code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import warnings warnings.warn( '''memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ''' '''`from accelerate import find_executable_batch_size` to avoid this warning.''', FutureWarning, )
250
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __magic_name__ = { '''configuration_vivit''': ['''VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VivitConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''VivitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VivitModel''', '''VivitPreTrainedModel''', '''VivitForVideoClassification''', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
250
1
'''simple docstring''' UpperCamelCase_ = [ '''Audio''', '''Array2D''', '''Array3D''', '''Array4D''', '''Array5D''', '''ClassLabel''', '''Features''', '''Sequence''', '''Value''', '''Image''', '''Translation''', '''TranslationVariableLanguages''', ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
320
'''simple docstring''' UpperCamelCase_ = {'''a''': ['''c''', '''b'''], '''b''': ['''d''', '''e'''], '''c''': [], '''d''': [], '''e''': []} UpperCamelCase_ = ['''a''', '''b''', '''c''', '''d''', '''e'''] def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = start # add current to visited visited.append(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :int = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: SCREAMING_SNAKE_CASE__ :Dict = topological_sort(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # if all neighbors visited add current to sort sort.append(UpperCAmelCase__ ) # if all vertices haven't been visited select a new one to visit if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): for vertice in vertices: if vertice not in visited: SCREAMING_SNAKE_CASE__ :Optional[int] = topological_sort(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # return sort return sort if __name__ == "__main__": UpperCamelCase_ = topological_sort('''a''', [], []) print(sort)
320
1
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated _lowerCamelCase : int = collections.namedtuple("""_Datasets""", ["""train""", """validation""", """test"""]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ _lowerCamelCase : List[str] = """https://storage.googleapis.com/cvdf-datasets/mnist/""" def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: """simple docstring""" A__ = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=lowercase_ )[0] @deprecated(lowercase_ , '''Please use tf.data to implement this functionality.''' ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[Any]: """simple docstring""" print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=lowercase_ ) as bytestream: A__ = _readaa(lowercase_ ) if magic != 2_051: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) A__ = _readaa(lowercase_ ) A__ = _readaa(lowercase_ ) A__ = _readaa(lowercase_ ) A__ = bytestream.read(rows * cols * num_images ) A__ = numpy.frombuffer(lowercase_ , dtype=numpy.uinta ) A__ = data.reshape(lowercase_ , lowercase_ , lowercase_ , 1 ) return data @deprecated(lowercase_ , '''Please use tf.one_hot on tensors.''' ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" A__ = labels_dense.shape[0] A__ = numpy.arange(lowercase_ ) * num_classes A__ = numpy.zeros((num_labels, num_classes) ) A__ = 1 return labels_one_hot @deprecated(lowercase_ , '''Please use tf.data to implement this functionality.''' ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=False , lowercase_=10 ) -> List[Any]: """simple docstring""" print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=lowercase_ ) as bytestream: A__ = _readaa(lowercase_ ) if magic != 2_049: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) A__ = _readaa(lowercase_ ) A__ = bytestream.read(lowercase_ ) A__ = numpy.frombuffer(lowercase_ , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(lowercase_ , lowercase_ ) return labels class UpperCamelCase_ : '''simple docstring''' @deprecated( UpperCAmelCase__ , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int=False , UpperCAmelCase__ : int=False , UpperCAmelCase__ : str=dtypes.floataa , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Dict=None , ) ->List[Any]: '''simple docstring''' A__ , A__ = random_seed.get_seed(UpperCAmelCase__) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda) A__ = dtypes.as_dtype(UpperCAmelCase__).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype) if fake_data: A__ = 10_000 A__ = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f"""images.shape: {images.shape} labels.shape: {labels.shape}""" A__ = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 A__ = images.reshape( images.shape[0] , images.shape[1] * images.shape[2]) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. A__ = images.astype(numpy.floataa) A__ = numpy.multiply(UpperCAmelCase__ , 1.0 / 255.0) A__ = images A__ = labels A__ = 0 A__ = 0 @property def SCREAMING_SNAKE_CASE ( self : int) ->Dict: '''simple docstring''' return self._images @property def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: '''simple docstring''' return self._labels @property def SCREAMING_SNAKE_CASE ( self : List[Any]) ->int: '''simple docstring''' return self._num_examples @property def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Tuple: '''simple docstring''' return self._epochs_completed def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[Any]=False , UpperCAmelCase__ : int=True) ->Optional[int]: '''simple docstring''' if fake_data: A__ = [1] * 784 A__ = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(UpperCAmelCase__)], [fake_label for _ in range(UpperCAmelCase__)], ) A__ = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: A__ = numpy.arange(self._num_examples) numpy.random.shuffle(UpperCAmelCase__) A__ = self.images[perma] A__ = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch A__ = self._num_examples - start A__ = self._images[start : self._num_examples] A__ = self._labels[start : self._num_examples] # Shuffle the data if shuffle: A__ = numpy.arange(self._num_examples) numpy.random.shuffle(UpperCAmelCase__) A__ = self.images[perm] A__ = self.labels[perm] # Start next epoch A__ = 0 A__ = batch_size - rest_num_examples A__ = self._index_in_epoch A__ = self._images[start:end] A__ = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0), ) else: self._index_in_epoch += batch_size A__ = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(lowercase_ , '''Please write your own downloading logic.''' ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: """simple docstring""" if not gfile.Exists(lowercase_ ): gfile.MakeDirs(lowercase_ ) A__ = os.path.join(lowercase_ , lowercase_ ) if not gfile.Exists(lowercase_ ): urllib.request.urlretrieve(lowercase_ , lowercase_ ) # noqa: S310 with gfile.GFile(lowercase_ ) as f: A__ = f.size() print('''Successfully downloaded''' , lowercase_ , lowercase_ , '''bytes.''' ) return filepath @deprecated( lowercase_ , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=False , lowercase_=False , lowercase_=dtypes.floataa , lowercase_=True , lowercase_=5_000 , lowercase_=None , lowercase_=DEFAULT_SOURCE_URL , ) -> Any: """simple docstring""" if fake_data: def fake(): return _DataSet( [] , [] , fake_data=lowercase_ , one_hot=lowercase_ , dtype=lowercase_ , seed=lowercase_ ) A__ = fake() A__ = fake() A__ = fake() return _Datasets(train=lowercase_ , validation=lowercase_ , test=lowercase_ ) if not source_url: # empty string check A__ = DEFAULT_SOURCE_URL A__ = '''train-images-idx3-ubyte.gz''' A__ = '''train-labels-idx1-ubyte.gz''' A__ = '''t10k-images-idx3-ubyte.gz''' A__ = '''t10k-labels-idx1-ubyte.gz''' A__ = _maybe_download( lowercase_ , lowercase_ , source_url + train_images_file ) with gfile.Open(lowercase_ , '''rb''' ) as f: A__ = _extract_images(lowercase_ ) A__ = _maybe_download( lowercase_ , lowercase_ , source_url + train_labels_file ) with gfile.Open(lowercase_ , '''rb''' ) as f: A__ = _extract_labels(lowercase_ , one_hot=lowercase_ ) A__ = _maybe_download( lowercase_ , lowercase_ , source_url + test_images_file ) with gfile.Open(lowercase_ , '''rb''' ) as f: A__ = _extract_images(lowercase_ ) A__ = _maybe_download( lowercase_ , lowercase_ , source_url + test_labels_file ) with gfile.Open(lowercase_ , '''rb''' ) as f: A__ = _extract_labels(lowercase_ , one_hot=lowercase_ ) if not 0 <= validation_size <= len(lowercase_ ): A__ = ( '''Validation size should be between 0 and ''' f"""{len(lowercase_ )}. Received: {validation_size}.""" ) raise ValueError(lowercase_ ) A__ = train_images[:validation_size] A__ = train_labels[:validation_size] A__ = train_images[validation_size:] A__ = train_labels[validation_size:] A__ = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} A__ = _DataSet(lowercase_ , lowercase_ , **lowercase_ ) A__ = _DataSet(lowercase_ , lowercase_ , **lowercase_ ) A__ = _DataSet(lowercase_ , lowercase_ , **lowercase_ ) return _Datasets(train=lowercase_ , validation=lowercase_ , test=lowercase_ )
87
import gc import threading import time import psutil import torch class lowerCAmelCase : def __init__( self : str ) -> Union[str, Any]: lowerCamelCase__ : Optional[Any] = psutil.Process() lowerCamelCase__ : Union[str, Any] = False def A_ ( self : Optional[int] ) -> int: lowerCamelCase__ : Optional[Any] = -1 while True: lowerCamelCase__ : Dict = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def A_ ( self : Tuple ) -> Dict: lowerCamelCase__ : List[Any] = True lowerCamelCase__ : List[str] = threading.Thread(target=self.peak_monitor ) lowerCamelCase__ : Union[str, Any] = True self.thread.start() def A_ ( self : str ) -> Dict: lowerCamelCase__ : int = False self.thread.join() return self.cpu_memory_peak _UpperCAmelCase : Dict = PeakCPUMemory() def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: # Time lowerCamelCase__ : List[Any] = {'time': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem lowerCamelCase__ : List[str] = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): lowerCamelCase__ : Union[str, Any] = torch.cuda.memory_allocated(_UpperCAmelCase ) torch.cuda.reset_peak_memory_stats() return measures def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Tuple: # Time lowerCamelCase__ : Optional[int] = {'time': time.time() - start_measures['time']} gc.collect() torch.cuda.empty_cache() # CPU mem lowerCamelCase__ : Dict = (psutil.Process().memory_info().rss - start_measures['cpu']) / 2**20 lowerCamelCase__ : int = (cpu_peak_tracker.stop() - start_measures['cpu']) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): lowerCamelCase__ : List[str] = (torch.cuda.memory_allocated(_UpperCAmelCase ) - start_measures[str(_UpperCAmelCase )]) / 2**20 lowerCamelCase__ : Optional[Any] = (torch.cuda.max_memory_allocated(_UpperCAmelCase ) - start_measures[str(_UpperCAmelCase )]) / 2**20 return measures def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Dict: print(F"""{description}:""" ) print(F"""- Time: {measures["time"]:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(F"""- GPU {i} allocated: {measures[str(_UpperCAmelCase )]:.2f}MiB""" ) lowerCamelCase__ : List[str] = measures[F"""{i}-peak"""] print(F"""- GPU {i} peak: {peak:.2f}MiB""" ) print(F"""- CPU RAM allocated: {measures["cpu"]:.2f}MiB""" ) print(F"""- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB""" )
295
0
import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) A : List[str] = logging.getLogger() def _lowerCAmelCase ( _lowerCAmelCase ) -> str: '''simple docstring''' __snake_case = {} __snake_case = os.path.join(_lowerCAmelCase , "all_results.json" ) if os.path.exists(_lowerCAmelCase ): with open(_lowerCAmelCase , "r" ) as f: __snake_case = json.load(_lowerCAmelCase ) else: raise ValueError(F'''can\'t find {path}''' ) return results A : int = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class UpperCamelCase( _SCREAMING_SNAKE_CASE ): def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' import xla_spawn __snake_case = self.get_auto_remove_tmp_dir() __snake_case = f''' ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(A_ , "argv" , A_ ): __snake_case = time() xla_spawn.main() __snake_case = time() __snake_case = get_results(A_ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 5_0_0 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' import xla_spawn __snake_case = "\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n ".split() with patch.object(A_ , "argv" , A_ ): xla_spawn.main()
703
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCamelCase: def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any]=1_3 , SCREAMING_SNAKE_CASE : Optional[Any]=6_4 , SCREAMING_SNAKE_CASE : Union[str, Any]=2 , SCREAMING_SNAKE_CASE : Union[str, Any]=3 , SCREAMING_SNAKE_CASE : List[str]=True , SCREAMING_SNAKE_CASE : List[Any]=True , SCREAMING_SNAKE_CASE : Any=3_2 , SCREAMING_SNAKE_CASE : Any=5 , SCREAMING_SNAKE_CASE : List[Any]=4 , SCREAMING_SNAKE_CASE : Optional[int]=3_7 , SCREAMING_SNAKE_CASE : Union[str, Any]="gelu" , SCREAMING_SNAKE_CASE : Dict=0.1 , SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE : Optional[int]=1_0 , SCREAMING_SNAKE_CASE : int=0.02 , SCREAMING_SNAKE_CASE : Dict=[1, 1_6, 4, 4] , SCREAMING_SNAKE_CASE : List[str]=None , ) -> int: '''simple docstring''' __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = is_training __snake_case = use_labels __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = scope __snake_case = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size __snake_case = (self.image_size // 3_2) ** 2 __snake_case = num_patches + 1 def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> int: '''simple docstring''' __snake_case = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [4, 8, 1_6, 3_2], "num_groups": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=SCREAMING_SNAKE_CASE , ) def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str ) -> int: '''simple docstring''' __snake_case = ViTHybridModel(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() __snake_case = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] ) -> List[Any]: '''simple docstring''' __snake_case = self.type_sequence_label_size __snake_case = ViTHybridForImageClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() __snake_case = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> str: '''simple docstring''' __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase( _a , _a , unittest.TestCase ): snake_case_ : Union[str, Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () snake_case_ : str = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) snake_case_ : Tuple = False snake_case_ : Optional[Any] = False snake_case_ : Dict = False def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> int: '''simple docstring''' __snake_case = ViTHybridModelTester(self ) __snake_case = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> int: '''simple docstring''' __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE , nn.Linear ) ) def SCREAMING_SNAKE_CASE_ ( self : str ) -> Optional[Any]: '''simple docstring''' __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(SCREAMING_SNAKE_CASE ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ["pixel_values"] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Dict: '''simple docstring''' __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : int ) -> Optional[Any]: '''simple docstring''' __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[str]: '''simple docstring''' __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = _config_zero_init(SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: __snake_case = model_class(config=SCREAMING_SNAKE_CASE ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": __snake_case = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def SCREAMING_SNAKE_CASE_ ( self : int ) -> Tuple: '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = ViTHybridModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( ) -> List[str]: '''simple docstring''' __snake_case = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCamelCase( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int: '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE_ ( self : int ) -> str: '''simple docstring''' __snake_case = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( SCREAMING_SNAKE_CASE ) __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="pt" ).to(SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): __snake_case = model(**SCREAMING_SNAKE_CASE ) # verify the logits __snake_case = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) __snake_case = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) ) @slow @require_accelerate def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]: '''simple docstring''' __snake_case = ViTHybridImageProcessor.from_pretrained("google/vit-hybrid-base-bit-384" ) __snake_case = ViTHybridForImageClassification.from_pretrained("google/vit-hybrid-base-bit-384" , device_map="auto" ) __snake_case = prepare_img() __snake_case = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="pt" ) __snake_case = model(**SCREAMING_SNAKE_CASE ) __snake_case = outputs.logits # model predicts one of the 1000 ImageNet classes __snake_case = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , "tabby, tabby cat" )
473
0
'''simple docstring''' from __future__ import annotations def UpperCamelCase ( a , a , a , a ) -> Optional[Any]: # noqa: E741 '''simple docstring''' while r - l > 1: __magic_name__ = (l + r) // 2 if v[m] >= key: __magic_name__ = m else: __magic_name__ = m # noqa: E741 return r def UpperCamelCase ( a ) -> int: '''simple docstring''' if len(a ) == 0: return 0 __magic_name__ = [0] * len(a ) __magic_name__ = 1 __magic_name__ = v[0] for i in range(1 , len(a ) ): if v[i] < tail[0]: __magic_name__ = v[i] elif v[i] > tail[length - 1]: __magic_name__ = v[i] length += 1 else: __magic_name__ = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
432
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _lowerCAmelCase = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def UpperCamelCase ( a , a , a=None , a=None , a=None , a=None , a=None , a=None , ) -> Tuple: '''simple docstring''' if attention_mask is None: __magic_name__ = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: __magic_name__ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: __magic_name__ = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __magic_name__ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __magic_name__ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _SCREAMING_SNAKE_CASE : def __init__( self : Tuple , a__ : Union[str, Any] , a__ : Dict=13 , a__ : Tuple=7 , a__ : Any=True , a__ : Optional[int]=False , a__ : Dict=99 , a__ : str=16 , a__ : Tuple=2 , a__ : Union[str, Any]=4 , a__ : List[str]=4 , a__ : Dict="gelu" , a__ : List[str]=0.1 , a__ : str=0.1 , a__ : Optional[Any]=32 , a__ : Dict=2 , a__ : List[str]=1 , a__ : Tuple=0 , a__ : Optional[Any]=0.02 , ): __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = seq_length __magic_name__ = is_training __magic_name__ = use_labels __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = eos_token_id __magic_name__ = pad_token_id __magic_name__ = bos_token_id __magic_name__ = initializer_range def snake_case__ ( self : List[str] ): __magic_name__ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __magic_name__ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __magic_name__ = shift_tokens_right(a__ , 1 , 2 ) __magic_name__ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=a__ , ) __magic_name__ = prepare_blenderbot_inputs_dict(a__ , a__ , a__ ) return config, inputs_dict def snake_case__ ( self : int ): __magic_name__ , __magic_name__ = self.prepare_config_and_inputs() return config, inputs_dict def snake_case__ ( self : Dict , a__ : Tuple , a__ : List[Any] , a__ : Union[str, Any] ): __magic_name__ = 20 __magic_name__ = model_class_name(a__ ) __magic_name__ = model.encode(inputs_dict['''input_ids'''] ) __magic_name__ , __magic_name__ = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) __magic_name__ = model.init_cache(decoder_input_ids.shape[0] , a__ , a__ ) __magic_name__ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) __magic_name__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __magic_name__ = model.decode( decoder_input_ids[:, :-1] , a__ , decoder_attention_mask=a__ , past_key_values=a__ , decoder_position_ids=a__ , ) __magic_name__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) __magic_name__ = model.decode( decoder_input_ids[:, -1:] , a__ , decoder_attention_mask=a__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=a__ , ) __magic_name__ = model.decode(a__ , a__ ) __magic_name__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def snake_case__ ( self : str , a__ : Tuple , a__ : List[Any] , a__ : Union[str, Any] ): __magic_name__ = 20 __magic_name__ = model_class_name(a__ ) __magic_name__ = model.encode(inputs_dict['''input_ids'''] ) __magic_name__ , __magic_name__ = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) __magic_name__ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __magic_name__ = model.init_cache(decoder_input_ids.shape[0] , a__ , a__ ) __magic_name__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __magic_name__ = model.decode( decoder_input_ids[:, :-1] , a__ , decoder_attention_mask=a__ , past_key_values=a__ , decoder_position_ids=a__ , ) __magic_name__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) __magic_name__ = model.decode( decoder_input_ids[:, -1:] , a__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=a__ , decoder_position_ids=a__ , ) __magic_name__ = model.decode(a__ , a__ , decoder_attention_mask=a__ ) __magic_name__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): __SCREAMING_SNAKE_CASE :Optional[int] = 99 def snake_case__ ( self : int ): __magic_name__ = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) __magic_name__ = input_ids.shape[0] __magic_name__ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def snake_case__ ( self : Any ): __magic_name__ , __magic_name__ , __magic_name__ = self._get_config_and_data() __magic_name__ = FlaxBlenderbotForConditionalGeneration(a__ ) __magic_name__ = lm_model(input_ids=a__ ) __magic_name__ = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , a__ ) def snake_case__ ( self : List[Any] ): __magic_name__ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) __magic_name__ = FlaxBlenderbotForConditionalGeneration(a__ ) __magic_name__ = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) __magic_name__ = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) __magic_name__ = lm_model(input_ids=a__ , decoder_input_ids=a__ ) __magic_name__ = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , a__ ) def snake_case__ ( self : int ): __magic_name__ = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) __magic_name__ = shift_tokens_right(a__ , 1 , 2 ) __magic_name__ = np.equal(a__ , 1 ).astype(np.floataa ).sum() __magic_name__ = np.equal(a__ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(a__ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class _SCREAMING_SNAKE_CASE ( __a ,unittest.TestCase ,__a ): __SCREAMING_SNAKE_CASE :List[str] = True __SCREAMING_SNAKE_CASE :Union[str, Any] = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) __SCREAMING_SNAKE_CASE :List[Any] = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def snake_case__ ( self : Union[str, Any] ): __magic_name__ = FlaxBlenderbotModelTester(self ) def snake_case__ ( self : List[str] ): __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(a__ , a__ , a__ ) def snake_case__ ( self : str ): __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(a__ , a__ , a__ ) def snake_case__ ( self : Any ): __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __magic_name__ = self._prepare_for_class(a__ , a__ ) __magic_name__ = model_class(a__ ) @jax.jit def encode_jitted(a__ : Union[str, Any] , a__ : Tuple=None , **a__ : Tuple ): return model.encode(input_ids=a__ , attention_mask=a__ ) with self.subTest('''JIT Enabled''' ): __magic_name__ = encode_jitted(**a__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __magic_name__ = encode_jitted(**a__ ).to_tuple() self.assertEqual(len(a__ ) , len(a__ ) ) for jitted_output, output in zip(a__ , a__ ): self.assertEqual(jitted_output.shape , output.shape ) def snake_case__ ( self : Any ): __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __magic_name__ = model_class(a__ ) __magic_name__ = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) __magic_name__ = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(a__ : Union[str, Any] , a__ : List[Any] , a__ : Dict ): return model.decode( decoder_input_ids=a__ , decoder_attention_mask=a__ , encoder_outputs=a__ , ) with self.subTest('''JIT Enabled''' ): __magic_name__ = decode_jitted(**a__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __magic_name__ = decode_jitted(**a__ ).to_tuple() self.assertEqual(len(a__ ) , len(a__ ) ) for jitted_output, output in zip(a__ , a__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def snake_case__ ( self : Optional[Any] ): for model_class_name in self.all_model_classes: __magic_name__ = model_class_name.from_pretrained('''facebook/blenderbot-400M-distill''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __magic_name__ = np.ones((1, 1) ) * model.config.eos_token_id __magic_name__ = model(a__ ) self.assertIsNotNone(a__ ) @unittest.skipUnless(jax_device != '''cpu''' , '''3B test too slow on CPU.''' ) @slow def snake_case__ ( self : List[Any] ): __magic_name__ = {'''num_beams''': 1, '''early_stopping''': True, '''min_length''': 15, '''max_length''': 25} __magic_name__ = {'''skip_special_tokens''': True, '''clean_up_tokenization_spaces''': True} __magic_name__ = FlaxBlenderbotForConditionalGeneration.from_pretrained('''facebook/blenderbot-3B''' , from_pt=a__ ) __magic_name__ = BlenderbotTokenizer.from_pretrained('''facebook/blenderbot-3B''' ) __magic_name__ = ['''Sam'''] __magic_name__ = tokenizer(a__ , return_tensors='''jax''' ) __magic_name__ = model.generate(**a__ , **a__ ) __magic_name__ = '''Sam is a great name. It means "sun" in Gaelic.''' __magic_name__ = tokenizer.batch_decode(a__ , **a__ ) assert generated_txt[0].strip() == tgt_text
432
1
"""simple docstring""" class a : """simple docstring""" def __init__( self: int ): """simple docstring""" A__ = 0 A__ = 0 A__ = {} def UpperCamelCase ( self: int , UpperCamelCase: Any ): """simple docstring""" if vertex not in self.adjacency: A__ = {} self.num_vertices += 1 def UpperCamelCase ( self: Optional[int] , UpperCamelCase: List[Any] , UpperCamelCase: List[Any] , UpperCamelCase: List[Any] ): """simple docstring""" self.add_vertex(UpperCamelCase ) self.add_vertex(UpperCamelCase ) if head == tail: return A__ = weight A__ = weight def UpperCamelCase ( self: Optional[int] ): """simple docstring""" A__ = self.get_edges() for edge in edges: A__ , A__ , A__ = edge edges.remove((tail, head, weight) ) for i in range(len(UpperCamelCase ) ): A__ = list(edges[i] ) edges.sort(key=lambda UpperCamelCase : e[2] ) for i in range(len(UpperCamelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: A__ = edges[i][2] + 1 for edge in edges: A__ , A__ , A__ = edge A__ = weight A__ = weight def __str__( self: Any ): """simple docstring""" A__ = """""" for tail in self.adjacency: for head in self.adjacency[tail]: A__ = self.adjacency[head][tail] string += f"""{head} -> {tail} == {weight}\n""" return string.rstrip("""\n""" ) def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def UpperCamelCase ( self: List[Any] ): """simple docstring""" return self.adjacency.keys() @staticmethod def UpperCamelCase ( UpperCamelCase: str=None , UpperCamelCase: Union[str, Any]=None ): """simple docstring""" A__ = Graph() if vertices is None: A__ = [] if edges is None: A__ = [] for vertex in vertices: g.add_vertex(UpperCamelCase ) for edge in edges: g.add_edge(*UpperCamelCase ) return g class a : """simple docstring""" def __init__( self: int ): """simple docstring""" A__ = {} A__ = {} def __len__( self: Dict ): """simple docstring""" return len(self.parent ) def UpperCamelCase ( self: int , UpperCamelCase: Any ): """simple docstring""" if item in self.parent: return self.find(UpperCamelCase ) A__ = item A__ = 0 return item def UpperCamelCase ( self: int , UpperCamelCase: Any ): """simple docstring""" if item not in self.parent: return self.make_set(UpperCamelCase ) if item != self.parent[item]: A__ = self.find(self.parent[item] ) return self.parent[item] def UpperCamelCase ( self: List[str] , UpperCamelCase: Any , UpperCamelCase: str ): """simple docstring""" A__ = self.find(UpperCamelCase ) A__ = self.find(UpperCamelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: A__ = roota return roota if self.rank[roota] < self.rank[roota]: A__ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 A__ = roota return roota return None @staticmethod def UpperCamelCase ( UpperCamelCase: Any ): """simple docstring""" A__ = graph.num_vertices A__ = Graph.UnionFind() A__ = [] while num_components > 1: A__ = {} for vertex in graph.get_vertices(): A__ = -1 A__ = graph.get_edges() for edge in edges: A__ , A__ , A__ = edge edges.remove((tail, head, weight) ) for edge in edges: A__ , A__ , A__ = edge A__ = union_find.find(UpperCamelCase ) A__ = union_find.find(UpperCamelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: A__ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: A__ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: A__ , A__ , A__ = cheap_edge[vertex] if union_find.find(UpperCamelCase ) != union_find.find(UpperCamelCase ): union_find.union(UpperCamelCase , UpperCamelCase ) mst_edges.append(cheap_edge[vertex] ) A__ = num_components - 1 A__ = Graph.build(edges=UpperCamelCase ) return mst
701
"""simple docstring""" import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_ : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ : Optional[Any] = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class a ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = "segformer" def __init__( self: Optional[Any] , UpperCamelCase: Union[str, Any]=3 , UpperCamelCase: int=4 , UpperCamelCase: int=[2, 2, 2, 2] , UpperCamelCase: List[str]=[8, 4, 2, 1] , UpperCamelCase: List[Any]=[32, 64, 1_60, 2_56] , UpperCamelCase: Any=[7, 3, 3, 3] , UpperCamelCase: Union[str, Any]=[4, 2, 2, 2] , UpperCamelCase: Tuple=[1, 2, 5, 8] , UpperCamelCase: Optional[int]=[4, 4, 4, 4] , UpperCamelCase: Dict="gelu" , UpperCamelCase: Optional[Any]=0.0 , UpperCamelCase: List[str]=0.0 , UpperCamelCase: Union[str, Any]=0.1 , UpperCamelCase: List[Any]=0.02 , UpperCamelCase: int=0.1 , UpperCamelCase: Optional[int]=1e-6 , UpperCamelCase: int=2_56 , UpperCamelCase: Union[str, Any]=2_55 , **UpperCamelCase: Optional[Any] , ): """simple docstring""" super().__init__(**UpperCamelCase ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , UpperCamelCase , ) A__ = num_channels A__ = num_encoder_blocks A__ = depths A__ = sr_ratios A__ = hidden_sizes A__ = patch_sizes A__ = strides A__ = mlp_ratios A__ = num_attention_heads A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = classifier_dropout_prob A__ = initializer_range A__ = drop_path_rate A__ = layer_norm_eps A__ = decoder_hidden_size A__ = kwargs.get("""reshape_last_stage""" , UpperCamelCase ) A__ = semantic_loss_ignore_index class a ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = version.parse("1.11" ) @property def UpperCamelCase ( self: List[str] ): """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCamelCase ( self: int ): """simple docstring""" return 1e-4 @property def UpperCamelCase ( self: Optional[int] ): """simple docstring""" return 12
500
0
"""simple docstring""" import argparse import os import re snake_case_ : List[str] = """src/transformers/models/auto""" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict snake_case_ : List[str] = re.compile(r"""[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict""") # re pattern that matches identifiers in mappings snake_case_ : Optional[Any] = re.compile(r"""\s*\(\s*\"(\S[^\"]+)\"""") def lowercase_ ( _lowercase : Tuple , _lowercase : Any = False ): '''simple docstring''' with open(a_ , "r" , encoding="utf-8" ) as f: UpperCAmelCase : List[str] = f.read() UpperCAmelCase : int = content.split("\n" ) UpperCAmelCase : str = [] UpperCAmelCase : Union[str, Any] = 0 while line_idx < len(a_ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: UpperCAmelCase : Union[str, Any] = len(re.search(R"^(\s*)\S" , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(" " * indent + "(" ): new_lines.append(lines[line_idx] ) line_idx += 1 UpperCAmelCase : Union[str, Any] = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": UpperCAmelCase : List[str] = line_idx while not lines[line_idx].startswith(" " * indent + ")" ): line_idx += 1 blocks.append("\n".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers UpperCAmelCase : int = sorted(a_ , key=lambda _lowercase : _re_identifier.search(a_ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(a_ , "w" , encoding="utf-8" ) as f: f.write("\n".join(a_ ) ) elif "\n".join(a_ ) != content: return True def lowercase_ ( _lowercase : Dict = False ): '''simple docstring''' UpperCAmelCase : Dict = [os.path.join(a_ , a_ ) for f in os.listdir(a_ ) if f.endswith(".py" )] UpperCAmelCase : Dict = [sort_auto_mapping(a_ , overwrite=a_ ) for fname in fnames] if not overwrite and any(a_ ): UpperCAmelCase : Optional[Any] = [f for f, d in zip(a_ , a_ ) if d] raise ValueError( F"""The following files have auto mappings that need sorting: {', '.join(a_ )}. Run `make style` to fix""" " this." ) if __name__ == "__main__": snake_case_ : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") snake_case_ : int = parser.parse_args() sort_all_auto_mappings(not args.check_only)
595
'''simple docstring''' def __lowerCAmelCase ( a_ ) -> bool: '''simple docstring''' if p < 2: raise ValueError('p should not be less than 2!' ) elif p == 2: return True SCREAMING_SNAKE_CASE : Optional[int] = 4 SCREAMING_SNAKE_CASE : Optional[Any] = (1 << p) - 1 for _ in range(p - 2 ): SCREAMING_SNAKE_CASE : Optional[int] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
251
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a ={ 'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'], 'tokenization_cpmant': ['CpmAntTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ 'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST', 'CpmAntForCausalLM', 'CpmAntModel', 'CpmAntPreTrainedModel', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys a =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
705
"""simple docstring""" def lowerCamelCase_ ( __lowerCAmelCase ) -> str: '''simple docstring''' lowerCamelCase__ =[] lowerCamelCase__ =[] lowerCamelCase__ ={ "^": 3, "*": 2, "/": 2, "%": 2, "+": 1, "-": 1, } # Priority of each operator lowerCamelCase__ =len(__lowerCAmelCase ) if (len(__lowerCAmelCase ) > 7) else 7 # Print table header for output print( "Symbol".center(8 ) , "Stack".center(__lowerCAmelCase ) , "Postfix".center(__lowerCAmelCase ) , sep=" | " , ) print("-" * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(__lowerCAmelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(__lowerCAmelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(__lowerCAmelCase ) == 0: stack.append(__lowerCAmelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(__lowerCAmelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(__lowerCAmelCase ) # push x to stack print( x.center(8 ) , ("".join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , ("".join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , sep=" | " , ) # Output in tabular format while len(__lowerCAmelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( " ".center(8 ) , ("".join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , ("".join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , sep=" | " , ) # Output in tabular format return "".join(__lowerCAmelCase ) # return Postfix as str def lowerCamelCase_ ( __lowerCAmelCase ) -> Dict: '''simple docstring''' lowerCamelCase__ =list(infix[::-1] ) # reverse the infix equation for i in range(len(__lowerCAmelCase ) ): if infix[i] == "(": lowerCamelCase__ =")" # change "(" to ")" elif infix[i] == ")": lowerCamelCase__ ="(" # change ")" to "(" return (infix_2_postfix("".join(__lowerCAmelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": a =input('\nEnter an Infix Equation = ') # Input an Infix equation a =''.join(Infix.split()) # Remove spaces from the input print('\n\t', Infix, '(Infix) -> ', infix_2_prefix(Infix), '(Prefix)')
132
0
"""simple docstring""" from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def _lowerCAmelCase() -> List[Any]: _SCREAMING_SNAKE_CASE =ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' ) _SCREAMING_SNAKE_CASE =parser.add_subparsers(help='''transformers-cli command helpers''' ) # Register commands ConvertCommand.register_subcommand(lowerCAmelCase__ ) DownloadCommand.register_subcommand(lowerCAmelCase__ ) EnvironmentCommand.register_subcommand(lowerCAmelCase__ ) RunCommand.register_subcommand(lowerCAmelCase__ ) ServeCommand.register_subcommand(lowerCAmelCase__ ) UserCommands.register_subcommand(lowerCAmelCase__ ) AddNewModelCommand.register_subcommand(lowerCAmelCase__ ) AddNewModelLikeCommand.register_subcommand(lowerCAmelCase__ ) LfsCommands.register_subcommand(lowerCAmelCase__ ) PTtoTFCommand.register_subcommand(lowerCAmelCase__ ) # Let's go _SCREAMING_SNAKE_CASE =parser.parse_args() if not hasattr(lowerCAmelCase__ , '''func''' ): parser.print_help() exit(1 ) # Run _SCREAMING_SNAKE_CASE =args.func(lowerCAmelCase__ ) service.run() if __name__ == "__main__": main()
255
"""simple docstring""" import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel lowercase_ = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __UpperCAmelCase ( cls ): __a = TOKEN HfFolder.save_token(_a ) @classmethod def __UpperCAmelCase ( cls ): try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def __UpperCAmelCase ( self ): __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_a ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_a , repo_id='''test-model-flax''' , push_to_hub=_a , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) def __UpperCAmelCase ( self ): __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_a ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _a , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_a , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ) -> Optional[int]: __a = True __a = flatten_dict(modela.params ) __a = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: __a = False return models_are_equal @require_flax class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_a ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) ) with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def __UpperCAmelCase ( self ): __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_a ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) , max_shard_size='''10KB''' ) with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def __UpperCAmelCase ( self ): __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a ) def __UpperCAmelCase ( self ): __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a )
695
0
"""simple docstring""" def a_ ( lowerCamelCase ): if not isinstance(lowerCamelCase , lowerCamelCase ): raise TypeError('only integers accepted as input' ) else: UpperCAmelCase__ = str(abs(lowerCamelCase ) ) UpperCAmelCase__ = [list(lowerCamelCase ) for char in range(len(lowerCamelCase ) )] for index in range(len(lowerCamelCase ) ): num_transpositions[index].pop(lowerCamelCase ) return max( int(''.join(list(lowerCamelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('doctest').testmod()
632
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase__ : int = { 'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'], 'tokenization_tapas': ['TapasTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Union[str, Any] = [ 'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TapasForMaskedLM', 'TapasForQuestionAnswering', 'TapasForSequenceClassification', 'TapasModel', 'TapasPreTrainedModel', 'load_tf_weights_in_tapas', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Optional[Any] = [ 'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFTapasForMaskedLM', 'TFTapasForQuestionAnswering', 'TFTapasForSequenceClassification', 'TFTapasModel', 'TFTapasPreTrainedModel', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys lowerCAmelCase__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
632
1
from typing import Dict, Optional import numpy as np import datasets snake_case__ : Optional[int] = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ snake_case__ : Optional[Any] = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ snake_case__ : List[Any] = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , ): if label_map is not None: for old_id, new_id in label_map.items(): __lowercase = new_id # turn into Numpy arrays __lowercase = np.array(_SCREAMING_SNAKE_CASE ) __lowercase = np.array(_SCREAMING_SNAKE_CASE ) if reduce_labels: __lowercase = 2_5_5 __lowercase = label - 1 __lowercase = 2_5_5 __lowercase = label != ignore_index __lowercase = np.not_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowercase = pred_label[mask] __lowercase = np.array(_SCREAMING_SNAKE_CASE )[mask] __lowercase = pred_label[pred_label == label] __lowercase = np.histogram(_SCREAMING_SNAKE_CASE , bins=_SCREAMING_SNAKE_CASE , range=(0, num_labels - 1) )[0] __lowercase = np.histogram(_SCREAMING_SNAKE_CASE , bins=_SCREAMING_SNAKE_CASE , range=(0, num_labels - 1) )[0] __lowercase = np.histogram(_SCREAMING_SNAKE_CASE , bins=_SCREAMING_SNAKE_CASE , range=(0, num_labels - 1) )[0] __lowercase = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , ): __lowercase = np.zeros((num_labels,) , dtype=np.floataa ) __lowercase = np.zeros((num_labels,) , dtype=np.floataa ) __lowercase = np.zeros((num_labels,) , dtype=np.floataa ) __lowercase = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase , __lowercase , __lowercase , __lowercase = intersect_and_union( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , ): __lowercase , __lowercase , __lowercase , __lowercase = total_intersect_and_union( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # compute metrics __lowercase = {} __lowercase = total_area_intersect.sum() / total_area_label.sum() __lowercase = total_area_intersect / total_area_union __lowercase = total_area_intersect / total_area_label __lowercase = np.nanmean(_SCREAMING_SNAKE_CASE ) __lowercase = np.nanmean(_SCREAMING_SNAKE_CASE ) __lowercase = all_acc __lowercase = iou __lowercase = acc if nan_to_num is not None: __lowercase = {metric: np.nan_to_num(_SCREAMING_SNAKE_CASE , nan=_SCREAMING_SNAKE_CASE ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): '''simple docstring''' def _snake_case ( self : Optional[int] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { "predictions": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ), "references": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ), } ) , reference_urls=[ "https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py" ] , ) def _snake_case ( self : Optional[Any] , lowerCamelCase : Dict , lowerCamelCase : Dict , lowerCamelCase : int , lowerCamelCase : bool , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[Dict[int, int]] = None , lowerCamelCase : bool = False , ): '''simple docstring''' __lowercase = mean_iou( results=lowerCamelCase , gt_seg_maps=lowerCamelCase , num_labels=lowerCamelCase , ignore_index=lowerCamelCase , nan_to_num=lowerCamelCase , label_map=lowerCamelCase , reduce_labels=lowerCamelCase , ) return iou_result
402
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS snake_case__ : Dict = logging.get_logger(__name__) snake_case__ : List[str] = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, """constant""": get_constant_schedule, """constant_w_warmup""": get_constant_schedule_with_warmup, } class _A ( _lowercase ): '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase : List[Any]=None , lowerCamelCase : str=None , *lowerCamelCase : List[Any] , **lowerCamelCase : str ): '''simple docstring''' super().__init__(*lowerCamelCase , **lowerCamelCase ) if config is None: assert isinstance(self.model , lowerCamelCase ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f""" {self.model.__class__}""" ) __lowercase = self.model.config else: __lowercase = config __lowercase = data_args __lowercase = self.config.tgt_vocab_size if isinstance(self.config , lowerCamelCase ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f"""The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for""" " padding.." ) if self.args.label_smoothing == 0: __lowercase = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss __lowercase = label_smoothed_nll_loss def _snake_case ( self : List[Any] , lowerCamelCase : int ): '''simple docstring''' if self.optimizer is None: __lowercase = ["bias", "LayerNorm.weight"] __lowercase = [ { "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] __lowercase = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: __lowercase = Adafactor __lowercase = {"scale_parameter": False, "relative_step": False} else: __lowercase = AdamW __lowercase = { "betas": (self.args.adam_betaa, self.args.adam_betaa), "eps": self.args.adam_epsilon, } __lowercase = self.args.learning_rate if self.sharded_ddp: __lowercase = OSS( params=lowerCamelCase , optim=lowerCamelCase , **lowerCamelCase , ) else: __lowercase = optimizer_cls(lowerCamelCase , **lowerCamelCase ) if self.lr_scheduler is None: __lowercase = self._get_lr_scheduler(lowerCamelCase ) else: # ignoring --lr_scheduler logger.warning("scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored." ) def _snake_case ( self : List[str] , lowerCamelCase : Tuple ): '''simple docstring''' __lowercase = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": __lowercase = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": __lowercase = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: __lowercase = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=lowerCamelCase ) return scheduler def _snake_case ( self : Tuple ): '''simple docstring''' if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def _snake_case ( self : List[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : Optional[int] ): '''simple docstring''' if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token __lowercase = model(**lowerCamelCase , use_cache=lowerCamelCase )[0] __lowercase = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models __lowercase , __lowercase = model(**lowerCamelCase , labels=lowerCamelCase , use_cache=lowerCamelCase )[:2] else: # compute label smoothed loss __lowercase = model(**lowerCamelCase , use_cache=lowerCamelCase )[0] __lowercase = torch.nn.functional.log_softmax(lowerCamelCase , dim=-1 ) __lowercase , __lowercase = self.loss_fn(lowerCamelCase , lowerCamelCase , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def _snake_case ( self : List[str] , lowerCamelCase : Optional[Any] , lowerCamelCase : Tuple ): '''simple docstring''' __lowercase = inputs.pop("labels" ) __lowercase , __lowercase = self._compute_loss(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return loss def _snake_case ( self : List[str] , lowerCamelCase : nn.Module , lowerCamelCase : Dict[str, Union[torch.Tensor, Any]] , lowerCamelCase : bool , lowerCamelCase : Optional[List[str]] = None , ): '''simple docstring''' __lowercase = self._prepare_inputs(lowerCamelCase ) __lowercase = { "max_length": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, "num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: __lowercase = self.model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , **lowerCamelCase , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: __lowercase = self._pad_tensors_to_max_len(lowerCamelCase , gen_kwargs["max_length"] ) __lowercase = inputs.pop("labels" ) with torch.no_grad(): # compute loss on predict data __lowercase , __lowercase = self._compute_loss(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) __lowercase = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: __lowercase = self._pad_tensors_to_max_len(lowerCamelCase , gen_kwargs["max_length"] ) return (loss, logits, labels) def _snake_case ( self : str , lowerCamelCase : Tuple , lowerCamelCase : int ): '''simple docstring''' __lowercase = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( "Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be" f""" padded to `max_length`={max_length}""" ) __lowercase = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) __lowercase = tensor return padded_tensor
402
1
def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' __lowerCamelCase : Optional[Any] =len(__lowerCAmelCase ) + 1 __lowerCamelCase : int =len(__lowerCAmelCase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. __lowerCamelCase : Dict =[[0 for i in range(__lowerCAmelCase )] for j in range(__lowerCAmelCase )] # since string of zero length match pattern of zero length __lowerCamelCase : Dict =1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , __lowerCAmelCase ): __lowerCamelCase : Union[str, Any] =0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , __lowerCAmelCase ): __lowerCamelCase : int =dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , __lowerCAmelCase ): for j in range(1 , __lowerCAmelCase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": __lowerCamelCase : Any =dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: __lowerCamelCase : List[str] =1 elif pattern[j - 2] in (input_string[i - 1], "."): __lowerCamelCase : List[Any] =dp[i - 1][j] else: __lowerCamelCase : Optional[int] =0 else: __lowerCamelCase : Dict =0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") _UpperCamelCase = "aab" _UpperCamelCase = "c*a*b" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f'''{input_string} matches the given pattern {pattern}''') else: print(f'''{input_string} does not match with the given pattern {pattern}''')
712
"""simple docstring""" def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' __lowerCamelCase : Optional[Any] =len(SCREAMING_SNAKE_CASE ) __lowerCamelCase : Union[str, Any] =[[0] * n for i in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): __lowerCamelCase : Union[str, Any] =y_points[i] for i in range(2 , SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowerCamelCase : List[Any] =( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
363
0
'''simple docstring''' import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() lowerCAmelCase : int = logging.get_logger("""transformers.models.speecht5""") lowerCAmelCase : Tuple = { """speech_encoder_prenet.layer_norm""": """speecht5.encoder.prenet.feature_projection.layer_norm""", """speech_encoder_prenet.post_extract_proj""": """speecht5.encoder.prenet.feature_projection.projection""", """speech_encoder_prenet.pos_conv.0""": """speecht5.encoder.prenet.pos_conv_embed.conv""", """speech_encoder_prenet.mask_emb""": """speecht5.encoder.prenet.masked_spec_embed""", } lowerCAmelCase : List[str] = { """text_encoder_prenet.encoder_prenet.0""": """speecht5.encoder.prenet.embed_tokens""", """text_encoder_prenet.encoder_prenet.1.alpha""": """speecht5.encoder.prenet.encode_positions.alpha""", } lowerCAmelCase : Optional[int] = { """speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0""": """speecht5.decoder.prenet.layers.0""", """speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0""": """speecht5.decoder.prenet.layers.1""", """speech_decoder_prenet.decoder_prenet.0.1""": """speecht5.decoder.prenet.final_layer""", """speech_decoder_prenet.decoder_prenet.1.alpha""": """speecht5.decoder.prenet.encode_positions.alpha""", """speech_decoder_prenet.spkembs_layer.0""": """speecht5.decoder.prenet.speaker_embeds_layer""", } lowerCAmelCase : str = { """speech_decoder_postnet.feat_out""": """speech_decoder_postnet.feat_out""", """speech_decoder_postnet.prob_out""": """speech_decoder_postnet.prob_out""", """speech_decoder_postnet.postnet.postnet.0.0""": """speech_decoder_postnet.layers.0.conv""", """speech_decoder_postnet.postnet.postnet.0.1""": """speech_decoder_postnet.layers.0.batch_norm""", """speech_decoder_postnet.postnet.postnet.1.0""": """speech_decoder_postnet.layers.1.conv""", """speech_decoder_postnet.postnet.postnet.1.1""": """speech_decoder_postnet.layers.1.batch_norm""", """speech_decoder_postnet.postnet.postnet.2.0""": """speech_decoder_postnet.layers.2.conv""", """speech_decoder_postnet.postnet.postnet.2.1""": """speech_decoder_postnet.layers.2.batch_norm""", """speech_decoder_postnet.postnet.postnet.3.0""": """speech_decoder_postnet.layers.3.conv""", """speech_decoder_postnet.postnet.postnet.3.1""": """speech_decoder_postnet.layers.3.batch_norm""", """speech_decoder_postnet.postnet.postnet.4.0""": """speech_decoder_postnet.layers.4.conv""", """speech_decoder_postnet.postnet.postnet.4.1""": """speech_decoder_postnet.layers.4.batch_norm""", } lowerCAmelCase : Dict = { """text_decoder_prenet.embed_tokens""": """speecht5.decoder.prenet.embed_tokens""", } lowerCAmelCase : Any = { """text_decoder_postnet.output_projection""": """text_decoder_postnet.lm_head""", } lowerCAmelCase : Union[str, Any] = { """encoder.layers.*.self_attn.k_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj""", """encoder.layers.*.self_attn.v_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj""", """encoder.layers.*.self_attn.q_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj""", """encoder.layers.*.self_attn.out_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj""", """encoder.layers.*.self_attn_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.layer_norm""", """encoder.layers.*.fc1""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense""", """encoder.layers.*.fc2""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense""", """encoder.layers.*.final_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """speecht5.encoder.wrapped_encoder.layer_norm""", """encoder.pos_emb.pe_k""": """speecht5.encoder.wrapped_encoder.embed_positions.pe_k""", } lowerCAmelCase : Dict = { """decoder.layers.*.self_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj""", """decoder.layers.*.self_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj""", """decoder.layers.*.self_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj""", """decoder.layers.*.self_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj""", """decoder.layers.*.self_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm""", """decoder.layers.*.encoder_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj""", """decoder.layers.*.encoder_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj""", """decoder.layers.*.encoder_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj""", """decoder.layers.*.encoder_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj""", """decoder.layers.*.encoder_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm""", """decoder.layers.*.fc1""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense""", """decoder.layers.*.fc2""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense""", """decoder.layers.*.final_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm""", } lowerCAmelCase : Optional[Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } lowerCAmelCase : str = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } lowerCAmelCase : List[Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } lowerCAmelCase : Dict = [] lowerCAmelCase : Optional[int] = [ """encoder.version""", """encoder.layers.*.norm_k.weight""", """encoder.layers.*.norm_k.bias""", """decoder.version""", """decoder.layers.*.norm_k.weight""", """decoder.layers.*.norm_k.bias""", """decoder.pos_emb.pe_k""", """speech_encoder_prenet.embed_positions._float_tensor""", """text_decoder_prenet.embed_positions._float_tensor""", ] lowerCAmelCase : Tuple = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """speech_decoder_prenet.*""", """speech_decoder_postnet.*""", ] lowerCAmelCase : List[Any] = IGNORE_KEYS + [ """encoder.proj""", """speech_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] lowerCAmelCase : Any = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] def _A ( A ,A ,A ,A ,A ) -> List[Any]: for attribute in key.split("." ): lowercase : List[str] = getattr(_A ,_A ) if weight_type is not None: lowercase : Any = getattr(_A ,_A ).shape else: lowercase : Optional[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase : Optional[int] = value elif weight_type == "weight_g": lowercase : Optional[Any] = value elif weight_type == "weight_v": lowercase : Union[str, Any] = value elif weight_type == "bias": lowercase : Optional[int] = value elif weight_type == "running_mean": lowercase : Any = value elif weight_type == "running_var": lowercase : int = value elif weight_type == "num_batches_tracked": lowercase : Dict = value else: lowercase : Optional[Any] = value logger.info(F'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def _A ( A ,A ) -> List[Any]: for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowercase : Dict = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def _A ( A ,A ,A ) -> Any: lowercase : int = [] if task == "s2t": lowercase : Tuple = hf_model.speechta.encoder.prenet.feature_encoder lowercase : List[Any] = MAPPING_S2T lowercase : Union[str, Any] = IGNORE_KEYS_S2T elif task == "t2s": lowercase : Optional[int] = None lowercase : str = MAPPING_T2S lowercase : Optional[int] = IGNORE_KEYS_T2S elif task == "s2s": lowercase : Optional[Any] = hf_model.speechta.encoder.prenet.feature_encoder lowercase : Optional[int] = MAPPING_S2S lowercase : int = IGNORE_KEYS_S2S else: raise ValueError(F'''Unsupported task: {task}''' ) for name, value in fairseq_dict.items(): if should_ignore(_A ,_A ): logger.info(F'''{name} was ignored''' ) continue lowercase : str = False if "conv_layers" in name: load_conv_layer( _A ,_A ,_A ,_A ,hf_model.config.feat_extract_norm == "group" ,) lowercase : Optional[int] = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: lowercase : List[Any] = key.split(".*." ) if prefix in name and suffix in name: lowercase : int = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: lowercase : List[Any] = True if "*" in mapped_key: lowercase : Dict = name.split(_A )[0].split("." )[-2] lowercase : Tuple = mapped_key.replace("*" ,_A ) if "weight_g" in name: lowercase : Optional[int] = """weight_g""" elif "weight_v" in name: lowercase : List[Any] = """weight_v""" elif "bias" in name: lowercase : List[str] = """bias""" elif "weight" in name: lowercase : Union[str, Any] = """weight""" elif "running_mean" in name: lowercase : Any = """running_mean""" elif "running_var" in name: lowercase : Optional[Any] = """running_var""" elif "num_batches_tracked" in name: lowercase : List[Any] = """num_batches_tracked""" else: lowercase : Any = None set_recursively(_A ,_A ,_A ,_A ,_A ) continue if not is_used: unused_weights.append(_A ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _A ( A ,A ,A ,A ,A ) -> int: lowercase : str = full_name.split("conv_layers." )[-1] lowercase : List[str] = name.split("." ) lowercase : List[str] = int(items[0] ) lowercase : int = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase : Dict = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) lowercase : List[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_A ) @torch.no_grad() def _A ( A ,A ,A ,A=None ,A=None ,A=None ,) -> int: if config_path is not None: lowercase : str = SpeechTaConfig.from_pretrained(_A ) else: lowercase : List[Any] = SpeechTaConfig() if task == "s2t": lowercase : List[Any] = config.max_text_positions lowercase : Optional[int] = SpeechTaForSpeechToText(_A ) elif task == "t2s": lowercase : Dict = 1_8_7_6 lowercase : str = 6_0_0 lowercase : Union[str, Any] = config.max_speech_positions lowercase : Tuple = SpeechTaForTextToSpeech(_A ) elif task == "s2s": lowercase : Tuple = 1_8_7_6 lowercase : Dict = config.max_speech_positions lowercase : Any = SpeechTaForSpeechToSpeech(_A ) else: raise ValueError(F'''Unknown task name: {task}''' ) if vocab_path: lowercase : List[str] = SpeechTaTokenizer(_A ,model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it lowercase : int = AddedToken("<mask>" ,lstrip=_A ,rstrip=_A ) lowercase : Tuple = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) lowercase : Optional[int] = SpeechTaFeatureExtractor() lowercase : Optional[int] = SpeechTaProcessor(tokenizer=_A ,feature_extractor=_A ) processor.save_pretrained(_A ) lowercase : List[Any] = torch.load(_A ) recursively_load_weights(fairseq_checkpoint["model"] ,_A ,_A ) model.save_pretrained(_A ) if repo_id: print("Pushing to the hub..." ) processor.push_to_hub(_A ) model.push_to_hub(_A ) if __name__ == "__main__": lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( """--task""", default="""s2t""", type=str, help="""Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--vocab_path""", default=None, type=str, help="""Path to SentencePiece model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) lowerCAmelCase : List[str] = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
372
