__ : int = {} UpperCAmelCase__ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase__ : Tuple = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , """wb""" ) as fi: UpperCAmelCase__ : str = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
79
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable __snake_case = { """configuration_gpt_neox_japanese""": ["""GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXJapaneseConfig"""], """tokenization_gpt_neox_japanese""": ["""GPTNeoXJapaneseTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXJapaneseForCausalLM""", """GPTNeoXJapaneseLayer""", """GPTNeoXJapaneseModel""", """GPTNeoXJapanesePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
451
0
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __UpperCAmelCase : Optional[Any] = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") __UpperCAmelCase : Optional[Any] = ( subprocess.check_output(f'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode("utf-8").split() ) __UpperCAmelCase : str = "|".join(sys.argv[1:]) __UpperCAmelCase : Tuple = re.compile(rf'''^({joined_dirs}).*?\.py$''') __UpperCAmelCase : Optional[Any] = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
643
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class UpperCAmelCase_ ( _a): '''simple docstring''' def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as input_file: UpperCamelCase : str = re.compile(R'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' ) UpperCamelCase : Optional[int] = input_file.read() UpperCamelCase : Union[str, Any] = regexp.search(__SCREAMING_SNAKE_CASE ) return match def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as input_file: UpperCamelCase : Optional[int] = re.compile(R'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''' , re.DOTALL ) UpperCamelCase : Tuple = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCamelCase : Dict = regexp.finditer(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = Path('''./datasets''' ) UpperCamelCase : Tuple = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__SCREAMING_SNAKE_CASE ) ): raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = Path('''./datasets''' ) UpperCamelCase : Tuple = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_print_statements(str(__SCREAMING_SNAKE_CASE ) ): raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
643
1
import os from datetime import datetime as dt from github import Github UpperCamelCase = [ "good first issue", "feature request", "wip", ] def __magic_name__ ( ) -> List[str]: _lowercase : Union[str, Any] = Github(os.environ['GITHUB_TOKEN'] ) _lowercase : str = g.get_repo('huggingface/accelerate' ) _lowercase : Any = repo.get_issues(state='open' ) for issue in open_issues: _lowercase : Dict = sorted([comment for comment in issue.get_comments()] , key=lambda SCREAMING_SNAKE_CASE : i.created_at , reverse=SCREAMING_SNAKE_CASE ) _lowercase : Any = comments[0] if len(SCREAMING_SNAKE_CASE ) > 0 else None _lowercase : Optional[Any] = dt.utcnow() _lowercase : str = (current_time - issue.updated_at).days _lowercase : Dict = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='closed' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
66
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _UpperCamelCase (unittest.TestCase ): def __UpperCAmelCase ( self )-> Optional[int]: __lowerCAmelCase = "laion/clap-htsat-unfused" __lowerCAmelCase = tempfile.mkdtemp() def __UpperCAmelCase ( self , **__UpperCamelCase )-> Optional[int]: return RobertaTokenizer.from_pretrained(self.checkpoint , **__UpperCamelCase ) def __UpperCAmelCase ( self , **__UpperCamelCase )-> List[Any]: return ClapFeatureExtractor.from_pretrained(self.checkpoint , **__UpperCamelCase ) def __UpperCAmelCase ( self )-> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def __UpperCAmelCase ( self )-> Dict: __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_feature_extractor() __lowerCAmelCase = ClapProcessor(tokenizer=__UpperCamelCase , feature_extractor=__UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCamelCase ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __UpperCamelCase ) def __UpperCAmelCase ( self )-> List[str]: __lowerCAmelCase = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) __lowerCAmelCase = self.get_feature_extractor(do_normalize=__UpperCamelCase , padding_value=1.0 ) __lowerCAmelCase = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__UpperCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCamelCase ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __UpperCamelCase ) def __UpperCAmelCase ( self )-> List[str]: __lowerCAmelCase = self.get_feature_extractor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = ClapProcessor(tokenizer=__UpperCamelCase , feature_extractor=__UpperCamelCase ) __lowerCAmelCase = floats_list((3, 1_0_0_0) ) __lowerCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ) __lowerCAmelCase = processor(audios=__UpperCamelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __UpperCAmelCase ( self )-> Dict: __lowerCAmelCase = self.get_feature_extractor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = ClapProcessor(tokenizer=__UpperCamelCase , feature_extractor=__UpperCamelCase ) __lowerCAmelCase = "This is a test string" __lowerCAmelCase = processor(text=__UpperCamelCase ) __lowerCAmelCase = tokenizer(__UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCAmelCase ( self )-> int: __lowerCAmelCase = self.get_feature_extractor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = ClapProcessor(tokenizer=__UpperCamelCase , feature_extractor=__UpperCamelCase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__UpperCamelCase ) __lowerCAmelCase = tokenizer.batch_decode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __UpperCAmelCase ( self )-> Dict: __lowerCAmelCase = self.get_feature_extractor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = ClapProcessor(tokenizer=__UpperCamelCase , feature_extractor=__UpperCamelCase ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , )
367
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor A = logging.get_logger(__name__) class _UpperCamelCase ( lowerCamelCase__ ): """simple docstring""" def __init__( self : Optional[int] , *snake_case : List[str] , **snake_case : str ) -> None: '''simple docstring''' warnings.warn( '''The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ImageGPTImageProcessor instead.''' , snake_case , ) super().__init__(*snake_case , **snake_case )
717
"""simple docstring""" from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _UpperCamelCase : """simple docstring""" def __init__( self : int , snake_case : Any , snake_case : str=13 , snake_case : List[str]=30 , snake_case : List[Any]=2 , snake_case : List[Any]=3 , snake_case : Dict=True , snake_case : int=True , snake_case : Any=32 , snake_case : Tuple=2 , snake_case : Optional[int]=4 , snake_case : Any=37 , snake_case : List[Any]="gelu" , snake_case : Optional[int]=0.1 , snake_case : Optional[Any]=0.1 , snake_case : Dict=10 , snake_case : Tuple=0.02 , snake_case : Optional[Any]=3 , snake_case : List[str]=0.6 , snake_case : Dict=None , ) -> Union[str, Any]: '''simple docstring''' __magic_name__ : Optional[int] = parent __magic_name__ : Any = batch_size __magic_name__ : Tuple = image_size __magic_name__ : Union[str, Any] = patch_size __magic_name__ : List[Any] = num_channels __magic_name__ : Union[str, Any] = is_training __magic_name__ : List[Any] = use_labels __magic_name__ : int = hidden_size __magic_name__ : int = num_hidden_layers __magic_name__ : Tuple = num_attention_heads __magic_name__ : Tuple = intermediate_size __magic_name__ : Optional[int] = hidden_act __magic_name__ : Optional[Any] = hidden_dropout_prob __magic_name__ : Optional[int] = attention_probs_dropout_prob __magic_name__ : Optional[Any] = type_sequence_label_size __magic_name__ : Optional[int] = initializer_range __magic_name__ : Optional[Any] = mask_ratio __magic_name__ : Union[str, Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __magic_name__ : str = (image_size // patch_size) ** 2 __magic_name__ : int = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' __magic_name__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : Optional[Any] = None if self.use_labels: __magic_name__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self : List[str] ) -> List[str]: '''simple docstring''' return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def _UpperCAmelCase ( self : int , snake_case : Optional[int] , snake_case : Any , snake_case : str ) -> Union[str, Any]: '''simple docstring''' __magic_name__ : List[str] = TFViTMAEModel(config=snake_case ) __magic_name__ : Any = model(snake_case , training=snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self : Any , snake_case : Dict , snake_case : Tuple , snake_case : Any ) -> Optional[int]: '''simple docstring''' __magic_name__ : Optional[Any] = TFViTMAEForPreTraining(snake_case ) __magic_name__ : List[Any] = model(snake_case , training=snake_case ) # expected sequence length = num_patches __magic_name__ : List[str] = (self.image_size // self.patch_size) ** 2 __magic_name__ : Union[str, Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images __magic_name__ : Dict = 1 __magic_name__ : Dict = TFViTMAEForPreTraining(snake_case ) __magic_name__ : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : str = model(snake_case , training=snake_case ) __magic_name__ : Any = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def _UpperCAmelCase ( self : str ) -> Tuple: '''simple docstring''' __magic_name__ : Union[str, Any] = self.prepare_config_and_inputs() ((__magic_name__) , (__magic_name__) , (__magic_name__)) : List[Any] = config_and_inputs __magic_name__ : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class _UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" snake_case_ = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () snake_case_ = {'feature-extraction': TFViTMAEModel} if is_tf_available() else {} snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def _UpperCAmelCase ( self : Dict ) -> Any: '''simple docstring''' __magic_name__ : List[str] = TFViTMAEModelTester(self ) __magic_name__ : Any = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=37 ) def _UpperCAmelCase ( self : int ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def _UpperCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' pass def _UpperCAmelCase ( self : Any ) -> Optional[int]: '''simple docstring''' __magic_name__ , __magic_name__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Tuple = model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __magic_name__ : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case , tf.keras.layers.Layer ) ) def _UpperCAmelCase ( self : Any ) -> Dict: '''simple docstring''' __magic_name__ , __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] = model_class(snake_case ) __magic_name__ : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Any = [*signature.parameters.keys()] __magic_name__ : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , snake_case ) def _UpperCAmelCase ( self : List[str] ) -> List[str]: '''simple docstring''' __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case ) def _UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' np.random.seed(2 ) __magic_name__ , __magic_name__ : Any = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Tuple = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ : str = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __magic_name__ : Any = model_class(snake_case ) __magic_name__ : int = self._prepare_for_class(snake_case , snake_case ) __magic_name__ : List[str] = model(snake_case , noise=snake_case ) __magic_name__ : List[str] = copy.deepcopy(self._prepare_for_class(snake_case , snake_case ) ) __magic_name__ : Dict = model(**snake_case , noise=snake_case ) __magic_name__ : Tuple = outputs_dict[0].numpy() __magic_name__ : Any = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1e-6 ) def _UpperCAmelCase ( self : str ) -> Any: '''simple docstring''' np.random.seed(2 ) __magic_name__ , __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : List[Any] = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ : Any = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(snake_case : Tuple ): __magic_name__ : Optional[int] = {} for k, v in inputs_dict.items(): if tf.is_tensor(snake_case ): __magic_name__ : int = v.numpy() else: __magic_name__ : Tuple = np.array(snake_case ) return inputs_np_dict for model_class in self.all_model_classes: __magic_name__ : Union[str, Any] = model_class(snake_case ) __magic_name__ : Any = self._prepare_for_class(snake_case , snake_case ) __magic_name__ : Union[str, Any] = prepare_numpy_arrays(snake_case ) __magic_name__ : Union[str, Any] = model(snake_case , noise=snake_case ) __magic_name__ : List[str] = model(**snake_case , noise=snake_case ) self.assert_outputs_same(snake_case , snake_case ) def _UpperCAmelCase ( self : List[Any] , snake_case : Optional[Any] , snake_case : List[Any] , snake_case : Tuple ) -> Any: '''simple docstring''' np.random.seed(2 ) __magic_name__ : Optional[int] = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) __magic_name__ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __magic_name__ : int = tf.constant(snake_case ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __magic_name__ : str = tf_noise super().check_pt_tf_models(snake_case , snake_case , snake_case ) def _UpperCAmelCase ( self : Union[str, Any] ) -> Dict: '''simple docstring''' np.random.seed(2 ) __magic_name__ , __magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : int = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(snake_case ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(snake_case , snake_case ),) if isinstance(snake_case , snake_case ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(snake_case , '''_keras_serializable''' , snake_case ) } __magic_name__ : str = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __magic_name__ : int = tf.convert_to_tensor(snake_case ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: __magic_name__ : List[str] = main_layer_class(snake_case ) __magic_name__ : List[Any] = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } __magic_name__ : Any = tf.keras.Model(snake_case , outputs=main_layer(snake_case ) ) __magic_name__ : Any = model(snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: __magic_name__ : Optional[Any] = os.path.join(snake_case , '''keras_model.h5''' ) model.save(snake_case ) __magic_name__ : Dict = tf.keras.models.load_model( snake_case , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(snake_case , tf.keras.Model ) __magic_name__ : List[str] = model(snake_case ) self.assert_outputs_same(snake_case , snake_case ) @slow def _UpperCAmelCase ( self : Any ) -> Optional[Any]: '''simple docstring''' np.random.seed(2 ) __magic_name__ , __magic_name__ : str = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Dict = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ : List[str] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __magic_name__ : str = model_class(snake_case ) __magic_name__ : List[Any] = self._prepare_for_class(snake_case , snake_case ) __magic_name__ : Union[str, Any] = model(snake_case , noise=snake_case ) if model_class.__name__ == "TFViTMAEModel": __magic_name__ : Union[str, Any] = outputs.last_hidden_state.numpy() __magic_name__ : str = 0 else: __magic_name__ : List[Any] = outputs.logits.numpy() __magic_name__ : List[str] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case , saved_model=snake_case ) __magic_name__ : Optional[Any] = model_class.from_pretrained(snake_case ) __magic_name__ : List[Any] = model(snake_case , noise=snake_case ) if model_class.__name__ == "TFViTMAEModel": __magic_name__ : Optional[int] = after_outputs['''last_hidden_state'''].numpy() __magic_name__ : Tuple = 0 else: __magic_name__ : Any = after_outputs['''logits'''].numpy() __magic_name__ : List[Any] = 0 __magic_name__ : List[str] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case , 1e-5 ) def _UpperCAmelCase ( self : List[str] ) -> str: '''simple docstring''' np.random.seed(2 ) __magic_name__ , __magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Dict = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __magic_name__ : Union[str, Any] = model_class(snake_case ) __magic_name__ : Optional[int] = self._prepare_for_class(snake_case , snake_case ) __magic_name__ : Optional[Any] = model(snake_case , noise=snake_case ) __magic_name__ : Dict = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(snake_case ) __magic_name__ : Tuple = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config __magic_name__ : Dict = model_class.from_config(model.config ) __magic_name__ : str = new_model(snake_case ) # Build model new_model.set_weights(model.get_weights() ) __magic_name__ : Any = new_model(snake_case , noise=snake_case ) self.assert_outputs_same(snake_case , snake_case ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def _UpperCAmelCase ( self : Any ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def _UpperCAmelCase ( self : Dict ) -> int: '''simple docstring''' pass @slow def _UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' __magic_name__ : Dict = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(snake_case ) def UpperCamelCase_ ( ) -> int: """simple docstring""" __magic_name__ : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def _UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' np.random.seed(2 ) __magic_name__ : List[str] = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) __magic_name__ : List[str] = self.default_image_processor __magic_name__ : Optional[Any] = prepare_img() __magic_name__ : str = image_processor(images=snake_case , return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __magic_name__ : Optional[int] = ViTMAEConfig() __magic_name__ : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) __magic_name__ : List[str] = np.random.uniform(size=(1, num_patches) ) # forward pass __magic_name__ : Optional[int] = model(**snake_case , noise=snake_case ) # verify the logits __magic_name__ : Optional[int] = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , snake_case ) __magic_name__ : Dict = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , snake_case , atol=1e-4 )
147
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __magic_name__: Union[str, Any] = { "configuration_mobilenet_v2": [ "MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileNetV2Config", "MobileNetV2OnnxConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: Optional[Any] = ["MobileNetV2FeatureExtractor"] __magic_name__: Dict = ["MobileNetV2ImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: List[Any] = [ "MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileNetV2ForImageClassification", "MobileNetV2ForSemanticSegmentation", "MobileNetV2Model", "MobileNetV2PreTrainedModel", "load_tf_weights_in_mobilenet_v2", ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys __magic_name__: List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
324
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser __magic_name__: Optional[Any] = logging.getLogger(__name__) torch.set_grad_enabled(False) __magic_name__: Dict = "cuda" if torch.cuda.is_available() else "cpu" def UpperCamelCase ( _A, _A=100, _A=" " ): """simple docstring""" __magic_name__ : Union[str, Any] = text.split(_A ) return [character.join(text[i : i + n] ).strip() for i in range(0, len(_A ), _A )] def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ ,__magic_name__ : Dict = [], [] for title, text in zip(documents["""title"""], documents["""text"""] ): if text is not None: for passage in split_text(_A ): titles.append(title if title is not None else """""" ) texts.append(_A ) return {"title": titles, "text": texts} def UpperCamelCase ( _A, _A, _A ): """simple docstring""" __magic_name__ : Optional[int] = ctx_tokenizer( documents["""title"""], documents["""text"""], truncation=_A, padding="""longest""", return_tensors="""pt""" )["""input_ids"""] __magic_name__ : int = ctx_encoder(input_ids.to(device=_A ), return_dict=_A ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def UpperCamelCase ( _A, _A, _A, ): """simple docstring""" logger.info("""Step 1 - Create the dataset""" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way __magic_name__ : Optional[Any] = load_dataset( """csv""", data_files=[rag_example_args.csv_path], split="""train""", delimiter="""\t""", column_names=["""title""", """text"""] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words __magic_name__ : Tuple = dataset.map(_A, batched=_A, num_proc=processing_args.num_proc ) # And compute the embeddings __magic_name__ : Optional[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=_A ) __magic_name__ : Optional[int] = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) __magic_name__ : Optional[Any] = Features( {"""text""": Value("""string""" ), """title""": Value("""string""" ), """embeddings""": Sequence(Value("""float32""" ) )} ) # optional, save as float32 instead of float64 to save space __magic_name__ : List[str] = dataset.map( partial(_A, ctx_encoder=_A, ctx_tokenizer=_A ), batched=_A, batch_size=processing_args.batch_size, features=_A, ) # And finally save your dataset __magic_name__ : Union[str, Any] = os.path.join(rag_example_args.output_dir, """my_knowledge_dataset""" ) dataset.save_to_disk(_A ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("""Step 2 - Index the dataset""" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search __magic_name__ : List[Any] = faiss.IndexHNSWFlat(index_hnsw_args.d, index_hnsw_args.m, faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("""embeddings""", custom_index=_A ) # And save the index __magic_name__ : List[Any] = os.path.join(rag_example_args.output_dir, """my_knowledge_dataset_hnsw_index.faiss""" ) dataset.get_index("""embeddings""" ).save(_A ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class snake_case__ : lowercase__ : str = field( default=str(Path(_lowerCAmelCase ).parent / '''test_run''' / '''dummy-kb''' / '''my_knowledge_dataset.csv''' ) , metadata={'''help''': '''Path to a tab-separated csv file with columns \'title\' and \'text\''''} , ) lowercase__ : Optional[str] = field( default=_lowerCAmelCase , metadata={'''help''': '''Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'''} , ) lowercase__ : str = field( default='''facebook/rag-sequence-nq''' , metadata={'''help''': '''The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''''} , ) lowercase__ : str = field( default='''facebook/dpr-ctx_encoder-multiset-base''' , metadata={ '''help''': ( '''The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or''' ''' \'facebook/dpr-ctx_encoder-multiset-base\'''' ) } , ) lowercase__ : Optional[str] = field( default=str(Path(_lowerCAmelCase ).parent / '''test_run''' / '''dummy-kb''' ) , metadata={'''help''': '''Path to a directory where the dataset passages and the index will be saved'''} , ) @dataclass class snake_case__ : lowercase__ : Optional[int] = field( default=_lowerCAmelCase , metadata={ '''help''': '''The number of processes to use to split the documents into passages. Default is single process.''' } , ) lowercase__ : int = field( default=16 , metadata={ '''help''': '''The batch size to use when computing the passages embeddings using the DPR context encoder.''' } , ) @dataclass class snake_case__ : lowercase__ : int = field( default=768 , metadata={'''help''': '''The dimension of the embeddings to pass to the HNSW Faiss index.'''} , ) lowercase__ : int = field( default=128 , metadata={ '''help''': ( '''The number of bi-directional links created for every new element during the HNSW index construction.''' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) __magic_name__: int = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) __magic_name__ , __magic_name__ , __magic_name__: int = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: __magic_name__: Union[str, Any] = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
324
1