"""simple docstring""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } _lowerCAmelCase = { 'b0': { 'hidden_dim': 12_80, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 2_24, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 12_80, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 2_40, 'dropout_rate': 0.2, 'dw_padding': [16], }, 'b2': { 'hidden_dim': 14_08, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 2_60, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 16], }, 'b3': { 'hidden_dim': 15_36, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 3_00, 'dropout_rate': 0.3, 'dw_padding': [5, 18], }, 'b4': { 'hidden_dim': 17_92, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 3_80, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 20_48, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 4_56, 'dropout_rate': 0.4, 'dw_padding': [13, 27], }, 'b6': { 'hidden_dim': 23_04, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 5_28, 'dropout_rate': 0.5, 'dw_padding': [31], }, 'b7': { 'hidden_dim': 25_60, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 6_00, 'dropout_rate': 0.5, 'dw_padding': [18], }, } def UpperCamelCase ( _A ) -> List[str]: lowercase : List[str] = EfficientNetConfig() lowercase : Any = CONFIG_MAP[model_name]["""hidden_dim"""] lowercase : List[str] = CONFIG_MAP[model_name]["""width_coef"""] lowercase : str = CONFIG_MAP[model_name]["""depth_coef"""] lowercase : int = CONFIG_MAP[model_name]["""image_size"""] lowercase : List[Any] = CONFIG_MAP[model_name]["""dropout_rate"""] lowercase : int = CONFIG_MAP[model_name]["""dw_padding"""] lowercase : Optional[int] = """huggingface/label-files""" lowercase : int = """imagenet-1k-id2label.json""" lowercase : Any = 1_000 lowercase : Any = json.load(open(hf_hub_download(_A , _A , repo_type="""dataset""" ) , """r""" ) ) lowercase : Optional[int] = {int(_A ): v for k, v in idalabel.items()} lowercase : int = idalabel lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} return config def UpperCamelCase ( ) -> Tuple: lowercase : Any = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase : Optional[int] = Image.open(requests.get(_A , stream=_A ).raw ) return im def UpperCamelCase ( _A ) -> Optional[Any]: lowercase : str = CONFIG_MAP[model_name]["""image_size"""] lowercase : Optional[int] = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.4785_3944, 0.473_2864, 0.4743_4163] , do_center_crop=_A , ) return preprocessor def UpperCamelCase ( _A ) -> Optional[int]: lowercase : Union[str, Any] = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] lowercase : Optional[Any] = sorted(set(_A ) ) lowercase : Dict = len(_A ) lowercase : List[str] = {b: str(_A ) for b, i in zip(_A , range(_A ) )} lowercase : Union[str, Any] = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: lowercase : str = block_name_mapping[b] rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) lowercase : Union[str, Any] = {} for item in rename_keys: if item[0] in original_param_names: lowercase : Optional[int] = """efficientnet.""" + item[1] lowercase : Any = """classifier.weight""" lowercase : Tuple = """classifier.bias""" return key_mapping def UpperCamelCase ( _A , _A , _A ) -> Optional[Any]: for key, value in tf_params.items(): if "normalization" in key: continue lowercase : List[Any] = key_mapping[key] if "_conv" in key and "kernel" in key: lowercase : str = torch.from_numpy(_A ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: lowercase : Optional[int] = torch.from_numpy(_A ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: lowercase : List[Any] = torch.from_numpy(np.transpose(_A ) ) else: lowercase : Optional[int] = torch.from_numpy(_A ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_A ) @torch.no_grad() def UpperCamelCase ( _A , _A , _A , _A ) -> str: lowercase : Any = model_classes[model_name]( include_top=_A , weights="""imagenet""" , input_tensor=_A , input_shape=_A , pooling=_A , classes=1_000 , classifier_activation="""softmax""" , ) lowercase : Dict = original_model.trainable_variables lowercase : Any = original_model.non_trainable_variables lowercase : Any = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: lowercase : Dict = param.numpy() lowercase : List[str] = list(tf_params.keys() ) # Load HuggingFace model lowercase : str = get_efficientnet_config(_A ) lowercase : List[Any] = EfficientNetForImageClassification(_A ).eval() lowercase : Optional[int] = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) lowercase : int = rename_keys(_A ) replace_params(_A , _A , _A ) # Initialize preprocessor and preprocess input image lowercase : Optional[int] = convert_image_processor(_A ) lowercase : Any = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): lowercase : Union[str, Any] = hf_model(**_A ) lowercase : List[Any] = outputs.logits.detach().numpy() # Original model inference lowercase : Optional[Any] = False lowercase : str = CONFIG_MAP[model_name]["""image_size"""] lowercase : Optional[Any] = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) lowercase : Optional[Any] = image.img_to_array(_A ) lowercase : Dict = np.expand_dims(_A , axis=0 ) lowercase : List[str] = original_model.predict(_A ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_A , _A , atol=1e-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(_A ): os.mkdir(_A ) # Save converted model and image processor hf_model.save_pretrained(_A ) preprocessor.save_pretrained(_A ) if push_to_hub: # Push model and image processor to hub print(F"""Pushing converted {model_name} to the hub...""" ) lowercase : Dict = F"""efficientnet-{model_name}""" preprocessor.push_to_hub(_A ) hf_model.push_to_hub(_A ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') _lowerCAmelCase = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
264
0
import importlib.metadata import operator import re import sys from typing import Optional from packaging import version __a : Tuple = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def _SCREAMING_SNAKE_CASE ( __lowercase : str , __lowercase : Tuple , __lowercase : List[Any] , __lowercase : List[Any] , __lowercase : int , __lowercase : Optional[Any] ) -> Optional[int]: """simple docstring""" if got_ver is None or want_ver is None: raise ValueError( f"Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider" f" reinstalling {pkg}." ) if not ops[op](version.parse(__a ) , version.parse(__a ) ): raise ImportError( f"{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}" ) def _SCREAMING_SNAKE_CASE ( __lowercase : str , __lowercase : Optional[str] = None ) -> Optional[Any]: """simple docstring""" __A = f"\n{hint}" if hint is not None else """""" # non-versioned check if re.match(R"""^[\w_\-\d]+$""" , __a ): __A , __A , __A = requirement, None, None else: __A = re.findall(R"""^([^!=<>\s]+)([\s!=<>]{1,2}.+)""" , __a ) if not match: raise ValueError( """requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but""" f" got {requirement}" ) __A , __A = match[0] __A = want_full.split(""",""" ) # there could be multiple requirements __A = {} for w in want_range: __A = re.findall(R"""^([\s!=<>]{1,2})(.+)""" , __a ) if not match: raise ValueError( """requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,""" f" but got {requirement}" ) __A , __A = match[0] __A = want_ver if op not in ops: raise ValueError(f"{requirement}: need one of {list(ops.keys() )}, but got {op}" ) # special case if pkg == "python": __A = """.""".join([str(__a ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(__a , __a , __a , __a , __a , __a ) return # check if any version is installed try: __A = importlib.metadata.version(__a ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f"The '{requirement}' distribution was not found and is required by this application. {hint}" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(__a , __a , __a , __a , __a , __a ) def _SCREAMING_SNAKE_CASE ( __lowercase : Tuple ) -> List[Any]: """simple docstring""" __A = """Try: pip install transformers -U or pip install -e '.[dev]' if you're working with git main""" return require_version(__a , __a )
720
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowercase ( lowercase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE = ["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE = "AutoImageProcessor" SCREAMING_SNAKE_CASE = "AutoTokenizer" def __init__( self : str , UpperCamelCase_ : Any , UpperCamelCase_ : str ): """simple docstring""" super().__init__(UpperCamelCase_ , UpperCamelCase_ ) __A = self.image_processor def __call__( self : Optional[Any] , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : List[Any]=None , **UpperCamelCase_ : int ): """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __A = self.tokenizer(UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) if images is not None: __A = self.image_processor(UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) if text is not None and images is not None: __A = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase_ ) , tensor_type=UpperCamelCase_ ) def lowerCAmelCase_ ( self : List[str] , *UpperCamelCase_ : Tuple , **UpperCamelCase_ : List[str] ): """simple docstring""" return self.tokenizer.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase_ ( self : Any , *UpperCamelCase_ : int , **UpperCamelCase_ : Tuple ): """simple docstring""" return self.tokenizer.decode(*UpperCamelCase_ , **UpperCamelCase_ ) @property def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" return ["input_ids", "attention_mask", "pixel_values"]
199
0
import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Dict ) -> Any: super().__init__() SCREAMING_SNAKE_CASE__ = nn.Linear(3 , 4 ) SCREAMING_SNAKE_CASE__ = nn.BatchNormad(4 ) SCREAMING_SNAKE_CASE__ = nn.Linear(4 , 5 ) def lowercase_ ( self : str , __lowerCamelCase : List[Any] ) -> List[str]: return self.lineara(self.batchnorm(self.lineara(A_ ) ) ) class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : Dict ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(A_ , model.state_dict() ) SCREAMING_SNAKE_CASE__ = os.path.join(A_ , '''index.json''' ) self.assertTrue(os.path.isfile(A_ ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: SCREAMING_SNAKE_CASE__ = os.path.join(A_ , f'''{key}.dat''' ) self.assertTrue(os.path.isfile(A_ ) ) # TODO: add tests on the fact weights are properly loaded def lowercase_ ( self : Optional[int] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: SCREAMING_SNAKE_CASE__ = torch.randn(2 , 3 , dtype=A_ ) with TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ = offload_weight(A_ , '''weight''' , A_ , {} ) SCREAMING_SNAKE_CASE__ = os.path.join(A_ , '''weight.dat''' ) self.assertTrue(os.path.isfile(A_ ) ) self.assertDictEqual(A_ , {'''weight''': {'''shape''': [2, 3], '''dtype''': str(A_ ).split('''.''' )[1]}} ) SCREAMING_SNAKE_CASE__ = load_offloaded_weight(A_ , index['''weight'''] ) self.assertTrue(torch.equal(A_ , A_ ) ) def lowercase_ ( self : Optional[Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = ModelForTest() SCREAMING_SNAKE_CASE__ = model.state_dict() SCREAMING_SNAKE_CASE__ = {k: v for k, v in state_dict.items() if '''linear2''' not in k} SCREAMING_SNAKE_CASE__ = {k: v for k, v in state_dict.items() if '''linear2''' in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(A_ , A_ ) SCREAMING_SNAKE_CASE__ = OffloadedWeightsLoader(state_dict=A_ , save_folder=A_ ) # Every key is there with the right value self.assertEqual(sorted(A_ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(A_ , weight_map[key] ) ) SCREAMING_SNAKE_CASE__ = {k: v for k, v in state_dict.items() if '''weight''' in k} SCREAMING_SNAKE_CASE__ = {k: v for k, v in state_dict.items() if '''weight''' not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(A_ , A_ ) SCREAMING_SNAKE_CASE__ = OffloadedWeightsLoader(state_dict=A_ , save_folder=A_ ) # Every key is there with the right value self.assertEqual(sorted(A_ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(A_ , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(A_ , A_ ) # Duplicates are removed SCREAMING_SNAKE_CASE__ = OffloadedWeightsLoader(state_dict=A_ , save_folder=A_ ) # Every key is there with the right value self.assertEqual(sorted(A_ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(A_ , weight_map[key] ) ) def lowercase_ ( self : Optional[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = {'''a.1''': 0, '''a.10''': 1, '''a.2''': 2} SCREAMING_SNAKE_CASE__ = extract_submodules_state_dict(A_ , ['''a.1''', '''a.2'''] ) self.assertDictEqual(A_ , {'''a.1''': 0, '''a.2''': 2} ) SCREAMING_SNAKE_CASE__ = {'''a.1.a''': 0, '''a.10.a''': 1, '''a.2.a''': 2} SCREAMING_SNAKE_CASE__ = extract_submodules_state_dict(A_ , ['''a.1''', '''a.2'''] ) self.assertDictEqual(A_ , {'''a.1.a''': 0, '''a.2.a''': 2} )
493
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch A__ : List[str] = logging.get_logger(__name__) @add_end_docstrings( UpperCamelCase_ ,R''' top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). ''' ,) class __snake_case ( UpperCamelCase_ ): def UpperCAmelCase__ ( self : Optional[Any] , A_ : GenericTensor): if self.framework == "tf": lowerCAmelCase_ : Dict = tf.where(input_ids == self.tokenizer.mask_token_id).numpy() elif self.framework == "pt": lowerCAmelCase_ : List[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=A_) else: raise ValueError('''Unsupported framework''') return masked_index def UpperCAmelCase__ ( self : Tuple , A_ : GenericTensor): lowerCAmelCase_ : List[str] = self.get_masked_index(A_) lowerCAmelCase_ : Union[str, Any] = np.prod(masked_index.shape) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , F"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def UpperCAmelCase__ ( self : str , A_ : GenericTensor): if isinstance(A_ , A_): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0]) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(A_) def UpperCAmelCase__ ( self : Optional[Any] , A_ : Union[str, Any] , A_ : Optional[int]=None , **A_ : List[str]): if return_tensors is None: lowerCAmelCase_ : Optional[int] = self.framework lowerCAmelCase_ : Optional[Any] = self.tokenizer(A_ , return_tensors=A_) self.ensure_exactly_one_mask_token(A_) return model_inputs def UpperCAmelCase__ ( self : List[str] , A_ : str): lowerCAmelCase_ : Union[str, Any] = self.model(**A_) lowerCAmelCase_ : List[str] = model_inputs['''input_ids'''] return model_outputs def UpperCAmelCase__ ( self : str , A_ : str , A_ : str=5 , A_ : int=None): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: lowerCAmelCase_ : int = target_ids.shape[0] lowerCAmelCase_ : List[Any] = model_outputs['''input_ids'''][0] lowerCAmelCase_ : int = model_outputs['''logits'''] if self.framework == "tf": lowerCAmelCase_ : Union[str, Any] = tf.where(input_ids == self.tokenizer.mask_token_id).numpy()[:, 0] lowerCAmelCase_ : Optional[Any] = outputs.numpy() lowerCAmelCase_ : List[str] = outputs[0, masked_index, :] lowerCAmelCase_ : List[Any] = stable_softmax(A_ , axis=-1) if target_ids is not None: lowerCAmelCase_ : str = tf.gather_nd(tf.squeeze(A_ , 0) , target_ids.reshape(-1 , 1)) lowerCAmelCase_ : Any = tf.expand_dims(A_ , 0) lowerCAmelCase_ : List[Any] = tf.math.top_k(A_ , k=A_) lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = topk.values.numpy(), topk.indices.numpy() else: lowerCAmelCase_ : Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=A_).squeeze(-1) # Fill mask pipeline supports only one ${mask_token} per sample lowerCAmelCase_ : Dict = outputs[0, masked_index, :] lowerCAmelCase_ : Dict = logits.softmax(dim=-1) if target_ids is not None: lowerCAmelCase_ : str = probs[..., target_ids] lowerCAmelCase_ , lowerCAmelCase_ : int = probs.topk(A_) lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : Optional[int] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist())): lowerCAmelCase_ : int = [] for v, p in zip(_values , _predictions): # Copy is important since we're going to modify this array in place lowerCAmelCase_ : Dict = input_ids.numpy().copy() if target_ids is not None: lowerCAmelCase_ : str = target_ids[p].tolist() lowerCAmelCase_ : List[Any] = p # Filter padding out: lowerCAmelCase_ : Tuple = tokens[np.where(tokens != self.tokenizer.pad_token_id)] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back lowerCAmelCase_ : Any = self.tokenizer.decode(A_ , skip_special_tokens=A_) lowerCAmelCase_ : str = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p]), '''sequence''': sequence} row.append(A_) result.append(A_) if single_mask: return result[0] return result def UpperCAmelCase__ ( self : int , A_ : Any , A_ : List[Any]=None): if isinstance(A_ , A_): lowerCAmelCase_ : List[str] = [targets] try: lowerCAmelCase_ : Union[str, Any] = self.tokenizer.get_vocab() except Exception: lowerCAmelCase_ : str = {} lowerCAmelCase_ : Any = [] for target in targets: lowerCAmelCase_ : List[str] = vocab.get(A_ , A_) if id_ is None: lowerCAmelCase_ : Optional[int] = self.tokenizer( A_ , add_special_tokens=A_ , return_attention_mask=A_ , return_token_type_ids=A_ , max_length=1 , truncation=A_ , )['''input_ids'''] if len(A_) == 0: logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ '''We cannot replace it with anything meaningful, ignoring it''') continue lowerCAmelCase_ : Union[str, Any] = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ F"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_)}`.""") target_ids.append(id_) lowerCAmelCase_ : List[str] = list(set(A_)) if len(A_) == 0: raise ValueError('''At least one target must be provided when passed.''') lowerCAmelCase_ : Tuple = np.array(A_) return target_ids def UpperCAmelCase__ ( self : List[Any] , A_ : Optional[int]=None , A_ : Tuple=None): lowerCAmelCase_ : int = {} if targets is not None: lowerCAmelCase_ : Optional[Any] = self.get_target_ids(A_ , A_) lowerCAmelCase_ : str = target_ids if top_k is not None: lowerCAmelCase_ : int = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''') return {}, {}, postprocess_params def __call__( self : str , A_ : Tuple , *A_ : Dict , **A_ : Optional[Any]): lowerCAmelCase_ : Tuple = super().__call__(A_ , **A_) if isinstance(A_ , A_) and len(A_) == 1: return outputs[0] return outputs
171
0
'''simple docstring''' def __lowercase (_lowercase ) -> int: """simple docstring""" if not numbers: return 0 if not isinstance(_lowercase, (list, tuple) ) or not all( isinstance(_lowercase, _lowercase ) for number in numbers ): raise ValueError("""numbers must be an iterable of integers""" ) __lowerCamelCase : Dict = numbers[0] for i in range(1, len(_lowercase ) ): # update the maximum and minimum subarray products __lowerCamelCase : List[Any] = numbers[i] if number < 0: __lowerCamelCase , __lowerCamelCase : Tuple = min_till_now, max_till_now __lowerCamelCase : Optional[int] = max(_lowercase, max_till_now * number ) __lowerCamelCase : Optional[int] = min(_lowercase, min_till_now * number ) # update the maximum product found till now __lowerCamelCase : List[str] = max(_lowercase, _lowercase ) return max_prod
720
'''simple docstring''' import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def __lowercase (_lowercase, _lowercase, _lowercase ) -> Optional[Any]: """simple docstring""" # Initialise PyTorch model __lowerCamelCase : str = RemBertConfig.from_json_file(_lowercase ) print("""Building PyTorch model from configuration: {}""".format(str(_lowercase ) ) ) __lowerCamelCase : List[Any] = RemBertModel(_lowercase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(_lowercase, _lowercase, _lowercase ) # Save pytorch-model print("""Save PyTorch model to {}""".format(_lowercase ) ) torch.save(model.state_dict(), _lowercase ) if __name__ == "__main__": UpperCAmelCase__ :Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--rembert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained RemBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase__ :List[Any] = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
483
0
'''simple docstring''' import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness lowerCAmelCase__ = '''\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } ''' lowerCAmelCase__ = '''\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). ''' lowerCAmelCase__ = ''' Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric("code_eval") >>> test_cases = ["assert add(2,3)==5"] >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {\'pass@1\': 0.5, \'pass@2\': 1.0} ''' lowerCAmelCase__ = ''' ################################################################################ !!!WARNING!!! ################################################################################ The "code_eval" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this with: >>> import os >>> os.environ["HF_ALLOW_CODE_EVAL"] = "1" ################################################################################\ ''' lowerCAmelCase__ = '''The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ (datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Tuple ): return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Value('''string''' ), } ) ,homepage='''https://github.com/openai/human-eval''' ,codebase_urls=['''https://github.com/openai/human-eval'''] ,reference_urls=['''https://github.com/openai/human-eval'''] ,license=_LICENSE ,) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : str ,lowercase__ : Optional[Any] ,lowercase__ : int=[1, 1_0, 1_0_0] ,lowercase__ : Any=4 ,lowercase__ : Union[str, Any]=3.0 ): if os.getenv('''HF_ALLOW_CODE_EVAL''' ,0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('''This metric is currently not supported on Windows.''' ) with ThreadPoolExecutor(max_workers=lowercase__ ) as executor: __lowercase = [] __lowercase = Counter() __lowercase = 0 __lowercase = defaultdict(lowercase__ ) for task_id, (candidates, test_case) in enumerate(zip(lowercase__ ,lowercase__ ) ): for candidate in candidates: __lowercase = candidate + '''\n''' + test_case __lowercase = (test_program, timeout, task_id, completion_id[task_id]) __lowercase = executor.submit(lowercase__ ,*lowercase__ ) futures.append(lowercase__ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(lowercase__ ): __lowercase = future.result() results[result["task_id"]].append((result['''completion_id'''], result) ) __lowercase , __lowercase = [], [] for result in results.values(): result.sort() __lowercase = [r[1]['''passed'''] for r in result] total.append(len(lowercase__ ) ) correct.append(sum(lowercase__ ) ) __lowercase = np.array(lowercase__ ) __lowercase = np.array(lowercase__ ) __lowercase = k __lowercase = {F"pass@{k}": estimate_pass_at_k(lowercase__ ,lowercase__ ,lowercase__ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def _A ( A__ , A__ , A__ ): """simple docstring""" def estimator(A__ , A__ , A__ ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(A__ , A__ ): __lowercase = itertools.repeat(A__ , len(A__ ) ) else: assert len(A__ ) == len(A__ ) __lowercase = iter(A__ ) return np.array([estimator(int(A__ ) , int(A__ ) , A__ ) for n, c in zip(A__ , A__ )] )
41
from __future__ import annotations import math from collections.abc import Callable def UpperCamelCase__( UpperCamelCase__ : Callable[[int | float], int | float] , UpperCamelCase__ : int | float , UpperCamelCase__ : int | float , UpperCamelCase__ : int = 1_00 , )->float: A__ = x_start A__ = fnc(UpperCamelCase__ ) A__ = 0.0 for _ in range(UpperCamelCase__ ): # Approximates curve as a sequence of linear lines and sums their length A__ = (x_end - x_start) / steps + xa A__ = fnc(UpperCamelCase__ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step A__ = xa A__ = fxa return length if __name__ == "__main__": def UpperCamelCase__( UpperCamelCase__ : Union[str, Any] )->Dict: return math.sin(10 * x ) print('f(x) = sin(10 * x)') print('The length of the curve from x = -10 to x = 10 is:') a__: str = 10 while i <= 100_000: print(F"With {i} steps: {line_length(f, -10, 10, i)}") i *= 10
190
0
"""simple docstring""" import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class _SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): UpperCAmelCase_ :List[Any] = DownBlockaD # noqa F405 UpperCAmelCase_ :Any = "down" def __lowerCAmelCase ( self ) -> Dict: lowerCAmelCase_ :List[str] = [-0.0_2_3_2, -0.9_8_6_9, 0.8_0_5_4, -0.0_6_3_7, -0.1_6_8_8, -1.4_2_6_4, 0.4_4_7_0, -1.3_3_9_4, 0.0_9_0_4] super().test_output(__A ) class _SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): UpperCAmelCase_ :Optional[int] = ResnetDownsampleBlockaD # noqa F405 UpperCAmelCase_ :int = "down" def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :Any = [0.0_7_1_0, 0.2_4_1_0, -0.7_3_2_0, -1.0_7_5_7, -1.1_3_4_3, 0.3_5_4_0, -0.0_1_3_3, -0.2_5_7_6, 0.0_9_4_8] super().test_output(__A ) class _SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): UpperCAmelCase_ :Any = AttnDownBlockaD # noqa F405 UpperCAmelCase_ :Any = "down" def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :List[str] = [0.0_6_3_6, 0.8_9_6_4, -0.6_2_3_4, -1.0_1_3_1, 0.0_8_4_4, 0.4_9_3_5, 0.3_4_3_7, 0.0_9_1_1, -0.2_9_5_7] super().test_output(__A ) class _SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): UpperCAmelCase_ :Tuple = CrossAttnDownBlockaD # noqa F405 UpperCAmelCase_ :Tuple = "down" def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ , lowerCAmelCase_ :List[str] = super().prepare_init_args_and_inputs_for_common() lowerCAmelCase_ :Tuple = 32 return init_dict, inputs_dict def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :Tuple = [0.2_2_3_8, -0.7_3_9_6, -0.2_2_5_5, -0.3_8_2_9, 0.1_9_2_5, 1.1_6_6_5, 0.0_6_0_3, -0.7_2_9_5, 0.1_9_8_3] super().test_output(__A ) class _SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): UpperCAmelCase_ :Optional[Any] = SimpleCrossAttnDownBlockaD # noqa F405 UpperCAmelCase_ :Any = "down" @property def __lowerCAmelCase ( self ) -> List[str]: return super().get_dummy_input(include_encoder_hidden_states=__A ) def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ , lowerCAmelCase_ :Any = super().prepare_init_args_and_inputs_for_common() lowerCAmelCase_ :List[str] = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" ) def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :Optional[Any] = [0.7_9_2_1, -0.0_9_9_2, -0.1_9_6_2, -0.7_6_9_5, -0.4_2_4_2, 0.7_8_0_4, 0.4_7_3_7, 0.2_7_6_5, 0.3_3_3_8] super().test_output(__A ) class _SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): UpperCAmelCase_ :int = SkipDownBlockaD # noqa F405 UpperCAmelCase_ :str = "down" @property def __lowerCAmelCase ( self ) -> Any: return super().get_dummy_input(include_skip_sample=__A ) def __lowerCAmelCase ( self ) -> Optional[int]: lowerCAmelCase_ :Optional[int] = [-0.0_8_4_5, -0.2_0_8_7, -0.2_4_6_5, 0.0_9_7_1, 0.1_9_0_0, -0.0_4_8_4, 0.2_6_6_4, 0.4_1_7_9, 0.5_0_6_9] super().test_output(__A ) class _SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): UpperCAmelCase_ :int = AttnSkipDownBlockaD # noqa F405 UpperCAmelCase_ :Optional[int] = "down" @property def __lowerCAmelCase ( self ) -> Optional[Any]: return super().get_dummy_input(include_skip_sample=__A ) def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :Dict = [0.5_5_3_9, 0.1_6_0_9, 0.4_9_2_4, 0.0_5_3_7, -0.1_9_9_5, 0.4_0_5_0, 0.0_9_7_9, -0.2_7_2_1, -0.0_6_4_2] super().test_output(__A ) class _SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): UpperCAmelCase_ :Tuple = DownEncoderBlockaD # noqa F405 UpperCAmelCase_ :List[Any] = "down" @property def __lowerCAmelCase ( self ) -> Optional[Any]: return super().get_dummy_input(include_temb=__A ) def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :Optional[Any] = { """in_channels""": 32, """out_channels""": 32, } lowerCAmelCase_ :Any = self.dummy_input return init_dict, inputs_dict def __lowerCAmelCase ( self ) -> Any: lowerCAmelCase_ :Optional[Any] = [1.1_1_0_2, 0.5_3_0_2, 0.4_8_7_2, -0.0_0_2_3, -0.8_0_4_2, 0.0_4_8_3, -0.3_4_8_9, -0.5_6_3_2, 0.7_6_2_6] super().test_output(__A ) class _SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): UpperCAmelCase_ :Optional[Any] = AttnDownEncoderBlockaD # noqa F405 UpperCAmelCase_ :Union[str, Any] = "down" @property def __lowerCAmelCase ( self ) -> str: return super().get_dummy_input(include_temb=__A ) def __lowerCAmelCase ( self ) -> Dict: lowerCAmelCase_ :str = { """in_channels""": 32, """out_channels""": 32, } lowerCAmelCase_ :List[str] = self.dummy_input return init_dict, inputs_dict def __lowerCAmelCase ( self ) -> Any: lowerCAmelCase_ :Optional[int] = [0.8_9_6_6, -0.1_4_8_6, 0.8_5_6_8, 0.8_1_4_1, -0.9_0_4_6, -0.1_3_4_2, -0.0_9_7_2, -0.7_4_1_7, 0.1_5_3_8] super().test_output(__A ) class _SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): UpperCAmelCase_ :Dict = UNetMidBlockaD # noqa F405 UpperCAmelCase_ :Optional[int] = "mid" def __lowerCAmelCase ( self ) -> Any: lowerCAmelCase_ :Optional[Any] = { """in_channels""": 32, """temb_channels""": 128, } lowerCAmelCase_ :Dict = self.dummy_input return init_dict, inputs_dict def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :List[Any] = [-0.1_0_6_2, 1.7_2_4_8, 0.3_4_9_4, 1.4_5_6_9, -0.0_9_1_0, -1.2_4_2_1, -0.9_9_8_4, 0.6_7_3_6, 1.0_0_2_8] super().test_output(__A ) class _SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): UpperCAmelCase_ :Tuple = UNetMidBlockaDCrossAttn # noqa F405 UpperCAmelCase_ :List[Any] = "mid" def __lowerCAmelCase ( self ) -> Optional[int]: lowerCAmelCase_ , lowerCAmelCase_ :Any = super().prepare_init_args_and_inputs_for_common() lowerCAmelCase_ :Tuple = 32 return init_dict, inputs_dict def __lowerCAmelCase ( self ) -> Dict: lowerCAmelCase_ :str = [0.0_1_8_7, 2.4_2_2_0, 0.4_4_8_4, 1.1_2_0_3, -0.6_1_2_1, -1.5_1_2_2, -0.8_2_7_0, 0.7_8_5_1, 1.8_3_3_5] super().test_output(__A ) class _SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): UpperCAmelCase_ :Any = UNetMidBlockaDSimpleCrossAttn # noqa F405 UpperCAmelCase_ :str = "mid" @property def __lowerCAmelCase ( self ) -> Dict: return super().get_dummy_input(include_encoder_hidden_states=__A ) def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ , lowerCAmelCase_ :Union[str, Any] = super().prepare_init_args_and_inputs_for_common() lowerCAmelCase_ :Optional[Any] = 32 return init_dict, inputs_dict def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :List[str] = [0.7_1_4_3, 1.9_9_7_4, 0.5_4_4_8, 1.3_9_7_7, 0.1_2_8_2, -1.1_2_3_7, -1.4_2_3_8, 0.5_5_3_0, 0.8_8_8_0] super().test_output(__A ) class _SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): UpperCAmelCase_ :Union[str, Any] = UpBlockaD # noqa F405 UpperCAmelCase_ :List[Any] = "up" @property def __lowerCAmelCase ( self ) -> Any: return super().get_dummy_input(include_res_hidden_states_tuple=__A ) def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :Any = [-0.2_0_4_1, -0.4_1_6_5, -0.3_0_2_2, 0.0_0_4_1, -0.6_6_2_8, -0.7_0_5_3, 0.1_9_2_8, -0.0_3_2_5, 0.0_5_2_3] super().test_output(__A ) class _SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): UpperCAmelCase_ :Dict = ResnetUpsampleBlockaD # noqa F405 UpperCAmelCase_ :Any = "up" @property def __lowerCAmelCase ( self ) -> int: return super().get_dummy_input(include_res_hidden_states_tuple=__A ) def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :str = [0.2_2_8_7, 0.3_5_4_9, -0.1_3_4_6, 0.4_7_9_7, -0.1_7_1_5, -0.9_6_4_9, 0.7_3_0_5, -0.5_8_6_4, -0.6_2_4_4] super().test_output(__A ) class _SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): UpperCAmelCase_ :Tuple = CrossAttnUpBlockaD # noqa F405 UpperCAmelCase_ :Optional[int] = "up" @property def __lowerCAmelCase ( self ) -> str: return super().get_dummy_input(include_res_hidden_states_tuple=__A ) def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ , lowerCAmelCase_ :List[Any] = super().prepare_init_args_and_inputs_for_common() lowerCAmelCase_ :int = 32 return init_dict, inputs_dict def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :Optional[int] = [-0.1_4_0_3, -0.3_5_1_5, -0.0_4_2_0, -0.1_4_2_5, 0.3_1_6_7, 0.5_0_9_4, -0.2_1_8_1, 0.5_9_3_1, 0.5_5_8_2] super().test_output(__A ) class _SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): UpperCAmelCase_ :List[str] = SimpleCrossAttnUpBlockaD # noqa F405 UpperCAmelCase_ :Optional[int] = "up" @property def __lowerCAmelCase ( self ) -> Dict: return super().get_dummy_input(include_res_hidden_states_tuple=__A , include_encoder_hidden_states=__A ) def __lowerCAmelCase ( self ) -> Optional[int]: lowerCAmelCase_ , lowerCAmelCase_ :Optional[int] = super().prepare_init_args_and_inputs_for_common() lowerCAmelCase_ :Any = 32 return init_dict, inputs_dict def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :Dict = [0.2_6_4_5, 0.1_4_8_0, 0.0_9_0_9, 0.8_0_4_4, -0.9_7_5_8, -0.9_0_8_3, 0.0_9_9_4, -1.1_4_5_3, -0.7_4_0_2] super().test_output(__A ) class _SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): UpperCAmelCase_ :Any = AttnUpBlockaD # noqa F405 UpperCAmelCase_ :Union[str, Any] = "up" @property def __lowerCAmelCase ( self ) -> Optional[Any]: return super().get_dummy_input(include_res_hidden_states_tuple=__A ) @unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" ) def __lowerCAmelCase ( self ) -> Optional[int]: lowerCAmelCase_ :Dict = [0.0_9_7_9, 0.1_3_2_6, 0.0_0_2_1, 0.0_6_5_9, 0.2_2_4_9, 0.0_0_5_9, 0.1_1_3_2, 0.5_9_5_2, 0.1_0_3_3] super().test_output(__A ) class _SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): UpperCAmelCase_ :Optional[int] = SkipUpBlockaD # noqa F405 UpperCAmelCase_ :Optional[int] = "up" @property def __lowerCAmelCase ( self ) -> Any: return super().get_dummy_input(include_res_hidden_states_tuple=__A ) def __lowerCAmelCase ( self ) -> Any: lowerCAmelCase_ :Union[str, Any] = [-0.0_8_9_3, -0.1_2_3_4, -0.1_5_0_6, -0.0_3_3_2, 0.0_1_2_3, -0.0_2_1_1, 0.0_5_6_6, 0.0_1_4_3, 0.0_3_6_2] super().test_output(__A ) class _SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): UpperCAmelCase_ :Union[str, Any] = AttnSkipUpBlockaD # noqa F405 UpperCAmelCase_ :List[Any] = "up" @property def __lowerCAmelCase ( self ) -> List[Any]: return super().get_dummy_input(include_res_hidden_states_tuple=__A ) def __lowerCAmelCase ( self ) -> Any: lowerCAmelCase_ :Optional[int] = [0.0_3_6_1, 0.0_6_1_7, 0.2_7_8_7, -0.0_3_5_0, 0.0_3_4_2, 0.3_4_2_1, -0.0_8_4_3, 0.0_9_1_3, 0.3_0_1_5] super().test_output(__A ) class _SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): UpperCAmelCase_ :int = UpDecoderBlockaD # noqa F405 UpperCAmelCase_ :str = "up" @property def __lowerCAmelCase ( self ) -> List[Any]: return super().get_dummy_input(include_temb=__A ) def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :List[str] = {"""in_channels""": 32, """out_channels""": 32} lowerCAmelCase_ :List[str] = self.dummy_input return init_dict, inputs_dict def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :Tuple = [0.4_4_0_4, 0.1_9_9_8, -0.9_8_8_6, -0.3_3_2_0, -0.3_1_2_8, -0.7_0_3_4, -0.6_9_5_5, -0.2_3_3_8, -0.3_1_3_7] super().test_output(__A ) class _SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): UpperCAmelCase_ :List[Any] = AttnUpDecoderBlockaD # noqa F405 UpperCAmelCase_ :Tuple = "up" @property def __lowerCAmelCase ( self ) -> List[Any]: return super().get_dummy_input(include_temb=__A ) def __lowerCAmelCase ( self ) -> List[Any]: lowerCAmelCase_ :Tuple = {"""in_channels""": 32, """out_channels""": 32} lowerCAmelCase_ :int = self.dummy_input return init_dict, inputs_dict def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :List[Any] = [0.6_7_3_8, 0.4_4_9_1, 0.1_0_5_5, 1.0_7_1_0, 0.7_3_1_6, 0.3_3_3_9, 0.3_3_5_2, 0.1_0_2_3, 0.3_5_6_8] super().test_output(__A )
256
"""simple docstring""" from ...configuration_utils import PretrainedConfig class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :Tuple = "bert-generation" def __init__( self , __A=5_0358 , __A=1024 , __A=24 , __A=16 , __A=4096 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=0.0_2 , __A=1E-12 , __A=0 , __A=2 , __A=1 , __A="absolute" , __A=True , **__A , ) -> Union[str, Any]: super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) lowerCAmelCase_ :List[Any] = vocab_size lowerCAmelCase_ :int = hidden_size lowerCAmelCase_ :Union[str, Any] = num_hidden_layers lowerCAmelCase_ :str = num_attention_heads lowerCAmelCase_ :str = hidden_act lowerCAmelCase_ :List[str] = intermediate_size lowerCAmelCase_ :Optional[Any] = hidden_dropout_prob lowerCAmelCase_ :List[str] = attention_probs_dropout_prob lowerCAmelCase_ :Dict = max_position_embeddings lowerCAmelCase_ :int = initializer_range lowerCAmelCase_ :Optional[int] = layer_norm_eps lowerCAmelCase_ :str = position_embedding_type lowerCAmelCase_ :Dict = use_cache
256
1
"""simple docstring""" import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : str = RemBertConfig.from_json_file(_UpperCAmelCase ) print("""Building PyTorch model from configuration: {}""".format(str(_UpperCAmelCase ) ) ) snake_case_ : List[str] = RemBertModel(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print("""Save PyTorch model to {}""".format(_UpperCAmelCase ) ) torch.save(model.state_dict() , _UpperCAmelCase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--rembert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained RemBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) a_ = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
480
import sys import turtle def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): my_pen.up() my_pen.goto(vertexa[0] , vertexa[1]) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1]) my_pen.goto(vertexa[0] , vertexa[1]) my_pen.goto(vertexa[0] , vertexa[1]) if depth == 0: return triangle(_UpperCAmelCase , get_mid(_UpperCAmelCase , _UpperCAmelCase) , get_mid(_UpperCAmelCase , _UpperCAmelCase) , depth - 1) triangle(_UpperCAmelCase , get_mid(_UpperCAmelCase , _UpperCAmelCase) , get_mid(_UpperCAmelCase , _UpperCAmelCase) , depth - 1) triangle(_UpperCAmelCase , get_mid(_UpperCAmelCase , _UpperCAmelCase) , get_mid(_UpperCAmelCase , _UpperCAmelCase) , depth - 1) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( 'Correct format for using this script: ' 'python fractals.py <int:depth_for_fractal>' ) a_ : Any = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('red') a_ : str = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
73
0
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowerCAmelCase ( ) -> List[Any]: '''simple docstring''' import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join _a = "__test_patch_submodule_mock__" with patch_submodule(_test_patching , "os.path.join" , UpperCamelCase_ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowerCAmelCase ( ) -> List[str]: '''simple docstring''' assert _test_patching.open is open _a = "__test_patch_submodule_builtin_mock__" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , "open" , UpperCamelCase_ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowerCAmelCase ( ) -> Any: '''simple docstring''' _a = "__test_patch_submodule_missing_mock__" with patch_submodule(_test_patching , "pandas.read_csv" , UpperCamelCase_ ): pass def lowerCAmelCase ( ) -> Any: '''simple docstring''' _a = "__test_patch_submodule_missing_builtin_mock__" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , "len" , UpperCamelCase_ ) is None with patch_submodule(_test_patching , "len" , UpperCamelCase_ ): assert _test_patching.len is mock assert _test_patching.len is len def lowerCAmelCase ( ) -> Union[str, Any]: '''simple docstring''' _a = "__test_patch_submodule_start_and_stop_mock__" _a = patch_submodule(_test_patching , "open" , UpperCamelCase_ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowerCAmelCase ( ) -> str: '''simple docstring''' from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join _a = "__test_patch_submodule_successive_join__" _a = "__test_patch_submodule_successive_dirname__" _a = "__test_patch_submodule_successive_rename__" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , "os.path.join" , UpperCamelCase_ ): with patch_submodule(_test_patching , "os.rename" , UpperCamelCase_ ): with patch_submodule(_test_patching , "os.path.dirname" , UpperCamelCase_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , "os.rename" , UpperCamelCase_ ): with patch_submodule(_test_patching , "os.path.join" , UpperCamelCase_ ): with patch_submodule(_test_patching , "os.path.dirname" , UpperCamelCase_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowerCAmelCase ( ) -> Optional[int]: '''simple docstring''' _a = "__test_patch_submodule_doesnt_exist_mock__" with patch_submodule(_test_patching , "__module_that_doesn_exist__.__attribute_that_doesn_exist__" , UpperCamelCase_ ): pass with patch_submodule(_test_patching , "os.__attribute_that_doesn_exist__" , UpperCamelCase_ ): pass
702
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = OrderedDict( [ ("""align""", """EfficientNetImageProcessor"""), ("""beit""", """BeitImageProcessor"""), ("""bit""", """BitImageProcessor"""), ("""blip""", """BlipImageProcessor"""), ("""blip-2""", """BlipImageProcessor"""), ("""bridgetower""", """BridgeTowerImageProcessor"""), ("""chinese_clip""", """ChineseCLIPImageProcessor"""), ("""clip""", """CLIPImageProcessor"""), ("""clipseg""", """ViTImageProcessor"""), ("""conditional_detr""", """ConditionalDetrImageProcessor"""), ("""convnext""", """ConvNextImageProcessor"""), ("""convnextv2""", """ConvNextImageProcessor"""), ("""cvt""", """ConvNextImageProcessor"""), ("""data2vec-vision""", """BeitImageProcessor"""), ("""deformable_detr""", """DeformableDetrImageProcessor"""), ("""deit""", """DeiTImageProcessor"""), ("""deta""", """DetaImageProcessor"""), ("""detr""", """DetrImageProcessor"""), ("""dinat""", """ViTImageProcessor"""), ("""donut-swin""", """DonutImageProcessor"""), ("""dpt""", """DPTImageProcessor"""), ("""efficientformer""", """EfficientFormerImageProcessor"""), ("""efficientnet""", """EfficientNetImageProcessor"""), ("""flava""", """FlavaImageProcessor"""), ("""focalnet""", """BitImageProcessor"""), ("""git""", """CLIPImageProcessor"""), ("""glpn""", """GLPNImageProcessor"""), ("""groupvit""", """CLIPImageProcessor"""), ("""imagegpt""", """ImageGPTImageProcessor"""), ("""instructblip""", """BlipImageProcessor"""), ("""layoutlmv2""", """LayoutLMv2ImageProcessor"""), ("""layoutlmv3""", """LayoutLMv3ImageProcessor"""), ("""levit""", """LevitImageProcessor"""), ("""mask2former""", """Mask2FormerImageProcessor"""), ("""maskformer""", """MaskFormerImageProcessor"""), ("""mgp-str""", """ViTImageProcessor"""), ("""mobilenet_v1""", """MobileNetV1ImageProcessor"""), ("""mobilenet_v2""", """MobileNetV2ImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevitv2""", """MobileViTImageProcessor"""), ("""nat""", """ViTImageProcessor"""), ("""oneformer""", """OneFormerImageProcessor"""), ("""owlvit""", """OwlViTImageProcessor"""), ("""perceiver""", """PerceiverImageProcessor"""), ("""pix2struct""", """Pix2StructImageProcessor"""), ("""poolformer""", """PoolFormerImageProcessor"""), ("""regnet""", """ConvNextImageProcessor"""), ("""resnet""", """ConvNextImageProcessor"""), ("""sam""", """SamImageProcessor"""), ("""segformer""", """SegformerImageProcessor"""), ("""swiftformer""", """ViTImageProcessor"""), ("""swin""", """ViTImageProcessor"""), ("""swin2sr""", """Swin2SRImageProcessor"""), ("""swinv2""", """ViTImageProcessor"""), ("""table-transformer""", """DetrImageProcessor"""), ("""timesformer""", """VideoMAEImageProcessor"""), ("""tvlt""", """TvltImageProcessor"""), ("""upernet""", """SegformerImageProcessor"""), ("""van""", """ConvNextImageProcessor"""), ("""videomae""", """VideoMAEImageProcessor"""), ("""vilt""", """ViltImageProcessor"""), ("""vit""", """ViTImageProcessor"""), ("""vit_hybrid""", """ViTHybridImageProcessor"""), ("""vit_mae""", """ViTImageProcessor"""), ("""vit_msn""", """ViTImageProcessor"""), ("""xclip""", """CLIPImageProcessor"""), ("""yolos""", """YolosImageProcessor"""), ] ) UpperCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def lowerCAmelCase ( UpperCamelCase_: str ) -> Union[str, Any]: '''simple docstring''' for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _a = model_type_to_module_name(UpperCamelCase_ ) _a = importlib.import_module(f'''.{module_name}''' , "transformers.models" ) try: return getattr(UpperCamelCase_ , UpperCamelCase_ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(UpperCamelCase_ , "__name__" , UpperCamelCase_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _a = importlib.import_module("transformers" ) if hasattr(UpperCamelCase_ , UpperCamelCase_ ): return getattr(UpperCamelCase_ , UpperCamelCase_ ) return None def lowerCAmelCase ( UpperCamelCase_: Union[str, os.PathLike] , UpperCamelCase_: Optional[Union[str, os.PathLike]] = None , UpperCamelCase_: bool = False , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[Dict[str, str]] = None , UpperCamelCase_: Optional[Union[bool, str]] = None , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: bool = False , **UpperCamelCase_: Dict , ) -> Optional[int]: '''simple docstring''' _a = get_file_from_repo( UpperCamelCase_ , UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , resume_download=UpperCamelCase_ , proxies=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , revision=UpperCamelCase_ , local_files_only=UpperCamelCase_ , ) if resolved_config_file is None: logger.info( "Could not locate the image processor configuration file, will try to use the model config instead." ) return {} with open(UpperCamelCase_ , encoding="utf-8" ) as reader: return json.load(UpperCamelCase_ ) class lowercase_ : def __init__( self ) ->List[Any]: '''simple docstring''' raise EnvironmentError( "AutoImageProcessor is designed to be instantiated " "using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(a_ ) def lowerCamelCase__ ( cls , a_ , **a_ ) ->Dict: '''simple docstring''' _a = kwargs.pop("config" , a_ ) _a = kwargs.pop("trust_remote_code" , a_ ) _a = True _a , _a = ImageProcessingMixin.get_image_processor_dict(a_ , **a_ ) _a = config_dict.get("image_processor_type" , a_ ) _a = None if "AutoImageProcessor" in config_dict.get("auto_map" , {} ): _a = config_dict["auto_map"]["AutoImageProcessor"] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _a = config_dict.pop("feature_extractor_type" , a_ ) if feature_extractor_class is not None: logger.warning( "Could not find image processor class in the image processor config or the model config. Loading" " based on pattern matching with the model's feature extractor configuration." ) _a = feature_extractor_class.replace("FeatureExtractor" , "ImageProcessor" ) if "AutoFeatureExtractor" in config_dict.get("auto_map" , {} ): _a = config_dict["auto_map"]["AutoFeatureExtractor"] _a = feature_extractor_auto_map.replace("FeatureExtractor" , "ImageProcessor" ) logger.warning( "Could not find image processor auto map in the image processor config or the model config." " Loading based on pattern matching with the model's feature extractor configuration." ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(a_ , a_ ): _a = AutoConfig.from_pretrained(a_ , **a_ ) # It could be in `config.image_processor_type`` _a = getattr(a_ , "image_processor_type" , a_ ) if hasattr(a_ , "auto_map" ) and "AutoImageProcessor" in config.auto_map: _a = config.auto_map["AutoImageProcessor"] if image_processor_class is not None: _a = image_processor_class_from_name(a_ ) _a = image_processor_auto_map is not None _a = image_processor_class is not None or type(a_ ) in IMAGE_PROCESSOR_MAPPING _a = resolve_trust_remote_code( a_ , a_ , a_ , a_ ) if has_remote_code and trust_remote_code: _a = get_class_from_dynamic_module( a_ , a_ , **a_ ) _a = kwargs.pop("code_revision" , a_ ) if os.path.isdir(a_ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(a_ , **a_ ) elif image_processor_class is not None: return image_processor_class.from_dict(a_ , **a_ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(a_ ) in IMAGE_PROCESSOR_MAPPING: _a = IMAGE_PROCESSOR_MAPPING[type(a_ )] return image_processor_class.from_dict(a_ , **a_ ) raise ValueError( f'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' f'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' f'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def lowerCamelCase__ ( a_ , a_ ) ->Optional[int]: '''simple docstring''' IMAGE_PROCESSOR_MAPPING.register(a_ , a_ )
612
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase: List[Any] ={ "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: Optional[Any] =[ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowerCAmelCase: Optional[Any] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
607
"""simple docstring""" import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowerCAmelCase: List[Any] =logging.get_logger(__name__) class lowerCamelCase__ : def __init__( self , snake_case = None , snake_case = None , snake_case=None , snake_case=None ) -> Any: """simple docstring""" if not conversation_id: lowercase : int = uuid.uuida() if past_user_inputs is None: lowercase : Any = [] if generated_responses is None: lowercase : Dict = [] lowercase : uuid.UUID = conversation_id lowercase : List[str] = past_user_inputs lowercase : List[str] = generated_responses lowercase : Optional[str] = text def __eq__( self , snake_case ) -> Any: """simple docstring""" if not isinstance(snake_case , snake_case ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def _UpperCAmelCase ( self , snake_case , snake_case = False ) -> List[Any]: """simple docstring""" if self.new_user_input: if overwrite: logger.warning( f'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ''' f'''with: "{text}".''' ) lowercase : Any = text else: logger.warning( f'''User input added while unprocessed input was existing: "{self.new_user_input}" new input ''' f'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' ) else: lowercase : Union[str, Any] = text def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) lowercase : Optional[Any] = None def _UpperCAmelCase ( self , snake_case ) -> Tuple: """simple docstring""" self.generated_responses.append(snake_case ) def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ) -> Union[str, Any]: """simple docstring""" lowercase : Optional[int] = f'''Conversation id: {self.uuid} \n''' for is_user, text in self.iter_texts(): lowercase : Any = """user""" if is_user else """bot""" output += f'''{name} >> {text} \n''' return output @add_end_docstrings( __UpperCamelCase , r""" min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. """ , ) class lowerCamelCase__ ( __UpperCamelCase ): def __init__( self , *snake_case , **snake_case ) -> Optional[Any]: """simple docstring""" super().__init__(*snake_case , **snake_case ) if self.tokenizer.pad_token_id is None: lowercase : Union[str, Any] = self.tokenizer.eos_token def _UpperCAmelCase ( self , snake_case=None , snake_case=None , snake_case=None , **snake_case ) -> Tuple: """simple docstring""" lowercase : int = {} lowercase : Union[str, Any] = {} lowercase : Union[str, Any] = {} if min_length_for_response is not None: lowercase : List[Any] = min_length_for_response if minimum_tokens is not None: lowercase : Dict = minimum_tokens if "max_length" in generate_kwargs: lowercase : List[Any] = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: lowercase : List[str] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(snake_case ) return preprocess_params, forward_params, postprocess_params def __call__( self , snake_case , snake_case=0 , **snake_case ) -> Optional[int]: """simple docstring""" lowercase : Optional[Any] = super().__call__(snake_case , num_workers=snake_case , **snake_case ) if isinstance(snake_case , snake_case ) and len(snake_case ) == 1: return outputs[0] return outputs def _UpperCAmelCase ( self , snake_case , snake_case=3_2 ) -> Dict[str, Any]: """simple docstring""" if not isinstance(snake_case , snake_case ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( f'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ''' """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): lowercase : Any = self.tokenizer._build_conversation_input_ids(snake_case ) else: # If the tokenizer cannot handle conversations, we default to only the old version lowercase : Any = self._legacy_parse_and_tokenize(snake_case ) if self.framework == "pt": lowercase : List[str] = torch.LongTensor([input_ids] ) elif self.framework == "tf": lowercase : str = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def _UpperCAmelCase ( self , snake_case , snake_case=1_0 , **snake_case ) -> int: """simple docstring""" lowercase : Any = generate_kwargs.get("""max_length""" , self.model.config.max_length ) lowercase : Tuple = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(f'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' ) lowercase : List[Any] = max_length - minimum_tokens lowercase : Union[str, Any] = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: lowercase : int = model_inputs["""attention_mask"""][:, -trim:] lowercase : int = model_inputs.pop("""conversation""" ) lowercase : Optional[int] = max_length lowercase : Optional[int] = self.model.generate(**snake_case , **snake_case ) if self.model.config.is_encoder_decoder: lowercase : Union[str, Any] = 1 else: lowercase : List[str] = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def _UpperCAmelCase ( self , snake_case , snake_case=True ) -> List[str]: """simple docstring""" lowercase : int = model_outputs["""output_ids"""] lowercase : str = self.tokenizer.decode( output_ids[0] , skip_special_tokens=snake_case , clean_up_tokenization_spaces=snake_case , ) lowercase : str = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(snake_case ) return conversation def _UpperCAmelCase ( self , snake_case ) -> Dict: """simple docstring""" lowercase : Tuple = self.tokenizer.eos_token_id lowercase : int = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(snake_case , add_special_tokens=snake_case ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(snake_case , add_special_tokens=snake_case ) ) if len(snake_case ) > self.tokenizer.model_max_length: lowercase : Union[str, Any] = input_ids[-self.tokenizer.model_max_length :] return input_ids
607
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Tuple = logging.get_logger(__name__) class snake_case_ ( __A ): '''simple docstring''' lowerCamelCase = "encoder-decoder" lowerCamelCase = True def __init__( self : Tuple , **__magic_name__ : Optional[Any] ) -> Optional[Any]: super().__init__(**__UpperCamelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" lowerCamelCase_ : Any = kwargs.pop("encoder" ) lowerCamelCase_ : List[str] = encoder_config.pop("model_type" ) lowerCamelCase_ : Optional[Any] = kwargs.pop("decoder" ) lowerCamelCase_ : Optional[Any] = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig lowerCamelCase_ : Dict = AutoConfig.for_model(__UpperCamelCase , **__UpperCamelCase ) lowerCamelCase_ : str = AutoConfig.for_model(__UpperCamelCase , **__UpperCamelCase ) lowerCamelCase_ : Dict = True @classmethod def __SCREAMING_SNAKE_CASE ( cls : Optional[int] , __magic_name__ : PretrainedConfig , __magic_name__ : PretrainedConfig , **__magic_name__ : str ) -> PretrainedConfig: logger.info("Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) lowerCamelCase_ : int = True lowerCamelCase_ : int = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: lowerCamelCase_ : Optional[Any] = copy.deepcopy(self.__dict__ ) lowerCamelCase_ : int = self.encoder.to_dict() lowerCamelCase_ : Optional[Any] = self.decoder.to_dict() lowerCamelCase_ : Optional[Any] = self.__class__.model_type return output
707
from __future__ import annotations def __a ( __UpperCAmelCase : list[int | str] ) -> None: """simple docstring""" create_state_space_tree(__UpperCAmelCase , [] , 0 , [0 for i in range(len(__UpperCAmelCase ) )] ) def __a ( __UpperCAmelCase : list[int | str] , __UpperCAmelCase : list[int | str] , __UpperCAmelCase : int , __UpperCAmelCase : list[int] , ) -> None: """simple docstring""" if index == len(__UpperCAmelCase ): print(__UpperCAmelCase ) return for i in range(len(__UpperCAmelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) lowerCamelCase_ : str = True create_state_space_tree(__UpperCAmelCase , __UpperCAmelCase , index + 1 , __UpperCAmelCase ) current_sequence.pop() lowerCamelCase_ : Dict = False snake_case_ : list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) snake_case_ : list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
253
0
"""simple docstring""" import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowercase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any , _UpperCAmelCase : str , _UpperCAmelCase : Any=7 , _UpperCAmelCase : Tuple=3 , _UpperCAmelCase : Dict=18 , _UpperCAmelCase : int=30 , _UpperCAmelCase : List[str]=400 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Any=None , _UpperCAmelCase : int=True , _UpperCAmelCase : Any=[0.5, 0.5, 0.5] , _UpperCAmelCase : int=[0.5, 0.5, 0.5] , ) -> Dict: '''simple docstring''' UpperCAmelCase_ = size if size is not None else {"height": 18, "width": 18} UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean UpperCAmelCase_ = image_std def lowercase__ ( self : Tuple ) -> int: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = DPTImageProcessor if is_vision_available() else None def lowercase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = DPTImageProcessingTester(self ) @property def lowercase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : List[str] ) -> str: '''simple docstring''' UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , "image_mean" ) ) self.assertTrue(hasattr(_UpperCAmelCase , "image_std" ) ) self.assertTrue(hasattr(_UpperCAmelCase , "do_normalize" ) ) self.assertTrue(hasattr(_UpperCAmelCase , "do_resize" ) ) self.assertTrue(hasattr(_UpperCAmelCase , "size" ) ) def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def lowercase__ ( self : str ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched UpperCAmelCase_ = image_processing(_UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched UpperCAmelCase_ = image_processing(_UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def lowercase__ ( self : str ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched UpperCAmelCase_ = image_processing(_UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , )
82
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCAmelCase__ : """simple docstring""" @staticmethod def _UpperCamelCase ( *a_ , **a_ ): pass @is_pipeline_test @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def _UpperCamelCase ( self , a_ , a_ , a_ ): lowerCamelCase_ : Optional[Any] = pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) lowerCamelCase_ : Optional[Any] = [ { "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "question": "How many cats are there?", }, { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "question": "How many cats are there?", }, ] return vqa_pipeline, examples def _UpperCamelCase ( self , a_ , a_ ): lowerCamelCase_ : Optional[int] = vqa_pipeline(a_ , top_k=1 ) self.assertEqual( a_ , [ [{"score": ANY(a_ ), "answer": ANY(a_ )}], [{"score": ANY(a_ ), "answer": ANY(a_ )}], ] , ) @require_torch def _UpperCamelCase ( self ): lowerCamelCase_ : int = pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) lowerCamelCase_ : str = "./tests/fixtures/tests_samples/COCO/000000039769.png" lowerCamelCase_ : str = "How many cats are there?" lowerCamelCase_ : int = vqa_pipeline(image=a_ , question="How many cats are there?" , top_k=2 ) self.assertEqual( a_ , [{"score": ANY(a_ ), "answer": ANY(a_ )}, {"score": ANY(a_ ), "answer": ANY(a_ )}] ) lowerCamelCase_ : List[str] = vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( a_ , [{"score": ANY(a_ ), "answer": ANY(a_ )}, {"score": ANY(a_ ), "answer": ANY(a_ )}] ) @slow @require_torch def _UpperCamelCase ( self ): lowerCamelCase_ : Union[str, Any] = pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" ) lowerCamelCase_ : Tuple = "./tests/fixtures/tests_samples/COCO/000000039769.png" lowerCamelCase_ : Dict = "How many cats are there?" lowerCamelCase_ : str = vqa_pipeline(image=a_ , question=a_ , top_k=2 ) self.assertEqual( nested_simplify(a_ , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) lowerCamelCase_ : Any = vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(a_ , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) lowerCamelCase_ : Optional[int] = vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(a_ , decimals=4 ) , [[{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}]] * 2 , ) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def _UpperCamelCase ( self ): pass
250
0
'''simple docstring''' from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __lowercase :Tuple = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" __lowercase :str = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" __lowercase :List[Any] = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): """simple docstring""" def A_ ( self : List[Any] ) ->MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def A_ ( self : str , a : List[List[List[str]]] , a : List[List[str]] , a : int = 1 , a : int = 4 , ) ->Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=a , hypotheses=a , min_len=a , max_len=a ) }
721
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class _a ( unittest.TestCase ): """simple docstring""" @require_torch def A_ ( self : Dict ) ->str: SCREAMING_SNAKE_CASE__ : Any = pipeline( task="zero-shot-audio-classification" , model="hf-internal-testing/tiny-clap-htsat-unfused" ) SCREAMING_SNAKE_CASE__ : Optional[int] = load_dataset("ashraq/esc50" ) SCREAMING_SNAKE_CASE__ : Optional[int] = dataset["train"]["audio"][-1]["array"] SCREAMING_SNAKE_CASE__ : int = audio_classifier(a , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(a ) , [{"score": 0.501, "label": "Sound of a dog"}, {"score": 0.499, "label": "Sound of vaccum cleaner"}] , ) @unittest.skip("No models are available in TF" ) def A_ ( self : int ) ->Union[str, Any]: pass @slow @require_torch def A_ ( self : int ) ->str: SCREAMING_SNAKE_CASE__ : List[str] = pipeline( task="zero-shot-audio-classification" , model="laion/clap-htsat-unfused" , ) # This is an audio of a dog SCREAMING_SNAKE_CASE__ : int = load_dataset("ashraq/esc50" ) SCREAMING_SNAKE_CASE__ : str = dataset["train"]["audio"][-1]["array"] SCREAMING_SNAKE_CASE__ : List[Any] = audio_classifier(a , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(a ) , [ {"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}, ] , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = audio_classifier([audio] * 5 , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(a ) , [ [ {"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}, ], ] * 5 , ) SCREAMING_SNAKE_CASE__ : int = audio_classifier( [audio] * 5 , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] , batch_size=5 ) self.assertEqual( nested_simplify(a ) , [ [ {"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}, ], ] * 5 , ) @unittest.skip("No models are available in TF" ) def A_ ( self : Optional[int] ) ->Union[str, Any]: pass
26
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_ = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["ConditionalDetrFeatureExtractor"] lowercase_ = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
470
"""simple docstring""" from string import ascii_lowercase, ascii_uppercase def A_ ( lowercase ) -> str: """simple docstring""" if not sentence: return "" UpperCAmelCase_ : Any = dict(zip(lowercase , lowercase ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
470
1
"""simple docstring""" UpperCamelCase : Any = "Tobias Carryer" from time import time class lowerCamelCase__ : def __init__( self : Tuple , _lowercase : List[Any] , _lowercase : Any , _lowercase : Union[str, Any] , _lowercase : List[Any]=int(time() ) ): # noqa: B008 A = multiplier A = increment A = modulo A = seed def __a ( self : Tuple ): A = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. UpperCamelCase : Any = LinearCongruentialGenerator(1_664_525, 1_013_904_223, 2 << 31) while True: print(lcg.next_number())
91
"""simple docstring""" # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers UpperCamelCase : Optional[Any] = float("nan") class lowerCamelCase__ : def __init__( self : List[str] , _lowercase : Union[str, Any] ): A = sys.stdout A = open(_lowercase , 'a' ) def __getattr__( self : Tuple , _lowercase : Union[str, Any] ): return getattr(self.stdout , _lowercase ) def __a ( self : Optional[int] , _lowercase : Union[str, Any] ): self.stdout.write(_lowercase ) # strip tqdm codes self.file.write(re.sub(R'^.*\r' , '' , _lowercase , 0 , re.M ) ) def __snake_case ( UpperCamelCase__=80 , UpperCamelCase__=False ) -> Union[str, Any]: """simple docstring""" A = [] # deal with critical env vars A = ['CUDA_VISIBLE_DEVICES'] for key in env_keys: A = os.environ.get(UpperCamelCase__ , UpperCamelCase__ ) if val is not None: cmd.append(f'{key}={val}' ) # python executable (not always needed if the script is executable) A = sys.executable if full_python_path else sys.executable.split('/' )[-1] cmd.append(UpperCamelCase__ ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes A = [] A = '' while len(UpperCamelCase__ ) > 0: current_line += f'{cmd.pop(0 )} ' if len(UpperCamelCase__ ) == 0 or len(UpperCamelCase__ ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(UpperCamelCase__ ) A = '' return "\\\n".join(UpperCamelCase__ ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: """simple docstring""" A = re.sub(r'[\\\n]+' , ' ' , args.base_cmd ) # remove --output_dir if any and set our own A = re.sub('--output_dir\s+[^\s]+' , '' , args.base_cmd ) args.base_cmd += f' --output_dir {output_dir}' # ensure we have --overwrite_output_dir A = re.sub('--overwrite_output_dir\s+' , '' , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Any: """simple docstring""" if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 1_0.3_1, 1_0_0.2, 5_5.6_6_6_6, 2_2_2.2_2_2_2_2_2_2_2] )} , ) A = subprocess.run(UpperCamelCase__ , capture_output=UpperCamelCase__ , text=UpperCamelCase__ ) if verbose: print('STDOUT' , result.stdout ) print('STDERR' , result.stderr ) # save the streams A = variation.replace(' ' , '-' ) with open(Path(UpperCamelCase__ ) / f'log.{prefix}.stdout.txt' , 'w' ) as f: f.write(result.stdout ) with open(Path(UpperCamelCase__ ) / f'log.{prefix}.stderr.txt' , 'w' ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print('failed' ) return {target_metric_key: nan} with io.open(f'{output_dir}/all_results.json' , 'r' , encoding='utf-8' ) as f: A = json.load(UpperCamelCase__ ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> str: """simple docstring""" A = [] A = [] A = f'{id}: {variation:<{longest_variation_len}}' A = f'{preamble}: ' A = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(UpperCamelCase__ ) , desc=UpperCamelCase__ , leave=UpperCamelCase__ ): A = process_run_single( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A = single_run_metrics[target_metric_key] if not math.isnan(UpperCamelCase__ ): metrics.append(UpperCamelCase__ ) results.append(UpperCamelCase__ ) outcome += "✓" else: outcome += "✘" A = f'\33[2K\r{outcome}' if len(UpperCamelCase__ ) > 0: A = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} A = round(mean_metrics[target_metric_key] , 2 ) A = f'{outcome} {mean_target}' if len(UpperCamelCase__ ) > 1: results_str += f' {tuple(round(UpperCamelCase__ , 2 ) for x in results )}' print(UpperCamelCase__ ) A = variation return mean_metrics else: print(UpperCamelCase__ ) return {variation_key: variation, target_metric_key: nan} def __snake_case ( ) -> List[Any]: """simple docstring""" A = torch.cuda.get_device_properties(torch.device('cuda' ) ) return f'\nDatetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB\n' def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: """simple docstring""" A = pd.DataFrame(UpperCamelCase__ ) A = 'variation' A = 'diff_%' A = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan A = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(UpperCamelCase__ ): # as a fallback, use the minimal value as the sentinel A = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(UpperCamelCase__ ): A = df.apply( lambda UpperCamelCase__ : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis='columns' , ) # re-order columns A = [variation_key, target_metric_key, diff_key, *report_metric_keys] A = df.reindex(UpperCamelCase__ , axis='columns' ) # reorder cols # capitalize A = df.rename(str.capitalize , axis='columns' ) # make the cols as narrow as possible A = df.rename(lambda UpperCamelCase__ : c.replace('_' , '<br>' ) , axis='columns' ) A = df.rename(lambda UpperCamelCase__ : c.replace('_' , '\n' ) , axis='columns' ) A = ['', 'Copy between the cut-here-lines and paste as is to github or a forum'] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=UpperCamelCase__ , floatfmt='.2f' )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=UpperCamelCase__ , floatfmt='.2f' )] print('\n\n'.join(UpperCamelCase__ ) ) def __snake_case ( ) -> Union[str, Any]: """simple docstring""" A = argparse.ArgumentParser() parser.add_argument( '--base-cmd' , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help='Base cmd' , ) parser.add_argument( '--variations' , default=UpperCamelCase__ , type=UpperCamelCase__ , nargs='+' , required=UpperCamelCase__ , help='Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'' , ) parser.add_argument( '--base-variation' , default=UpperCamelCase__ , type=UpperCamelCase__ , help='Baseline variation to compare to. if None the minimal target value will be used to compare against' , ) parser.add_argument( '--target-metric-key' , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help='Target metric key in output_dir/all_results.json, e.g., train_samples_per_second' , ) parser.add_argument( '--report-metric-keys' , default='' , type=UpperCamelCase__ , help='Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples' , ) parser.add_argument( '--repeat-times' , default=1 , type=UpperCamelCase__ , help='How many times to re-run each variation - an average will be reported' , ) parser.add_argument( '--output_dir' , default='output_benchmark' , type=UpperCamelCase__ , help='The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked' , ) parser.add_argument( '--verbose' , default=UpperCamelCase__ , action='store_true' , help='Whether to show the outputs of each run or just the benchmark progress' , ) A = parser.parse_args() A = args.output_dir Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) A = get_base_command(UpperCamelCase__ , UpperCamelCase__ ) # split each dimension into its --foo variations A = [list(map(str.strip , re.split(r'\|' , UpperCamelCase__ ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty A = list(map(str.strip , map(' '.join , itertools.product(*UpperCamelCase__ ) ) ) ) A = max(len(UpperCamelCase__ ) for x in variations ) # split wanted keys A = args.report_metric_keys.split() # capture prints into a log file for convenience A = f'benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt' print(f'\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt' ) print(f'and this script\'s output is also piped into {report_fn}' ) A = Tee(UpperCamelCase__ ) print(f'\n*** Running {len(UpperCamelCase__ )} benchmarks:' ) print(f'Base command: {" ".join(UpperCamelCase__ )}' ) A = 'variation' A = [] for id, variation in enumerate(tqdm(UpperCamelCase__ , desc='Total completion: ' , leave=UpperCamelCase__ ) ): A = base_cmd + variation.split() results.append( process_run( id + 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , args.target_metric_key , UpperCamelCase__ , args.repeat_times , UpperCamelCase__ , args.verbose , ) ) process_results(UpperCamelCase__ , args.target_metric_key , UpperCamelCase__ , args.base_variation , UpperCamelCase__ ) if __name__ == "__main__": main()
91
1
import os def SCREAMING_SNAKE_CASE__ ( ): with open(os.path.dirname(UpperCamelCase__ ) + """/p022_names.txt""" ) as file: SCREAMING_SNAKE_CASE__ = str(file.readlines()[0] ) SCREAMING_SNAKE_CASE__ = names.replace("""\"""" , """""" ).split(""",""" ) names.sort() SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 for i, name in enumerate(UpperCamelCase__ ): for letter in name: name_score += ord(UpperCamelCase__ ) - 64 total_score += (i + 1) * name_score SCREAMING_SNAKE_CASE__ = 0 return total_score if __name__ == "__main__": print(solution())
6
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int = 600_851_475_143 ): try: SCREAMING_SNAKE_CASE__ = int(UpperCamelCase__ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 while i * i <= n: while n % i == 0: SCREAMING_SNAKE_CASE__ = i n //= i i += 1 if n > 1: SCREAMING_SNAKE_CASE__ = n return int(UpperCamelCase__ ) if __name__ == "__main__": print(F'''{solution() = }''')
6
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCAmelCase = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
700
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE = 6008_5147_5143 ): try: lowercase = int(__SCREAMING_SNAKE_CASE ) except (TypeError, ValueError): raise TypeError('Parameter n must be int or castable to int.' ) if n <= 0: raise ValueError('Parameter n must be greater than or equal to one.' ) lowercase = 1 lowercase = 2 while i * i <= n: while n % i == 0: lowercase = i n //= i i += 1 if n > 1: lowercase = n return int(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F"""{solution() = }""")
565
0
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase ( datasets.BuilderConfig ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = None class UpperCAmelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = PandasConfig def UpperCamelCase( self ) -> str: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Dict: '''simple docstring''' if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) lowerCamelCase_ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(SCREAMING_SNAKE_CASE_ , (str, list, tuple) ): lowerCamelCase_ = data_files if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCamelCase_ = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] lowerCamelCase_ = [] for split_name, files in data_files.items(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCamelCase_ = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files] splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE_ , gen_kwargs={'files': files} ) ) return splits def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> pa.Table: '''simple docstring''' if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example lowerCamelCase_ = table_cast(SCREAMING_SNAKE_CASE_ , self.config.features.arrow_schema ) return pa_table def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' for i, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE_ ) ): with open(SCREAMING_SNAKE_CASE_ , 'rb' ) as f: lowerCamelCase_ = pa.Table.from_pandas(pd.read_pickle(SCREAMING_SNAKE_CASE_ ) ) yield i, self._cast_table(SCREAMING_SNAKE_CASE_ )
42
import numpy # List of input, output pairs A_ : Any = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) A_ : List[Any] = (((515, 22, 13), 555), ((61, 35, 49), 150)) A_ : Any = [2, 4, 1, 5] A_ : List[Any] = len(train_data) A_ : List[Any] = 0.009 def snake_case (UpperCAmelCase__ , UpperCAmelCase__="train" ) -> Optional[int]: return calculate_hypothesis_value(UpperCAmelCase__ , UpperCAmelCase__ ) - output( UpperCAmelCase__ , UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ ) -> Optional[Any]: UpperCamelCase_: Optional[Any] = 0 for i in range(len(UpperCAmelCase__ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> List[Any]: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def snake_case (UpperCAmelCase__ , UpperCAmelCase__=m ) -> Optional[Any]: UpperCamelCase_: Any = 0 for i in range(UpperCAmelCase__ ): if index == -1: summation_value += _error(UpperCAmelCase__ ) else: summation_value += _error(UpperCAmelCase__ ) * train_data[i][0][index] return summation_value def snake_case (UpperCAmelCase__ ) -> Optional[Any]: UpperCamelCase_: Optional[int] = summation_of_cost_derivative(UpperCAmelCase__ , UpperCAmelCase__ ) / m return cost_derivative_value def snake_case () -> Union[str, Any]: global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCamelCase_: str = 0.00_0002 UpperCamelCase_: Any = 0 UpperCamelCase_: int = 0 while True: j += 1 UpperCamelCase_: int = [0, 0, 0, 0] for i in range(0 , len(UpperCAmelCase__ ) ): UpperCamelCase_: Any = get_cost_derivative(i - 1 ) UpperCamelCase_: Optional[int] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( UpperCAmelCase__ , UpperCAmelCase__ , atol=UpperCAmelCase__ , rtol=UpperCAmelCase__ , ): break UpperCamelCase_: Optional[int] = temp_parameter_vector print(('Number of iterations:', j) ) def snake_case () -> int: for i in range(len(UpperCAmelCase__ ) ): print(('Actual output value:', output(UpperCAmelCase__ , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(UpperCAmelCase__ , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
57
0
"""simple docstring""" import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ :str = logging.get_logger(__name__) lowercase__ :Any = { '''facebook/encodec_24khz''': '''https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json''', '''facebook/encodec_48khz''': '''https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json''', } class snake_case ( __a ): '''simple docstring''' _A : List[str] = '''encodec''' def __init__( self : List[Any] , __lowercase : str=[1.5, 3.0, 6.0, 1_2.0, 2_4.0] , __lowercase : int=24_000 , __lowercase : Any=1 , __lowercase : Optional[int]=False , __lowercase : Tuple=None , __lowercase : Optional[int]=None , __lowercase : str=128 , __lowercase : Tuple=32 , __lowercase : Optional[int]=1 , __lowercase : Dict=[8, 5, 4, 2] , __lowercase : List[Any]="weight_norm" , __lowercase : Union[str, Any]=7 , __lowercase : Optional[int]=7 , __lowercase : List[Any]=3 , __lowercase : Optional[int]=2 , __lowercase : List[str]=True , __lowercase : str="reflect" , __lowercase : int=2 , __lowercase : Union[str, Any]=2 , __lowercase : str=1.0 , __lowercase : str=1_024 , __lowercase : str=None , __lowercase : List[Any]=True , **__lowercase : Any , ): '''simple docstring''' __UpperCAmelCase : Dict = target_bandwidths __UpperCAmelCase : List[str] = sampling_rate __UpperCAmelCase : Tuple = audio_channels __UpperCAmelCase : int = normalize __UpperCAmelCase : Optional[Any] = chunk_length_s __UpperCAmelCase : List[Any] = overlap __UpperCAmelCase : List[Any] = hidden_size __UpperCAmelCase : str = num_filters __UpperCAmelCase : Tuple = num_residual_layers __UpperCAmelCase : Optional[Any] = upsampling_ratios __UpperCAmelCase : Dict = norm_type __UpperCAmelCase : Optional[int] = kernel_size __UpperCAmelCase : int = last_kernel_size __UpperCAmelCase : Union[str, Any] = residual_kernel_size __UpperCAmelCase : Any = dilation_growth_rate __UpperCAmelCase : str = use_causal_conv __UpperCAmelCase : Optional[Any] = pad_mode __UpperCAmelCase : List[Any] = compress __UpperCAmelCase : str = num_lstm_layers __UpperCAmelCase : Optional[int] = trim_right_ratio __UpperCAmelCase : str = codebook_size __UpperCAmelCase : List[Any] = codebook_dim if codebook_dim is not None else hidden_size __UpperCAmelCase : str = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'''self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}''' ) super().__init__(**snake_case__ ) @property def A_ ( self : Any ): '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def A_ ( self : str ): '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def A_ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Any = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def A_ ( self : str ): '''simple docstring''' return int(1_000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
706
"""simple docstring""" from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar lowercase__ :int = TypeVar('T') class snake_case ( Generic[T] ): '''simple docstring''' def __init__( self : Optional[Any] , __lowercase : list[T] , __lowercase : Callable[[T, T], T] ): '''simple docstring''' __UpperCAmelCase : Any | T = None __UpperCAmelCase : int = len(__lowercase ) __UpperCAmelCase : list[T] = [any_type for _ in range(self.N )] + arr __UpperCAmelCase : List[Any] = fnc self.build() def A_ ( self : str ): '''simple docstring''' for p in range(self.N - 1 , 0 , -1 ): __UpperCAmelCase : Any = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def A_ ( self : Union[str, Any] , __lowercase : int , __lowercase : T ): '''simple docstring''' p += self.N __UpperCAmelCase : Tuple = v while p > 1: __UpperCAmelCase : Union[str, Any] = p // 2 __UpperCAmelCase : Any = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def A_ ( self : str , __lowercase : int , __lowercase : int ): # noqa: E741 '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : int = l + self.N, r + self.N __UpperCAmelCase : T | None = None while l <= r: if l % 2 == 1: __UpperCAmelCase : Any = self.st[l] if res is None else self.fn(__lowercase , self.st[l] ) if r % 2 == 0: __UpperCAmelCase : Any = self.st[r] if res is None else self.fn(__lowercase , self.st[r] ) __UpperCAmelCase , __UpperCAmelCase : Any = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce lowercase__ :Any = [1, 1_0, -2, 9, -3, 8, 4, -7, 5, 6, 1_1, -1_2] lowercase__ :List[Any] = { 0: 7, 1: 2, 2: 6, 3: -1_4, 4: 5, 5: 4, 6: 7, 7: -1_0, 8: 9, 9: 1_0, 1_0: 1_2, 1_1: 1, } lowercase__ :List[str] = SegmentTree(test_array, min) lowercase__ :List[str] = SegmentTree(test_array, max) lowercase__ :Tuple = SegmentTree(test_array, lambda a, b: a + b) def lowerCamelCase_ ( ) ->None: """simple docstring""" for i in range(len(UpperCAmelCase_ ) ): for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ): __UpperCAmelCase : Optional[Any] = reduce(UpperCAmelCase_ , test_array[i : j + 1] ) __UpperCAmelCase : Optional[int] = reduce(UpperCAmelCase_ , test_array[i : j + 1] ) __UpperCAmelCase : Union[str, Any] = reduce(lambda UpperCAmelCase_ , UpperCAmelCase_ : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(UpperCAmelCase_ , UpperCAmelCase_ ) assert max_range == max_segment_tree.query(UpperCAmelCase_ , UpperCAmelCase_ ) assert sum_range == sum_segment_tree.query(UpperCAmelCase_ , UpperCAmelCase_ ) test_all_segments() for index, value in test_updates.items(): lowercase__ :Optional[Any] = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
374
0
'''simple docstring''' def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Tuple: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = [] UpperCAmelCase = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator UpperCAmelCase = len(SCREAMING_SNAKE_CASE_ ) if (len(SCREAMING_SNAKE_CASE_ ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ) , '''Stack'''.center(SCREAMING_SNAKE_CASE_ ) , '''Postfix'''.center(SCREAMING_SNAKE_CASE_ ) , sep=''' | ''' , ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(SCREAMING_SNAKE_CASE_ ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(SCREAMING_SNAKE_CASE_ ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(SCREAMING_SNAKE_CASE_ ) == 0: stack.append(SCREAMING_SNAKE_CASE_ ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(SCREAMING_SNAKE_CASE_ ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(SCREAMING_SNAKE_CASE_ ) # push x to stack print( x.center(8 ) , (''''''.join(SCREAMING_SNAKE_CASE_ )).ljust(SCREAMING_SNAKE_CASE_ ) , (''''''.join(SCREAMING_SNAKE_CASE_ )).ljust(SCREAMING_SNAKE_CASE_ ) , sep=''' | ''' , ) # Output in tabular format while len(SCREAMING_SNAKE_CASE_ ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ) , (''''''.join(SCREAMING_SNAKE_CASE_ )).ljust(SCREAMING_SNAKE_CASE_ ) , (''''''.join(SCREAMING_SNAKE_CASE_ )).ljust(SCREAMING_SNAKE_CASE_ ) , sep=''' | ''' , ) # Output in tabular format return "".join(SCREAMING_SNAKE_CASE_ ) # return Postfix as str def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = list(infix[::-1] ) # reverse the infix equation for i in range(len(SCREAMING_SNAKE_CASE_ ) ): if infix[i] == "(": UpperCAmelCase = ''')''' # change "(" to ")" elif infix[i] == ")": UpperCAmelCase = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(SCREAMING_SNAKE_CASE_ ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": a__ : str = input('\nEnter an Infix Equation = ') # Input an Infix equation a__ : int = ''.join(Infix.split()) # Remove spaces from the input print('\n\t', Infix, '(Infix) -> ', infix_2_prefix(Infix), '(Prefix)')
51
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowerCAmelCase__ : '''simple docstring''' _lowerCamelCase =LEDConfig _lowerCamelCase ={} _lowerCamelCase ="gelu" def __init__( self : Tuple , a__ : Any , a__ : int=13 , a__ : List[Any]=7 , a__ : int=True , a__ : Union[str, Any]=False , a__ : Tuple=99 , a__ : Any=32 , a__ : List[Any]=2 , a__ : Any=4 , a__ : List[Any]=37 , a__ : List[Any]=0.1 , a__ : Any=0.1 , a__ : Optional[int]=20 , a__ : List[Any]=2 , a__ : Union[str, Any]=1 , a__ : List[Any]=0 , a__ : Union[str, Any]=4 , ): UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = eos_token_id UpperCAmelCase = pad_token_id UpperCAmelCase = bos_token_id UpperCAmelCase = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after UpperCAmelCase = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests UpperCAmelCase = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __snake_case ( self : Optional[int] ): UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) UpperCAmelCase = prepare_led_inputs_dict(a__ , a__ , a__ ) UpperCAmelCase = tf.concat( [tf.zeros_like(a__ )[:, :-1], tf.ones_like(a__ )[:, -1:]] , axis=-1 , ) UpperCAmelCase = global_attention_mask return config, inputs_dict def __snake_case ( self : Optional[int] , a__ : List[str] , a__ : int ): UpperCAmelCase = TFLEDModel(config=a__ ).get_decoder() UpperCAmelCase = inputs_dict['''input_ids'''] UpperCAmelCase = input_ids[:1, :] UpperCAmelCase = inputs_dict['''attention_mask'''][:1, :] UpperCAmelCase = 1 # first forward pass UpperCAmelCase = model(a__ , attention_mask=a__ , use_cache=a__ ) UpperCAmelCase, UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase = model(a__ , attention_mask=a__ )[0] UpperCAmelCase = model(a__ , attention_mask=a__ , past_key_values=a__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(a__ , a__ , rtol=1e-3 ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : int=None , ) -> Dict: """simple docstring""" if attention_mask is None: UpperCAmelCase = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =(TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _lowerCamelCase =(TFLEDForConditionalGeneration,) if is_tf_available() else () _lowerCamelCase =( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _lowerCamelCase =True _lowerCamelCase =False _lowerCamelCase =False _lowerCamelCase =False def __snake_case ( self : Optional[Any] ): UpperCAmelCase = TFLEDModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=a__ ) def __snake_case ( self : int ): self.config_tester.run_common_tests() def __snake_case ( self : Dict ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*a__ ) def __snake_case ( self : Optional[int] ): UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = tf.zeros_like(inputs_dict['''attention_mask'''] ) UpperCAmelCase = 2 UpperCAmelCase = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) UpperCAmelCase = True UpperCAmelCase = self.model_tester.seq_length UpperCAmelCase = self.model_tester.encoder_seq_length def check_decoder_attentions_output(a__ : Tuple ): UpperCAmelCase = outputs.decoder_attentions self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(a__ : int ): UpperCAmelCase = [t.numpy() for t in outputs.encoder_attentions] UpperCAmelCase = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = model_class(a__ ) UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) ) UpperCAmelCase = len(a__ ) self.assertEqual(config.output_hidden_states , a__ ) check_encoder_attentions_output(a__ ) if self.is_encoder_decoder: UpperCAmelCase = model_class(a__ ) UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) ) self.assertEqual(config.output_hidden_states , a__ ) check_decoder_attentions_output(a__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase = True UpperCAmelCase = model_class(a__ ) UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) ) self.assertEqual(config.output_hidden_states , a__ ) check_encoder_attentions_output(a__ ) # Check attention is always last and order is fine UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = model_class(a__ ) UpperCAmelCase = model(self._prepare_for_class(a__ , a__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(a__ ) ) self.assertEqual(model.config.output_hidden_states , a__ ) check_encoder_attentions_output(a__ ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def __snake_case ( self : Any ): pass def __snake_case ( self : Union[str, Any] ): # TODO: Head-masking not yet implement pass def __snake_case ( SCREAMING_SNAKE_CASE_ : Dict ) -> Tuple: """simple docstring""" return tf.constant(SCREAMING_SNAKE_CASE_ , dtype=tf.intaa ) a__ : int = 1e-4 @slow @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : str ): UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here UpperCAmelCase = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = prepare_led_inputs_dict(model.config , a__ , a__ ) UpperCAmelCase = model(**a__ )[0] UpperCAmelCase = (1, 1024, 768) self.assertEqual(output.shape , a__ ) # change to expected output here UpperCAmelCase = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-3 ) def __snake_case ( self : str ): UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here UpperCAmelCase = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = prepare_led_inputs_dict(model.config , a__ , a__ ) UpperCAmelCase = model(**a__ )[0] UpperCAmelCase = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , a__ ) # change to expected output here UpperCAmelCase = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-3 , rtol=1e-3 )
51
1
def lowerCamelCase_ ( lowerCamelCase__ ): if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise TypeError("Input value must be a 'int' type" ) return bin(lowerCamelCase__ ).count("1" ) if __name__ == "__main__": import doctest doctest.testmod()
313
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A =logging.get_logger(__name__) __A ={ '''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''', # See all ViT models at https://huggingface.co/models?filter=vit } class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = 'vit' def __init__( self , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.0 , lowercase=0.0 , lowercase=0.0_2 , lowercase=1e-12 , lowercase=224 , lowercase=16 , lowercase=3 , lowercase=True , lowercase=16 , **lowercase , ) -> int: super().__init__(**lowercase ) lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = qkv_bias lowerCamelCase_ = encoder_stride class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE_( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def SCREAMING_SNAKE_CASE_( self ) -> float: return 1e-4
313
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case : Optional[int] = logging.get_logger(__name__) _snake_case : str = { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json' ), } class A ( _a ): lowercase_ = 'dpr' def __init__( self : Any , lowerCAmelCase_ : Any=3_05_22 , lowerCAmelCase_ : Tuple=7_68 , lowerCAmelCase_ : Union[str, Any]=12 , lowerCAmelCase_ : str=12 , lowerCAmelCase_ : List[str]=30_72 , lowerCAmelCase_ : List[Any]="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Optional[Any]=5_12 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : Optional[Any]=0.0_2 , lowerCAmelCase_ : Any=1e-12 , lowerCAmelCase_ : List[Any]=0 , lowerCAmelCase_ : Optional[Any]="absolute" , lowerCAmelCase_ : int = 0 , **lowerCAmelCase_ : Any , ) -> Dict: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = hidden_act _a = intermediate_size _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = initializer_range _a = layer_norm_eps _a = projection_dim _a = position_embedding_type
22
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _snake_case : Dict = logging.get_logger(__name__) class A ( _a ): lowercase_ = ['pixel_values'] def __init__( self : List[Any] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_55 , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase_ : int , ) -> None: """simple docstring""" super().__init__(**lowerCAmelCase_ ) _a = size if size is not None else {'''height''': 2_24, '''width''': 2_24} _a = get_size_dict(lowerCAmelCase_ ) _a = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} _a = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ , param_name='''crop_size''' ) _a = do_resize _a = do_rescale _a = do_normalize _a = do_center_crop _a = crop_size _a = size _a = resample _a = rescale_factor _a = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _a = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray: """simple docstring""" _a = get_size_dict(lowerCAmelCase_ ) if "shortest_edge" in size: _a = get_resize_output_image_size(lowerCAmelCase_ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase_ ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _a = (size['''height'''], size['''width''']) else: raise ValueError(F'Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}' ) return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Dict , ) -> np.ndarray: """simple docstring""" _a = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(lowerCAmelCase_ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : float , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[Any] ) -> np.ndarray: """simple docstring""" return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : int , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[Any] , ) -> np.ndarray: """simple docstring""" return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : int , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : int = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase_ : List[str] , ) -> BatchFeature: """simple docstring""" _a = do_resize if do_resize is not None else self.do_resize _a = do_rescale if do_rescale is not None else self.do_rescale _a = do_normalize if do_normalize is not None else self.do_normalize _a = do_center_crop if do_center_crop is not None else self.do_center_crop _a = crop_size if crop_size is not None else self.crop_size _a = get_size_dict(lowerCAmelCase_ , param_name='''crop_size''' , default_to_square=lowerCAmelCase_ ) _a = resample if resample is not None else self.resample _a = rescale_factor if rescale_factor is not None else self.rescale_factor _a = image_mean if image_mean is not None else self.image_mean _a = image_std if image_std is not None else self.image_std _a = size if size is not None else self.size _a = get_size_dict(lowerCAmelCase_ ) if not is_batched(lowerCAmelCase_ ): _a = [images] if not valid_images(lowerCAmelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. _a = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: _a = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images] if do_center_crop: _a = [self.center_crop(image=lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images] if do_rescale: _a = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images] if do_normalize: _a = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images] _a = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] _a = {'''pixel_values''': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
22
1
"""simple docstring""" import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters lowerCamelCase__ : List[str] = False lowerCamelCase__ : str = False def __A ( a_ : Namespace )-> Tuple: '''simple docstring''' return TrainCommand(a_ ) class lowercase__( _UpperCAmelCase ): '''simple docstring''' @staticmethod def __lowerCAmelCase ( lowerCamelCase_ :ArgumentParser ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = parser.add_parser('''train''' , help='''CLI tool to train a model on a task.''' ) train_parser.add_argument( '''--train_data''' , type=lowerCamelCase_ , required=lowerCamelCase_ , help='''path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.''' , ) train_parser.add_argument( '''--column_label''' , type=lowerCamelCase_ , default=0 , help='''Column of the dataset csv file with example labels.''' ) train_parser.add_argument( '''--column_text''' , type=lowerCamelCase_ , default=1 , help='''Column of the dataset csv file with example texts.''' ) train_parser.add_argument( '''--column_id''' , type=lowerCamelCase_ , default=2 , help='''Column of the dataset csv file with example ids.''' ) train_parser.add_argument( '''--skip_first_row''' , action='''store_true''' , help='''Skip the first row of the csv file (headers).''' ) train_parser.add_argument('''--validation_data''' , type=lowerCamelCase_ , default='''''' , help='''path to validation dataset.''' ) train_parser.add_argument( '''--validation_split''' , type=lowerCamelCase_ , default=0.1 , help='''if validation dataset is not provided, fraction of train dataset to use as validation dataset.''' , ) train_parser.add_argument('''--output''' , type=lowerCamelCase_ , default='''./''' , help='''path to saved the trained model.''' ) train_parser.add_argument( '''--task''' , type=lowerCamelCase_ , default='''text_classification''' , help='''Task to train the model on.''' ) train_parser.add_argument( '''--model''' , type=lowerCamelCase_ , default='''bert-base-uncased''' , help='''Model\'s name or path to stored model.''' ) train_parser.add_argument('''--train_batch_size''' , type=lowerCamelCase_ , default=32 , help='''Batch size for training.''' ) train_parser.add_argument('''--valid_batch_size''' , type=lowerCamelCase_ , default=64 , help='''Batch size for validation.''' ) train_parser.add_argument('''--learning_rate''' , type=lowerCamelCase_ , default=3E-5 , help='''Learning rate.''' ) train_parser.add_argument('''--adam_epsilon''' , type=lowerCamelCase_ , default=1E-08 , help='''Epsilon for Adam optimizer.''' ) train_parser.set_defaults(func=lowerCamelCase_ ) def __init__( self :Union[str, Any] , lowerCamelCase_ :Namespace ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = logging.get_logger('''transformers-cli/training''' ) SCREAMING_SNAKE_CASE : Optional[int] = '''tf''' if is_tf_available() else '''torch''' os.makedirs(args.output , exist_ok=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = args.output SCREAMING_SNAKE_CASE : List[str] = args.column_label SCREAMING_SNAKE_CASE : Dict = args.column_text SCREAMING_SNAKE_CASE : Dict = args.column_id self.logger.info(f"Loading {args.task} pipeline for {args.model}" ) if args.task == "text_classification": SCREAMING_SNAKE_CASE : Dict = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"Loading dataset from {args.train_data}" ) SCREAMING_SNAKE_CASE : Any = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) SCREAMING_SNAKE_CASE : Dict = None if args.validation_data: self.logger.info(f"Loading validation dataset from {args.validation_data}" ) SCREAMING_SNAKE_CASE : List[Any] = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) SCREAMING_SNAKE_CASE : Any = args.validation_split SCREAMING_SNAKE_CASE : Union[str, Any] = args.train_batch_size SCREAMING_SNAKE_CASE : List[Any] = args.valid_batch_size SCREAMING_SNAKE_CASE : List[str] = args.learning_rate SCREAMING_SNAKE_CASE : Union[str, Any] = args.adam_epsilon def __lowerCAmelCase ( self :str ) -> List[Any]: '''simple docstring''' if self.framework == "tf": return self.run_tf() return self.run_torch() def __lowerCAmelCase ( self :str ) -> Any: '''simple docstring''' raise NotImplementedError def __lowerCAmelCase ( self :List[str] ) -> Tuple: '''simple docstring''' self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
18
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : str = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """blenderbot-small""" UpperCamelCase = ["""past_key_values"""] UpperCamelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self :Any , lowerCamelCase_ :Dict=5_02_65 , lowerCamelCase_ :str=5_12 , lowerCamelCase_ :Tuple=8 , lowerCamelCase_ :int=20_48 , lowerCamelCase_ :str=16 , lowerCamelCase_ :Optional[int]=8 , lowerCamelCase_ :str=20_48 , lowerCamelCase_ :Optional[Any]=16 , lowerCamelCase_ :Union[str, Any]=0.0 , lowerCamelCase_ :List[str]=0.0 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :int="gelu" , lowerCamelCase_ :Tuple=5_12 , lowerCamelCase_ :Optional[int]=0.1 , lowerCamelCase_ :int=0.0 , lowerCamelCase_ :Tuple=0.0 , lowerCamelCase_ :Optional[int]=0.0_2 , lowerCamelCase_ :Union[str, Any]=1 , lowerCamelCase_ :Dict=False , lowerCamelCase_ :Optional[int]=0 , lowerCamelCase_ :List[Any]=1 , lowerCamelCase_ :Any=2 , lowerCamelCase_ :Optional[Any]=2 , **lowerCamelCase_ :Dict , ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE : Optional[Any] = d_model SCREAMING_SNAKE_CASE : Dict = encoder_ffn_dim SCREAMING_SNAKE_CASE : Tuple = encoder_layers SCREAMING_SNAKE_CASE : Dict = encoder_attention_heads SCREAMING_SNAKE_CASE : Any = decoder_ffn_dim SCREAMING_SNAKE_CASE : str = decoder_layers SCREAMING_SNAKE_CASE : str = decoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = dropout SCREAMING_SNAKE_CASE : Optional[Any] = attention_dropout SCREAMING_SNAKE_CASE : Any = activation_dropout SCREAMING_SNAKE_CASE : List[str] = activation_function SCREAMING_SNAKE_CASE : Optional[int] = init_std SCREAMING_SNAKE_CASE : List[Any] = encoder_layerdrop SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_layerdrop SCREAMING_SNAKE_CASE : List[Any] = use_cache SCREAMING_SNAKE_CASE : Union[str, Any] = encoder_layers SCREAMING_SNAKE_CASE : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , forced_eos_token_id=lowerCamelCase_ , **lowerCamelCase_ , ) class lowercase__( _UpperCAmelCase ): '''simple docstring''' @property def __lowerCAmelCase ( self :Any ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE : Tuple = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: SCREAMING_SNAKE_CASE : Union[str, Any] = {0: '''batch'''} SCREAMING_SNAKE_CASE : List[Any] = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''decoder_sequence'''} SCREAMING_SNAKE_CASE : Union[str, Any] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase_ , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. SCREAMING_SNAKE_CASE : Tuple = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = self.num_layers for i in range(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : int = {0: '''batch''', 2: '''past_sequence + sequence'''} SCREAMING_SNAKE_CASE : List[str] = {0: '''batch''', 2: '''past_sequence + sequence'''} else: SCREAMING_SNAKE_CASE : Any = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def __lowerCAmelCase ( self :List[str] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE : Any = super().outputs else: SCREAMING_SNAKE_CASE : Tuple = super(lowerCamelCase_ , self ).outputs if self.use_past: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_layers for i in range(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Union[str, Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} SCREAMING_SNAKE_CASE : str = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def __lowerCAmelCase ( self :int , lowerCamelCase_ :PreTrainedTokenizer , lowerCamelCase_ :int = -1 , lowerCamelCase_ :int = -1 , lowerCamelCase_ :bool = False , lowerCamelCase_ :Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Generate decoder inputs SCREAMING_SNAKE_CASE : Optional[int] = seq_length if not self.use_past else 1 SCREAMING_SNAKE_CASE : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} SCREAMING_SNAKE_CASE : str = dict(**lowerCamelCase_ , **lowerCamelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = common_inputs['''input_ids'''].shape SCREAMING_SNAKE_CASE : str = common_inputs['''decoder_input_ids'''].shape[1] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = self.num_attention_heads SCREAMING_SNAKE_CASE : str = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE : Optional[Any] = decoder_seq_length + 3 SCREAMING_SNAKE_CASE : int = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) SCREAMING_SNAKE_CASE : List[Any] = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowerCamelCase_ , lowerCamelCase_ )] , dim=1 ) SCREAMING_SNAKE_CASE : Optional[int] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = self.num_layers SCREAMING_SNAKE_CASE : int = min(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = max(lowerCamelCase_ , lowerCamelCase_ ) - min_num_layers SCREAMING_SNAKE_CASE : Tuple = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowerCamelCase_ ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ ), ) ) # TODO: test this. SCREAMING_SNAKE_CASE : int = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowerCamelCase_ , lowerCamelCase_ ): common_inputs["past_key_values"].append((torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ )) ) return common_inputs def __lowerCAmelCase ( self :Any , lowerCamelCase_ :PreTrainedTokenizer , lowerCamelCase_ :int = -1 , lowerCamelCase_ :int = -1 , lowerCamelCase_ :bool = False , lowerCamelCase_ :Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE : List[str] = seqlen + 2 SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = self.num_layers SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = self.num_attention_heads SCREAMING_SNAKE_CASE : Union[str, Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE : Tuple = common_inputs['''attention_mask'''].dtype SCREAMING_SNAKE_CASE : Any = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowerCamelCase_ , lowerCamelCase_ , dtype=lowerCamelCase_ )] , dim=1 ) SCREAMING_SNAKE_CASE : Optional[int] = [ (torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ )) for _ in range(lowerCamelCase_ ) ] return common_inputs def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :PreTrainedTokenizer , lowerCamelCase_ :int = -1 , lowerCamelCase_ :int = -1 , lowerCamelCase_ :bool = False , lowerCamelCase_ :Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = compute_effective_axis_dimension( lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE : int = tokenizer.num_special_tokens_to_add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = compute_effective_axis_dimension( lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCamelCase_ ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE : Tuple = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE : Any = dict(tokenizer(lowerCamelCase_ , return_tensors=lowerCamelCase_ ) ) return common_inputs def __lowerCAmelCase ( self :List[Any] , lowerCamelCase_ :PreTrainedTokenizer , lowerCamelCase_ :int = -1 , lowerCamelCase_ :int = -1 , lowerCamelCase_ :bool = False , lowerCamelCase_ :Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE : Dict = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCamelCase_ , batch_size=lowerCamelCase_ , seq_length=lowerCamelCase_ , is_pair=lowerCamelCase_ , framework=lowerCamelCase_ ) elif self.task == "causal-lm": SCREAMING_SNAKE_CASE : Union[str, Any] = self._generate_dummy_inputs_for_causal_lm( lowerCamelCase_ , batch_size=lowerCamelCase_ , seq_length=lowerCamelCase_ , is_pair=lowerCamelCase_ , framework=lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase_ , batch_size=lowerCamelCase_ , seq_length=lowerCamelCase_ , is_pair=lowerCamelCase_ , framework=lowerCamelCase_ ) return common_inputs def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :int , lowerCamelCase_ :List[str] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Dict ) -> List[Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE : Optional[Any] = super()._flatten_past_key_values_(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE : Tuple = super(lowerCamelCase_ , self )._flatten_past_key_values_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
18
1
'''simple docstring''' import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets __magic_name__ = '\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n' __magic_name__ = '\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n' __magic_name__ = r'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def _a ( self : Optional[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Value("""string""" ), """references""": datasets.Value("""string""" ), } ) ,homepage="""https://github.com/hendrycks/math""" ,codebase_urls=["""https://github.com/hendrycks/math"""] ,) def _a ( self : List[Any] ,_a : Union[str, Any] ,_a : Optional[int] ): '''simple docstring''' A_ : Union[str, Any] = 0.0 for i, j in zip(_a ,_a ): n_correct += 1.0 if math_equivalence.is_equiv(_a ,_a ) else 0.0 A_ : List[str] = n_correct / len(_a ) return { "accuracy": accuracy, }
665
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __magic_name__ = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['YolosFeatureExtractor'] __magic_name__ = ['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
665
1
"""simple docstring""" from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar UpperCamelCase__ = TypeVar('''T''') class a__ ( Generic[T] ): def __init__( self : int ,a__ : bool = True) -> None: """simple docstring""" _lowerCAmelCase:Union[str, Any] = {} # dictionary of lists _lowerCAmelCase:Optional[Any] = directed def __UpperCamelCase ( self : Optional[Any] ,a__ : T ,a__ : T) -> GraphAdjacencyList[T]: """simple docstring""" if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(__UpperCamelCase) self.adj_list[destination_vertex].append(__UpperCamelCase) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(__UpperCamelCase) _lowerCAmelCase:List[Any] = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(__UpperCamelCase) _lowerCAmelCase:Dict = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: _lowerCAmelCase:Any = [destination_vertex] _lowerCAmelCase:Union[str, Any] = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(__UpperCamelCase) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(__UpperCamelCase) _lowerCAmelCase:Union[str, Any] = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: _lowerCAmelCase:List[Any] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: _lowerCAmelCase:Optional[int] = [destination_vertex] _lowerCAmelCase:List[str] = [] return self def __repr__( self : List[str]) -> str: """simple docstring""" return pformat(self.adj_list)
707
"""simple docstring""" from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def UpperCAmelCase ( ): _lowerCAmelCase:List[Any] = ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' ) _lowerCAmelCase:Union[str, Any] = parser.add_subparsers(help='''transformers-cli command helpers''' ) # Register commands ConvertCommand.register_subcommand(snake_case ) DownloadCommand.register_subcommand(snake_case ) EnvironmentCommand.register_subcommand(snake_case ) RunCommand.register_subcommand(snake_case ) ServeCommand.register_subcommand(snake_case ) UserCommands.register_subcommand(snake_case ) AddNewModelCommand.register_subcommand(snake_case ) AddNewModelLikeCommand.register_subcommand(snake_case ) LfsCommands.register_subcommand(snake_case ) PTtoTFCommand.register_subcommand(snake_case ) # Let's go _lowerCAmelCase:Union[str, Any] = parser.parse_args() if not hasattr(snake_case , '''func''' ): parser.print_help() exit(1 ) # Run _lowerCAmelCase:Any = args.func(snake_case ) service.run() if __name__ == "__main__": main()
439
0
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch SCREAMING_SNAKE_CASE__ : str = '''sshleifer/bart-tiny-random''' SCREAMING_SNAKE_CASE__ : List[str] = '''patrickvonplaten/t5-tiny-random''' @require_torch class __lowerCAmelCase ( unittest.TestCase ): @cached_property def _snake_case ( self ) -> Tuple: """simple docstring""" return AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) def _snake_case ( self ) -> str: """simple docstring""" a__ , *a__ : str = create_student_by_copying_alternating_layers(_SCREAMING_SNAKE_CASE , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def _snake_case ( self ) -> Tuple: """simple docstring""" a__ , *a__ : Tuple = create_student_by_copying_alternating_layers(_SCREAMING_SNAKE_CASE , tempfile.mkdtemp() , e=1 , d=_SCREAMING_SNAKE_CASE ) def _snake_case ( self ) -> Any: """simple docstring""" a__ , *a__ : int = create_student_by_copying_alternating_layers(_SCREAMING_SNAKE_CASE , tempfile.mkdtemp() , e=1 , d=_SCREAMING_SNAKE_CASE ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def _snake_case ( self ) -> Union[str, Any]: """simple docstring""" a__ , *a__ : int = create_student_by_copying_alternating_layers(_SCREAMING_SNAKE_CASE , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def _snake_case ( self ) -> List[str]: """simple docstring""" with self.assertRaises(_SCREAMING_SNAKE_CASE ): create_student_by_copying_alternating_layers(_SCREAMING_SNAKE_CASE , tempfile.mkdtemp() , e=_SCREAMING_SNAKE_CASE , d=_SCREAMING_SNAKE_CASE )
112
'''simple docstring''' from typing import Any class _a : def __init__( self ,_SCREAMING_SNAKE_CASE ) -> List[str]: _snake_case = data _snake_case = None class _a : def __init__( self ) -> List[Any]: _snake_case = None def _lowercase ( self ) -> str: _snake_case = self.head while temp is not None: print(temp.data ,end=" " ) _snake_case = temp.next print() def _lowercase ( self ,_SCREAMING_SNAKE_CASE ) -> Dict: _snake_case = Node(_SCREAMING_SNAKE_CASE ) _snake_case = self.head _snake_case = new_node def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Tuple: if node_data_a == node_data_a: return else: _snake_case = self.head while node_a is not None and node_a.data != node_data_a: _snake_case = node_a.next _snake_case = self.head while node_a is not None and node_a.data != node_data_a: _snake_case = node_a.next if node_a is None or node_a is None: return _snake_case , _snake_case = node_a.data, node_a.data if __name__ == "__main__": UpperCamelCase_ : str = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('''After swapping''') ll.print_list()
185
0
'''simple docstring''' import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class A ( ctypes.Structure ): # _fields is a specific attr expected by ctypes lowercase_ = [('size', ctypes.c_int), ('visible', ctypes.c_byte)] def snake_case_ (): '''simple docstring''' if os.name == "nt": _a = CursorInfo() _a = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCamelCase , ctypes.byref(UpperCamelCase ) ) _a = False ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCamelCase , ctypes.byref(UpperCamelCase ) ) elif os.name == "posix": sys.stdout.write('''\033[?25l''' ) sys.stdout.flush() def snake_case_ (): '''simple docstring''' if os.name == "nt": _a = CursorInfo() _a = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCamelCase , ctypes.byref(UpperCamelCase ) ) _a = True ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCamelCase , ctypes.byref(UpperCamelCase ) ) elif os.name == "posix": sys.stdout.write('''\033[?25h''' ) sys.stdout.flush() @contextmanager def snake_case_ (): '''simple docstring''' try: hide_cursor() yield finally: show_cursor()
377
'''simple docstring''' import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def snake_case_ (UpperCamelCase : BertModel , UpperCamelCase : str , UpperCamelCase : str ): '''simple docstring''' _a = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') _a = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(UpperCamelCase ): os.makedirs(UpperCamelCase ) _a = model.state_dict() def to_tf_var_name(UpperCamelCase : str ): for patt, repl in iter(UpperCamelCase ): _a = name.replace(UpperCamelCase , UpperCamelCase ) return f'bert/{name}' def create_tf_var(UpperCamelCase : np.ndarray , UpperCamelCase : str , UpperCamelCase : tf.Session ): _a = tf.dtypes.as_dtype(tensor.dtype ) _a = tf.get_variable(dtype=UpperCamelCase , shape=tensor.shape , name=UpperCamelCase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(UpperCamelCase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _a = to_tf_var_name(UpperCamelCase ) _a = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _a = torch_tensor.T _a = create_tf_var(tensor=UpperCamelCase , name=UpperCamelCase , session=UpperCamelCase ) tf.keras.backend.set_value(UpperCamelCase , UpperCamelCase ) _a = session.run(UpperCamelCase ) print(f'Successfully created {tf_name}: {np.allclose(UpperCamelCase , UpperCamelCase )}' ) _a = tf.train.Saver(tf.trainable_variables() ) saver.save(UpperCamelCase , os.path.join(UpperCamelCase , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def snake_case_ (UpperCamelCase : Tuple=None ): '''simple docstring''' _a = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=UpperCamelCase , required=UpperCamelCase , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=UpperCamelCase , default=UpperCamelCase , required=UpperCamelCase , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=UpperCamelCase , required=UpperCamelCase , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=UpperCamelCase , required=UpperCamelCase , help='''Directory in which to save tensorflow model''' ) _a = parser.parse_args(UpperCamelCase ) _a = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=UpperCamelCase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
377
1
def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = False while is_sorted is False: # Until all the indices are traversed keep looping __lowercase = True for i in range(0 , len(lowerCAmelCase_ ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: __lowercase , __lowercase = input_list[i + 1], input_list[i] # swapping if elements not in order __lowercase = False for i in range(1 , len(lowerCAmelCase_ ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: __lowercase , __lowercase = input_list[i + 1], input_list[i] # swapping if elements not in order __lowercase = False return input_list if __name__ == "__main__": print("""Enter list to be sorted""") __UpperCamelCase : Any = [int(x) for x in input().split()] # inputing elements of the list in one line __UpperCamelCase : Optional[int] = odd_even_sort(input_list) print("""The sorted list is""") print(sorted_list)
80
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __lowerCamelCase ( UpperCamelCase__ , unittest.TestCase ): """simple docstring""" snake_case__ = VideoToVideoSDPipeline snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"video"} ) - {"image", "width", "height"} snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"video"} ) - {"image"} snake_case__ = PipelineTesterMixin.required_optional_params - {"latents"} snake_case__ = False # No `output_type`. snake_case__ = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def a ( self : int ) -> Optional[int]: torch.manual_seed(0 ) lowerCAmelCase__ = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=32 , attention_head_dim=4 , ) lowerCAmelCase__ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=SCREAMING_SNAKE_CASE__ , set_alpha_to_one=SCREAMING_SNAKE_CASE__ , ) torch.manual_seed(0 ) lowerCAmelCase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCAmelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="gelu" , projection_dim=512 , ) lowerCAmelCase__ = CLIPTextModel(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCAmelCase__ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict=0 ) -> Tuple: # 3 frames lowerCAmelCase__ = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) if str(SCREAMING_SNAKE_CASE__ ).startswith("mps" ): lowerCAmelCase__ = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase__ = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = { "prompt": "A painting of a squirrel eating a burger", "video": video, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def a ( self : Union[str, Any] ) -> str: lowerCAmelCase__ = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = VideoToVideoSDPipeline(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = sd_pipe.to(SCREAMING_SNAKE_CASE__ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = "np" lowerCAmelCase__ = sd_pipe(**SCREAMING_SNAKE_CASE__ ).frames lowerCAmelCase__ = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) lowerCAmelCase__ = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def a ( self : List[Any] ) -> str: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE__ , expected_max_diff=5e-3 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def a ( self : List[Any] ) -> str: pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def a ( self : int ) -> Optional[Any]: pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def a ( self : List[str] ) -> Optional[int]: pass def a ( self : Optional[Any] ) -> Tuple: return super().test_progress_bar() @slow @skip_mps class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def a ( self : str ) -> int: lowerCAmelCase__ = VideoToVideoSDPipeline.from_pretrained("cerspense/zeroscope_v2_XL" , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames lowerCAmelCase__ = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase__ = torch.randn((1, 10, 3, 1_024, 576) , generator=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = video.to("cuda" ) lowerCAmelCase__ = "Spiderman is surfing" lowerCAmelCase__ = pipe(SCREAMING_SNAKE_CASE__ , video=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=3 , output_type="pt" ).frames lowerCAmelCase__ = np.array([-1.0_458_984, -1.1_279_297, -0.9_663_086, -0.91_503_906, -0.75_097_656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
61
0
from typing import Union import fire import torch from tqdm import tqdm def UpperCAmelCase ( A__ , A__ = "cpu" , A__ = None ) -> None: _snake_case : Union[str, Any] = torch.load(A__ , map_location=A__ ) for k, v in tqdm(state_dict.items() ): if not isinstance(A__ , torch.Tensor ): raise TypeError("""FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin""" ) _snake_case : Tuple = v.half() if save_path is None: # overwrite src_path _snake_case : Optional[Any] = src_path torch.save(A__ , A__ ) if __name__ == "__main__": fire.Fire(convert)
519
from __future__ import annotations from collections.abc import Callable UpperCAmelCase_ = list[list[float | int]] def UpperCAmelCase ( A__ , A__ ) -> Matrix: _snake_case : int = len(A__ ) _snake_case : Matrix = [[0 for _ in range(size + 1 )] for _ in range(A__ )] _snake_case : int _snake_case : int _snake_case : int _snake_case : int _snake_case : int _snake_case : float for row in range(A__ ): for col in range(A__ ): _snake_case : Optional[int] = matrix[row][col] _snake_case : Dict = vector[row][0] _snake_case : str = 0 _snake_case : Any = 0 while row < size and col < size: # pivoting _snake_case : Optional[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(A__ , A__ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _snake_case , _snake_case : Union[str, Any] = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , A__ ): _snake_case : Optional[int] = augmented[rowa][col] / augmented[row][col] _snake_case : int = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , A__ ): for row in range(A__ ): _snake_case : List[str] = augmented[row][col] / augmented[col][col] for cola in range(A__ , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(A__ ) ] def UpperCAmelCase ( A__ ) -> Callable[[int], int]: _snake_case : int = len(A__ ) _snake_case : Matrix = [[0 for _ in range(A__ )] for _ in range(A__ )] _snake_case : Matrix = [[0] for _ in range(A__ )] _snake_case : Matrix _snake_case : int _snake_case : int _snake_case : int for x_val, y_val in enumerate(A__ ): for col in range(A__ ): _snake_case : Any = (x_val + 1) ** (size - col - 1) _snake_case : Dict = y_val _snake_case : List[str] = solve(A__ , A__ ) def interpolated_func(A__ ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(A__ ) ) return interpolated_func def UpperCAmelCase ( A__ ) -> int: return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def UpperCAmelCase ( A__ = question_function , A__ = 10 ) -> int: _snake_case : list[int] = [func(A__ ) for x_val in range(1 , order + 1 )] _snake_case : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _snake_case : int = 0 _snake_case : Callable[[int], int] _snake_case : int for poly in polynomials: _snake_case : int = 1 while func(A__ ) == poly(A__ ): x_val += 1 ret += poly(A__ ) return ret if __name__ == "__main__": print(f"""{solution() = }""")
519
1
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Tuple = logging.get_logger(__name__) lowercase__ : str = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def _lowerCAmelCase ( __snake_case : List[Any] ) -> Tuple: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __A : Optional[Any] = k.replace(__snake_case , __snake_case ) if k.startswith('encoder' ): __A : Any = k.replace('.attn' , '.self_attn' ) __A : Any = k.replace('norm1' , 'self_attn_layer_norm' ) __A : str = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): __A : Tuple = k.replace('norm1' , 'self_attn_layer_norm' ) __A : str = k.replace('norm2' , 'encoder_attn_layer_norm' ) __A : int = k.replace('norm3' , 'final_layer_norm' ) return k def _lowerCAmelCase ( __snake_case : List[Any] ) -> Dict: __A : Optional[int] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: __A : Tuple = sd.pop(__snake_case ) __A : Union[str, Any] = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd __A : str = v lowercase__ : Tuple = ['''START'''] @torch.no_grad() def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any , __snake_case : List[Any] ) -> int: __A : List[str] = torch.load(__snake_case , map_location='cpu' ) __A : Tuple = model['model'] __A : str = BlenderbotConfig.from_json_file(__snake_case ) __A : int = BlenderbotForConditionalGeneration(__snake_case ) __A : List[Any] = m.model.state_dict().keys() __A : Optional[int] = [] __A : Optional[int] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __A : Union[str, Any] = rename_state_dict_key(__snake_case ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __A : Optional[Any] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__snake_case ) m.model.load_state_dict(__snake_case , strict=__snake_case ) m.half() m.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
8
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer a__ = ["""gpt2"""] a__ = """gpt2""" if is_tf_available(): class _lowerCAmelCase ( tf.Module ): """simple docstring""" def __init__( self : List[Any] , UpperCamelCase__ : int): '''simple docstring''' super().__init__() snake_case__ = tokenizer snake_case__ = AutoConfig.from_pretrained(UpperCamelCase__) snake_case__ = TFGPTaLMHeadModel.from_config(UpperCamelCase__) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="""text"""),)) def __magic_name__ ( self : Tuple , UpperCamelCase__ : int): '''simple docstring''' snake_case__ = self.tokenizer(UpperCamelCase__) snake_case__ = tokenized["""input_ids"""].to_tensor() snake_case__ = tf.cast(input_ids_dense > 0 , tf.intaa) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) snake_case__ = self.model(input_ids=UpperCamelCase__ , attention_mask=UpperCamelCase__)["""logits"""] return outputs @require_tf @require_keras_nlp class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __magic_name__ ( self : List[Any]): '''simple docstring''' super().setUp() snake_case__ = [GPTaTokenizer.from_pretrained(UpperCamelCase__) for checkpoint in (TOKENIZER_CHECKPOINTS)] snake_case__ = [TFGPTaTokenizer.from_pretrained(UpperCamelCase__) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers) == len(self.tf_tokenizers) snake_case__ = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] snake_case__ = list(zip(self.test_sentences , self.test_sentences[::-1])) def __magic_name__ ( self : Optional[int]): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers): for test_inputs in self.test_sentences: snake_case__ = tokenizer([test_inputs] , return_tensors="""tf""") snake_case__ = tf_tokenizer([test_inputs]) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors snake_case__ = python_outputs[key].numpy() snake_case__ = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape)) self.assertTrue(tf.reduce_all(tf.cast(UpperCamelCase__ , tf.intaa) == tf_outputs_values)) @slow def __magic_name__ ( self : Optional[int]): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: snake_case__ = tf.function(UpperCamelCase__) for test_inputs in self.test_sentences: snake_case__ = tf.constant(UpperCamelCase__) snake_case__ = compiled_tokenizer(UpperCamelCase__) snake_case__ = tf_tokenizer(UpperCamelCase__) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) @slow def __magic_name__ ( self : Optional[Any]): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: snake_case__ = ModelToSave(tokenizer=UpperCamelCase__) snake_case__ = tf.convert_to_tensor([self.test_sentences[0]]) snake_case__ = model.serving(UpperCamelCase__) # Build model with some sample inputs with TemporaryDirectory() as tempdir: snake_case__ = Path(UpperCamelCase__) / """saved.model""" tf.saved_model.save(UpperCamelCase__ , UpperCamelCase__ , signatures={"""serving_default""": model.serving}) snake_case__ = tf.saved_model.load(UpperCamelCase__) snake_case__ = loaded_model.signatures["""serving_default"""](UpperCamelCase__)["""output_0"""] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output)) @slow def __magic_name__ ( self : Tuple): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: snake_case__ = tf.convert_to_tensor([self.test_sentences[0]]) snake_case__ = tf_tokenizer(UpperCamelCase__) # Build model with some sample inputs snake_case__ = tf_tokenizer.get_config() snake_case__ = TFGPTaTokenizer.from_config(UpperCamelCase__) snake_case__ = model_from_config(UpperCamelCase__) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key])) @slow def __magic_name__ ( self : Dict): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run snake_case__ = 1_2_3_1_2_3 for max_length in [3, 5, 1_0_2_4]: snake_case__ = tf.convert_to_tensor([self.test_sentences[0]]) snake_case__ = tf_tokenizer(UpperCamelCase__ , max_length=UpperCamelCase__) snake_case__ = out["""input_ids"""].numpy().shape[1] assert out_length == max_length