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class __magic_name__ (__lowercase ): def __a ( self ) -> Optional[int]: lowerCAmelCase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_a , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(_a , "num_attention_heads" ) ) self.parent.assertTrue(hasattr(_a , "num_encoder_blocks" ) ) class __magic_name__ : def __init__( self , _a , _a=13 , _a=64 , _a=3 , _a=4 , _a=[2, 2, 2, 2] , _a=[8, 4, 2, 1] , _a=[16, 32, 64, 128] , _a=[1, 4, 8, 16] , _a=[1, 2, 4, 8] , _a=True , _a=True , _a="gelu" , _a=0.1 , _a=0.1 , _a=0.0_2 , _a=3 , _a=None , ) -> Dict: lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = image_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = num_encoder_blocks lowerCAmelCase_ = sr_ratios lowerCAmelCase_ = depths lowerCAmelCase_ = hidden_sizes lowerCAmelCase_ = downsampling_rates lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = is_training lowerCAmelCase_ = use_labels lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = initializer_range lowerCAmelCase_ = num_labels lowerCAmelCase_ = scope def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ = None if self.use_labels: lowerCAmelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCAmelCase_ = self.get_config() return config, pixel_values, labels def __a ( self ) -> int: return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def __a ( self , _a , _a , _a ) -> str: lowerCAmelCase_ = SegformerModel(config=_a ) model.to(_a ) model.eval() lowerCAmelCase_ = model(_a ) lowerCAmelCase_ = lowerCAmelCase_ = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def __a ( self , _a , _a , _a ) -> str: lowerCAmelCase_ = self.num_labels lowerCAmelCase_ = SegformerForSemanticSegmentation(_a ) model.to(_a ) model.eval() lowerCAmelCase_ = model(_a ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) lowerCAmelCase_ = model(_a , labels=_a ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def __a ( self , _a , _a , _a ) -> Optional[Any]: lowerCAmelCase_ = 1 lowerCAmelCase_ = SegformerForSemanticSegmentation(config=_a ) model.to(_a ) model.eval() lowerCAmelCase_ = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(_a ) lowerCAmelCase_ = model(_a , labels=_a ) self.parent.assertGreater(result.loss , 0.0 ) def __a ( self ) -> Any: lowerCAmelCase_ = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = config_and_inputs lowerCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __magic_name__ (__lowercase , __lowercase , unittest.TestCase ): lowerCamelCase__ = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) lowerCamelCase__ = ( { """feature-extraction""": SegformerModel, """image-classification""": SegformerForImageClassification, """image-segmentation""": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __a ( self ) -> List[str]: lowerCAmelCase_ = SegformerModelTester(self ) lowerCAmelCase_ = SegformerConfigTester(self , config_class=_a ) def __a ( self ) -> str: self.config_tester.run_common_tests() def __a ( self ) -> Any: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __a ( self ) -> List[str]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*_a ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*_a ) @unittest.skip("SegFormer does not use inputs_embeds" ) def __a ( self ) -> List[Any]: pass @unittest.skip("SegFormer does not have get_input_embeddings method and get_output_embeddings methods" ) def __a ( self ) -> List[Any]: pass def __a ( self ) -> List[str]: lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = model_class(_a ) lowerCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ = [*signature.parameters.keys()] lowerCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _a ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ = True for model_class in self.all_model_classes: lowerCAmelCase_ = True lowerCAmelCase_ = False lowerCAmelCase_ = True lowerCAmelCase_ = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): lowerCAmelCase_ = model(**self._prepare_for_class(_a , _a ) ) lowerCAmelCase_ = outputs.attentions lowerCAmelCase_ = sum(self.model_tester.depths ) self.assertEqual(len(_a ) , _a ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase_ = True lowerCAmelCase_ = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): lowerCAmelCase_ = model(**self._prepare_for_class(_a , _a ) ) lowerCAmelCase_ = outputs.attentions self.assertEqual(len(_a ) , _a ) # verify the first attentions (first block, first layer) lowerCAmelCase_ = (self.model_tester.image_size // 4) ** 2 lowerCAmelCase_ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) lowerCAmelCase_ = (self.model_tester.image_size // 32) ** 2 lowerCAmelCase_ = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) lowerCAmelCase_ = len(_a ) # Check attention is always last and order is fine lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): lowerCAmelCase_ = model(**self._prepare_for_class(_a , _a ) ) self.assertEqual(out_len + 1 , len(_a ) ) lowerCAmelCase_ = outputs.attentions self.assertEqual(len(_a ) , _a ) # verify the first attentions (first block, first layer) lowerCAmelCase_ = (self.model_tester.image_size // 4) ** 2 lowerCAmelCase_ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def __a ( self ) -> Optional[Any]: def check_hidden_states_output(_a , _a , _a ): lowerCAmelCase_ = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): lowerCAmelCase_ = model(**self._prepare_for_class(_a , _a ) ) lowerCAmelCase_ = outputs.hidden_states lowerCAmelCase_ = self.model_tester.num_encoder_blocks self.assertEqual(len(_a ) , _a ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ = True check_hidden_states_output(_a , _a , _a ) def __a ( self ) -> List[Any]: if not self.model_tester.is_training: return lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ = True for model_class in self.all_model_classes: if model_class in get_values(_a ): continue lowerCAmelCase_ = model_class(_a ) model.to(_a ) model.train() lowerCAmelCase_ = self._prepare_for_class(_a , _a , return_labels=_a ) lowerCAmelCase_ = model(**_a ).loss loss.backward() @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __a ( self ) -> List[Any]: pass @slow def __a ( self ) -> str: for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ = SegformerModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def A(): lowerCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class __magic_name__ (unittest.TestCase ): @slow def __a ( self ) -> Optional[int]: lowerCAmelCase_ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_a , align=_a , do_random_crop=_a ) lowerCAmelCase_ = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512" ).to( _a ) lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = image_processor(images=_a , return_tensors="pt" ) lowerCAmelCase_ = encoded_inputs.pixel_values.to(_a ) with torch.no_grad(): lowerCAmelCase_ = model(_a ) lowerCAmelCase_ = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , _a ) lowerCAmelCase_ = torch.tensor( [ [[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]], [[-1_2.1_3_9_1, -1_3.3_1_2_2, -1_3.9_5_5_4], [-1_2.8_7_3_2, -1_3.9_3_5_2, -1_4.3_5_6_3], [-1_2.9_4_3_8, -1_3.8_2_2_6, -1_4.2_5_1_3]], [[-1_2.5_1_3_4, -1_3.4_6_8_6, -1_4.4_9_1_5], [-1_2.8_6_6_9, -1_4.4_3_4_3, -1_4.7_7_5_8], [-1_3.2_5_2_3, -1_4.5_8_1_9, -1_5.0_6_9_4]], ] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _a , atol=1E-4 ) ) @slow def __a ( self ) -> Optional[int]: lowerCAmelCase_ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_a , align=_a , do_random_crop=_a ) lowerCAmelCase_ = SegformerForSemanticSegmentation.from_pretrained( "nvidia/segformer-b1-finetuned-cityscapes-1024-1024" ).to(_a ) lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = image_processor(images=_a , return_tensors="pt" ) lowerCAmelCase_ = encoded_inputs.pixel_values.to(_a ) with torch.no_grad(): lowerCAmelCase_ = model(_a ) lowerCAmelCase_ = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , _a ) lowerCAmelCase_ = torch.tensor( [ [[-1_3.5_7_4_8, -1_3.9_1_1_1, -1_2.6_5_0_0], [-1_4.3_5_0_0, -1_5.3_6_8_3, -1_4.2_3_2_8], [-1_4.7_5_3_2, -1_6.0_4_2_4, -1_5.6_0_8_7]], [[-1_7.1_6_5_1, -1_5.8_7_2_5, -1_2.9_6_5_3], [-1_7.2_5_8_0, -1_7.3_7_1_8, -1_4.8_2_2_3], [-1_6.6_0_5_8, -1_6.8_7_8_3, -1_6.7_4_5_2]], [[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]], ] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _a , atol=1E-1 ) ) @slow def __a ( self ) -> Dict: lowerCAmelCase_ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_a , align=_a , do_random_crop=_a ) lowerCAmelCase_ = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512" ).to( _a ) lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = image_processor(images=_a , return_tensors="pt" ) lowerCAmelCase_ = encoded_inputs.pixel_values.to(_a ) with torch.no_grad(): lowerCAmelCase_ = model(_a ) lowerCAmelCase_ = outputs.logits.detach().cpu() lowerCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_a , target_sizes=[(500, 300)] ) lowerCAmelCase_ = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , _a ) lowerCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_a ) lowerCAmelCase_ = torch.Size((128, 128) ) self.assertEqual(segmentation[0].shape , _a )
721
from collections.abc import Callable import numpy as np def A(__a: Callable , __a: float , __a: float , __a: float , __a: float ): lowerCAmelCase_ = int(np.ceil((x_end - xa) / step_size ) ) lowerCAmelCase_ = np.zeros((n + 1,) ) lowerCAmelCase_ = ya lowerCAmelCase_ = xa for k in range(__a ): lowerCAmelCase_ = y[k] + step_size * ode_func(__a , y[k] ) lowerCAmelCase_ = y[k] + ( (step_size / 2) * (ode_func(__a , y[k] ) + ode_func(x + step_size , __a )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
226
0
'''simple docstring''' from __future__ import annotations __UpperCAmelCase = [] def _snake_case ( A , A , A ) -> bool: for i in range(len(A ) ): if board[row][i] == 1: return False for i in range(len(A ) ): if board[i][column] == 1: return False for i, j in zip(range(A , -1 , -1 ) , range(A , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(A , -1 , -1 ) , range(A , len(A ) ) ): if board[i][j] == 1: return False return True def _snake_case ( A , A ) -> bool: if row >= len(A ): solution.append(A ) printboard(A ) print() return True for i in range(len(A ) ): if is_safe(A , A , A ): lowerCAmelCase__ = 1 solve(A , row + 1 ) lowerCAmelCase__ = 0 return False def _snake_case ( A ) -> None: for i in range(len(A ) ): for j in range(len(A ) ): if board[i][j] == 1: print('''Q''' , end=''' ''' ) else: print('''.''' , end=''' ''' ) print() # n=int(input("The no. of queens")) __UpperCAmelCase = 8 __UpperCAmelCase = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('''The total no. of solutions are :''', len(solution))
90
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class UpperCAmelCase ( unittest.TestCase ): def __init__( self , __A , __A=7 , __A=3 , __A=30 , __A=400 , __A=True , __A=None , __A=True , __A=1 / 255 , __A=True , __A=[0.5, 0.5, 0.5] , __A=[0.5, 0.5, 0.5] , __A=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __UpperCAmelCase = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1_333} __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = num_channels __UpperCAmelCase = min_resolution __UpperCAmelCase = max_resolution __UpperCAmelCase = do_resize __UpperCAmelCase = size __UpperCAmelCase = do_rescale __UpperCAmelCase = rescale_factor __UpperCAmelCase = do_normalize __UpperCAmelCase = image_mean __UpperCAmelCase = image_std __UpperCAmelCase = do_pad def __lowerCamelCase ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def __lowerCamelCase ( self , __A , __A=False ): if not batched: __UpperCAmelCase = image_inputs[0] if isinstance(__A , Image.Image ): __UpperCAmelCase , __UpperCAmelCase = image.size else: __UpperCAmelCase , __UpperCAmelCase = image.shape[1], image.shape[2] if w < h: __UpperCAmelCase = int(self.size['shortest_edge'] * h / w ) __UpperCAmelCase = self.size['shortest_edge'] elif w > h: __UpperCAmelCase = self.size['shortest_edge'] __UpperCAmelCase = int(self.size['shortest_edge'] * w / h ) else: __UpperCAmelCase = self.size['shortest_edge'] __UpperCAmelCase = self.size['shortest_edge'] else: __UpperCAmelCase = [] for image in image_inputs: __UpperCAmelCase , __UpperCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __UpperCAmelCase = max(__A , key=lambda __A : item[0] )[0] __UpperCAmelCase = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): _A : Any = DetrImageProcessor if is_vision_available() else None def __lowerCamelCase ( self ): __UpperCAmelCase = DetrImageProcessingTester(self ) @property def __lowerCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __lowerCamelCase ( self ): __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , 'image_mean' ) ) self.assertTrue(hasattr(__A , 'image_std' ) ) self.assertTrue(hasattr(__A , 'do_normalize' ) ) self.assertTrue(hasattr(__A , 'do_rescale' ) ) self.assertTrue(hasattr(__A , 'rescale_factor' ) ) self.assertTrue(hasattr(__A , 'do_resize' ) ) self.assertTrue(hasattr(__A , 'size' ) ) self.assertTrue(hasattr(__A , 'do_pad' ) ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1_333} ) self.assertEqual(image_processor.do_pad , __A ) __UpperCAmelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , __A ) def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): # Initialize image_processing __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input __UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __UpperCAmelCase , __UpperCAmelCase = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCAmelCase , __UpperCAmelCase = self.image_processor_tester.get_expected_values(__A , batched=__A ) __UpperCAmelCase = image_processing(__A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowerCamelCase ( self ): # Initialize image_processing __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input __UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __UpperCAmelCase , __UpperCAmelCase = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCAmelCase = image_processing(__A , return_tensors='pt' ).pixel_values __UpperCAmelCase , __UpperCAmelCase = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowerCamelCase ( self ): # Initialize image_processing __UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input __UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __UpperCAmelCase , __UpperCAmelCase = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCAmelCase = image_processing(__A , return_tensors='pt' ).pixel_values __UpperCAmelCase , __UpperCAmelCase = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __lowerCamelCase ( self ): # prepare image and target __UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: __UpperCAmelCase = json.loads(f.read() ) __UpperCAmelCase = {'image_id': 39_769, 'annotations': target} # encode them __UpperCAmelCase = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50' ) __UpperCAmelCase = image_processing(images=__A , annotations=__A , return_tensors='pt' ) # verify pixel values __UpperCAmelCase = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape , __A ) __UpperCAmelCase = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , __A , atol=1E-4 ) ) # verify area __UpperCAmelCase = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , __A ) ) # verify boxes __UpperCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , __A ) __UpperCAmelCase = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , __A , atol=1E-3 ) ) # verify image_id __UpperCAmelCase = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , __A ) ) # verify is_crowd __UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , __A ) ) # verify class_labels __UpperCAmelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , __A ) ) # verify orig_size __UpperCAmelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , __A ) ) # verify size __UpperCAmelCase = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , __A ) ) @slow def __lowerCamelCase ( self ): # prepare image, target and masks_path __UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: __UpperCAmelCase = json.loads(f.read() ) __UpperCAmelCase = {'file_name': '000000039769.png', 'image_id': 39_769, 'segments_info': target} __UpperCAmelCase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them __UpperCAmelCase = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50-panoptic' ) __UpperCAmelCase = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors='pt' ) # verify pixel values __UpperCAmelCase = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape , __A ) __UpperCAmelCase = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , __A , atol=1E-4 ) ) # verify area __UpperCAmelCase = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , __A ) ) # verify boxes __UpperCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , __A ) __UpperCAmelCase = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , __A , atol=1E-3 ) ) # verify image_id __UpperCAmelCase = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , __A ) ) # verify is_crowd __UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , __A ) ) # verify class_labels __UpperCAmelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , __A ) ) # verify masks __UpperCAmelCase = 822_873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , __A ) # verify orig_size __UpperCAmelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , __A ) ) # verify size __UpperCAmelCase = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , __A ) )
126
0
"""simple docstring""" from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("repo_id" , ["canonical_dataset_name", "org-name/dataset-name"] ) @pytest.mark.parametrize("path" , ["filename.csv", "filename with blanks.csv"] ) @pytest.mark.parametrize("revision" , [None, "v2"] ) def lowercase__ ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : Union[str, Any] ) -> Dict: '''simple docstring''' a__ : Optional[Any] = hf_hub_url(repo_id=lowerCAmelCase__ , path=lowerCAmelCase__ , revision=lowerCAmelCase__ ) assert url == F"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(lowerCAmelCase__ )}"
251
"""simple docstring""" import datasets from .evaluate import evaluate __UpperCAmelCase = '''\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } ''' __UpperCAmelCase = ''' This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. ''' __UpperCAmelCase = ''' Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the CUAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer \'aupr\': Area Under the Precision-Recall curve \'prec_at_80_recall\': Precision at 80% recall \'prec_at_90_recall\': Precision at 90% recall Examples: >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> cuad_metric = datasets.load_metric("cuad") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCAmelCase ( datasets.Metric ): def UpperCAmelCase ( self : Any ) -> str: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": { "id": datasets.Value("string" ), "prediction_text": datasets.features.Sequence(datasets.Value("string" ) ), }, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://www.atticusprojectai.org/cuad"] , reference_urls=["https://www.atticusprojectai.org/cuad"] , ) def UpperCAmelCase ( self : List[str] , a_ : str , a_ : Any ) -> List[Any]: '''simple docstring''' a__ : Tuple = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} a__ : List[Any] = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] a__ : Tuple = evaluate(dataset=a_ , predictions=a_ ) return score
251
1
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) a__ = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __magic_name__ ( self : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : bool , UpperCamelCase__ : str = None , UpperCamelCase__ : list = None): '''simple docstring''' snake_case__ = None snake_case__ = os.path.abspath(os.path.join("""examples""" , """by_feature""")) snake_case__ = os.path.abspath("""examples""") for item in os.listdir(UpperCamelCase__): if item not in EXCLUDE_EXAMPLES: snake_case__ = os.path.join(UpperCamelCase__ , UpperCamelCase__) if os.path.isfile(UpperCamelCase__) and ".py" in item_path: with self.subTest( tested_script=UpperCamelCase__ , feature_script=UpperCamelCase__ , tested_section="""main()""" if parser_only else """training_function()""" , ): snake_case__ = compare_against_test( os.path.join(UpperCamelCase__ , UpperCamelCase__) , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__) snake_case__ = """\n""".join(UpperCamelCase__) if special_strings is not None: for string in special_strings: snake_case__ = diff.replace(UpperCamelCase__ , """""") self.assertEqual(UpperCamelCase__ , """""") def __magic_name__ ( self : List[Any]): '''simple docstring''' self.one_complete_example("""complete_nlp_example.py""" , UpperCamelCase__) self.one_complete_example("""complete_nlp_example.py""" , UpperCamelCase__) def __magic_name__ ( self : List[str]): '''simple docstring''' snake_case__ = os.path.abspath(os.path.join("""examples""" , """cv_example.py""")) snake_case__ = [ """ """ * 1_6 + """{\n\n""", """ """ * 2_0 + """\"accuracy\": eval_metric[\"accuracy\"],\n\n""", """ """ * 2_0 + """\"f1\": eval_metric[\"f1\"],\n\n""", """ """ * 2_0 + """\"train_loss\": total_loss.item() / len(train_dataloader),\n\n""", """ """ * 2_0 + """\"epoch\": epoch,\n\n""", """ """ * 1_6 + """},\n\n""", """ """ * 1_6 + """step=epoch,\n""", """ """ * 1_2, """ """ * 8 + """for step, batch in enumerate(active_dataloader):\n""", ] self.one_complete_example("""complete_cv_example.py""" , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__) self.one_complete_example("""complete_cv_example.py""" , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : Optional[int] = False @classmethod def __magic_name__ ( cls : Union[str, Any]): '''simple docstring''' super().setUpClass() snake_case__ = tempfile.mkdtemp() snake_case__ = os.path.join(cls._tmpdir , """default_config.yml""") write_basic_config(save_location=cls.configPath) snake_case__ = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def __magic_name__ ( cls : Optional[Any]): '''simple docstring''' super().tearDownClass() shutil.rmtree(cls._tmpdir) def __magic_name__ ( self : Dict): '''simple docstring''' snake_case__ = F''' examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} '''.split() run_command(self._launch_args + testargs) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """epoch_0"""))) def __magic_name__ ( self : Optional[Any]): '''simple docstring''' snake_case__ = F''' examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} '''.split() snake_case__ = run_command(self._launch_args + testargs) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """step_2"""))) def __magic_name__ ( self : int): '''simple docstring''' snake_case__ = F''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0')} '''.split() snake_case__ = run_command(self._launch_args + testargs , return_stdout=UpperCamelCase__) self.assertNotIn("""epoch 0:""" , UpperCamelCase__) self.assertIn("""epoch 1:""" , UpperCamelCase__) def __magic_name__ ( self : List[str]): '''simple docstring''' snake_case__ = F''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2')} '''.split() snake_case__ = run_command(self._launch_args + testargs , return_stdout=UpperCamelCase__) if torch.cuda.is_available(): snake_case__ = torch.cuda.device_count() else: snake_case__ = 1 if num_processes > 1: self.assertNotIn("""epoch 0:""" , UpperCamelCase__) self.assertIn("""epoch 1:""" , UpperCamelCase__) else: self.assertIn("""epoch 0:""" , UpperCamelCase__) self.assertIn("""epoch 1:""" , UpperCamelCase__) @slow def __magic_name__ ( self : List[str]): '''simple docstring''' snake_case__ = """ examples/by_feature/cross_validation.py --num_folds 2 """.split() with mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """0"""}): snake_case__ = run_command(self._launch_args + testargs , return_stdout=UpperCamelCase__) snake_case__ = re.findall("""({.+})""" , UpperCamelCase__) snake_case__ = [r for r in results if """accuracy""" in r][-1] snake_case__ = ast.literal_eval(UpperCamelCase__) self.assertGreaterEqual(results["""accuracy"""] , 0.75) def __magic_name__ ( self : int): '''simple docstring''' snake_case__ = ["""examples/by_feature/multi_process_metrics.py"""] run_command(self._launch_args + testargs) @require_trackers @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""}) def __magic_name__ ( self : Optional[int]): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: snake_case__ = F''' examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} '''.split() run_command(self._launch_args + testargs) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase__ , """tracking"""))) def __magic_name__ ( self : List[str]): '''simple docstring''' snake_case__ = ["""examples/by_feature/gradient_accumulation.py"""] run_command(self._launch_args + testargs) def __magic_name__ ( self : Union[str, Any]): '''simple docstring''' snake_case__ = ["""examples/by_feature/local_sgd.py"""] run_command(self._launch_args + testargs)
654