654
0
"""simple docstring""" import os import numpy import onnx def UpperCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : Any ) -> Any: """simple docstring""" lowerCAmelCase_ : Optional[Any] = a.name lowerCAmelCase_ : Union[str, Any] = b.name lowerCAmelCase_ : Any = '' lowerCAmelCase_ : Optional[int] = '' lowerCAmelCase_ : int = a == b lowerCAmelCase_ : Optional[int] = name_a lowerCAmelCase_ : Tuple = name_b return res def UpperCamelCase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any ) -> Any: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(lowerCAmelCase__ , lowerCAmelCase__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase__ , lowerCAmelCase__ ) _graph_replace_input_with(node_proto.attribute[1].g , lowerCAmelCase__ , lowerCAmelCase__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] ) -> Dict: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] ) -> List[Any]: """simple docstring""" lowerCAmelCase_ : Tuple = list(model.graph.initializer ) lowerCAmelCase_ : Tuple = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i lowerCAmelCase_ : List[Any] = inits[i].name lowerCAmelCase_ : Tuple = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ : int ) -> Any: """simple docstring""" lowerCAmelCase_ : List[Any] = os.path.dirname(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = os.path.basename(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = onnx.load(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) ) lowerCAmelCase_ : List[Any] = list(model.graph.initializer ) lowerCAmelCase_ : Tuple = set() lowerCAmelCase_ : Optional[int] = {} lowerCAmelCase_ : Any = [] lowerCAmelCase_ : Optional[int] = 0 for i in range(len(lowerCAmelCase__ ) ): if i in dup_set: continue for j in range(i + 1 , len(lowerCAmelCase__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(lowerCAmelCase__ ) dup_set.add(lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = inits[j].data_type lowerCAmelCase_ : Optional[Any] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ' , lowerCAmelCase__ ) total_reduced_size += mem_size lowerCAmelCase_ : int = inits[i].name lowerCAmelCase_ : Dict = inits[j].name if name_i in dup_map: dup_map[name_i].append(lowerCAmelCase__ ) else: lowerCAmelCase_ : Tuple = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1024 / 1024 / 1024 , 'GB' ) lowerCAmelCase_ : int = sorted(lowerCAmelCase__ ) _remove_dup_initializers_from_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = 'optimized_' + model_file_name lowerCAmelCase_ : int = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) onnx.save(lowerCAmelCase__ , lowerCAmelCase__ ) return new_model
317
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowercase__ : List[str] = logging.get_logger(__name__) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""pixel_values"""] def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Optional[Dict[str, int]] = None , SCREAMING_SNAKE_CASE_ : PILImageResampling = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Union[int, float] = 1 / 2_5_5 , SCREAMING_SNAKE_CASE_ : Dict[str, int] = None , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[float, List[float]]] = None , **SCREAMING_SNAKE_CASE_ : List[Any] , ): super().__init__(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Union[str, Any] = size if size is not None else {'height': 2_2_4, 'width': 2_2_4} lowerCAmelCase_ : Tuple = get_size_dict(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} lowerCAmelCase_ : Optional[int] = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ , param_name='crop_size' ) lowerCAmelCase_ : Any = do_resize lowerCAmelCase_ : Dict = do_rescale lowerCAmelCase_ : int = do_normalize lowerCAmelCase_ : int = do_center_crop lowerCAmelCase_ : Any = crop_size lowerCAmelCase_ : Any = size lowerCAmelCase_ : str = resample lowerCAmelCase_ : Any = rescale_factor lowerCAmelCase_ : str = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowerCAmelCase_ : List[Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def SCREAMING_SNAKE_CASE__ ( self : List[str] , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Dict[str, int] , SCREAMING_SNAKE_CASE_ : PILImageResampling = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : Union[str, Any] , ): lowerCAmelCase_ : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "shortest_edge" in size: lowerCAmelCase_ : List[str] = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=size['shortest_edge'] , default_to_square=SCREAMING_SNAKE_CASE_ ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: lowerCAmelCase_ : List[str] = (size['height'], size['width']) else: raise ValueError(F"Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}" ) return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Dict[str, int] , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : Any , ): lowerCAmelCase_ : str = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(SCREAMING_SNAKE_CASE_ , size=(size['height'], size['width']) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : Any ): return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Union[float, List[float]] , SCREAMING_SNAKE_CASE_ : Union[float, List[float]] , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : Optional[int] , ): return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : ImageInput , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Dict[str, int] = None , SCREAMING_SNAKE_CASE_ : PILImageResampling = None , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : int = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[float] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ : List[str] , ): lowerCAmelCase_ : Optional[Any] = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ : Tuple = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ : Any = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase_ : str = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase_ : Any = crop_size if crop_size is not None else self.crop_size lowerCAmelCase_ : List[str] = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='crop_size' , default_to_square=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Dict = resample if resample is not None else self.resample lowerCAmelCase_ : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ : Any = image_mean if image_mean is not None else self.image_mean lowerCAmelCase_ : List[str] = image_std if image_std is not None else self.image_std lowerCAmelCase_ : Dict = size if size is not None else self.size lowerCAmelCase_ : Optional[int] = get_size_dict(SCREAMING_SNAKE_CASE_ ) if not is_batched(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase_ : str = [images] if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. lowerCAmelCase_ : Any = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: lowerCAmelCase_ : int = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: lowerCAmelCase_ : List[Any] = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: lowerCAmelCase_ : Optional[Any] = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: lowerCAmelCase_ : Tuple = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images] lowerCAmelCase_ : Dict = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] lowerCAmelCase_ : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
317
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } UpperCAmelCase_ = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def SCREAMING_SNAKE_CASE ( a_ : str ): __a = {} with open(__lowercase , 'r' ) as file: for line_number, line in enumerate(__lowercase ): __a = line.strip() if line: __a = line.split() __a = line_number __a = words[0] __a = value return result def SCREAMING_SNAKE_CASE ( a_ : List[Any] , a_ : Tuple , a_ : Union[str, Any] , a_ : List[Any] , a_ : str ): for attribute in key.split('.' ): __a = getattr(__lowercase , __lowercase ) __a = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowercase ): __a = PARAM_MAPPING[full_name.split('.' )[-1]] __a = """param""" if weight_type is not None and weight_type != "param": __a = getattr(__lowercase , __lowercase ).shape elif weight_type is not None and weight_type == "param": __a = hf_pointer for attribute in hf_param_name.split('.' ): __a = getattr(__lowercase , __lowercase ) __a = shape_pointer.shape # let's reduce dimension __a = value[0] else: __a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": __a = value elif weight_type == "weight_g": __a = value elif weight_type == "weight_v": __a = value elif weight_type == "bias": __a = value elif weight_type == "param": for attribute in hf_param_name.split('.' ): __a = getattr(__lowercase , __lowercase ) __a = value else: __a = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def SCREAMING_SNAKE_CASE ( a_ : int , a_ : Tuple , a_ : List[Any] , a_ : Tuple , a_ : Optional[Any] ): __a = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowercase ): __a = PARAM_MAPPING[full_name.split('.' )[-1]] __a = """param""" if weight_type is not None and weight_type != "param": __a = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __a = """.""".join([key, hf_param_name] ) else: __a = key __a = value if """lm_head""" in full_key else value[0] UpperCAmelCase_ = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def SCREAMING_SNAKE_CASE ( a_ : Optional[int] , a_ : List[Any] , a_ : str=None , a_ : List[Any]=None ): __a = False for key, mapped_key in MAPPING.items(): __a = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __a = True if "*" in mapped_key: __a = name.split(__lowercase )[0].split('.' )[-2] __a = mapped_key.replace('*' , __lowercase ) if "weight_g" in name: __a = """weight_g""" elif "weight_v" in name: __a = """weight_v""" elif "bias" in name: __a = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __a = """weight""" else: __a = None if hf_dict is not None: rename_dict(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) else: set_recursively(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) return is_used return is_used def SCREAMING_SNAKE_CASE ( a_ : int , a_ : str , a_ : int ): __a = [] __a = fairseq_model.state_dict() __a = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __a = False if "conv_layers" in name: load_conv_layer( __lowercase , __lowercase , __lowercase , __lowercase , hf_model.config.feat_extract_norm == 'group' , ) __a = True else: __a = load_wavaveca_layer(__lowercase , __lowercase , __lowercase ) if not is_used: unused_weights.append(__lowercase ) logger.warning(f"Unused weights: {unused_weights}" ) def SCREAMING_SNAKE_CASE ( a_ : Union[str, Any] , a_ : Optional[Any] , a_ : Union[str, Any] , a_ : Optional[int] , a_ : List[str] ): __a = full_name.split('conv_layers.' )[-1] __a = name.split('.' ) __a = int(items[0] ) __a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __a = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __a = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) __a = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) __a = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(__lowercase ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( a_ : Any , a_ : Dict , a_ : int=None , a_ : Optional[int]=None , a_ : List[Any]=True , a_ : Any=False ): if config_path is not None: __a = WavaVecaConfig.from_pretrained(__lowercase ) else: __a = WavaVecaConfig() if is_seq_class: __a = read_txt_into_dict(__lowercase ) __a = idalabel __a = WavaVecaForSequenceClassification(__lowercase ) __a = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__lowercase , return_attention_mask=__lowercase , ) feature_extractor.save_pretrained(__lowercase ) elif is_finetuned: if dict_path: __a = Dictionary.load(__lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __a = target_dict.pad_index __a = target_dict.bos_index __a = target_dict.eos_index __a = len(target_dict.symbols ) __a = os.path.join(__lowercase , 'vocab.json' ) if not os.path.isdir(__lowercase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(__lowercase ) ) return os.makedirs(__lowercase , exist_ok=__lowercase ) __a = target_dict.indices # fairseq has the <pad> and <s> switched __a = 0 __a = 1 with open(__lowercase , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(__lowercase , __lowercase ) __a = WavaVecaCTCTokenizer( __lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=__lowercase , ) __a = True if config.feat_extract_norm == """layer""" else False __a = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__lowercase , return_attention_mask=__lowercase , ) __a = WavaVecaProcessor(feature_extractor=__lowercase , tokenizer=__lowercase ) processor.save_pretrained(__lowercase ) __a = WavaVecaForCTC(__lowercase ) else: __a = WavaVecaForPreTraining(__lowercase ) if is_finetuned or is_seq_class: __a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: __a = argparse.Namespace(task='audio_pretraining' ) __a = fairseq.tasks.setup_task(__lowercase ) __a = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowercase ) __a = model[0].eval() recursively_load_weights(__lowercase , __lowercase , not is_finetuned ) hf_wavavec.save_pretrained(__lowercase ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
539
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowercase : Any = imread(R"""digital_image_processing/image_data/lena_small.jpg""") lowercase : List[str] = cvtColor(img, COLOR_BGR2GRAY) def lowerCamelCase__ ( ): snake_case : Optional[int] = cn.convert_to_negative(__lowercase ) # assert negative_img array for at least one True assert negative_img.any() def lowerCamelCase__ ( ): with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(__lowercase , 110 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def lowerCamelCase__ ( ): snake_case : Union[str, Any] = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def lowerCamelCase__ ( ): snake_case : Optional[Any] = imread("""digital_image_processing/image_data/lena_small.jpg""" , 0 ) # assert ambiguous array for all == True assert canny_img.all() snake_case : Any = canny.canny(__lowercase ) # assert canny array for at least one True assert canny_array.any() def lowerCamelCase__ ( ): assert gg.gaussian_filter(__lowercase , 5 , sigma=0.9 ).all() def lowerCamelCase__ ( ): # laplace diagonals snake_case : int = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) snake_case : Tuple = conv.img_convolve(__lowercase , __lowercase ).astype(__lowercase ) assert res.any() def lowerCamelCase__ ( ): assert med.median_filter(__lowercase , 3 ).any() def lowerCamelCase__ ( ): snake_case , snake_case : Dict = sob.sobel_filter(__lowercase ) assert grad.any() and theta.any() def lowerCamelCase__ ( ): snake_case : int = sp.make_sepia(__lowercase , 20 ) assert sepia.all() def lowerCamelCase__ ( __lowercase = "digital_image_processing/image_data/lena_small.jpg" ): snake_case : int = bs.Burkes(imread(__lowercase , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def lowerCamelCase__ ( __lowercase = "digital_image_processing/image_data/lena_small.jpg" , ): snake_case : Dict = rs.NearestNeighbour(imread(__lowercase , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def lowerCamelCase__ ( ): snake_case : int = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. snake_case : Tuple = imread(__lowercase , 0 ) # Test for get_neighbors_pixel function() return not None snake_case : Optional[int] = 0 snake_case : Tuple = 0 snake_case : Any = image[x_coordinate][y_coordinate] snake_case : Any = lbp.get_neighbors_pixel( __lowercase , __lowercase , __lowercase , __lowercase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image snake_case : List[Any] = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): snake_case : Optional[Any] = lbp.local_binary_value(__lowercase , __lowercase , __lowercase ) assert lbp_image.any()
116
0
def UpperCAmelCase__( __UpperCAmelCase : int | float | str ): try: __snake_case : int = float(__UpperCAmelCase ) except ValueError: raise ValueError('Please enter a valid number' ) __snake_case : Any = decimal - int(__UpperCAmelCase ) if fractional_part == 0: return int(__UpperCAmelCase ), 1 else: __snake_case : Tuple = len(str(__UpperCAmelCase ).split('.' )[1] ) __snake_case : Tuple = int(decimal * (10**number_of_frac_digits) ) __snake_case : List[Any] = 10**number_of_frac_digits __snake_case , __snake_case : List[Any] = denominator, numerator while True: __snake_case : Any = dividend % divisor if remainder == 0: break __snake_case , __snake_case : Optional[int] = divisor, remainder __snake_case , __snake_case : Union[str, Any] = numerator / divisor, denominator / divisor return int(__UpperCAmelCase ), int(__UpperCAmelCase ) if __name__ == "__main__": print(F'''{decimal_to_fraction(2) = }''') print(F'''{decimal_to_fraction(89.0) = }''') print(F'''{decimal_to_fraction("67") = }''') print(F'''{decimal_to_fraction("45.0") = }''') print(F'''{decimal_to_fraction(1.5) = }''') print(F'''{decimal_to_fraction("6.25") = }''') print(F'''{decimal_to_fraction("78td") = }''')
679
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') __magic_name__ = logging.getLogger(__name__) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __UpperCAmelCase = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field(default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "The number of processes to use for the preprocessing."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowercase_ ( self ): if self.train_file is not None: __snake_case : Union[str, Any] = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: __snake_case : List[str] = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = True __UpperCAmelCase = None __UpperCAmelCase = None def __call__( self , _UpperCAmelCase ): __snake_case : Tuple = 'label' if 'label' in features[0].keys() else 'labels' __snake_case : Dict = [feature.pop(_UpperCAmelCase ) for feature in features] __snake_case : List[Any] = len(_UpperCAmelCase ) __snake_case : Union[str, Any] = len(features[0]['input_ids'] ) __snake_case : Union[str, Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(_UpperCAmelCase )] for feature in features ] __snake_case : Union[str, Any] = list(chain(*_UpperCAmelCase ) ) __snake_case : Optional[Any] = self.tokenizer.pad( _UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) # Un-flatten __snake_case : Any = {k: v.view(_UpperCAmelCase , _UpperCAmelCase , -1 ) for k, v in batch.items()} # Add back labels __snake_case : int = torch.tensor(_UpperCAmelCase , dtype=torch.intaa ) return batch def UpperCAmelCase__( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case , __snake_case , __snake_case : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case , __snake_case , __snake_case : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , __UpperCAmelCase , __UpperCAmelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __snake_case : Tuple = training_args.get_process_log_level() logger.setLevel(__UpperCAmelCase ) datasets.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __snake_case : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __snake_case : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: __snake_case : Optional[int] = {} if data_args.train_file is not None: __snake_case : Optional[int] = data_args.train_file if data_args.validation_file is not None: __snake_case : int = data_args.validation_file __snake_case : int = data_args.train_file.split('.' )[-1] __snake_case : Tuple = load_dataset( __UpperCAmelCase , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. __snake_case : Optional[int] = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. __snake_case : str = [F"""ending{i}""" for i in range(4 )] __snake_case : Optional[Any] = 'sent1' __snake_case : Tuple = 'sent2' if data_args.max_seq_length is None: __snake_case : List[Any] = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) __snake_case : List[Any] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __snake_case : str = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(__UpperCAmelCase : Tuple ): __snake_case : Union[str, Any] = [[context] * 4 for context in examples[context_name]] __snake_case : Union[str, Any] = examples[question_header_name] __snake_case : Optional[int] = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(__UpperCAmelCase ) ] # Flatten out __snake_case : Optional[Any] = list(chain(*__UpperCAmelCase ) ) __snake_case : int = list(chain(*__UpperCAmelCase ) ) # Tokenize __snake_case : Tuple = tokenizer( __UpperCAmelCase , __UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(__UpperCAmelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __snake_case : Optional[Any] = raw_datasets['train'] if data_args.max_train_samples is not None: __snake_case : Tuple = min(len(__UpperCAmelCase ) , data_args.max_train_samples ) __snake_case : List[str] = train_dataset.select(range(__UpperCAmelCase ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): __snake_case : int = train_dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __snake_case : Optional[Any] = raw_datasets['validation'] if data_args.max_eval_samples is not None: __snake_case : List[Any] = min(len(__UpperCAmelCase ) , data_args.max_eval_samples ) __snake_case : Optional[Any] = eval_dataset.select(range(__UpperCAmelCase ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): __snake_case : List[Any] = eval_dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator __snake_case : str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=__UpperCAmelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(__UpperCAmelCase : int ): __snake_case , __snake_case : Union[str, Any] = eval_predictions __snake_case : Tuple = np.argmax(__UpperCAmelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer __snake_case : List[str] = Trainer( model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=__UpperCAmelCase , data_collator=__UpperCAmelCase , compute_metrics=__UpperCAmelCase , ) # Training if training_args.do_train: __snake_case : Dict = None if training_args.resume_from_checkpoint is not None: __snake_case : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: __snake_case : List[str] = last_checkpoint __snake_case : List[str] = trainer.train(resume_from_checkpoint=__UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload __snake_case : List[Any] = train_result.metrics __snake_case : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCAmelCase ) ) __snake_case : Tuple = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics('train' , __UpperCAmelCase ) trainer.save_metrics('train' , __UpperCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __snake_case : Dict = trainer.evaluate() __snake_case : Any = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCAmelCase ) __snake_case : Optional[Any] = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics('eval' , __UpperCAmelCase ) trainer.save_metrics('eval' , __UpperCAmelCase ) __snake_case : List[Any] = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**__UpperCAmelCase ) else: trainer.create_model_card(**__UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Dict ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
679
1
def snake_case__ ( SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' lowercase__ : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def snake_case__ ( SCREAMING_SNAKE_CASE_ : int = 5_000 ): '''simple docstring''' lowercase__ : int = [(i * (3 * i - 1)) // 2 for i in range(1 , SCREAMING_SNAKE_CASE_ )] for i, pentagonal_i in enumerate(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ): lowercase__ : Tuple = pentagonal_nums[j] lowercase__ : Union[str, Any] = pentagonal_i + pentagonal_j lowercase__ : int = pentagonal_j - pentagonal_i if is_pentagonal(SCREAMING_SNAKE_CASE_ ) and is_pentagonal(SCREAMING_SNAKE_CASE_ ): return b return -1 if __name__ == "__main__": print(F'''{solution() = }''')
164
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ = { '''configuration_mgp_str''': ['''MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MgpstrConfig'''], '''processing_mgp_str''': ['''MgpstrProcessor'''], '''tokenization_mgp_str''': ['''MgpstrTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ '''MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MgpstrModel''', '''MgpstrPreTrainedModel''', '''MgpstrForSceneTextRecognition''', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
164
1
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() _lowerCamelCase : List[str] = logging.get_logger(__name__) def __lowerCamelCase (UpperCAmelCase__ : Dict , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int] ): SCREAMING_SNAKE_CASE = WavaVecaForSequenceClassification.from_pretrained(UpperCAmelCase__ , config=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = downstream_dict["projector.weight"] SCREAMING_SNAKE_CASE = downstream_dict["projector.bias"] SCREAMING_SNAKE_CASE = downstream_dict["model.post_net.linear.weight"] SCREAMING_SNAKE_CASE = downstream_dict["model.post_net.linear.bias"] return model def __lowerCamelCase (UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any] ): SCREAMING_SNAKE_CASE = WavaVecaForAudioFrameClassification.from_pretrained(UpperCAmelCase__ , config=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = downstream_dict["model.linear.weight"] SCREAMING_SNAKE_CASE = downstream_dict["model.linear.bias"] return model def __lowerCamelCase (UpperCAmelCase__ : int , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] ): SCREAMING_SNAKE_CASE = WavaVecaForXVector.from_pretrained(UpperCAmelCase__ , config=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = downstream_dict["connector.weight"] SCREAMING_SNAKE_CASE = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): SCREAMING_SNAKE_CASE = downstream_dict[ F"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] SCREAMING_SNAKE_CASE = downstream_dict[F"model.framelevel_feature_extractor.module.{i}.kernel.bias"] SCREAMING_SNAKE_CASE = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] SCREAMING_SNAKE_CASE = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] SCREAMING_SNAKE_CASE = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] SCREAMING_SNAKE_CASE = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] SCREAMING_SNAKE_CASE = downstream_dict["objective.W"] return model @torch.no_grad() def __lowerCamelCase (UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str ): SCREAMING_SNAKE_CASE = torch.load(UpperCAmelCase__ , map_location="cpu" ) SCREAMING_SNAKE_CASE = checkpoint["Downstream"] SCREAMING_SNAKE_CASE = WavaVecaConfig.from_pretrained(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained( UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , do_normalize=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): SCREAMING_SNAKE_CASE = convert_classification(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) elif arch.endswith("ForAudioFrameClassification" ): SCREAMING_SNAKE_CASE = convert_diarization(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) elif arch.endswith("ForXVector" ): SCREAMING_SNAKE_CASE = convert_xvector(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) else: raise NotImplementedError(F"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: SCREAMING_SNAKE_CASE = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(UpperCAmelCase__ ) hf_model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": _lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') _lowerCamelCase : Optional[int] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
647
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class lowercase ( a ): lowercase__ : Optional[Any] = ["""input_features""", """is_longer"""] def __init__( self : str , _UpperCamelCase : Optional[int]=64 , _UpperCamelCase : Any=48_000 , _UpperCamelCase : Optional[Any]=480 , _UpperCamelCase : List[Any]=10 , _UpperCamelCase : Any=1_024 , _UpperCamelCase : List[Any]=0.0 , _UpperCamelCase : Any=False , _UpperCamelCase : float = 0 , _UpperCamelCase : float = 14_000 , _UpperCamelCase : int = None , _UpperCamelCase : str = "fusion" , _UpperCamelCase : str = "repeatpad" , **_UpperCamelCase : Optional[Any] , ) -> Dict: '''simple docstring''' super().__init__( feature_size=_UpperCamelCase , sampling_rate=_UpperCamelCase , padding_value=_UpperCamelCase , return_attention_mask=_UpperCamelCase , **_UpperCamelCase , ) SCREAMING_SNAKE_CASE = top_db SCREAMING_SNAKE_CASE = truncation SCREAMING_SNAKE_CASE = padding SCREAMING_SNAKE_CASE = fft_window_size SCREAMING_SNAKE_CASE = (fft_window_size >> 1) + 1 SCREAMING_SNAKE_CASE = hop_length SCREAMING_SNAKE_CASE = max_length_s SCREAMING_SNAKE_CASE = max_length_s * sampling_rate SCREAMING_SNAKE_CASE = sampling_rate SCREAMING_SNAKE_CASE = frequency_min SCREAMING_SNAKE_CASE = frequency_max SCREAMING_SNAKE_CASE = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_UpperCamelCase , min_frequency=_UpperCamelCase , max_frequency=_UpperCamelCase , sampling_rate=_UpperCamelCase , norm=_UpperCamelCase , mel_scale="htk" , ) SCREAMING_SNAKE_CASE = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_UpperCamelCase , min_frequency=_UpperCamelCase , max_frequency=_UpperCamelCase , sampling_rate=_UpperCamelCase , norm="slaney" , mel_scale="slaney" , ) def __snake_case( self : str ) -> Dict[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def __snake_case( self : Optional[Any] , _UpperCamelCase : np.array , _UpperCamelCase : Optional[np.array] = None ) -> np.ndarray: '''simple docstring''' SCREAMING_SNAKE_CASE = spectrogram( _UpperCamelCase , window_function(self.fft_window_size , "hann" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_UpperCamelCase , log_mel="dB" , ) return log_mel_spectrogram.T def __snake_case( self : str , _UpperCamelCase : Tuple , _UpperCamelCase : Any , _UpperCamelCase : str ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE = [0] # randomly choose index for each part SCREAMING_SNAKE_CASE = np.random.choice(ranges[0] ) SCREAMING_SNAKE_CASE = np.random.choice(ranges[1] ) SCREAMING_SNAKE_CASE = np.random.choice(ranges[2] ) SCREAMING_SNAKE_CASE = mel[idx_front : idx_front + chunk_frames, :] SCREAMING_SNAKE_CASE = mel[idx_middle : idx_middle + chunk_frames, :] SCREAMING_SNAKE_CASE = mel[idx_back : idx_back + chunk_frames, :] SCREAMING_SNAKE_CASE = torch.tensor(mel[None, None, :] ) SCREAMING_SNAKE_CASE = torch.nn.functional.interpolate( _UpperCamelCase , size=[chunk_frames, 64] , mode="bilinear" , align_corners=_UpperCamelCase ) SCREAMING_SNAKE_CASE = mel_shrink[0][0].numpy() SCREAMING_SNAKE_CASE = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def __snake_case( self : Optional[int] , _UpperCamelCase : np.array , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str] ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": SCREAMING_SNAKE_CASE = True # random crop to max_length (for compatibility) -> this should be handled by self.pad SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) - max_length SCREAMING_SNAKE_CASE = np.random.randint(0 , overflow + 1 ) SCREAMING_SNAKE_CASE = waveform[idx : idx + max_length] SCREAMING_SNAKE_CASE = self._np_extract_fbank_features(_UpperCamelCase , self.mel_filters_slaney )[None, :] elif truncation == "fusion": SCREAMING_SNAKE_CASE = self._np_extract_fbank_features(_UpperCamelCase , self.mel_filters ) SCREAMING_SNAKE_CASE = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed SCREAMING_SNAKE_CASE = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. SCREAMING_SNAKE_CASE = np.stack([mel, mel, mel, mel] , axis=0 ) SCREAMING_SNAKE_CASE = False else: SCREAMING_SNAKE_CASE = self._random_mel_fusion(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = True else: raise NotImplementedError(F"data_truncating {truncation} not implemented" ) else: SCREAMING_SNAKE_CASE = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": SCREAMING_SNAKE_CASE = int(max_length / len(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = np.stack(np.tile(_UpperCamelCase , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": SCREAMING_SNAKE_CASE = int(max_length / len(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = np.stack(np.tile(_UpperCamelCase , _UpperCamelCase ) ) SCREAMING_SNAKE_CASE = np.pad(_UpperCamelCase , (0, max_length - waveform.shape[0]) , mode="constant" , constant_values=0 ) if truncation == "fusion": SCREAMING_SNAKE_CASE = self._np_extract_fbank_features(_UpperCamelCase , self.mel_filters ) SCREAMING_SNAKE_CASE = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: SCREAMING_SNAKE_CASE = self._np_extract_fbank_features(_UpperCamelCase , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Dict , _UpperCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _UpperCamelCase : str = None , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[Union[str, TensorType]] = None , **_UpperCamelCase : Tuple , ) -> BatchFeature: '''simple docstring''' SCREAMING_SNAKE_CASE = truncation if truncation is not None else self.truncation SCREAMING_SNAKE_CASE = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" F" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" F" was sampled with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) SCREAMING_SNAKE_CASE = isinstance(_UpperCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) SCREAMING_SNAKE_CASE = is_batched_numpy or ( isinstance(_UpperCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE = [np.asarray(_UpperCamelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_UpperCamelCase , np.ndarray ): SCREAMING_SNAKE_CASE = np.asarray(_UpperCamelCase , dtype=np.floataa ) elif isinstance(_UpperCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE = [np.asarray(_UpperCamelCase )] # convert to mel spectrogram, truncate and pad if needed. SCREAMING_SNAKE_CASE = [ self._get_input_mel(_UpperCamelCase , max_length if max_length else self.nb_max_samples , _UpperCamelCase , _UpperCamelCase ) for waveform in raw_speech ] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for mel, longer in padded_inputs: input_mel.append(_UpperCamelCase ) is_longer.append(_UpperCamelCase ) if truncation == "fusion" and sum(_UpperCamelCase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer SCREAMING_SNAKE_CASE = np.random.randint(0 , len(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = True if isinstance(input_mel[0] , _UpperCamelCase ): SCREAMING_SNAKE_CASE = [np.asarray(_UpperCamelCase , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool SCREAMING_SNAKE_CASE = [[longer] for longer in is_longer] SCREAMING_SNAKE_CASE = {"input_features": input_mel, "is_longer": is_longer} SCREAMING_SNAKE_CASE = BatchFeature(_UpperCamelCase ) if return_tensors is not None: SCREAMING_SNAKE_CASE = input_features.convert_to_tensors(_UpperCamelCase ) return input_features
647
1
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py UpperCamelCase_ = "src/transformers" UpperCamelCase_ = "docs/source/en/tasks" def _UpperCAmelCase ( UpperCamelCase: List[str] , UpperCamelCase: Any , UpperCamelCase: Tuple ): """simple docstring""" with open(UpperCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: __lowerCAmelCase = f.readlines() # Find the start prompt. __lowerCAmelCase = 0 while not lines[start_index].startswith(UpperCamelCase ): start_index += 1 start_index += 1 __lowerCAmelCase = start_index while not lines[end_index].startswith(UpperCamelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. UpperCamelCase_ = direct_transformers_import(TRANSFORMERS_PATH) UpperCamelCase_ = { "asr.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, "audio_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, "language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, "image_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, "masked_language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, "multiple_choice.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, "object_detection.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, "question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, "semantic_segmentation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, "sequence_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, "summarization.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "token_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, "translation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "video_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, "document_question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, "monocular_depth_estimation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). UpperCamelCase_ = { "summarization.md": ("nllb",), "translation.md": ("nllb",), } def _UpperCAmelCase ( UpperCamelCase: Optional[Any] ): """simple docstring""" __lowerCAmelCase = TASK_GUIDE_TO_MODELS[task_guide] __lowerCAmelCase = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(UpperCamelCase , set() ) __lowerCAmelCase = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"[{name}](../model_doc/{code})" for code, name in model_names.items()] ) + "\n" def _UpperCAmelCase ( UpperCamelCase: Union[str, Any] , UpperCamelCase: str=False ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = _find_text_in_file( filename=os.path.join(UpperCamelCase , UpperCamelCase ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , ) __lowerCAmelCase = get_model_list_for_task(UpperCamelCase ) if current_list != new_list: if overwrite: with open(os.path.join(UpperCamelCase , UpperCamelCase ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`" " to fix this." ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") UpperCamelCase_ = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
611
def _UpperCAmelCase ( UpperCamelCase: int ): """simple docstring""" if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(UpperCamelCase , UpperCamelCase ): raise TypeError("Input value must be a 'int' type" ) return bin(UpperCamelCase ).count("1" ) if __name__ == "__main__": import doctest doctest.testmod()
611
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
707
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json""", } class lowerCAmelCase ( UpperCamelCase_ ): A_ : Dict = """lxmert""" A_ : List[str] = {} def __init__( self : Optional[int] , a__ : int=3_0522 , a__ : Optional[int]=768 , a__ : Optional[Any]=12 , a__ : Optional[int]=9500 , a__ : List[Any]=1600 , a__ : Optional[int]=400 , a__ : List[Any]=3072 , a__ : Any="gelu" , a__ : int=0.1 , a__ : str=0.1 , a__ : List[str]=512 , a__ : int=2 , a__ : List[Any]=0.02 , a__ : List[Any]=1e-12 , a__ : List[Any]=9 , a__ : Union[str, Any]=5 , a__ : Any=5 , a__ : List[str]=2048 , a__ : Union[str, Any]=4 , a__ : Optional[Any]=6.67 , a__ : Any=True , a__ : Optional[int]=True , a__ : Dict=True , a__ : Optional[Any]=True , a__ : List[str]=True , a__ : str=True , a__ : int=True , **a__ : int , ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = vocab_size lowerCAmelCase__ : str = hidden_size lowerCAmelCase__ : str = num_attention_heads lowerCAmelCase__ : Any = hidden_act lowerCAmelCase__ : Tuple = intermediate_size lowerCAmelCase__ : str = hidden_dropout_prob lowerCAmelCase__ : Dict = attention_probs_dropout_prob lowerCAmelCase__ : Union[str, Any] = max_position_embeddings lowerCAmelCase__ : List[Any] = type_vocab_size lowerCAmelCase__ : Tuple = initializer_range lowerCAmelCase__ : Optional[int] = layer_norm_eps lowerCAmelCase__ : Union[str, Any] = num_qa_labels lowerCAmelCase__ : int = num_object_labels lowerCAmelCase__ : List[str] = num_attr_labels lowerCAmelCase__ : Optional[int] = l_layers lowerCAmelCase__ : Any = x_layers lowerCAmelCase__ : Any = r_layers lowerCAmelCase__ : str = visual_feat_dim lowerCAmelCase__ : List[str] = visual_pos_dim lowerCAmelCase__ : str = visual_loss_normalizer lowerCAmelCase__ : Optional[int] = task_matched lowerCAmelCase__ : Optional[Any] = task_mask_lm lowerCAmelCase__ : Dict = task_obj_predict lowerCAmelCase__ : int = task_qa lowerCAmelCase__ : Any = visual_obj_loss lowerCAmelCase__ : List[str] = visual_attr_loss lowerCAmelCase__ : Optional[int] = visual_feat_loss lowerCAmelCase__ : Optional[int] = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers} super().__init__(**a__ )
568
0
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : Any ): if not len(lowerCamelCase_ ) == len(lowerCamelCase_ ) == 3: raise ValueError('''Please enter a valid equation.''' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('''Both a & b of two equations can\'t be zero.''' ) # Extract the coefficients __lowercase , __lowercase , __lowercase = equationa __lowercase , __lowercase , __lowercase = equationa # Calculate the determinants of the matrices __lowercase = aa * ba - aa * ba __lowercase = ca * ba - ca * ba __lowercase = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('''Infinite solutions. (Consistent system)''' ) else: raise ValueError('''No solution. (Inconsistent system)''' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: __lowercase = determinant_x / determinant __lowercase = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
502
import random class _lowercase : @staticmethod def UpperCamelCase ( lowerCamelCase__ : str ) -> tuple[list[int], list[int]]: """simple docstring""" A_ = [ord(lowerCamelCase__ ) for i in text] A_ = [] A_ = [] for i in plain: A_ = random.randint(1 , 3_0_0 ) A_ = (i + k) * k cipher.append(lowerCamelCase__ ) key.append(lowerCamelCase__ ) return cipher, key @staticmethod def UpperCamelCase ( lowerCamelCase__ : list[int] , lowerCamelCase__ : list[int] ) -> str: """simple docstring""" A_ = [] for i in range(len(lowerCamelCase__ ) ): A_ = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(lowerCamelCase__ ) ) return "".join(lowerCamelCase__ ) if __name__ == "__main__": __lowercase , __lowercase = Onepad().encrypt("""Hello""") print(c, k) print(Onepad().decrypt(c, k))
203
0
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig __SCREAMING_SNAKE_CASE : Any =[ '''openmmlab/upernet-convnext-tiny''', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring __SCREAMING_SNAKE_CASE : Optional[int] ='''UperNetConfig''' class A_ ( nn.Module ): def __init__( self : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Dict , snake_case__ : Tuple = 0 , snake_case__ : int = False , snake_case__ : int = 1 , ): super().__init__() lowercase = nn.Convad( in_channels=snake_case__ , out_channels=snake_case__ , kernel_size=snake_case__ , padding=snake_case__ , bias=snake_case__ , dilation=snake_case__ , ) lowercase = nn.BatchNormad(snake_case__ ) lowercase = nn.ReLU() def SCREAMING_SNAKE_CASE__ ( self : str , snake_case__ : int ): lowercase = self.conv(snake_case__ ) lowercase = self.batch_norm(snake_case__ ) lowercase = self.activation(snake_case__ ) return output class A_ ( nn.Module ): def __init__( self : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] ): super().__init__() lowercase = [ nn.AdaptiveAvgPoolad(snake_case__ ), UperNetConvModule(snake_case__ , snake_case__ , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(snake_case__ ) , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case__ : List[Any] ): lowercase = input for layer in self.layers: lowercase = layer(snake_case__ ) return hidden_state class A_ ( nn.Module ): def __init__( self : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : str , snake_case__ : Tuple ): super().__init__() lowercase = pool_scales lowercase = align_corners lowercase = in_channels lowercase = channels lowercase = [] for i, pool_scale in enumerate(snake_case__ ): lowercase = UperNetPyramidPoolingBlock(pool_scale=snake_case__ , in_channels=snake_case__ , channels=snake_case__ ) self.blocks.append(snake_case__ ) self.add_module(str(snake_case__ ) , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict , snake_case__ : Dict ): lowercase = [] for ppm in self.blocks: lowercase = ppm(snake_case__ ) lowercase = nn.functional.interpolate( snake_case__ , size=x.size()[2:] , mode="""bilinear""" , align_corners=self.align_corners ) ppm_outs.append(snake_case__ ) return ppm_outs class A_ ( nn.Module ): def __init__( self : Dict , snake_case__ : Union[str, Any] , snake_case__ : Dict ): super().__init__() lowercase = config lowercase = config.pool_scales # e.g. (1, 2, 3, 6) lowercase = in_channels lowercase = config.hidden_size lowercase = False lowercase = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module lowercase = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) lowercase = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module lowercase = nn.ModuleList() lowercase = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer lowercase = UperNetConvModule(snake_case__ , self.channels , kernel_size=1 ) lowercase = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(snake_case__ ) self.fpn_convs.append(snake_case__ ) lowercase = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): self.apply(self._init_weights ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case__ : List[Any] ): if isinstance(snake_case__ , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case__ : Dict ): lowercase = inputs[-1] lowercase = [x] psp_outs.extend(self.psp_modules(snake_case__ ) ) lowercase = torch.cat(snake_case__ , dim=1 ) lowercase = self.bottleneck(snake_case__ ) return output def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , snake_case__ : List[str] ): # build laterals lowercase = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(snake_case__ ) ) # build top-down path lowercase = len(snake_case__ ) for i in range(used_backbone_levels - 1 , 0 , -1 ): lowercase = laterals[i - 1].shape[2:] lowercase = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=snake_case__ , mode="""bilinear""" , align_corners=self.align_corners ) # build outputs lowercase = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): lowercase = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode="""bilinear""" , align_corners=self.align_corners ) lowercase = torch.cat(snake_case__ , dim=1 ) lowercase = self.fpn_bottleneck(snake_case__ ) lowercase = self.classifier(snake_case__ ) return output class A_ ( nn.Module ): def __init__( self : List[str] , snake_case__ : Dict , snake_case__ : Tuple = 2 , snake_case__ : Optional[int] = 3 , snake_case__ : str = 1 ): super().__init__() lowercase = config lowercase = config.auxiliary_in_channels lowercase = config.auxiliary_channels lowercase = config.auxiliary_num_convs lowercase = config.auxiliary_concat_input lowercase = in_index lowercase = (kernel_size // 2) * dilation lowercase = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=snake_case__ , padding=snake_case__ , dilation=snake_case__ ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=snake_case__ , padding=snake_case__ , dilation=snake_case__ ) ) if self.num_convs == 0: lowercase = nn.Identity() else: lowercase = nn.Sequential(*snake_case__ ) if self.concat_input: lowercase = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=snake_case__ , padding=kernel_size // 2 ) lowercase = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): self.apply(self._init_weights ) def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case__ : Optional[Any] ): if isinstance(snake_case__ , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def SCREAMING_SNAKE_CASE__ ( self : Dict , snake_case__ : str ): # just take the relevant feature maps lowercase = encoder_hidden_states[self.in_index] lowercase = self.convs(snake_case__ ) if self.concat_input: lowercase = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) lowercase = self.classifier(snake_case__ ) return output class A_ ( __a ): _A :List[str] = UperNetConfig _A :List[str] = '''pixel_values''' _A :Any = True def SCREAMING_SNAKE_CASE__ ( self : str , snake_case__ : Optional[int] ): if isinstance(snake_case__ , snake_case__ ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def SCREAMING_SNAKE_CASE__ ( self : Dict ): self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case__ : List[str] , snake_case__ : str=False ): if isinstance(snake_case__ , snake_case__ ): lowercase = value __SCREAMING_SNAKE_CASE : Dict =R''' Parameters: This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. config ([`UperNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' __SCREAMING_SNAKE_CASE : str =R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( '''UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.''' , __a , ) class A_ ( __a ): def __init__( self : Optional[Any] , snake_case__ : Union[str, Any] ): super().__init__(snake_case__ ) lowercase = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) lowercase = UperNetHead(snake_case__ , in_channels=self.backbone.channels ) lowercase = UperNetFCNHead(snake_case__ ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("""batch_size, sequence_length""" ) ) @replace_return_docstrings(output_type=snake_case__ , config_class=_CONFIG_FOR_DOC ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case__ : List[str] = None , snake_case__ : Tuple = None , snake_case__ : Tuple = None , snake_case__ : Union[str, Any] = None , snake_case__ : Union[str, Any] = None , ): lowercase = return_dict if return_dict is not None else self.config.use_return_dict lowercase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase = output_attentions if output_attentions is not None else self.config.output_attentions lowercase = self.backbone.forward_with_filtered_kwargs( snake_case__ , output_hidden_states=snake_case__ , output_attentions=snake_case__ ) lowercase = outputs.feature_maps lowercase = self.decode_head(snake_case__ ) lowercase = nn.functional.interpolate(snake_case__ , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=snake_case__ ) lowercase = None if self.auxiliary_head is not None: lowercase = self.auxiliary_head(snake_case__ ) lowercase = nn.functional.interpolate( snake_case__ , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=snake_case__ ) lowercase = None if labels is not None: if self.config.num_labels == 1: raise ValueError("""The number of labels should be greater than one""" ) else: # compute weighted loss lowercase = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) lowercase = loss_fct(snake_case__ , snake_case__ ) lowercase = loss_fct(snake_case__ , snake_case__ ) lowercase = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: lowercase = (logits,) + outputs[1:] else: lowercase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=snake_case__ , logits=snake_case__ , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
702
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class A_ : _A :int _A :int class A_ : def __init__( self : List[str] , snake_case__ : int ): lowercase = [[] for _ in range(snake_case__ )] lowercase = size def __getitem__( self : Optional[int] , snake_case__ : int ): return iter(self._graph[vertex] ) @property def SCREAMING_SNAKE_CASE__ ( self : int ): return self._size def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case__ : int , snake_case__ : int , snake_case__ : int ): if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(snake_case__ , snake_case__ ) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case__ : int , snake_case__ : int ): lowercase = deque([start_vertex] ) lowercase = [None] * self.size lowercase = 0 while queue: lowercase = queue.popleft() lowercase = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowercase = current_distance + edge.weight lowercase = distances[edge.destination_vertex] if ( isinstance(snake_case__ , snake_case__ ) and new_distance >= dest_vertex_distance ): continue lowercase = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
72
0
"""simple docstring""" import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets snake_case = '''\ @article{hendrycksmath2021, title={Measuring Mathematical Problem Solving With the MATH Dataset}, author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt}, journal={arXiv preprint arXiv:2103.03874}, year={2021} } ''' snake_case = '''\ This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset. It first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy. ''' snake_case = r''' Calculates accuracy after canonicalizing inputs. Args: predictions: list of predictions to score. Each prediction is a string that contains natural language and LaTex. references: list of reference for each prediction. Each reference is a string that contains natural language and LaTex. Returns: accuracy: accuracy after canonicalizing inputs (e.g., converting "1/2" to "\\frac{1}{2}") Examples: >>> metric = datasets.load_metric("competition_math") >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"]) >>> print(results) {\'accuracy\': 1.0} ''' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION,_KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def __UpperCAmelCase ( self : Any ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/hendrycks/math''' , codebase_urls=['''https://github.com/hendrycks/math'''] , ) def __UpperCAmelCase ( self : Dict , __lowerCamelCase : int , __lowerCamelCase : List[Any] ): """simple docstring""" _snake_case = 0.0 for i, j in zip(__lowerCamelCase , __lowerCamelCase ): n_correct += 1.0 if math_equivalence.is_equiv(__lowerCamelCase , __lowerCamelCase ) else 0.0 _snake_case = n_correct / len(__lowerCamelCase ) return { "accuracy": accuracy, }
103
from collections.abc import Sequence from queue import Queue class __a : def __init__( self : str , snake_case_ : List[str] , snake_case_ : Tuple , snake_case_ : Tuple , snake_case_ : Optional[Any]=None , snake_case_ : Dict=None)-> Optional[int]: __lowerCAmelCase =start __lowerCAmelCase =end __lowerCAmelCase =val __lowerCAmelCase =(start + end) // 2 __lowerCAmelCase =left __lowerCAmelCase =right def __repr__( self : List[Any])-> Dict: return F"""SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})""" class __a : def __init__( self : List[str] , snake_case_ : Sequence , snake_case_ : int)-> str: __lowerCAmelCase =collection __lowerCAmelCase =function if self.collection: __lowerCAmelCase =self._build_tree(0 , len(snake_case_) - 1) def UpperCamelCase ( self : Dict , snake_case_ : Tuple , snake_case_ : Optional[int])-> Optional[int]: self._update_tree(self.root , snake_case_ , snake_case_) def UpperCamelCase ( self : Optional[Any] , snake_case_ : Any , snake_case_ : Union[str, Any])-> Union[str, Any]: return self._query_range(self.root , snake_case_ , snake_case_) def UpperCamelCase ( self : List[str] , snake_case_ : List[str] , snake_case_ : List[str])-> List[Any]: if start == end: return SegmentTreeNode(snake_case_ , snake_case_ , self.collection[start]) __lowerCAmelCase =(start + end) // 2 __lowerCAmelCase =self._build_tree(snake_case_ , snake_case_) __lowerCAmelCase =self._build_tree(mid + 1 , snake_case_) return SegmentTreeNode(snake_case_ , snake_case_ , self.fn(left.val , right.val) , snake_case_ , snake_case_) def UpperCamelCase ( self : Dict , snake_case_ : Tuple , snake_case_ : int , snake_case_ : int)-> List[Any]: if node.start == i and node.end == i: __lowerCAmelCase =val return if i <= node.mid: self._update_tree(node.left , snake_case_ , snake_case_) else: self._update_tree(node.right , snake_case_ , snake_case_) __lowerCAmelCase =self.fn(node.left.val , node.right.val) def UpperCamelCase ( self : Tuple , snake_case_ : str , snake_case_ : str , snake_case_ : List[Any])-> Optional[int]: if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , snake_case_ , snake_case_) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , snake_case_ , node.mid) , self._query_range(node.right , node.mid + 1 , snake_case_) , ) else: # range in right child tree return self._query_range(node.right , snake_case_ , snake_case_) def UpperCamelCase ( self : List[str])-> Tuple: if self.root is not None: __lowerCAmelCase =Queue() queue.put(self.root) while not queue.empty(): __lowerCAmelCase =queue.get() yield node if node.left is not None: queue.put(node.left) if node.right is not None: queue.put(node.right) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 50) lowercase_ = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
354
0
'''simple docstring''' import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE__ : """simple docstring""" @staticmethod def lowerCamelCase_ ( *UpperCAmelCase_ : int , **UpperCAmelCase_ : Dict ): """simple docstring""" pass @is_pipeline_test @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCamelCase_ ( self : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase : str = pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) __UpperCAmelCase : str = [ { "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "question": "How many cats are there?", }, { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "question": "How many cats are there?", }, ] return vqa_pipeline, examples def lowerCamelCase_ ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : str ): """simple docstring""" __UpperCAmelCase : Dict = vqa_pipeline(UpperCAmelCase_ , top_k=1 ) self.assertEqual( UpperCAmelCase_ , [ [{"score": ANY(UpperCAmelCase_ ), "answer": ANY(UpperCAmelCase_ )}], [{"score": ANY(UpperCAmelCase_ ), "answer": ANY(UpperCAmelCase_ )}], ] , ) @require_torch def lowerCamelCase_ ( self : Tuple ): """simple docstring""" __UpperCAmelCase : List[Any] = pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) __UpperCAmelCase : Optional[int] = "./tests/fixtures/tests_samples/COCO/000000039769.png" __UpperCAmelCase : Optional[int] = "How many cats are there?" __UpperCAmelCase : str = vqa_pipeline(image=UpperCAmelCase_ , question="How many cats are there?" , top_k=2 ) self.assertEqual( UpperCAmelCase_ , [{"score": ANY(UpperCAmelCase_ ), "answer": ANY(UpperCAmelCase_ )}, {"score": ANY(UpperCAmelCase_ ), "answer": ANY(UpperCAmelCase_ )}] ) __UpperCAmelCase : Optional[Any] = vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( UpperCAmelCase_ , [{"score": ANY(UpperCAmelCase_ ), "answer": ANY(UpperCAmelCase_ )}, {"score": ANY(UpperCAmelCase_ ), "answer": ANY(UpperCAmelCase_ )}] ) @slow @require_torch def lowerCamelCase_ ( self : Tuple ): """simple docstring""" __UpperCAmelCase : List[str] = pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" ) __UpperCAmelCase : Tuple = "./tests/fixtures/tests_samples/COCO/000000039769.png" __UpperCAmelCase : Union[str, Any] = "How many cats are there?" __UpperCAmelCase : List[Any] = vqa_pipeline(image=UpperCAmelCase_ , question=UpperCAmelCase_ , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=4 ) , [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}] ) __UpperCAmelCase : Optional[Any] = vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=4 ) , [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}] ) __UpperCAmelCase : Tuple = vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=4 ) , [[{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}]] * 2 , ) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" pass
713
'''simple docstring''' from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" def lowerCamelCase_ ( self : List[str] , UpperCAmelCase_ : float ): """simple docstring""" return 0.0 def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase ): __UpperCAmelCase : List[Any] = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) __UpperCAmelCase : List[str] = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase ): __UpperCAmelCase : Union[str, Any] = 512 __UpperCAmelCase : Tuple = [1] + [0] * (size - 1) __UpperCAmelCase : Any = [filter_type.process(_UpperCAmelCase ) for item in inputs] __UpperCAmelCase : Optional[int] = [0] * (samplerate - size) # zero-padding outputs += filler __UpperCAmelCase : int = np.abs(np.fft.fft(_UpperCAmelCase ) ) __UpperCAmelCase : int = 20 * np.logaa(_UpperCAmelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24, samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) # Display within reasonable bounds __UpperCAmelCase : List[Any] = get_bounds(_UpperCAmelCase, _UpperCAmelCase ) plt.ylim(max([-80, bounds[0]] ), min([80, bounds[1]] ) ) plt.ylabel("Gain (dB)" ) plt.plot(_UpperCAmelCase ) plt.show() def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase ): __UpperCAmelCase : Any = 512 __UpperCAmelCase : int = [1] + [0] * (size - 1) __UpperCAmelCase : str = [filter_type.process(_UpperCAmelCase ) for item in inputs] __UpperCAmelCase : str = [0] * (samplerate - size) # zero-padding outputs += filler __UpperCAmelCase : List[str] = np.angle(np.fft.fft(_UpperCAmelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24, samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) plt.ylim(-2 * pi, 2 * pi ) plt.ylabel("Phase shift (Radians)" ) plt.plot(np.unwrap(_UpperCAmelCase, -2 * pi ) ) plt.show()
329
0
import math from datetime import datetime, timedelta def __lowercase ( snake_case ): """simple docstring""" __magic_name__ :int = year % 1_9 __magic_name__ :str = year % 4 __magic_name__ :Any = year % 7 __magic_name__ :List[Any] = math.floor(year / 1_0_0 ) __magic_name__ :Tuple = math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 ) __magic_name__ :Any = leap_day_inhibits / 4 __magic_name__ :Optional[Any] = ( 1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 3_0 __magic_name__ :Optional[Any] = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 __magic_name__ :Tuple = (1_9 * metonic_cycle + secular_moon_shift) % 3_0 # PHM -> Paschal Full Moon __magic_name__ :Any = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 2_9 and days_from_phm_to_sunday == 6: return datetime(_lowerCamelCase, 4, 1_9 ) elif days_to_add == 2_8 and days_from_phm_to_sunday == 6: return datetime(_lowerCamelCase, 4, 1_8 ) else: return datetime(_lowerCamelCase, 3, 2_2 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (19_94, 20_00, 20_10, 20_21, 20_23): SCREAMING_SNAKE_CASE__ : str = '''will be''' if year > datetime.now().year else '''was''' print(f"Easter in {year} {tense} {gauss_easter(year)}")
0
"""simple docstring""" import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa _SCREAMING_SNAKE_CASE : str = logging.getLogger(__name__) class a ( __snake_case ): SCREAMING_SNAKE_CASE : Optional[Any] = """summarization""" SCREAMING_SNAKE_CASE : Any = ["""loss"""] SCREAMING_SNAKE_CASE : Optional[int] = ROUGE_KEYS SCREAMING_SNAKE_CASE : Optional[int] = """rouge2""" def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : List[str] ) -> Union[str, Any]: if hparams.sortish_sampler and hparams.gpus > 1: lowerCamelCase_ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('Dynamic Batch size does not work for multi-gpu training' ) if hparams.sortish_sampler: raise ValueError('--sortish_sampler and --max_tokens_per_batch may not be used simultaneously' ) super().__init__(__SCREAMING_SNAKE_CASE , num_labels=__SCREAMING_SNAKE_CASE , mode=self.mode , **__SCREAMING_SNAKE_CASE ) use_task_specific_params(self.model , 'summarization' ) save_git_info(self.hparams.output_dir ) lowerCamelCase_ = Path(self.output_dir ) / 'metrics.json' lowerCamelCase_ = Path(self.output_dir ) / 'hparams.pkl' pickle_save(self.hparams , self.hparams_save_path ) lowerCamelCase_ = 0 lowerCamelCase_ = defaultdict(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.config.model_type lowerCamelCase_ = self.config.tgt_vocab_size if self.model_type == 'fsmt' else self.config.vocab_size lowerCamelCase_ = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } lowerCamelCase_ = { 'train': self.hparams.n_train, 'val': self.hparams.n_val, 'test': self.hparams.n_test, } lowerCamelCase_ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} lowerCamelCase_ = { 'train': self.hparams.max_target_length, 'val': self.hparams.val_max_target_length, 'test': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) lowerCamelCase_ = get_git_info()['repo_sha'] lowerCamelCase_ = hparams.num_workers lowerCamelCase_ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , __SCREAMING_SNAKE_CASE ): lowerCamelCase_ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] lowerCamelCase_ = self.decoder_start_token_id lowerCamelCase_ = ( SeqaSeqDataset if hasattr(self.tokenizer , 'prepare_seq2seq_batch' ) else LegacySeqaSeqDataset ) lowerCamelCase_ = False lowerCamelCase_ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: lowerCamelCase_ = self.hparams.eval_max_gen_length else: lowerCamelCase_ = self.model.config.max_length lowerCamelCase_ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def UpperCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Dict[str, torch.Tensor] ) -> Dict[str, List[str]]: lowerCamelCase_ = { k: self.tokenizer.batch_decode(v.tolist() ) if 'mask' not in k else v.shape for k, v in batch.items() } save_json(__SCREAMING_SNAKE_CASE , Path(self.output_dir ) / 'text_batch.json' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / 'tok_batch.json' ) lowerCamelCase_ = True return readable_batch def UpperCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : int , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Any: return self.model(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[int] ) -> int: lowerCamelCase_ = self.tokenizer.batch_decode( __SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE ) return lmap(str.strip , __SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : dict ) -> Tuple: lowerCamelCase_ = self.tokenizer.pad_token_id lowerCamelCase_ , lowerCamelCase_ = batch['input_ids'], batch['attention_mask'] lowerCamelCase_ = batch['labels'] if isinstance(self.model , __SCREAMING_SNAKE_CASE ): lowerCamelCase_ = self.model._shift_right(__SCREAMING_SNAKE_CASE ) else: lowerCamelCase_ = shift_tokens_right(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero lowerCamelCase_ = decoder_input_ids self.save_readable_batch(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , decoder_input_ids=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = outputs['logits'] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id lowerCamelCase_ = nn.CrossEntropyLoss(ignore_index=__SCREAMING_SNAKE_CASE ) assert lm_logits.shape[-1] == self.vocab_size lowerCamelCase_ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: lowerCamelCase_ = nn.functional.log_softmax(__SCREAMING_SNAKE_CASE , dim=-1 ) lowerCamelCase_ , lowerCamelCase_ = label_smoothed_nll_loss( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.hparams.label_smoothing , ignore_index=__SCREAMING_SNAKE_CASE ) return (loss,) @property def UpperCamelCase ( self : Optional[Any] ) -> int: return self.tokenizer.pad_token_id def UpperCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ) -> Dict: lowerCamelCase_ = self._step(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = dict(zip(self.loss_names , __SCREAMING_SNAKE_CASE ) ) # tokens per batch lowerCamelCase_ = batch['input_ids'].ne(self.pad ).sum() + batch['labels'].ne(self.pad ).sum() lowerCamelCase_ = batch['input_ids'].shape[0] lowerCamelCase_ = batch['input_ids'].eq(self.pad ).sum() lowerCamelCase_ = batch['input_ids'].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def UpperCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : int ) -> Dict: return self._generative_step(__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : str , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any]="val" ) -> Dict: self.step_count += 1 lowerCamelCase_ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} lowerCamelCase_ = losses['loss'] lowerCamelCase_ = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['gen_time', 'gen_len'] } lowerCamelCase_ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) lowerCamelCase_ = torch.tensor(__SCREAMING_SNAKE_CASE ).type_as(__SCREAMING_SNAKE_CASE ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} lowerCamelCase_ = self.step_count self.metrics[prefix].append(__SCREAMING_SNAKE_CASE ) # callback writes this to self.metrics_save_path lowerCamelCase_ = flatten_list([x['preds'] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def UpperCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> Dict: return calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : dict ) -> dict: lowerCamelCase_ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') lowerCamelCase_ = self.model.generate( batch['input_ids'] , attention_mask=batch['attention_mask'] , use_cache=__SCREAMING_SNAKE_CASE , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) lowerCamelCase_ = (time.time() - ta) / batch['input_ids'].shape[0] lowerCamelCase_ = self.ids_to_clean_text(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.ids_to_clean_text(batch['labels'] ) lowerCamelCase_ = self._step(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = dict(zip(self.loss_names , __SCREAMING_SNAKE_CASE ) ) lowerCamelCase_ = self.calc_generative_metrics(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowerCamelCase_ = np.mean(lmap(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) base_metrics.update(gen_time=__SCREAMING_SNAKE_CASE , gen_len=__SCREAMING_SNAKE_CASE , preds=__SCREAMING_SNAKE_CASE , target=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) return base_metrics def UpperCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : int ) -> Any: return self._generative_step(__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Tuple: return self.validation_epoch_end(__SCREAMING_SNAKE_CASE , prefix='test' ) def UpperCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : Optional[int] ) -> SeqaSeqDataset: lowerCamelCase_ = self.n_obs[type_path] lowerCamelCase_ = self.target_lens[type_path] lowerCamelCase_ = self.dataset_class( self.tokenizer , type_path=__SCREAMING_SNAKE_CASE , n_obs=__SCREAMING_SNAKE_CASE , max_target_length=__SCREAMING_SNAKE_CASE , **self.dataset_kwargs , ) return dataset def UpperCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool = False ) -> DataLoader: lowerCamelCase_ = self.get_dataset(__SCREAMING_SNAKE_CASE ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": lowerCamelCase_ = dataset.make_sortish_sampler(__SCREAMING_SNAKE_CASE , distributed=self.hparams.gpus > 1 ) return DataLoader( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , collate_fn=dataset.collate_fn , shuffle=__SCREAMING_SNAKE_CASE , num_workers=self.num_workers , sampler=__SCREAMING_SNAKE_CASE , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": lowerCamelCase_ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( __SCREAMING_SNAKE_CASE , batch_sampler=__SCREAMING_SNAKE_CASE , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , collate_fn=dataset.collate_fn , shuffle=__SCREAMING_SNAKE_CASE , num_workers=self.num_workers , sampler=__SCREAMING_SNAKE_CASE , ) def UpperCamelCase ( self : Dict ) -> DataLoader: lowerCamelCase_ = self.get_dataloader('train' , batch_size=self.hparams.train_batch_size , shuffle=__SCREAMING_SNAKE_CASE ) return dataloader def UpperCamelCase ( self : int ) -> DataLoader: return self.get_dataloader('val' , batch_size=self.hparams.eval_batch_size ) def UpperCamelCase ( self : int ) -> DataLoader: return self.get_dataloader('test' , batch_size=self.hparams.eval_batch_size ) @staticmethod def UpperCamelCase ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict: BaseTransformer.add_model_specific_args(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) add_generic_args(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) parser.add_argument( '--max_source_length' , default=1024 , type=__SCREAMING_SNAKE_CASE , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--max_target_length' , default=56 , type=__SCREAMING_SNAKE_CASE , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--val_max_target_length' , default=142 , type=__SCREAMING_SNAKE_CASE , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--test_max_target_length' , default=142 , type=__SCREAMING_SNAKE_CASE , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument('--freeze_encoder' , action='store_true' ) parser.add_argument('--freeze_embeds' , action='store_true' ) parser.add_argument('--sortish_sampler' , action='store_true' , default=__SCREAMING_SNAKE_CASE ) parser.add_argument('--overwrite_output_dir' , action='store_true' , default=__SCREAMING_SNAKE_CASE ) parser.add_argument('--max_tokens_per_batch' , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE ) parser.add_argument('--logger_name' , type=__SCREAMING_SNAKE_CASE , choices=['default', 'wandb', 'wandb_shared'] , default='default' ) parser.add_argument('--n_train' , type=__SCREAMING_SNAKE_CASE , default=-1 , required=__SCREAMING_SNAKE_CASE , help='# examples. -1 means use all.' ) parser.add_argument('--n_val' , type=__SCREAMING_SNAKE_CASE , default=500 , required=__SCREAMING_SNAKE_CASE , help='# examples. -1 means use all.' ) parser.add_argument('--n_test' , type=__SCREAMING_SNAKE_CASE , default=-1 , required=__SCREAMING_SNAKE_CASE , help='# examples. -1 means use all.' ) parser.add_argument( '--task' , type=__SCREAMING_SNAKE_CASE , default='summarization' , required=__SCREAMING_SNAKE_CASE , help='# examples. -1 means use all.' ) parser.add_argument('--label_smoothing' , type=__SCREAMING_SNAKE_CASE , default=0.0 , required=__SCREAMING_SNAKE_CASE ) parser.add_argument('--src_lang' , type=__SCREAMING_SNAKE_CASE , default='' , required=__SCREAMING_SNAKE_CASE ) parser.add_argument('--tgt_lang' , type=__SCREAMING_SNAKE_CASE , default='' , required=__SCREAMING_SNAKE_CASE ) parser.add_argument('--eval_beams' , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE ) parser.add_argument( '--val_metric' , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , choices=['bleu', 'rouge2', 'loss', None] ) parser.add_argument('--eval_max_gen_length' , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , help='never generate more than n tokens' ) parser.add_argument('--save_top_k' , type=__SCREAMING_SNAKE_CASE , default=1 , required=__SCREAMING_SNAKE_CASE , help='How many checkpoints to save' ) parser.add_argument( '--early_stopping_patience' , type=__SCREAMING_SNAKE_CASE , default=-1 , required=__SCREAMING_SNAKE_CASE , help=( '-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So' ' val_check_interval will effect it.' ) , ) return parser class a ( __snake_case ): SCREAMING_SNAKE_CASE : Union[str, Any] = """translation""" SCREAMING_SNAKE_CASE : List[str] = ["""loss"""] SCREAMING_SNAKE_CASE : str = ["""bleu"""] SCREAMING_SNAKE_CASE : Optional[int] = """bleu""" def __init__( self : str , __SCREAMING_SNAKE_CASE : Dict , **__SCREAMING_SNAKE_CASE : Tuple ) -> Optional[Any]: super().__init__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = hparams.src_lang lowerCamelCase_ = hparams.tgt_lang def UpperCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> dict: return calculate_bleu(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( _lowerCamelCase : str , _lowerCamelCase : Tuple=None ) -> SummarizationModule: Path(args.output_dir ).mkdir(exist_ok=_lowerCamelCase ) check_output_dir(_lowerCamelCase , expected_items=3 ) if model is None: if "summarization" in args.task: lowerCamelCase_ = SummarizationModule(_lowerCamelCase ) else: lowerCamelCase_ = TranslationModule(_lowerCamelCase ) lowerCamelCase_ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('/tmp' ) or str(args.output_dir ).startswith('/var' ) ): lowerCamelCase_ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger lowerCamelCase_ = os.environ.get('WANDB_PROJECT' , _lowerCamelCase ) lowerCamelCase_ = WandbLogger(name=model.output_dir.name , project=_lowerCamelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger lowerCamelCase_ = WandbLogger(name=model.output_dir.name , project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: lowerCamelCase_ = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: lowerCamelCase_ = False lowerCamelCase_ = args.val_metric == 'loss' lowerCamelCase_ = generic_train( _lowerCamelCase , _lowerCamelCase , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , _lowerCamelCase ) , early_stopping_callback=_lowerCamelCase , logger=_lowerCamelCase , ) pickle_save(model.hparams , model.output_dir / 'hparams.pkl' ) if not args.do_predict: return model lowerCamelCase_ = '' lowerCamelCase_ = sorted(glob.glob(os.path.join(args.output_dir , '*.ckpt' ) , recursive=_lowerCamelCase ) ) if checkpoints: lowerCamelCase_ = checkpoints[-1] lowerCamelCase_ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": _SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser() _SCREAMING_SNAKE_CASE : Any = pl.Trainer.add_argparse_args(parser) _SCREAMING_SNAKE_CASE : Any = SummarizationModule.add_model_specific_args(parser, os.getcwd()) _SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() main(args)
549
0
def _lowerCAmelCase( __A ): UpperCAmelCase = len(__A ) for i in range(1 , __A ): UpperCAmelCase = collection[i] UpperCAmelCase = 0 UpperCAmelCase = i - 1 while low <= high: UpperCAmelCase = (low + high) // 2 if val < collection[mid]: UpperCAmelCase = mid - 1 else: UpperCAmelCase = mid + 1 for j in range(__A , __A , -1 ): UpperCAmelCase = collection[j - 1] UpperCAmelCase = val return collection if __name__ == "__main__": lowerCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() lowerCAmelCase__ = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
1
import unittest import numpy as np def _lowerCAmelCase( __A , __A , __A , __A = None , ): UpperCAmelCase = np.shape(__A ) UpperCAmelCase = np.shape(__A ) UpperCAmelCase = np.shape(__A ) if shape_a[0] != shape_b[0]: UpperCAmelCase = ( "Expected the same number of rows for A and B. " F"Instead found A of size {shape_a} and B of size {shape_b}" ) raise ValueError(__A ) if shape_b[1] != shape_c[1]: UpperCAmelCase = ( "Expected the same number of columns for B and C. " F"Instead found B of size {shape_b} and C of size {shape_c}" ) raise ValueError(__A ) UpperCAmelCase = pseudo_inv if a_inv is None: try: UpperCAmelCase = np.linalg.inv(__A ) except np.linalg.LinAlgError: raise ValueError( "Input matrix A is not invertible. Cannot compute Schur complement." ) return mat_c - mat_b.T @ a_inv @ mat_b class __magic_name__ ( unittest.TestCase ): def _UpperCamelCase ( self : List[str] ) -> None: UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase = np.array([[2, 1], [6, 3]] ) UpperCAmelCase = schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase = np.block([[a, b], [b.T, c]] ) UpperCAmelCase = np.linalg.det(lowerCAmelCase__ ) UpperCAmelCase = np.linalg.det(lowerCAmelCase__ ) UpperCAmelCase = np.linalg.det(lowerCAmelCase__ ) self.assertAlmostEqual(lowerCAmelCase__ , det_a * det_s ) def _UpperCamelCase ( self : str ) -> None: UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase = np.array([[2, 1], [6, 3]] ) with self.assertRaises(lowerCAmelCase__ ): schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def _UpperCamelCase ( self : Dict ) -> None: UpperCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(lowerCAmelCase__ ): schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
1
1
'''simple docstring''' import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def _a (lowercase__ : List[Any] , lowercase__ : List[str] , lowercase__ : Optional[Any] , lowercase__ : List[str] , lowercase__ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" # Load configuration defined in the metadata file with open(lowercase__ ) as metadata_file: __snake_case = json.load(lowercase__ ) __snake_case = LukeConfig(use_entity_aware_attention=lowercase__ , **metadata['model_config'] ) # Load in the weights from the checkpoint_path __snake_case = torch.load(lowercase__ , map_location='cpu' ) # Load the entity vocab file __snake_case = load_entity_vocab(lowercase__ ) __snake_case = RobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks __snake_case = AddedToken('<ent>' , lstrip=lowercase__ , rstrip=lowercase__ ) __snake_case = AddedToken('<ent2>' , lstrip=lowercase__ , rstrip=lowercase__ ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(lowercase__ ) with open(os.path.join(lowercase__ , LukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(lowercase__ , lowercase__ ) __snake_case = LukeTokenizer.from_pretrained(lowercase__ ) # Initialize the embeddings of the special tokens __snake_case = state_dict['embeddings.word_embeddings.weight'] __snake_case = word_emb[tokenizer.convert_tokens_to_ids(['@'] )[0]].unsqueeze(0 ) __snake_case = word_emb[tokenizer.convert_tokens_to_ids(['#'] )[0]].unsqueeze(0 ) __snake_case = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __snake_case = f'encoder.layer.{layer_index}.attention.self.' __snake_case = state_dict[prefix + matrix_name] __snake_case = state_dict[prefix + matrix_name] __snake_case = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __snake_case = state_dict['entity_embeddings.entity_embeddings.weight'] __snake_case = entity_emb[entity_vocab['[MASK]']] __snake_case = LukeModel(config=lowercase__ ).eval() __snake_case , __snake_case = model.load_state_dict(lowercase__ , strict=lowercase__ ) if not (len(lowercase__ ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(f'Missing keys {", ".join(lowercase__ )}. Expected only missing embeddings.position_ids' ) if not (all(key.startswith('entity_predictions' ) or key.startswith('lm_head' ) for key in unexpected_keys )): raise ValueError( 'Unexpected keys' f' {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}' ) # Check outputs __snake_case = LukeTokenizer.from_pretrained(lowercase__ , task='entity_classification' ) __snake_case = ( 'Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the' ' new world number one avoid a humiliating second- round exit at Wimbledon .' ) __snake_case = (3_9, 4_2) __snake_case = tokenizer(lowercase__ , entity_spans=[span] , add_prefix_space=lowercase__ , return_tensors='pt' ) __snake_case = model(**lowercase__ ) # Verify word hidden states if model_size == "large": __snake_case = torch.Size((1, 4_2, 1_0_2_4) ) __snake_case = torch.tensor( [[0.01_33, 0.08_65, 0.00_95], [0.30_93, -0.25_76, -0.74_18], [-0.17_20, -0.21_17, -0.28_69]] ) else: # base __snake_case = torch.Size((1, 4_2, 7_6_8) ) __snake_case = torch.tensor([[0.00_37, 0.13_68, -0.00_91], [0.10_99, 0.33_29, -0.10_95], [0.07_65, 0.53_35, 0.11_79]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase__ , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": __snake_case = torch.Size((1, 1, 1_0_2_4) ) __snake_case = torch.tensor([[0.04_66, -0.01_06, -0.01_79]] ) else: # base __snake_case = torch.Size((1, 1, 7_6_8) ) __snake_case = torch.tensor([[0.14_57, 0.10_44, 0.01_74]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowercase__ , atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(lowercase__ ) ) model.save_pretrained(lowercase__ ) def _a (lowercase__ : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case = {} with open(lowercase__ , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(lowercase__ ): __snake_case , __snake_case = line.rstrip().split('\t' ) __snake_case = index return entity_vocab if __name__ == "__main__": _a : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) _a : Optional[Any] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
56
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCAmelCase_ ( A , A , A = 1 / sqrt(2 ) ): '''simple docstring''' _a : List[Any] = tau * frequency / samplerate _a : Tuple = sin(A ) _a : List[Any] = cos(A ) _a : Union[str, Any] = _sin / (2 * q_factor) _a : Dict = (1 - _cos) / 2 _a : Any = 1 - _cos _a : Any = 1 + alpha _a : int = -2 * _cos _a : str = 1 - alpha _a : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase_ ( A , A , A = 1 / sqrt(2 ) ): '''simple docstring''' _a : int = tau * frequency / samplerate _a : int = sin(A ) _a : Union[str, Any] = cos(A ) _a : int = _sin / (2 * q_factor) _a : Dict = (1 + _cos) / 2 _a : int = -1 - _cos _a : Optional[int] = 1 + alpha _a : str = -2 * _cos _a : Dict = 1 - alpha _a : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase_ ( A , A , A = 1 / sqrt(2 ) ): '''simple docstring''' _a : str = tau * frequency / samplerate _a : Dict = sin(A ) _a : int = cos(A ) _a : Dict = _sin / (2 * q_factor) _a : List[Any] = _sin / 2 _a : List[str] = 0 _a : Dict = -ba _a : List[Any] = 1 + alpha _a : Union[str, Any] = -2 * _cos _a : List[Any] = 1 - alpha _a : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase_ ( A , A , A = 1 / sqrt(2 ) ): '''simple docstring''' _a : Optional[Any] = tau * frequency / samplerate _a : Tuple = sin(A ) _a : Tuple = cos(A ) _a : Dict = _sin / (2 * q_factor) _a : List[Any] = 1 - alpha _a : int = -2 * _cos _a : List[Any] = 1 + alpha _a : str = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def UpperCAmelCase_ ( A , A , A , A = 1 / sqrt(2 ) , ): '''simple docstring''' _a : Union[str, Any] = tau * frequency / samplerate _a : str = sin(A ) _a : str = cos(A ) _a : List[Any] = _sin / (2 * q_factor) _a : Optional[Any] = 1_0 ** (gain_db / 4_0) _a : Dict = 1 + alpha * big_a _a : str = -2 * _cos _a : Tuple = 1 - alpha * big_a _a : Tuple = 1 + alpha / big_a _a : str = -2 * _cos _a : Union[str, Any] = 1 - alpha / big_a _a : Optional[int] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase_ ( A , A , A , A = 1 / sqrt(2 ) , ): '''simple docstring''' _a : Optional[int] = tau * frequency / samplerate _a : List[str] = sin(A ) _a : Tuple = cos(A ) _a : Union[str, Any] = _sin / (2 * q_factor) _a : str = 1_0 ** (gain_db / 4_0) _a : Optional[Any] = (big_a + 1) - (big_a - 1) * _cos _a : List[str] = (big_a + 1) + (big_a - 1) * _cos _a : List[Any] = (big_a - 1) - (big_a + 1) * _cos _a : Dict = (big_a - 1) + (big_a + 1) * _cos _a : Tuple = 2 * sqrt(A ) * alpha _a : Any = big_a * (pmc + aaa) _a : Optional[int] = 2 * big_a * mpc _a : Dict = big_a * (pmc - aaa) _a : List[str] = ppmc + aaa _a : int = -2 * pmpc _a : Tuple = ppmc - aaa _a : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase_ ( A , A , A , A = 1 / sqrt(2 ) , ): '''simple docstring''' _a : Dict = tau * frequency / samplerate _a : Tuple = sin(A ) _a : Any = cos(A ) _a : int = _sin / (2 * q_factor) _a : str = 1_0 ** (gain_db / 4_0) _a : List[Any] = (big_a + 1) - (big_a - 1) * _cos _a : Union[str, Any] = (big_a + 1) + (big_a - 1) * _cos _a : List[Any] = (big_a - 1) - (big_a + 1) * _cos _a : List[str] = (big_a - 1) + (big_a + 1) * _cos _a : Union[str, Any] = 2 * sqrt(A ) * alpha _a : Optional[Any] = big_a * (ppmc + aaa) _a : List[str] = -2 * big_a * pmpc _a : Any = big_a * (ppmc - aaa) _a : List[Any] = pmc + aaa _a : Tuple = 2 * mpc _a : List[Any] = pmc - aaa _a : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
120
0
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _A ( __magic_name__ , __magic_name__ , unittest.TestCase): SCREAMING_SNAKE_CASE : Any = IFInpaintingPipeline SCREAMING_SNAKE_CASE : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} SCREAMING_SNAKE_CASE : Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE : int = PipelineTesterMixin.required_optional_params - {'''latents'''} def UpperCAmelCase ( self ): """simple docstring""" return self._get_dummy_components() def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ): """simple docstring""" if str(_SCREAMING_SNAKE_CASE ).startswith('mps' ): SCREAMING_SNAKE_CASE_ : str = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE_ : Tuple = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCAmelCase ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def UpperCAmelCase ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCAmelCase ( self ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def UpperCAmelCase ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def UpperCAmelCase ( self ): """simple docstring""" self._test_save_load_local() def UpperCAmelCase ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
353
def A_ ( a , a ): """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def A_ ( ): """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
353
1
import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowerCamelCase__ : Dict = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '--original_config_file', default=None, type=str, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--scheduler_type', default='pndm', type=str, help='Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']', ) parser.add_argument( '--pipeline_type', default=None, type=str, help=( 'The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'' '. If `None` pipeline will be automatically inferred.' ), ) parser.add_argument( '--image_size', default=None, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--prediction_type', default=None, type=str, help=( 'The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable' ' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') parser.add_argument( '--stable_unclip', type=str, default=None, required=False, help='Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.', ) parser.add_argument( '--stable_unclip_prior', type=str, default=None, required=False, help='Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.', ) parser.add_argument( '--clip_stats_path', type=str, help='Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.', required=False, ) parser.add_argument( '--controlnet', action='store_true', default=None, help='Set flag if this is a controlnet checkpoint.' ) parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--vae_path', type=str, default=None, required=False, help='Set to a path, hub id to an already converted vae to not convert it again.', ) lowerCamelCase__ : List[Any] = parser.parse_args() lowerCamelCase__ : Union[str, Any] = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
31
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : List[str] = logging.get_logger(__name__) lowerCamelCase__ : List[str] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase__ : List[str] = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } lowerCamelCase__ : Optional[Any] = { 'google/fnet-base': 512, 'google/fnet-large': 512, } lowerCamelCase__ : List[Any] = '▁' class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "token_type_ids"] lowercase_ = FNetTokenizer def __init__( self : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[Any]="<unk>" , _lowerCAmelCase : Optional[Any]="[SEP]" , _lowerCAmelCase : Optional[Any]="<pad>" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : Optional[Any]="[MASK]" , **_lowerCAmelCase : Any , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. SCREAMING_SNAKE_CASE_ = ( AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase , normalized=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token ) super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , **_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = do_lower_case SCREAMING_SNAKE_CASE_ = remove_space SCREAMING_SNAKE_CASE_ = keep_accents SCREAMING_SNAKE_CASE_ = vocab_file SCREAMING_SNAKE_CASE_ = False if not self.vocab_file else True def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE_ = os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ): copyfile(self.vocab_file , _lowerCAmelCase ) return (out_vocab_file,)
31
1
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. lowerCAmelCase__ = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class snake_case__(unittest.TestCase ): """simple docstring""" lowercase_ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowercase_ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowercase_ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowercase_ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def snake_case ( self : int ): lowercase__ : List[str] = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="pt" ) lowercase__ : Optional[int] = text_classifier("This is great !" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE ) , [{"label": "LABEL_0", "score": 0.504}] ) lowercase__ : int = text_classifier("This is great !" , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE ) , [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}] ) lowercase__ : List[Any] = text_classifier(["This is great !", "This is bad"] , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE ) , [ [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], ] , ) lowercase__ : List[Any] = text_classifier("This is great !" , top_k=1 ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE ) , [{"label": "LABEL_0", "score": 0.504}] ) # Legacy behavior lowercase__ : int = text_classifier("This is great !" , return_all_scores=SCREAMING_SNAKE_CASE ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE ) , [{"label": "LABEL_0", "score": 0.504}] ) lowercase__ : Optional[int] = text_classifier("This is great !" , return_all_scores=SCREAMING_SNAKE_CASE ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE ) , [[{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}]] ) lowercase__ : Tuple = text_classifier(["This is great !", "Something else"] , return_all_scores=SCREAMING_SNAKE_CASE ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE ) , [ [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], ] , ) lowercase__ : Optional[int] = text_classifier(["This is great !", "Something else"] , return_all_scores=SCREAMING_SNAKE_CASE ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE ) , [ {"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_0", "score": 0.504}, ] , ) @require_torch def snake_case ( self : List[Any] ): import torch lowercase__ : List[Any] = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="pt" , device=torch.device("cpu" ) , ) lowercase__ : Any = text_classifier("This is great !" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE ) , [{"label": "LABEL_0", "score": 0.504}] ) @require_tf def snake_case ( self : List[str] ): lowercase__ : Tuple = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="tf" ) lowercase__ : Union[str, Any] = text_classifier("This is great !" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE ) , [{"label": "LABEL_0", "score": 0.504}] ) @slow @require_torch def snake_case ( self : Tuple ): lowercase__ : Optional[int] = pipeline("text-classification" ) lowercase__ : int = text_classifier("This is great !" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE ) , [{"label": "POSITIVE", "score": 1.0}] ) lowercase__ : Any = text_classifier("This is bad !" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE ) , [{"label": "NEGATIVE", "score": 1.0}] ) lowercase__ : str = text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE ) , [{"label": "POSITIVE", "score": 0.988}] ) @slow @require_tf def snake_case ( self : Optional[Any] ): lowercase__ : Optional[int] = pipeline("text-classification" , framework="tf" ) lowercase__ : List[Any] = text_classifier("This is great !" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE ) , [{"label": "POSITIVE", "score": 1.0}] ) lowercase__ : Union[str, Any] = text_classifier("This is bad !" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE ) , [{"label": "NEGATIVE", "score": 1.0}] ) lowercase__ : Optional[Any] = text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE ) , [{"label": "POSITIVE", "score": 0.988}] ) def snake_case ( self : int , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple ): lowercase__ : Union[str, Any] = TextClassificationPipeline(model=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) return text_classifier, ["HuggingFace is in", "This is another test"] def snake_case ( self : str , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Tuple ): lowercase__ : Optional[Any] = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 lowercase__ : str = "HuggingFace is in" lowercase__ : str = text_classifier(SCREAMING_SNAKE_CASE ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE ) , [{"label": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE )}] ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) lowercase__ : Dict = ["HuggingFace is in ", "Paris is in France"] lowercase__ : Tuple = text_classifier(SCREAMING_SNAKE_CASE ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE ) , [{"label": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE )}, {"label": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE )}] , ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["label"] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format lowercase__ : Optional[int] = text_classifier(SCREAMING_SNAKE_CASE , top_k=SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE ) , [[{"label": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE )}] * N, [{"label": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE )}] * N] , ) lowercase__ : Union[str, Any] = {"text": "HuggingFace is in ", "text_pair": "Paris is in France"} lowercase__ : Dict = text_classifier(SCREAMING_SNAKE_CASE ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE ) , {"label": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE )} , ) self.assertTrue(outputs["label"] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. lowercase__ : Optional[int] = [["HuggingFace is in ", "Paris is in France"]] with self.assertRaises(SCREAMING_SNAKE_CASE ): text_classifier(SCREAMING_SNAKE_CASE ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility lowercase__ : Tuple = text_classifier([[["HuggingFace is in ", "Paris is in France"]]] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE ) , [{"label": ANY(SCREAMING_SNAKE_CASE ), "score": ANY(SCREAMING_SNAKE_CASE )}] , ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() )
712
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class snake_case__: """simple docstring""" lowercase_ = 42 # setable values lowercase_ = 42 lowercase_ = 42 lowercase_ = None @classmethod def snake_case ( cls : Union[str, Any] , SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ): return cls(common=SCREAMING_SNAKE_CASE , init_noise_sigma=SCREAMING_SNAKE_CASE , timesteps=SCREAMING_SNAKE_CASE ) @dataclass class snake_case__(_UpperCamelCase ): """simple docstring""" lowercase_ = 42 class snake_case__(_UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ = [e.name for e in FlaxKarrasDiffusionSchedulers] lowercase_ = 42 @property def snake_case ( self : Dict ): return True @register_to_config def __init__( self : Dict , SCREAMING_SNAKE_CASE : int = 1_000 , SCREAMING_SNAKE_CASE : float = 0.0_001 , SCREAMING_SNAKE_CASE : float = 0.02 , SCREAMING_SNAKE_CASE : str = "linear" , SCREAMING_SNAKE_CASE : Optional[jnp.ndarray] = None , SCREAMING_SNAKE_CASE : str = "fixed_small" , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : str = "epsilon" , SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa , ): lowercase__ : List[Any] = dtype def snake_case ( self : Dict , SCREAMING_SNAKE_CASE : Optional[CommonSchedulerState] = None ): if common is None: lowercase__ : Dict = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowercase__ : Dict = jnp.array(1.0 , dtype=self.dtype ) lowercase__ : Dict = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=SCREAMING_SNAKE_CASE , init_noise_sigma=SCREAMING_SNAKE_CASE , timesteps=SCREAMING_SNAKE_CASE , ) def snake_case ( self : str , SCREAMING_SNAKE_CASE : DDPMSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : Optional[int] = None ): return sample def snake_case ( self : int , SCREAMING_SNAKE_CASE : DDPMSchedulerState , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple = () ): lowercase__ : Any = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowercase__ : Union[str, Any] = (jnp.arange(0 , SCREAMING_SNAKE_CASE ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=SCREAMING_SNAKE_CASE , timesteps=SCREAMING_SNAKE_CASE , ) def snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE : DDPMSchedulerState , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : List[Any]=None ): lowercase__ : Tuple = state.common.alphas_cumprod[t] lowercase__ : Any = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowercase__ : str = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowercase__ : Dict = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowercase__ : Union[str, Any] = jnp.clip(SCREAMING_SNAKE_CASE , a_min=1E-2_0 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowercase__ : Optional[int] = jnp.log(jnp.clip(SCREAMING_SNAKE_CASE , a_min=1E-2_0 ) ) elif variance_type == "fixed_large": lowercase__ : Union[str, Any] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowercase__ : List[Any] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowercase__ : List[Any] = variance lowercase__ : Union[str, Any] = state.common.betas[t] lowercase__ : Tuple = (predicted_variance + 1) / 2 lowercase__ : Optional[Any] = frac * max_log + (1 - frac) * min_log return variance def snake_case ( self : str , SCREAMING_SNAKE_CASE : DDPMSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : Optional[jax.random.KeyArray] = None , SCREAMING_SNAKE_CASE : bool = True , ): lowercase__ : Tuple = timestep if key is None: lowercase__ : Union[str, Any] = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowercase__ , lowercase__ : str = jnp.split(SCREAMING_SNAKE_CASE , sample.shape[1] , axis=1 ) else: lowercase__ : Any = None # 1. compute alphas, betas lowercase__ : Dict = state.common.alphas_cumprod[t] lowercase__ : Tuple = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) lowercase__ : Optional[Any] = 1 - alpha_prod_t lowercase__ : Optional[int] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowercase__ : Tuple = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowercase__ : Optional[Any] = model_output elif self.config.prediction_type == "v_prediction": lowercase__ : Optional[Any] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowercase__ : List[Any] = jnp.clip(SCREAMING_SNAKE_CASE , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ : List[str] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowercase__ : str = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowercase__ : Any = jax.random.split(SCREAMING_SNAKE_CASE , num=1 ) lowercase__ : Any = jax.random.normal(SCREAMING_SNAKE_CASE , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , predicted_variance=SCREAMING_SNAKE_CASE ) ** 0.5) * noise lowercase__ : Optional[Any] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) lowercase__ : Optional[int] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE , state=SCREAMING_SNAKE_CASE ) def snake_case ( self : Any , SCREAMING_SNAKE_CASE : DDPMSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , ): return add_noise_common(state.common , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def snake_case ( self : str , SCREAMING_SNAKE_CASE : DDPMSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , ): return get_velocity_common(state.common , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __len__( self : Tuple ): return self.config.num_train_timesteps
81
0
UpperCAmelCase_ = { 0: '0', 1: '1', 2: '2', 3: '3', 4: '4', 5: '5', 6: '6', 7: '7', 8: '8', 9: '9', 10: 'a', 11: 'b', 12: 'c', 13: 'd', 14: 'e', 15: 'f', } def lowerCAmelCase_ ( __UpperCAmelCase: float ) -> str: assert type(__UpperCAmelCase ) in (int, float) and decimal == int(__UpperCAmelCase ) UpperCamelCase__ : Tuple = int(__UpperCAmelCase ) UpperCamelCase__ : Any = '''''' UpperCamelCase__ : Dict = False if decimal < 0: UpperCamelCase__ : Optional[int] = True decimal *= -1 while decimal > 0: UpperCamelCase__ ,UpperCamelCase__ : List[str] = divmod(__UpperCAmelCase , 16 ) UpperCamelCase__ : Dict = values[remainder] + hexadecimal UpperCamelCase__ : int = '''0x''' + hexadecimal if negative: UpperCamelCase__ : int = '''-''' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
253
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class lowercase__ : '''simple docstring''' def UpperCamelCase__ ( self ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase__ : List[str] = TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCamelCase__ : Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCamelCase__ : Optional[Any] = UNetaDConditionModel( sample_size=32, layers_per_block=1, block_out_channels=[32, 64], down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ], mid_block_type='''UNetMidBlock2DSimpleCrossAttn''', up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''], in_channels=3, out_channels=6, cross_attention_dim=32, encoder_hid_dim=32, attention_head_dim=8, addition_embed_type='''text''', addition_embed_type_num_heads=2, cross_attention_norm='''group_norm''', resnet_time_scale_shift='''scale_shift''', act_fn='''gelu''', ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) UpperCamelCase__ : Dict = DDPMScheduler( num_train_timesteps=1000, beta_schedule='''squaredcos_cap_v2''', beta_start=0.0001, beta_end=0.02, thresholding=__magic_name__, dynamic_thresholding_ratio=0.95, sample_max_value=1.0, prediction_type='''epsilon''', variance_type='''learned_range''', ) torch.manual_seed(0 ) UpperCamelCase__ : Optional[int] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCamelCase__ ( self ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase__ : Dict = TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCamelCase__ : int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCamelCase__ : List[Any] = UNetaDConditionModel( sample_size=32, layers_per_block=[1, 2], block_out_channels=[32, 64], down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ], mid_block_type='''UNetMidBlock2DSimpleCrossAttn''', up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''], in_channels=6, out_channels=6, cross_attention_dim=32, encoder_hid_dim=32, attention_head_dim=8, addition_embed_type='''text''', addition_embed_type_num_heads=2, cross_attention_norm='''group_norm''', resnet_time_scale_shift='''scale_shift''', act_fn='''gelu''', class_embed_type='''timestep''', mid_block_scale_factor=1.414, time_embedding_act_fn='''gelu''', time_embedding_dim=32, ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) UpperCamelCase__ : Optional[int] = DDPMScheduler( num_train_timesteps=1000, beta_schedule='''squaredcos_cap_v2''', beta_start=0.0001, beta_end=0.02, thresholding=__magic_name__, dynamic_thresholding_ratio=0.95, sample_max_value=1.0, prediction_type='''epsilon''', variance_type='''learned_range''', ) torch.manual_seed(0 ) UpperCamelCase__ : Optional[Any] = DDPMScheduler( num_train_timesteps=1000, beta_schedule='''squaredcos_cap_v2''', beta_start=0.0001, beta_end=0.02, ) torch.manual_seed(0 ) UpperCamelCase__ : str = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" UpperCamelCase__ : str = self.get_dummy_components() UpperCamelCase__ : List[str] = self.pipeline_class(**__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCamelCase__ : Any = self.get_dummy_inputs(__magic_name__ ) UpperCamelCase__ : Tuple = inputs['''prompt'''] UpperCamelCase__ : Optional[Any] = inputs['''generator'''] UpperCamelCase__ : Union[str, Any] = inputs['''num_inference_steps'''] UpperCamelCase__ : Dict = inputs['''output_type'''] if "image" in inputs: UpperCamelCase__ : Optional[int] = inputs['''image'''] else: UpperCamelCase__ : Any = None if "mask_image" in inputs: UpperCamelCase__ : List[str] = inputs['''mask_image'''] else: UpperCamelCase__ : Union[str, Any] = None if "original_image" in inputs: UpperCamelCase__ : List[Any] = inputs['''original_image'''] else: UpperCamelCase__ : Tuple = None UpperCamelCase__ ,UpperCamelCase__ : List[Any] = pipe.encode_prompt(__magic_name__ ) # inputs with prompt converted to embeddings UpperCamelCase__ : Any = { '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: UpperCamelCase__ : int = image if mask_image is not None: UpperCamelCase__ : List[Any] = mask_image if original_image is not None: UpperCamelCase__ : Optional[Any] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(__magic_name__, __magic_name__, __magic_name__ ) UpperCamelCase__ : Union[str, Any] = pipe(**__magic_name__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__magic_name__ ) UpperCamelCase__ : Any = self.pipeline_class.from_pretrained(__magic_name__ ) pipe_loaded.to(__magic_name__ ) pipe_loaded.set_progress_bar_config(disable=__magic_name__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(__magic_name__, __magic_name__ ) is None, f"`{optional_component}` did not stay set to None after loading.", ) UpperCamelCase__ : List[str] = self.get_dummy_inputs(__magic_name__ ) UpperCamelCase__ : int = inputs['''generator'''] UpperCamelCase__ : Union[str, Any] = inputs['''num_inference_steps'''] UpperCamelCase__ : Union[str, Any] = inputs['''output_type'''] # inputs with prompt converted to embeddings UpperCamelCase__ : Optional[Any] = { '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: UpperCamelCase__ : List[Any] = image if mask_image is not None: UpperCamelCase__ : List[str] = mask_image if original_image is not None: UpperCamelCase__ : str = original_image UpperCamelCase__ : str = pipe_loaded(**__magic_name__ )[0] UpperCamelCase__ : Optional[int] = np.abs(to_np(__magic_name__ ) - to_np(__magic_name__ ) ).max() self.assertLess(__magic_name__, 1E-4 ) def UpperCamelCase__ ( self ) -> Any: """simple docstring""" UpperCamelCase__ : List[str] = self.get_dummy_components() UpperCamelCase__ : Optional[Any] = self.pipeline_class(**__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCamelCase__ : Optional[int] = self.get_dummy_inputs(__magic_name__ ) UpperCamelCase__ : Dict = pipe(**__magic_name__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__magic_name__ ) UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(__magic_name__ ) pipe_loaded.to(__magic_name__ ) pipe_loaded.set_progress_bar_config(disable=__magic_name__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests UpperCamelCase__ : str = self.get_dummy_inputs(__magic_name__ ) UpperCamelCase__ : Optional[Any] = pipe_loaded(**__magic_name__ )[0] UpperCamelCase__ : str = np.abs(to_np(__magic_name__ ) - to_np(__magic_name__ ) ).max() self.assertLess(__magic_name__, 1E-4 )
253
1
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class UpperCamelCase__( unittest.TestCase ): def snake_case__ ( self ) -> List[str]: A__ = inspect.getfile(accelerate.test_utils ) A__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) A__ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) A__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def snake_case__ ( self ) -> Tuple: print(f'''Found {torch.cuda.device_count()} devices.''' ) A__ = ['torchrun', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__UpperCAmelCase ,env=os.environ.copy() ) @require_multi_gpu def snake_case__ ( self ) -> Optional[Any]: print(f'''Found {torch.cuda.device_count()} devices.''' ) A__ = ['torchrun', f'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(f'''Command: {cmd}''' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__UpperCAmelCase ,env=os.environ.copy() ) @require_multi_gpu def snake_case__ ( self ) -> str: A__ = ['torchrun', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__UpperCAmelCase ,env=os.environ.copy() ) @require_multi_gpu def snake_case__ ( self ) -> Tuple: print(f'''Found {torch.cuda.device_count()} devices, using 2 devices only''' ) A__ = ['torchrun', f'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 ,cuda_visible_devices='0,1' ): execute_subprocess_async(__UpperCAmelCase ,env=os.environ.copy() ) if __name__ == "__main__": __lowerCamelCase = Accelerator() __lowerCamelCase = (accelerator.state.process_index + 2, 10) __lowerCamelCase = torch.randint(0, 10, shape).to(accelerator.device) __lowerCamelCase = "" __lowerCamelCase = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." __lowerCamelCase = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." __lowerCamelCase = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
536
"""simple docstring""" import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): __lowerCamelCase = yaml.safe_load( "\\nname: \"\"\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: \"Dataset Card for X\" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: \"Table of Contents\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Dataset Description\"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: \"Dataset Summary\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Supported Tasks and Leaderboards\"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n" ) __lowerCamelCase = { "name": "root", "text": "", "is_empty_text": True, "subsections": [ { "name": "Dataset Card for My Dataset", "text": "", "is_empty_text": True, "subsections": [ {"name": "Table of Contents", "text": "Some text here.", "is_empty_text": False, "subsections": []}, { "name": "Dataset Description", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Dataset Summary", "text": "Some text here.", "is_empty_text": False, "subsections": [], }, { "name": "Supported Tasks and Leaderboards", "text": "", "is_empty_text": True, "subsections": [], }, {"name": "Languages", "text": "Language Text", "is_empty_text": False, "subsections": []}, ], }, ], } ], } __lowerCamelCase = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" __lowerCamelCase = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" __lowerCamelCase = { "name": "root", "text": "", "is_empty_text": True, "subsections": [ { "name": "Dataset Card for My Dataset", "text": "", "is_empty_text": True, "subsections": [ {"name": "Table of Contents", "text": "Some text here.", "is_empty_text": False, "subsections": []}, { "name": "Dataset Description", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Dataset Summary", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Extra Ignored Subsection", "text": "", "is_empty_text": True, "subsections": [], } ], }, { "name": "Supported Tasks and Leaderboards", "text": "", "is_empty_text": True, "subsections": [], }, {"name": "Languages", "text": "Language Text", "is_empty_text": False, "subsections": []}, ], }, ], } ], } __lowerCamelCase = "\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" __lowerCamelCase = ( "The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README." ) __lowerCamelCase = "\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" __lowerCamelCase = ( "The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README." ) __lowerCamelCase = "\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" __lowerCamelCase = "The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README." __lowerCamelCase = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" __lowerCamelCase = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored)." __lowerCamelCase = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n" __lowerCamelCase = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found 'None'." __lowerCamelCase = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n" __lowerCamelCase = "The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`." __lowerCamelCase = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n" __lowerCamelCase = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty." __lowerCamelCase = "\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" __lowerCamelCase = "The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README." __lowerCamelCase = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n" __lowerCamelCase = "The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README." __lowerCamelCase = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" __lowerCamelCase = "The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README." __lowerCamelCase = "" __lowerCamelCase = "The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README." __lowerCamelCase = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" __lowerCamelCase = "The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections." @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" assert ReadMe.from_string(UpperCamelCase__ , UpperCamelCase__ ).to_dict() == expected_dict @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" with pytest.raises(UpperCamelCase__ , match=re.escape(expected_error.format(path='root' ) ) ): A__ = ReadMe.from_string(UpperCamelCase__ , UpperCamelCase__ ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" with pytest.raises(UpperCamelCase__ , match=re.escape(expected_error.format(path='root' ) ) ): ReadMe.from_string(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" ReadMe.from_string(UpperCamelCase__ , UpperCamelCase__ , suppress_parsing_errors=UpperCamelCase__ ) @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: A__ = Path(UpperCamelCase__ ) / 'README.md' with open(UpperCamelCase__ , 'w+' ) as readme_file: readme_file.write(UpperCamelCase__ ) A__ = ReadMe.from_readme(UpperCamelCase__ , UpperCamelCase__ ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: A__ = Path(UpperCamelCase__ ) / 'README.md' with open(UpperCamelCase__ , 'w+' ) as readme_file: readme_file.write(UpperCamelCase__ ) A__ = expected_error.format(path=UpperCamelCase__ ) with pytest.raises(UpperCamelCase__ , match=re.escape(UpperCamelCase__ ) ): A__ = ReadMe.from_readme(UpperCamelCase__ , UpperCamelCase__ ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: A__ = Path(UpperCamelCase__ ) / 'README.md' with open(UpperCamelCase__ , 'w+' ) as readme_file: readme_file.write(UpperCamelCase__ ) A__ = expected_error.format(path=UpperCamelCase__ ) with pytest.raises(UpperCamelCase__ , match=re.escape(UpperCamelCase__ ) ): ReadMe.from_readme(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: A__ = Path(UpperCamelCase__ ) / 'README.md' with open(UpperCamelCase__ , 'w+' ) as readme_file: readme_file.write(UpperCamelCase__ ) ReadMe.from_readme(UpperCamelCase__ , UpperCamelCase__ , suppress_parsing_errors=UpperCamelCase__ )
536
1
import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =FunnelTokenizer lowerCamelCase__ =FunnelTokenizerFast lowerCamelCase__ =True lowerCamelCase__ =True def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE : List[str] = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def __UpperCamelCase ( self : List[Any] , **a : List[str] ) -> str: """simple docstring""" return FunnelTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self : int , **a : Union[str, Any] ) -> List[str]: """simple docstring""" return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self : Optional[int] , a : List[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "UNwant\u00E9d,running" SCREAMING_SNAKE_CASE : Optional[Any] = "unwanted, running" return input_text, output_text def __UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [7, 4, 5, 10, 8, 9] ) def __UpperCamelCase ( self : int ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.get_tokenizers(do_lower_case=_SCREAMING_SNAKE_CASE ) for tokenizer in tokenizers: SCREAMING_SNAKE_CASE : List[Any] = tokenizer("UNwant\u00E9d,running" ) SCREAMING_SNAKE_CASE : Any = len(inputs["input_ids"] ) - 1 self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len ) SCREAMING_SNAKE_CASE : Dict = tokenizer("UNwant\u00E9d,running" , "UNwant\u00E9d,running" ) self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len + [1] * sentence_len )
25
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE="last" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) -> List[Any]: snake_case_ : List[str] = parent snake_case_ : List[str] = batch_size snake_case_ : List[Any] = seq_length snake_case_ : Optional[int] = is_training snake_case_ : List[Any] = use_input_lengths snake_case_ : Optional[Any] = use_token_type_ids snake_case_ : Optional[Any] = use_labels snake_case_ : Tuple = gelu_activation snake_case_ : Optional[Any] = sinusoidal_embeddings snake_case_ : str = causal snake_case_ : Dict = asm snake_case_ : Optional[Any] = n_langs snake_case_ : Optional[int] = vocab_size snake_case_ : Tuple = n_special snake_case_ : int = hidden_size snake_case_ : str = num_hidden_layers snake_case_ : Any = num_attention_heads snake_case_ : Tuple = hidden_dropout_prob snake_case_ : str = attention_probs_dropout_prob snake_case_ : Tuple = max_position_embeddings snake_case_ : Dict = type_vocab_size snake_case_ : Optional[int] = type_sequence_label_size snake_case_ : List[str] = initializer_range snake_case_ : str = num_labels snake_case_ : Optional[int] = num_choices snake_case_ : List[Any] = summary_type snake_case_ : Optional[int] = use_proj snake_case_ : Union[str, Any] = scope def _lowerCAmelCase ( self ) -> int: snake_case_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Union[str, Any] = None if self.use_input_lengths: snake_case_ : List[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length snake_case_ : List[str] = None if self.use_token_type_ids: snake_case_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) snake_case_ : Any = None snake_case_ : Union[str, Any] = None snake_case_ : Dict = None if self.use_labels: snake_case_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ : Optional[int] = ids_tensor([self.batch_size] , 2 ).float() snake_case_ : Tuple = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCAmelCase ( self ) -> List[str]: return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> List[str]: snake_case_ : List[Any] = FlaubertModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() snake_case_ : Optional[int] = model(_SCREAMING_SNAKE_CASE , lengths=_SCREAMING_SNAKE_CASE , langs=_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = model(_SCREAMING_SNAKE_CASE , langs=_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> Tuple: snake_case_ : List[Any] = FlaubertWithLMHeadModel(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() snake_case_ : Optional[Any] = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> Optional[Any]: snake_case_ : Optional[Any] = FlaubertForQuestionAnsweringSimple(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() snake_case_ : Tuple = model(_SCREAMING_SNAKE_CASE ) snake_case_ : int = model(_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> List[Any]: snake_case_ : int = FlaubertForQuestionAnswering(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() snake_case_ : Tuple = model(_SCREAMING_SNAKE_CASE ) snake_case_ : Any = model( _SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , cls_index=_SCREAMING_SNAKE_CASE , is_impossible=_SCREAMING_SNAKE_CASE , p_mask=_SCREAMING_SNAKE_CASE , ) snake_case_ : Dict = model( _SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , cls_index=_SCREAMING_SNAKE_CASE , is_impossible=_SCREAMING_SNAKE_CASE , ) ((snake_case_) , ) : List[str] = result_with_labels.to_tuple() snake_case_ : Optional[int] = model(_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE ) ((snake_case_) , ) : Tuple = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> Tuple: snake_case_ : Tuple = FlaubertForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() snake_case_ : Optional[int] = model(_SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> Dict: snake_case_ : int = self.num_labels snake_case_ : List[str] = FlaubertForTokenClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() snake_case_ : Dict = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> Dict: snake_case_ : str = self.num_choices snake_case_ : Any = FlaubertForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() snake_case_ : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ : int = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCAmelCase ( self ) -> Union[str, Any]: snake_case_ : Dict = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) : str = config_and_inputs snake_case_ : List[str] = { "input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths, "attention_mask": input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' A : List[Any] = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) A : Tuple = ( { 'feature-extraction': FlaubertModel, 'fill-mask': FlaubertWithLMHeadModel, 'question-answering': FlaubertForQuestionAnsweringSimple, 'text-classification': FlaubertForSequenceClassification, 'token-classification': FlaubertForTokenClassification, 'zero-shot': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Dict: snake_case_ : Tuple = super()._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": snake_case_ : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) return inputs_dict def _lowerCAmelCase ( self ) -> Any: snake_case_ : Optional[Any] = FlaubertModelTester(self ) snake_case_ : Dict = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , emb_dim=37 ) def _lowerCAmelCase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def _lowerCAmelCase ( self ) -> List[str]: snake_case_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Tuple: snake_case_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> str: snake_case_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Optional[int]: snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Tuple: snake_case_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Dict: snake_case_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> List[Any]: snake_case_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_SCREAMING_SNAKE_CASE ) @slow def _lowerCAmelCase ( self ) -> List[str]: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : Optional[int] = FlaubertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @slow @require_torch_gpu def _lowerCAmelCase ( self ) -> Optional[int]: snake_case_ , snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return snake_case_ : Optional[int] = True snake_case_ : str = model_class(config=_SCREAMING_SNAKE_CASE ) snake_case_ : str = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ : int = torch.jit.trace( _SCREAMING_SNAKE_CASE , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , "traced_model.pt" ) ) snake_case_ : Tuple = torch.jit.load(os.path.join(_SCREAMING_SNAKE_CASE , "traced_model.pt" ) , map_location=_SCREAMING_SNAKE_CASE ) loaded(inputs_dict["input_ids"].to(_SCREAMING_SNAKE_CASE ) , inputs_dict["attention_mask"].to(_SCREAMING_SNAKE_CASE ) ) @require_torch class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCAmelCase ( self ) -> Tuple: snake_case_ : Optional[Any] = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased" ) snake_case_ : List[Any] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): snake_case_ : Union[str, Any] = model(_SCREAMING_SNAKE_CASE )[0] snake_case_ : List[Any] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) snake_case_ : List[str] = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
568
0
from math import pow def lowerCamelCase__ ( _A , _A , _A , _A , _A , ): '''simple docstring''' if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count snake_case_ = int(pow(_A , _A ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n snake_case_ , snake_case_ = backtrack( _A , _A , current_number + 1 , _A , _A ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. snake_case_ , snake_case_ = backtrack( _A , _A , current_number + 1 , _A , _A ) return current_sum, solutions_count def lowerCamelCase__ ( _A , _A ): '''simple docstring''' if not (1 <= needed_sum <= 1000 and 2 <= power <= 10): raise ValueError( "Invalid input\n" "needed_sum must be between 1 and 1000, power between 2 and 10." ) return backtrack(_A , _A , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