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool a__ = { """Acehnese Arabic""": """ace_Arab""", """Acehnese Latin""": """ace_Latn""", """Mesopotamian Arabic""": """acm_Arab""", """Ta'izzi-Adeni Arabic""": """acq_Arab""", """Tunisian Arabic""": """aeb_Arab""", """Afrikaans""": """afr_Latn""", """South Levantine Arabic""": """ajp_Arab""", """Akan""": """aka_Latn""", """Amharic""": """amh_Ethi""", """North Levantine Arabic""": """apc_Arab""", """Modern Standard Arabic""": """arb_Arab""", """Modern Standard Arabic Romanized""": """arb_Latn""", """Najdi Arabic""": """ars_Arab""", """Moroccan Arabic""": """ary_Arab""", """Egyptian Arabic""": """arz_Arab""", """Assamese""": """asm_Beng""", """Asturian""": """ast_Latn""", """Awadhi""": """awa_Deva""", """Central Aymara""": """ayr_Latn""", """South Azerbaijani""": """azb_Arab""", """North Azerbaijani""": """azj_Latn""", """Bashkir""": """bak_Cyrl""", """Bambara""": """bam_Latn""", """Balinese""": """ban_Latn""", """Belarusian""": """bel_Cyrl""", """Bemba""": """bem_Latn""", """Bengali""": """ben_Beng""", """Bhojpuri""": """bho_Deva""", """Banjar Arabic""": """bjn_Arab""", """Banjar Latin""": """bjn_Latn""", """Standard Tibetan""": """bod_Tibt""", """Bosnian""": """bos_Latn""", """Buginese""": """bug_Latn""", """Bulgarian""": """bul_Cyrl""", """Catalan""": """cat_Latn""", """Cebuano""": """ceb_Latn""", """Czech""": """ces_Latn""", """Chokwe""": """cjk_Latn""", """Central Kurdish""": """ckb_Arab""", """Crimean Tatar""": """crh_Latn""", """Welsh""": """cym_Latn""", """Danish""": """dan_Latn""", """German""": """deu_Latn""", """Southwestern Dinka""": """dik_Latn""", """Dyula""": """dyu_Latn""", """Dzongkha""": """dzo_Tibt""", """Greek""": """ell_Grek""", """English""": """eng_Latn""", """Esperanto""": """epo_Latn""", """Estonian""": """est_Latn""", """Basque""": """eus_Latn""", """Ewe""": """ewe_Latn""", """Faroese""": """fao_Latn""", """Fijian""": """fij_Latn""", """Finnish""": """fin_Latn""", """Fon""": """fon_Latn""", """French""": """fra_Latn""", """Friulian""": """fur_Latn""", """Nigerian Fulfulde""": """fuv_Latn""", """Scottish Gaelic""": """gla_Latn""", """Irish""": """gle_Latn""", """Galician""": """glg_Latn""", """Guarani""": """grn_Latn""", """Gujarati""": """guj_Gujr""", """Haitian Creole""": """hat_Latn""", """Hausa""": """hau_Latn""", """Hebrew""": """heb_Hebr""", """Hindi""": """hin_Deva""", """Chhattisgarhi""": """hne_Deva""", """Croatian""": """hrv_Latn""", """Hungarian""": """hun_Latn""", """Armenian""": """hye_Armn""", """Igbo""": """ibo_Latn""", """Ilocano""": """ilo_Latn""", """Indonesian""": """ind_Latn""", """Icelandic""": """isl_Latn""", """Italian""": """ita_Latn""", """Javanese""": """jav_Latn""", """Japanese""": """jpn_Jpan""", """Kabyle""": """kab_Latn""", """Jingpho""": """kac_Latn""", """Kamba""": """kam_Latn""", """Kannada""": """kan_Knda""", """Kashmiri Arabic""": """kas_Arab""", """Kashmiri Devanagari""": """kas_Deva""", """Georgian""": """kat_Geor""", """Central Kanuri Arabic""": """knc_Arab""", """Central Kanuri Latin""": """knc_Latn""", """Kazakh""": """kaz_Cyrl""", """Kabiyè""": """kbp_Latn""", """Kabuverdianu""": """kea_Latn""", """Khmer""": """khm_Khmr""", """Kikuyu""": """kik_Latn""", """Kinyarwanda""": """kin_Latn""", """Kyrgyz""": """kir_Cyrl""", """Kimbundu""": """kmb_Latn""", """Northern Kurdish""": """kmr_Latn""", """Kikongo""": """kon_Latn""", """Korean""": """kor_Hang""", """Lao""": """lao_Laoo""", """Ligurian""": """lij_Latn""", """Limburgish""": """lim_Latn""", """Lingala""": """lin_Latn""", """Lithuanian""": """lit_Latn""", """Lombard""": """lmo_Latn""", """Latgalian""": """ltg_Latn""", """Luxembourgish""": """ltz_Latn""", """Luba-Kasai""": """lua_Latn""", """Ganda""": """lug_Latn""", """Luo""": """luo_Latn""", """Mizo""": """lus_Latn""", """Standard Latvian""": """lvs_Latn""", """Magahi""": """mag_Deva""", """Maithili""": """mai_Deva""", """Malayalam""": """mal_Mlym""", """Marathi""": """mar_Deva""", """Minangkabau Arabic """: """min_Arab""", """Minangkabau Latin""": """min_Latn""", """Macedonian""": """mkd_Cyrl""", """Plateau Malagasy""": """plt_Latn""", """Maltese""": """mlt_Latn""", """Meitei Bengali""": """mni_Beng""", """Halh Mongolian""": """khk_Cyrl""", """Mossi""": """mos_Latn""", """Maori""": """mri_Latn""", """Burmese""": """mya_Mymr""", """Dutch""": """nld_Latn""", """Norwegian Nynorsk""": """nno_Latn""", """Norwegian Bokmål""": """nob_Latn""", """Nepali""": """npi_Deva""", """Northern Sotho""": """nso_Latn""", """Nuer""": """nus_Latn""", """Nyanja""": """nya_Latn""", """Occitan""": """oci_Latn""", """West Central Oromo""": """gaz_Latn""", """Odia""": """ory_Orya""", """Pangasinan""": """pag_Latn""", """Eastern Panjabi""": """pan_Guru""", """Papiamento""": """pap_Latn""", """Western Persian""": """pes_Arab""", """Polish""": """pol_Latn""", """Portuguese""": """por_Latn""", """Dari""": """prs_Arab""", """Southern Pashto""": """pbt_Arab""", """Ayacucho Quechua""": """quy_Latn""", """Romanian""": """ron_Latn""", """Rundi""": """run_Latn""", """Russian""": """rus_Cyrl""", """Sango""": """sag_Latn""", """Sanskrit""": """san_Deva""", """Santali""": """sat_Olck""", """Sicilian""": """scn_Latn""", """Shan""": """shn_Mymr""", """Sinhala""": """sin_Sinh""", """Slovak""": """slk_Latn""", """Slovenian""": """slv_Latn""", """Samoan""": """smo_Latn""", """Shona""": """sna_Latn""", """Sindhi""": """snd_Arab""", """Somali""": """som_Latn""", """Southern Sotho""": """sot_Latn""", """Spanish""": """spa_Latn""", """Tosk Albanian""": """als_Latn""", """Sardinian""": """srd_Latn""", """Serbian""": """srp_Cyrl""", """Swati""": """ssw_Latn""", """Sundanese""": """sun_Latn""", """Swedish""": """swe_Latn""", """Swahili""": """swh_Latn""", """Silesian""": """szl_Latn""", """Tamil""": """tam_Taml""", """Tatar""": """tat_Cyrl""", """Telugu""": """tel_Telu""", """Tajik""": """tgk_Cyrl""", """Tagalog""": """tgl_Latn""", """Thai""": """tha_Thai""", """Tigrinya""": """tir_Ethi""", """Tamasheq Latin""": """taq_Latn""", """Tamasheq Tifinagh""": """taq_Tfng""", """Tok Pisin""": """tpi_Latn""", """Tswana""": """tsn_Latn""", """Tsonga""": """tso_Latn""", """Turkmen""": """tuk_Latn""", """Tumbuka""": """tum_Latn""", """Turkish""": """tur_Latn""", """Twi""": """twi_Latn""", """Central Atlas Tamazight""": """tzm_Tfng""", """Uyghur""": """uig_Arab""", """Ukrainian""": """ukr_Cyrl""", """Umbundu""": """umb_Latn""", """Urdu""": """urd_Arab""", """Northern Uzbek""": """uzn_Latn""", """Venetian""": """vec_Latn""", """Vietnamese""": """vie_Latn""", """Waray""": """war_Latn""", """Wolof""": """wol_Latn""", """Xhosa""": """xho_Latn""", """Eastern Yiddish""": """ydd_Hebr""", """Yoruba""": """yor_Latn""", """Yue Chinese""": """yue_Hant""", """Chinese Simplified""": """zho_Hans""", """Chinese Traditional""": """zho_Hant""", """Standard Malay""": """zsm_Latn""", """Zulu""": """zul_Latn""", } class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : List[str] = '''facebook/nllb-200-distilled-600M''' _lowercase : List[Any] = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) _lowercase : Optional[int] = '''translator''' _lowercase : Optional[Any] = AutoTokenizer _lowercase : Dict = AutoModelForSeqaSeqLM _lowercase : List[str] = LANGUAGE_CODES _lowercase : Optional[Any] = ['''text''', '''text''', '''text'''] _lowercase : Tuple = ['''text'''] def __magic_name__ ( self : Any , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int): '''simple docstring''' if src_lang not in self.lang_to_code: raise ValueError(F'''{src_lang} is not a supported language.''') if tgt_lang not in self.lang_to_code: raise ValueError(F'''{tgt_lang} is not a supported language.''') snake_case__ = self.lang_to_code[src_lang] snake_case__ = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( UpperCamelCase__ , return_tensors="""pt""" , src_lang=UpperCamelCase__ , tgt_lang=UpperCamelCase__) def __magic_name__ ( self : Dict , UpperCamelCase__ : Dict): '''simple docstring''' return self.model.generate(**UpperCamelCase__) def __magic_name__ ( self : List[str] , UpperCamelCase__ : Dict): '''simple docstring''' return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=UpperCamelCase__)
654
1
def snake_case_ (__A : str ) -> bool: return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def snake_case_ (__A : str ) -> bool: __lowerCAmelCase : Tuple = credit_card_number __lowerCAmelCase : Dict = 0 __lowerCAmelCase : Optional[Any] = len(__A ) - 2 for i in range(__A , -1 , -2 ): # double the value of every second digit __lowerCAmelCase : List[str] = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 1_0 digit += 1 __lowerCAmelCase : str = cc_number[:i] + str(__A ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(__A ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 1_0 == 0 def snake_case_ (__A : str ) -> bool: __lowerCAmelCase : Any = f'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(f'''{error_message} it has nonnumerical characters.''' ) return False if not 1_3 <= len(__A ) <= 1_6: print(f'''{error_message} of its length.''' ) return False if not validate_initial_digits(__A ): print(f'''{error_message} of its first two digits.''' ) return False if not luhn_validation(__A ): print(f'''{error_message} it fails the Luhn check.''' ) return False print(f'''{credit_card_number} is a valid credit card number.''' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
218
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = { """configuration_mobilevit""": ["""MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileViTConfig""", """MobileViTOnnxConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["""MobileViTFeatureExtractor"""] __UpperCAmelCase = ["""MobileViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ """MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileViTForImageClassification""", """MobileViTForSemanticSegmentation""", """MobileViTModel""", """MobileViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ """TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileViTForImageClassification""", """TFMobileViTForSemanticSegmentation""", """TFMobileViTModel""", """TFMobileViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
218
1
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class lowerCamelCase_ : def __init__( self , lowerCamelCase_ , lowerCamelCase_=13 , lowerCamelCase_=30 , lowerCamelCase_=2 , lowerCamelCase_=3 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=32 , lowerCamelCase_=2 , lowerCamelCase_=4 , lowerCamelCase_=37 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=10 , lowerCamelCase_=0.02 , lowerCamelCase_=3 , lowerCamelCase_=None , lowerCamelCase_=2 , ) -> List[Any]: """simple docstring""" _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) _UpperCamelCase = (image_size // patch_size) ** 2 _UpperCamelCase = num_patches + 2 def lowercase ( self ) -> int: """simple docstring""" _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = self.get_config() return config, pixel_values, labels def lowercase ( self ) -> Optional[int]: """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = TFDeiTModel(config=lowerCamelCase_ ) _UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Dict: """simple docstring""" _UpperCamelCase = TFDeiTForMaskedImageModeling(config=lowerCamelCase_ ) _UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _UpperCamelCase = 1 _UpperCamelCase = TFDeiTForMaskedImageModeling(lowerCamelCase_ ) _UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Any: """simple docstring""" _UpperCamelCase = self.type_sequence_label_size _UpperCamelCase = TFDeiTForImageClassification(lowerCamelCase_ ) _UpperCamelCase = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCamelCase = 1 _UpperCamelCase = TFDeiTForImageClassification(lowerCamelCase_ ) _UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase ( self ) -> Optional[int]: """simple docstring""" _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class lowerCamelCase_ ( lowercase , lowercase , unittest.TestCase ): __lowercase : Tuple = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) __lowercase : Union[str, Any] = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) __lowercase : List[Any] = False __lowercase : Optional[int] = False __lowercase : Union[str, Any] = False __lowercase : Dict = False def lowercase ( self ) -> List[str]: """simple docstring""" _UpperCamelCase = TFDeiTModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 ) def lowercase ( self ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def lowercase ( self ) -> List[Any]: """simple docstring""" pass def lowercase ( self ) -> int: """simple docstring""" _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) _UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ , tf.keras.layers.Dense ) ) def lowercase ( self ) -> Any: """simple docstring""" _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowerCamelCase_ ) _UpperCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowercase ( self ) -> Any: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowercase ( self ) -> List[Any]: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def lowercase ( self ) -> int: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False ) -> Dict: """simple docstring""" _UpperCamelCase = super()._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def lowercase ( self ) -> List[str]: """simple docstring""" for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDeiTModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def _lowercase ( ) -> str: """simple docstring""" _UpperCamelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class lowerCamelCase_ ( unittest.TestCase ): @cached_property def lowercase ( self ) -> str: """simple docstring""" return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def lowercase ( self ) -> str: """simple docstring""" _UpperCamelCase = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=lowerCamelCase_ , return_tensors="tf" ) # forward pass _UpperCamelCase = model(**lowerCamelCase_ ) # verify the logits _UpperCamelCase = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) _UpperCamelCase = tf.constant([-1.02_66, 0.19_12, -1.28_61] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1E-4 ) )