139
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class UpperCAmelCase : '''simple docstring''' lowerCAmelCase_ = 42 lowerCAmelCase_ = None lowerCAmelCase_ = None lowercase__ : Any = namedtuple("CoinsDistribResult", "moves excess") def lowerCamelCase__ ( _A ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(_A ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_A ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_A ) != count_coins(_A ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(_A ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) snake_case_ , snake_case_ = get_distrib(node.left ) snake_case_ , snake_case_ = get_distrib(node.right ) snake_case_ = 1 - left_distrib_excess snake_case_ = 1 - right_distrib_excess snake_case_ = ( left_distrib_moves + right_distrib_moves + abs(_A ) + abs(_A ) ) snake_case_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_A , _A ) return get_distrib(_A )[0] if __name__ == "__main__": import doctest doctest.testmod()
139
1
'''simple docstring''' import numpy as np import qiskit def a ( lowerCamelCase__ = 8 , lowerCamelCase__ = None ): '''simple docstring''' A_ : Tuple = np.random.default_rng(seed=_UpperCAmelCase ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. A_ : int = 6 * key_len # Measurement basis for Alice's qubits. A_ : str = rng.integers(2 , size=_UpperCAmelCase ) # The set of states Alice will prepare. A_ : Optional[int] = rng.integers(2 , size=_UpperCAmelCase ) # Measurement basis for Bob's qubits. A_ : List[Any] = rng.integers(2 , size=_UpperCAmelCase ) # Quantum Circuit to simulate BB84 A_ : Optional[int] = qiskit.QuantumCircuit(_UpperCAmelCase , name="""BB84""" ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(_UpperCAmelCase ): if alice_state[index] == 1: bbaa_circ.x(_UpperCAmelCase ) if alice_basis[index] == 1: bbaa_circ.h(_UpperCAmelCase ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(_UpperCAmelCase ): if bob_basis[index] == 1: bbaa_circ.h(_UpperCAmelCase ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. A_ : Optional[Any] = qiskit.Aer.get_backend("""aer_simulator""" ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. A_ : Optional[int] = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=1 , seed_simulator=_UpperCAmelCase ) # Returns the result of measurement. A_ : Any = job.result().get_counts(_UpperCAmelCase ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. A_ : str = ''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. A_ : List[Any] = gen_key[:key_len] if len(_UpperCAmelCase ) >= key_len else gen_key.ljust(_UpperCAmelCase , """0""" ) return key if __name__ == "__main__": print(F"The generated key is : {bbaa(8, seed=0)}") from doctest import testmod testmod()
667
'''simple docstring''' import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) A__ : List[str] = logging.getLogger() def a_ ( _UpperCAmelCase : int ) -> Optional[int]: __snake_case : List[str] = {} __snake_case : List[str] = os.path.join(_UpperCAmelCase ,'all_results.json' ) if os.path.exists(_UpperCAmelCase ): with open(_UpperCAmelCase ,'r' ) as f: __snake_case : Dict = json.load(_UpperCAmelCase ) else: raise ValueError(f'''can\'t find {path}''' ) return results A__ : Dict = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class snake_case__ ( SCREAMING_SNAKE_CASE_ ): def A_ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' import xla_spawn __snake_case : int = self.get_auto_remove_tmp_dir() __snake_case : Tuple = f''' ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(__a , 'argv' , __a ): __snake_case : Tuple = time() xla_spawn.main() __snake_case : Optional[int] = time() __snake_case : List[Any] = get_results(__a ) self.assertGreaterEqual(result['eval_accuracy'] , 0.7_5 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def A_ ( self : List[str] ) -> Optional[int]: '''simple docstring''' import xla_spawn __snake_case : Optional[Any] = '\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n '.split() with patch.object(__a , 'argv' , __a ): xla_spawn.main()
286
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def lowerCamelCase ( _snake_case : List[str] ): '''simple docstring''' lowercase__ = 384 lowercase__ = 7 if "tiny" in model_name: lowercase__ = 96 lowercase__ = (2, 2, 6, 2) lowercase__ = (3, 6, 12, 24) elif "small" in model_name: lowercase__ = 96 lowercase__ = (2, 2, 18, 2) lowercase__ = (3, 6, 12, 24) elif "base" in model_name: lowercase__ = 128 lowercase__ = (2, 2, 18, 2) lowercase__ = (4, 8, 16, 32) lowercase__ = 12 lowercase__ = 512 elif "large" in model_name: lowercase__ = 192 lowercase__ = (2, 2, 18, 2) lowercase__ = (6, 12, 24, 48) lowercase__ = 12 lowercase__ = 768 # set label information lowercase__ = 150 lowercase__ = "huggingface/label-files" lowercase__ = "ade20k-id2label.json" lowercase__ = json.load(open(hf_hub_download(_snake_case ,_snake_case ,repo_type="dataset" ) ,"r" ) ) lowercase__ = {int(_snake_case ): v for k, v in idalabel.items()} lowercase__ = {v: k for k, v in idalabel.items()} lowercase__ = SwinConfig( embed_dim=_snake_case ,depths=_snake_case ,num_heads=_snake_case ,window_size=_snake_case ,out_features=["stage1", "stage2", "stage3", "stage4"] ,) lowercase__ = UperNetConfig( backbone_config=_snake_case ,auxiliary_in_channels=_snake_case ,num_labels=_snake_case ,idalabel=_snake_case ,labelaid=_snake_case ,) return config def lowerCamelCase ( _snake_case : List[Any] ): '''simple docstring''' lowercase__ = [] # fmt: off # stem rename_keys.append(("backbone.patch_embed.projection.weight", "backbone.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.projection.bias", "backbone.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "backbone.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "backbone.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.stages.{i}.downsample.reduction.weight''', f'''backbone.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.stages.{i}.downsample.norm.weight''', f'''backbone.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.downsample.norm.bias''', f'''backbone.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def lowerCamelCase ( _snake_case : Union[str, Any] ,_snake_case : str ,_snake_case : List[str] ): '''simple docstring''' lowercase__ = dct.pop(_snake_case ) lowercase__ = val def lowerCamelCase ( _snake_case : Any ,_snake_case : List[Any] ): '''simple docstring''' lowercase__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowercase__ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowercase__ = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' ) lowercase__ = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[:dim, :] lowercase__ = in_proj_bias[: dim] lowercase__ = in_proj_weight[ dim : dim * 2, : ] lowercase__ = in_proj_bias[ dim : dim * 2 ] lowercase__ = in_proj_weight[ -dim :, : ] lowercase__ = in_proj_bias[-dim :] # fmt: on def lowerCamelCase ( _snake_case : Optional[int] ): '''simple docstring''' lowercase__ , lowercase__ = x.shape lowercase__ = x.reshape(_snake_case ,4 ,in_channel // 4 ) lowercase__ = x[:, [0, 2, 1, 3], :].transpose(1 ,2 ).reshape(_snake_case ,_snake_case ) return x def lowerCamelCase ( _snake_case : List[str] ): '''simple docstring''' lowercase__ , lowercase__ = x.shape lowercase__ = x.reshape(_snake_case ,in_channel // 4 ,4 ) lowercase__ = x[:, :, [0, 2, 1, 3]].transpose(1 ,2 ).reshape(_snake_case ,_snake_case ) return x def lowerCamelCase ( _snake_case : int ): '''simple docstring''' lowercase__ = x.shape[0] lowercase__ = x.reshape(4 ,in_channel // 4 ) lowercase__ = x[[0, 2, 1, 3], :].transpose(0 ,1 ).reshape(_snake_case ) return x def lowerCamelCase ( _snake_case : Tuple ): '''simple docstring''' lowercase__ = x.shape[0] lowercase__ = x.reshape(in_channel // 4 ,4 ) lowercase__ = x[:, [0, 2, 1, 3]].transpose(0 ,1 ).reshape(_snake_case ) return x def lowerCamelCase ( _snake_case : Optional[Any] ,_snake_case : Union[str, Any] ,_snake_case : Optional[int] ): '''simple docstring''' lowercase__ = { "upernet-swin-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth", "upernet-swin-small": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth", "upernet-swin-base": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth", "upernet-swin-large": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth", } lowercase__ = model_name_to_url[model_name] lowercase__ = torch.hub.load_state_dict_from_url(_snake_case ,map_location="cpu" ,file_name=_snake_case )[ "state_dict" ] for name, param in state_dict.items(): print(_snake_case ,param.shape ) lowercase__ = get_upernet_config(_snake_case ) lowercase__ = UperNetForSemanticSegmentation(_snake_case ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowercase__ = state_dict.pop(_snake_case ) if "bn" in key: lowercase__ = key.replace("bn" ,"batch_norm" ) lowercase__ = val # rename keys lowercase__ = create_rename_keys(_snake_case ) for src, dest in rename_keys: rename_key(_snake_case ,_snake_case ,_snake_case ) read_in_q_k_v(_snake_case ,config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: lowercase__ = reverse_correct_unfold_reduction_order(_snake_case ) if "norm" in key: lowercase__ = reverse_correct_unfold_norm_order(_snake_case ) model.load_state_dict(_snake_case ) # verify on image lowercase__ = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" lowercase__ = Image.open(requests.get(_snake_case ,stream=_snake_case ).raw ).convert("RGB" ) lowercase__ = SegformerImageProcessor() lowercase__ = processor(_snake_case ,return_tensors="pt" ).pixel_values with torch.no_grad(): lowercase__ = model(_snake_case ) lowercase__ = outputs.logits print(logits.shape ) print("First values of logits:" ,logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": lowercase__ = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ) elif model_name == "upernet-swin-small": lowercase__ = torch.tensor( [[-7.1_921, -7.1_921, -6.9_532], [-7.1_921, -7.1_921, -6.9_532], [-7.0_908, -7.0_908, -6.8_534]] ) elif model_name == "upernet-swin-base": lowercase__ = torch.tensor( [[-6.5_851, -6.5_851, -6.4_330], [-6.5_851, -6.5_851, -6.4_330], [-6.4_763, -6.4_763, -6.3_254]] ) elif model_name == "upernet-swin-large": lowercase__ = torch.tensor( [[-7.5_297, -7.5_297, -7.3_802], [-7.5_297, -7.5_297, -7.3_802], [-7.4_044, -7.4_044, -7.2_586]] ) print("Logits:" ,outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] ,_snake_case ,atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(_snake_case ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-swin-tiny", type=str, choices=[f'''upernet-swin-{size}''' for size in ["tiny", "small", "base", "large"]], help="Name of the Swin + UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
539
'''simple docstring''' import os import time import numpy as np import onnxruntime as ort SCREAMING_SNAKE_CASE__ = "1" SCREAMING_SNAKE_CASE__ = "0" SCREAMING_SNAKE_CASE__ = "1" SCREAMING_SNAKE_CASE__ = ort.SessionOptions() SCREAMING_SNAKE_CASE__ = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print("Create inference session...") SCREAMING_SNAKE_CASE__ = ["TensorrtExecutionProvider", "CUDAExecutionProvider"] SCREAMING_SNAKE_CASE__ = ort.InferenceSession("model.onnx", sess_options=sess_opt, providers=execution_provider) SCREAMING_SNAKE_CASE__ = ort.RunOptions() SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = np.ones((batch, sequence), dtype=np.intaa) SCREAMING_SNAKE_CASE__ = np.ones((batch, sequence), dtype=np.intaa) SCREAMING_SNAKE_CASE__ = np.ones((batch, sequence), dtype=np.intaa) print("Warm up phase...") sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("Start inference...") SCREAMING_SNAKE_CASE__ = time.time() SCREAMING_SNAKE_CASE__ = 2000 SCREAMING_SNAKE_CASE__ = {} for iter in range(max_iters): SCREAMING_SNAKE_CASE__ = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("Average Inference Time = {:.3f} ms".format((time.time() - start_time) * 1000 / max_iters))
539
1
"""simple docstring""" import os from pathlib import Path def _lowercase ( ) -> List[str]: from torch.utils.cpp_extension import load __lowerCAmelCase : List[Any] = Path(lowerCamelCase__ ).resolve().parent.parent.parent / "kernels" / "deformable_detr" __lowerCAmelCase : Any = [ root / filename for filename in [ "vision.cpp", os.path.join("cpu" ,"ms_deform_attn_cpu.cpp" ), os.path.join("cuda" ,"ms_deform_attn_cuda.cu" ), ] ] load( "MultiScaleDeformableAttention" ,lowerCamelCase__ ,with_cuda=lowerCamelCase__ ,extra_include_paths=[str(lowerCamelCase__ )] ,extra_cflags=["-DWITH_CUDA=1"] ,extra_cuda_cflags=[ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] ,) import MultiScaleDeformableAttention as MSDA return MSDA
293
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def _lowerCAmelCase ( lowerCamelCase__ : str ) -> Any: _SCREAMING_SNAKE_CASE : Any = SwinvaConfig() _SCREAMING_SNAKE_CASE : List[str] = swinva_name.split("_" ) _SCREAMING_SNAKE_CASE : Dict = name_split[1] if "to" in name_split[3]: _SCREAMING_SNAKE_CASE : Union[str, Any] = int(name_split[3][-3:] ) else: _SCREAMING_SNAKE_CASE : Tuple = int(name_split[3] ) if "to" in name_split[2]: _SCREAMING_SNAKE_CASE : str = int(name_split[2][-2:] ) else: _SCREAMING_SNAKE_CASE : Union[str, Any] = int(name_split[2][6:] ) if model_size == "tiny": _SCREAMING_SNAKE_CASE : List[Any] = 9_6 _SCREAMING_SNAKE_CASE : List[Any] = (2, 2, 6, 2) _SCREAMING_SNAKE_CASE : List[str] = (3, 6, 1_2, 2_4) elif model_size == "small": _SCREAMING_SNAKE_CASE : Optional[int] = 9_6 _SCREAMING_SNAKE_CASE : Optional[Any] = (2, 2, 1_8, 2) _SCREAMING_SNAKE_CASE : List[str] = (3, 6, 1_2, 2_4) elif model_size == "base": _SCREAMING_SNAKE_CASE : Union[str, Any] = 1_2_8 _SCREAMING_SNAKE_CASE : List[str] = (2, 2, 1_8, 2) _SCREAMING_SNAKE_CASE : List[str] = (4, 8, 1_6, 3_2) else: _SCREAMING_SNAKE_CASE : Dict = 1_9_2 _SCREAMING_SNAKE_CASE : Optional[Any] = (2, 2, 1_8, 2) _SCREAMING_SNAKE_CASE : List[str] = (6, 1_2, 2_4, 4_8) if "to" in swinva_name: _SCREAMING_SNAKE_CASE : Optional[int] = (1_2, 1_2, 1_2, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): _SCREAMING_SNAKE_CASE : Tuple = 2_1_8_4_1 _SCREAMING_SNAKE_CASE : Optional[int] = "huggingface/label-files" _SCREAMING_SNAKE_CASE : int = "imagenet-22k-id2label.json" _SCREAMING_SNAKE_CASE : str = json.load(open(hf_hub_download(lowerCamelCase__, lowerCamelCase__, repo_type="dataset" ), "r" ) ) _SCREAMING_SNAKE_CASE : Optional[int] = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE : int = idalabel _SCREAMING_SNAKE_CASE : List[str] = {v: k for k, v in idalabel.items()} else: _SCREAMING_SNAKE_CASE : Optional[Any] = 1_0_0_0 _SCREAMING_SNAKE_CASE : Dict = "huggingface/label-files" _SCREAMING_SNAKE_CASE : Any = "imagenet-1k-id2label.json" _SCREAMING_SNAKE_CASE : Tuple = json.load(open(hf_hub_download(lowerCamelCase__, lowerCamelCase__, repo_type="dataset" ), "r" ) ) _SCREAMING_SNAKE_CASE : Dict = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE : int = idalabel _SCREAMING_SNAKE_CASE : List[Any] = {v: k for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE : List[str] = img_size _SCREAMING_SNAKE_CASE : List[Any] = num_classes _SCREAMING_SNAKE_CASE : List[Any] = embed_dim _SCREAMING_SNAKE_CASE : List[Any] = depths _SCREAMING_SNAKE_CASE : List[Any] = num_heads _SCREAMING_SNAKE_CASE : int = window_size return config def _lowerCAmelCase ( lowerCamelCase__ : Dict ) -> List[str]: if "patch_embed.proj" in name: _SCREAMING_SNAKE_CASE : List[str] = name.replace("patch_embed.proj", "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: _SCREAMING_SNAKE_CASE : List[str] = name.replace("patch_embed.norm", "embeddings.norm" ) if "layers" in name: _SCREAMING_SNAKE_CASE : Optional[Any] = "encoder." + name if "attn.proj" in name: _SCREAMING_SNAKE_CASE : List[Any] = name.replace("attn.proj", "attention.output.dense" ) if "attn" in name: _SCREAMING_SNAKE_CASE : str = name.replace("attn", "attention.self" ) if "norm1" in name: _SCREAMING_SNAKE_CASE : List[str] = name.replace("norm1", "layernorm_before" ) if "norm2" in name: _SCREAMING_SNAKE_CASE : str = name.replace("norm2", "layernorm_after" ) if "mlp.fc1" in name: _SCREAMING_SNAKE_CASE : Dict = name.replace("mlp.fc1", "intermediate.dense" ) if "mlp.fc2" in name: _SCREAMING_SNAKE_CASE : Tuple = name.replace("mlp.fc2", "output.dense" ) if "q_bias" in name: _SCREAMING_SNAKE_CASE : Dict = name.replace("q_bias", "query.bias" ) if "k_bias" in name: _SCREAMING_SNAKE_CASE : Optional[int] = name.replace("k_bias", "key.bias" ) if "v_bias" in name: _SCREAMING_SNAKE_CASE : int = name.replace("v_bias", "value.bias" ) if "cpb_mlp" in name: _SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("cpb_mlp", "continuous_position_bias_mlp" ) if name == "norm.weight": _SCREAMING_SNAKE_CASE : str = "layernorm.weight" if name == "norm.bias": _SCREAMING_SNAKE_CASE : Tuple = "layernorm.bias" if "head" in name: _SCREAMING_SNAKE_CASE : str = name.replace("head", "classifier" ) else: _SCREAMING_SNAKE_CASE : Tuple = "swinv2." + name return name def _lowerCAmelCase ( lowerCamelCase__ : Any, lowerCamelCase__ : int ) -> Tuple: for key in orig_state_dict.copy().keys(): _SCREAMING_SNAKE_CASE : List[str] = orig_state_dict.pop(lowerCamelCase__ ) if "mask" in key: continue elif "qkv" in key: _SCREAMING_SNAKE_CASE : Any = key.split("." ) _SCREAMING_SNAKE_CASE : Optional[Any] = int(key_split[1] ) _SCREAMING_SNAKE_CASE : Union[str, Any] = int(key_split[3] ) _SCREAMING_SNAKE_CASE : Tuple = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _SCREAMING_SNAKE_CASE : Optional[int] = val[:dim, :] _SCREAMING_SNAKE_CASE : Tuple = val[dim : dim * 2, :] _SCREAMING_SNAKE_CASE : List[str] = val[-dim:, :] else: _SCREAMING_SNAKE_CASE : List[Any] = val[:dim] _SCREAMING_SNAKE_CASE : str = val[ dim : dim * 2 ] _SCREAMING_SNAKE_CASE : Union[str, Any] = val[-dim:] else: _SCREAMING_SNAKE_CASE : Optional[Any] = val return orig_state_dict def _lowerCAmelCase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : str ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Any = timm.create_model(lowerCamelCase__, pretrained=lowerCamelCase__ ) timm_model.eval() _SCREAMING_SNAKE_CASE : Tuple = get_swinva_config(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : int = SwinvaForImageClassification(lowerCamelCase__ ) model.eval() _SCREAMING_SNAKE_CASE : int = convert_state_dict(timm_model.state_dict(), lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" _SCREAMING_SNAKE_CASE : str = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_", "-" ) ) ) _SCREAMING_SNAKE_CASE : List[Any] = Image.open(requests.get(lowerCamelCase__, stream=lowerCamelCase__ ).raw ) _SCREAMING_SNAKE_CASE : Dict = image_processor(images=lowerCamelCase__, return_tensors="pt" ) _SCREAMING_SNAKE_CASE : Tuple = timm_model(inputs["pixel_values"] ) _SCREAMING_SNAKE_CASE : Dict = model(**lowerCamelCase__ ).logits assert torch.allclose(lowerCamelCase__, lowerCamelCase__, atol=1E-3 ) print(f'''Saving model {swinva_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowerCamelCase__ ) model.push_to_hub( repo_path_or_name=Path(lowerCamelCase__, lowerCamelCase__ ), organization="nandwalritik", commit_message="Add model", ) if __name__ == "__main__": lowercase_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swinv2_name''', default='''swinv2_tiny_patch4_window8_256''', type=str, help='''Name of the Swinv2 timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowercase_ : Optional[int] = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
572
0
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 lowerCAmelCase_ = { # 1536-bit 5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 2048-bit 14: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 3072-bit 15: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 4096-bit 16: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 6144-bit 17: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 8192-bit 18: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, } class UpperCAmelCase_ : """simple docstring""" def __init__( self , lowerCamelCase = 14 ) -> None: '''simple docstring''' if group not in primes: raise ValueError("Unsupported Group" ) UpperCamelCase : int = primes[group]["prime"] UpperCamelCase : List[str] = primes[group]["generator"] UpperCamelCase : Tuple = int(hexlify(urandom(32 ) ) , base=16 ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' return hex(self.__private_key )[2:] def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' UpperCamelCase : Tuple = pow(self.generator , self.__private_key , self.prime ) return hex(lowerCamelCase )[2:] def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase ) -> bool: '''simple docstring''' return ( 2 <= key <= self.prime - 2 and pow(lowerCamelCase , (self.prime - 1) // 2 , self.prime ) == 1 ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase ) -> str: '''simple docstring''' UpperCamelCase : List[str] = int(lowerCamelCase , base=16 ) if not self.is_valid_public_key(lowerCamelCase ): raise ValueError("Invalid public key" ) UpperCamelCase : str = pow(lowerCamelCase , self.__private_key , self.prime ) return shaaaa(str(lowerCamelCase ).encode() ).hexdigest() @staticmethod def SCREAMING_SNAKE_CASE__ ( lowerCamelCase , lowerCamelCase ) -> bool: '''simple docstring''' return ( 2 <= remote_public_key_str <= prime - 2 and pow(lowerCamelCase , (prime - 1) // 2 , lowerCamelCase ) == 1 ) @staticmethod def SCREAMING_SNAKE_CASE__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = 14 ) -> str: '''simple docstring''' UpperCamelCase : str = int(lowerCamelCase , base=16 ) UpperCamelCase : int = int(lowerCamelCase , base=16 ) UpperCamelCase : Any = primes[group]["prime"] if not DiffieHellman.is_valid_public_key_static(lowerCamelCase , lowerCamelCase ): raise ValueError("Invalid public key" ) UpperCamelCase : Tuple = pow(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return shaaaa(str(lowerCamelCase ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
435
'''simple docstring''' # limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase ) -> Optional[int]: '''simple docstring''' super().__init__() self.register_modules(unet=lowerCamelCase , scheduler=lowerCamelCase ) @torch.no_grad() def __call__( self , lowerCamelCase = 1 , lowerCamelCase = None , lowerCamelCase = 50 , lowerCamelCase = "pil" , lowerCamelCase = True , **lowerCamelCase , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' UpperCamelCase : Dict = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=lowerCamelCase , ) UpperCamelCase : Optional[int] = image.to(self.device ) # set step values self.scheduler.set_timesteps(lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output UpperCamelCase : Dict = self.unet(lowerCamelCase , lowerCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCamelCase : Any = self.scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ).prev_sample UpperCamelCase : str = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase : List[Any] = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=lowerCamelCase ), "This is a local test"
435
1
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers UpperCAmelCase_ : List[Any] = '3' print('Python version:', sys.version) print('transformers version:', transformers.__version__) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) print('NCCL version:', torch.cuda.nccl.version()) except ImportError: print('Torch version:', None) try: import deepspeed print('DeepSpeed version:', deepspeed.__version__) except ImportError: print('DeepSpeed version:', None) try: import tensorflow as tf print('TensorFlow version:', tf.__version__) print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU'))) print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU'))) except ImportError: print('TensorFlow version:', None)
365
'''simple docstring''' import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : Dict = 'https://openaipublic.azureedge.net/jukebox/models/' UpperCAmelCase_ : Tuple = { 'jukebox-1b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '1b_lyrics/prior_level_2.pth.tar', ], 'jukebox-5b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '5b_lyrics/prior_level_2.pth.tar', ], } def _lowercase ( UpperCamelCase__ : str ): if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: __A : str = key.replace('.model.1.bias', '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: __A : Dict = key.replace('.model.1.weight', '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: __A : Optional[int] = key.replace('.model.3.bias', '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: __A : str = key.replace('.model.3.weight', '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: __A : Tuple = key.replace('conditioner_blocks.0', 'conditioner_blocks' ) if "prime_prior" in key: __A : str = key.replace('prime_prior', 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: __A : str = key.replace('.emb.', '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k', '.codebook' ) if "y_emb." in key: return key.replace('y_emb.', 'metadata_embedding.' ) if "x_emb.emb." in key: __A : str = key.replace('0.x_emb.emb', 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln', 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln', '.layer_norm' ) if "_ln" in key: return key.replace('_ln', '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj', 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out', 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out', 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb', 'embed_tokens' ) return key def _lowercase ( UpperCamelCase__ : Any, UpperCamelCase__ : Dict, UpperCamelCase__ : List[Any], UpperCamelCase__ : Optional[Any] ): __A : Union[str, Any] = {} import re __A : List[Any] = re.compile(r'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) __A : Dict = re.compile( r'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) __A : Optional[int] = re.compile(r'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) __A : List[str] = re.compile(r'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) __A : str = re.compile( r'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) __A : str = re.compile(r'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) __A : Optional[int] = re.compile(r'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) __A : Union[str, Any] = re.compile( r'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) __A : List[Any] = re.compile(r'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(UpperCamelCase__ ): __A : Any = re_encoder_block_conv_in.match(UpperCamelCase__ ) __A : int = regex_match.groups() __A : List[Any] = int(groups[2] ) * 2 + int(groups[3] ) __A : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" __A : int = re_encoder_block_conv_in.sub(UpperCamelCase__, UpperCamelCase__ ) elif re_encoder_block_resnet.fullmatch(UpperCamelCase__ ): __A : Any = re_encoder_block_resnet.match(UpperCamelCase__ ) __A : Any = regex_match.groups() __A : Optional[Any] = int(groups[2] ) * 2 + int(groups[3] ) __A : str = {'1': 1, '3': 2}[groups[-2]] __A : Optional[int] = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" __A : str = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" __A : List[Any] = prefix + resnet_block __A : Union[str, Any] = re_encoder_block_resnet.sub(UpperCamelCase__, UpperCamelCase__ ) elif re_encoder_block_proj_out.fullmatch(UpperCamelCase__ ): __A : List[str] = re_encoder_block_proj_out.match(UpperCamelCase__ ) __A : Optional[int] = regex_match.groups() __A : Any = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" __A : Optional[Any] = re_encoder_block_proj_out.sub(UpperCamelCase__, UpperCamelCase__ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(UpperCamelCase__ ): __A : Dict = re_decoder_block_conv_out.match(UpperCamelCase__ ) __A : int = regex_match.groups() __A : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 __A : Optional[Any] = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" __A : Optional[Any] = re_decoder_block_conv_out.sub(UpperCamelCase__, UpperCamelCase__ ) elif re_decoder_block_resnet.fullmatch(UpperCamelCase__ ): __A : List[str] = re_decoder_block_resnet.match(UpperCamelCase__ ) __A : List[str] = regex_match.groups() __A : Dict = int(groups[2] ) * 2 + int(groups[3] ) - 2 __A : Optional[Any] = {'1': 1, '3': 2}[groups[-2]] __A : int = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" __A : Dict = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" __A : Union[str, Any] = prefix + resnet_block __A : Optional[int] = re_decoder_block_resnet.sub(UpperCamelCase__, UpperCamelCase__ ) elif re_decoder_block_proj_in.fullmatch(UpperCamelCase__ ): __A : int = re_decoder_block_proj_in.match(UpperCamelCase__ ) __A : List[str] = regex_match.groups() __A : Tuple = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" __A : Optional[Any] = re_decoder_block_proj_in.sub(UpperCamelCase__, UpperCamelCase__ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(UpperCamelCase__ ): __A : Optional[int] = re_prior_cond_conv_out.match(UpperCamelCase__ ) __A : Union[str, Any] = regex_match.groups() __A : Dict = int(groups[1] ) * 2 + int(groups[2] ) - 2 __A : List[str] = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" __A : List[str] = re_prior_cond_conv_out.sub(UpperCamelCase__, UpperCamelCase__ ) elif re_prior_cond_resnet.fullmatch(UpperCamelCase__ ): __A : str = re_prior_cond_resnet.match(UpperCamelCase__ ) __A : Dict = regex_match.groups() __A : Dict = int(groups[1] ) * 2 + int(groups[2] ) - 2 __A : Dict = {'1': 1, '3': 2}[groups[-2]] __A : Optional[Any] = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" __A : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" __A : Union[str, Any] = prefix + resnet_block __A : str = re_prior_cond_resnet.sub(UpperCamelCase__, UpperCamelCase__ ) elif re_prior_cond_proj_in.fullmatch(UpperCamelCase__ ): __A : Tuple = re_prior_cond_proj_in.match(UpperCamelCase__ ) __A : Optional[Any] = regex_match.groups() __A : Optional[int] = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" __A : List[Any] = re_prior_cond_proj_in.sub(UpperCamelCase__, UpperCamelCase__ ) # keep original key else: __A : List[Any] = original_key __A : int = replace_key(UpperCamelCase__ ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: __A : Optional[Any] = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) __A : Union[str, Any] = original_key __A : Optional[int] = original_key __A : Optional[Any] = value return new_dict @torch.no_grad() def _lowercase ( UpperCamelCase__ : Union[str, Any]=None, UpperCamelCase__ : Any=None ): for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" ): __A : Any = requests.get(f"""{PREFIX}{file}""", allow_redirects=UpperCamelCase__ ) os.makedirs(f"""{pytorch_dump_folder_path}/""", exist_ok=UpperCamelCase__ ) open(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""", 'wb' ).write(r.content ) __A : str = MODEL_MAPPING[model_name.split('/' )[-1]] __A : Optional[Any] = JukeboxConfig.from_pretrained(UpperCamelCase__ ) __A : Tuple = JukeboxModel(UpperCamelCase__ ) __A : List[Any] = [] __A : int = {} for i, dict_name in enumerate(UpperCamelCase__ ): __A : List[Any] = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}""" )['model'] __A : Dict = {} for k in old_dic.keys(): if k.endswith('.b' ): __A : str = old_dic[k] elif k.endswith('.w' ): __A : int = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: __A : Optional[Any] = old_dic[k] else: __A : str = old_dic[k] __A : List[Any] = 'vqvae' if i == 0 else f"""priors.{3 - i}""" __A : Any = fix_jukebox_keys(UpperCamelCase__, model.state_dict(), UpperCamelCase__, UpperCamelCase__ ) weight_dict.append(UpperCamelCase__ ) __A : Union[str, Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(UpperCamelCase__ ) for i in range(len(UpperCamelCase__ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) with open(f"""{pytorch_dump_folder_path}/mapping.json""", 'w' ) as txtfile: json.dump(UpperCamelCase__, UpperCamelCase__ ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) return weight_dict if __name__ == "__main__": UpperCAmelCase_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='jukebox-5b-lyrics', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='jukebox-5b-lyrics-converted', type=str, help='Path to the output PyTorch model directory.', ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
365
1
from __future__ import annotations lowercase = list[tuple[int, int]] lowercase = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class UpperCamelCase_ : '''simple docstring''' def __init__( self , a , a , a , a , a , a , ) -> List[Any]: snake_case_ = pos_x snake_case_ = pos_y snake_case_ = (pos_y, pos_x) snake_case_ = goal_x snake_case_ = goal_y snake_case_ = g_cost snake_case_ = parent snake_case_ = self.calculate_heuristic() def _UpperCamelCase ( self ) -> float: snake_case_ = abs(self.pos_x - self.goal_x ) snake_case_ = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , a ) -> bool: return self.f_cost < other.f_cost class UpperCamelCase_ : '''simple docstring''' def __init__( self , a , a ) -> Optional[Any]: snake_case_ = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , a ) snake_case_ = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , a ) snake_case_ = [self.start] snake_case_ = [] snake_case_ = False def _UpperCamelCase ( self ) -> Path | None: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() snake_case_ = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: snake_case_ = True return self.retrace_path(a ) self.closed_nodes.append(a ) snake_case_ = self.get_successors(a ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(a ) else: # retrieve the best current path snake_case_ = self.open_nodes.pop(self.open_nodes.index(a ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(a ) else: self.open_nodes.append(a ) if not self.reached: return [self.start.pos] return None def _UpperCamelCase ( self , a ) -> list[Node]: snake_case_ = [] for action in delta: snake_case_ = parent.pos_x + action[1] snake_case_ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(a ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( a , a , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , a , ) ) return successors def _UpperCamelCase ( self , a ) -> Path: snake_case_ = node snake_case_ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case_ = current_node.parent path.reverse() return path if __name__ == "__main__": lowercase = (0, 0) lowercase = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("------") lowercase = GreedyBestFirst(init, goal) lowercase = greedy_bf.search() if path: for pos_x, pos_y in path: lowercase = 2 for elem in grid: print(elem)
720
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") lowercase = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) lowercase = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) lowercase = BeautifulSoup(res.text, "html.parser") lowercase = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(f'https://google.com{link.get("href")}')
607
0
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time SCREAMING_SNAKE_CASE__ : List[str] = Lock() def __lowercase ( snake_case, snake_case, snake_case, snake_case, snake_case, snake_case, snake_case ): """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0, 1_0 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(__SCREAMING_SNAKE_CASE ) process_lock.release() # receive your right neighbor's value process_lock.acquire() __magic_name__ :List[str] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left __magic_name__ :Dict = min(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(__SCREAMING_SNAKE_CASE ) process_lock.release() # receive your left neighbor's value process_lock.acquire() __magic_name__ :Optional[int] = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right __magic_name__ :List[str] = max(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) # after all swaps are performed, send the values back to main result_pipe[1].send(__SCREAMING_SNAKE_CASE ) def __lowercase ( snake_case ): """simple docstring""" __magic_name__ :Optional[Any] = [] __magic_name__ :int = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop __magic_name__ :Optional[Any] = Pipe() __magic_name__ :List[Any] = Pipe() process_array_.append( Process( target=__SCREAMING_SNAKE_CASE, args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]), ) ) __magic_name__ :Dict = temp_rs __magic_name__ :List[str] = temp_rr for i in range(1, len(__SCREAMING_SNAKE_CASE ) - 1 ): __magic_name__ :List[Any] = Pipe() __magic_name__ :str = Pipe() process_array_.append( Process( target=__SCREAMING_SNAKE_CASE, args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]), ) ) __magic_name__ :str = temp_rs __magic_name__ :Optional[Any] = temp_rr process_array_.append( Process( target=__SCREAMING_SNAKE_CASE, args=( len(__SCREAMING_SNAKE_CASE ) - 1, arr[len(__SCREAMING_SNAKE_CASE ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(__SCREAMING_SNAKE_CASE ) - 1], ), ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0, len(__SCREAMING_SNAKE_CASE ) ): __magic_name__ :Optional[int] = result_pipe[p][0].recv() process_array_[p].join() return arr def __lowercase ( ): """simple docstring""" __magic_name__ :Union[str, Any] = list(range(1_0, 0, -1 ) ) print('''Initial List''' ) print(*__SCREAMING_SNAKE_CASE ) __magic_name__ :str = odd_even_transposition(__SCREAMING_SNAKE_CASE ) print('''Sorted List\n''' ) print(*__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
0
"""simple docstring""" import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> Dict: _SCREAMING_SNAKE_CASE : Any = ("""dense.weight""", """attention.self.query""", """attention.self.key""", """attention.self.value""") _SCREAMING_SNAKE_CASE : int = ( ("""layer.""", """layer_"""), ("""word_embeddings.weight""", """word_embeddings"""), ("""position_embeddings.weight""", """position_embeddings"""), ("""token_type_embeddings.weight""", """token_type_embeddings"""), (""".""", """/"""), ("""LayerNorm/weight""", """LayerNorm/gamma"""), ("""LayerNorm/bias""", """LayerNorm/beta"""), ("""weight""", """kernel"""), ) if not os.path.isdir(__SCREAMING_SNAKE_CASE ): os.makedirs(__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Union[str, Any] = model.state_dict() def to_tf_var_name(__SCREAMING_SNAKE_CASE ): for patt, repl in iter(__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return F"""bert/{name}""" def create_tf_var(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = tf.dtypes.as_dtype(tensor.dtype ) _SCREAMING_SNAKE_CASE : Tuple = tf.get_variable(dtype=__SCREAMING_SNAKE_CASE , shape=tensor.shape , name=__SCREAMING_SNAKE_CASE , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__SCREAMING_SNAKE_CASE ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _SCREAMING_SNAKE_CASE : Optional[int] = to_tf_var_name(__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Dict = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _SCREAMING_SNAKE_CASE : List[str] = torch_tensor.T _SCREAMING_SNAKE_CASE : List[str] = create_tf_var(tensor=__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE , session=__SCREAMING_SNAKE_CASE ) tf.keras.backend.set_value(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Optional[int] = session.run(__SCREAMING_SNAKE_CASE ) print(F"""Successfully created {tf_name}: {np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )}""" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(__SCREAMING_SNAKE_CASE , os.path.join(__SCREAMING_SNAKE_CASE , model_name.replace("""-""" , """_""" ) + """.ckpt""" ) ) def lowerCamelCase_(__SCREAMING_SNAKE_CASE=None )-> Optional[Any]: _SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() parser.add_argument("""--model_name""" , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help="""model name e.g. bert-base-uncased""" ) parser.add_argument( """--cache_dir""" , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help="""Directory containing pytorch model""" ) parser.add_argument("""--pytorch_model_path""" , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help="""/path/to/<pytorch-model-name>.bin""" ) parser.add_argument("""--tf_cache_dir""" , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help="""Directory in which to save tensorflow model""" ) _SCREAMING_SNAKE_CASE : Tuple = parser.parse_args(__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Union[str, Any] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=__SCREAMING_SNAKE_CASE , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
338
0
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class _snake_case ( _a ): _A : Any = ['''image_processor''', '''tokenizer'''] _A : str = '''OwlViTImageProcessor''' _A : List[str] = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : str ,SCREAMING_SNAKE_CASE__ : Tuple=None ,SCREAMING_SNAKE_CASE__ : List[str]=None ,**SCREAMING_SNAKE_CASE__ : Dict ): SCREAMING_SNAKE_CASE:Tuple = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." ,SCREAMING_SNAKE_CASE__ ,) SCREAMING_SNAKE_CASE:List[Any] = kwargs.pop("feature_extractor" ) SCREAMING_SNAKE_CASE:Union[str, Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) def __call__( self : Dict ,SCREAMING_SNAKE_CASE__ : List[Any]=None ,SCREAMING_SNAKE_CASE__ : List[str]=None ,SCREAMING_SNAKE_CASE__ : Optional[int]=None ,SCREAMING_SNAKE_CASE__ : Union[str, Any]="max_length" ,SCREAMING_SNAKE_CASE__ : Optional[Any]="np" ,**SCREAMING_SNAKE_CASE__ : Union[str, Any] ): if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) or (isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) and not isinstance(text[0] ,SCREAMING_SNAKE_CASE__ )): SCREAMING_SNAKE_CASE:Tuple = [self.tokenizer(SCREAMING_SNAKE_CASE__ ,padding=SCREAMING_SNAKE_CASE__ ,return_tensors=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ )] elif isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) and isinstance(text[0] ,SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE:Any = [] # Maximum number of queries across batch SCREAMING_SNAKE_CASE:Optional[int] = max([len(SCREAMING_SNAKE_CASE__ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(SCREAMING_SNAKE_CASE__ ) != max_num_queries: SCREAMING_SNAKE_CASE:int = t + [" "] * (max_num_queries - len(SCREAMING_SNAKE_CASE__ )) SCREAMING_SNAKE_CASE:Dict = self.tokenizer(SCREAMING_SNAKE_CASE__ ,padding=SCREAMING_SNAKE_CASE__ ,return_tensors=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) encodings.append(SCREAMING_SNAKE_CASE__ ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": SCREAMING_SNAKE_CASE:Optional[Any] = np.concatenate([encoding["input_ids"] for encoding in encodings] ,axis=0 ) SCREAMING_SNAKE_CASE:Union[str, Any] = np.concatenate([encoding["attention_mask"] for encoding in encodings] ,axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp SCREAMING_SNAKE_CASE:Union[str, Any] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] ,axis=0 ) SCREAMING_SNAKE_CASE:Union[str, Any] = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] ,axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch SCREAMING_SNAKE_CASE:Union[str, Any] = torch.cat([encoding["input_ids"] for encoding in encodings] ,dim=0 ) SCREAMING_SNAKE_CASE:List[Any] = torch.cat([encoding["attention_mask"] for encoding in encodings] ,dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf SCREAMING_SNAKE_CASE:List[str] = tf.stack([encoding["input_ids"] for encoding in encodings] ,axis=0 ) SCREAMING_SNAKE_CASE:List[str] = tf.stack([encoding["attention_mask"] for encoding in encodings] ,axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) SCREAMING_SNAKE_CASE:int = BatchEncoding() SCREAMING_SNAKE_CASE:List[str] = input_ids SCREAMING_SNAKE_CASE:List[Any] = attention_mask if query_images is not None: SCREAMING_SNAKE_CASE:Optional[Any] = BatchEncoding() SCREAMING_SNAKE_CASE:Dict = self.image_processor( SCREAMING_SNAKE_CASE__ ,return_tensors=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ).pixel_values SCREAMING_SNAKE_CASE:Dict = query_pixel_values if images is not None: SCREAMING_SNAKE_CASE:Optional[int] = self.image_processor(SCREAMING_SNAKE_CASE__ ,return_tensors=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) if text is not None and images is not None: SCREAMING_SNAKE_CASE:List[Any] = image_features.pixel_values return encoding elif query_images is not None and images is not None: SCREAMING_SNAKE_CASE:int = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE__ ) ,tensor_type=SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Optional[int] ,*SCREAMING_SNAKE_CASE__ : Dict ,**SCREAMING_SNAKE_CASE__ : Tuple ): return self.image_processor.post_process(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : str ,*SCREAMING_SNAKE_CASE__ : Any ,**SCREAMING_SNAKE_CASE__ : Tuple ): return self.image_processor.post_process_object_detection(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : str ,*SCREAMING_SNAKE_CASE__ : Tuple ,**SCREAMING_SNAKE_CASE__ : List[str] ): return self.image_processor.post_process_image_guided_detection(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : int ,*SCREAMING_SNAKE_CASE__ : List[str] ,**SCREAMING_SNAKE_CASE__ : Dict ): return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Dict ,*SCREAMING_SNAKE_CASE__ : Dict ,**SCREAMING_SNAKE_CASE__ : Optional[Any] ): return self.tokenizer.decode(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) @property def __UpperCamelCase ( self : Any ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." ,SCREAMING_SNAKE_CASE__ ,) return self.image_processor_class @property def __UpperCamelCase ( self : Any ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." ,SCREAMING_SNAKE_CASE__ ,) return self.image_processor
465
'''simple docstring''' def A_ ( snake_case = 100 ): SCREAMING_SNAKE_CASE:Dict = 0 SCREAMING_SNAKE_CASE:Optional[int] = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
465
1
"""simple docstring""" from __future__ import annotations from typing import TypedDict class A_ ( _a ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def lowerCamelCase_( _lowerCamelCase ) -> list[str]: '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("The parameter s type must be str." ) return [s[i:] + s[:i] for i in range(len(_lowerCamelCase ) )] def lowerCamelCase_( _lowerCamelCase ) -> BWTTransformDict: '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("The parameter s type must be str." ) if not s: raise ValueError("The parameter s must not be empty." ) _lowerCamelCase : List[str] = all_rotations(_lowerCamelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _lowerCamelCase : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(_lowerCamelCase ), } return response def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("The parameter bwt_string type must be str." ) if not bwt_string: raise ValueError("The parameter bwt_string must not be empty." ) try: _lowerCamelCase : Tuple = int(_lowerCamelCase ) except ValueError: raise TypeError( "The parameter idx_original_string type must be int or passive" " of cast to int." ) if idx_original_string < 0: raise ValueError("The parameter idx_original_string must not be lower than 0." ) if idx_original_string >= len(_lowerCamelCase ): raise ValueError( "The parameter idx_original_string must be lower than" " len(bwt_string)." ) _lowerCamelCase : Dict = [""] * len(_lowerCamelCase ) for _ in range(len(_lowerCamelCase ) ): for i in range(len(_lowerCamelCase ) ): _lowerCamelCase : Tuple = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": _lowerCAmelCase : Any = '''Provide a string that I will generate its BWT transform: ''' _lowerCAmelCase : Optional[Any] = input(entry_msg).strip() _lowerCAmelCase : List[str] = bwt_transform(s) print( f'''Burrows Wheeler transform for string \'{s}\' results ''' f'''in \'{result['bwt_string']}\'''' ) _lowerCAmelCase : str = reverse_bwt(result['''bwt_string'''], result['''idx_original_string''']) print( f'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' f'''we get original string \'{original_string}\'''' )
46
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : int = { 'configuration_jukebox': [ 'JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'JukeboxConfig', 'JukeboxPriorConfig', 'JukeboxVQVAEConfig', ], 'tokenization_jukebox': ['JukeboxTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Any = [ 'JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'JukeboxModel', 'JukeboxPreTrainedModel', 'JukeboxVQVAE', 'JukeboxPrior', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys lowerCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
587
0
'''simple docstring''' import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class UpperCAmelCase_ ( __A ): """simple docstring""" def A__ ( self : Any ) -> str: '''simple docstring''' lowercase : Tuple =tempfile.mkdtemp() lowercase : str =5 # Realm tok lowercase : Optional[int] =[ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''test''', '''question''', '''this''', '''is''', '''the''', '''first''', '''second''', '''third''', '''fourth''', '''fifth''', '''record''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowercase : Optional[int] =os.path.join(self.tmpdirname , '''realm_tokenizer''' ) os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) lowercase : Optional[Any] =os.path.join(UpperCAmelCase , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowercase : Dict =os.path.join(self.tmpdirname , '''realm_block_records''' ) os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) def A__ ( self : Any ) -> RealmTokenizer: '''simple docstring''' return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''realm_tokenizer''' ) ) def A__ ( self : Dict ) -> Tuple: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def A__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' lowercase : Tuple =RealmConfig(num_block_records=self.num_block_records ) return config def A__ ( self : int ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] =Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''question''': ['''foo''', '''bar'''], '''answers''': [['''Foo''', '''Bar'''], ['''Bar''']], } ) return dataset def A__ ( self : Tuple ) -> str: '''simple docstring''' lowercase : Optional[Any] =np.array( [ b'''This is the first record''', b'''This is the second record''', b'''This is the third record''', b'''This is the fourth record''', b'''This is the fifth record''', b'''This is a longer longer longer record''', ] , dtype=UpperCAmelCase , ) return block_records def A__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' lowercase : Optional[Any] =RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def A__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' lowercase : Union[str, Any] =self.get_config() lowercase : Tuple =self.get_dummy_retriever() lowercase : int =retriever.tokenizer lowercase : Any =np.array([0, 3] , dtype='''long''' ) lowercase : Optional[int] =tokenizer(['''Test question'''] ).input_ids lowercase : Optional[int] =tokenizer( ['''the fourth'''] , add_special_tokens=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ).input_ids lowercase : List[Any] =config.reader_seq_len lowercase , lowercase , lowercase , lowercase : Dict =retriever( UpperCAmelCase , UpperCAmelCase , answer_ids=UpperCAmelCase , max_length=UpperCAmelCase , return_tensors='''np''' ) self.assertEqual(len(UpperCAmelCase ) , 2 ) self.assertEqual(len(UpperCAmelCase ) , 2 ) self.assertEqual(len(UpperCAmelCase ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''first''', '''record''', '''[SEP]'''] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''fourth''', '''record''', '''[SEP]'''] , ) def A__ ( self : Tuple ) -> int: '''simple docstring''' lowercase : List[str] =self.get_config() lowercase : Optional[Any] =self.get_dummy_retriever() lowercase : int =retriever.tokenizer lowercase : Optional[Any] =np.array([0, 3, 5] , dtype='''long''' ) lowercase : Union[str, Any] =tokenizer(['''Test question'''] ).input_ids lowercase : Tuple =tokenizer( ['''the fourth''', '''longer longer'''] , add_special_tokens=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ).input_ids lowercase : Tuple =config.reader_seq_len lowercase , lowercase , lowercase , lowercase : int =retriever( UpperCAmelCase , UpperCAmelCase , answer_ids=UpperCAmelCase , max_length=UpperCAmelCase , return_tensors='''np''' ) self.assertEqual([False, True, True] , UpperCAmelCase ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , UpperCAmelCase ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , UpperCAmelCase ) def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] =self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) # Test local path lowercase : List[Any] =retriever.from_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) self.assertEqual(retriever.block_records[0] , b'''This is the first record''' ) # Test mocked remote path with patch('''transformers.models.realm.retrieval_realm.hf_hub_download''' ) as mock_hf_hub_download: lowercase : Dict =os.path.join( os.path.join(self.tmpdirname , '''realm_block_records''' ) , _REALM_BLOCK_RECORDS_FILENAME ) lowercase : Dict =RealmRetriever.from_pretrained('''google/realm-cc-news-pretrained-openqa''' ) self.assertEqual(retriever.block_records[0] , b'''This is the first record''' )
8
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''image_processor''', '''tokenizer'''] UpperCamelCase_ = '''LayoutLMv2ImageProcessor''' UpperCamelCase_ = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self : List[str] , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=None , **UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCAmelCase , ) lowercase : Any =kwargs.pop('''feature_extractor''' ) lowercase : Dict =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Any , ) -> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor lowercase : Tuple =self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase ): lowercase : Optional[Any] =[text] # add batch dimension (as the image processor always adds a batch dimension) lowercase : List[str] =features['''words'''] lowercase : Optional[Any] =self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values lowercase : List[str] =features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowercase : str =self.get_overflowing_images(UpperCAmelCase , encoded_inputs['''overflow_to_sample_mapping'''] ) lowercase : Dict =images return encoded_inputs def A__ ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ) -> str: '''simple docstring''' lowercase : str =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}' ) return images_with_overflow def A__ ( self : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Dict ) -> int: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def A__ ( self : int ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase , ) return self.image_processor_class @property def A__ ( self : Dict ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase , ) return self.image_processor
8
1
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class _UpperCamelCase ( A ): '''simple docstring''' def _snake_case ( self : Optional[Any] ): '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def _snake_case ( self : Dict ): '''simple docstring''' __lowerCamelCase : Optional[Any] = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(_lowerCamelCase ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowerCamelCase : str = self._create_example_records() __lowerCamelCase : List[Any] = Dataset.from_list(_lowerCamelCase ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(_lowerCamelCase ): self.assertDictEqual(_lowerCamelCase , example_records[i] ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowerCamelCase : str = self._create_example_records() __lowerCamelCase : List[str] = Dataset.from_list(_lowerCamelCase ) __lowerCamelCase : Any = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def _snake_case ( self : Any ): # checks what happens with missing columns '''simple docstring''' __lowerCamelCase : int = [{"""col_1""": 1}, {"""col_2""": """x"""}] __lowerCamelCase : Optional[Any] = Dataset.from_list(_lowerCamelCase ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def _snake_case ( self : List[str] ): # checks if the type can be inferred from the second record '''simple docstring''' __lowerCamelCase : Optional[int] = [{"""col_1""": []}, {"""col_1""": [1, 2]}] __lowerCamelCase : Dict = Dataset.from_list(_lowerCamelCase ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def _snake_case ( self : List[Any] ): '''simple docstring''' __lowerCamelCase : Optional[Any] = Dataset.from_list([] ) self.assertEqual(len(_lowerCamelCase ) , 0 ) self.assertListEqual(dset.column_names , [] )
519
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer __UpperCamelCase : List[Any] = ['bert-base-uncased', 'bert-base-cased'] __UpperCamelCase : int = 'hf-internal-testing/tiny-bert-tf-only' if is_tf_available(): class _UpperCamelCase ( tf.keras.Model ): '''simple docstring''' def __init__( self : int , _lowerCamelCase : int ): '''simple docstring''' super().__init__() __lowerCamelCase : Optional[Any] = tokenizer __lowerCamelCase : List[str] = AutoConfig.from_pretrained(_lowerCamelCase ) __lowerCamelCase : Union[str, Any] = TFAutoModel.from_config(_lowerCamelCase ) def _snake_case ( self : List[str] , _lowerCamelCase : Optional[int] ): '''simple docstring''' __lowerCamelCase : List[Any] = self.tokenizer(_lowerCamelCase ) __lowerCamelCase : Optional[int] = self.bert(**_lowerCamelCase ) return out["pooler_output"] @require_tf @require_tensorflow_text class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Optional[int] ): '''simple docstring''' super().setUp() __lowerCamelCase : Dict = [ BertTokenizer.from_pretrained(_lowerCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false __lowerCamelCase : int = [TFBertTokenizer.from_pretrained(_lowerCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(_lowerCamelCase , use_fast_bert_tokenizer=_lowerCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __lowerCamelCase : Optional[int] = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] __lowerCamelCase : Union[str, Any] = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): __lowerCamelCase : List[str] = tokenizer(_lowerCamelCase , return_tensors="""tf""" , padding="""longest""" ) __lowerCamelCase : List[str] = tf_tokenizer(_lowerCamelCase ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def _snake_case ( self : Union[str, Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __lowerCamelCase : Union[str, Any] = tf_tokenizer(self.paired_sentences ) __lowerCamelCase : List[Any] = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def _snake_case ( self : Tuple ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __lowerCamelCase : Dict = tf.function(_lowerCamelCase ) for test_inputs in (self.test_sentences, self.paired_sentences): __lowerCamelCase : List[Any] = tf.constant(_lowerCamelCase ) __lowerCamelCase : Dict = compiled_tokenizer(_lowerCamelCase ) __lowerCamelCase : Union[str, Any] = tf_tokenizer(_lowerCamelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _snake_case ( self : Optional[Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __lowerCamelCase : List[Any] = ModelToSave(tokenizer=_lowerCamelCase ) __lowerCamelCase : Union[str, Any] = tf.convert_to_tensor(self.test_sentences ) __lowerCamelCase : Optional[Any] = model(_lowerCamelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __lowerCamelCase : List[str] = Path(_lowerCamelCase ) / """saved.model""" model.save(_lowerCamelCase ) __lowerCamelCase : Optional[int] = tf.keras.models.load_model(_lowerCamelCase ) __lowerCamelCase : str = loaded_model(_lowerCamelCase ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
519
1
"""simple docstring""" import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def A__ ( UpperCamelCase , UpperCamelCase , **UpperCamelCase ): A = AutoConfig.from_pretrained(UpperCamelCase , **UpperCamelCase ) A = AutoModelForSeqaSeqLM.from_config(UpperCamelCase ) model.save_pretrained(UpperCamelCase ) AutoTokenizer.from_pretrained(UpperCamelCase ).save_pretrained(UpperCamelCase ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
711
"""simple docstring""" import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class _UpperCAmelCase ( lowercase_ , unittest.TestCase ): UpperCamelCase = ProphetNetTokenizer UpperCamelCase = False def lowerCamelCase ( self :Any ): super().setUp() A = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def lowerCamelCase ( self :Any , __UpperCamelCase :List[str] ): A = "UNwant\u00E9d,running" A = "unwanted, running" return input_text, output_text def lowerCamelCase ( self :Optional[Any] ): A = self.tokenizer_class(self.vocab_file ) A = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(__UpperCamelCase , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , [9, 6, 7, 12, 10, 11] ) def lowerCamelCase ( self :Optional[int] ): A = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def lowerCamelCase ( self :List[Any] ): A = BasicTokenizer(do_lower_case=__UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def lowerCamelCase ( self :Any ): A = BasicTokenizer(do_lower_case=__UpperCamelCase , strip_accents=__UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def lowerCamelCase ( self :Tuple ): A = BasicTokenizer(do_lower_case=__UpperCamelCase , strip_accents=__UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def lowerCamelCase ( self :Optional[int] ): A = BasicTokenizer(do_lower_case=__UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def lowerCamelCase ( self :Dict ): A = BasicTokenizer(do_lower_case=__UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def lowerCamelCase ( self :List[Any] ): A = BasicTokenizer(do_lower_case=__UpperCamelCase , strip_accents=__UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def lowerCamelCase ( self :Optional[Any] ): A = BasicTokenizer(do_lower_case=__UpperCamelCase , strip_accents=__UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def lowerCamelCase ( self :Dict ): A = BasicTokenizer(do_lower_case=__UpperCamelCase , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def lowerCamelCase ( self :List[Any] ): A = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] A = {} for i, token in enumerate(__UpperCamelCase ): A = i A = WordpieceTokenizer(vocab=__UpperCamelCase , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) @require_torch def lowerCamelCase ( self :Optional[Any] ): A = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) A = ["A long paragraph for summarization.", "Another paragraph for summarization."] A = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02] A = tokenizer(__UpperCamelCase , padding=__UpperCamelCase , return_tensors="pt" ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) A = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def lowerCamelCase ( self :Optional[Any] ): self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def lowerCamelCase ( self :Any ): self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def lowerCamelCase ( self :List[Any] ): self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) @slow def lowerCamelCase ( self :Dict ): A = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) A = tokenizer.encode("sequence builders" , add_special_tokens=__UpperCamelCase ) A = tokenizer.encode("multi-sequence build" , add_special_tokens=__UpperCamelCase ) A = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase ) A = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase , __UpperCamelCase ) assert encoded_sentence == text + [1_02] assert encoded_pair == text + [1_02] + text_a + [1_02]