147
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowerCamelCase_ ( lowercase ): __lowercase : str = (KDPMaDiscreteScheduler,) __lowercase : List[Any] = 10 def lowercase ( self , **lowerCamelCase_ ) -> List[str]: """simple docstring""" _UpperCamelCase = { "num_train_timesteps": 11_00, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowerCamelCase_ ) return config def lowercase ( self ) -> Optional[int]: """simple docstring""" for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCamelCase_ ) def lowercase ( self ) -> Optional[Any]: """simple docstring""" for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ): self.check_over_configs(beta_start=lowerCamelCase_ , beta_end=lowerCamelCase_ ) def lowercase ( self ) -> List[str]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCamelCase_ ) def lowercase ( self ) -> Any: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase_ ) def lowercase ( self ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config(prediction_type="v_prediction" ) _UpperCamelCase = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase = sample.to(lowerCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): _UpperCamelCase = scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ ) _UpperCamelCase = model(lowerCamelCase_ , lowerCamelCase_ ) _UpperCamelCase = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(lowerCamelCase_ ) ) _UpperCamelCase = torch.mean(torch.abs(lowerCamelCase_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.69_34E-07 ) < 1E-2 assert abs(result_mean.item() - 6.11_12E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.6_93_42_86_50_17_09_72E-07 ) < 1E-2 assert abs(result_mean.item() - 0.00_02 ) < 1E-3 def lowercase ( self ) -> int: """simple docstring""" if torch_device == "mps": return _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase = sample.to(lowerCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): _UpperCamelCase = scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ ) _UpperCamelCase = model(lowerCamelCase_ , lowerCamelCase_ ) _UpperCamelCase = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(lowerCamelCase_ ) ) _UpperCamelCase = torch.mean(torch.abs(lowerCamelCase_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 def lowercase ( self ) -> List[str]: """simple docstring""" if torch_device == "mps": return _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase_ ) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter.to(lowerCamelCase_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _UpperCamelCase = scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ ) _UpperCamelCase = model(lowerCamelCase_ , lowerCamelCase_ ) _UpperCamelCase = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(lowerCamelCase_ ) ) _UpperCamelCase = torch.mean(torch.abs(lowerCamelCase_ ) ) if str(lowerCamelCase_ ).startswith("cpu" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3
147
1
'''simple docstring''' import sys A_ = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def A ( _UpperCAmelCase : str ) -> int: '''simple docstring''' __lowerCAmelCase : Dict = 1 for digit in s: product *= int(_UpperCAmelCase ) return product def A ( _UpperCAmelCase : str = N ) -> int: '''simple docstring''' __lowerCAmelCase : List[Any] = -sys.maxsize - 1 __lowerCAmelCase : int = n[:1_3] __lowerCAmelCase : Dict = 1_3 while cur_index < len(_UpperCAmelCase ) - 1_3: if int(n[cur_index] ) >= int(substr[0] ): __lowerCAmelCase : Union[str, Any] = substr[1:] + n[cur_index] cur_index += 1 else: __lowerCAmelCase : str = max(_UpperCAmelCase ,str_eval(_UpperCAmelCase ) ) __lowerCAmelCase : Tuple = n[cur_index : cur_index + 1_3] cur_index += 1_3 return largest_product if __name__ == "__main__": print(F'''{solution() = }''')
123
'''simple docstring''' from math import factorial A_ = {str(digit): factorial(digit) for digit in range(10)} def A ( _UpperCAmelCase : int ) -> int: '''simple docstring''' if not isinstance(_UpperCAmelCase ,_UpperCAmelCase ): raise TypeError('Parameter number must be int' ) if number < 0: raise ValueError('Parameter number must be greater than or equal to 0' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(_UpperCAmelCase ) ) def A ( _UpperCAmelCase : int = 6_0 ,_UpperCAmelCase : int = 1_0_0_0_0_0_0 ) -> int: '''simple docstring''' if not isinstance(_UpperCAmelCase ,_UpperCAmelCase ) or not isinstance(_UpperCAmelCase ,_UpperCAmelCase ): raise TypeError('Parameters chain_length and number_limit must be int' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( 'Parameters chain_length and number_limit must be greater than 0' ) # the counter for the chains with the exact desired length __lowerCAmelCase : Any = 0 # the cached sizes of the previous chains __lowerCAmelCase : dict[int, int] = {} for start_chain_element in range(1 ,_UpperCAmelCase ): # The temporary set will contain the elements of the chain __lowerCAmelCase : Union[str, Any] = set() __lowerCAmelCase : Union[str, Any] = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. __lowerCAmelCase : List[str] = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(_UpperCAmelCase ) chain_set_length += 1 __lowerCAmelCase : Optional[Any] = digit_factorial_sum(_UpperCAmelCase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] __lowerCAmelCase : Any = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution()}''')
123
1
"""simple docstring""" import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def A__ ( A__ ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = int(A__ ) _UpperCAmelCase = t // 3600, (t // 60) % 60, t % 60 return F"""{h}:{m:02d}:{s:02d}""" if h != 0 else F"""{m:02d}:{s:02d}""" def A__ ( A__ , A__ , A__ , A__ , A__=300 ) -> List[str]: '''simple docstring''' return F""" <div> {prefix} <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress> {label} </div> """ def A__ ( A__ ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = '''<table border="1" class="dataframe">\n''' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += F""" <th>{i}</th>\n""" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: _UpperCAmelCase = F"""{elt:.6f}""" if isinstance(A__ , A__ ) else str(A__ ) html_code += F""" <td>{elt}</td>\n""" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class a : """simple docstring""" A__ : str = 5 A__ : Tuple = 0.2 def __init__( self , snake_case_ , snake_case_ = None , snake_case_ = True , snake_case_ = None , snake_case_ = 300 , ) -> Dict: _UpperCAmelCase = total _UpperCAmelCase = '''''' if prefix is None else prefix _UpperCAmelCase = leave _UpperCAmelCase = parent _UpperCAmelCase = width _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None def __A ( self , snake_case_ , snake_case_ = False , snake_case_ = None ) -> Optional[Any]: _UpperCAmelCase = value if comment is not None: _UpperCAmelCase = comment if self.last_value is None: _UpperCAmelCase = time.time() _UpperCAmelCase = value _UpperCAmelCase = None _UpperCAmelCase = self.warmup _UpperCAmelCase = 1 self.update_bar(_A ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 _UpperCAmelCase = time.time() _UpperCAmelCase = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: _UpperCAmelCase = self.elapsed_time / (value - self.start_value) else: _UpperCAmelCase = None if value >= self.total: _UpperCAmelCase = self.total _UpperCAmelCase = None if not self.leave: self.close() elif self.average_time_per_item is not None: _UpperCAmelCase = self.average_time_per_item * (self.total - value) self.update_bar(_A ) _UpperCAmelCase = value _UpperCAmelCase = current_time if self.average_time_per_item is None: _UpperCAmelCase = 1 else: _UpperCAmelCase = max(int(self.update_every / self.average_time_per_item ) , 1 ) def __A ( self , snake_case_ , snake_case_=None ) -> Tuple: _UpperCAmelCase = ''' ''' * (len(str(self.total ) ) - len(str(_A ) )) + str(_A ) if self.elapsed_time is None: _UpperCAmelCase = F"""[{spaced_value}/{self.total} : < :""" elif self.predicted_remaining is None: _UpperCAmelCase = F"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )}""" else: _UpperCAmelCase = ( F"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <""" F""" {format_time(self.predicted_remaining )}""" ) self.label += F""", {1/self.average_time_per_item:.2f} it/s""" self.label += "]" if self.comment is None or len(self.comment ) == 0 else F""", {self.comment}]""" self.display() def __A ( self ) -> List[str]: _UpperCAmelCase = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: _UpperCAmelCase = disp.display(disp.HTML(self.html_code ) , display_id=_A ) else: self.output.update(disp.HTML(self.html_code ) ) def __A ( self ) -> Any: if self.parent is None and self.output is not None: self.output.update(disp.HTML("" ) ) class a ( _lowerCamelCase ): """simple docstring""" def __init__( self , snake_case_ , snake_case_=None ) -> Dict: super().__init__(_A ) _UpperCAmelCase = None if column_names is None else [column_names] _UpperCAmelCase = None def __A ( self ) -> Any: _UpperCAmelCase = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: _UpperCAmelCase = disp.display(disp.HTML(self.html_code ) , display_id=_A ) else: self.output.update(disp.HTML(self.html_code ) ) def __A ( self , snake_case_ ) -> Union[str, Any]: if self.inner_table is None: _UpperCAmelCase = [list(values.keys() ), list(values.values() )] else: _UpperCAmelCase = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(_A ) _UpperCAmelCase = columns self.inner_table.append([values[c] for c in columns] ) def __A ( self , snake_case_ , snake_case_=None , snake_case_=300 ) -> Any: _UpperCAmelCase = NotebookProgressBar(_A , prefix=_A , parent=self , width=_A ) return self.child_bar def __A ( self ) -> Dict: _UpperCAmelCase = None self.display() class a ( _lowerCamelCase ): """simple docstring""" def __init__( self ) -> Optional[int]: _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = False def __A ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> int: _UpperCAmelCase = '''Epoch''' if args.evaluation_strategy == IntervalStrategy.EPOCH else '''Step''' _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = [self.first_column] + ['''Training Loss'''] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append("Validation Loss" ) _UpperCAmelCase = NotebookTrainingTracker(state.max_steps , _A ) def __A ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> List[Any]: _UpperCAmelCase = int(state.epoch ) if int(state.epoch ) == state.epoch else F"""{state.epoch:.2f}""" self.training_tracker.update( state.global_step + 1 , comment=F"""Epoch {epoch}/{state.num_train_epochs}""" , force_update=self._force_next_update , ) _UpperCAmelCase = False def __A ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=None , **snake_case_ ) -> Tuple: if not has_length(_A ): return if self.prediction_bar is None: if self.training_tracker is not None: _UpperCAmelCase = self.training_tracker.add_child(len(_A ) ) else: _UpperCAmelCase = NotebookProgressBar(len(_A ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def __A ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> int: if self.prediction_bar is not None: self.prediction_bar.close() _UpperCAmelCase = None def __A ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=None , **snake_case_ ) -> Union[str, Any]: if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: _UpperCAmelCase = {'''Training Loss''': logs['''loss''']} # First column is necessarily Step sine we're not in epoch eval strategy _UpperCAmelCase = state.global_step self.training_tracker.write_line(_A ) def __A ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=None , **snake_case_ ) -> List[Any]: if self.training_tracker is not None: _UpperCAmelCase = {'''Training Loss''': '''No log''', '''Validation Loss''': '''No log'''} for log in reversed(state.log_history ): if "loss" in log: _UpperCAmelCase = log['''loss'''] break if self.first_column == "Epoch": _UpperCAmelCase = int(state.epoch ) else: _UpperCAmelCase = state.global_step _UpperCAmelCase = '''eval''' for k in metrics: if k.endswith("_loss" ): _UpperCAmelCase = re.sub(R"\_loss$" , "" , _A ) _UpperCAmelCase = metrics.pop("total_flos" , _A ) _UpperCAmelCase = metrics.pop("epoch" , _A ) _UpperCAmelCase = metrics.pop(F"""{metric_key_prefix}_runtime""" , _A ) _UpperCAmelCase = metrics.pop(F"""{metric_key_prefix}_samples_per_second""" , _A ) _UpperCAmelCase = metrics.pop(F"""{metric_key_prefix}_steps_per_second""" , _A ) _UpperCAmelCase = metrics.pop(F"""{metric_key_prefix}_jit_compilation_time""" , _A ) for k, v in metrics.items(): if k == F"""{metric_key_prefix}_loss""": _UpperCAmelCase = v else: _UpperCAmelCase = k.split("_" ) _UpperCAmelCase = ''' '''.join([part.capitalize() for part in splits[1:]] ) _UpperCAmelCase = v self.training_tracker.write_line(_A ) self.training_tracker.remove_child() _UpperCAmelCase = None # Evaluation takes a long time so we should force the next update. _UpperCAmelCase = True def __A ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> Dict: self.training_tracker.update( state.global_step , comment=F"""Epoch {int(state.epoch )}/{state.num_train_epochs}""" , force_update=_A ) _UpperCAmelCase = None
426
import unittest from knapsack import greedy_knapsack as kp class _A ( unittest.TestCase ): def __a ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase : Dict = [10, 20, 30, 40, 50, 60] lowercase : Union[str, Any] = [2, 4, 6, 8, 10, 12] lowercase : Optional[int] = 100 self.assertEqual(kp.calc_profit(_A , _A , _A ) , 210 ) def __a ( self : Dict ) -> int: """simple docstring""" self.assertRaisesRegex(_A , '''max_weight must greater than zero.''' ) def __a ( self : str ) -> Dict: """simple docstring""" self.assertRaisesRegex(_A , '''Weight can not be negative.''' ) def __a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" self.assertRaisesRegex(_A , '''Profit can not be negative.''' ) def __a ( self : Tuple ) -> Dict: """simple docstring""" self.assertRaisesRegex(_A , '''max_weight must greater than zero.''' ) def __a ( self : List[str] ) -> List[Any]: """simple docstring""" self.assertRaisesRegex( _A , '''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
217
0
"""simple docstring""" def lowerCamelCase (a_ :str , a_ :List[Any] , a_ :str , a_ :Union[str, Any]) -> Any: if height >= 1: move_tower(height - 1 , a_ , a_ , a_) move_disk(a_ , a_) move_tower(height - 1 , a_ , a_ , a_) def lowerCamelCase (a_ :List[Any] , a_ :Tuple) -> str: print('''moving disk from''' , a_ , '''to''' , a_) def lowerCamelCase () -> Union[str, Any]: lowercase :Optional[int] = int(input('''Height of hanoi: ''').strip()) move_tower(a_ , '''A''' , '''B''' , '''C''') if __name__ == "__main__": main()
475
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. UpperCAmelCase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class __magic_name__ ( unittest.TestCase ): __A : int = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __A : List[str] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: __A : int = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: __A : Optional[int] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def __snake_case ( self : Tuple , snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : int ): '''simple docstring''' lowercase :Optional[int] = ZeroShotClassificationPipeline( model=snake_case__ , tokenizer=snake_case__ , candidate_labels=['''polics''', '''health'''] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def __snake_case ( self : Any , snake_case__ : Union[str, Any] , snake_case__ : Tuple ): '''simple docstring''' lowercase :int = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics''' ) self.assertEqual(snake_case__ , {'''sequence''': ANY(snake_case__ ), '''labels''': [ANY(snake_case__ )], '''scores''': [ANY(snake_case__ )]} ) # No kwarg lowercase :Tuple = classifier('''Who are you voting for in 2020?''' , ['''politics'''] ) self.assertEqual(snake_case__ , {'''sequence''': ANY(snake_case__ ), '''labels''': [ANY(snake_case__ )], '''scores''': [ANY(snake_case__ )]} ) lowercase :Tuple = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics'''] ) self.assertEqual(snake_case__ , {'''sequence''': ANY(snake_case__ ), '''labels''': [ANY(snake_case__ )], '''scores''': [ANY(snake_case__ )]} ) lowercase :Union[str, Any] = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics, public health''' ) self.assertEqual( snake_case__ , {'''sequence''': ANY(snake_case__ ), '''labels''': [ANY(snake_case__ ), ANY(snake_case__ )], '''scores''': [ANY(snake_case__ ), ANY(snake_case__ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) lowercase :Optional[Any] = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health'''] ) self.assertEqual( snake_case__ , {'''sequence''': ANY(snake_case__ ), '''labels''': [ANY(snake_case__ ), ANY(snake_case__ )], '''scores''': [ANY(snake_case__ ), ANY(snake_case__ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) lowercase :Optional[Any] = classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''This text is about {}''' ) self.assertEqual(snake_case__ , {'''sequence''': ANY(snake_case__ ), '''labels''': [ANY(snake_case__ )], '''scores''': [ANY(snake_case__ )]} ) # https://github.com/huggingface/transformers/issues/13846 lowercase :Optional[Any] = classifier(['''I am happy'''] , ['''positive''', '''negative'''] ) self.assertEqual( snake_case__ , [ {'''sequence''': ANY(snake_case__ ), '''labels''': [ANY(snake_case__ ), ANY(snake_case__ )], '''scores''': [ANY(snake_case__ ), ANY(snake_case__ )]} for i in range(1 ) ] , ) lowercase :Tuple = classifier(['''I am happy''', '''I am sad'''] , ['''positive''', '''negative'''] ) self.assertEqual( snake_case__ , [ {'''sequence''': ANY(snake_case__ ), '''labels''': [ANY(snake_case__ ), ANY(snake_case__ )], '''scores''': [ANY(snake_case__ ), ANY(snake_case__ )]} for i in range(2 ) ] , ) with self.assertRaises(snake_case__ ): classifier('''''' , candidate_labels='''politics''' ) with self.assertRaises(snake_case__ ): classifier(snake_case__ , candidate_labels='''politics''' ) with self.assertRaises(snake_case__ ): classifier('''Who are you voting for in 2020?''' , candidate_labels='''''' ) with self.assertRaises(snake_case__ ): classifier('''Who are you voting for in 2020?''' , candidate_labels=snake_case__ ) with self.assertRaises(snake_case__ ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''Not formatting template''' , ) with self.assertRaises(snake_case__ ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template=snake_case__ , ) self.run_entailment_id(snake_case__ ) def __snake_case ( self : Any , snake_case__ : Pipeline ): '''simple docstring''' lowercase :List[Any] = zero_shot_classifier.model.config lowercase :int = config.labelaid lowercase :str = zero_shot_classifier.entailment_id lowercase :Dict = {'''LABEL_0''': 0, '''LABEL_1''': 1, '''LABEL_2''': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) lowercase :Optional[Any] = {'''entailment''': 0, '''neutral''': 1, '''contradiction''': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) lowercase :Tuple = {'''ENTAIL''': 0, '''NON-ENTAIL''': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) lowercase :str = {'''ENTAIL''': 2, '''NEUTRAL''': 1, '''CONTR''': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) lowercase :Optional[Any] = original_labelaid self.assertEqual(snake_case__ , zero_shot_classifier.entailment_id ) @require_torch def __snake_case ( self : List[str] ): '''simple docstring''' lowercase :List[Any] = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( '''Who are you voting for in 2020?''' * 1_0_0 , candidate_labels=['''politics''', '''public health''', '''science'''] ) @require_torch def __snake_case ( self : Union[str, Any] ): '''simple docstring''' lowercase :str = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) lowercase :Any = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(snake_case__ ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.3_33, 0.3_33, 0.3_33], } , ) @require_tf def __snake_case ( self : List[str] ): '''simple docstring''' lowercase :Tuple = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''tf''' , ) lowercase :List[Any] = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(snake_case__ ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.3_33, 0.3_33, 0.3_33], } , ) @slow @require_torch def __snake_case ( self : Optional[int] ): '''simple docstring''' lowercase :Dict = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''pt''' ) lowercase :Union[str, Any] = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(snake_case__ ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.9_76, 0.0_15, 0.0_09], } , ) lowercase :Optional[Any] = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=snake_case__ , ) self.assertEqual( nested_simplify(snake_case__ ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , ) @slow @require_tf def __snake_case ( self : Any ): '''simple docstring''' lowercase :str = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''tf''' ) lowercase :Optional[int] = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(snake_case__ ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.9_76, 0.0_15, 0.0_09], } , ) lowercase :str = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=snake_case__ , ) self.assertEqual( nested_simplify(snake_case__ ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , )
475
1
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class UpperCAmelCase( UpperCamelCase_ ): """simple docstring""" def __a ( self ) -> Any: """simple docstring""" lowercase__ : Tuple = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , "tf_padding" ) ) self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , "depth_multiplier" ) ) class UpperCAmelCase: """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=3 , lowerCamelCase=32 , lowerCamelCase=0.25 , lowerCamelCase=8 , lowerCamelCase=True , lowerCamelCase=1024 , lowerCamelCase=32 , lowerCamelCase="relu6" , lowerCamelCase=0.1 , lowerCamelCase=0.02 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=10 , lowerCamelCase=None , ) -> str: """simple docstring""" lowercase__ : List[str] = parent lowercase__ : List[str] = batch_size lowercase__ : Optional[Any] = num_channels lowercase__ : Dict = image_size lowercase__ : int = depth_multiplier lowercase__ : int = min_depth lowercase__ : Any = tf_padding lowercase__ : List[str] = int(last_hidden_size * depth_multiplier ) lowercase__ : List[Any] = output_stride lowercase__ : Any = hidden_act lowercase__ : List[Any] = classifier_dropout_prob lowercase__ : Dict = use_labels lowercase__ : int = is_training lowercase__ : Optional[int] = num_labels lowercase__ : List[str] = initializer_range lowercase__ : int = scope def __a ( self ) -> Optional[Any]: """simple docstring""" lowercase__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Tuple = None lowercase__ : Optional[int] = None if self.use_labels: lowercase__ : Tuple = ids_tensor([self.batch_size] , self.num_labels ) lowercase__ : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowercase__ : Any = self.get_config() return config, pixel_values, labels, pixel_labels def __a ( self ) -> Any: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> str: """simple docstring""" lowercase__ : str = MobileNetVaModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowercase__ : Optional[Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> str: """simple docstring""" lowercase__ : str = self.num_labels lowercase__ : int = MobileNetVaForImageClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowercase__ : List[str] = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self ) -> int: """simple docstring""" lowercase__ : str = self.prepare_config_and_inputs() lowercase__ : Dict = config_and_inputs