524
0
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
464
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class A ( unittest.TestCase ): def lowerCamelCase ( self : Optional[int] , lowercase_ : int ) -> Optional[int]: """simple docstring""" _lowerCamelCase : List[str] =3 _lowerCamelCase : Dict =250 _lowerCamelCase : Tuple =ids_tensor((batch_size, length) , lowercase_ ) _lowerCamelCase : str =torch.ones((batch_size, length) , device=lowercase_ , dtype=torch.float ) / length return input_ids, scores def lowerCamelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" _lowerCamelCase , _lowerCamelCase : Optional[Any] =self._get_tensors(5 ) _lowerCamelCase : Dict =StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) _lowerCamelCase , _lowerCamelCase : List[str] =self._get_tensors(9 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) _lowerCamelCase , _lowerCamelCase : Optional[int] =self._get_tensors(10 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) def lowerCamelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" _lowerCamelCase : Any =MaxLengthCriteria(max_length=10 ) _lowerCamelCase , _lowerCamelCase : List[str] =self._get_tensors(5 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) _lowerCamelCase , _lowerCamelCase : Optional[int] =self._get_tensors(9 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) _lowerCamelCase , _lowerCamelCase : Optional[int] =self._get_tensors(10 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) def lowerCamelCase ( self : List[str] ) -> Tuple: """simple docstring""" _lowerCamelCase : Union[str, Any] =MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) _lowerCamelCase , _lowerCamelCase : str =self._get_tensors(5 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] =self._get_tensors(9 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) _lowerCamelCase , _lowerCamelCase : Dict =self._get_tensors(10 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) _lowerCamelCase : Optional[Any] =StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def lowerCamelCase ( self : Optional[Any] ) -> str: """simple docstring""" _lowerCamelCase , _lowerCamelCase : Optional[Any] =self._get_tensors(5 ) _lowerCamelCase : Tuple =MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) _lowerCamelCase : int =MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) def lowerCamelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowercase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) _lowerCamelCase : Optional[Any] =validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowercase_ ) , 1 )
464
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy __magic_name__ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): __snake_case : Dict = feature_size __snake_case : Union[str, Any] = sampling_rate __snake_case : Optional[Any] = padding_value __snake_case : Optional[Any] = kwargs.pop('padding_side' , 'right' ) __snake_case : str = kwargs.pop('return_attention_mask' , _lowerCAmelCase ) super().__init__(**_lowerCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , ): if isinstance(_lowerCAmelCase , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): __snake_case : List[str] = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( 'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`' F""" to this method that includes {self.model_input_names[0]}, but you provided""" F""" {list(processed_features.keys() )}""" ) __snake_case : Tuple = processed_features[self.model_input_names[0]] __snake_case : Optional[Any] = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(_lowerCAmelCase ) == 0: if return_attention_mask: __snake_case : List[Any] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch __snake_case : Dict = required_input[0] if isinstance(_lowerCAmelCase , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. __snake_case : Union[str, Any] = 0 while len(required_input[index] ) == 0: index += 1 if index < len(_lowerCAmelCase ): __snake_case : str = required_input[index][0] if return_tensors is None: if is_tf_tensor(_lowerCAmelCase ): __snake_case : List[Any] = 'tf' elif is_torch_tensor(_lowerCAmelCase ): __snake_case : List[str] = 'pt' elif isinstance(_lowerCAmelCase , (int, float, list, tuple, np.ndarray) ): __snake_case : Union[str, Any] = 'np' else: raise ValueError( F"""type of {first_element} unknown: {type(_lowerCAmelCase )}. """ 'Should be one of a python, numpy, pytorch or tensorflow object.' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): __snake_case : List[str] = to_numpy(_lowerCAmelCase ) else: __snake_case : str = [to_numpy(_lowerCAmelCase ) for v in value] # Convert padding_strategy in PaddingStrategy __snake_case : Optional[int] = self._get_padding_strategies(padding=_lowerCAmelCase , max_length=_lowerCAmelCase ) __snake_case : Dict = processed_features[self.model_input_names[0]] __snake_case : int = len(_lowerCAmelCase ) if not all(len(_lowerCAmelCase ) == batch_size for v in processed_features.values() ): raise ValueError('Some items in the output dictionary have a different batch size than others.' ) __snake_case : List[Any] = [] for i in range(_lowerCAmelCase ): __snake_case : str = {k: v[i] for k, v in processed_features.items()} # truncation __snake_case : Optional[Any] = self._truncate( _lowerCAmelCase , max_length=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , truncation=_lowerCAmelCase , ) truncated_inputs.append(_lowerCAmelCase ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length __snake_case : int = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) __snake_case : int = PaddingStrategy.MAX_LENGTH __snake_case : Union[str, Any] = {} for i in range(_lowerCAmelCase ): # padding __snake_case : str = self._pad( truncated_inputs[i] , max_length=_lowerCAmelCase , padding_strategy=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) for key, value in outputs.items(): if key not in batch_outputs: __snake_case : List[str] = [] if value.dtype is np.dtype(np.floataa ): __snake_case : Optional[Any] = value.astype(np.floataa ) batch_outputs[key].append(_lowerCAmelCase ) return BatchFeature(_lowerCAmelCase , tensor_type=_lowerCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = PaddingStrategy.DO_NOT_PAD , _UpperCAmelCase = None , _UpperCAmelCase = None , ): __snake_case : str = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: __snake_case : Any = len(_lowerCAmelCase ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __snake_case : Tuple = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __snake_case : str = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(_lowerCAmelCase ) < max_length if return_attention_mask and "attention_mask" not in processed_features: __snake_case : List[Any] = np.ones(len(_lowerCAmelCase ) , dtype=np.intaa ) if needs_to_be_padded: __snake_case : List[Any] = max_length - len(_lowerCAmelCase ) if self.padding_side == "right": if return_attention_mask: __snake_case : Optional[int] = np.pad( processed_features['attention_mask'] , (0, difference) ) __snake_case : Optional[int] = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) __snake_case : List[str] = np.pad( _lowerCAmelCase , _lowerCAmelCase , 'constant' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: __snake_case : Optional[Any] = np.pad( processed_features['attention_mask'] , (difference, 0) ) __snake_case : Optional[Any] = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) __snake_case : List[Any] = np.pad( _lowerCAmelCase , _lowerCAmelCase , 'constant' , constant_values=self.padding_value ) else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return processed_features def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , ): if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.' ) __snake_case : Any = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __snake_case : Any = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __snake_case : str = len(_lowerCAmelCase ) > max_length if needs_to_be_truncated: __snake_case : Dict = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: __snake_case : Any = processed_features['attention_mask'][:max_length] return processed_features def lowercase_ ( self , _UpperCAmelCase=False , _UpperCAmelCase=None ): if padding is not False: if padding is True: __snake_case : List[Any] = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(_lowerCAmelCase , _lowerCAmelCase ): __snake_case : Tuple = PaddingStrategy(_lowerCAmelCase ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): __snake_case : Optional[int] = padding else: __snake_case : Dict = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( 'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use' ' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.' ) return padding_strategy
709
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip_vision_model" def __init__( self , _UpperCAmelCase=1_408 , _UpperCAmelCase=6_144 , _UpperCAmelCase=39 , _UpperCAmelCase=16 , _UpperCAmelCase=224 , _UpperCAmelCase=14 , _UpperCAmelCase="gelu" , _UpperCAmelCase=1E-6 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1E-10 , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __snake_case : Optional[Any] = hidden_size __snake_case : Any = intermediate_size __snake_case : str = num_hidden_layers __snake_case : Any = num_attention_heads __snake_case : int = patch_size __snake_case : Dict = image_size __snake_case : Any = initializer_range __snake_case : List[Any] = attention_dropout __snake_case : Optional[Any] = layer_norm_eps __snake_case : Optional[int] = hidden_act __snake_case : int = qkv_bias @classmethod def lowercase_ ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __snake_case , __snake_case : str = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __snake_case : Any = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip_qformer" def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=2 , _UpperCAmelCase=1_408 , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : Union[str, Any] = vocab_size __snake_case : List[Any] = hidden_size __snake_case : str = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : Optional[Any] = hidden_act __snake_case : int = intermediate_size __snake_case : str = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : Union[str, Any] = max_position_embeddings __snake_case : Dict = initializer_range __snake_case : Any = layer_norm_eps __snake_case : Union[str, Any] = position_embedding_type __snake_case : Optional[int] = cross_attention_frequency __snake_case : Union[str, Any] = encoder_hidden_size @classmethod def lowercase_ ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __snake_case , __snake_case : Optional[int] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __snake_case : List[Any] = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip" __UpperCAmelCase = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=32 , **_UpperCAmelCase ): super().__init__(**_UpperCAmelCase ) if vision_config is None: __snake_case : List[str] = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: __snake_case : Union[str, Any] = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: __snake_case : str = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) __snake_case : Optional[Any] = InstructBlipVisionConfig(**_UpperCAmelCase ) __snake_case : Tuple = InstructBlipQFormerConfig(**_UpperCAmelCase ) __snake_case : List[Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' __snake_case : str = CONFIG_MAPPING[text_model_type](**_UpperCAmelCase ) __snake_case : List[Any] = self.text_config.tie_word_embeddings __snake_case : Optional[int] = self.text_config.is_encoder_decoder __snake_case : List[str] = num_query_tokens __snake_case : Tuple = self.vision_config.hidden_size __snake_case : Any = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __snake_case : str = 1.0 __snake_case : Optional[int] = 0.02 @classmethod def lowercase_ ( cls , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : Tuple = copy.deepcopy(self.__dict__ ) __snake_case : Tuple = self.vision_config.to_dict() __snake_case : List[Any] = self.qformer_config.to_dict() __snake_case : Optional[int] = self.text_config.to_dict() __snake_case : List[str] = self.__class__.model_type return output
679
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ , lowerCAmelCase__=False ): UpperCAmelCase_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCAmelCase_ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ): for i in range(config.num_hidden_layers ): if base_model: UpperCAmelCase_ = "" else: UpperCAmelCase_ = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) UpperCAmelCase_ = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase_ = in_proj_bias[: config.hidden_size] UpperCAmelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase_ = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase_ = in_proj_bias[-config.hidden_size :] def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = dct.pop(lowerCAmelCase__ ) UpperCAmelCase_ = val def a__ ( ): UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=True ): UpperCAmelCase_ = ViTConfig() # patch_size if model_name[-1] == "8": UpperCAmelCase_ = 8 # set labels if required if not base_model: UpperCAmelCase_ = 1000 UpperCAmelCase_ = "huggingface/label-files" UpperCAmelCase_ = "imagenet-1k-id2label.json" UpperCAmelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: UpperCAmelCase_ = 384 UpperCAmelCase_ = 1536 UpperCAmelCase_ = 12 UpperCAmelCase_ = 6 # load original model from torch hub UpperCAmelCase_ = torch.hub.load("facebookresearch/dino:main" , lowerCAmelCase__ ) original_model.eval() # load state_dict of original model, remove and rename some keys UpperCAmelCase_ = original_model.state_dict() if base_model: remove_classification_head_(lowerCAmelCase__ ) UpperCAmelCase_ = create_rename_keys(lowerCAmelCase__ , base_model=lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # load HuggingFace model if base_model: UpperCAmelCase_ = ViTModel(lowerCAmelCase__ , add_pooling_layer=lowerCAmelCase__ ).eval() else: UpperCAmelCase_ = ViTForImageClassification(lowerCAmelCase__ ).eval() model.load_state_dict(lowerCAmelCase__ ) # Check outputs on an image, prepared by ViTImageProcessor UpperCAmelCase_ = ViTImageProcessor() UpperCAmelCase_ = image_processor(images=prepare_img() , return_tensors="pt" ) UpperCAmelCase_ = encoding["pixel_values"] UpperCAmelCase_ = model(lowerCAmelCase__ ) if base_model: UpperCAmelCase_ = original_model(lowerCAmelCase__ ) assert torch.allclose(lowerCAmelCase__ , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: UpperCAmelCase_ = original_model(lowerCAmelCase__ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase__ , outputs.logits , atol=1e-3 ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase__ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""dino_vitb16""", type=str, help="""Name of the model trained with DINO you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether to only convert the base model (no projection head weights).""", ) parser.set_defaults(base_model=True) lowerCamelCase = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
82
"""simple docstring""" import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class a ( lowercase , lowercase , unittest.TestCase ): UpperCamelCase : int = IFImgaImgSuperResolutionPipeline UpperCamelCase : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""width""", """height"""} UpperCamelCase : Tuple = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""original_image"""} ) UpperCamelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} def __snake_case ( self ): return self._get_superresolution_dummy_components() def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ): if str(UpperCamelCase_ ).startswith('mps' ): UpperCAmelCase__ : Optional[int] = torch.manual_seed(UpperCamelCase_ ) else: UpperCAmelCase__ : int = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) UpperCAmelCase__ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) UpperCAmelCase__ : Tuple = floats_tensor((1, 3, 16, 16) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) UpperCAmelCase__ : int = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __snake_case ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __snake_case ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def __snake_case ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __snake_case ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __snake_case ( self ): self._test_save_load_local() def __snake_case ( self ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
110
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Tuple = """yolos""" def __init__( self , __UpperCAmelCase=7_6_8 , __UpperCAmelCase=1_2 , __UpperCAmelCase=1_2 , __UpperCAmelCase=3_0_7_2 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=[5_1_2, 8_6_4] , __UpperCAmelCase=1_6 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=1_0_0 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=1 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = hidden_size lowerCAmelCase__ :Union[str, Any] = num_hidden_layers lowerCAmelCase__ :Tuple = num_attention_heads lowerCAmelCase__ :List[str] = intermediate_size lowerCAmelCase__ :Dict = hidden_act lowerCAmelCase__ :List[str] = hidden_dropout_prob lowerCAmelCase__ :List[str] = attention_probs_dropout_prob lowerCAmelCase__ :List[str] = initializer_range lowerCAmelCase__ :Any = layer_norm_eps lowerCAmelCase__ :Dict = image_size lowerCAmelCase__ :str = patch_size lowerCAmelCase__ :Any = num_channels lowerCAmelCase__ :Dict = qkv_bias lowerCAmelCase__ :Tuple = num_detection_tokens lowerCAmelCase__ :Optional[int] = use_mid_position_embeddings lowerCAmelCase__ :Tuple = auxiliary_loss # Hungarian matcher lowerCAmelCase__ :Dict = class_cost lowerCAmelCase__ :Optional[int] = bbox_cost lowerCAmelCase__ :Dict = giou_cost # Loss coefficients lowerCAmelCase__ :Optional[Any] = bbox_loss_coefficient lowerCAmelCase__ :Union[str, Any] = giou_loss_coefficient lowerCAmelCase__ :Optional[int] = eos_coefficient class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Optional[Any] = version.parse("""1.11""" ) @property def snake_case ( self ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def snake_case ( self ): '''simple docstring''' return 1E-4 @property def snake_case ( self ): '''simple docstring''' return 1_2
560
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :int = (UnCLIPScheduler,) def snake_case ( self , **__UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Dict = { 'num_train_timesteps': 1_0_0_0, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**__UpperCAmelCase ) return config def snake_case ( self ): '''simple docstring''' for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' for clip_sample_range in [1, 5, 1_0, 2_0]: self.check_over_configs(clip_sample_range=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' for time_step in [0, 5_0_0, 9_9_9]: for prev_timestep in [None, 5, 1_0_0, 2_5_0, 5_0_0, 7_5_0]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=__UpperCAmelCase , prev_timestep=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = self.scheduler_classes[0] lowerCAmelCase__ :Tuple = self.get_scheduler_config(variance_type='fixed_small_log' ) lowerCAmelCase__ :int = scheduler_class(**__UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_54_96_25 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.9_99_49_87 ) ) < 1E-5 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = self.scheduler_classes[0] lowerCAmelCase__ :List[Any] = self.get_scheduler_config(variance_type='learned_range' ) lowerCAmelCase__ :Any = scheduler_class(**__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = 0.5 assert scheduler._get_variance(1 , predicted_variance=__UpperCAmelCase ) - -10.1_71_27_90 < 1E-5 assert scheduler._get_variance(4_8_7 , predicted_variance=__UpperCAmelCase ) - -5.7_99_80_52 < 1E-5 assert scheduler._get_variance(9_9_9 , predicted_variance=__UpperCAmelCase ) - -0.0_01_00_11 < 1E-5 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = self.scheduler_classes[0] lowerCAmelCase__ :Any = self.get_scheduler_config() lowerCAmelCase__ :Any = scheduler_class(**__UpperCAmelCase ) lowerCAmelCase__ :str = scheduler.timesteps lowerCAmelCase__ :Dict = self.dummy_model() lowerCAmelCase__ :Optional[Any] = self.dummy_sample_deter lowerCAmelCase__ :Optional[Any] = torch.manual_seed(0 ) for i, t in enumerate(__UpperCAmelCase ): # 1. predict noise residual lowerCAmelCase__ :Any = model(__UpperCAmelCase , __UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase__ :Any = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample lowerCAmelCase__ :Dict = pred_prev_sample lowerCAmelCase__ :Tuple = torch.sum(torch.abs(__UpperCAmelCase ) ) lowerCAmelCase__ :List[str] = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.scheduler_classes[0] lowerCAmelCase__ :Tuple = self.get_scheduler_config() lowerCAmelCase__ :str = scheduler_class(**__UpperCAmelCase ) scheduler.set_timesteps(2_5 ) lowerCAmelCase__ :List[Any] = scheduler.timesteps lowerCAmelCase__ :Union[str, Any] = self.dummy_model() lowerCAmelCase__ :List[Any] = self.dummy_sample_deter lowerCAmelCase__ :int = torch.manual_seed(0 ) for i, t in enumerate(__UpperCAmelCase ): # 1. predict noise residual lowerCAmelCase__ :Optional[int] = model(__UpperCAmelCase , __UpperCAmelCase ) if i + 1 == timesteps.shape[0]: lowerCAmelCase__ :Optional[Any] = None else: lowerCAmelCase__ :int = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowerCAmelCase__ :Any = scheduler.step( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , prev_timestep=__UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample lowerCAmelCase__ :Dict = pred_prev_sample lowerCAmelCase__ :int = torch.sum(torch.abs(__UpperCAmelCase ) ) lowerCAmelCase__ :Optional[Any] = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3 def snake_case ( self ): '''simple docstring''' pass def snake_case ( self ): '''simple docstring''' pass
560
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __snake_case : """simple docstring""" def __init__( self : List[str] , lowerCamelCase : Tuple , ) -> int: lowerCAmelCase_ : Optional[int] = parent lowerCAmelCase_ : Tuple = 13 lowerCAmelCase_ : Optional[Any] = 7 lowerCAmelCase_ : str = True lowerCAmelCase_ : Dict = True lowerCAmelCase_ : Tuple = True lowerCAmelCase_ : Tuple = True lowerCAmelCase_ : str = True lowerCAmelCase_ : List[Any] = False lowerCAmelCase_ : Dict = False lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : Tuple = 2 lowerCAmelCase_ : Optional[int] = 99 lowerCAmelCase_ : Optional[int] = 0 lowerCAmelCase_ : List[str] = 32 lowerCAmelCase_ : List[Any] = 2 lowerCAmelCase_ : Optional[int] = 4 lowerCAmelCase_ : Dict = 0.1 lowerCAmelCase_ : int = 0.1 lowerCAmelCase_ : Any = 5_12 lowerCAmelCase_ : Tuple = 16 lowerCAmelCase_ : List[Any] = 2 lowerCAmelCase_ : Tuple = 0.02 lowerCAmelCase_ : Dict = 3 lowerCAmelCase_ : Optional[Any] = 4 lowerCAmelCase_ : Tuple = """last""" lowerCAmelCase_ : List[str] = True lowerCAmelCase_ : Dict = None lowerCAmelCase_ : Tuple = 0 def __lowercase ( self : List[str] ) -> Optional[int]: lowerCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) lowerCAmelCase_ : Union[str, Any] = None if self.use_input_lengths: lowerCAmelCase_ : Dict = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowerCAmelCase_ : Optional[int] = None if self.use_token_type_ids: lowerCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : Union[str, Any] = None lowerCAmelCase_ : Any = None if self.use_labels: lowerCAmelCase_ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase_ : str = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __lowercase ( self : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : Dict , lowerCamelCase : List[str] , lowerCamelCase : List[str] , lowerCamelCase : str , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[str] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[int] , ) -> Optional[int]: lowerCAmelCase_ : List[str] = TFFlaubertModel(config=lowerCamelCase ) lowerCAmelCase_ : str = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} lowerCAmelCase_ : int = model(lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = [input_ids, input_mask] lowerCAmelCase_ : Tuple = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : Optional[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : int , lowerCamelCase : Optional[int] , lowerCamelCase : Any , lowerCamelCase : Dict , lowerCamelCase : int , ) -> Any: lowerCAmelCase_ : Optional[Any] = TFFlaubertWithLMHeadModel(lowerCamelCase ) lowerCAmelCase_ : Tuple = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} lowerCAmelCase_ : int = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase ( self : Tuple , lowerCamelCase : Any , lowerCamelCase : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Tuple , lowerCamelCase : List[Any] , ) -> Dict: lowerCAmelCase_ : Optional[int] = TFFlaubertForQuestionAnsweringSimple(lowerCamelCase ) lowerCAmelCase_ : List[Any] = {"""input_ids""": input_ids, """lengths""": input_lengths} lowerCAmelCase_ : Any = model(lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowercase ( self : Any , lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : int , lowerCamelCase : Optional[int] , ) -> Union[str, Any]: lowerCAmelCase_ : List[Any] = TFFlaubertForSequenceClassification(lowerCamelCase ) lowerCAmelCase_ : Tuple = {"""input_ids""": input_ids, """lengths""": input_lengths} lowerCAmelCase_ : List[Any] = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowercase ( self : List[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple , lowerCamelCase : str , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : Tuple , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , ) -> int: lowerCAmelCase_ : Tuple = self.num_labels lowerCAmelCase_ : Tuple = TFFlaubertForTokenClassification(config=lowerCamelCase ) lowerCAmelCase_ : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowerCAmelCase_ : List[Any] = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowercase ( self : str , lowerCamelCase : Any , lowerCamelCase : Any , lowerCamelCase : List[Any] , lowerCamelCase : Dict , lowerCamelCase : Any , lowerCamelCase : int , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any] , lowerCamelCase : Dict , ) -> Optional[Any]: lowerCAmelCase_ : List[Any] = self.num_choices lowerCAmelCase_ : str = TFFlaubertForMultipleChoice(config=lowerCamelCase ) lowerCAmelCase_ : Dict = tf.tile(tf.expand_dims(lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase_ : Tuple = tf.tile(tf.expand_dims(lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase_ : Union[str, Any] = tf.tile(tf.expand_dims(lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase_ : List[Any] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } lowerCAmelCase_ : Optional[int] = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowercase ( self : int ) -> List[Any]: lowerCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs() ( ( lowerCAmelCase_ ), ( lowerCAmelCase_ ), ( lowerCAmelCase_ ), ( lowerCAmelCase_ ), ( lowerCAmelCase_ ), ( lowerCAmelCase_ ), ( lowerCAmelCase_ ), ( lowerCAmelCase_ ), ( lowerCAmelCase_ ), ) : Union[str, Any] = config_and_inputs lowerCAmelCase_ : str = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """langs""": token_type_ids, """lengths""": input_lengths, } return config, inputs_dict @require_tf class __snake_case ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,unittest.TestCase): """simple docstring""" lowercase = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) lowercase = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowercase = ( { 'feature-extraction': TFFlaubertModel, 'fill-mask': TFFlaubertWithLMHeadModel, 'question-answering': TFFlaubertForQuestionAnsweringSimple, 'text-classification': TFFlaubertForSequenceClassification, 'token-classification': TFFlaubertForTokenClassification, 'zero-shot': TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) lowercase = False lowercase = False def __lowercase ( self : Tuple , lowerCamelCase : Tuple , lowerCamelCase : int , lowerCamelCase : Dict , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[int] ) -> Union[str, Any]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __lowercase ( self : List[str] ) -> Optional[Any]: lowerCAmelCase_ : Any = TFFlaubertModelTester(self ) lowerCAmelCase_ : Dict = ConfigTester(self , config_class=lowerCamelCase , emb_dim=37 ) def __lowercase ( self : str ) -> Tuple: self.config_tester.run_common_tests() def __lowercase ( self : Optional[Any] ) -> Optional[int]: lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowerCamelCase ) def __lowercase ( self : Dict ) -> Union[str, Any]: lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowerCamelCase ) def __lowercase ( self : Tuple ) -> Any: lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowerCamelCase ) def __lowercase ( self : str ) -> List[Any]: lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowerCamelCase ) def __lowercase ( self : Dict ) -> Dict: lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*lowerCamelCase ) def __lowercase ( self : Optional[int] ) -> int: lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*lowerCamelCase ) @slow def __lowercase ( self : str ) -> List[Any]: for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Any = TFFlaubertModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) @require_tf @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase): """simple docstring""" @slow def __lowercase ( self : int ) -> int: lowerCAmelCase_ : Dict = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) lowerCAmelCase_ : Any = tf.convert_to_tensor( [[0, 1_58, 7_35, 25_92, 14_24, 67_27, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" lowerCAmelCase_ : Union[str, Any] = model(lowerCamelCase )[0] lowerCAmelCase_ : Any = tf.TensorShape((1, 8, 5_12) ) self.assertEqual(output.shape , lowerCamelCase ) # compare the actual values for a slice. lowerCAmelCase_ : List[str] = tf.convert_to_tensor( [ [ [-1.8_768_773, -1.566_555, 0.27_072_418], [-1.6_920_038, -0.5_873_505, 1.9_329_599], [-2.9_563_985, -1.6_993_835, 1.7_972_052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
275
'''simple docstring''' from __future__ import annotations import numpy as np def UpperCamelCase_ ( A__ : np.ndarray ): '''simple docstring''' lowerCAmelCase_, lowerCAmelCase_ : List[str] = np.shape(A__ ) if rows != columns: lowerCAmelCase_ : List[str] = ( """'table' has to be of square shaped array but got a """ f'{rows}x{columns} array:\n{table}' ) raise ValueError(A__ ) lowerCAmelCase_ : Optional[int] = np.zeros((rows, columns) ) lowerCAmelCase_ : Tuple = np.zeros((rows, columns) ) for i in range(A__ ): for j in range(A__ ): lowerCAmelCase_ : str = sum(lower[i][k] * upper[k][j] for k in range(A__ ) ) if upper[j][j] == 0: raise ArithmeticError("""No LU decomposition exists""" ) lowerCAmelCase_ : Union[str, Any] = (table[i][j] - total) / upper[j][j] lowerCAmelCase_ : Dict = 1 for j in range(A__ , A__ ): lowerCAmelCase_ : str = sum(lower[i][k] * upper[k][j] for k in range(A__ ) ) lowerCAmelCase_ : List[str] = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
275
1
'''simple docstring''' from importlib import import_module from .logging import get_logger lowercase = get_logger(__name__) class UpperCAmelCase : '''simple docstring''' def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=None) -> Tuple: """simple docstring""" a_ =attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__"): setattr(self , lowerCAmelCase_ , getattr(lowerCAmelCase_ , lowerCAmelCase_)) a_ =module._original_module if isinstance(lowerCAmelCase_ , _PatchedModuleObj) else module class UpperCAmelCase : '''simple docstring''' __magic_name__ : List[str] = [] def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None) -> Tuple: """simple docstring""" a_ =obj a_ =target a_ =new a_ =target.split(".")[0] a_ ={} a_ =attrs or [] def __enter__( self) -> str: """simple docstring""" *a_ , a_ =self.target.split(".") # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowerCAmelCase_)): try: a_ =import_module(".".join(submodules[: i + 1])) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): a_ =getattr(self.obj , lowerCAmelCase_) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowerCAmelCase_ , _PatchedModuleObj) and obj_attr._original_module is submodule) ): a_ =obj_attr # patch at top level setattr(self.obj , lowerCAmelCase_ , _PatchedModuleObj(lowerCAmelCase_ , attrs=self.attrs)) a_ =getattr(self.obj , lowerCAmelCase_) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowerCAmelCase_ , lowerCAmelCase_ , _PatchedModuleObj(getattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) , attrs=self.attrs)) a_ =getattr(lowerCAmelCase_ , lowerCAmelCase_) # finally set the target attribute setattr(lowerCAmelCase_ , lowerCAmelCase_ , self.new) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: a_ =getattr(import_module(".".join(lowerCAmelCase_)) , lowerCAmelCase_) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowerCAmelCase_) is attr_value: a_ =getattr(self.obj , lowerCAmelCase_) setattr(self.obj , lowerCAmelCase_ , self.new) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" a_ =globals()["__builtins__"][target_attr] setattr(self.obj , lowerCAmelCase_ , self.new) else: raise RuntimeError(f"""Tried to patch attribute {target_attr} instead of a submodule.""") def __exit__( self , *lowerCAmelCase_) -> Union[str, Any]: """simple docstring""" for attr in list(self.original): setattr(self.obj , lowerCAmelCase_ , self.original.pop(lowerCAmelCase_)) def lowercase_ ( self) -> Optional[int]: """simple docstring""" self.__enter__() self._active_patches.append(self) def lowercase_ ( self) -> List[str]: """simple docstring""" try: self._active_patches.remove(self) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
41
'''simple docstring''' import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def UpperCAmelCase_ ( lowercase__ , lowercase__ , lowercase__ , lowercase__=5 ): '''simple docstring''' assert masked_input.count("<mask>" ) == 1 a_ =torch.tensor(tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) ).unsqueeze(0 ) # Batch size 1 a_ =model(lowercase__ )[0] # The last hidden-state is the first element of the output tuple a_ =(input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() a_ =logits[0, masked_index, :] a_ =logits.softmax(dim=0 ) a_ , a_ =prob.topk(k=lowercase__ , dim=0 ) a_ =" ".join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(lowercase__ ) )] ) a_ =tokenizer.mask_token a_ =[] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(" " ) ): a_ =predicted_token_bpe.replace("\u2581" , " " ) if " {0}".format(lowercase__ ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(" {0}".format(lowercase__ ) , lowercase__ ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(lowercase__ , lowercase__ ), values[index].item(), predicted_token, ) ) return topk_filled_outputs lowercase = CamembertTokenizer.from_pretrained('''camembert-base''') lowercase = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() lowercase = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
41
1
from __future__ import annotations lowerCamelCase__ = 10 def UpperCamelCase ( snake_case__ : list[int] ): '''simple docstring''' __snake_case :str = 1 __snake_case :str = max(snake_case__ ) while placement <= max_digit: # declare and initialize empty buckets __snake_case :list[list] = [[] for _ in range(snake_case__ )] # split list_of_ints between the buckets for i in list_of_ints: __snake_case :Union[str, Any] = int((i / placement) % RADIX ) buckets[tmp].append(snake_case__ ) # put each buckets' contents into list_of_ints __snake_case :List[Any] = 0 for b in range(snake_case__ ): for i in buckets[b]: __snake_case :List[str] = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
455
from collections.abc import Callable class snake_case__ : '''simple docstring''' def __init__( self , a__ = None ) -> None: '''simple docstring''' __snake_case :list = [] # Stores indexes of each item for supporting updates and deletion. __snake_case :dict = {} # Stores current size of heap. __snake_case :List[Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. __snake_case :Optional[Any] = key or (lambda a__ : x) def __lowercase ( self , a__ ) -> int | None: '''simple docstring''' return int((i - 1) / 2 ) if i > 0 else None def __lowercase ( self , a__ ) -> int | None: '''simple docstring''' __snake_case :int = int(2 * i + 1 ) return left if 0 < left < self.size else None def __lowercase ( self , a__ ) -> int | None: '''simple docstring''' __snake_case :Optional[int] = int(2 * i + 2 ) return right if 0 < right < self.size else None def __lowercase ( self , a__ , a__ ) -> None: '''simple docstring''' __snake_case , __snake_case :Dict = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. __snake_case , __snake_case :Tuple = self.arr[j], self.arr[i] def __lowercase ( self , a__ , a__ ) -> bool: '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def __lowercase ( self , a__ ) -> int: '''simple docstring''' __snake_case :int = self._left(a__ ) __snake_case :Optional[int] = self._right(a__ ) __snake_case :List[Any] = i if left is not None and not self._cmp(a__ , a__ ): __snake_case :int = left if right is not None and not self._cmp(a__ , a__ ): __snake_case :Tuple = right return valid_parent def __lowercase ( self , a__ ) -> None: '''simple docstring''' __snake_case :int = self._parent(a__ ) while parent is not None and not self._cmp(a__ , a__ ): self._swap(a__ , a__ ) __snake_case , __snake_case :str = parent, self._parent(a__ ) def __lowercase ( self , a__ ) -> None: '''simple docstring''' __snake_case :List[Any] = self._get_valid_parent(a__ ) while valid_parent != index: self._swap(a__ , a__ ) __snake_case , __snake_case :Optional[int] = valid_parent, self._get_valid_parent(a__ ) def __lowercase ( self , a__ , a__ ) -> None: '''simple docstring''' if item not in self.pos_map: return __snake_case :List[Any] = self.pos_map[item] __snake_case :Optional[Any] = [item, self.key(a__ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(a__ ) self._heapify_down(a__ ) def __lowercase ( self , a__ ) -> None: '''simple docstring''' if item not in self.pos_map: return __snake_case :Dict = self.pos_map[item] del self.pos_map[item] __snake_case :Dict = self.arr[self.size - 1] __snake_case :List[str] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(a__ ) self._heapify_down(a__ ) def __lowercase ( self , a__ , a__ ) -> None: '''simple docstring''' __snake_case :Optional[int] = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(a__ )] ) else: __snake_case :Optional[Any] = [item, self.key(a__ )] __snake_case :str = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __lowercase ( self ) -> tuple | None: '''simple docstring''' return self.arr[0] if self.size else None def __lowercase ( self ) -> tuple | None: '''simple docstring''' __snake_case :Optional[Any] = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def UpperCamelCase ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
455
1
"""simple docstring""" from __future__ import annotations from statistics import mean def __lowercase ( _a , _a , _a ): snake_case_ : str = [0] * no_of_processes snake_case_ : Optional[Any] = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(_a ): snake_case_ : Union[str, Any] = burst_time[i] snake_case_ : list[int] = [] snake_case_ : Union[str, Any] = 0 snake_case_ : Dict = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: snake_case_ : int = [] snake_case_ : Union[str, Any] = -1 for i in range(_a ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(_a ) if len(_a ) > 0: snake_case_ : Union[str, Any] = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: snake_case_ : Any = i total_time += burst_time[target_process] completed += 1 snake_case_ : Tuple = 0 snake_case_ : Tuple = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def __lowercase ( _a , _a , _a ): snake_case_ : Dict = [0] * no_of_processes for i in range(_a ): snake_case_ : int = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('''[TEST CASE 01]''') lowercase__ : Tuple = 4 lowercase__ : List[Any] = [2, 5, 3, 7] lowercase__ : List[str] = [0, 0, 0, 0] lowercase__ : Tuple = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowercase__ : Any = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('''PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time''') for i, process_id in enumerate(list(range(1, 5))): print( f'{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t' f'{waiting_time[i]}\t\t\t\t{turn_around_time[i]}' ) print(f'\nAverage waiting time = {mean(waiting_time):.5f}') print(f'Average turnaround time = {mean(turn_around_time):.5f}')
485
"""simple docstring""" import math import sys import cva import numpy as np def __lowercase ( _a , _a ): # For applying gaussian function for each element in matrix. snake_case_ : Dict = math.sqrt(_a ) snake_case_ : Tuple = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __lowercase ( _a , _a , _a , _a ): snake_case_ : Optional[int] = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __lowercase ( _a , _a ): # Creates a gaussian kernel of given dimension. snake_case_ : Union[str, Any] = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _a ): for j in range(0 , _a ): snake_case_ : Union[str, Any] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_a , _a ) def __lowercase ( _a , _a , _a , _a , ): snake_case_ : int = np.zeros(img.shape ) snake_case_ : str = get_gauss_kernel(_a , _a ) snake_case_, snake_case_ : Any = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): snake_case_ : List[Any] = get_slice(_a , _a , _a , _a ) snake_case_ : Union[str, Any] = img_s - img_s[kernel_size // 2, kernel_size // 2] snake_case_ : Optional[Any] = vec_gaussian(_a , _a ) snake_case_ : Dict = np.multiply(_a , _a ) snake_case_ : Dict = np.multiply(_a , _a ) snake_case_ : List[Any] = np.sum(_a ) / np.sum(_a ) snake_case_ : Dict = val return imga def __lowercase ( _a ): snake_case_ : Optional[int] = args[1] if args[1:] else '''../image_data/lena.jpg''' snake_case_ : int = float(args[2] ) if args[2:] else 1.0 snake_case_ : Dict = float(args[3] ) if args[3:] else 1.0 if args[4:]: snake_case_ : Optional[Any] = int(args[4] ) snake_case_ : Union[str, Any] = kernel_size + abs(kernel_size % 2 - 1 ) else: snake_case_ : Union[str, Any] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ : Tuple = parse_args(sys.argv) lowercase__ : str = cva.imread(filename, 0) cva.imshow('''input image''', img) lowercase__ : Tuple = img / 2_55 lowercase__ : Optional[int] = out.astype('''float32''') lowercase__ : Union[str, Any] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) lowercase__ : List[str] = out * 2_55 lowercase__ : List[str] = np.uinta(out) cva.imshow('''output image''', out) cva.waitKey(0) cva.destroyAllWindows()
485
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _SCREAMING_SNAKE_CASE = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } _SCREAMING_SNAKE_CASE = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } _SCREAMING_SNAKE_CASE = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } _SCREAMING_SNAKE_CASE = { "facebook/dpr-ctx_encoder-single-nq-base": 5_12, "facebook/dpr-ctx_encoder-multiset-base": 5_12, } _SCREAMING_SNAKE_CASE = { "facebook/dpr-question_encoder-single-nq-base": 5_12, "facebook/dpr-question_encoder-multiset-base": 5_12, } _SCREAMING_SNAKE_CASE = { "facebook/dpr-reader-single-nq-base": 5_12, "facebook/dpr-reader-multiset-base": 5_12, } _SCREAMING_SNAKE_CASE = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } _SCREAMING_SNAKE_CASE = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } _SCREAMING_SNAKE_CASE = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class SCREAMING_SNAKE_CASE_ ( _a ): """simple docstring""" __lowerCAmelCase : List[str] =VOCAB_FILES_NAMES __lowerCAmelCase : Union[str, Any] =CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Any =CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Union[str, Any] =CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class SCREAMING_SNAKE_CASE_ ( _a ): """simple docstring""" __lowerCAmelCase : List[str] =VOCAB_FILES_NAMES __lowerCAmelCase : Optional[int] =QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Any =QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Dict =QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) _SCREAMING_SNAKE_CASE = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) _SCREAMING_SNAKE_CASE = R"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(_a ) class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __call__( self :Optional[Any], snake_case :List[Any], snake_case :Optional[str] = None, snake_case :Optional[str] = None, snake_case :Union[bool, str] = False, snake_case :Union[bool, str] = False, snake_case :Optional[int] = None, snake_case :Optional[Union[str, TensorType]] = None, snake_case :Optional[bool] = None, **snake_case :Any, ): """simple docstring""" if titles is None and texts is None: return super().__call__( snake_case, padding=snake_case, truncation=snake_case, max_length=snake_case, return_tensors=snake_case, return_attention_mask=snake_case, **snake_case, ) elif titles is None or texts is None: _lowercase =titles if texts is None else texts return super().__call__( snake_case, snake_case, padding=snake_case, truncation=snake_case, max_length=snake_case, return_tensors=snake_case, return_attention_mask=snake_case, **snake_case, ) _lowercase =titles if not isinstance(snake_case, snake_case) else [titles] _lowercase =texts if not isinstance(snake_case, snake_case) else [texts] _lowercase =len(snake_case) _lowercase =questions if not isinstance(snake_case, snake_case) else [questions] * n_passages if len(snake_case) != len(snake_case): raise ValueError( f'''There should be as many titles than texts but got {len(snake_case)} titles and {len(snake_case)} texts.''') _lowercase =super().__call__(snake_case, snake_case, padding=snake_case, truncation=snake_case)['input_ids'] _lowercase =super().__call__(snake_case, add_special_tokens=snake_case, padding=snake_case, truncation=snake_case)['input_ids'] _lowercase ={ 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(snake_case, snake_case) ] } if return_attention_mask is not False: _lowercase =[] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) _lowercase =attention_mask return self.pad(snake_case, padding=snake_case, max_length=snake_case, return_tensors=snake_case) def UpperCamelCase__ ( self :Union[str, Any], snake_case :BatchEncoding, snake_case :DPRReaderOutput, snake_case :int = 16, snake_case :int = 64, snake_case :int = 4, ): """simple docstring""" _lowercase =reader_input['input_ids'] _lowercase , _lowercase , _lowercase =reader_output[:3] _lowercase =len(snake_case) _lowercase =sorted(range(snake_case), reverse=snake_case, key=relevance_logits.__getitem__) _lowercase =[] for doc_id in sorted_docs: _lowercase =list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence _lowercase =sequence_ids.index(self.sep_token_id, 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowercase =sequence_ids.index(self.pad_token_id) else: _lowercase =len(snake_case) _lowercase =self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len], end_logits=end_logits[doc_id][passage_offset:sequence_len], max_answer_length=snake_case, top_spans=snake_case, ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index], relevance_score=relevance_logits[doc_id], doc_id=snake_case, start_index=snake_case, end_index=snake_case, text=self.decode(sequence_ids[start_index : end_index + 1]), )) if len(snake_case) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCamelCase__ ( self :Tuple, snake_case :List[int], snake_case :List[int], snake_case :int, snake_case :int, ): """simple docstring""" _lowercase =[] for start_index, start_score in enumerate(snake_case): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) _lowercase =sorted(snake_case, key=lambda snake_case: x[1], reverse=snake_case) _lowercase =[] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f'''Wrong span indices: [{start_index}:{end_index}]''') _lowercase =end_index - start_index + 1 if length > max_answer_length: raise ValueError(f'''Span is too long: {length} > {max_answer_length}''') if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(snake_case) == top_spans: break return chosen_span_intervals @add_end_docstrings(_a ) class SCREAMING_SNAKE_CASE_ ( _a , _a ): """simple docstring""" __lowerCAmelCase : List[str] =VOCAB_FILES_NAMES __lowerCAmelCase : str =READER_PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : int =READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Tuple =READER_PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase : Optional[Any] =['''input_ids''', '''attention_mask''']
181
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self :Any): """simple docstring""" _lowercase =0 def UpperCamelCase__ ( self :Optional[int]): """simple docstring""" _lowercase =AutoImageProcessor.from_pretrained('openai/clip-vit-base-patch32') self.assertIsInstance(snake_case, snake_case) def UpperCamelCase__ ( self :Union[str, Any]): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _lowercase =Path(snake_case) / 'preprocessor_config.json' _lowercase =Path(snake_case) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'}, open(snake_case, 'w'), ) json.dump({'model_type': 'clip'}, open(snake_case, 'w')) _lowercase =AutoImageProcessor.from_pretrained(snake_case) self.assertIsInstance(snake_case, snake_case) def UpperCamelCase__ ( self :Union[str, Any]): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _lowercase =Path(snake_case) / 'preprocessor_config.json' _lowercase =Path(snake_case) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'}, open(snake_case, 'w'), ) json.dump({'model_type': 'clip'}, open(snake_case, 'w')) _lowercase =AutoImageProcessor.from_pretrained(snake_case) self.assertIsInstance(snake_case, snake_case) def UpperCamelCase__ ( self :Union[str, Any]): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _lowercase =CLIPConfig() # Create a dummy config file with image_proceesor_type _lowercase =Path(snake_case) / 'preprocessor_config.json' _lowercase =Path(snake_case) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'}, open(snake_case, 'w'), ) json.dump({'model_type': 'clip'}, open(snake_case, 'w')) # remove image_processor_type to make sure config.json alone is enough to load image processor locally _lowercase =AutoImageProcessor.from_pretrained(snake_case).to_dict() config_dict.pop('image_processor_type') _lowercase =CLIPImageProcessor(**snake_case) # save in new folder model_config.save_pretrained(snake_case) config.save_pretrained(snake_case) _lowercase =AutoImageProcessor.from_pretrained(snake_case) # make sure private variable is not incorrectly saved _lowercase =json.loads(config.to_json_string()) self.assertTrue('_processor_class' not in dict_as_saved) self.assertIsInstance(snake_case, snake_case) def UpperCamelCase__ ( self :Optional[int]): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _lowercase =Path(snake_case) / 'preprocessor_config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'}, open(snake_case, 'w'), ) _lowercase =AutoImageProcessor.from_pretrained(snake_case) self.assertIsInstance(snake_case, snake_case) def UpperCamelCase__ ( self :int): """simple docstring""" with self.assertRaisesRegex( snake_case, 'clip-base is not a local folder and is not a valid model identifier'): _lowercase =AutoImageProcessor.from_pretrained('clip-base') def UpperCamelCase__ ( self :Dict): """simple docstring""" with self.assertRaisesRegex( snake_case, r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'): _lowercase =AutoImageProcessor.from_pretrained(snake_case, revision='aaaaaa') def UpperCamelCase__ ( self :List[Any]): """simple docstring""" with self.assertRaisesRegex( snake_case, 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.', ): _lowercase =AutoImageProcessor.from_pretrained('hf-internal-testing/config-no-model') def UpperCamelCase__ ( self :Optional[Any]): """simple docstring""" with self.assertRaises(snake_case): _lowercase =AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor') # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case): _lowercase =AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor', trust_remote_code=snake_case) _lowercase =AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor', trust_remote_code=snake_case) self.assertEqual(image_processor.__class__.__name__, 'NewImageProcessor') # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(snake_case) _lowercase =AutoImageProcessor.from_pretrained(snake_case, trust_remote_code=snake_case) self.assertEqual(reloaded_image_processor.__class__.__name__, 'NewImageProcessor') def UpperCamelCase__ ( self :Optional[Any]): """simple docstring""" try: AutoConfig.register('custom', snake_case) AutoImageProcessor.register(snake_case, snake_case) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case): AutoImageProcessor.register(snake_case, snake_case) with tempfile.TemporaryDirectory() as tmpdirname: _lowercase =Path(snake_case) / 'preprocessor_config.json' _lowercase =Path(snake_case) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'}, open(snake_case, 'w'), ) json.dump({'model_type': 'clip'}, open(snake_case, 'w')) _lowercase =CustomImageProcessor.from_pretrained(snake_case) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(snake_case) _lowercase =AutoImageProcessor.from_pretrained(snake_case) self.assertIsInstance(snake_case, snake_case) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCamelCase__ ( self :str): """simple docstring""" class SCREAMING_SNAKE_CASE_ ( _a ): """simple docstring""" __lowerCAmelCase : Union[str, Any] =True try: AutoConfig.register('custom', snake_case) AutoImageProcessor.register(snake_case, snake_case) # If remote code is not set, the default is to use local _lowercase =AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor') self.assertEqual(image_processor.__class__.__name__, 'NewImageProcessor') self.assertTrue(image_processor.is_local) # If remote code is disabled, we load the local one. _lowercase =AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor', trust_remote_code=snake_case) self.assertEqual(image_processor.__class__.__name__, 'NewImageProcessor') self.assertTrue(image_processor.is_local) # If remote is enabled, we load from the Hub _lowercase =AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor', trust_remote_code=snake_case) self.assertEqual(image_processor.__class__.__name__, 'NewImageProcessor') self.assertTrue(not hasattr(snake_case, 'is_local')) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
181
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING __lowerCamelCase = logging.get_logger(__name__) class A__ ( _snake_case ): lowercase = "upernet" def __init__( self , UpperCamelCase__=None , UpperCamelCase__=512 , UpperCamelCase__=0.02 , UpperCamelCase__=[1, 2, 3, 6] , UpperCamelCase__=True , UpperCamelCase__=0.4 , UpperCamelCase__=384 , UpperCamelCase__=256 , UpperCamelCase__=1 , UpperCamelCase__=False , UpperCamelCase__=255 , **UpperCamelCase__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**UpperCamelCase__ ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) A_ = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = backbone_config.get("""model_type""" ) A_ = CONFIG_MAPPING[backbone_model_type] A_ = config_class.from_dict(UpperCamelCase__ ) A_ = backbone_config A_ = hidden_size A_ = initializer_range A_ = pool_scales A_ = use_auxiliary_head A_ = auxiliary_loss_weight A_ = auxiliary_in_channels A_ = auxiliary_channels A_ = auxiliary_num_convs A_ = auxiliary_concat_input A_ = loss_ignore_index def snake_case_ ( self ) -> str: '''simple docstring''' A_ = copy.deepcopy(self.__dict__ ) A_ = self.backbone_config.to_dict() A_ = self.__class__.model_type return output
667
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = 0.01 with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): A_ = time.time() locka.acquire(UpperCAmelCase__ ) assert time.time() - _start > timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: A_ = """a""" * 10_00 + """.lock""" A_ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(UpperCAmelCase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 A_ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): locka.acquire(0 )
667
1
"""simple docstring""" from __future__ import annotations def __A ( a_ :str) -> list[int]: return [ord(a_) - 96 for elem in plain] def __A ( a_ :list[int]) -> str: return "".join(chr(elem + 96) for elem in encoded) def __A ( ) -> None: __a : Dict = encode(input('''-> ''').strip().lower()) print('''Encoded: ''' , a_) print('''Decoded:''' , decode(a_)) if __name__ == "__main__": main()
52
"""simple docstring""" from __future__ import annotations def __A ( a_ :list[int]) -> int: if not nums: return 0 __a : Any = nums[0] __a : Optional[Any] = 0 for num in nums[1:]: __a , __a : Optional[Any] = ( max_excluding + num, max(a_ , a_), ) return max(a_ , a_) if __name__ == "__main__": import doctest doctest.testmod()
52
1
'''simple docstring''' import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowercase__ : List[Any] = object() # For specifying empty leaf dict `{}` lowercase__ : str = object() def __lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : List[Any] ): '''simple docstring''' UpperCAmelCase_ = tuple((re.compile(x + '''$''' ) for x in qs) ) for i in range(len(_UpperCamelCase ) - len(_UpperCamelCase ) + 1 ): UpperCAmelCase_ = [x.match(_UpperCamelCase ) for x, y in zip(_UpperCamelCase , ks[i:] )] if matches and all(_UpperCamelCase ): return True return False def __lowerCamelCase ( _UpperCamelCase : Union[str, Any] ): '''simple docstring''' def replace(_UpperCamelCase : int , _UpperCamelCase : Optional[int] ): for rule, replacement in rules: if _match(_UpperCamelCase , _UpperCamelCase ): return replacement return val return replace def __lowerCamelCase ( ): '''simple docstring''' return [ # embeddings (("transformer", "wpe", "embedding"), P('''mp''' , _UpperCamelCase )), (("transformer", "wte", "embedding"), P('''mp''' , _UpperCamelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(_UpperCamelCase , '''mp''' )), (("attention", "out_proj", "kernel"), P('''mp''' , _UpperCamelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(_UpperCamelCase , '''mp''' )), (("mlp", "c_fc", "bias"), P('''mp''' )), (("mlp", "c_proj", "kernel"), P('''mp''' , _UpperCamelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def __lowerCamelCase ( _UpperCamelCase : str ): '''simple docstring''' UpperCAmelCase_ = _get_partition_rules() UpperCAmelCase_ = _replacement_rules(_UpperCamelCase ) UpperCAmelCase_ = {k: _unmatched for k in flatten_dict(_UpperCamelCase )} UpperCAmelCase_ = {k: replace(_UpperCamelCase , _UpperCamelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(_UpperCamelCase ) )
700
'''simple docstring''' def __lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : list[str] ): '''simple docstring''' UpperCAmelCase_ = '''''' for word_or_phrase in separated: if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise Exception('''join() accepts only strings to be joined''' ) joined += word_or_phrase + separator return joined.strip(_UpperCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
43
0
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home lowerCAmelCase = HUGGINGFACE_HUB_CACHE lowerCAmelCase = """config.json""" lowerCAmelCase = """diffusion_pytorch_model.bin""" lowerCAmelCase = """diffusion_flax_model.msgpack""" lowerCAmelCase = """model.onnx""" lowerCAmelCase = """diffusion_pytorch_model.safetensors""" lowerCAmelCase = """weights.pb""" lowerCAmelCase = """https://huggingface.co""" lowerCAmelCase = default_cache_path lowerCAmelCase = """diffusers_modules""" lowerCAmelCase = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules""")) lowerCAmelCase = ["""fp16""", """non-ema"""] lowerCAmelCase = """.self_attn"""
525
'''simple docstring''' def __A ( a_ : list[list[float]] ): lowerCAmelCase : list[list[float]] = [] for data in source_data: for i, el in enumerate(a_ ): if len(a_ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(a_ ) ) return data_lists def __A ( a_ : list[list[float]] ,a_ : list[int] ): lowerCAmelCase : list[list[float]] = [] for dlist, weight in zip(a_ ,a_ ): lowerCAmelCase : Optional[Any] = min(a_ ) lowerCAmelCase : List[str] = max(a_ ) lowerCAmelCase : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowerCAmelCase : List[Any] = f'''Invalid weight of {weight:f} provided''' raise ValueError(a_ ) score_lists.append(a_ ) return score_lists def __A ( a_ : list[list[float]] ): lowerCAmelCase : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(a_ ): lowerCAmelCase : Optional[Any] = final_scores[j] + ele return final_scores def __A ( a_ : list[list[float]] ,a_ : list[int] ): lowerCAmelCase : Union[str, Any] = get_data(a_ ) lowerCAmelCase : List[Any] = calculate_each_score(a_ ,a_ ) lowerCAmelCase : Optional[Any] = generate_final_scores(a_ ) # append scores to source data for i, ele in enumerate(a_ ): source_data[i].append(a_ ) return source_data
525
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { '''BridgeTower/bridgetower-base''': '''https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json''', '''BridgeTower/bridgetower-base-itm-mlm''': ( '''https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json''' ), } class lowerCAmelCase ( _a ): _SCREAMING_SNAKE_CASE : List[Any] ="""bridgetower_vision_model""" def __init__( self , lowerCAmelCase__=768 , lowerCAmelCase__=12 , lowerCAmelCase__=3 , lowerCAmelCase__=16 , lowerCAmelCase__=288 , lowerCAmelCase__=1 , lowerCAmelCase__=1E-05 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=False , **lowerCAmelCase__ , ): super().__init__(**lowerCAmelCase__ ) _A= hidden_size _A= num_hidden_layers _A= num_channels _A= patch_size _A= image_size _A= initializer_factor _A= layer_norm_eps _A= stop_gradient _A= share_layernorm _A= remove_last_layer @classmethod def a__ ( cls , lowerCAmelCase__ , **lowerCAmelCase__ ): _A, _A= cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) if config_dict.get('model_type' ) == "bridgetower": _A= config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class lowerCAmelCase ( _a ): _SCREAMING_SNAKE_CASE : List[Any] ="""bridgetower_text_model""" def __init__( self , lowerCAmelCase__=50265 , lowerCAmelCase__=768 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=1 , lowerCAmelCase__=3072 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=514 , lowerCAmelCase__=1 , lowerCAmelCase__=1E-05 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__="absolute" , lowerCAmelCase__=True , **lowerCAmelCase__ , ): super().__init__(**lowerCAmelCase__ ) _A= vocab_size _A= hidden_size _A= num_hidden_layers _A= num_attention_heads _A= hidden_act _A= initializer_factor _A= intermediate_size _A= hidden_dropout_prob _A= attention_probs_dropout_prob _A= max_position_embeddings _A= type_vocab_size _A= layer_norm_eps _A= position_embedding_type _A= use_cache _A= pad_token_id _A= bos_token_id _A= eos_token_id @classmethod def a__ ( cls , lowerCAmelCase__ , **lowerCAmelCase__ ): _A, _A= cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) if config_dict.get('model_type' ) == "bridgetower": _A= config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class lowerCAmelCase ( _a ): _SCREAMING_SNAKE_CASE : Dict ="""bridgetower""" def __init__( self , lowerCAmelCase__=True , lowerCAmelCase__="gelu" , lowerCAmelCase__=768 , lowerCAmelCase__=1 , lowerCAmelCase__=1E-05 , lowerCAmelCase__=False , lowerCAmelCase__="add" , lowerCAmelCase__=12 , lowerCAmelCase__=6 , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ , ): # TODO: remove this once the Hub files are updated. _A= kwargs.pop('text_config_dict' , lowerCAmelCase__ ) _A= kwargs.pop('vision_config_dict' , lowerCAmelCase__ ) super().__init__(**lowerCAmelCase__ ) _A= share_cross_modal_transformer_layers _A= hidden_act _A= hidden_size _A= initializer_factor _A= layer_norm_eps _A= share_link_tower_layers _A= link_tower_type _A= num_attention_heads _A= num_hidden_layers _A= tie_word_embeddings _A= init_layernorm_from_vision_encoder if text_config is None: _A= {} logger.info('`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.' ) if vision_config is None: _A= {} logger.info('`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.' ) _A= BridgeTowerTextConfig(**lowerCAmelCase__ ) _A= BridgeTowerVisionConfig(**lowerCAmelCase__ ) @classmethod def a__ ( cls , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowerCAmelCase__ ) def a__ ( self ): _A= copy.deepcopy(self.__dict__ ) _A= self.text_config.to_dict() _A= self.vision_config.to_dict() _A= self.__class__.model_type return output