lowercase__ : Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a : Union[str, Any] = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () a : int = ( {"""feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification} if is_torch_available() else {} ) a : Optional[Any] = False a : int = False a : List[Any] = False a : str = False def __a ( self ) -> List[str]: """simple docstring""" lowercase__ : List[str] = MobileNetVaModelTester(self ) lowercase__ : str = MobileNetVaConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE ) def __a ( self ) -> int: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def __a ( self ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def __a ( self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def __a ( self ) -> str: """simple docstring""" pass def __a ( self ) -> Dict: """simple docstring""" lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(__SCREAMING_SNAKE_CASE ) lowercase__ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : str = [*signature.parameters.keys()] lowercase__ : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def __a ( self ) -> List[Any]: """simple docstring""" lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def __a ( self ) -> List[str]: """simple docstring""" def check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ): lowercase__ : int = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowercase__ : str = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) lowercase__ : Optional[Any] = outputs.hidden_states lowercase__ : Optional[Any] = 26 self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Any = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Tuple = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __a ( self ) -> Dict: """simple docstring""" lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) @slow def __a ( self ) -> Optional[Any]: """simple docstring""" for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Optional[int] = MobileNetVaModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def snake_case_ ( ) -> str: lowercase__ : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase( unittest.TestCase ): """simple docstring""" @cached_property def __a ( self ) -> Union[str, Any]: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def __a ( self ) -> Optional[int]: """simple docstring""" lowercase__ : List[str] = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(__SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = self.default_image_processor lowercase__ : str = prepare_img() lowercase__ : Any = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="pt" ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): lowercase__ : Any = model(**__SCREAMING_SNAKE_CASE ) # verify the logits lowercase__ : Tuple = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) )
397
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase =logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): UpperCamelCase__ : List[Any] = OrderedDict() for key, value in state_dict.items(): if key.startswith('''module.encoder''' ): UpperCamelCase__ : Any = key.replace('''module.encoder''' , '''glpn.encoder''' ) if key.startswith('''module.decoder''' ): UpperCamelCase__ : Optional[Any] = key.replace('''module.decoder''' , '''decoder.stages''' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 UpperCamelCase__ : Union[str, Any] = key[key.find('''patch_embed''' ) + len('''patch_embed''' )] UpperCamelCase__ : Tuple = key.replace(f'''patch_embed{idx}''' , f'''patch_embeddings.{int(UpperCamelCase__ )-1}''' ) if "norm" in key: UpperCamelCase__ : Dict = key.replace('''norm''' , '''layer_norm''' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 UpperCamelCase__ : int = key[key.find('''glpn.encoder.layer_norm''' ) + len('''glpn.encoder.layer_norm''' )] UpperCamelCase__ : Tuple = key.replace(f'''layer_norm{idx}''' , f'''layer_norm.{int(UpperCamelCase__ )-1}''' ) if "layer_norm1" in key: UpperCamelCase__ : Tuple = key.replace('''layer_norm1''' , '''layer_norm_1''' ) if "layer_norm2" in key: UpperCamelCase__ : Union[str, Any] = key.replace('''layer_norm2''' , '''layer_norm_2''' ) if "block" in key: # replace for example block1 by block.0 UpperCamelCase__ : Optional[Any] = key[key.find('''block''' ) + len('''block''' )] UpperCamelCase__ : str = key.replace(f'''block{idx}''' , f'''block.{int(UpperCamelCase__ )-1}''' ) if "attn.q" in key: UpperCamelCase__ : Dict = key.replace('''attn.q''' , '''attention.self.query''' ) if "attn.proj" in key: UpperCamelCase__ : Any = key.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in key: UpperCamelCase__ : List[Any] = key.replace('''attn''' , '''attention.self''' ) if "fc1" in key: UpperCamelCase__ : int = key.replace('''fc1''' , '''dense1''' ) if "fc2" in key: UpperCamelCase__ : str = key.replace('''fc2''' , '''dense2''' ) if "linear_pred" in key: UpperCamelCase__ : List[str] = key.replace('''linear_pred''' , '''classifier''' ) if "linear_fuse" in key: UpperCamelCase__ : Union[str, Any] = key.replace('''linear_fuse.conv''' , '''linear_fuse''' ) UpperCamelCase__ : Optional[int] = key.replace('''linear_fuse.bn''' , '''batch_norm''' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 UpperCamelCase__ : str = key[key.find('''linear_c''' ) + len('''linear_c''' )] UpperCamelCase__ : Tuple = key.replace(f'''linear_c{idx}''' , f'''linear_c.{int(UpperCamelCase__ )-1}''' ) if "bot_conv" in key: UpperCamelCase__ : List[Any] = key.replace('''bot_conv''' , '''0.convolution''' ) if "skip_conv1" in key: UpperCamelCase__ : str = key.replace('''skip_conv1''' , '''1.convolution''' ) if "skip_conv2" in key: UpperCamelCase__ : Tuple = key.replace('''skip_conv2''' , '''2.convolution''' ) if "fusion1" in key: UpperCamelCase__ : List[Any] = key.replace('''fusion1''' , '''1.fusion''' ) if "fusion2" in key: UpperCamelCase__ : Tuple = key.replace('''fusion2''' , '''2.fusion''' ) if "fusion3" in key: UpperCamelCase__ : int = key.replace('''fusion3''' , '''3.fusion''' ) if "fusion" in key and "conv" in key: UpperCamelCase__ : List[str] = key.replace('''conv''' , '''convolutional_layer''' ) if key.startswith('''module.last_layer_depth''' ): UpperCamelCase__ : Tuple = key.replace('''module.last_layer_depth''' , '''head.head''' ) UpperCamelCase__ : List[str] = value return new_state_dict def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) UpperCamelCase__ : Optional[Any] = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) UpperCamelCase__ : int = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict UpperCamelCase__ : Union[str, Any] = kv_weight[ : config.hidden_sizes[i], : ] UpperCamelCase__ : Tuple = kv_bias[: config.hidden_sizes[i]] UpperCamelCase__ : Tuple = kv_weight[ config.hidden_sizes[i] :, : ] UpperCamelCase__ : Optional[Any] = kv_bias[config.hidden_sizes[i] :] def SCREAMING_SNAKE_CASE_ ( ): UpperCamelCase__ : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCamelCase__ : Any = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return image @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False , UpperCamelCase__=None ): UpperCamelCase__ : Any = GLPNConfig(hidden_sizes=[6_4, 1_2_8, 3_2_0, 5_1_2] , decoder_hidden_size=6_4 , depths=[3, 8, 2_7, 3] ) # load image processor (only resize + rescale) UpperCamelCase__ : str = GLPNImageProcessor() # prepare image UpperCamelCase__ : List[str] = prepare_img() UpperCamelCase__ : List[str] = image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ).pixel_values logger.info('''Converting model...''' ) # load original state dict UpperCamelCase__ : Tuple = torch.load(UpperCamelCase__ , map_location=torch.device('''cpu''' ) ) # rename keys UpperCamelCase__ : Optional[Any] = rename_keys(UpperCamelCase__ ) # key and value matrices need special treatment read_in_k_v(UpperCamelCase__ , UpperCamelCase__ ) # create HuggingFace model and load state dict UpperCamelCase__ : str = GLPNForDepthEstimation(UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() # forward pass UpperCamelCase__ : Union[str, Any] = model(UpperCamelCase__ ) UpperCamelCase__ : Optional[int] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: UpperCamelCase__ : Tuple = torch.tensor( [[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] ) elif "kitti" in model_name: UpperCamelCase__ : Union[str, Any] = torch.tensor( [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] ) else: raise ValueError(f'''Unknown model name: {model_name}''' ) UpperCamelCase__ : Optional[Any] = torch.Size([1, 4_8_0, 6_4_0] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) print('''Looks ok!''' ) # finally, push to hub if required if push_to_hub: logger.info('''Pushing model and image processor to the hub...''' ) model.push_to_hub( repo_path_or_name=Path(UpperCamelCase__ , UpperCamelCase__ ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=UpperCamelCase__ , ) image_processor.push_to_hub( repo_path_or_name=Path(UpperCamelCase__ , UpperCamelCase__ ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=UpperCamelCase__ , ) if __name__ == "__main__": lowerCamelCase =argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) parser.add_argument( "--model_name", default="glpn-kitti", type=str, help="Name of the model in case you're pushing to the hub.", ) lowerCamelCase =parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
285
0
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __UpperCAmelCase ( )-> List[str]: """simple docstring""" lowercase = { '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } lowercase = Dataset.from_dict(UpperCAmelCase ) return dataset class __lowercase ( _A ): def __a ( self : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase = get_dataset() lowercase = make_duplicate_clusters(__lowerCamelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def __a ( self : Optional[int] ) -> Any: '''simple docstring''' lowercase = get_dataset() lowercase ,lowercase = deduplicate_dataset(__lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , 2 ) print(__lowerCamelCase ) self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , __lowerCamelCase )
707
from __future__ import annotations from collections.abc import MutableSequence class __lowercase : def __init__( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : MutableSequence[float] ) -> None: '''simple docstring''' if len(__lowerCamelCase ) != degree + 1: raise ValueError( '''The number of coefficients should be equal to the degree + 1.''' ) lowercase = list(__lowerCamelCase ) lowercase = degree def __add__( self : Any , __lowerCamelCase : Polynomial ) -> Polynomial: '''simple docstring''' if self.degree > polynomial_a.degree: lowercase = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , __lowerCamelCase ) else: lowercase = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , __lowerCamelCase ) def __sub__( self : str , __lowerCamelCase : Polynomial ) -> Polynomial: '''simple docstring''' return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self : str ) -> Polynomial: '''simple docstring''' return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self : List[str] , __lowerCamelCase : Polynomial ) -> Polynomial: '''simple docstring''' lowercase = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , __lowerCamelCase ) def __a ( self : List[str] , __lowerCamelCase : int | float ) -> int | float: '''simple docstring''' lowercase = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : str ) -> str: '''simple docstring''' lowercase = '''''' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(__lowerCamelCase ) return polynomial def __repr__( self : Tuple ) -> str: '''simple docstring''' return self.__str__() def __a ( self : Union[str, Any] ) -> Polynomial: '''simple docstring''' lowercase = [0] * self.degree for i in range(self.degree ): lowercase = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , __lowerCamelCase ) def __a ( self : Union[str, Any] , __lowerCamelCase : int | float = 0 ) -> Polynomial: '''simple docstring''' lowercase = [0] * (self.degree + 2) lowercase = constant for i in range(self.degree + 1 ): lowercase = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , __lowerCamelCase ) def __eq__( self : Tuple , __lowerCamelCase : object ) -> bool: '''simple docstring''' if not isinstance(__lowerCamelCase , __lowerCamelCase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : Tuple , __lowerCamelCase : object ) -> bool: '''simple docstring''' return not self.__eq__(__lowerCamelCase )
479
0