476
from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run UpperCAmelCase_ = True except (ImportError, AttributeError): UpperCAmelCase_ = object def UpperCamelCase ( *lowerCAmelCase_ , **lowerCAmelCase_ ) -> List[Any]: '''simple docstring''' pass UpperCAmelCase_ = False UpperCAmelCase_ = logging.get_logger('''transformers-cli/serving''') def UpperCamelCase ( lowerCAmelCase_ ) -> int: '''simple docstring''' _A= pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(lowerCAmelCase_ , args.host , args.port , args.workers ) class lowerCAmelCase ( _a ): _SCREAMING_SNAKE_CASE : dict class lowerCAmelCase ( _a ): _SCREAMING_SNAKE_CASE : List[str] _SCREAMING_SNAKE_CASE : Optional[List[int]] class lowerCAmelCase ( _a ): _SCREAMING_SNAKE_CASE : str class lowerCAmelCase ( _a ): _SCREAMING_SNAKE_CASE : Any class lowerCAmelCase ( _a ): @staticmethod def a__ ( lowerCAmelCase__ ): _A= parser.add_parser( 'serve' , help='CLI tool to run inference requests through REST and GraphQL endpoints.' ) serve_parser.add_argument( '--task' , type=lowerCAmelCase__ , choices=get_supported_tasks() , help='The task to run the pipeline on' , ) serve_parser.add_argument('--host' , type=lowerCAmelCase__ , default='localhost' , help='Interface the server will listen on.' ) serve_parser.add_argument('--port' , type=lowerCAmelCase__ , default=8888 , help='Port the serving will listen to.' ) serve_parser.add_argument('--workers' , type=lowerCAmelCase__ , default=1 , help='Number of http workers' ) serve_parser.add_argument('--model' , type=lowerCAmelCase__ , help='Model\'s name or path to stored model.' ) serve_parser.add_argument('--config' , type=lowerCAmelCase__ , help='Model\'s config name or path to stored model.' ) serve_parser.add_argument('--tokenizer' , type=lowerCAmelCase__ , help='Tokenizer name to use.' ) serve_parser.add_argument( '--device' , type=lowerCAmelCase__ , default=-1 , help='Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)' , ) serve_parser.set_defaults(func=lowerCAmelCase__ ) def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): _A= pipeline _A= host _A= port _A= workers if not _serve_dependencies_installed: raise RuntimeError( 'Using serve command requires FastAPI and uvicorn. ' 'Please install transformers with [serving]: pip install "transformers[serving]".' 'Or install FastAPI and uvicorn separately.' ) else: logger.info(f"Serving model over {host}:{port}" ) _A= FastAPI( routes=[ APIRoute( '/' , self.model_info , response_model=lowerCAmelCase__ , response_class=lowerCAmelCase__ , methods=['GET'] , ), APIRoute( '/tokenize' , self.tokenize , response_model=lowerCAmelCase__ , response_class=lowerCAmelCase__ , methods=['POST'] , ), APIRoute( '/detokenize' , self.detokenize , response_model=lowerCAmelCase__ , response_class=lowerCAmelCase__ , methods=['POST'] , ), APIRoute( '/forward' , self.forward , response_model=lowerCAmelCase__ , response_class=lowerCAmelCase__ , methods=['POST'] , ), ] , timeout=600 , ) def a__ ( self ): run(self._app , host=self.host , port=self.port , workers=self.workers ) def a__ ( self ): return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def a__ ( self , lowerCAmelCase__ = Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) , lowerCAmelCase__ = Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) ): try: _A= self._pipeline.tokenizer.tokenize(lowerCAmelCase__ ) if return_ids: _A= self._pipeline.tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) return ServeTokenizeResult(tokens=lowerCAmelCase__ , tokens_ids=lowerCAmelCase__ ) else: return ServeTokenizeResult(tokens=lowerCAmelCase__ ) except Exception as e: raise HTTPException(status_code=500 , detail={'model': '', 'error': str(lowerCAmelCase__ )} ) def a__ ( self , lowerCAmelCase__ = Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) , lowerCAmelCase__ = Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) , lowerCAmelCase__ = Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) , ): try: _A= self._pipeline.tokenizer.decode(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return ServeDeTokenizeResult(model='' , text=lowerCAmelCase__ ) except Exception as e: raise HTTPException(status_code=500 , detail={'model': '', 'error': str(lowerCAmelCase__ )} ) async def a__ ( self , lowerCAmelCase__=Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) ): # Check we don't have empty string if len(lowerCAmelCase__ ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model _A= self._pipeline(lowerCAmelCase__ ) return ServeForwardResult(output=lowerCAmelCase__ ) except Exception as e: raise HTTPException(500 , {'error': str(lowerCAmelCase__ )} )
476
1
import os from math import logaa def lowerCAmelCase__ ( a__: str = "base_exp.txt" ) -> int: '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(a__ ) , a__ ) ) ): _UpperCAmelCase , _UpperCAmelCase = list(map(a__ , line.split(',' ) ) ) if x * logaa(a__ ) > largest: _UpperCAmelCase = x * logaa(a__ ) _UpperCAmelCase = i + 1 return result if __name__ == "__main__": print(solution())
618
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCAmelCase__ :List[str] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') @dataclass class __a : _a : Optional[str] = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) _a : Optional[str] = field( default=UpperCAmelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) _a : Optional[str] = field( default=UpperCAmelCase , metadata={'help': 'The column name of the images in the files.'} ) _a : Optional[str] = field(default=UpperCAmelCase , metadata={'help': 'A folder containing the training data.'} ) _a : Optional[str] = field(default=UpperCAmelCase , metadata={'help': 'A folder containing the validation data.'} ) _a : Optional[float] = field( default=0.1_5 , metadata={'help': 'Percent to split off of train for validation.'} ) _a : Optional[int] = field( default=UpperCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) _a : Optional[int] = field( default=UpperCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = {} if self.train_dir is not None: _UpperCAmelCase = self.train_dir if self.validation_dir is not None: _UpperCAmelCase = self.validation_dir _UpperCAmelCase = data_files if data_files else None @dataclass class __a : _a : str = field( default=UpperCAmelCase , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) _a : Optional[str] = field( default=UpperCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name_or_path'} ) _a : Optional[str] = field( default=UpperCAmelCase , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) _a : Optional[str] = field( default=UpperCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) _a : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) _a : str = field(default=UpperCAmelCase , metadata={'help': 'Name or path of preprocessor config.'} ) _a : bool = field( default=UpperCAmelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) _a : float = field( default=0.7_5 , metadata={'help': 'The ratio of the number of masked tokens in the input sequence.'} ) _a : bool = field( default=UpperCAmelCase , metadata={'help': 'Whether or not to train with normalized pixel values as target.'} ) @dataclass class __a ( UpperCAmelCase ): _a : float = field( default=1E-3 , metadata={'help': 'Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'} ) def lowerCAmelCase__ ( a__: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def lowerCAmelCase__ ( ) -> Tuple: '''simple docstring''' _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae' , a__ , a__ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase = training_args.get_process_log_level() logger.setLevel(a__ ) transformers.utils.logging.set_verbosity(a__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _UpperCAmelCase = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , a__ ) and data_args.train_val_split > 0.0: _UpperCAmelCase = ds['train'].train_test_split(data_args.train_val_split ) _UpperCAmelCase = split['train'] _UpperCAmelCase = split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _UpperCAmelCase = ViTMAEConfig.from_pretrained(model_args.config_name , **a__ ) elif model_args.model_name_or_path: _UpperCAmelCase = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **a__ ) else: _UpperCAmelCase = ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: _UpperCAmelCase = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **a__ ) elif model_args.model_name_or_path: _UpperCAmelCase = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **a__ ) else: _UpperCAmelCase = ViTImageProcessor() # create model if model_args.model_name_or_path: _UpperCAmelCase = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=a__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _UpperCAmelCase = ViTMAEForPreTraining(a__ ) if training_args.do_train: _UpperCAmelCase = ds['train'].column_names else: _UpperCAmelCase = ds['validation'].column_names if data_args.image_column_name is not None: _UpperCAmelCase = data_args.image_column_name elif "image" in column_names: _UpperCAmelCase = 'image' elif "img" in column_names: _UpperCAmelCase = 'img' else: _UpperCAmelCase = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: _UpperCAmelCase = image_processor.size['shortest_edge'] else: _UpperCAmelCase = (image_processor.size['height'], image_processor.size['width']) _UpperCAmelCase = Compose( [ Lambda(lambda a__ : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(a__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(a__: Optional[int] ): _UpperCAmelCase = [transforms(a__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: _UpperCAmelCase = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(a__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: _UpperCAmelCase = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(a__ ) # Compute absolute learning rate _UpperCAmelCase = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: _UpperCAmelCase = training_args.base_learning_rate * total_train_batch_size / 2_5_6 # Initialize our trainer _UpperCAmelCase = Trainer( model=a__ , args=a__ , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=a__ , data_collator=a__ , ) # Training if training_args.do_train: _UpperCAmelCase = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase = last_checkpoint _UpperCAmelCase = trainer.train(resume_from_checkpoint=a__ ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _UpperCAmelCase = trainer.evaluate() trainer.log_metrics('eval' , a__ ) trainer.save_metrics('eval' , a__ ) # Write model card and (optionally) push to hub _UpperCAmelCase = { 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**a__ ) else: trainer.create_model_card(**a__ ) def lowerCAmelCase__ ( a__: Tuple ) -> Optional[Any]: '''simple docstring''' main() if __name__ == "__main__": main()
618
1
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class _UpperCAmelCase : """simple docstring""" def __init__( self : Union[str, Any], lowerCamelCase : Optional[Any], ): '''simple docstring''' lowercase__ = parent lowercase__ = 13 lowercase__ = 7 lowercase__ = True lowercase__ = True lowercase__ = False lowercase__ = True lowercase__ = 99 lowercase__ = 32 lowercase__ = 2 lowercase__ = 4 lowercase__ = 37 lowercase__ = '''gelu''' lowercase__ = 0.1 lowercase__ = 0.1 lowercase__ = 512 lowercase__ = 16 lowercase__ = 2 lowercase__ = 0.02 lowercase__ = 3 lowercase__ = 4 lowercase__ = None def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowercase__ = ids_tensor([self.batch_size], self.num_choices ) lowercase__ = DistilBertConfig( vocab_size=self.vocab_size, dim=self.hidden_size, n_layers=self.num_hidden_layers, n_heads=self.num_attention_heads, hidden_dim=self.intermediate_size, hidden_act=self.hidden_act, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Union[str, Any], lowerCamelCase : List[Any], lowerCamelCase : Dict, lowerCamelCase : int, lowerCamelCase : List[str], lowerCamelCase : int, lowerCamelCase : List[str] ): '''simple docstring''' lowercase__ = TFDistilBertModel(config=UpperCamelCase__ ) lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase__ = model(UpperCamelCase__ ) lowercase__ = [input_ids, input_mask] lowercase__ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : int, lowerCamelCase : Any, lowerCamelCase : str, lowerCamelCase : str, lowerCamelCase : List[Any], lowerCamelCase : Any, lowerCamelCase : Dict ): '''simple docstring''' lowercase__ = TFDistilBertForMaskedLM(config=UpperCamelCase__ ) lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase__ = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Optional[int], lowerCamelCase : Any, lowerCamelCase : Union[str, Any], lowerCamelCase : List[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : Dict, lowerCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = TFDistilBertForQuestionAnswering(config=UpperCamelCase__ ) lowercase__ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, } lowercase__ = model(UpperCamelCase__ ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def lowercase__ ( self : Any, lowerCamelCase : str, lowerCamelCase : Optional[int], lowerCamelCase : List[Any], lowerCamelCase : Tuple, lowerCamelCase : List[str], lowerCamelCase : str ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = TFDistilBertForSequenceClassification(UpperCamelCase__ ) lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase__ = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase__ ( self : str, lowerCamelCase : Dict, lowerCamelCase : Dict, lowerCamelCase : int, lowerCamelCase : List[Any], lowerCamelCase : int, lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowercase__ = self.num_choices lowercase__ = TFDistilBertForMultipleChoice(UpperCamelCase__ ) lowercase__ = tf.tile(tf.expand_dims(UpperCamelCase__, 1 ), (1, self.num_choices, 1) ) lowercase__ = tf.tile(tf.expand_dims(UpperCamelCase__, 1 ), (1, self.num_choices, 1) ) lowercase__ = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } lowercase__ = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def lowercase__ ( self : Any, lowerCamelCase : int, lowerCamelCase : Tuple, lowerCamelCase : Any, lowerCamelCase : Union[str, Any], lowerCamelCase : Optional[int], lowerCamelCase : List[str] ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = TFDistilBertForTokenClassification(UpperCamelCase__ ) lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase__ = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__)) = config_and_inputs lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class _UpperCAmelCase ( A__ ,A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) lowercase__ = ( { "feature-extraction": TFDistilBertModel, "fill-mask": TFDistilBertForMaskedLM, "question-answering": TFDistilBertForQuestionAnswering, "text-classification": TFDistilBertForSequenceClassification, "token-classification": TFDistilBertForTokenClassification, "zero-shot": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) lowercase__ = False lowercase__ = False def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = TFDistilBertModelTester(self ) lowercase__ = ConfigTester(self, config_class=UpperCamelCase__, dim=37 ) def lowercase__ ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCamelCase__ ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCamelCase__ ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCamelCase__ ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCamelCase__ ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCamelCase__ ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCamelCase__ ) @slow def lowercase__ ( self : str ): '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): lowercase__ = TFDistilBertModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @require_tf class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) lowercase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase__ = model(UpperCamelCase__ )[0] lowercase__ = [1, 6, 768] self.assertEqual(output.shape, UpperCamelCase__ ) lowercase__ = tf.constant( [ [ [0.19261885, -0.13732955, 0.4119799], [0.22150156, -0.07422661, 0.39037204], [0.22756018, -0.0896414, 0.3701467], ] ] ) tf.debugging.assert_near(output[:, :3, :3], UpperCamelCase__, atol=1E-4 )
700
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer A__ : Dict = logging.get_logger(__name__) A__ : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A__ : Optional[int] = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } A__ : List[str] = { 'bert-base-uncased': 5_12, 'bert-large-uncased': 5_12, 'bert-base-cased': 5_12, 'bert-large-cased': 5_12, 'bert-base-multilingual-uncased': 5_12, 'bert-base-multilingual-cased': 5_12, 'bert-base-chinese': 5_12, 'bert-base-german-cased': 5_12, 'bert-large-uncased-whole-word-masking': 5_12, 'bert-large-cased-whole-word-masking': 5_12, 'bert-large-uncased-whole-word-masking-finetuned-squad': 5_12, 'bert-large-cased-whole-word-masking-finetuned-squad': 5_12, 'bert-base-cased-finetuned-mrpc': 5_12, 'bert-base-german-dbmdz-cased': 5_12, 'bert-base-german-dbmdz-uncased': 5_12, 'TurkuNLP/bert-base-finnish-cased-v1': 5_12, 'TurkuNLP/bert-base-finnish-uncased-v1': 5_12, 'wietsedv/bert-base-dutch-cased': 5_12, } A__ : Optional[int] = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_INIT_CONFIGURATION lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = BertTokenizer def __init__( self : Any, lowerCamelCase : Optional[Any]=None, lowerCamelCase : Any=None, lowerCamelCase : Tuple=True, lowerCamelCase : Dict="[UNK]", lowerCamelCase : Any="[SEP]", lowerCamelCase : List[Any]="[PAD]", lowerCamelCase : Optional[Any]="[CLS]", lowerCamelCase : Dict="[MASK]", lowerCamelCase : List[Any]=True, lowerCamelCase : Tuple=None, **lowerCamelCase : Dict, ): '''simple docstring''' super().__init__( lowerCamelCase, tokenizer_file=lowerCamelCase, do_lower_case=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, pad_token=lowerCamelCase, cls_token=lowerCamelCase, mask_token=lowerCamelCase, tokenize_chinese_chars=lowerCamelCase, strip_accents=lowerCamelCase, **lowerCamelCase, ) lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''', lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''', lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''', lowerCamelCase ) != tokenize_chinese_chars ): lowercase__ = getattr(lowerCamelCase, normalizer_state.pop('''type''' ) ) lowercase__ = do_lower_case lowercase__ = strip_accents lowercase__ = tokenize_chinese_chars lowercase__ = normalizer_class(**lowerCamelCase ) lowercase__ = do_lower_case def lowercase__ ( self : Any, lowerCamelCase : List[Any], lowerCamelCase : Dict=None ): '''simple docstring''' lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : List[Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : Any, lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' lowercase__ = self._tokenizer.model.save(lowerCamelCase, name=lowerCamelCase ) return tuple(lowerCamelCase )
671
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: _UpperCamelCase : Optional[int] =None _UpperCamelCase : List[str] =logging.get_logger(__name__) _UpperCamelCase : Optional[Any] ="▁" _UpperCamelCase : Optional[Any] ={"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} _UpperCamelCase : str ={ "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"}, "tokenizer_file": { "google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json" }, } _UpperCamelCase : int ={ "google/pegasus-xsum": 5_12, } class _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = PegasusTokenizer SCREAMING_SNAKE_CASE_ = ['input_ids', 'attention_mask'] def __init__( self , _snake_case=None , _snake_case=None , _snake_case="<pad>" , _snake_case="</s>" , _snake_case="<unk>" , _snake_case="<mask_2>" , _snake_case="<mask_1>" , _snake_case=None , _snake_case=1_03 , **_snake_case , ): """simple docstring""" __lowerCamelCase = offset if additional_special_tokens is not None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError( F'''additional_special_tokens should be of type {type(__UpperCAmelCase )}, but is''' F''' {type(__UpperCAmelCase )}''' ) __lowerCamelCase = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F'''<unk_{i}>''' for i in range(len(__UpperCAmelCase ) , self.offset - 1 ) ] if len(set(__UpperCAmelCase ) ) != len(__UpperCAmelCase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' F''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) __lowerCamelCase = additional_special_tokens_extended else: __lowerCamelCase = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , pad_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , mask_token_sent=__UpperCAmelCase , offset=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) __lowerCamelCase = vocab_file __lowerCamelCase = False if not self.vocab_file else True def _lowerCamelCase ( self , _snake_case ): """simple docstring""" __lowerCamelCase = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( '''There should be 3 special tokens: mask_token, pad_token, and eos_token +''' F''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def _lowerCamelCase ( self , _snake_case , _snake_case = None , _snake_case = False ): """simple docstring""" if already_has_special_tokens: return self._special_token_mask(__UpperCAmelCase ) elif token_ids_a is None: return self._special_token_mask(__UpperCAmelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _lowerCamelCase ( self , _snake_case , _snake_case=None ): """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self , _snake_case , _snake_case = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__UpperCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowerCamelCase = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
316
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ = { "configuration_biogpt": ["BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BioGptConfig"], "tokenization_biogpt": ["BioGptTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST", "BioGptForCausalLM", "BioGptForTokenClassification", "BioGptForSequenceClassification", "BioGptModel", "BioGptPreTrainedModel", ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
117
0
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ ): if not head: return True # split the list to two parts UpperCAmelCase , UpperCAmelCase : Dict = head.next, head while fast and fast.next: UpperCAmelCase : List[Any] = fast.next.next UpperCAmelCase : Optional[Any] = slow.next UpperCAmelCase : str = slow.next UpperCAmelCase : Union[str, Any] = None # Don't forget here! But forget still works! # reverse the second part UpperCAmelCase : Optional[int] = None while second: UpperCAmelCase : int = second.next UpperCAmelCase : Union[str, Any] = node UpperCAmelCase : Optional[Any] = second UpperCAmelCase : Tuple = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCAmelCase : Optional[Any] = node.next UpperCAmelCase : int = head.next return True def UpperCamelCase( UpperCAmelCase_ ): if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCAmelCase : List[str] = head while fast and fast.next: UpperCAmelCase , UpperCAmelCase : str = fast.next.next, slow.next # 2. Push the second half into the stack UpperCAmelCase : List[Any] = [slow.val] while slow.next: UpperCAmelCase : Optional[int] = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCAmelCase : Optional[Any] = cur.next return True def UpperCamelCase( UpperCAmelCase_ ): if not head or not head.next: return True UpperCAmelCase : str = {} UpperCAmelCase : Optional[Any] = 0 while head: if head.val in d: d[head.val].append(UpperCAmelCase_ ) else: UpperCAmelCase : int = [pos] UpperCAmelCase : List[str] = head.next pos += 1 UpperCAmelCase : int = pos - 1 UpperCAmelCase : List[str] = 0 for v in d.values(): if len(UpperCAmelCase_ ) % 2 != 0: middle += 1 else: UpperCAmelCase : List[str] = 0 for i in range(0 , len(UpperCAmelCase_ ) ): if v[i] + v[len(UpperCAmelCase_ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
720
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def UpperCAmelCase_ ( self : str ) -> Optional[Any]: UpperCAmelCase : Dict = self.dummy_uncond_unet UpperCAmelCase : Dict = KarrasVeScheduler() UpperCAmelCase : str = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = pipe(num_inference_steps=2 , generator=lowercase_ , output_type='numpy' , return_dict=lowercase_ )[0] UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : Any = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: UpperCAmelCase : Dict = 'google/ncsnpp-celebahq-256' UpperCAmelCase : Any = UNetaDModel.from_pretrained(lowercase_ ) UpperCAmelCase : Union[str, Any] = KarrasVeScheduler() UpperCAmelCase : Dict = KarrasVePipeline(unet=lowercase_ , scheduler=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase : Dict = pipe(num_inference_steps=20 , generator=lowercase_ , output_type='numpy' ).images UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
695
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float , ): lowerCamelCase_ = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('''All input parameters must be positive''' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('''Relative densities cannot be greater than one''' ) else: lowerCamelCase_ = 1 - (matter_density + radiation_density + dark_energy) lowerCamelCase_ = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) lowerCamelCase_ = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation __lowercase : Dict = 0.3 print( hubble_parameter( hubble_constant=6_8.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
142
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: __lowercase : List[Any] = None __lowercase : str = logging.get_logger(__name__) __lowercase : Tuple = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} __lowercase : Dict = { """vocab_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/tokenizer.json""", }, } __lowercase : Tuple = { """camembert-base""": 5_1_2, } __lowercase : List[str] = """▁""" class lowerCAmelCase ( a ): """simple docstring""" __lowercase :Tuple = VOCAB_FILES_NAMES __lowercase :List[Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase :str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase :Any = ["input_ids", "attention_mask"] __lowercase :Union[str, Any] = CamembertTokenizer def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="<s>" , UpperCamelCase__="</s>" , UpperCamelCase__="</s>" , UpperCamelCase__="<s>" , UpperCamelCase__="<unk>" , UpperCamelCase__="<pad>" , UpperCamelCase__="<mask>" , UpperCamelCase__=["<s>NOTUSED", "</s>NOTUSED"] , **UpperCamelCase__ , ) -> str: '''simple docstring''' lowerCamelCase_ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) lowerCamelCase_ = vocab_file lowerCamelCase_ = False if not self.vocab_file else True def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] lowerCamelCase_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: '''simple docstring''' lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ = os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ): copyfile(self.vocab_file , UpperCamelCase__ ) return (out_vocab_file,)
142
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=_SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = ['''torch''', '''torchsde'''] def __init__( self , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(self , ["""torch""", """torchsde"""] ) @classmethod def _lowercase ( cls , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(cls , ["""torch""", """torchsde"""] ) @classmethod def _lowercase ( cls , *_lowercase , **_lowercase ): """simple docstring""" requires_backends(cls , ["""torch""", """torchsde"""] )
162
'''simple docstring''' from torch import nn class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , _lowercase , _lowercase ): """simple docstring""" super().__init__() _lowerCAmelCase = class_size _lowerCAmelCase = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) _lowerCAmelCase = nn.Linear(_lowercase , _lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = self.mlp(_lowercase ) return logits
162
1
'''simple docstring''' from __future__ import annotations __A : Tuple = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] , lowerCamelCase_ :list[int] , lowerCamelCase_ :list[int] , lowerCamelCase_ :int , lowerCamelCase_ :list[list[int]] , ): '''simple docstring''' snake_case_ : Dict = [ [0 for col in range(len(grid[0] ) )] for row in range(len(lowerCamelCase_ ) ) ] # the reference grid snake_case_ : str = 1 snake_case_ : Tuple = [ [0 for col in range(len(grid[0] ) )] for row in range(len(lowerCamelCase_ ) ) ] # the action grid snake_case_ : int = init[0] snake_case_ : List[Any] = init[1] snake_case_ : int = 0 snake_case_ : Any = g + heuristic[x][y] # cost from starting cell to destination cell snake_case_ : List[Any] = [[f, g, x, y]] snake_case_ : Tuple = False # flag that is set when search is complete snake_case_ : Dict = False # flag set if we can't find expand while not found and not resign: if len(lowerCamelCase_ ) == 0: raise ValueError("""Algorithm is unable to find solution""" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() snake_case_ : int = cell.pop() snake_case_ : Dict = next_cell[2] snake_case_ : str = next_cell[3] snake_case_ : str = next_cell[1] if x == goal[0] and y == goal[1]: snake_case_ : str = True else: for i in range(len(lowerCamelCase_ ) ): # to try out different valid actions snake_case_ : str = x + DIRECTIONS[i][0] snake_case_ : Optional[int] = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(lowerCamelCase_ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: snake_case_ : Any = g + cost snake_case_ : Optional[int] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) snake_case_ : Optional[Any] = 1 snake_case_ : Any = i snake_case_ : Dict = [] snake_case_ : List[Any] = goal[0] snake_case_ : Optional[Any] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: snake_case_ : Any = x - DIRECTIONS[action[x][y]][0] snake_case_ : List[str] = y - DIRECTIONS[action[x][y]][1] snake_case_ : str = xa snake_case_ : int = ya invpath.append([x, y] ) snake_case_ : List[str] = [] for i in range(len(lowerCamelCase_ ) ): path.append(invpath[len(lowerCamelCase_ ) - 1 - i] ) return path, action if __name__ == "__main__": __A : Optional[Any] = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __A : List[Any] = [0, 0] # all coordinates are given in format [y,x] __A : Union[str, Any] = [len(grid) - 1, len(grid[0]) - 1] __A : int = 1 # the cost map which pushes the path closer to the goal __A : str = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __A : int = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __A : int = 99 __A, __A : int = search(grid, init, goal, cost, heuristic) print('ACTION MAP') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
334
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __A : str = [ 'EAGER', 'AOT_EAGER', 'INDUCTOR', 'NVFUSER', 'AOT_NVFUSER', 'AOT_CUDAGRAPHS', 'OFI', 'FX2TRT', 'ONNXRT', 'IPEX', ] def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Dict=None , lowerCamelCase_ :str=None , lowerCamelCase_ :Tuple=None ): '''simple docstring''' snake_case_ : Tuple = True while ask_again: snake_case_ : Any = input(lowerCamelCase_ ) try: if default is not None and len(lowerCamelCase_ ) == 0: return default return convert_value(lowerCamelCase_ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :Tuple , lowerCamelCase_ :List[Any]=[] , lowerCamelCase_ :Dict=None , lowerCamelCase_ :Union[str, Any]=0 ): '''simple docstring''' snake_case_ : List[str] = BulletMenu(lowerCamelCase_ , lowerCamelCase_ ) snake_case_ : int = menu.run(default_choice=lowerCamelCase_ ) return convert_value(lowerCamelCase_ ) if convert_value is not None else result def UpperCAmelCase ( lowerCamelCase_ :Any ): '''simple docstring''' snake_case_ : str = int(lowerCamelCase_ ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' snake_case_ : Dict = int(lowerCamelCase_ ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def UpperCAmelCase ( lowerCamelCase_ :Optional[int] ): '''simple docstring''' snake_case_ : Optional[Any] = int(lowerCamelCase_ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : List[Any] = int(lowerCamelCase_ ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def UpperCAmelCase ( lowerCamelCase_ :Any ): '''simple docstring''' snake_case_ : str = int(lowerCamelCase_ ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def UpperCAmelCase ( lowerCamelCase_ :Dict ): '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class __UpperCamelCase ( argparse.RawDescriptionHelpFormatter ): def a__ ( self :Tuple ,_UpperCamelCase :Any ,_UpperCamelCase :Any ,_UpperCamelCase :int ,_UpperCamelCase :Any ): snake_case_ : List[Any] = super()._format_usage(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) snake_case_ : List[Any] = usage.replace("""<command> [<args>] """ ,"""""" ) return usage
334
1
import numpy as np import qiskit def UpperCamelCase__ ( A__ = 8 , A__ = None ) -> str: snake_case__ : Optional[int] = np.random.default_rng(seed=A__ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. snake_case__ : Tuple = 6 * key_len # Measurement basis for Alice's qubits. snake_case__ : Tuple = rng.integers(2 , size=A__ ) # The set of states Alice will prepare. snake_case__ : List[str] = rng.integers(2 , size=A__ ) # Measurement basis for Bob's qubits. snake_case__ : List[Any] = rng.integers(2 , size=A__ ) # Quantum Circuit to simulate BB84 snake_case__ : Any = qiskit.QuantumCircuit(A__ , name='BB84' ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(A__ ): if alice_state[index] == 1: bbaa_circ.x(A__ ) if alice_basis[index] == 1: bbaa_circ.h(A__ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(A__ ): if bob_basis[index] == 1: bbaa_circ.h(A__ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. snake_case__ : List[str] = qiskit.Aer.get_backend('aer_simulator' ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. snake_case__ : Optional[Any] = qiskit.execute(A__ , A__ , shots=1 , seed_simulator=A__ ) # Returns the result of measurement. snake_case__ : Union[str, Any] = job.result().get_counts(A__ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. snake_case__ : Optional[Any] = ''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( A__ , A__ , A__ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. snake_case__ : Tuple = gen_key[:key_len] if len(A__ ) >= key_len else gen_key.ljust(A__ , '0' ) return key if __name__ == "__main__": print(F'''The generated key is : {bbaa(8, seed=0)}''') from doctest import testmod testmod()
699
import numpy as np import qiskit def UpperCamelCase__ ( A__ = 8 , A__ = None ) -> str: snake_case__ : Optional[int] = np.random.default_rng(seed=A__ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. snake_case__ : Tuple = 6 * key_len # Measurement basis for Alice's qubits. snake_case__ : Tuple = rng.integers(2 , size=A__ ) # The set of states Alice will prepare. snake_case__ : List[str] = rng.integers(2 , size=A__ ) # Measurement basis for Bob's qubits. snake_case__ : List[Any] = rng.integers(2 , size=A__ ) # Quantum Circuit to simulate BB84 snake_case__ : Any = qiskit.QuantumCircuit(A__ , name='BB84' ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(A__ ): if alice_state[index] == 1: bbaa_circ.x(A__ ) if alice_basis[index] == 1: bbaa_circ.h(A__ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(A__ ): if bob_basis[index] == 1: bbaa_circ.h(A__ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. snake_case__ : List[str] = qiskit.Aer.get_backend('aer_simulator' ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. snake_case__ : Optional[Any] = qiskit.execute(A__ , A__ , shots=1 , seed_simulator=A__ ) # Returns the result of measurement. snake_case__ : Union[str, Any] = job.result().get_counts(A__ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. snake_case__ : Optional[Any] = ''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( A__ , A__ , A__ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. snake_case__ : Tuple = gen_key[:key_len] if len(A__ ) >= key_len else gen_key.ljust(A__ , '0' ) return key if __name__ == "__main__": print(F'''The generated key is : {bbaa(8, seed=0)}''') from doctest import testmod testmod()
699
1
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class a__ : def __init__( self :Optional[Any] , _lowerCamelCase :List[str] , _lowerCamelCase :List[str]=13 , _lowerCamelCase :List[Any]=10 , _lowerCamelCase :List[str]=3 , _lowerCamelCase :Any=2 , _lowerCamelCase :str=2 , _lowerCamelCase :Optional[int]=2 , _lowerCamelCase :List[str]=True , _lowerCamelCase :Tuple=True , _lowerCamelCase :List[Any]=32 , _lowerCamelCase :Any=5 , _lowerCamelCase :List[Any]=4 , _lowerCamelCase :Dict=37 , _lowerCamelCase :List[str]="gelu" , _lowerCamelCase :Any=0.1 , _lowerCamelCase :Optional[int]=0.1 , _lowerCamelCase :Union[str, Any]=10 , _lowerCamelCase :Optional[Any]=0.02 , _lowerCamelCase :Tuple=0.9 , _lowerCamelCase :Dict=None , ): '''simple docstring''' UpperCamelCase_ : int =parent UpperCamelCase_ : Union[str, Any] =batch_size UpperCamelCase_ : List[Any] =image_size UpperCamelCase_ : str =num_channels UpperCamelCase_ : int =patch_size UpperCamelCase_ : Optional[int] =tubelet_size UpperCamelCase_ : str =num_frames UpperCamelCase_ : str =is_training UpperCamelCase_ : int =use_labels UpperCamelCase_ : Tuple =hidden_size UpperCamelCase_ : Optional[int] =num_hidden_layers UpperCamelCase_ : Any =num_attention_heads UpperCamelCase_ : Union[str, Any] =intermediate_size UpperCamelCase_ : Optional[Any] =hidden_act UpperCamelCase_ : Any =hidden_dropout_prob UpperCamelCase_ : Union[str, Any] =attention_probs_dropout_prob UpperCamelCase_ : Any =type_sequence_label_size UpperCamelCase_ : List[Any] =initializer_range UpperCamelCase_ : int =mask_ratio UpperCamelCase_ : Optional[int] =scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame UpperCamelCase_ : Tuple =(image_size // patch_size) ** 2 UpperCamelCase_ : Dict =(num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos UpperCamelCase_ : List[Any] =int(mask_ratio * self.seq_length ) def lowerCamelCase_ ( self :Union[str, Any] ): '''simple docstring''' UpperCamelCase_ : Tuple =floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_ : Optional[int] =None if self.use_labels: UpperCamelCase_ : List[str] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_ : Union[str, Any] =self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self :Dict ): '''simple docstring''' return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self :Dict , _lowerCamelCase :List[Any] , _lowerCamelCase :List[Any] , _lowerCamelCase :Optional[Any] ): '''simple docstring''' UpperCamelCase_ : Any =VideoMAEModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCamelCase_ : List[Any] =model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self :int , _lowerCamelCase :Optional[Any] , _lowerCamelCase :Any , _lowerCamelCase :str ): '''simple docstring''' UpperCamelCase_ : str =VideoMAEForPreTraining(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch UpperCamelCase_ : Tuple =torch.ones((self.num_masks,) ) UpperCamelCase_ : int =torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) UpperCamelCase_ : Dict =mask.expand(self.batch_size , -1 ).bool() UpperCamelCase_ : Optional[Any] =model(__lowerCamelCase , __lowerCamelCase ) # model only returns predictions for masked patches UpperCamelCase_ : Union[str, Any] =mask.sum().item() UpperCamelCase_ : int =3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def lowerCamelCase_ ( self :List[str] ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] =self.prepare_config_and_inputs() UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ : Any =config_and_inputs UpperCamelCase_ : Dict ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class a__ ( __snake_case , __snake_case , unittest.TestCase ): UpperCAmelCase__ = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) UpperCAmelCase__ = ( {'''feature-extraction''': VideoMAEModel, '''video-classification''': VideoMAEForVideoClassification} if is_torch_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def lowerCamelCase_ ( self :str ): '''simple docstring''' UpperCamelCase_ : str =VideoMAEModelTester(self ) UpperCamelCase_ : Any =ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def lowerCamelCase_ ( self :Optional[int] , _lowerCamelCase :str , _lowerCamelCase :Union[str, Any] , _lowerCamelCase :Union[str, Any]=False ): '''simple docstring''' UpperCamelCase_ : int =copy.deepcopy(__lowerCamelCase ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch UpperCamelCase_ : Optional[Any] =torch.ones((self.model_tester.num_masks,) ) UpperCamelCase_ : str =torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) UpperCamelCase_ : Union[str, Any] =mask.expand(self.model_tester.batch_size , -1 ).bool() UpperCamelCase_ : List[str] =bool_masked_pos.to(__lowerCamelCase ) if return_labels: if model_class in [ *get_values(__lowerCamelCase ), ]: UpperCamelCase_ : Any =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def lowerCamelCase_ ( self :int ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='VideoMAE does not use inputs_embeds' ) def lowerCamelCase_ ( self :Any ): '''simple docstring''' pass def lowerCamelCase_ ( self :Optional[Any] ): '''simple docstring''' UpperCamelCase_ , UpperCamelCase_ : Any =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ : Optional[int] =model_class(__lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase_ : int =model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) ) def lowerCamelCase_ ( self :Optional[int] ): '''simple docstring''' UpperCamelCase_ , UpperCamelCase_ : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ : Dict =model_class(__lowerCamelCase ) UpperCamelCase_ : Union[str, Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ : Dict =[*signature.parameters.keys()] UpperCamelCase_ : Dict =['pixel_values'] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def lowerCamelCase_ ( self :Optional[int] ): '''simple docstring''' UpperCamelCase_ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def lowerCamelCase_ ( self :Union[str, Any] ): '''simple docstring''' UpperCamelCase_ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCamelCase ) @slow def lowerCamelCase_ ( self :Optional[Any] ): '''simple docstring''' for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_ : List[str] =VideoMAEModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def lowerCamelCase_ ( self :Optional[Any] ): '''simple docstring''' if not self.has_attentions: pass else: UpperCamelCase_ , UpperCamelCase_ : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ : Union[str, Any] =True for model_class in self.all_model_classes: UpperCamelCase_ : Any =self.model_tester.seq_length - self.model_tester.num_masks UpperCamelCase_ : str =( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) UpperCamelCase_ : Tuple =True UpperCamelCase_ : Optional[Any] =False UpperCamelCase_ : Optional[int] =True UpperCamelCase_ : List[str] =model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): UpperCamelCase_ : Tuple =model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) UpperCamelCase_ : Any =outputs.attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCamelCase_ : Union[str, Any] =True UpperCamelCase_ : Tuple =model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): UpperCamelCase_ : Tuple =model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) UpperCamelCase_ : List[Any] =outputs.attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) UpperCamelCase_ : int =len(__lowerCamelCase ) # Check attention is always last and order is fine UpperCamelCase_ : Optional[int] =True UpperCamelCase_ : Union[str, Any] =True UpperCamelCase_ : List[Any] =model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): UpperCamelCase_ : Any =model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(out_len + 1 , len(__lowerCamelCase ) ) UpperCamelCase_ : Union[str, Any] =outputs.attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def lowerCamelCase_ ( self :Union[str, Any] ): '''simple docstring''' def check_hidden_states_output(_lowerCamelCase :List[Any] , _lowerCamelCase :Union[str, Any] , _lowerCamelCase :int ): UpperCamelCase_ : int =model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): UpperCamelCase_ : Tuple =model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) UpperCamelCase_ : Dict =outputs.hidden_states UpperCamelCase_ : Any =self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) UpperCamelCase_ : Union[str, Any] =self.model_tester.seq_length - self.model_tester.num_masks UpperCamelCase_ : Tuple =num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) UpperCamelCase_ , UpperCamelCase_ : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ : List[Any] =True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase_ : Optional[Any] =True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase_ ( self :Optional[int] ): '''simple docstring''' pass def A_ ( ): UpperCamelCase_ : Union[str, Any] =hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) UpperCamelCase_ : Dict =np.load(lowerCAmelCase_ ) return list(lowerCAmelCase_ ) @require_torch @require_vision class a__ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self :Optional[int] ): '''simple docstring''' return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self :Any ): '''simple docstring''' UpperCamelCase_ : Optional[int] =VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics' ).to( __lowerCamelCase ) UpperCamelCase_ : Union[str, Any] =self.default_image_processor UpperCamelCase_ : Any =prepare_video() UpperCamelCase_ : List[str] =image_processor(__lowerCamelCase , return_tensors='pt' ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): UpperCamelCase_ : List[Any] =model(**__lowerCamelCase ) # verify the logits UpperCamelCase_ : Optional[Any] =torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) UpperCamelCase_ : List[Any] =torch.tensor([0.3669, -0.0688, -0.2421] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) ) @slow def lowerCamelCase_ ( self :Dict ): '''simple docstring''' UpperCamelCase_ : Optional[int] =VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ).to(__lowerCamelCase ) UpperCamelCase_ : List[Any] =self.default_image_processor UpperCamelCase_ : List[Any] =prepare_video() UpperCamelCase_ : Tuple =image_processor(__lowerCamelCase , return_tensors='pt' ).to(__lowerCamelCase ) # add boolean mask, indicating which patches to mask UpperCamelCase_ : int =hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) UpperCamelCase_ : int =torch.load(__lowerCamelCase ) # forward pass with torch.no_grad(): UpperCamelCase_ : int =model(**__lowerCamelCase ) # verify the logits UpperCamelCase_ : Dict =torch.Size([1, 1_408, 1_536] ) UpperCamelCase_ : Any =torch.tensor( [[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] , device=__lowerCamelCase ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __lowerCamelCase , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) UpperCamelCase_ : str =torch.tensor([0.5142] , device=__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.loss , __lowerCamelCase , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) UpperCamelCase_ : int =VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' , norm_pix_loss=__lowerCamelCase ).to( __lowerCamelCase ) with torch.no_grad(): UpperCamelCase_ : Optional[int] =model(**__lowerCamelCase ) UpperCamelCase_ : Dict =torch.tensor(torch.tensor([0.6469] ) , device=__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.loss , __lowerCamelCase , atol=1E-4 ) )
357
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : def __init__( self : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : int=1_3 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : List[str]=True , __lowerCamelCase : Any=True , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Tuple=2_2_4 , __lowerCamelCase : int=1_0_0_0 , __lowerCamelCase : int=[3, 3, 6, 4] , __lowerCamelCase : Dict=[4_8, 5_6, 1_1_2, 2_2_0] , ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = num_channels UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = num_labels UpperCAmelCase = image_size UpperCAmelCase = layer_depths UpperCAmelCase = embed_dims def _lowercase ( self : List[str] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase = self.get_config() return config, pixel_values, labels def _lowercase ( self : Optional[Any] ) -> str: """simple docstring""" return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=__lowerCamelCase , layer_scale_init_value=1e-5 , ) def _lowercase ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int] ) -> str: """simple docstring""" UpperCAmelCase = SwiftFormerModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCAmelCase = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def _lowercase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : Any ) -> Dict: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = SwiftFormerForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCAmelCase = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) UpperCAmelCase = SwiftFormerForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : Tuple ) -> Optional[Any]: """simple docstring""" ((UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase)) = self.prepare_config_and_inputs() UpperCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __lowercase ( __snake_case , __snake_case , unittest.TestCase ): UpperCamelCase = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () UpperCamelCase = ( {'''feature-extraction''': SwiftFormerModel, '''image-classification''': SwiftFormerForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def _lowercase ( self : str ) -> Tuple: """simple docstring""" UpperCAmelCase = SwiftFormerModelTester(self ) UpperCAmelCase = ConfigTester( self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=3_7 , num_attention_heads=1_2 , num_hidden_layers=1_2 , ) def _lowercase ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def _lowercase ( self : Optional[int] ) -> List[str]: """simple docstring""" pass def _lowercase ( self : str ) -> str: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(__lowerCamelCase ) UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) ) def _lowercase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(__lowerCamelCase ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _lowercase ( self : List[str] ) -> Dict: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowercase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def _lowercase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = SwiftFormerModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def _lowercase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass def _lowercase ( self : Dict ) -> List[Any]: """simple docstring""" def check_hidden_states_output(__lowerCamelCase : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] ): UpperCAmelCase = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) UpperCAmelCase = outputs.hidden_states UpperCAmelCase = 8 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(__lowerCamelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _lowercase ( self : Dict ) -> Union[str, Any]: """simple docstring""" def _config_zero_init(__lowerCamelCase : Any ): UpperCAmelCase = copy.deepcopy(__lowerCamelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(__lowerCamelCase , __lowerCamelCase , 1e-1_0 ) if isinstance(getattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ): UpperCAmelCase = _config_zero_init(getattr(__lowerCamelCase , __lowerCamelCase ) ) setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return configs_no_init UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = _config_zero_init(__lowerCamelCase ) for model_class in self.all_model_classes: UpperCAmelCase = model_class(config=__lowerCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _lowercase ( self : Optional[int] ) -> List[str]: """simple docstring""" pass def _UpperCamelCase ( ) ->Dict: UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): @cached_property def _lowercase ( self : Optional[int] ) -> int: """simple docstring""" return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def _lowercase ( self : Optional[int] ) -> Any: """simple docstring""" UpperCAmelCase = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(__lowerCamelCase ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=__lowerCamelCase , return_tensors="""pt""" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**__lowerCamelCase ) # verify the logits UpperCAmelCase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) UpperCAmelCase = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
377
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _lowerCamelCase : Dict = logging.get_logger(__name__) class lowercase ( a ): lowercase__ : Union[str, Any] = ["""pixel_values"""] def __init__( self : str , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : float = None , _UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCamelCase : bool = True , _UpperCamelCase : Union[int, float] = 1 / 255 , _UpperCamelCase : bool = True , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , **_UpperCamelCase : Tuple , ) -> None: '''simple docstring''' super().__init__(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = size if size is not None else {"shortest_edge": 384} SCREAMING_SNAKE_CASE = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase ) SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = size # Default value set here for backwards compatibility where the value in config is None SCREAMING_SNAKE_CASE = crop_pct if crop_pct is not None else 224 / 256 SCREAMING_SNAKE_CASE = resample SCREAMING_SNAKE_CASE = do_rescale SCREAMING_SNAKE_CASE = rescale_factor SCREAMING_SNAKE_CASE = do_normalize SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE = image_std if image_std is not None else IMAGENET_STANDARD_STD def __snake_case( self : List[Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : float , _UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Dict , ) -> np.ndarray: '''simple docstring''' SCREAMING_SNAKE_CASE = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(F"Size dictionary must contain 'shortest_edge' key. Got {size.keys()}" ) SCREAMING_SNAKE_CASE = size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct SCREAMING_SNAKE_CASE = int(shortest_edge / crop_pct ) SCREAMING_SNAKE_CASE = get_resize_output_image_size(_UpperCamelCase , size=_UpperCamelCase , default_to_square=_UpperCamelCase ) SCREAMING_SNAKE_CASE = resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_UpperCamelCase , size=(shortest_edge, shortest_edge) , data_format=_UpperCamelCase , **_UpperCamelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _UpperCamelCase , size=(shortest_edge, shortest_edge) , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def __snake_case( self : int , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[int, float] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : str , ) -> List[str]: '''simple docstring''' return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def __snake_case( self : Any , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[float, List[float]] , _UpperCamelCase : Union[float, List[float]] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : List[Any] , ) -> np.ndarray: '''simple docstring''' return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def __snake_case( self : List[str] , _UpperCamelCase : ImageInput , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : float = None , _UpperCamelCase : PILImageResampling = None , _UpperCamelCase : bool = None , _UpperCamelCase : float = None , _UpperCamelCase : bool = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[str, TensorType]] = None , _UpperCamelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCamelCase : List[Any] , ) -> PIL.Image.Image: '''simple docstring''' SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE = crop_pct if crop_pct is not None else self.crop_pct SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE = size if size is not None else self.size SCREAMING_SNAKE_CASE = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase ) SCREAMING_SNAKE_CASE = make_list_of_images(_UpperCamelCase ) if not valid_images(_UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE = [to_numpy_array(_UpperCamelCase ) for image in images] if do_resize: SCREAMING_SNAKE_CASE = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , crop_pct=_UpperCamelCase , resample=_UpperCamelCase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images] SCREAMING_SNAKE_CASE = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images] SCREAMING_SNAKE_CASE = {"pixel_values": images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase )
647
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowercase ( a ): lowercase__ : Tuple = (KDPMaDiscreteScheduler,) lowercase__ : Optional[int] = 10 def __snake_case( self : Optional[Any] , **_UpperCamelCase : List[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = { "num_train_timesteps": 1_100, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", } config.update(**_UpperCamelCase ) return config def __snake_case( self : int ) -> List[Any]: '''simple docstring''' for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=_UpperCamelCase ) def __snake_case( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=_UpperCamelCase , beta_end=_UpperCamelCase ) def __snake_case( self : Union[str, Any] ) -> str: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCamelCase ) def __snake_case( self : Optional[int] ) -> int: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCamelCase ) def __snake_case( self : Optional[int] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config(prediction_type="v_prediction" ) SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE = sample.to(_UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = model(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = output.prev_sample SCREAMING_SNAKE_CASE = torch.sum(torch.abs(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_UpperCamelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_934e-07 ) < 1e-2 assert abs(result_mean.item() - 6.1_112e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.693_428_650_170_972e-07 ) < 1e-2 assert abs(result_mean.item() - 0.0_0_0_2 ) < 1e-3 def __snake_case( self : Dict ) -> int: '''simple docstring''' if torch_device == "mps": return SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE = sample.to(_UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = model(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = output.prev_sample SCREAMING_SNAKE_CASE = torch.sum(torch.abs(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_UpperCamelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 def __snake_case( self : Tuple ) -> str: '''simple docstring''' if torch_device == "mps": return SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase ) SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter.to(_UpperCamelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: SCREAMING_SNAKE_CASE = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = model(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = output.prev_sample SCREAMING_SNAKE_CASE = torch.sum(torch.abs(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_UpperCamelCase ) ) if str(_UpperCamelCase ).startswith("cpu" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3
647
1
'''simple docstring''' def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase ='' for word_or_phrase in separated: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise Exception('join() accepts only strings to be joined' ) joined += word_or_phrase + separator return joined.strip(_lowerCAmelCase ) if __name__ == "__main__": from doctest import testmod testmod()
474
'''simple docstring''' from __future__ import annotations from typing import Any def _A ( _lowerCAmelCase ): """simple docstring""" create_state_space_tree(_lowerCAmelCase , [] , 0 ) def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" if index == len(_lowerCAmelCase ): print(_lowerCAmelCase ) return create_state_space_tree(_lowerCAmelCase , _lowerCAmelCase , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(_lowerCAmelCase , _lowerCAmelCase , index + 1 ) current_subsequence.pop() if __name__ == "__main__": lowerCamelCase = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["""A""", """B""", """C"""]) generate_all_subsequences(seq)
474
1
from __future__ import annotations class snake_case__ : def __init__( self : str , _lowerCamelCase : List[str]=None ): snake_case__ : str = data snake_case__ : Dict = None def __repr__( self : List[str] ): snake_case__ : Any = [] snake_case__ : Any = self while temp: string_rep.append(F'''{temp.data}''' ) snake_case__ : Optional[Any] = temp.next return "->".join(_lowerCamelCase ) def lowercase__( A ): if not elements_list: raise Exception('The Elements List is empty' ) snake_case__ : int = Node(elements_list[0] ) for i in range(1 , len(A ) ): snake_case__ : List[str] = Node(elements_list[i] ) snake_case__ : Optional[Any] = current.next return head def lowercase__( A ): if head_node is not None and isinstance(A , A ): print_reverse(head_node.next ) print(head_node.data ) def lowercase__( ): from doctest import testmod testmod() snake_case__ : List[Any] = make_linked_list([1_4, 5_2, 1_4, 1_2, 4_3] ) print('Linked List:' ) print(A ) print('Elements in Reverse:' ) print_reverse(A ) if __name__ == "__main__": main()
303
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : Any = {'configuration_mmbt': ['MMBTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings'] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowerCamelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
1